

 Navigation

 	
 index

 	
 next |

 	Zend Framework 2 2.3.7 documentation

Programmer’s Reference Guide of Zend Framework 2

Introduction to Zend Framework 2

	Overview

	Installation

User Guide

The user guide is provided to take you through a non-trivial example, showing
you various techniques and features of the framework in order to build an
application.

	Getting Started with Zend Framework 2

	Getting started: A skeleton application

	Modules

	Routing and controllers

	Database and models

	Styling and Translations

	Forms and actions

	Conclusion

In-depth tutorial for beginners

In this tutorial we will create a Blog-Application from scratch. We will go
through all the details you need to learn to create your own ZF2 Application.

	Introducing our first “Blog” Module

	Introducing Services and the ServiceManager

	Preparing for different Database-Backends

	Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator

	Understanding the Router

	Making use of Forms and Fieldsets

	Editing and Deleting Data

	Reviewing the Blog-application

Getting Started With Zend Studio 10 & Zend Server 6

The user guide is provided to take you through
building a Zend Framework 2 application using Zend Studio and Zend Server.

	Getting Started with Zend Framework 2

	A quick tour of the skeleton application

	The MyTaskList application

	Listing tasks

	Application Diagnostics

	Conclusion

Zend Framework Tool (ZFTool)

	Zend Framework Tool (ZFTool)

