

Programmer’s Reference Guide of Zend Framework 2

Introduction to Zend Framework 2

	Overview

	Installation

User Guide

The user guide is provided to take you through a non-trivial example, showing
you various techniques and features of the framework in order to build an
application.

	Getting Started with Zend Framework 2

	Getting started: A skeleton application

	Modules

	Routing and controllers

	Database and models

	Styling and Translations

	Forms and actions

	Conclusion

Learning Zend Framework 2

	Learning Dependency Injection

Zend Framework 2 Reference

Zend\Authentication

	Introduction

	Database Table Authentication

	Digest Authentication

	HTTP Authentication Adapter

	LDAP Authentication

Zend\Barcode

	Introduction

	Barcode creation using Zend\Barcode\Barcode class

	Zend\Barcode\Barcode Objects

	Zend\Barcode Renderers

Zend\Cache

	Zend\Cache\Storage\Adapter

	Zend\Cache\Storage\Capabilities

	Zend\Cache\Storage\Plugin

	Zend\Cache\Pattern

Zend\Captcha

	Introduction

	Captcha Operation

	CAPTCHA Adapters

Zend\Console

	Introduction

	Console routes and routing

	Console-aware modules

	Console-aware action controllers

	Console adapters

	Console prompts

Zend\Config

	Introduction

	Theory of Operation

	Zend\Config\Reader

	Zend\Config\Writer

	Zend\Config\Processor

Zend\Crypt

	Introduction

	Encrypt/decrypt using block ciphers

	Key derivation function

	Password secure storing

	Public key cryptography

Zend\Db

	Zend\Db\Adapter

	Zend\Db\ResultSet

	Zend\Db\Sql

	Zend\Db\TableGateway

	Zend\Db\RowGateway

	Zend\Db\Metadata

Zend\Di

	Introduction to Zend\Di

	Zend\Di Quickstart

	Zend\Di Definition

	Zend\Di InstanceManager

	Zend\Di Configuration

	Zend\Di Debugging & Complex Use Cases

Zend\Dom

	Introduction

	Zend\Dom\Query

Zend\EventManager

	The EventManager

Zend\Form

	Introduction to Zend\Form

	Form Quick Start

	Form Collections

	Form Elements

	Form View Helpers

Zend\Http

	Zend\Http

	Zend\Http\Request

	Zend\Http\Response

	Zend\Http\Headers And The Various Header Classes

	Zend_Http_Cookie and Zend_Http_CookieJar

	Zend\Http\Client

	Zend_Http_Client - Connection Adapters

	Zend_Http_Client - Advanced Usage

Zend\I18n

	Translating

	I18n View Helpers

	I18n Filters

Zend\InputFilter

	Introduction

Zend\Ldap

	Introduction

	API overview

	Usage Scenarios

	Tools

	Object oriented access to the LDAP tree using Zend\Ldap\Node

	Getting information from the LDAP server

	Serializing LDAP data to and from LDIF

Zend\Loader

	The AutoloaderFactory

	The PluginClassLoader

	The ShortNameLocator Interface

	The PluginClassLocator interface

	The SplAutoloader Interface

	The ClassMapAutoloader

	The StandardAutoloader

	The Class Map Generator utility: bin/classmap_generator.php

	The PrefixPathLoader

	The PrefixPathMapper Interface

Zend\Log

	Overview

	Writers

	Filters

	Formatters

Zend\Mail

	Zend\Mail\Message

	Zend\Mail\Transport

	Zend\Mail\Transport\SmtpOptions

	Zend\Mail\Transport\FileOptions

Zend\Math

	Introduction

Zend\ModuleManager

	Introduction to the Module System

	The Module Manager

	The Module Class

	The Module Autoloader

	Best Practices when Creating Modules

Zend\Mvc

	Introduction to the MVC Layer

	Quick Start

	Default Services

	Routing

	The MvcEvent

	Available Controllers

	Controller Plugins

	Examples

Zend\Permissions\Acl

	Introduction

	Refining Access Controls

	Advanced Usage

Zend\ServiceManager

	Zend\ServiceManager

	Zend\ServiceManager Quick Start

Zend\Stdlib

	Zend\Stdlib\Hydrator

Zend\Uri

	Zend\Uri

Zend\Validator

	Introduction

	Standard Validation Classes

	Validator Chains

	Writing Validators

	Validation Messages

Zend\View

	Zend\View Quick Start

	The PhpRenderer

	PhpRenderer View Scripts

	View Helpers

Zend\XmlRpc

	Introduction

	Zend\XmlRpc\Client

	Zend\XmlRpc\Server

Services for Zend Framework 2 Reference

ZendService\LiveDocx

	ZendService\LiveDocx

Copyright

	Copyright Information

Indices and tables

	Index

	Module Index

	Search Page

 [image: Edit this document]

 Overview

Overview

Zend Framework 2 is an open source framework for developing web applications and services with PHP 5.3+. Zend
Framework 2 is implemented using 100% object-oriented code and uses most of the new features of PHP 5.3 namely
namespaces [http://php.net/manual/en/language.namespaces.php], late static binding [http://it.php.net/lsb], lambda functions and closures [http://it2.php.net/manual/en/functions.anonymous.php].

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million
downloads.

Note

ZF2 is not backward compatible with ZF1, because of the new features in PHP 5.3+ implemented by
the framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few
dependencies on other components. ZF2 follows the SOLID [http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29] object oriented design principle. This loosely coupled
architecture allows developers to use whichever components they want. We call this a “use-at-will” design.
We support ‘Pyrus`_ and Composer [http://getcomposer.org/] as installation and dependency tracking mechanisms for the framework and
each component, further enhancing this design.

We use PHPUnit [http://www.phpunit.de] to test our code and Travis CI [http://travis-ci.org/] as a continuous integration service.

Some of the features offered by Zend Framework:
- Robust, high performance M-V-C [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP] implementation.
- Database abstraction that is simple to use.
- Forms component that implements valid HTML form [http://www.w3.org/TR/html401/interact/forms.html] rendering, validation, and filtering in an easy-to-use,
OOP interface.
- User authentication and authorization, such as Zend\Authentication and Zend\Permissions\Acl.
- Comprehensive documentation

While they can be used separately, Zend Framework components in the standard library form a powerful and extensible
web application framework when combined. Zend Framework offers a robust, high performance MVC implementation, a
database abstraction that is simple to use, and a forms component that implements HTML form rendering,
validation, and filtering so that developers can consolidate all of these operations using one easy-to-use, object
oriented interface. Other components, such as Zend\Authentication and Zend\Permissions\Acl, provide user
authentication and authorization against all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most
popular web services available. Whatever your application needs are, you’re likely to find a Zend Framework
component that can be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework’ is Zend Technologies [http://www.zend.com], but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and StrikeIron have
partnered with Zend to provide interfaces to web services and other technologies that they wish to make available
to Zend Framework developers.

Zend Framework could not deliver and support all of these features without the help of the vibrant Zend Framework
community. Community members, including contributors, make themselves available on mailing lists [http://framework.zend.com/archives],
IRC channels [http://www.zftalk.com], and other forums. Whatever question you have about Zend Framework, the community is always
available to address it.

 [image: Edit this document]

 Installation

Installation

See the requirements appendix for a detailed list of requirements for Zend Framework.

	New to Zend Framework?
Download the latest stable release. [http://packages.zendframework.com/] Available in .zip and .tar.gz formats, from
http://packages.zendframework.com/.

	Brave, cutting edge?
Using a Git [http://git-scm.com/] client. Zend Framework is open source software, and the Git repository used for its development is
publicly available on GitHub. Consider using Git to get Zend Framework if you already use Git for your application
development, want to contribute back to the framework, or need to upgrade your framework version more often than
releases occur.

The URL for Zend Framework’s Git repository is: https://github.com/zendframework/zf2

Once you have a copy of Zend Framework available, your application needs to be able to access the framework classes
found in the library folder. Though there are several ways to achieve this [http://www.php.net/manual/en/configuration.changes.php], your PHP include_path [http://www.php.net/manual/en/ini.core.php#ini.include-path] needs to
contain the path to Zend Framework’s library.

Rob Allen has kindly provided the community with an introduction to Getting Started with Zend Framework 2.
Other Zend Framework community members are actively working on expanding the tutorial.

 [image: Edit this document]

 Getting Started with Zend Framework 2

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by
creating a simple database driven application using the Model-View-Controller
paradigm. By the end you will have a working ZF2 application and you can then
poke around the code to ﬁnd out more about how it all works and ﬁts together.

Some assumptions

This tutorial assumes that you are running PHP 5.3.10 with the Apache web server
and MySQL, accessible via the PDO extension. Your Apache installation must have
the mod_rewrite extension installed and conﬁgured.

You must also ensure that Apache is conﬁgured to support .htaccess ﬁles. This is
usually done by changing the setting:

AllowOverride None

to

AllowOverride All

in your httpd.conf ﬁle. Check with your distribution’s documentation for
exact details. You will not be able to navigate to any page other than the home
page in this tutorial if you have not conﬁgured mod_rewrite and .htaccess usage
correctly

The tutorial application

The application that we are going to build is a simple inventory system to
display which albums we own. The main page will list our collection and allow us
to add, edit and delete CDs. We are going to need four pages in our website:

	Page
	Description

	List of albums
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

We will also need to store our data into a database. We will only need one table
with these ﬁelds in it:

	Field name
	Type
	Null?
	Notes

	id
	integer
	No
	Primary key, auto-increment

	artist
	varchar(100)
	No
	

	title
	varchar(100)
	No
	

 [image: Edit this document]

 Getting started: A skeleton application

Getting started: A skeleton application

In order to build our application, we will start with the
ZendSkeletonApplication [https://github.com/zendframework/ZendSkeletonApplication]
available on github [https://github.com/].
Go to https://github.com/zendframework/ZendSkeletonApplication and click the “Zip”
button. This will download a ﬁle with a name like
zendframework-ZendSkeletonApplication-zfrelease-2.0.0beta5-2-gc2c7315.zip or
similar.

Unzip this ﬁle into the directory where you keep all your vhosts and rename the
resultant directory to zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to
resolve its dependencies. In this case, the dependency is Zend Framework 2
itself.

To install Zend Framework 2 into our application we simply type:

php composer.phar self-update
php composer.phar install

from the zf2-tutorial folder. This takes a while. You should see an output like:

Installing dependencies from lock file
- Installing zendframework/zendframework (dev-master)
 Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

Generating autoload files

Note

If you see this message:

[RuntimeException]
 The process timed out.

then your connection was too slow to download the entire package in time, and composer
timed out. To avoid this, instead of running:

php composer.phar install

run instead:

COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar install

We can now move on to the virtual host.

Virtual host

You now need to create an Apache virtual host for the application and edit your
hosts ﬁle so that http://zf2-tutorial.localhost will serve index.php from the
zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd.conf or
extra/httpd-vhosts.conf. (If you are using httpd-vhosts.conf, ensure
that this ﬁle is included by your main httpd.conf ﬁle.)

Ensure that NameVirtualHost is deﬁned and set to “*:80” or similar, and then
deﬁne a virtual host along these lines:

<VirtualHost *:80>
 ServerName zf2-tutorial.localhost
 DocumentRoot /path/to/zf-2tutorial/public
 SetEnv APPLICATION_ENV "development"
 <Directory /path/to/zf2-tutorial/public>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

Make sure that you update your /etc/hosts or
c:\windows\system32\drivers\etc\hosts ﬁle so that zf2-tutorial.localhost
is mapped to 127.0.0.1. The website can then be accessed using
http://zf2-tutorial.localhost.

127.0.0.1 zf2-tutorial.localhost localhost

If you’ve done it right, you should see something like this:

[image: ../_images/user-guide.skeleton-application.hello-world.png]
To test that your .htaccess ﬁle is working, navigate to
http://zf2-tutorial.localhost/1234 and you should see this:

[image: ../_images/user-guide.skeleton-application.404.png]
If you see a standard Apache 404 error, then you need to ﬁx .htaccess usage
before continuing.

You now have a working skeleton application and we can start adding the speciﬁcs
for our application.

 [image: Edit this document]

 Modules

Modules

Zend Framework 2 uses a module system and you organise your main
application-speciﬁc code within each module. The Application module provided by
the skeleton is used to provide bootstrapping, error and routing conﬁguration to
the whole application. It is usually used to provide application level
controllers for, say, the home page of an application, but we are not going to
use the default one provided in this tutorial as we want our album list to be
the home page, which will live in our own module.

We are going to put all our code into the Album module which will contain our
controllers, models, forms and views, along with conﬁguration. We’ll also tweak
the Application module as required.

Let’s start with the directories required.

Setting up the Album module

Start by creating a directory called Album under with the following
subdirectories to hold the module’s ﬁles:

zf2-tutorial/
 /module
 /Album
 /config
 /src
 /Album
 /Controller
 /Form
 /Model
 /view
 /album
 /album

As you can see the Album module has separate directories for the different
types of ﬁles we will have. The PHP ﬁles that contain classes within the
Album namespace live in the src/Album directory so that we can have
multiple namespaces within our module should we require it. The view directory
also has a sub-folder called album for our module’s view scripts.

In order to load and conﬁgure a module, Zend Framework 2 has a
ModuleManager. This will look for Module.php in the root of the module
directory (module/Album) and expect to ﬁnd a class called Album\Module
within it. That is, the classes within a given module will have the namespace of
the module’s name, which is the directory name of the module.

Create Module.php in the Album module:

// module/Album/Module.php
namespace Album;

class Module
{
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\ClassMapAutoloader' => array(
 __DIR__ . '/autoload_classmap.php',
),
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
),
),
);
 }

 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
}

The ModuleManager will call getAutoloaderConfig() and getConfig()
automatically for us.

Autoloading ﬁles

Our getAutoloaderConfig() method returns an array that is compatible with
ZF2’s AutoloaderFactory. We conﬁgure it so that we add a class map ﬁle to
the ClassmapAutoloader and also add this module’s namespace to the
StandardAutoloader. The standard autoloader requires a namespace and the
path where to ﬁnd the ﬁles for that namespace. It is PSR-0 compliant and so
classes map directly to ﬁles as per the PSR-0 rules [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md].

As we are in development, we don’t need to load ﬁles via the classmap, so we provide an empty array for the
classmap autoloader. Create autoload_classmap.php with these contents:

<?php
// module/Album/autoload_classmap.php:
return array();

As this is an empty array, whenever the autoloader looks for a class within the
Album namespace, it will fall back to the to StandardAutoloader for us.

Note

Note that as we are using Composer, as an alternative, you could not implement
getAutoloaderConfig() and instead add "Application":
"module/Application/src" to the psr-0 key in composer.json. If you go
this way, then you need to run php composer.phar update to update the
composer autoloading ﬁles.

Configuration

Having registered the autoloader, let’s have a quick look at the getConfig()
method in Album\Module. This method simply loads the
config/module.config.php ﬁle.