Learning Zend Framework 2

	Learning Dependency Injection

	Unit Testing a Zend Framework 2 application

	Advanced Configuration Tricks

	Using the EventManager

	Using Zend\Navigation in your Album Module

	Using Zend\Paginator in your Album Module

	Setting up a database adapter

Migration

	Migration from Zend Framework 1

	Namespacing Old Classes

	Running Zend Framework 2 and Zend Framework 1 in parallel

Zend Framework 2 Reference

Zend\Authentication

	Introduction to Zend\Authentication

	Database Table Authentication

	Digest Authentication

	HTTP Authentication Adapter

	LDAP Authentication

	Authentication Validator

Zend\Barcode

	Introduction to Zend\Barcode

	Barcode creation using Zend\Barcode\Barcode class

	Zend\Barcode Objects

	Zend\Barcode Renderers

Zend\Cache

	Zend\Cache\Storage\Adapter

	Zend\Cache\Storage\Capabilities

	Zend\Cache\Storage\Plugin

	Zend\Cache\Pattern

	Zend\Cache\Pattern\CallbackCache

	Zend\Cache\Pattern\ClassCache

	Zend\Cache\Pattern\ObjectCache

	Zend\Cache\Pattern\OutputCache

	Zend\Cache\Pattern\CaptureCache

Zend\Captcha

	Introduction to Zend\Captcha

	Captcha Operation

	CAPTCHA Adapters

Zend\Code\Generator

	Introduction

	Zend\Code\Generator Reference

	Zend\Code\Generator Examples

Zend\Config

	Introduction to Zend\Config

	Theory of Operation

	Zend\Config\Reader

	Zend\Config\Writer

	Zend\Config\Processor

	The Factory

Zend\Console

	Introduction to Zend\Console

	Console routes and routing

	Console-aware modules

	Console-aware action controllers

	Console adapters

	Console prompts

Zend\Console\Getopt

	ZendConsoleGetopt

	Declaring Getopt Rules

	Fetching Options and Arguments

	Configuring Zend\Console\Getopt

Zend\Crypt

	Introduction to Zend\Crypt

	Encrypt/decrypt using block ciphers

	Key derivation function

	Password

	Public key cryptography

Zend\Db

	Zend\Db\Adapter

	Zend\Db\ResultSet

	Zend\Db\Sql

	Zend\Db\Sql\Ddl

	Zend\Db\TableGateway

	Zend\Db\RowGateway

	Zend\Db\Metadata

Zend\Debug

	Dumping Variables

Zend\Di

	Introduction to Zend\Di

	Zend\Di Quickstart

	Zend\Di Definition

	Zend\Di InstanceManager

	Zend\Di Configuration

	Zend\Di Debugging & Complex Use Cases

Zend\Dom

	Introduction to Zend\Dom

	Zend\Dom\Query

Zend\Escaper

	Introduction to Zend\Escaper

	Theory of Operation

	Configuring Zend\Escaper

	Escaping HTML

	Escaping HTML Attributes

	Escaping Javascript

	Escaping Cascading Style Sheets

	Escaping URLs

Zend\EventManager

	The EventManager

Zend\Feed

	Introduction to Zend\Feed

	Importing Feeds

	Retrieving Feeds from Web Pages

	Consuming an RSS Feed

	Consuming an Atom Feed

	Consuming a Single Atom Entry

	Zend\Feed and Security

	Zend\Feed\Reader\Reader

	Zend\Feed\Writer\Writer

	Zend\Feed\PubSubHubbub

Zend\File

	Zend\File\ClassFileLocator

Zend\Filter

	Introduction to Zend\Filter

	Standard Filter Classes

	Word Filters

	File Filter Classes

	Filter Chains

	Zend\Filter\Inflector

	Using the StaticFilter

	Writing Filters

Zend\Form

	Introduction

	Quick Start

	Form Collections

	File Uploading

	Advanced use of forms

	Form Elements

	Form View Helpers

Zend\Http

	Zend\Http

	The Request Class

	The Response Class

	The Headers Class

	HTTP Client

	HTTP Client - Connection Adapters

	HTTP Client - Advanced Usage

	HTTP Client - Static Usage

Zend\I18n

	Translating

	I18n View Helpers

	I18n Filters

	I18n Validators

Zend\InputFilter

	Introduction

	File Upload Input

Zend\Json

	Introduction

	Basic Usage

	Advanced Usage

	XML to JSON conversion

	Zend\Json\Server - JSON-RPC server

Zend\Ldap

	Introduction to Zend\Ldap

	API overview

	Usage Scenarios

	Tools

	Object-oriented access to the LDAP tree using Zend\Ldap\Node

	Getting information from the LDAP server

	Serializing LDAP data to and from LDIF

Zend\Loader

	The AutoloaderFactory

	The StandardAutoloader

	The ClassMapAutoloader

	The ModuleAutoloader

	The SplAutoloader Interface

	The PluginClassLoader

	The ShortNameLocator Interface

	The PluginClassLocator interface

	The Class Map Generator utility: bin/classmap_generator.php

Zend\Log

	Zend\Log

	Writers

	Filters

	Formatters

Zend\Mail

	Introduction to Zend\Mail

	Zend\Mail\Message

	Zend\Mail\Transport

	Zend\Mail\Transport\SmtpOptions

	Zend\Mail\Transport\FileOptions

Zend\Math

	Introduction to Zend\Math

Zend\Memory

	Overview

	Memory Manager

	Memory Objects

Zend\Mime

	Zend\Mime

	Zend\Mime\Message

	Zend\Mime\Part

Zend\ModuleManager

	Introduction to the Module System

	The Module Manager

	The Module Class

	The Module Autoloader

	Best Practices when Creating Modules

Zend\Mvc

	Introduction to the MVC Layer

	Quick Start

	Default Services

	Routing

	The MvcEvent

	The SendResponseEvent

	Available Controllers

	Controller Plugins

	Examples

Zend\Navigation

	Introduction to Zend\Navigation

	Quick Start

	Pages

	Containers

	View Helpers

	View Helper - Breadcrumbs

	View Helper - Links

	View Helper - Menu

	View Helper - Sitemap

	View Helper - Navigation Proxy

Zend\Paginator

	Introduction to Zend\Paginator

	Usage

	Configuration

	Advanced usage

Zend\Permissions\Acl

	Introduction to Zend\Permissions\Acl

	Refining Access Controls

	Advanced Usage

Zend\Permissions\Rbac

	Introduction to Zend\Permissions\Rbac

	Methods

	Examples

Zend\ProgressBar

	Progress Bars

	File Upload Handlers

Zend\Serializer

	Introduction to Zend\Serializer

	Zend\Serializer\Adapter

Zend\Server

	Introduction to Zend\Server

	Zend\Server\Reflection

Zend\ServiceManager

	Zend\ServiceManager

	Zend\ServiceManager Quick Start

	Delegator service factories

	Lazy Services

Zend\Session

	Session Config

	Session Container

	Session Manager

	Session Save Handlers

	Session Storage

	Session Validators

Zend\Soap

	Zend\Soap\Server

	Zend\Soap\Client

	WSDL Accessor

	AutoDiscovery

Zend\Stdlib

	Zend\Stdlib\Hydrator

	Zend\Stdlib\Hydrator\Filter

	Zend\Stdlib\Hydrator\Strategy

	AggregateHydrator

Zend\Tag

	Introduction to Zend\Tag

	Creating tag clouds with Zend\Tag\Cloud

Zend\Test

	Introduction to Zend\Test

	Unit testing with PHPUnit

Zend\Text

	Zend\Text\Figlet

	Zend\Text\Table

Zend\Uri

	Zend\Uri

Zend\Validator

	Introduction to Zend\Validator

	Standard Validation Classes

	Alnum Validator

	Alpha Validator

	Barcode Validator

	Between Validator

	Callback Validator

	CreditCard Validator

	Date Validator

	Db\RecordExists and Db\NoRecordExists Validators

	Digits Validator

	EmailAddress Validator

	GreaterThan Validator

	Hex Validator

	Hostname Validator

	Iban Validator

	Identical Validator

	InArray Validator

	Ip Validator

	Isbn Validator

	LessThan Validator

	NotEmpty Validator

	PostCode Validator

	Regex Validator

	Sitemap Validators

	Step Validator

	StringLength Validator

	Validator Chains

	Writing Validators

	Validation Messages

Zend\Version

	Getting the Zend Framework Version

Zend\View

	Zend\View Quick Start

	The PhpRenderer

	PhpRenderer View Scripts

	The ViewEvent

	View Helpers

	View Helper - BasePath

	View Helper - Cycle

	View Helper - Doctype

	FlashMessenger Helper

	Gravatar Helper

	View Helper - HeadLink

	View Helper - HeadMeta

	View Helper - HeadScript

	View Helper - HeadStyle

	View Helper - HeadTitle

	View Helper - HtmlList

	View Helper - HTML Object

	View Helper - Identity

	View Helper - InlineScript

	View Helper - JSON

	View Helper - Partial

	View Helper - Placeholder

	View Helper - URL

	Advanced usage of helpers

Zend\XmlRpc

	Introduction to Zend\XmlRpc

	Zend\XmlRpc\Client

	Zend\XmlRpc\Server

Services for Zend Framework 2 Reference

ZendService\Akismet

	ZendService\Akismet

ZendService\Amazon

	ZendService\Amazon

	ZendService\Amazon\S3

	ZendService\Amazon\Sqs

	ZendService\Amazon\Ec2

	ZendService\Amazon\Ec2: CloudWatch Monitoring

	ZendService\Amazon\Ec2: Elastic Block Storage (EBS)

	ZendService\Amazon\Ec2: Elastic IP Addresses

	ZendService\Amazon\Ec2: Instances

	ZendService\Amazon\Ec2: Keypairs

	ZendService\Amazon\Ec2: Regions and Availability Zones

	ZendService\Amazon\Ec2: Reserved Instances

	ZendService\Amazon\Ec2: Security Groups

	ZendService\Amazon\Ec2: Windows Instances

ZendService\AppleApns

	ZendService\Apple\Apns

ZendService\Audioscrobbler

	ZendService\Audioscrobbler

ZendService\Delicious

	ZendService\Delicious

ZendService\DeveloperGarden

	ZendService\DeveloperGarden

ZendService\Flickr

	ZendService\Flickr

ZendService\Google\Gcm

	ZendService\Google\Gcm

ZendService\LiveDocx

	ZendService\LiveDocx

ZendService\Rackspace

	ZendService\Rackspace

	ZendService\Rackspace\Servers

	ZendService\Rackspace\Files

ZendService\ReCaptcha

	ZendService\ReCaptcha

ZendService\SlideShare

	ZendService\SlideShare

ZendService\StrikeIron

	ZendService\StrikeIron

	ZendService\StrikeIron: Bundled Services

	ZendService\StrikeIron: Advanced Uses

ZendService\Technorati

	ZendService\Technorati

ZendService\Twitter

	ZendService\Twitter

ZendService\WindowsAzure

	ZendService\WindowsAzure

Copyright

	Copyright Information

Indices and tables

	Programmer’s Reference Guide of Zend Framework 2

	Search Page

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Overview

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Overview

Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented [http://en.wikipedia.org/wiki/Object-oriented_programming] code and utilises most of the new features of PHP 5.3, namely
namespaces [http://php.net/manual/en/language.namespaces.php], late static binding [http://php.net/lsb], lambda functions and closures [http://php.net/manual/en/functions.anonymous.php].

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million
downloads.

Note

ZF2 is not backward compatible with ZF1, because of the new features in PHP 5.3+ implemented by
the framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few
dependencies on other components. ZF2 follows the SOLID [http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29] object-oriented design principle. This loosely coupled
architecture allows developers to use whichever components they want. We call this a “use-at-will” design.
We support Pyrus [http://pear.php.net/manual/en/pyrus.php] and Composer [http://getcomposer.org/] as installation and dependency tracking mechanisms for the framework as a whole and
for each component, further enhancing this design.

We use PHPUnit [http://www.phpunit.de] to test our code and Travis CI [http://travis-ci.org/] as a Continuous Integration service.

While they can be used separately, Zend Framework 2 components in the standard library form a powerful and extensible
web application framework when combined. Also, it offers a robust, high performance MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP] implementation, a
database abstraction that is simple to use, and a forms component that implements HTML5 form rendering [http://www.w3.org/TR/html5/forms.html#forms],
validation, and filtering so that developers can consolidate all of these operations using one easy-to-use, object
oriented interface. Other components, such as Zend\Authentication and
Zend\Permissions\Acl, provide user authentication and authorization against
all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most
popular web services available. Whatever your application needs are, you’re likely to find a Zend Framework 2
component that can be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies [http://www.zend.com], but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and StrikeIron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available
to Zend Framework 2 developers.

Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework 2
community. Community members, including contributors, make themselves available on mailing lists [http://framework.zend.com/archives],
IRC channels [http://www.zftalk.com] and other forums. Whatever question you have about Zend Framework 2, the community is always
available to address it.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Installation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Installation

Using Composer

The recommended way to start a new Zend Framework project is to clone the skeleton
application and use composer to install dependencies using the create-project
command:

	1
2

	curl -s https://getcomposer.org/installer | php --
php composer.phar create-project -sdev --repository-url="https://packages.zendframework.com" zendframework/skeleton-application path/to/install

Alternately, clone the repository and manually invoke composer using the shipped
composer.phar:

	1
2
3
4
5

	cd my/project/dir
git clone git://github.com/zendframework/ZendSkeletonApplication.git
cd ZendSkeletonApplication
php composer.phar self-update
php composer.phar install

(The self-update directive is to ensure you have an up-to-date composer.phar
available.)

Another alternative for downloading the project is to grab it via curl, and
then pass it to tar:

	1
2

	cd my/project/dir
curl -#L https://github.com/zendframework/ZendSkeletonApplication/tarball/master | tar xz --strip-components=1

You would then invoke composer to install dependencies per the previous
example.

Using Git submodules

Alternatively, you can install using native git submodules:

	1

	git clone git://github.com/zendframework/ZendSkeletonApplication.git --recursive

Web Server Setup

PHP CLI Server

The simplest way to get started if you are using PHP 5.4 or above is to start the
internal PHP cli-server in the root directory:

	1

	php -S 0.0.0.0:8080 -t public/ public/index.php

This will start the cli-server on port 8080, and bind it to all network
interfaces.

Note

The built-in CLI server is for development only.

Apache Setup

To use Apache, setup a virtual host to point to the public/ directory of the
project. It should look something like below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<VirtualHost *:80>
 ServerName zf2-tutorial.localhost
 DocumentRoot /path/to/zf2-tutorial/public

 <Directory /path/to/zf2-tutorial/public>
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

or, if you are using Apache 2.4 or above:

	1
2
3
4
5
6
7
8
9

	<VirtualHost *:80>
 ServerName zf2-tutorial.localhost
 DocumentRoot /path/to/zf2-tutorial/public

 <Directory /path/to/zf2-tutorial/public>
 AllowOverride All
 Require all granted
 </Directory>
</VirtualHost>

Rewrite Configuration

URL rewriting is a common function of HTTP servers, and allows all HTTP requests to be routed through
the index.php entry point of a Zend Framework Application.

Apache comes bundled with the module``mod_rewrite`` for URL rewriting. To use it, mod_rewrite must
either be included at compile time or enabled as a Dynamic Shared Object (DSO). Please consult the
Apache documentation [http://httpd.apache.org/docs/] for your version for more information.

The Zend Framework Skeleton Application comes with a .htaccess that includes rewrite rules to cover
most use cases:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	RewriteEngine On
The following rule tells Apache that if the requested filename
exists, simply serve it.
RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^.*$ - [NC,L]
The following rewrites all other queries to index.php. The
condition ensures that if you are using Apache aliases to do
mass virtual hosting, the base path will be prepended to
allow proper resolution of the index.php file; it will work
in non-aliased environments as well, providing a safe, one-size
fits all solution.
RewriteCond %{REQUEST_URI}::$1 ^(/.+)(.+)::\2$
RewriteRule ^(.*) - [E=BASE:%1]
RewriteRule ^(.*)$ %{ENV:BASE}index.php [NC,L]

Microsoft Internet Information Services

As of version 7.0, IIS ships with a standard rewrite engine. You may use the following configuration to
create the appropriate rewrite rules.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>
 <rewrite>
 <rules>
 <rule name="Imported Rule 1" stopProcessing="true">
 <match url="^.*$" />
 <conditions logicalGrouping="MatchAny">
 <add input="{REQUEST_FILENAME}"
 matchType="IsFile" pattern=""
 ignoreCase="false" />
 <add input="{REQUEST_FILENAME}"
 matchType="IsDirectory"
 pattern=""
 ignoreCase="false" />
 </conditions>
 <action type="None" />
 </rule>
 <rule name="Imported Rule 2" stopProcessing="true">
 <match url="^.*$" />
 <action type="Rewrite" url="index.php" />
 </rule>
 </rules>
 </rewrite>
 </system.webServer>
</configuration>

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Getting Started with Zend Framework 2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by
creating a simple database driven application using the Model-View-Controller
paradigm. By the end you will have a working ZF2 application and you can then
poke around the code to find out more about how it all works and fits together.