Create the following conﬁguration ﬁle for the Album module:

// module/Album/conﬁg/module.config.php:
return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),
 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The conﬁg information is passed to the relevant components by the
ServiceManager. We need two initial sections: controller and
view_manager. The controller section provides a list of all the controllers
provided by the module. We will need one controller, AlbumController, which
we’ll reference as Album\Controller\Album. The controller key must
be unique across all modules, so we preﬁx it with our module name.

Within the view_manager section, we add our view directory to the
TemplatePathStack conﬁguration. This will allow it to ﬁnd the view scripts for
the Album module that are stored in our views/ directory.

Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done
in the application’s config/application.config.php file which is provided by the
skeleton application. Update this file so that its modules section contains the
Album module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

// conﬁg/application.conﬁg.php:
return array(
 'modules' => array(
 'Application',
 'Album', // <-- Add this line
),
 'module_listener_options' => array(
 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),
 'module_paths' => array(
 './module',
 './vendor',
),
),
);

As you can see, we have added our Album module into the list of modules
after the Application module.

We have now set up the module ready for putting our custom code into it.

 [image: Edit this document]

 Routing and controllers

Routing and controllers

We will build a very simple inventory system to display our album
collection. The home page will list our collection and allow us to add, edit and
delete albums. Hence the following pages are required:

	Page
	Description

	Home
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

Before we set up our ﬁles, it’s important to understand how the framework
expects the pages to be organised. Each page of the application is known as an
action and actions are grouped into controllers within modules. Hence, you
would generally group related actions into a controller; for instance, a news
controller might have actions of current, archived and view.

As we have four pages that all apply to albums, we will group them in a single
controller AlbumController within our Album module as four actions. The
four actions will be:

	Page
	Controller
	Action

	Home
	AlbumController
	index

	Add new album
	AlbumController
	add

	Edit album
	AlbumController
	edit

	Delete album
	AlbumController
	delete

The mapping of a URL to a particular action is done using routes that are deﬁned
in the module’s module.config.php file. We will add a route for our album
actions. This is the updated conﬁg file with the new code commented.

// module/Album/conﬁg/module.conﬁg.php:
return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),

 // The following section is new and should be added to your file
 'router' => array(
 'routes' => array(
 'album' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/album[/:action][/:id]',
 'constraints' => array(
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'id' => '[0-9]+',
),
 'defaults' => array(
 'controller' => 'Album\Controller\Album',
 'action' => 'index',
),
),
),
),
),

 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The name of the route is ‘album’ and has a type of ‘segment’. The segment route
allows us to specify placeholders in the URL pattern (route) that will be mapped
to named parameters in the matched route. In this case, the route is
``/album[/:action][/:id]`` which will match any URL that starts with
/album. The next segment will be an optional action name, and then ﬁnally
the next segment will be mapped to an optional id. The square brackets indicate
that a segment is optional. The constraints section allows us to ensure that the
characters within a segment are as expected, so we have limited actions to
starting with a letter and then subsequent characters only being alphanumeric,
underscore or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

	URL
	Page
	Action

	/album
	Home (list of albums)
	index

	/album/add
	Add new album
	add

	/album/edit/2
	Edit album with an id of 2
	edit

	/album/delete/4
	Delete album with an id of 4
	delete

Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller
is a class that is generally called {Controller name}Controller. Note that
{Controller name} must start with a capital letter. This class lives in a ﬁle
called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is
a public method within the controller class that is named {action name}Action.
In this case {action name} should start with a lower case letter.

Note

This is by convention. Zend Framework 2 doesn’t provide many
restrictions on controllers other than that they must implement the
Zend\Stdlib\Dispatchable interface. The framework provides two abstract
classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be using the
standard AbstractActionController, but if you’re intending to write a
RESTful web service, AbstractRestfulController may be useful.

Let’s go ahead and create our controller class:

// module/Album/src/Album/Controller/AlbumController.php:
namespace Album\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class AlbumController extends AbstractActionController
{
 public function indexAction()
 {
 }

 public function addAction()
 {
 }

 public function editAction()
 {
 }

 public function deleteAction()
 {
 }
}

Note

We have already informed the module about our controller in the
‘controller’ section of config/module.config.php.

We have now set up the four actions that we want to use. They won’t work yet
until we set up the views. The URLs for each action are:

	URL
	Method called

	http://zf2-tutorial.localhost/album
	Album\Controller\AlbumController::indexAction

	http://zf2-tutorial.localhost/album/add
	Album\Controller\AlbumController::addAction

	http://zf2-tutorial.localhost/album/edit
	Album\Controller\AlbumController::editAction

	http://zf2-tutorial.localhost/album/delete
	Album\Controller\AlbumController::deleteAction

We now have a working router and the actions are set up for each page of our
application.

It’s time to build the view and the model layer.

Initialise the view scripts

To integrate the view into our application all we need to do is create some view
script files. These ﬁles will be executed by the DefaultViewStrategy and will be
passed any variables or view models that are returned from the controller action
method. These view scripts are stored in our module’s views directory within a
directory named after the controller. Create these four empty files now:

	module/Album/view/album/album/index.phtml

	module/Album/view/album/album/add.phtml

	module/Album/view/album/album/edit.phtml

	module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

 [image: Edit this document]

 Database and models

Database and models

The database

Now that we have the Album module set up with controller action methods and
view scripts, it is time to look at the model section of our application.
Remember that the model is the part that deals with the application’s core
purpose (the so-called “business rules”) and, in our case, deals with the
database. We will make use of the Zend Framework class
Zend\Db\TableGateway\TableGateway which is used to find, insert, update and
delete rows from a database table.

We are going to use MySQL, via PHP’s PDO driver, so create a database called
zf2tutorial, and run these SQL statements to create the album table with some
data in it.

CREATE TABLE album (
 id int(11) NOT NULL auto_increment,
 artist varchar(100) NOT NULL,
 title varchar(100) NOT NULL,
 PRIMARY KEY (id)
);
INSERT INTO album (artist, title)
 VALUES ('The Military Wives', 'In My Dreams');
INSERT INTO album (artist, title)
 VALUES ('Adele', '21');
INSERT INTO album (artist, title)
 VALUES ('Bruce Springsteen', 'Wrecking Ball (Deluxe)');
INSERT INTO album (artist, title)
 VALUES ('Lana Del Rey', 'Born To Die');
INSERT INTO album (artist, title)
 VALUES ('Gotye', 'Making Mirrors');

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of
writing!)

We now have some data in a database and can write a very simple model for it.

The model files

Zend Framework does not provide a Zend\Model component as the model is your
business logic and it’s up to you to decide how you want it to work. There are
many components that you can use for this depending on your needs. One approach
is to have model classes represent each entity in your application and then
use mapper objects that load and save entities to the database. Another is to
use an ORM like Doctrine or Propel.

For this tutorial, we are going to create a very simple model by creating an
AlbumTable class that extends Zend\Db\TableGateway\TableGateway where
each album object is an Album object (known as an entity). This is an
implementation of the Table Data Gateway design pattern to allow for interfacing
with data in a database table. Be aware though that the Table Data Gateway
pattern can become limiting in larger systems. There is also a temptation to put
database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!

Let’s start with our Album entity class within the Model directory:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

class Album
{
 public $id;
 public $artist;
 public $title;

 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }
}

Our Album entity object is a simple PHP class. In order to work with
Zend\Db’s AbstractTableGateway class, we need to implement the
exchangeArray() method. This method simply copies the data from the passed
in array to our entity’s properties. We will add an input filter for use with
our form later.

Next, we extend Zend\Db\TableGateway\AbstractTableGateway and create our own
AlbumTable class in the module’s Model directory like this:

// module/Album/src/Album/Model/AlbumTable.php:
namespace Album\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\ResultSet\ResultSet;
use Zend\Db\TableGateway\AbstractTableGateway;

class AlbumTable extends AbstractTableGateway
{
 protected $table ='album';

 public function __construct(Adapter $adapter)
 {
 $this->adapter = $adapter;
 $this->resultSetPrototype = new ResultSet();
 $this->resultSetPrototype->setArrayObjectPrototype(new Album());
 $this->initialize();
 }

 public function fetchAll()
 {
 $resultSet = $this->select();
 return $resultSet;
 }

 public function getAlbum($id)
 {
 $id = (int) $id;
 $rowset = $this->select(array('id' => $id));
 $row = $rowset->current();
 if (!$row) {
 throw new \Exception("Could not find row $id");
 }
 return $row;
 }

 public function saveAlbum(Album $album)
 {
 $data = array(
 'artist' => $album->artist,
 'title' => $album->title,
);
 $id = (int)$album->id;
 if ($id == 0) {
 $this->insert($data);
 } else {
 if ($this->getAlbum($id)) {
 $this->update($data, array('id' => $id));
 } else {
 throw new \Exception('Form id does not exist');
 }
 }
 }

 public function deleteAlbum($id)
 {
 $this->delete(array('id' => $id));
 }
}

There’s a lot going on here. Firstly, we set the protected property $table
to the name of the database table, ‘album’ in this case. We then write a
constructor that takes a database adapter as its only parameter and assigns it
to the adapter property of our class. We then need to tell the table gateway’s
result set that whenever it creates a new row object, it should use an Album
object to do so. The TableGateway classes use the prototype pattern for
creation of result sets and entities. This means that instead of instantiating
when required, the system clones a previously instantiated object. See
PHP Constructor Best Practices and the Prototype Pattern [http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern]
for more details.

We then create some helper methods that our application will use to interface
with the database table. fetchAll() retrieves all albums rows from the
database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum() either creates a new row in the database or
updates a row that already exists and deleteAlbum() removes the row
completely. The code for each of these methods is, hopefully, self-explanatory.

Using ServiceManager to configure the database credentials and inject into the controller

In order to always use the same instance of our AlbumTable, we will use the
ServiceManager to define how to create one. This is most easily done in the
Module class where we create a method called getServiceConfig() which is
automatically called by the ModuleManager and applied to the ServiceManager.
We’ll then be able to retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class
to be instantiated or a factory (closure or callback) that instantiates the
object when the ServiceManager needs it. We start by implementing
getServiceConfig() to provide a factory that creates an AlbumTable. Add
this method to the bottom of the Module class.

// module/Album/Module.php:
namespace Album;

// Add this import statement:
use Album\Model\AlbumTable;

class Module
{
 // getAutoloaderConfig() and getConfig() methods here

 // Add this method:
 public function getServiceConfig()
 {
 return array(
 'factories' => array(
 'Album\Model\AlbumTable' => function($sm) {
 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');
 $table = new AlbumTable($dbAdapter);
 return $table;
 },
),
);
 }
}

This method returns an array of factories that are all merged together by
the ModuleManager before passing to the ServiceManager. We also need to
configure the ServiceManager so that it knows how to get a
Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the
merged config system. Zend Framework 2’s ModuleManager merges all the
configuration from each module’s module.config.php file and then merges in
the files in config/autoload (*.global.php and then *.local.php
files). We’ll add our database configuration information to global.php which
you should commit to your version control system.You can use local.php
(outside of the VCS) to store the credentials for your database if you want to.

// config/autoload/global.php:
return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=zf2tutorial;host=localhost',
 'driver_options' => array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
),
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter'
 => 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

You should put your database credentials in config/autoloader/local.php so
that they are not in the git repository (as local.php is ignored):

// config.autoload/local.php:
return array(
 'db' => array(
 'username' => 'YOUR USERNAME HERE',
 'password' => 'YOUR PASSWORD HERE',
),
);

Now that the ServiceManager can create an AlbumTable instance for us, we
can add a method to the controller to retrieve it. Add getAlbumTable() to
the AlbumController class:

// module/Album/src/Album/Controller/AlbumController.php:
 public function getAlbumTable()
 {
 if (!$this->albumTable) {
 $sm = $this->getServiceLocator();
 $this->albumTable = $sm->get('Album\Model\AlbumTable');
 }
 return $this->albumTable;
 }

You should also add:

protected $albumTable;

to the top of the class.

We can now call getAlbumTable() from within our controller whenever we need
to interact with our model. Let’s start with a list of albums when the index
action is called.

Listing albums

In order to list the albums, we need to retrieve them from the model and pass
them to the view. To do this, we fill in indexAction() within
AlbumController. Update the AlbumController’s indexAction() like
this:

module/Album/src/Album/Controller/AlbumController.php:
// ...
 public function indexAction()
 {
 return new ViewModel(array(
 'albums' => $this->getAlbumTable()->fetchAll(),
));
 }
// ...

With Zend Framework 2, in order to set variables in the view, we return a
ViewModel instance where the first parameter of the constructor is an array
from the action containing data we need. These are then automatically passed to
the view script. The ViewModel object also allows us to change the view
script that is used, but the default is to use {controller name}/{action
name}. We can now fill in the index.phtml view script:

<?php
// module/Album/view/album/album/index.phtml:

$title = 'My albums';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p><a href="<?php echo $this->url('album', array(
 'action'=>'add'));?>">Add new album</p>

<table class="table">
<tr>
 <th>Title</th>
 <th>Artist</th>
 <th> </th>
</tr>
<?php foreach($albums as $album) : ?>
<tr>
 <td><?php echo $this->escapeHtml($album->title);?></td>
 <td><?php echo $this->escapeHtml($album->artist);?></td> <td>
 <a href="<?php echo $this->url('album',
 array('action'=>'edit', 'id' => $album->id));?>">Edit
 <a href="<?php echo $this->url('album',
 array('action'=>'delete', 'id' => $album->id));?>">Delete
 </td>
</tr>
<?php endforeach; ?>
</table>

The first thing we do is to set the title for the page (used in the layout) and
also set the title for the <head> section using the headTitle() view
helper which will display in the browser’s title bar. We then create a link to
add a new album.

The url() view helper is provided by Zend Framework 2 and is used to create
the links we need. The first parameter to url() is the route name we wish to use
for construction of the URL, and the the second parameter is an array of all the
variables to fit into the placeholders to use. In this case we use our ‘album’
route which is set up to accept two placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The
Zend Framework 2 view system automatically ensures that these variables are
extracted into the scope of the view script, so that we don’t have to worry
about prefixing them with $this-> as we used to have to do with Zend
Framework 1; however you can do so if you wish.

We then create a table to display each album’s title and artist, and provide
links to allow for editing and deleting the record. A standard foreach: loop
is used to iterate over the list of albums, and we use the alternate form using
a colon and endforeach; as it is easier to scan than to try and match up
braces. Again, the url() view helper is used to create the edit and delete
links.

Note

We always use the escapeHtml() view helper to help protect
ourselves from XSS vulnerabilities.

If you open http://zf2-tutorial.localhost/album you should see this:

[image: ../_images/user-guide.database-and-models.album-list.png]

 [image: Edit this document]

 Styling and Translations

Styling and Translations

We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to
change the title and and remove the copyright message.

The ZendSkeletonApplication is set up to use Zend\I18n’s translation
functionality for all the text. It uses .po files that live in
application/language, and you need to use poedit [http://www.poedit.net/download.php/] to change the text. Start poedit and
open application/language/en_US.po. Click on “Skeleton Application” in the
list of Original strings and then type in “Tutorial” as the translation.