Some assumptions

This tutorial assumes that you are running at least PHP 5.3.23 with the Apache web server
and MySQL, accessible via the PDO extension. Your Apache installation must have
the mod_rewrite extension installed and configured.

You must also ensure that Apache is configured to support .htaccess files. This is
usually done by changing the setting:

	1

	 AllowOverride None

to

	1

	 AllowOverride FileInfo

in your httpd.conf file. Check with your distribution’s documentation for
exact details. You will not be able to navigate to any page other than the home
page in this tutorial if you have not configured mod_rewrite and .htaccess usage
correctly.

Note

Alternatively, if you are using PHP 5.4+ you may use the built-in web server instead of Apache for development.

The tutorial application

The application that we are going to build is a simple inventory system to
display which albums we own. The main page will list our collection and allow us
to add, edit and delete CDs. We are going to need four pages in our website:

	Page
	Description

	List of albums
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

We will also need to store our data into a database. We will only need one table
with these fields in it:

	Field name
	Type
	Null?
	Notes

	id
	integer
	No
	Primary key, auto-increment

	artist
	varchar(100)
	No
	

	title
	varchar(100)
	No
	

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Getting started: A skeleton application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Getting started: A skeleton application

In order to build our application, we will start with the
ZendSkeletonApplication [https://github.com/zendframework/ZendSkeletonApplication]
available on github [https://github.com/]. Use Composer (http://getcomposer.org)
to create a new project from scratch with Zend Framework:

	1

	 php composer.phar create-project --stability="dev" zendframework/skeleton-application path/to/install

Note

Another way to install the ZendSkeletonApplication is to use github. Go to
https://github.com/zendframework/ZendSkeletonApplication and click the “Zip”
button. This will download a file with a name like
ZendSkeletonApplication-master.zip or
similar.

Unzip this file into the directory where you keep all your vhosts and rename the
resultant directory to zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to
resolve its dependencies. In this case, the dependency is Zend Framework 2
itself.

To install Zend Framework 2 into our application we simply type:

	1
2

	 php composer.phar self-update
 php composer.phar install

from the zf2-tutorial folder. This takes a while. You should see an output like:

	1
2
3
4
5

	 Installing dependencies from lock file
 - Installing zendframework/zendframework (dev-master)
 Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

 Generating autoload files

Note

If you see this message:

	1
2

	 [RuntimeException]
 The process timed out.

then your connection was too slow to download the entire package in time, and composer
timed out. To avoid this, instead of running:

	1

	 php composer.phar install

run instead:

	1

	 COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar install

Note

For windows users with wamp:

	Install composer for windows
Check composer is properly installed by running

	1

	composer

	Install git for windows. Also need to add git path in windows environment variable
Check git is properly installed by running

	1

	git

	Now install zf2 using command

	1

	composer create-project -s dev zendframework/skeleton-application path/to/install

We can now move on to the web server setup.

Using the Apache Web Server

You now need to create an Apache virtual host for the application and edit your
hosts file so that http://zf2-tutorial.localhost will serve index.php from the
zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd.conf or
extra/httpd-vhosts.conf. If you are using httpd-vhosts.conf, ensure
that this file is included by your main httpd.conf file. Some Linux distributions
(ex: Ubuntu) package Apache so that configuration files are stored in /etc/apache2
and create one file per virtual host inside folder /etc/apache2/sites-enabled. In
this case, you would place the virtual host block below into the file
/etc/apache2/sites-enabled/zf2-tutorial.

Ensure that NameVirtualHost is defined and set to “*:80” or similar, and then
define a virtual host along these lines:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <VirtualHost *:80>
 ServerName zf2-tutorial.localhost
 DocumentRoot /path/to/zf2-tutorial/public
 SetEnv APPLICATION_ENV "development"
 <Directory /path/to/zf2-tutorial/public>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 </VirtualHost>

Make sure that you update your /etc/hosts or
c:\windows\system32\drivers\etc\hosts file so that zf2-tutorial.localhost
is mapped to 127.0.0.1. The website can then be accessed using
http://zf2-tutorial.localhost.

	1

	 127.0.0.1 zf2-tutorial.localhost localhost

Restart Apache.

If you’ve done it correctly, it should look something like this:

[image: ../_images/user-guide.skeleton-application.hello-world.png]
To test that your .htaccess file is working, navigate to
http://zf2-tutorial.localhost/1234 and you should see this:

[image: ../_images/user-guide.skeleton-application.404.png]
If you see a standard Apache 404 error, then you need to fix .htaccess usage
before continuing. If you’re are using IIS with the URL Rewrite Module, import the following:

	1
2

	 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^ index.php [NC,L]

You now have a working skeleton application and we can start adding the specifics
for our application.

Using the Built-in PHP CLI Server

Alternatively — if you are using PHP 5.4 or above — you can use the built-in CLI server (cli-server). To do this, you
just start the server in the root directory:

	1

	php -S 0.0.0.0:8080 -t public/ public/index.php

This will make the website available on port 8080 on all network interfaces, using
public/index.php to handle routing. This means the site is accessible via http://localhost:8080
or http://<your-local-IP>:8080.

If you’ve done it right, you should see the same result as with Apache above.

To test that your routing is working, navigate to
http://localhost:8080/1234 and you should see the same error page as with Apache above.

Note

The built-in CLI server is for development only.