[image: ../_images/user-guide.styling-and-translations.poedit.png]
Press Save in the toolbar and poedit will create an en_US.mo file for us.

To remove the copyright message, we need to edit the Application module’s
layout.phtml view script:

// module/Application/view/layout/layout.phtml:
// Remove this line:
<p>© 2005 - 2012 by Zend Technologies Ltd. <?php echo $this->translate('All
rights reserved.') ?></p>

The page now looks ever so slightly better now!

[image: ../_images/user-guide.styling-and-translations.translated-image.png]

 [image: Edit this document]

 Forms and actions

Forms and actions

Adding new albums

We can now code up the functionality to add new albums. There are two bits to
this part:

	Display a form for user to provide details

	Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form
and for validation, we add a Zend\InputFilter to our Album entity. We
start by creating a new class Album\Form\AlbumForm that extends from
Zend\Form\Form to define our form. The class is stored in the
AlbumForm.php file within the module/Album/src/Album/Form directory.

Create this file file now:

// module/Album/src/Album/Form/AlbumForm.php:
namespace Album\Form;

use Zend\Form\Form;

class AlbumForm extends Form
{
 public function __construct($name = null)
 {
 // we want to ignore the name passed
 parent::__construct('album');
 $this->setAttribute('method', 'post');
 $this->add(array(
 'name' => 'id',
 'attributes' => array(
 'type' => 'hidden',
),
));
 $this->add(array(
 'name' => 'artist',
 'attributes' => array(
 'type' => 'text',
),
 'options' => array(
 'label' => 'Artist',
),
));
 $this->add(array(
 'name' => 'title',
 'attributes' => array(
 'type' => 'text',
),
 'options' => array(
 'label' => 'Title',
),
));
 $this->add(array(
 'name' => 'submit',
 'attributes' => array(
 'type' => 'submit',
 'value' => 'Go',
 'id' => 'submitbutton',
),
));
 }
}

Within the constructor of AlbumForm, we set the name when we call the parent’s
constructor and then set the method and then create four form elements for the
id, artist, title, and submit button. For each item we set various attributes
and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework 2 is this
done using an input filter which can either be standalone or within any class
that implements InputFilterAwareInterface, such as a model entity. We are
going to add the input filter to our Album entity:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

use Zend\InputFilter\Factory as InputFactory;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\InputFilterAwareInterface;
use Zend\InputFilter\InputFilterInterface;

class Album implements InputFilterAwareInterface
{
 public $id;
 public $artist;
 public $title;
 protected $inputFilter;

 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 public function setInputFilter(InputFilterInterface $inputFilter)
 {
 throw new \Exception("Not used");
 }

 public function getInputFilter()
 {
 if (!$this->inputFilter) {
 $inputFilter = new InputFilter();
 $factory = new InputFactory();

 $inputFilter->add($factory->createInput(array(
 'name' => 'id',
 'required' => true,
 'filters' => array(
 array('name' => 'Int'),
),
)));

 $inputFilter->add($factory->createInput(array(
 'name' => 'artist',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
)));

 $inputFilter->add($factory->createInput(array(
 'name' => 'title',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
)));

 $this->inputFilter = $inputFilter;
 }

 return $this->inputFilter;
 }
}

The InputFilterAwareInterface defines two methods: setInputFilter() and
getInputFilter(). We only need to implement getInputFilter() so we
simply throw an exception in setInputFilter().

Within getInputFilter(), we instantiate an InputFilter and then add the
inputs that we require. We add one input for each property that we wish to
filter or validate. For the id field we add an Int filter as we only
need integers. For the text elements, we add two filters, StripTags and
StringTrim to remove unwanted HTML and unnecessary white space. We also set
them to be required and add a StringLength validator to ensure that the
user doesn’t enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This
is done within the AlbumController’s addAction():

// module/Album/src/Album/Controller/AlbumController.php:

//...
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Album\Model\Album; // <-- Add this import
use Album\Form\AlbumForm; // <-- Add this import
//...

 // Add content to this method:
 public function addAction()
 {
 $form = new AlbumForm();
 $form->get('submit')->setValue('Add');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $album->exchangeArray($form->getData());
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }
 return array('form' => $form);
 }
//...

After adding the AlbumForm to the use list, we implement addAction().
Let’s look at the addAction() code in a little more detail:

$form = new AlbumForm();
$form->submit->setValue('Add');

We instantiate AlbumForm and set the label on the submit button to “Add”. We
do this here as we’ll want to re-use the form when editing an album and will use
a different label.

$request = $this->getRequest();
if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());
 if ($form->isValid()) {

If the Request object’s isPost() method is true, then the form has been
submitted and so we set the form’s input filter from an album instance. We then
set the posted data to the form and check to see if it is valid using the
isValid() member function of the form.

$album->exchangeArray($form->getData());
$this->getAlbumTable()->saveAlbum($album);

If the form is valid, then we grab the data from the form and store to the
model using saveAlbum().

// Redirect to list of albums
return $this->redirect()->toRoute('album');

After we have saved the new album row, we redirect back to the list of albums
using the Redirect controller plugin.

return array('form' => $form);

Finally, we return the variables that we want assigned to the view. In this
case, just the form object. Note that Zend Framework 2 also allows you to simply
return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

<?php
// module/Album/view/album/album/add.phtml:

$title = 'Add new album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>
<?php
$form = $this->form;
$form->setAttribute('action', $this->url('album', array('action' => 'add')));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get('id'));
echo $this->formRow($form->get('title'));
echo $this->formRow($form->get('artist'));
echo $this->formSubmit($form->get('submit'));
echo $this->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework
provides some view helpers to make this a little easier. The form() view
helper has an openTag() and closeTag() method which we use to open and
close the form. Then for each element with a label, we can use formRow(),
but for the two elements that are standalone, we use formHidden() and
formSubmit().

[image: ../_images/user-guide.forms-and-actions.add-album-form.png]
You should now be able to use the “Add new album” link on the home page of the
application to add a new album record.

Editing an album

Editing an album is almost identical to adding one, so the code is very similar.
This time we use editAction() in the AlbumController:

// module/Album/src/Album/AlbumController.php:
//...

 // Add content to this method:
 public function editAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
 }
 $album = $this->getAlbumTable()->getAlbum($id);

 $form = new AlbumForm();
 $form->bind($album);
 $form->get('submit')->setAttribute('value', 'Edit');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }

 return array(
 'id' => $id,
 'form' => $form,
);
 }
//...

This code should look comfortably familiar. Let’s look at the differences from
adding an album. Firstly, we look for the id that is in the matched route
and use it to load the album to be edited:

$id = (int) $this->params()->fromRoute('id', 0);
if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
}
$album = $this->getAlbumTable()->getAlbum($id);

params is a controller plugin that provides a convenient way to retrieve
parameters from the matched route. We use it to retrieve the id from the
route we created in the modules’ module.config.php. If the id is zero,
then we redirect to the add action, otherwise, we continue by getting the album
entity from the database.

$form = new AlbumForm();
$form->bind($album);
$form->get('submit')->setAttribute('value', 'Edit');

The form’s bind() method attaches the model to the form. This is used in two
ways:

	# When displaying the form, the initial values for each element are extracted

	from the model.

	# After successful validation in isValid(), the data from the form is put back

	into the model.

These operations are done using a hydrator object. There are a number of
hydrators, but the default one is Zend\Stdlib\Hydrator\ArraySerializable
which expects to find two methods in the model: getArrayCopy() and
exchangeArray(). We have already written exchangeArray() in our
Album entity, so just need to write getArrayCopy():

// module/Album/src/Album/Model/Album.php:
// ...
 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 // Add the following method:
 public function getArrayCopy()
 {
 return get_object_vars($this);
 }
// ...

As a result of using bind() with its hydrator, we do not need to populate the
form’s data back into the $album as that’s already been done, so we can just
call the mappers’ saveAlbum() to store the changes back to the database.

The view template, edit.phtml, looks very similar to the one for adding an
album:

<?php
// module/Album/view/album/album/edit.phtml:

$title = 'Edit album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<?php
$form = $this->form;
$form->setAttribute('action', $this->url(
 'album',
 array(
 'action' => 'edit',
 'id' => $this->id,
)
));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get('id'));
echo $this->formRow($form->get('title'));
echo $this->formRow($form->get('artist'));
echo $this->formSubmit($form->get('submit'));
echo $this->form()->closeTag();

The only changes are to use the ‘Edit Album’ title and set the form’s action to
the ‘edit’ action too.

You should now be able to edit albums.

Deleting an album

To round out our application, we need to add deletion. We have a Delete link
next to each album on our list page and the naïve approach would be to do a
delete when it’s clicked. This would be wrong. Remembering our HTTP spec, we
recall that you shouldn’t do an irreversible action using GET and should use
POST instead.

We shall show a confirmation form when the user clicks delete and if they then
click “yes”, we will do the deletion. As the form is trivial, we’ll code it
directly into our view (Zend\Form is, after all, optional!).

Let’s start with the action code in AlbumController::deleteAction():

// module/Album/src/Album/AlbumController.php:
//...
 // Add content to the following method:
 public function deleteAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album');
 }

 $request = $this->getRequest();
 if ($request->isPost()) {
 $del = $request->getPost('del', 'No');

 if ($del == 'Yes') {
 $id = (int) $request->getPost('id');
 $this->getAlbumTable()->deleteAlbum($id);
 }

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }

 return array(
 'id' => $id,
 'album' => $this->getAlbumTable()->getAlbum($id)
);
 }
//...

As before, we get the id from the matched route,and check the request
object’s isPost() to determine whether to show the confirmation page or to
delete the album. We use the table object to delete the row using the
deleteAlbum() method and then redirect back the list of albums. If the
request is not a POST, then we retrieve the correct database record and assign
to the view, along with the id.

The view script is a simple form:

<?php
// module/Album/view/album/album/delete.phtml:

$title = 'Delete album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p>Are you sure that you want to delete
 '<?php echo $this->escapeHtml($album->title); ?>' by
 '<?php echo $this->escapeHtml($album->artist); ?>'?
</p>
<?php
$url = $this->url('album', array(
 'action' => 'delete',
 'id' => $this->id,
));
?>
<form action="<?php echo $url; ?>" method="post">
<div>
 <input type="hidden" name="id" value="<?php echo (int) $album->id; ?>" />
 <input type="submit" name="del" value="Yes" />
 <input type="submit" name="del" value="No" />
</div>
</form>

In this script, we display a confirmation message to the user and then a form
with “Yes” and “No” buttons. In the action, we checked specifically for the “Yes”
value when doing the deletion.

Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/
doesn’t display the list of albums.

This is due to a route set up in the Application module’s
module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:

'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Application\Controller\Index',
 'action' => 'index',
),
),
),

Change the controller from Application\Controller\Index to
Album\Controller\Album:

'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Album\Controller\Album', // <-- change here
 'action' => 'index',
),
),
),

That’s it - you now have a fully working application!

 [image: Edit this document]

 Conclusion

Conclusion

This concludes our brief look at building a simple, but fully functional, MVC
application using Zend Framework 2.

 [image: Edit this document]

 Learning Dependency Injection

Learning Dependency Injection

Very brief introduction to Di.

Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes
of this quickstart, we’ll explain the act of injecting dependencies simply with this below code:

	1

	$b = new B(new A());

Above, A is a dependency of B, and A was injected into B. If you are not familar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy [http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html], Ralph Schindler’s Learning
DI [http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php], or Fabien Potencier’s Series on DI [http://fabien.potencier.org/article/11/what-is-dependency-injection].

Very brief introduction to Di Container.

	1

	TBD.

Simplest usage case (2 classes, one consumes the other)

In the simplest use case, a developer might have one class (A) that is consumed by another class (B)
through the constructor. By having the dependency injected through the constructor, this requires an object of type
A be instantiated before an object of type B so that A can be injected into B.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	namespace My {

 class A
 {
 /* Some useful functionality */
 }

 class B
 {
 protected $a = null;
 public function __construct(A $a)
 {
 $this->a = $a;
 }
 }
}

To create B by hand, a developer would follow this work flow, or a similar workflow to this:

	1

	$b = new B(new A());

If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY up the code. While there are several ways to do this, using a dependency injection container is
one of these solutions. With Zend’s dependency injection container Zend\Di\DependencyInjector, the above use
case can be taken care of with no configuration (provided all of your autoloading is already configured properly)
with the following usage:

	1
2

	$di = new Zend\Di\DependencyInjector;
$b = $di->get('My\B'); // will produce a B object that is consuming an A object

Moreover, by using the DependencyInjector::get() method, you are ensuring that the same exact object is
returned on subsequent calls. To force new objects to be created on each and every request, one would use the
DependencyInjector::newInstance() method:

	1

	$b = $di->newInstance('My\B');

Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	namespace My {

 class A
 {
 protected $username = null;
 protected $password = null;
 public function __construct($username, $password)
 {
 $this->username = $username;
 $this->password = $password;
 }
 }

 class B
 {
 protected $a = null;
 public function __construct(A $a)
 {
 $this->a = $a;
 }
 }

 class C
 {
 protected $b = null;
 public function __construct(B $b)
 {
 $this->b = $b;
 }
 }

}

With the above, we need to ensure that our DependencyInjector is capable of seeing the A class with a few
configuration values (which are generally scalar in nature). To do this, we need to interact with the
InstanceManager:

	1
2
3

	$di = new Zend\Di\DependencyInjector;
$di->getInstanceManager()->setProperty('A', 'username', 'MyUsernameValue');
$di->getInstanceManager()->setProperty('A', 'password', 'MyHardToGuessPassword%$#');

Now that our container has values it can use when creating A, and our new goal is to have a C object that
consumes B and in turn consumes A, the usage scenario is still the same:

	1
2
3

	$c = $di->get('My\C');
// or
$c = $di->newInstance('My\C');

Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default
DependencyInjector object ($di = new Zend\Di\DependencyInjector() without any configuration to the
InstanceManager), we could do the following:

	1
2
3
4
5
6
7
8

	$parameters = array(
 'username' => 'MyUsernameValue',
 'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);
// or
$c = $di->newInstance('My\C', $parameters);

Constructor injection is not the only supported type of injection. The other most popular method of injection is
also supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our
previous example with the exception, for example, of our B class now looking like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	namespace My {
 class B
 {
 protected $a;
 public function setA(A $a)
 {
 $this->a = $a;
 }
 }
}

Since the method is prefixed with set, and is followed by a capital letter, the DependencyInjector knows that
this method is used for setter injection, and again, the use case $c = $di->get('C'), will once again know how
to fill the dependencies when needed to create an object of type C.

Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.

Simplest Usage Case Without Type-hints

If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does
practice dependency injection, you can still use the DependencyInjector, but you might find you need to
describe your dependencies explicitly. To do this, you will need to interact with one of the definitions that is
capable of letting a developer describe, with objects, the map between classes. This particular definition is
called the BuilderDefinition and can work with, or in place of, the default RuntimeDefinition.