Error reporting

Optionally, when using Apache, you can use the APPLICATION_ENV setting in
your VirtualHost to let PHP output all its errors to the browser. This can be
useful during the development of your application.

Edit index.php from the zf2-tutorial/public/ directory and change it to
the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 <?php

 /**
 * Display all errors when APPLICATION_ENV is development.
 */
 if ($_SERVER['APPLICATION_ENV'] == 'development') {
 error_reporting(E_ALL);
 ini_set("display_errors", 1);
 }

 /**
 * This makes our life easier when dealing with paths. Everything is relative
 * to the application root now.
 */
 chdir(dirname(__DIR__));

 // Decline static file requests back to the PHP built-in webserver
 if (php_sapi_name() === 'cli-server' && is_file(__DIR__ . parse_url($_SERVER['REQUEST_URI'], PHP_URL_PATH))) {
 return false;
 }

 // Setup autoloading
 require 'init_autoloader.php';

 // Run the application!
 Zend\Mvc\Application::init(require 'config/application.config.php')->run();

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Modules

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Modules

Zend Framework 2 uses a module system to organise your main
application-specific code within each module. The Application module provided by
the skeleton is used to provide bootstrapping, error and routing configuration to
the whole application. It is usually used to provide application level
controllers for, say, the home page of an application, but we are not going to
use the default one provided in this tutorial as we want our album list to be
the home page, which will live in our own module.

We are going to put all our code into the Album module which will contain our
controllers, models, forms and views, along with configuration. We’ll also tweak
the Application module as required.

Let’s start with the directories required.

Setting up the Album module

Start by creating a directory called Album under module with the following
subdirectories to hold the module’s files:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 zf2-tutorial/
 /module
 /Album
 /config
 /src
 /Album
 /Controller
 /Form
 /Model
 /view
 /album
 /album

As you can see the Album module has separate directories for the different
types of files we will have. The PHP files that contain classes within the
Album namespace live in the src/Album directory so that we can have
multiple namespaces within our module should we require it. The view directory
also has a sub-folder called album for our module’s view scripts.

In order to load and configure a module, Zend Framework 2 has a
ModuleManager. This will look for Module.php in the root of the module
directory (module/Album) and expect to find a class called Album\Module
within it. That is, the classes within a given module will have the namespace of
the module’s name, which is the directory name of the module.

Create Module.php in the Album module:
Create a file called Module.php under zf2-tutorial/module/Album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 namespace Album;

 use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
 use Zend\ModuleManager\Feature\ConfigProviderInterface;

 class Module implements AutoloaderProviderInterface, ConfigProviderInterface
 {
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\ClassMapAutoloader' => array(
 __DIR__ . '/autoload_classmap.php',
),
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
),
),
);
 }

 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
 }

The ModuleManager will call getAutoloaderConfig() and getConfig()
automatically for us.

Autoloading files

Our getAutoloaderConfig() method returns an array that is compatible with
ZF2’s AutoloaderFactory. We configure it so that we add a class map file to
the ClassMapAutoloader and also add this module’s namespace to the
StandardAutoloader. The standard autoloader requires a namespace and the
path where to find the files for that namespace. It is PSR-0 compliant and so
classes map directly to files as per the PSR-0 rules [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md].

As we are in development, we don’t need to load files via the classmap, so we provide an empty array for the
classmap autoloader. Create a file called autoload_classmap.php under zf2-tutorial/module/Album:

	1

	 return array();

As this is an empty array, whenever the autoloader looks for a class within the
Album namespace, it will fall back to the to StandardAutoloader for us.

Note

If you are using Composer, you could instead just create an empty
getAutoloaderConfig() { } and add to composer.json:

	1
2
3

	 "autoload": {
 "psr-0": { "Album": "module/Album/src/" }
 },

If you go this way, then you need to run php composer.phar update to update
the composer autoloading files.

Configuration

Having registered the autoloader, let’s have a quick look at the getConfig()
method in Album\Module. This method simply loads the
config/module.config.php file.

Create a file called module.config.php under zf2-tutorial/module/Album/config:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),
 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The config information is passed to the relevant components by the
ServiceManager. We need two initial sections: controllers and
view_manager. The controllers section provides a list of all the controllers
provided by the module. We will need one controller, AlbumController, which
we’ll reference as Album\Controller\Album. The controller key must
be unique across all modules, so we prefix it with our module name.

Within the view_manager section, we add our view directory to the
TemplatePathStack configuration. This will allow it to find the view scripts for
the Album module that are stored in our view/ directory.

Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done
in the application’s config/application.config.php file which is provided by the
skeleton application. Update this file so that its modules section contains the
Album module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 return array(
 'modules' => array(
 'Application',
 'Album', // <-- Add this line
),
 'module_listener_options' => array(
 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),
 'module_paths' => array(
 './module',
 './vendor',
),
),
);

As you can see, we have added our Album module into the list of modules
after the Application module.

We have now set up the module ready for putting our custom code into it.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Routing and controllers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Routing and controllers

We will build a very simple inventory system to display our album
collection. The home page will list our collection and allow us to add, edit and
delete albums. Hence the following pages are required:

	Page
	Description

	Home
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

Before we set up our files, it’s important to understand how the framework
expects the pages to be organised. Each page of the application is known as an
action and actions are grouped into controllers within modules. Hence, you
would generally group related actions into a controller; for instance, a news
controller might have actions of current, archived and view.