Definitions are a part of the DependencyInjector that attempt to describe the relationship between classes so
that DependencyInjector::newInstance() and DependencyInjector::get() can know what the dependencies are
that need to be filled for a particular class/object. With no configuration, DependencyInjector will use the
RuntimeDefinition which uses reflection and the type-hints in your code to determine the dependency map.
Without type-hints, it will assume that all dependencies are scalar or required configuration parameters.

The BuilderDefinition, which can be used in tandem with the RuntimeDefinition (technically, it can be used
in tandem with any definition by way of the AggregateDefinition), allows you to programmatically describe the
mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that class
B now looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	namespace My {
 class B
 {
 protected $a;
 public function setA($a)
 {
 $this->a = $a;
 }
 }
}

You’ll notice the only change is that setA now does not include any type-hinting information.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

// Describe this class:
$builder = new Definition\BuilderDefinition;
$builder->addClass(($class = new Builder\PhpClass));

$class->setName('My\B');
$class->addInjectableMethod(($im = new Builder\InjectibleMethod));

$im->setName('setA');
$im->addParameter('a', 'My\A');

// Use both our Builder Definition as well as the default
// RuntimeDefinition, builder first
$aDef = new Definition\AggregateDefinition;
$aDef->addDefinition($builder);
$aDef->addDefinition(new Definition\RuntimeDefinition);

// Now make sure the DependencyInjector understands it
$di = new DependencyInjector;
$di->setDefinition($aDef);

// and finally, create C
$parameters = array(
 'username' => 'MyUsernameValue',
 'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);

This above usage scenario provides that whatever the code looks like, you can ensure that it works with the
dependency injection container. In an ideal world, all of your code would have the proper type hinting and/or would
be using a mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a
full definition that is capable of instantiating all of the objects you might require.

Simplest usage case with Compiled Definition

Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box, the
DependencyInjector uses a RuntimeDefinition which does all class map resolution via PHP’s Reflection
extension. Couple that with the fact that PHP does not have a true application layer capable of storing objects
in-memory between requests, and you get a recipe that is less performant than similar solutions you’ll find in Java
and .Net (where there is an application layer with in-memory object storage.)

To mitigate this shortcoming, Zend\Di has several features built in capable of pre-compiling the most expensive
tasks that surround dependency injection. It is worth noting that the RuntimeDefition, which is used by
default, is the only definition that does lookups on-demand. The rest of the Definition objects are capable
of being aggregated and stored to disk in a very performant way.

Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships
and parameter/property needs of each class that is to be instantiated. This Definition would have been built as
part of some deployment or packaging task by this 3rd party. When this is not the case, you can create these
Definitions via any of the Definition types provided with the exception of the RuntimeDefinition. Here
is a breakdown of the job of each definition type:

	AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it looks it
up in the order the definitions were provided to this aggregate.

	ArrayDefinition- This definition takes an array of information and exposes it via the interface provided by
Zend\Di\Definition suitable for usage by DependencyInjector or an AggregateDefinition

	BuilderDefinition- Creates a definition based on an object graph consisting of various Builder\PhpClass
objects and Builder\InectionMethod objects that describe the mapping needs of the target codebase and …

	Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(Zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).

The following is an example of producing a definition via a DirectoryScanner:

	1
2
3
4
5

	$compiler = new Zend\Di\Definition\Compiler();
$compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
);
$definition = $compiler->compile();

This definition can then be directly used by the DependencyInjector (assuming the above A, B, C scenario
was actually a file per class on disk):

	1
2
3
4
5

	$di = new Zend\Di\DependencyInjector;
$di->setDefinition($definition);
$di->getInstanceManager()->setProperty('My\A', 'username', 'foo');
$di->getInstanceManager()->setProperty('My\A', 'password', 'bar');
$c = $di->get('My\C');

One strategy for persisting these compiled definitions would be the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	if (!file_exists(__DIR__ . '/di-definition.php') && $isProduction) {
 $compiler = new Zend\Di\Definition\Compiler();
 $compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
);
 $definition = $compiler->compile();
 file_put_contents(
 __DIR__ . '/di-definition.php',
 '<?php return ' . var_export($definition->toArray(), true) . ';'
);
} else {
 $definition = new Zend\Di\Definition\ArrayDefinition(
 include __DIR__ . '/di-definition.php'
);
}

// $definition can now be used; in a production system it will be written
// to disk.

Since Zend\Code\Scanner does not include files, the classes contained within are not loaded into memory.
Instead, Zend\Code\Scanner uses tokenization to determine the structure of your files. This makes this suitable
to use this solution during development and within the same request as any one of your application’s dispatched
actions.

Creating a precompiled definition for others to use

If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so
that others can utilize this Definition without having to Reflect it via the RuntimeDefintion, or
create it via the Compiler. To do this, use the same technique as above. Instead of writing the resulting array
to disk, you would write the information into a definition directly, by way of Zend\CodeGenerator:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	// First, compile the information
$compiler = new Zend\Di\Definition\Compiler();
$compiler->addCodeScannerDirectory(new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/My/'));
$definition = $compiler->compile();

// Now, create a Definition class for this information
$codeGenerator = new Zend\CodeGenerator\Php\PhpFile();
$codeGenerator->setClass(($class = new Zend\CodeGenerator\Php\PhpClass()));
$class->setNamespaceName('My');
$class->setName('DiDefinition');
$class->setExtendedClass('\Zend\Di\Definition\ArrayDefinition');
$class->setMethod(array(
 'name' => '__construct',
 'body' => 'parent::__construct(' . var_export($definition->toArray(), true) . ');'
));
file_put_contents(__DIR__ . '/My/DiDefinition.php', $codeGenerator->generate());

Using Multiple Definitions From Multiple Sources

In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from
multiple places:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

$di = new DependencyInjector;
$diDefAggregate = new Definition\Aggregate();

// first add in provided Definitions, for example
$diDefAggregate->addDefinition(new ThirdParty\Dbal\DiDefinition());
$diDefAggregate->addDefinition(new Zend\Controller\DiDefinition());

// for code that does not have TypeHints
$builder = new Definition\BuilderDefinition();
$builder->addClass(($class = Builder\PhpClass));
$class->addInjectionMethod(
 ($injectMethod = new Builder\InjectionMethod())
);
$injectMethod->setName('injectImplementation');
$injectMethod->addParameter(
'implementation', 'Class\For\Specific\Implementation'
);

// now, your application code
$compiler = new Definition\Compiler()
$compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/App/')
);
$appDefinition = $compiler->compile();
$diDefAggregate->addDefinition($appDefinition);

// now, pass in properties
$im = $di->getInstanceManager();

// this could come from Zend\Config\Config::toArray
$propertiesFromConfig = array(
 'ThirdParty\Dbal\DbAdapter' => array(
 'username' => 'someUsername',
 'password' => 'somePassword'
),
 'Zend\Controller\Helper\ContentType' => array(
 'default' => 'xhtml5'
),
);
$im->setProperties($propertiesFromConfig);

Generating Service Locators

In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?

The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance, and
generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.

The method getCodeGenerator() returns an instance of Zend\CodeGenerator\Php\PhpFile, from which you can
then write a class file with the new Service Locator. Methods on the Generator class allow you to specify the
namespace and class for the generated Service Locator.

As an example, consider the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	use Zend\Di\ServiceLocator\Generator;

// $di is a fully configured DI instance
$generator = new Generator($di);

$generator->setNamespace('Application')
 ->setContainerClass('Context');
$file = $generator->getCodeGenerator();
$file->setFilename(__DIR__ . '/../Application/Context.php');
$file->write();

The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	<?php

namespace Application;

use Zend\Di\ServiceLocator;

class Context extends ServiceLocator
{

 public function get($name, array $params = array())
 {
 switch ($name) {
 case 'composed':
 case 'My\ComposedClass':
 return $this->getMyComposedClass();

 case 'struct':
 case 'My\Struct':
 return $this->getMyStruct();

 default:
 return parent::get($name, $params);
 }
 }

 public function getComposedClass()
 {
 if (isset($this->services['My\ComposedClass'])) {
 return $this->services['My\ComposedClass'];
 }

 $object = new \My\ComposedClass();
 $this->services['My\ComposedClass'] = $object;
 return $object;
 }
 public function getMyStruct()
 {
 if (isset($this->services['My\Struct'])) {
 return $this->services['My\Struct'];
 }

 $object = new \My\Struct();
 $this->services['My\Struct'] = $object;
 return $object;
 }

 public function getComposed()
 {
 return $this->get('My\ComposedClass');
 }

 public function getStruct()
 {
 return $this->get('My\Struct');
 }
}

To use this class, you simply consume it as you would a DI container:

	1
2
3

	$container = new Application\Context;

$struct = $container->get('struct'); // My\Struct instance

One note about this functionality in its current incarnation. Configuration is per-environment only at this time.
This means that you will need to generate a container per execution environment. Our recommendation is that you do
so, and then in your environment, specify the container class to use.

 [image: Edit this document]

 Introduction

Introduction

The Zend\Authentication component provides an API for authentication and includes concrete authentication
adapters for common use case scenarios.

Zend\Authentication is concerned only with authentication and not with authorization. Authentication is
loosely defined as determining whether an entity actually is what it purports to be (i.e., identification), based
on some set of credentials. Authorization, the process of deciding whether to allow an entity access to, or to
perform operations upon, other entities is outside the scope of Zend\Authentication. For more information about
authorization and access control with Zend Framework, please see the Zend\Permissions\Acl component.

Note

There is no Zend\Authentication\Authentication class, instead the class
Zend\Authentication\AuthenticationService is provided. This class uses underlying authentication adapters
and persistent storage backends.

Adapters

Zend\Authentication adapters are used to authenticate against a particular type of authentication service, such
as LDAP, RDBMS, or file-based storage. Different adapters are likely to have vastly different options and
behaviors, but some basic things are common among authentication adapters. For example, accepting authentication
credentials (including a purported identity), performing queries against the authentication service, and returning
results are common to Zend\Authentication adapters.

Each Zend\Authentication adapter class implements Zend\Authentication\Adapter\AdapterInterface. This
interface defines one method, authenticate(), that an adapter class must implement for performing an
authentication query. Each adapter class must be prepared prior to calling authenticate(). Such adapter
preparation includes setting up credentials (e.g., username and password) and defining values for adapter-specific
configuration options, such as database connection settings for a database table adapter.

The following is an example authentication adapter that requires a username and password to be set for
authentication. Other details, such as how the authentication service is queried, have been omitted for brevity:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	use Zend\Authentication\Adapter\AdapterInterface;

class My\Auth\Adapter implements AdapterInterface
{
 /**
 * Sets username and password for authentication
 *
 * @return void
 */
 public function __construct($username, $password)
 {
 // ...
 }

 /**
 * Performs an authentication attempt
 *
 * @return \Zend\Authentication\Result
 * @throws \Zend\Authentication\Adapter\Exception\ExceptionInterface
 * If authentication cannot be performed
 */
 public function authenticate()
 {
 // ...
 }
}

As indicated in its docblock, authenticate() must return an instance of Zend\Authentication\Result (or of a
class derived from Zend\Authentication\Result). If for some reason performing an authentication query is
impossible, authenticate() should throw an exception that derives from
Zend\Authentication\Adapter\Exception\ExceptionInterface.

Results

Zend\Authentication adapters return an instance of Zend\Authentication\Result with authenticate() in
order to represent the results of an authentication attempt. Adapters populate the Zend\Authentication\Result
object upon construction, so that the following four methods provide a basic set of user-facing operations that are
common to the results of Zend\Authentication adapters:

	isValid()- returns TRUE if and only if the result represents a successful authentication attempt

	getCode()- returns a Zend\Authentication\Result constant identifier for determining the type of
authentication failure or whether success has occurred. This may be used in situations where the developer wishes
to distinguish among several authentication result types. This allows developers to maintain detailed
authentication result statistics, for example. Another use of this feature is to provide specific, customized
messages to users for usability reasons, though developers are encouraged to consider the risks of providing such
detailed reasons to users, instead of a general authentication failure message. For more information, see the
notes below.

	getIdentity()- returns the identity of the authentication attempt

	getMessages()- returns an array of messages regarding a failed authentication attempt

A developer may wish to branch based on the type of authentication result in order to perform more specific
operations. Some operations developers might find useful are locking accounts after too many unsuccessful password
attempts, flagging an IP address after too many nonexistent identities are attempted, and providing specific,
customized authentication result messages to the user. The following result codes are available:

	1
2
3
4
5
6
7
8

	use Zend\Authentication\Result;

Result::SUCCESS
Result::FAILURE
Result::FAILURE_IDENTITY_NOT_FOUND
Result::FAILURE_IDENTITY_AMBIGUOUS
Result::FAILURE_CREDENTIAL_INVALID
Result::FAILURE_UNCATEGORIZED

The following example illustrates how a developer may branch on the result code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	// inside of AuthController / loginAction
$result = $this->auth->authenticate($adapter);

switch ($result->getCode()) {

 case Result::FAILURE_IDENTITY_NOT_FOUND:
 /** do stuff for nonexistent identity **/
 break;

 case Result::FAILURE_CREDENTIAL_INVALID:
 /** do stuff for invalid credential **/
 break;

 case Result::SUCCESS:
 /** do stuff for successful authentication **/
 break;

 default:
 /** do stuff for other failure **/
 break;
}

Identity Persistence

Authenticating a request that includes authentication credentials is useful per se, but it is also important to
support maintaining the authenticated identity without having to present the authentication credentials with each
request.

HTTP is a stateless protocol, however, and techniques such as cookies and sessions have been developed in order
to facilitate maintaining state across multiple requests in server-side web applications.

Default Persistence in the PHP Session

By default, Zend\Authentication provides persistent storage of the identity from a successful authentication
attempt using the PHP session. Upon a successful authentication attempt,
Zend\Authentication\AuthenticationService::authenticate() stores the identity from the authentication result
into persistent storage. Unless specified otherwise, Zend\Authentication\AuthenticationService uses a storage
class named Zend\Authentication\Storage\Session, which, in turn, uses Zend\Session. A
custom class may instead be used by providing an object that implements
Zend\Authentication\Storage\StorageInterface to Zend\Authentication\AuthenticationService::setStorage().

Note

If automatic persistent storage of the identity is not appropriate for a particular use case, then developers
may forego using the Zend\Authentication\AuthenticationService class altogether, instead using an adapter
class directly.

Modifying the Session Namespace

Zend\Authentication\Storage\Session uses a session namespace of ‘Zend_Auth‘. This namespace may be
overridden by passing a different value to the constructor of Zend\Authentication\Storage\Session, and this
value is internally passed along to the constructor of Zend\Session\Container. This should
occur before authentication is attempted, since Zend\Authentication\AuthenticationService::authenticate()
performs the automatic storage of the identity.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Storage\Session as SessionStorage;

$auth = new AuthenticationService();

// Use 'someNamespace' instead of 'Zend_Auth'
$auth->setStorage(new SessionStorage('someNamespace'));

/**
 * @todo Set up the auth adapter, $authAdapter
 */

// Authenticate, saving the result, and persisting the identity on
// success
$result = $auth->authenticate($authAdapter);

Implementing Customized Storage

Sometimes developers may need to use a different identity storage mechanism than that provided by
Zend\Authentication\Storage\Session. For such cases developers may simply implement
Zend\Authentication\Storage\StorageInterface and supply an instance of the class to
Zend\Authentication\AuthenticationService::setStorage().

Using a Custom Storage Class

In order to use an identity persistence storage class other than Zend\Authentication\Storage\Session, a
developer implements Zend\Authentication\Storage\StorageInterface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	use Zend\Authentication\Storage\StorageInterface;

class My\Storage implements StorageInterface
{
 /**
 * Returns true if and only if storage is empty
 *
 * @throws \Zend\Authentication\Exception\ExceptionInterface
 * If it is impossible to
 * determine whether storage is empty
 * @return boolean
 */
 public function isEmpty()
 {
 /**
 * @todo implementation
 */
 }

 /**
 * Returns the contents of storage
 *
 * Behavior is undefined when storage is empty.
 *
 * @throws \Zend\Authentication\Exception\ExceptionInterface
 * If reading contents from storage is impossible
 * @return mixed
 */

 public function read()
 {
 /**
 * @todo implementation
 */
 }

 /**
 * Writes $contents to storage
 *
 * @param mixed $contents
 * @throws \Zend\Authentication\Exception\ExceptionInterface
 * If writing $contents to storage is impossible
 * @return void
 */

 public function write($contents)
 {
 /**
 * @todo implementation
 */
 }

 /**
 * Clears contents from storage
 *
 * @throws \Zend\Authentication\Exception\ExceptionInterface
 * If clearing contents from storage is impossible
 * @return void
 */

 public function clear()
 {
 /**
 * @todo implementation
 */
 }
}

In order to use this custom storage class, Zend\Authentication\AuthenticationService::setStorage() is invoked
before an authentication query is attempted:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	use Zend\Authentication\AuthenticationService;

// Instruct AuthenticationService to use the custom storage class
$auth = new AuthenticationService();

$auth->setStorage(new My\Storage());

/**
 * @todo Set up the auth adapter, $authAdapter
 */

// Authenticate, saving the result, and persisting the identity on
// success
$result = $auth->authenticate($authAdapter);

Usage

There are two provided ways to use Zend\Authentication adapters:

. indirectly, through Zend\Authentication\AuthenticationService::authenticate()

. directly, through the adapter’s authenticate() method

The following example illustrates how to use a Zend\Authentication adapter indirectly, through the use of the
Zend\Authentication\AuthenticationService class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	use Zend\Authentication\AuthenticationService;

// instantiate the authentication service
$auth = new AuthenticationService();

// Set up the authentication adapter
$authAdapter = new My\Auth\Adapter($username, $password);

// Attempt authentication, saving the result
$result = $auth->authenticate($authAdapter);

if (!$result->isValid()) {
 // Authentication failed; print the reasons why
 foreach ($result->getMessages() as $message) {
 echo "$message\n";
 }
} else {
 // Authentication succeeded; the identity ($username) is stored
 // in the session
 // $result->getIdentity() === $auth->getIdentity()
 // $result->getIdentity() === $username
}

Once authentication has been attempted in a request, as in the above example, it is a simple matter to check
whether a successfully authenticated identity exists:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	use Zend\Authentication\AuthenticationService;

$auth = new AuthenticationService();

/**
 * @todo Set up the auth adapter, $authAdapter
 */

if ($auth->hasIdentity()) {
 // Identity exists; get it
 $identity = $auth->getIdentity();
}

To remove an identity from persistent storage, simply use the clearIdentity() method. This typically would be
used for implementing an application “logout” operation:

	1

	$auth->clearIdentity();

When the automatic use of persistent storage is inappropriate for a particular use case, a developer may simply
bypass the use of the Zend\Authentication\AuthenticationService class, using an adapter class directly. Direct
use of an adapter class involves configuring and preparing an adapter object and then calling its
authenticate() method. Adapter-specific details are discussed in the documentation for each adapter. The
following example directly utilizes My\Auth\Adapter:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	// Set up the authentication adapter
$authAdapter = new My\Auth\Adapter($username, $password);

// Attempt authentication, saving the result
$result = $authAdapter->authenticate();

if (!$result->isValid()) {
 // Authentication failed; print the reasons why
 foreach ($result->getMessages() as $message) {
 echo "$message\n";
 }
} else {
 // Authentication succeeded
 // $result->getIdentity() === $username
}

 [image: Edit this document]

 Database Table Authentication

Database Table Authentication

Introduction

Zend\Authentication\Adapter\DbTable provides the ability to authenticate against credentials stored in a
database table. Because Zend\Authentication\Adapter\DbTable requires an instance of Zend\Db\Adapter\Adapter
to be passed to its constructor, each instance is bound to a particular database connection. Other configuration
options may be set through the constructor and through instance methods, one for each option.

The available configuration options include:

	tableName: This is the name of the database table that contains the authentication credentials, and against
which the database authentication query is performed.

	identityColumn: This is the name of the database table column used to represent the identity. The identity
column must contain unique values, such as a username or e-mail address.

	credentialColumn: This is the name of the database table column used to represent the credential. Under a
simple identity and password authentication scheme, the credential value corresponds to the password. See also
the credentialTreatment option.

	credentialTreatment: In many cases, passwords and other sensitive data are encrypted, hashed, encoded,
obscured, salted or otherwise treated through some function or algorithm. By specifying a parameterized treatment
string with this method, such as ‘MD5(?)‘ or ‘PASSWORD(?)‘, a developer may apply such arbitrary SQL
upon input credential data. Since these functions are specific to the underlying RDBMS, check the database
manual for the availability of such functions for your database system.

Basic Usage

As explained in the introduction, the Zend\Authentication\Adapter\DbTable constructor requires an instance of
Zend\Db\Adapter\Adapter that serves as the database connection to which the authentication adapter instance is
bound. First, the database connection should be created.

The following code creates an adapter for an in-memory database, creates a simple table schema, and inserts a row
against which we can perform an authentication query later. This example requires the PDO SQLite extension to be
available:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	use Zend\Db\Adapter\Adapter as DbAdapter;

// Create a SQLite database connection
$dbAdapter = new DbAdapter(array(
 'driver' => 'Pdo_Sqlite',
 'database' => 'path/to/sqlite.db'
));

// Build a simple table creation query
$sqlCreate = 'CREATE TABLE [users] ('
 . '[id] INTEGER NOT NULL PRIMARY KEY, '
 . '[username] VARCHAR(50) UNIQUE NOT NULL, '
 . '[password] VARCHAR(32) NULL, '
 . '[real_name] VARCHAR(150) NULL)';

// Create the authentication credentials table
$dbAdapter->query($sqlCreate);

// Build a query to insert a row for which authentication may succeed
$sqlInsert = "INSERT INTO users (username, password, real_name) "
 . "VALUES ('my_username', 'my_password', 'My Real Name')";

// Insert the data
$dbAdapter->query($sqlInsert);

With the database connection and table data available, an instance of Zend\Authentication\Adapter\DbTable may
be created. Configuration option values may be passed to the constructor or deferred as parameters to setter
methods after instantiation:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// Configure the instance with constructor parameters...
$authAdapter = new AuthAdapter($dbAdapter,
 'users',
 'username',
 'password'
);

// ...or configure the instance with setter methods
$authAdapter = new AuthAdapter($dbAdapter);

$authAdapter
 ->setTableName('users')
 ->setIdentityColumn('username')
 ->setCredentialColumn('password')
;

At this point, the authentication adapter instance is ready to accept authentication queries. In order to formulate
an authentication query, the input credential values are passed to the adapter prior to calling the
authenticate() method:

	1
2
3
4
5
6
7

	// Set the input credential values (e.g., from a login form)
$authAdapter
 ->setIdentity('my_username')
 ->setCredential('my_password')
;

// Perform the authentication query, saving the result

In addition to the availability of the getIdentity() method upon the authentication result object,
Zend\Authentication\Adapter\DbTable also supports retrieving the table row upon authentication success:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	// Print the identity
echo $result->getIdentity() . "\n\n";

// Print the result row
print_r($authAdapter->getResultRowObject());

/* Output:
my_username

Array
(
 [id] => 1
 [username] => my_username
 [password] => my_password
 [real_name] => My Real Name
)

Since the table row contains the credential value, it is important to secure the values against unintended access.

Advanced Usage: Persisting a DbTable Result Object

By default, Zend\Authentication\Adapter\DbTable returns the identity supplied back to the auth object upon
successful authentication. Another use case scenario, where developers want to store to the persistent storage
mechanism of Zend\Authentication an identity object containing other useful information, is solved by using the
getResultRowObject() method to return a stdClass object. The following code snippet illustrates its use:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	// authenticate with Zend\Authentication\Adapter\DbTable
$result = $this->_auth->authenticate($adapter);

if ($result->isValid()) {
 // store the identity as an object where only the username and
 // real_name have been returned
 $storage = $this->_auth->getStorage();
 $storage->write($adapter->getResultRowObject(array(
 'username',
 'real_name',
)));

 // store the identity as an object where the password column has
 // been omitted
 $storage->write($adapter->getResultRowObject(
 null,
 'password'
));

 /* ... */

} else {

 /* ... */

}

Advanced Usage By Example

While the primary purpose of the Zend\Authentication component (and consequently
Zend\Authentication\Adapter\DbTable) is primarily authentication and not authorization, there are a few
instances and problems that toe the line between which domain they fit within. Depending on how you’ve decided to
explain your problem, it sometimes makes sense to solve what could look like an authorization problem within the
authentication adapter.

With that disclaimer out of the way, Zend\Authentication\Adapter\DbTable has some built in mechanisms that can
be leveraged for additional checks at authentication time to solve some common user problems.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// The status field value of an account is not equal to "compromised"
$adapter = new AuthAdapter($db,
 'users',
 'username',
 'password',
 'MD5(?) AND status != "compromised"'
);

// The active field value of an account is equal to "TRUE"
$adapter = new AuthAdapter($db,
 'users',
 'username',
 'password',
 'MD5(?) AND active = "TRUE"'
);

Another scenario can be the implementation of a salting mechanism. Salting is a term referring to a technique which
can highly improve your application’s security. It’s based on the idea that concatenating a random string to every
password makes it impossible to accomplish a successful brute force attack on the database using pre-computed hash
values from a dictionary.

Therefore, we need to modify our table to store our salt string:

	1
2
3

	$sqlAlter = "ALTER TABLE [users] "
 . "ADD COLUMN [password_salt] "
 . "AFTER [password]";

Here’s a simple way to generate a salt string for every user at registration:

	1
2

	for ($i = 0; $i < 50; $i++) {
 $dynamicSalt .= chr(rand(33, 126));

And now let’s build the adapter:

	1
2
3
4
5
6

	$adapter = new AuthAdapter($db,
 'users',
 'username',
 'password',
 "MD5(CONCAT('staticSalt', ?, password_salt))"
);

Note

You can improve security even more by using a static salt value hard coded into your application. In the case
that your database is compromised (e. g. by an SQL injection attack) but your web server is intact your data
is still unusable for the attacker.

Another alternative is to use the getDbSelect() method of the Zend\Authentication\Adapter\DbTable after the
adapter has been constructed. This method will return the Zend\Db\Sql\Select object instance it will use to
complete the authenticate() routine. It is important to note that this method will always return the same
object regardless if authenticate() has been called or not. This object will not have any of the identity
or credential information in it as those values are placed into the select object at authenticate() time.

An example of a situation where one might want to use the getDbSelect() method would check the status of a
user, in other words to see if that user’s account is enabled.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	// Continuing with the example from above
$adapter = new AuthAdapter($db,
 'users',
 'username',
 'password',
 'MD5(?)'
);

// get select object (by reference)
$select = $adapter->getDbSelect();
$select->where('active = "TRUE"');

// authenticate, this ensures that users.active = TRUE
$adapter->authenticate();

 [image: Edit this document]

 Digest Authentication

Digest Authentication

Introduction

Digest authentication [http://en.wikipedia.org/wiki/Digest_access_authentication] is a method of HTTP authentication that improves upon Basic authentication [http://en.wikipedia.org/wiki/Basic_authentication_scheme] by
providing a way to authenticate without having to transmit the password in clear text across the network.

This adapter allows authentication against text files containing lines having the basic elements of Digest
authentication:

	username, such as “joe.user“

	realm, such as “Administrative Area“

	MD5 hash of the username, realm, and password, separated by colons

The above elements are separated by colons, as in the following example (in which the password is
“somePassword”):

	1

	someUser:Some Realm:fde17b91c3a510ecbaf7dbd37f59d4f8

Specifics

The digest authentication adapter, Zend\Authentication\Adapter\Digest, requires several input parameters:

	filename - Filename against which authentication queries are performed

	realm - Digest authentication realm

	username - Digest authentication user

	password - Password for the user of the realm

These parameters must be set prior to calling authenticate().

Identity

The digest authentication adapter returns a Zend\Authentication\Result object, which has been populated with
the identity as an array having keys of realm and username. The respective array values associated with
these keys correspond to the values set before authenticate() is called.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	use Zend\Authentication\Adapter\Digest as AuthAdapter;

$adapter = new AuthAdapter($filename,
 $realm,
 $username,
 $password);

$result = $adapter->authenticate();

$identity = $result->getIdentity();

print_r($identity);

/*
Array
(
 [realm] => Some Realm
 [username] => someUser
)
*/

 [image: Edit this document]

 HTTP Authentication Adapter

HTTP Authentication Adapter

Introduction

Zend\Authentication\Adapter\Http provides a mostly-compliant implementation of RFC-2617 [http://tools.ietf.org/html/rfc2617], Basic [http://en.wikipedia.org/wiki/Basic_authentication_scheme] and
Digest [http://en.wikipedia.org/wiki/Digest_access_authentication] HTTP Authentication. Digest authentication is a method of HTTP authentication that improves upon
Basic authentication by providing a way to authenticate without having to transmit the password in clear text
across the network.

Major Features:

	Supports both Basic and Digest authentication.

	Issues challenges in all supported schemes, so client can respond with any scheme it supports.

	Supports proxy authentication.

	Includes support for authenticating against text files and provides an interface for authenticating against other
sources, such as databases.

There are a few notable features of RFC-2617 that are not implemented yet:

	Nonce tracking, which would allow for “stale” support, and increased replay attack protection.

	Authentication with integrity checking, or “auth-int”.

	Authentication-Info HTTP header.