As we have four pages that all apply to albums, we will group them in a single
controller AlbumController within our Album module as four actions. The
four actions will be:

	Page
	Controller
	Action

	Home
	AlbumController
	index

	Add new album
	AlbumController
	add

	Edit album
	AlbumController
	edit

	Delete album
	AlbumController
	delete

The mapping of a URL to a particular action is done using routes that are defined
in the module’s module.config.php file. We will add a route for our album
actions. This is the updated module config file with the new code highlighted.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),

 // The following section is new and should be added to your file
 'router' => array(
 'routes' => array(
 'album' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/album[/:action][/:id]',
 'constraints' => array(
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'id' => '[0-9]+',
),
 'defaults' => array(
 'controller' => 'Album\Controller\Album',
 'action' => 'index',
),
),
),
),
),

 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The name of the route is ‘album’ and has a type of ‘segment’. The segment route
allows us to specify placeholders in the URL pattern (route) that will be mapped
to named parameters in the matched route. In this case, the route is
``/album[/:action][/:id]`` which will match any URL that starts with
/album. The next segment will be an optional action name, and then finally
the next segment will be mapped to an optional id. The square brackets indicate
that a segment is optional. The constraints section allows us to ensure that the
characters within a segment are as expected, so we have limited actions to
starting with a letter and then subsequent characters only being alphanumeric,
underscore or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

	URL
	Page
	Action

	/album
	Home (list of albums)
	index

	/album/add
	Add new album
	add

	/album/edit/2
	Edit album with an id of 2
	edit

	/album/delete/4
	Delete album with an id of 4
	delete

Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller
is a class that is generally called {Controller name}Controller. Note that
{Controller name} must start with a capital letter. This class lives in a file
called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is
a public method within the controller class that is named {action name}Action.
In this case {action name} should start with a lower case letter.

Note

This is by convention. Zend Framework 2 doesn’t provide many
restrictions on controllers other than that they must implement the
Zend\Stdlib\Dispatchable interface. The framework provides two abstract
classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be using the
standard AbstractActionController, but if you’re intending to write a
RESTful web service, AbstractRestfulController may be useful.

Let’s go ahead and create our controller class AlbumController.php at zf2-tutorials/module/Album/src/Album/Controller :

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 namespace Album\Controller;

 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class AlbumController extends AbstractActionController
 {
 public function indexAction()
 {
 }

 public function addAction()
 {
 }

 public function editAction()
 {
 }

 public function deleteAction()
 {
 }
 }

Note

Make sure to register the new Album module in the “modules” section of your
config/application.config.php. You also have to provide a Module Class for the Album module to be recognized by the MVC.

Note

We have already informed the module about our controller in the
‘controller’ section of module/Album/config/module.config.php.

We have now set up the four actions that we want to use. They won’t work yet
until we set up the views. The URLs for each action are:

	URL
	Method called

	http://zf2-tutorial.localhost/album
	Album\Controller\AlbumController::indexAction

	http://zf2-tutorial.localhost/album/add
	Album\Controller\AlbumController::addAction

	http://zf2-tutorial.localhost/album/edit
	Album\Controller\AlbumController::editAction

	http://zf2-tutorial.localhost/album/delete
	Album\Controller\AlbumController::deleteAction

We now have a working router and the actions are set up for each page of our
application.

It’s time to build the view and the model layer.

Initialise the view scripts

To integrate the view into our application all we need to do is create some view
script files. These files will be executed by the DefaultViewStrategy and will be
passed any variables or view models that are returned from the controller action
method. These view scripts are stored in our module’s views directory within a
directory named after the controller. Create these four empty files now:

	module/Album/view/album/album/index.phtml

	module/Album/view/album/album/add.phtml

	module/Album/view/album/album/edit.phtml

	module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Database and models

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Database and models

The database

Now that we have the Album module set up with controller action methods and
view scripts, it is time to look at the model section of our application.
Remember that the model is the part that deals with the application’s core
purpose (the so-called “business rules”) and, in our case, deals with the
database. We will make use of the Zend Framework class
Zend\Db\TableGateway\TableGateway which is used to find, insert, update and
delete rows from a database table.

We are going to use MySQL, via PHP’s PDO driver, so create a database called
zf2tutorial, and run these SQL statements to create the album table with some
data in it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 CREATE TABLE album (
 id int(11) NOT NULL auto_increment,
 artist varchar(100) NOT NULL,
 title varchar(100) NOT NULL,
 PRIMARY KEY (id)
);
 INSERT INTO album (artist, title)
 VALUES ('The Military Wives', 'In My Dreams');
 INSERT INTO album (artist, title)
 VALUES ('Adele', '21');
 INSERT INTO album (artist, title)
 VALUES ('Bruce Springsteen', 'Wrecking Ball (Deluxe)');
 INSERT INTO album (artist, title)
 VALUES ('Lana Del Rey', 'Born To Die');
 INSERT INTO album (artist, title)
 VALUES ('Gotye', 'Making Mirrors');

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of
writing!)

We now have some data in a database and can write a very simple model for it.

The model files

Zend Framework does not provide a Zend\Model component because the model is your
business logic and it’s up to you to decide how you want it to work. There are
many components that you can use for this depending on your needs. One approach
is to have model classes represent each entity in your application and then
use mapper objects that load and save entities to the database. Another is to
use an Object-relational mapping (ORM) technology, such as Doctrine or Propel.

For this tutorial, we are going to create a very simple model by creating an
AlbumTable class that uses the Zend\Db\TableGateway\TableGateway class
in which each album object is an Album object (known as an entity). This is an
implementation of the Table Data Gateway design pattern to allow for interfacing
with data in a database table. Be aware though that the Table Data Gateway
pattern can become limiting in larger systems. There is also a temptation to put
database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!

Let’s start by creating a file called Album.php under module/Album/src/Album/Model:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 namespace Album\Model;

 class Album
 {
 public $id;
 public $artist;
 public $title;

 public function exchangeArray($data)
 {
 $this->id = (!empty($data['id'])) ? $data['id'] : null;
 $this->artist = (!empty($data['artist'])) ? $data['artist'] : null;
 $this->title = (!empty($data['title'])) ? $data['title'] : null;
 }
 }

Our Album entity object is a simple PHP class. In order to work with
Zend\Db’s TableGateway class, we need to implement the exchangeArray()
method. This method simply copies the data from the passed in array to our entity’s
properties. We will add an input filter for use with our form later.