Design Overview

This adapter consists of two sub-components, the HTTP authentication class itself, and the so-called “Resolvers.”
The HTTP authentication class encapsulates the logic for carrying out both Basic and Digest authentication. It
uses a Resolver to look up a client’s identity in some data store (text file by default), and retrieve the
credentials from the data store. The “resolved” credentials are then compared to the values submitted by the client
to determine whether authentication is successful.

Configuration Options

The Zend\Authentication\Adapter\Http class requires a configuration array passed to its constructor. There are
several configuration options available, and some are required:

Configuration Options

	Option Name
	Required
	Description

	accept_schemes
	Yes
	Determines which authentication schemes the adapter will accept from the client. Must be a space=separated list containing ‘basic’ and/or ‘digest’.

	realm
	Yes
	Sets the authentication realm; usernames should be unique within a given realm.

	digest_domains
	Yes, when accept_schemes contains digest
	Space-separated list of URIs for which the same authentication information is valid. The URIs need not all point to the same server.

	nonce_timeout
	Yes, when accept_schemes contains digest
	Sets the number of seconds for which the nonce is valid. See notes below.

	use_opaque
	No
	Specifies whether to send the opaque value in the header. True by default.

	algorithm
	No
	Specified the algorithm. Defaults to MD5, the only supported option (for now).

	proxy_auth
	No
	Disabled by default. Enable to perform Proxy authentication, instead of normal origin server authentication.

Note

The current implementation of the nonce_timeout has some interesting side effects. This setting is supposed
to determine the valid lifetime of a given nonce, or effectively how long a client’s authentication information
is accepted. Currently, if it’s set to 3600 (for example), it will cause the adapter to prompt the client for
new credentials every hour, on the hour. This will be resolved in a future release, once nonce tracking and
stale support are implemented.

Resolvers

The resolver’s job is to take a username and realm, and return some kind of credential value. Basic authentication
expects to receive the Base64 encoded version of the user’s password. Digest authentication expects to receive a
hash of the user’s username, the realm, and their password (each separated by colons). Currently, the only
supported hash algorithm is MD5.

Zend\Authentication\Adapter\Http relies on objects implementing
Zend\Authentication\Adapter\Http\ResolverInterface. A text file resolver class is included with this adapter,
but any other kind of resolver can be created simply by implementing the resolver interface.

File Resolver

The file resolver is a very simple class. It has a single property specifying a filename, which can also be passed
to the constructor. Its resolve() method walks through the text file, searching for a line with a matching
username and realm. The text file format similar to Apache htpasswd files:

	1

	<username>:<realm>:<credentials>\n

Each line consists of three fields - username, realm, and credentials - each separated by a colon. The credentials
field is opaque to the file resolver; it simply returns that value as-is to the caller. Therefore, this same file
format serves both Basic and Digest authentication. In Basic authentication, the credentials field should be
written in clear text. In Digest authentication, it should be the MD5 hash described above.

There are two equally easy ways to create a File resolver:

	1
2
3

	use Zend\Authentication\Adapter\Http\FileResolver;
$path = 'files/passwd.txt';
$resolver = new FileResolver($path);

or

	1
2
3

	$path = 'files/passwd.txt';
$resolver = new FileResolver();
$resolver->setFile($path);

If the given path is empty or not readable, an exception is thrown.

Basic Usage

First, set up an array with the required configuration values:

	1
2
3
4
5
6

	$config = array(
 'accept_schemes' => 'basic digest',
 'realm' => 'My Web Site',
 'digest_domains' => '/members_only /my_account',
 'nonce_timeout' => 3600,
);

This array will cause the adapter to accept either Basic or Digest authentication, and will require authenticated
access to all the areas of the site under /members_only and /my_account. The realm value is usually
displayed by the browser in the password dialog box. The nonce_timeout, of course, behaves as described above.

Next, create the Zend\Authentication\Adapter\Http object:

	1

	$adapter = new Zend\Authentication\Adapter\Http($config);

Since we’re supporting both Basic and Digest authentication, we need two different resolver objects. Note that this
could just as easily be two different classes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	use Zend\Authentication\Adapter\Http\FileResolver;

$basicResolver = new FileResolver();
$basicResolver->setFile('files/basicPasswd.txt');

$digestResolver = new FileResolver();
$digestResolver->setFile('files/digestPasswd.txt');

$adapter->setBasicResolver($basicResolver);
$adapter->setDigestResolver($digestResolver);

Finally, we perform the authentication. The adapter needs a reference to both the Request and Response objects in
order to do its job:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	assert($request instanceof Zend\Http\Request);
assert($response instanceof Zend\Http\Response);

$adapter->setRequest($request);
$adapter->setResponse($response);

$result = $adapter->authenticate();
if (!$result->isValid()) {
 // Bad userame/password, or canceled password prompt
}

 [image: Edit this document]

 LDAP Authentication

LDAP Authentication

Introduction

Zend\Authentication\Adapter\Ldap supports web application authentication with LDAP services. Its features
include username and domain name canonicalization, multi-domain authentication, and failover capabilities. It has
been tested to work with Microsoft Active Directory [http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/] and OpenLDAP [http://www.openldap.org/], but it should also work with other LDAP
service providers.

This documentation includes a guide on using Zend\Authentication\Adapter\Ldap, an exploration of its API, an
outline of the various available options, diagnostic information for troubleshooting authentication problems, and
example options for both Active Directory and OpenLDAP servers.

Usage

To incorporate Zend\Authentication\Adapter\Ldap authentication into your application quickly, even if you’re
not using Zend\Mvc, the meat of your code should look something like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Adapter\Ldap as AuthAdapter;
use Zend\Config\Reader\Ini as ConfigReader;
use Zend\Log\Logger;
use Zend\Log\Writer\Stream as LogWriter;
use Zend\Log\Filter\Priority as LogFilter;

$username = $this->_request->getParam('username');
$password = $this->_request->getParam('password');

$auth = new AuthenticationService();

$config = new ConfigReader('./ldap-config.ini','production');

$log_path = $config->ldap->log_path;
$options = $config->ldap->toArray();
unset($options['log_path']);

$adapter = new AuthAdapter($options,
 $username,
 $password);

$result = $auth->authenticate($adapter);

if ($log_path) {
 $messages = $result->getMessages();

 $logger = new Logger;
 $writer = new LogWriter($log_path);

 $logger->addWriter($writer);

 $filter = new LogFilter(Logger::DEBUG);
 $logger->addFilter($filter);

 foreach ($messages as $i => $message) {
 if ($i-- > 1) { // $messages[2] and up are log messages
 $message = str_replace("\n", "\n ", $message);
 $logger->log("Ldap: $i: $message", Logger::DEBUG);
 }
 }
}

Of course, the logging code is optional, but it is highly recommended that you use a logger.
Zend\Authentication\Adapter\Ldap will record just about every bit of information anyone could want in
$messages (more below), which is a nice feature in itself for something that has a history of being notoriously
difficult to debug.

The Zend\Config\Reader\Ini code is used above to load the adapter options. It is also optional. A regular array
would work equally well. The following is an example ldap-config.ini file that has options for two separate
servers. With multiple sets of server options the adapter will try each, in order, until the credentials are
successfully authenticated. The names of the servers (e.g., ‘server1’ and ‘server2’) are largely arbitrary. For
details regarding the options array, see the Server Options section below. Note that Zend\Config\Reader\Ini
requires that any values with “equals” characters (=) will need to be quoted (like the DNs shown below).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	[production]

ldap.log_path = /tmp/ldap.log

; Typical options for OpenLDAP
ldap.server1.host = s0.foo.net
ldap.server1.accountDomainName = foo.net
ldap.server1.accountDomainNameShort = FOO
ldap.server1.accountCanonicalForm = 3
ldap.server1.username = "CN=user1,DC=foo,DC=net"
ldap.server1.password = pass1
ldap.server1.baseDn = "OU=Sales,DC=foo,DC=net"
ldap.server1.bindRequiresDn = true

; Typical options for Active Directory
ldap.server2.host = dc1.w.net
ldap.server2.useStartTls = true
ldap.server2.accountDomainName = w.net
ldap.server2.accountDomainNameShort = W
ldap.server2.accountCanonicalForm = 3
ldap.server2.baseDn = "CN=Users,DC=w,DC=net"

The above configuration will instruct Zend\Authentication\Adapter\Ldap to attempt to authenticate users with
the OpenLDAP server s0.foo.net first. If the authentication fails for any reason, the AD server dc1.w.net
will be tried.

With servers in different domains, this configuration illustrates multi-domain authentication. You can also have
multiple servers in the same domain to provide redundancy.

Note that in this case, even though OpenLDAP has no need for the short NetBIOS style domain name used by Windows,
we provide it here for name canonicalization purposes (described in the Username Canonicalization section
below).

The API

The Zend\Authentication\Adapter\Ldap constructor accepts three parameters.

The $options parameter is required and must be an array containing one or more sets of options. Note that it is
an array of arrays of Zend\Ldap\Ldap options. Even if you will be using only
one LDAP server, the options must still be within another array.

Below is print_r() [http://php.net/print_r] output of an example options parameter containing two sets of server options for LDAP
servers s0.foo.net and dc1.w.net (the same options as the above INI representation):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	Array
(
 [server2] => Array
 (
 [host] => dc1.w.net
 [useStartTls] => 1
 [accountDomainName] => w.net
 [accountDomainNameShort] => W
 [accountCanonicalForm] => 3
 [baseDn] => CN=Users,DC=w,DC=net
)

 [server1] => Array
 (
 [host] => s0.foo.net
 [accountDomainName] => foo.net
 [accountDomainNameShort] => FOO
 [accountCanonicalForm] => 3
 [username] => CN=user1,DC=foo,DC=net
 [password] => pass1
 [baseDn] => OU=Sales,DC=foo,DC=net
 [bindRequiresDn] => 1
)

)

The information provided in each set of options above is different mainly because AD does not require a username be
in DN form when binding (see the bindRequiresDn option in the Server Options section below), which means we
can omit a number of options associated with retrieving the DN for a username being authenticated.

Note

What is a Distinguished Name?

A DN or “distinguished name” is a string that represents the path to an object within the LDAP directory. Each
comma-separated component is an attribute and value representing a node. The components are evaluated in
reverse. For example, the user account CN=Bob Carter,CN=Users,DC=w,DC=net is located directly within the
CN=Users,DC=w,DC=net container. This structure is best explored with an LDAP browser like the ADSI Edit
MMC snap-in for Active Directory or phpLDAPadmin.

The names of servers (e.g. ‘server1’ and ‘server2’ shown above) are largely arbitrary, but for the sake of using
Zend\Config\Reader\Ini, the identifiers should be present (as opposed to being numeric indexes) and should not
contain any special characters used by the associated file formats (e.g. the ‘.‘INI property separator,
‘&‘ for XML entity references, etc).

With multiple sets of server options, the adapter can authenticate users in multiple domains and provide failover
so that if one server is not available, another will be queried.

Note

The Gory Details: What Happens in the Authenticate Method?

When the authenticate() method is called, the adapter iterates over each set of server options, sets them on
the internal Zend\Ldap\Ldap instance, and calls the Zend\Ldap\Ldap::bind() method with the username and
password being authenticated. The Zend\Ldap\Ldap class checks to see if the username is qualified with a
domain (e.g., has a domain component like alice@foo.net or FOO\alice). If a domain is present, but does
not match either of the server’s domain names (foo.net or FOO), a special exception is thrown and caught
by Zend\Authentication\Adapter\Ldap that causes that server to be ignored and the next set of server options
is selected. If a domain does match, or if the user did not supply a qualified username, Zend\Ldap\Ldap
proceeds to try to bind with the supplied credentials. if the bind is not successful, Zend\Ldap\Ldap throws
a Zend\Ldap\Exception\LdapException which is caught by Zend\Authentication\Adapter\Ldap and the next set
of server options is tried. If the bind is successful, the iteration stops, and the adapter’s authenticate()
method returns a successful result. If all server options have been tried without success, the authentication
fails, and authenticate() returns a failure result with error messages from the last iteration.

The username and password parameters of the Zend\Authentication\Adapter\Ldap constructor represent the
credentials being authenticated (i.e., the credentials supplied by the user through your HTML login form).
Alternatively, they may also be set with the setUsername() and setPassword() methods.

Server Options

Each set of server options in the context of ZendAuthenticationAdapterLdap consists of the following
options, which are passed, largely unmodified, to Zend\Ldap\Ldap::setOptions():

Server Options

	Name
	Description

	host
	The hostname of LDAP server that these options represent. This option is required.

	port
	The port on which the LDAP server is listening. If useSsl is TRUE, the default port value is 636. If useSsl is FALSE, the default port value is 389.

	useStartTls
	Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of TRUE is strongly favored in production environments to prevent passwords from be transmitted in clear text. The default value is FALSE, as servers frequently require that a certificate be installed separately after installation. The useSsl and useStartTls options are mutually exclusive. The useStartTls option should be favored over useSsl but not all servers support this newer mechanism.

	useSsl
	Whether or not the LDAP client should use SSL encrypted transport. The useSsl and useStartTls options are mutually exclusive, but useStartTls should be favored if the server and LDAP client library support it. This value also changes the default port value (see port description above).

	username
	The DN of the account used to perform account DN lookups. LDAP servers that require the username to be in DN form when performing the “bind” require this option. Meaning, if bindRequiresDn is TRUE, this option is required. This account does not need to be a privileged account; an account with read-only access to objects under the baseDn is all that is necessary (and preferred based on the Principle of Least Privilege).

	password
	The password of the account used to perform account DN lookups. If this option is not supplied, the LDAP client will attempt an “anonymous bind” when performing account DN lookups.

	bindRequiresDn
	Some LDAP servers require that the username used to bind be in DN form like CN=Alice Baker,OU=Sales,DC=foo,DC=net (basically all servers except AD). If this option is TRUE, this instructs Zend\Ldap\Ldap to automatically retrieve the DN corresponding to the username being authenticated, if it is not already in DN form, and then re-bind with the proper DN. The default value is FALSE. Currently only Microsoft Active Directory Server (ADS) is known not to require usernames to be in DN form when binding, and therefore this option may be FALSE with AD (and it should be, as retrieving the DN requires an extra round trip to the server). Otherwise, this option must be set to TRUE (e.g. for OpenLDAP). This option also controls the default acountFilterFormat used when searching for accounts. See the accountFilterFormat option.

	baseDn
	The DN under which all accounts being authenticated are located. This option is required. if you are uncertain about the correct baseDn value, it should be sufficient to derive it from the user’s DNS domain using DC= components. For example, if the user’s principal name is alice@foo.net, a baseDn of DC=foo,DC=net should work. A more precise location (e.g., OU=Sales,DC=foo,DC=net) will be more efficient, however.

	accountCanonicalForm
	A value of 2, 3 or 4 indicating the form to which account names should be canonicalized after successful authentication. Values are as follows: 2 for traditional username style names (e.g., alice), 3 for backslash-style names (e.g., FOO\alice) or 4 for principal style usernames (e.g., alice@foo.net). The default value is 4 (e.g., alice@foo.net). For example, with a value of 3, the identity returned by Zend\Authentication\Result::getIdentity() (and Zend\Authentication\AuthenticationService::getIdentity(), if Zend\Authentication\AuthenticationService was used) will always be FOO\alice, regardless of what form Alice supplied, whether it be alice, alice@foo.net, FOO\alice, FoO\aLicE, foo.net\alice, etc. See the Account Name Canonicalization section in the Zend\Ldap\Ldap documentation for details. Note that when using multiple sets of server options it is recommended, but not required, that the same accountCanonicalForm be used with all server options so that the resulting usernames are always canonicalized to the same form (e.g., if you canonicalize to EXAMPLE\username with an AD server but to username@example.com with an OpenLDAP server, that may be awkward for the application’s high-level logic).

	accountDomainName
	The FQDN domain name for which the target LDAP server is an authority (e.g., example.com). This option is used to canonicalize names so that the username supplied by the user can be converted as necessary for binding. It is also used to determine if the server is an authority for the supplied username (e.g., if accountDomainName is foo.net and the user supplies bob@bar.net, the server will not be queried, and a failure will result). This option is not required, but if it is not supplied, usernames in principal name form (e.g., alice@foo.net) are not supported. It is strongly recommended that you supply this option, as there are many use-cases that require generating the principal name form.

	accountDomainNameShort
	The ‘short’ domain for which the target LDAP server is an authority (e.g., FOO). Note that there is a 1:1 mapping between the accountDomainName and accountDomainNameShort. This option should be used to specify the NetBIOS domain name for Windows networks, but may also be used by non-AD servers (e.g., for consistency when multiple sets of server options with the backslash style accountCanonicalForm). This option is not required but if it is not supplied, usernames in backslash form (e.g., FOO\alice) are not supported.

	accountFilterFormat
	The LDAP search filter used to search for accounts. This string is a printf()-style expression that must contain one ‘%s’ to accomodate the username. The default value is ‘(&(objectClass=user)(sAMAccountName=%s))’, unless bindRequiresDn is set to TRUE, in which case the default is ‘(&(objectClass=posixAccount)(uid=%s))’. For example, if for some reason you wanted to use bindRequiresDn = true with AD you would need to set accountFilterFormat = ‘(&(objectClass=user)(sAMAccountName=%s))’.

	optReferrals
	If set to TRUE, this option indicates to the LDAP client that referrals should be followed. The default value is FALSE.

Note

If you enable useStartTls = TRUE or useSsl = TRUE you may find that the LDAP client generates an error
claiming that it cannot validate the server’s certificate. Assuming the PHP LDAP extension is ultimately
linked to the OpenLDAP client libraries, to resolve this issue you can set “TLS_REQCERT never” in the
OpenLDAP client ldap.conf (and restart the web server) to indicate to the OpenLDAP client library that you
trust the server. Alternatively, if you are concerned that the server could be spoofed, you can export the
LDAP server’s root certificate and put it on the web server so that the OpenLDAP client can validate the
server’s identity.

Collecting Debugging Messages

Zend\Authentication\Adapter\Ldap collects debugging information within its authenticate() method. This
information is stored in the Zend\Authentication\Result object as messages. The array returned by
Zend\Authentication\Result::getMessages() is described as follows

Debugging Messages

	Messages Array Index
	Description

	Index 0
	A generic, user=friendly message that is suitable for displaying to users (e.g., “Invalid credentials”). If the authentication is successful, this string is empty.

	Index 1
	A more detailed error message that is not suitable to be displayed to users but should be logged for the benefit of server operators. If the authentication is successful, this string is empty.

	Indexes 2 and higher
	All log messages in order starting at index 2.

In practice, index 0 should be displayed to the user (e.g., using the FlashMessenger helper), index 1 should be
logged and, if debugging information is being collected, indexes 2 and higher could be logged as well (although the
final message always includes the string from index 1).

Common Options for Specific Servers

Options for Active Directory

For ADS, the following options are noteworthy:

Options for Active Directory

	Name
	Additional Notes

	host
	As with all servers, this option is required.

	useStartTls
	For the sake of security, this should be TRUE if the server has the necessary certificate installed.

	useSsl
	Possibly used as an alternative to useStartTls (see above).

	baseDn
	As with all servers, this option is required. By default AD places all user accounts under the Users container (e.g., CN=Users,DC=foo,DC=net), but the default is not common in larger organizations. Ask your AD administrator what the best DN for accounts for your application would be.

	accountCanonicalForm
	You almost certainly want this to be 3 for backslash style names (e.g., FOO\alice), which are most familiar to Windows users. You should not use the unqualified form 2 (e.g., alice), as this may grant access to your application to users with the same username in other trusted domains (e.g., BAR\alice and FOO\alice will be treated as the same user). (See also note below.)

	accountDomainName
	This is required with AD unless accountCanonicalForm 2 is used, which, again, is discouraged.

	accountDomainNameShort
	The NetBIOS name of the domain that users are in and for which the AD server is an authority. This is required if the backslash style accountCanonicalForm is used.

Note

Technically there should be no danger of accidental cross-domain authentication with the current
Zend\Authentication\Adapter\Ldap implementation, since server domains are explicitly checked, but this may
not be true of a future implementation that discovers the domain at runtime, or if an alternative adapter is
used (e.g., Kerberos). In general, account name ambiguity is known to be the source of security issues, so
always try to use qualified account names.

Options for OpenLDAP

For OpenLDAP or a generic LDAP server using a typical posixAccount style schema, the following options are
noteworthy:

Options for OpenLDAP

	Name
	Additional Notes

	host
	As with all servers, this option is required.

	useStartTls
	For the sake of security, this should be TRUE if the server has the necessary certificate installed.

	useSsl
	Possibly used as an alternative to useStartTls (see above).

	username
	Required and must be a DN, as OpenLDAP requires that usernames be in DN form when performing a bind. Try to use an unprivileged account.

	password
	The password corresponding to the username above, but this may be omitted if the LDAP server permits an anonymous binding to query user accounts.

	bindRequiresDn
	Required and must be TRUE, as OpenLDAP requires that usernames be in DN form when performing a bind.

	baseDn
	As with all servers, this option is required and indicates the DN under which all accounts being authenticated are located.

	accountCanonicalForm
	Optional, but the default value is 4 (principal style names like alice@foo.net), which may not be ideal if your users are used to backslash style names (e.g., FOO\alice). For backslash style names use value 3.

	accountDomainName
	Required unless you’re using accountCanonicalForm 2, which is not recommended.

	accountDomainNameShort
	If AD is not also being used, this value is not required. Otherwise, if accountCanonicalForm 3 is used, this option is required and should be a short name that corresponds adequately to the accountDomainName (e.g., if your accountDomainName is foo.net, a good accountDomainNameShort value might be FOO).

 [image: Edit this document]

 Introduction

Introduction

Zend\Barcode\Barcode provides a generic way to generate barcodes. The Zend\Barcode component is divided
into two subcomponents: barcode objects and renderers. Objects allow you to create barcodes independently of the
renderer. Renderer allow you to draw barcodes based on the support required.

 [image: Edit this document]

 Barcode creation using Zend\Barcode\Barcode class

Barcode creation using Zend\Barcode\Barcode class

Using Zend\Barcode\Barcode::factory

Zend_Barcode uses a factory method to create an instance of a renderer that extends
Zend\Barcode\Renderer\AbstractRenderer. The factory method accepts five arguments.

. The name of the barcode format (e.g., “code39”) or a Traversable object (required)

. The name of the renderer (e.g., “image”) (required)

. Options to pass to the barcode object (an array or a Traversable object) (optional)

. Options to pass to the renderer object (an array or a Traversable object) (optional)

	. Boolean to indicate whether or not to automatically render errors. If an exception occurs, the provided barcode

	object will be replaced with an Error representation (optional default TRUE)

Getting a Renderer with Zend\Barcode\Barcode::factory()

Zend\Barcode\Barcode::factory() instantiates barcode objects and renderers and ties them together. In this
first example, we will use the Code39 barcode type together with the Image renderer.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();
$renderer = Barcode::factory(
 'code39', 'image', $barcodeOptions, $rendererOptions
);

Using Zend\Barcode\Barcode::factory() with Zend\Config\Config objects

You may pass a Zend\Config\Config object to the factory in order to create the necessary objects. The following
example is functionally equivalent to the previous.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	use Zend\Config;
use Zend\Barcode;

// Using only one Zend\Config\Config object
$config = new Config(array(
 'barcode' => 'code39',
 'barcodeParams' => array('text' => 'ZEND-FRAMEWORK'),
 'renderer' => 'image',
 'rendererParams' => array('imageType' => 'gif'),
));

$renderer = Barcode::factory($config);

Drawing a barcode

When you draw the barcode, you retrieve the resource in which the barcode is drawn. To draw a barcode, you can
call the draw() of the renderer, or simply use the proxy method provided by Zend\Barcode\Barcode.

Drawing a barcode with the renderer object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
$imageResource = Barcode::factory(
 'code39', 'image', $barcodeOptions, $rendererOptions
)->draw();

Drawing a barcode with Zend\Barcode\Barcode::draw()

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
$imageResource = Barcode::draw(
 'code39', 'image', $barcodeOptions, $rendererOptions
);

Renderering a barcode

When you render a barcode, you draw the barcode, you send the headers and you send the resource (e.g. to a
browser). To render a barcode, you can call the render() method of the renderer or simply use the proxy method
provided by Zend\Barcode\Barcode.

Renderering a barcode with the renderer object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
// send the headers and the image
Barcode::factory(
 'code39', 'image', $barcodeOptions, $rendererOptions
)->render();

This will generate this barcode:

[image: ../_images/zend.barcode.introduction.example-1.png]
Renderering a barcode with Zend\Barcode\Barcode::render()

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
// send the headers and the image
Barcode::render(
 'code39', 'image', $barcodeOptions, $rendererOptions
);

This will generate the same barcode as the previous example.

 [image: Edit this document]

 Zend\Barcode\Barcode Objects

Zend\Barcode\Barcode Objects

Barcode objects allow you to generate barcodes independently of the rendering support. After generation, you can
retrieve the barcode as an array of drawing instructions that you can provide to a renderer.

Objects have a large number of options. Most of them are common to all objects. These options can be set in three
ways:

	As an array or a Traversable object) object passed to the constructor.

	As an array passed to the setOptions() method.

	Via individual setters for each configuration type.

Different ways to parameterize a barcode object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	use Zend\Barcode;

$options = array('text' => 'ZEND-FRAMEWORK', 'barHeight' => 40);

// Case 1: constructor
$barcode = new Object\Code39($options);

// Case 2: setOptions()
$barcode = new Object\Code39();
$barcode->setOptions($options);

// Case 3: individual setters
$barcode = new Object\Code39();
$barcode->setText('ZEND-FRAMEWORK')
 ->setBarHeight(40);

Common Options

In the following list, the values have no units; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit”. The real units depend on the rendering support (see the renderers documentation for more information). Setters are each named by uppercasing the initial letter of the
option and prefixing the name with “set” (e.g. “barHeight” becomes “setBarHeight”). All options have a
corresponding getter prefixed with “get” (e.g. “getBarHeight”). Available options are:

Common Options

	Option
	Data Type
	Default Value
	Description

	barcodeNamespace
	String
	Zend\Barcode\Object
	Namespace of the barcode; for example, if you need to extend the embedding objects

	barHeight
	Integer
	50
	Height of the bars

	barThickWidth
	Integer
	3
	Width of the thick bar

	barThinWidth
	Integer
	1
	Width of the thin bar

	factor
	Integer
	1
	Factor by which to multiply bar widths and font sizes (barHeight, barThinWidth, barThickWidth and fontSize)

	foreColor
	Integer
	0x000000 (black)
	Color of the bar and the text. Could be provided as an integer or as a HTML value (e.g. “#333333”)

	backgroundColor
	Integer or String
	0xFFFFFF (white)
	Color of the background. Could be provided as an integer or as a HTML value (e.g. “#333333”)

	orientation
	Float
	0
	Orientation of the barcode

	font
	String or Integer
	NULL
	Font path to a TTF font or a number between 1 and 5 if using image generation with GD (internal fonts)

	fontSize
	Float
	10
	Size of the font (not applicable with numeric fonts)

	withBorder
	Boolean
	FALSE
	Draw a border around the barcode and the quiet zones

	withQuietZones
	Boolean
	TRUE
	Leave a quiet zone before and after the barcode

	drawText
	Boolean
	TRUE
	Set if the text is displayed below the barcode

	stretchText
	Boolean
	FALSE
	Specify if the text is stretched all along the barcode

	withChecksum
	Boolean
	FALSE
	Indicate whether or not the checksum is automatically added to the barcode

	withChecksumInText
	Boolean
	FALSE
	Indicate whether or not the checksum is displayed in the textual representation

	text
	String
	NULL
	The text to represent as a barcode

Particular case of static setBarcodeFont()

You can set a commont font for all your objects by using the static method
Zend\Barcode\Barcode::setBarcodeFont(). This value can be always be overridden for individual objects by using
the setFont() method.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	use Zend\Barcode;

// In your bootstrap:
Barcode::setBarcodeFont('my_font.ttf');

// Later in your code:
Barcode::render(
 'code39',
 'pdf',
 array('text' => 'ZEND-FRAMEWORK')
); // will use 'my_font.ttf'

// or:
Barcode::render(
 'code39',
 'image',
 array(
 'text' => 'ZEND-FRAMEWORK',
 'font' => 3
)
); // will use the 3rd GD internal font

Common Additional Getters

Common Getters

	Getter
	Data Type
	Description

	getType()
	String
	Return the name of the barcode class without the namespace (e.g. Zend\Barcode\Object\Code39 returns simply “code39”)

	getRawText()
	String
	Return the original text provided to the object

	getTextToDisplay()
	String
	Return the text to display, including, if activated, the checksum value

	getQuietZone()
	Integer
	Return the size of the space needed before and after the barcode without any drawing

	getInstructions()
	Array
	Return drawing instructions as an array.

	getHeight($recalculate = false)
	Integer
	Return the height of the barcode calculated after possible rotation

	getWidth($recalculate = false)
	Integer
	Return the width of the barcode calculated after possible rotation

	getOffsetTop($recalculate = false)
	Integer
	Return the position of the top of the barcode calculated after possible rotation

	getOffsetLeft($recalculate = false)
	Integer
	Return the position of the left of the barcode calculated after possible rotation

Description of shipped barcodes

You will find below detailed information about all barcode types shipped by default with Zend Framework.

Zend\Barcode\Object\Error

[image: ../_images/zend.barcode.objects.details.error.png]
This barcode is a special case. It is internally used to automatically render an exception caught by the
Zend\Barcode component.

Zend\Barcode\Object\Code128

[image: ../_images/zend.barcode.objects.details.code128.png]

	Name: Code 128

	Allowed characters: the complete ASCII-character set

	Checksum: optional (modulo 103)

	Length: variable

There are no particular options for this barcode.