Next, we create our AlbumTable.php file in module/Album/src/Album/Model directory like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	 namespace Album\Model;

 use Zend\Db\TableGateway\TableGateway;

 class AlbumTable
 {
 protected $tableGateway;

 public function __construct(TableGateway $tableGateway)
 {
 $this->tableGateway = $tableGateway;
 }

 public function fetchAll()
 {
 $resultSet = $this->tableGateway->select();
 return $resultSet;
 }

 public function getAlbum($id)
 {
 $id = (int) $id;
 $rowset = $this->tableGateway->select(array('id' => $id));
 $row = $rowset->current();
 if (!$row) {
 throw new \Exception("Could not find row $id");
 }
 return $row;
 }

 public function saveAlbum(Album $album)
 {
 $data = array(
 'artist' => $album->artist,
 'title' => $album->title,
);

 $id = (int) $album->id;
 if ($id == 0) {
 $this->tableGateway->insert($data);
 } else {
 if ($this->getAlbum($id)) {
 $this->tableGateway->update($data, array('id' => $id));
 } else {
 throw new \Exception('Album id does not exist');
 }
 }
 }

 public function deleteAlbum($id)
 {
 $this->tableGateway->delete(array('id' => (int) $id));
 }
 }

There’s a lot going on here. Firstly, we set the protected property $tableGateway
to the TableGateway instance passed in the constructor. We will use this to
perform operations on the database table for our albums.

We then create some helper methods that our application will use to interface
with the table gateway. fetchAll() retrieves all albums rows from the
database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum() either creates a new row in the database or
updates a row that already exists and deleteAlbum() removes the row
completely. The code for each of these methods is, hopefully, self-explanatory.

Using ServiceManager to configure the table gateway and inject into the AlbumTable

In order to always use the same instance of our AlbumTable, we will use the
ServiceManager to define how to create one. This is most easily done in the
Module class where we create a method called getServiceConfig() which is
automatically called by the ModuleManager and applied to the ServiceManager.
We’ll then be able to retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class
to be instantiated or a factory (closure or callback) that instantiates the
object when the ServiceManager needs it. We start by implementing
getServiceConfig() to provide a factory that creates an AlbumTable. Add
this method to the bottom of the Module.php file in module/Album.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 namespace Album;

 // Add these import statements:
 use Album\Model\Album;
 use Album\Model\AlbumTable;
 use Zend\Db\ResultSet\ResultSet;
 use Zend\Db\TableGateway\TableGateway;

 class Module
 {
 // getAutoloaderConfig() and getConfig() methods here

 // Add this method:
 public function getServiceConfig()
 {
 return array(
 'factories' => array(
 'Album\Model\AlbumTable' => function($sm) {
 $tableGateway = $sm->get('AlbumTableGateway');
 $table = new AlbumTable($tableGateway);
 return $table;
 },
 'AlbumTableGateway' => function ($sm) {
 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');
 $resultSetPrototype = new ResultSet();
 $resultSetPrototype->setArrayObjectPrototype(new Album());
 return new TableGateway('album', $dbAdapter, null, $resultSetPrototype);
 },
),
);
 }
 }

This method returns an array of factories that are all merged together by
the ModuleManager before passing them to the ServiceManager. The factory
for Album\Model\AlbumTable uses the ServiceManager to create an
AlbumTableGateway to pass to the AlbumTable. We also tell the
ServiceManager that an AlbumTableGateway is created by getting a
Zend\Db\Adapter\Adapter (also from the ServiceManager) and using it
to create a TableGateway object. The TableGateway is told to use an
Album object whenever it creates a new result row. The TableGateway
classes use the prototype pattern for creation of result sets and entities.
This means that instead of instantiating when required, the system clones a
previously instantiated object. See
PHP Constructor Best Practices and the Prototype Pattern [http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern]
for more details.

Finally, we need to configure the ServiceManager so that it knows how to get a
Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the
merged config system. Zend Framework 2’s ModuleManager merges all the
configuration from each module’s module.config.php file and then merges in
the files in config/autoload (*.global.php and then *.local.php
files). We’ll add our database configuration information to global.php which
you should commit to your version control system. You can use local.php
(outside of the VCS) to store the credentials for your database if you want to.
Modify config/autoload/global.php (in the Zend Skeleton root, not inside the
Album module) with following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=zf2tutorial;host=localhost',
 'driver_options' => array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
),
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter'
 => 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

You should put your database credentials in config/autoload/local.php so
that they are not in the git repository (as local.php is ignored):

	1
2
3
4
5
6

	 return array(
 'db' => array(
 'username' => 'YOUR USERNAME HERE',
 'password' => 'YOUR PASSWORD HERE',
),
);

Back to the controller

Now that the ServiceManager can create an AlbumTable instance for us, we
can add a method to the controller to retrieve it. Add getAlbumTable() to
the AlbumController class:

	1
2
3
4
5
6
7
8
9

	 // module/Album/src/Album/Controller/AlbumController.php:
 public function getAlbumTable()
 {
 if (!$this->albumTable) {
 $sm = $this->getServiceLocator();
 $this->albumTable = $sm->get('Album\Model\AlbumTable');
 }
 return $this->albumTable;
 }

You should also add:

	1

	 protected $albumTable;

to the top of the class.

We can now call getAlbumTable() from within our controller whenever we need
to interact with our model.

If the service locator was configured correctly in Module.php, then we
should get an instance of Album\Model\AlbumTable when calling getAlbumTable().

Listing albums

In order to list the albums, we need to retrieve them from the model and pass
them to the view. To do this, we fill in indexAction() within
AlbumController. Update the AlbumController’s indexAction() like
this:

	1
2
3
4
5
6
7
8
9

	 // module/Album/src/Album/Controller/AlbumController.php:
 // ...
 public function indexAction()
 {
 return new ViewModel(array(
 'albums' => $this->getAlbumTable()->fetchAll(),
));
 }
 // ...