Zend\Barcode\Object\Codabar

[image: ../_images/zend.barcode.objects.details.codabar.png]

	Name: Codabar (or Code 2 of 7)

	Allowed characters:‘0123456789-$:/.+’ with ‘ABCD’ as start and stop characters

	Checksum: none

	Length: variable

There are no particular options for this barcode.

Zend\Barcode\Object\Code25

[image: ../_images/zend.barcode.objects.details.code25.png]

	Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)

	Allowed characters:‘0123456789’

	Checksum: optional (modulo 10)

	Length: variable

There are no particular options for this barcode.

Zend\Barcode\Object\Code25interleaved

[image: ../_images/zend.barcode.objects.details.int25.png]
This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options, and
adds the following:

	Name: Code 2 of 5 Interleaved

	Allowed characters:‘0123456789’

	Checksum: optional (modulo 10)

	Length: variable (always even number of characters)

Available options include:

Zend\Barcode\Object\Code25interleaved Options

	Option
	Data Type
	Default Value
	Description

	withBearerBars
	Boolean
	FALSE
	Draw a thick bar at the top and the bottom of the barcode.

Note

If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automatically prepend
the missing zero to the barcode text.

Zend\Barcode\Object\Ean2

[image: ../_images/zend.barcode.objects.details.ean2.png]
This barcode extends Zend\Barcode\Object\Ean5 (EAN 5), and has the same particulars and options, and adds the
following:

	Name: EAN-2

	Allowed characters:‘0123456789’

	Checksum: only use internally but not displayed

	Length: 2 characters

There are no particular options for this barcode.

Note

If the number of characters is lower than 2, Zend\Barcode\Object\Ean2 will automatically prepend the missing
zero to the barcode text.

Zend\Barcode\Object\Ean5

[image: ../_images/zend.barcode.objects.details.ean5.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:

	Name: EAN-5

	Allowed characters:‘0123456789’

	Checksum: only use internally but not displayed

	Length: 5 characters

There are no particular options for this barcode.

Note

If the number of characters is lower than 5, Zend\Barcode\Object\Ean5 will automatically prepend the missing
zero to the barcode text.

Zend\Barcode\Object\Ean8

[image: ../_images/zend.barcode.objects.details.ean8.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:

	Name: EAN-8

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 8, Zend\Barcode\Object\Ean8 will automatically prepend the missing
zero to the barcode text.

Zend\Barcode\Object\Ean13

[image: ../_images/zend.barcode.objects.details.ean13.png]

	Name: EAN-13

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 13 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 13, Zend\Barcode\Object\Ean13 will automatically prepend the
missing zero to the barcode text.

The option withQuietZones has no effect with this barcode.

Zend\Barcode\Object\Code39

[image: ../_images/zend.barcode.introduction.example-1.png]

	Name: Code 39

	Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’

	Checksum: optional (modulo 43)

	Length: variable

Note

Zend\Barcode\Object\Code39 will automatically add the start and stop characters (‘*’) for you.

There are no particular options for this barcode.

Zend\Barcode\Object\Identcode

[image: ../_images/zend.barcode.objects.details.identcode.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.

	Name: Identcode (Deutsche Post Identcode)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10 different from Code25)

	Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically prepend
missing zeros to the barcode text.

Zend\Barcode\Object\Itf14

[image: ../_images/zend.barcode.objects.details.itf14.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.

	Name: ITF-14

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 14, Zend\Barcode\Object\Itf14 will automatically prepend missing
zeros to the barcode text.

Zend\Barcode\Object\Leitcode

[image: ../_images/zend.barcode.objects.details.leitcode.png]
This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.

	Name: Leitcode (Deutsche Post Leitcode)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10 different from Code25)

	Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically prepend
missing zeros to the barcode text.

Zend\Barcode\Object\Planet

[image: ../_images/zend.barcode.objects.details.planet.png]

	Name: Planet (PostaL Alpha Numeric Encoding Technique)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 12 or 14 characters (including checksum)

There are no particular options for this barcode.

Zend\Barcode\Object\Postnet

[image: ../_images/zend.barcode.objects.details.postnet.png]

	Name: Postnet (POSTal Numeric Encoding Technique)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 6, 7, 10 or 12 characters (including checksum)

There are no particular options for this barcode.

Zend\Barcode\Object\Royalmail

[image: ../_images/zend.barcode.objects.details.royalmail.png]

	Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)

	Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’

	Checksum: mandatory

	Length: variable

There are no particular options for this barcode.

Zend\Barcode\Object\Upca

[image: ../_images/zend.barcode.objects.details.upca.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN-13), and inherits some of its capabilities; it also has a
few particulars of its own.

	Name: UPC-A (Universal Product Code)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 12, Zend\Barcode\Object\Upca will automatically prepend missing
zeros to the barcode text.

The option withQuietZones has no effect with this barcode.

Zend\Barcode\Object\Upce

[image: ../_images/zend.barcode.objects.details.upce.png]
This barcode extends Zend\Barcode\Object\Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).

	Name: UPC-E (Universal Product Code)

	Allowed characters:‘0123456789’

	Checksum: mandatory (modulo 10)

	Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note

If the number of characters is lower than 8, Zend\Barcode\Object\Upce will automatically prepend missing
zeros to the barcode text.

Note

If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object\Upce will automatically
replace it by 0.

The option withQuietZones has no effect with this barcode.

 [image: Edit this document]

 Zend\Barcode Renderers

Zend\Barcode Renderers

Renderers have some common options. These options can be set in three ways:

	As an array or a Traversable object passed to the constructor.

	As an array passed to the setOptions() method.

	As discrete values passed to individual setters.

Different ways to parameterize a renderer object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	use Zend\Barcode;

$options = array('topOffset' => 10);

// Case 1
$renderer = new Renderer\Pdf($options);

// Case 2
$renderer = new Renderer\Pdf();
$renderer->setOptions($options);

// Case 3
$renderer = new Renderer\Pdf();
$renderer->setTopOffset(10);

Common Options

In the following list, the values have no unit; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit.” The real units depend on the rendering support. The individual setters are obtained by
uppercasing the initial letter of the option and prefixing the name with “set” (e.g. “barHeight” =>
“setBarHeight”). All options have a correspondant getter prefixed with “get” (e.g. “getBarHeight”). Available
options are:

Common Options

	Option
	Data Type
	Default Value
	Description

	rendererNamespace
	String
	Zend\Barcode\Renderer
	Namespace of the renderer; for example, if you need to extend the renderers

	horizontalPosition
	String
	“left”
	Can be “left”, “center” or “right”. Can be useful with PDF or if the setWidth() method is used with an image renderer.

	verticalPosition
	String
	“top”
	Can be “top”, “middle” or “bottom”. Can be useful with PDF or if the setHeight() method is used with an image renderer.

	leftOffset
	Integer
	0
	Top position of the barcode inside the renderer. If used, this value will override the “horizontalPosition” option.

	topOffset
	Integer
	0
	Top position of the barcode inside the renderer. If used, this value will override the “verticalPosition” option.

	automaticRenderError
	Boolean
	FALSE
	Whether or not to automatically render errors. If an exception occurs, the provided barcode object will be replaced with an Error representation. Note that some errors (or exceptions) can not be rendered.

	moduleSize
	Float
	1
	Size of a rendering module in the support.

	barcode
	Zend\Barcode\Object
	NULL
	The barcode object to render.

An additional getter exists: getType(). It returns the name of the renderer class without the namespace (e.g.
Zend\Barcode\Renderer\Image returns “image”).

Zend\Barcode\Renderer\Image

The Image renderer will draw the instruction list of the barcode object in an image resource. The component
requires the GD extension. The default width of a module is 1 pixel.

Available options are:

Zend\Barcode\Renderer\Image Options

	Option
	Data Type
	Default Value
	Description

	height
	Integer
	0
	Allow you to specify the height of the result image. If “0”, the height will be calculated by the barcode object.

	width
	Integer
	0
	Allow you to specify the width of the result image. If “0”, the width will be calculated by the barcode object.

	imageType
	String
	“png”
	Specify the image format. Can be “png”, “jpeg”, “jpg” or “gif”.

Zend\Barcode\Renderer\Pdf

The PDF renderer will draw the instruction list of the barcode object in a PDF document. The default width of a
module is 0.5 point.

There are no particular options for this renderer.

 [image: Edit this document]

 Zend\Cache\Storage\Adapter

Zend\Cache\Storage\Adapter

Overview

Storage adapters are wrappers for real storage resources such as memory and the filesystem, using the well known
adapter pattern.

They comes with tons of methods to read, write and modify stored items and to get information about stored items
and the storage.

All adapters implements the interface Zend\Cache\Storage\StorageInterface and most extend
Zend\Cache\Storage\Adapter\AbstractAdapter, which comes with basic logic.

Configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or an adapter-specific options
class if it exists. You may pass the options instance to the class at instantiation or via the setOptions()
method, or alternately pass an associative array of options in either place (internally, these are then passed to
an options class instance). Alternately, you can pass either the options instance or associative array to the
Zend\Cache\StorageFactory::factory method.

Note

Many methods throw exceptions

Because many caching methods can throw exceptions, you need to catch them manually or you can use the plug-in
Zend\Cache\Storage\Plugin\ExceptionHandler to automatically catch them and redirect exceptions into a log
file using the option “exception_callback”.

Quick Start

Caching adapters can either be created from the provided Zend\Cache\StorageFactory factory, or by simply
instantiating one of the Zend\Cache\Storage\Adapter*classes.

To make life easier, the Zend\Cache\StorageFactory comes with a factory method to create an adapter and
create/add all requested plugins at once.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	use Zend\Cache\StorageFactory;

// Via factory:
$cache = StorageFactory::factory(array(
 'adapter' => 'apc',
 'plugins' => array(
 'exception_handler' => array('throw_exceptions' => false),
),
));

// Alternately:
$cache = StorageFactory::adapterFactory('apc');
$plugin = StorageFactory::pluginFactory('exception_handler', array(
 'throw_exceptions' => false,
));
$cache->addPlugin($plugin);

// Or manually:
$cache = new Zend\Cache\Storage\Adapter\Apc();
$plugin = new Zend\Cache\Storage\Plugin\ExceptionHandler(array(
 'throw_exceptions' => false,
));
$cache->addPlugin($plugin);

Basic configuration Options

	key_pattern

	Pattern against which to validate cache keys.

	setKeyPattern(null|string $pattern)
Implements a fluent interface.

	getKeyPattern()
Returns string

	namespace

	The “namespace” in which cache items will live.

	setNamespace(string $namespace)
Implements a fluent interface.

	getNamespace()
Returns string

	readable

	Enable/Disable reading data from cache.

	setReadable(boolean $flag)
Implements a fluent interface.

	getReadable()
Returns boolean

	ttl

	Set time to live.

	setTtl(int|float $ttl)
Implements a fluent interface.

	getTtl()
Returns float

	writable

	Enable/Disable writing data to cache.

	setWritable(boolean $flag)
Implements a fluent interface.

	getWritable()
Returns boolean

Available Methods defined by Zend\Cache\Storage\StorageInterface

	setOptions

	setOptions(array|Traversable|Zend\Cache\Storage\Adapter\AdapterOptions $options)

Set options.

Implements a fluent interface.

	getOptions

	getOptions()

Get options

Returns Zend\Cache\Storage\Adapter\AdapterOptions

	getItem

	getItem(string $key, boolean & $success = null, mixed & $casToken = null)

Load an item with the given $key,
set parameter $success to TRUE and
set parameter $casToken.

If item can’t load this method returns NULL and
set parameter $success to FALSE.

	getItems

	getItems(array $keys)

Load all items given by $keys.

Returns an array of key-value pairs of available items.

	hasItem

	hasItem(string $key)

Test if an item exists.

Returns boolean

	hasItems

	hasItems(array $keys)

Test multiple items.

Returns array

	getMetadata

	getMetadata(string $key)

Get metadata of an item.

Returns array|boolean

	getMetadatas

	getMetadatas(array $keys)

Get multiple metadata

Returns array

	setItem

	setItem(string $key, mixed $value)

Store an item.

Returns boolean

	setItems

	setItems(array $keyValuePairs)

Store multiple items.

Returns boolean

	addItem

	addItem(string $key, mixed $value)

Add an item.

Returns boolean

	addItems

	addItems(array $keyValuePairs)

Add multiple items.

Returns boolean

	replaceItem

	replaceItem(string $key, mixed $value)

Replace an item.

Returns boolean

	replaceItems

	replaceItems(array $keyValuePairs)

Replace multiple items.

Returns boolean

	checkAndSetItem

	checkAndSetItem(mixed $token, string $key, mixed $value)

Set item only if token matches

It uses the token from received from getItem() to check if the item has changed before overwriting it.

Returns boolean

	touchItem

	touchItem(string $key)

Reset lifetime of an item

Returns boolean

	touchItems

	touchItems(array $keys)

Reset lifetime of multiple items.

Returns boolean

	removeItem

	removeItem(string $key)

Remove an item.

Returns boolean

	removeItems

	removeItems(array $keys)

Remove multiple items.

Returns boolean

	incrementItem

	incrementItem(string $key, int $value)

Increment an item.

Returns int|boolean

	incrementItems

	incrementItems(array $keyValuePairs)

Increment multiple items.

Returns boolean

	decrementItem

	decrementItem(string $key, int $value)

Decrement an item.

Returns int|boolean

	decrementItems

	decrementItems(array $keyValuePairs)

Decrement multiple items.

Returns boolean

	getCapabilities

	getCapabilities()

Capabilities of this storage

Returns Zend\Cache\Storage\Capabilities

Available Methods defined by Zend\Cache\Storage\AvailableSpaceCapableInterface

	getAvailableSpace

	getAvailableSpace()

Get available space in bytes

Returns int|float

Available Methods defined by Zend\Cache\Storage\TotalSpaceCapableInterface

	getTotalSpace

	getTotalSpace()

Get total space in bytes

Returns int|float

Available Methods defined by Zend\Cache\Storage\ClearByNamespaceInterface

	clearByNamespace

	clearByNamespace(string $namespace)

Remove items of given namespace

Returns boolean

Available Methods defined by Zend\Cache\Storage\ClearByPrefixInterface

	clearByPrefix

	clearByPrefix(string $prefix)

Remove items matching given prefix

Returns boolean

Available Methods defined by Zend\Cache\Storage\ClearExpiredInterface

	clearExpired

	clearExpired()

Remove expired items

Returns boolean

Available Methods defined by Zend\Cache\Storage\FlushableInterface

	flush

	flush()

Flush the whole storage

Returns boolean

Available Methods defined by Zend\Cache\Storage\IterableInterface (extends IteratorAggregate)

	getIterator

	getIterator()

Get an Iterator

Returns Zend\Cache\Storage\IteratorInterface

Available Methods defined by Zend\Cache\Storage\OptimizableInterface

	optimize

	optimize()

Optimize the storage

Returns boolean

Available Methods defined by Zend\Cache\Storage\TaggableInterface