With Zend Framework 2, in order to set variables in the view, we return a
ViewModel instance where the first parameter of the constructor is an array
from the action containing data we need. These are then automatically passed to
the view script. The ViewModel object also allows us to change the view
script that is used, but the default is to use {controller name}/{action
name}. We can now fill in the index.phtml view script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 <?php
 // module/Album/view/album/album/index.phtml:

 $title = 'My albums';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>
 <p>
 <a href="<?php echo $this->url('album', array('action'=>'add'));?>">Add new album
 </p>

 <table class="table">
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th> </th>
 </tr>
 <?php foreach ($albums as $album) : ?>
 <tr>
 <td><?php echo $this->escapeHtml($album->title);?></td>
 <td><?php echo $this->escapeHtml($album->artist);?></td>
 <td>
 <a href="<?php echo $this->url('album',
 array('action'=>'edit', 'id' => $album->id));?>">Edit
 <a href="<?php echo $this->url('album',
 array('action'=>'delete', 'id' => $album->id));?>">Delete
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

The first thing we do is to set the title for the page (used in the layout) and
also set the title for the <head> section using the headTitle() view
helper which will display in the browser’s title bar. We then create a link to
add a new album.

The url() view helper is provided by Zend Framework 2 and is used to create
the links we need. The first parameter to url() is the route name we wish to use
for construction of the URL, and the second parameter is an array of all the
variables to fit into the placeholders to use. In this case we use our ‘album’
route which is set up to accept two placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The
Zend Framework 2 view system automatically ensures that these variables are
extracted into the scope of the view script, so that we don’t have to worry
about prefixing them with $this-> as we used to have to do with Zend
Framework 1; however you can do so if you wish.

We then create a table to display each album’s title and artist, and provide
links to allow for editing and deleting the record. A standard foreach: loop
is used to iterate over the list of albums, and we use the alternate form using
a colon and endforeach; as it is easier to scan than to try and match up
braces. Again, the url() view helper is used to create the edit and delete
links.

Note

We always use the escapeHtml() view helper to help protect
ourselves from Cross Site Scripting (XSS) vulnerabilities (see http://en.wikipedia.org/wiki/Cross-site_scripting).

If you open http://zf2-tutorial.localhost/album you should see this:

[image: ../_images/user-guide.database-and-models.album-list.png]

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Styling and Translations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Styling and Translations

We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to
change the title and remove the copyright message.

The ZendSkeletonApplication is set up to use Zend\I18n’s translation
functionality for all the text. It uses .po files that live in
module/Application/language, and you need to use poedit [http://www.poedit.net/download.php] to change the text. Start poedit and
open module/Application/language/en_US.po. Click on “Skeleton Application” in the
list of Original strings and then type in “Tutorial” as the translation.

[image: ../_images/user-guide.styling-and-translations.poedit.png]
Press Save in the toolbar and poedit will create an en_US.mo file for us.
If you find that no .mo file is generated, check Preferences -> Editor -> Behavior
and see if the checkbox marked Automatically compile .mo file on save is checked.

To remove the copyright message, we need to edit the Application module’s
layout.phtml view script:

	1
2
3
4

	 // module/Application/view/layout/layout.phtml:
 // Remove this line:
 <p>© 2005 - 2014 by Zend Technologies Ltd. <?php echo $this->translate('All
 rights reserved.') ?></p>

The page now looks ever so slightly better now!

[image: ../_images/user-guide.styling-and-translations.translated-image.png]

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Forms and actions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Forms and actions

Adding new albums

We can now code up the functionality to add new albums. There are two bits to
this part:

	Display a form for user to provide details

	Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form
and, form validation, we add a Zend\InputFilter to our Album entity. We
start by creating a new class Album\Form\AlbumForm that extends from
Zend\Form\Form to define our form.
Create a file called AlbumForm.php in module/Album/src/Album/Form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 namespace Album\Form;

 use Zend\Form\Form;

 class AlbumForm extends Form
 {
 public function __construct($name = null)
 {
 // we want to ignore the name passed
 parent::__construct('album');

 $this->add(array(
 'name' => 'id',
 'type' => 'Hidden',
));
 $this->add(array(
 'name' => 'title',
 'type' => 'Text',
 'options' => array(
 'label' => 'Title',
),
));
 $this->add(array(
 'name' => 'artist',
 'type' => 'Text',
 'options' => array(
 'label' => 'Artist',
),
));
 $this->add(array(
 'name' => 'submit',
 'type' => 'Submit',
 'attributes' => array(
 'value' => 'Go',
 'id' => 'submitbutton',
),
));
 }
 }

Within the constructor of AlbumForm we do several things. First, we set the name
of the form as we call the parent’s constructor. we create four form elements: the id, title, artist, and submit button. For each item we set
various attributes and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework 2 this is
done using an input filter, which can either be standalone or defined within any class
that implements the InputFilterAwareInterface interface, such as a model entity. In our case, we are
going to add the input filter to the Album class, which resides in the Album.php file in module/Album/src/Album/Model:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	 namespace Album\Model;

 // Add these import statements
 use Zend\InputFilter\InputFilter;
 use Zend\InputFilter\InputFilterAwareInterface;
 use Zend\InputFilter\InputFilterInterface;

 class Album implements InputFilterAwareInterface
 {
 public $id;
 public $artist;
 public $title;
 protected $inputFilter; // <-- Add this variable

 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 // Add content to these methods:
 public function setInputFilter(InputFilterInterface $inputFilter)
 {
 throw new \Exception("Not used");
 }

 public function getInputFilter()
 {
 if (!$this->inputFilter) {
 $inputFilter = new InputFilter();

 $inputFilter->add(array(
 'name' => 'id',
 'required' => true,
 'filters' => array(
 array('name' => 'Int'),
),
));

 $inputFilter->add(array(
 'name' => 'artist',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
));

 $inputFilter->add(array(
 'name' => 'title',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
));

 $this->inputFilter = $inputFilter;
 }

 return $this->inputFilter;
 }
 }

The InputFilterAwareInterface defines two methods: setInputFilter() and
getInputFilter(). We only need to implement getInputFilter() so we
simply throw an exception in setInputFilter().

Within getInputFilter(), we instantiate an InputFilter and then add the
inputs that we require. We add one input for each property that we wish to
filter or validate. For the id field we add an Int filter as we only
need integers. For the text elements, we add two filters, StripTags and
StringTrim, to remove unwanted HTML and unnecessary white space. We also set
them to be required and add a StringLength validator to ensure that the
user doesn’t enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This
is done within the AlbumController’s addAction():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 // module/Album/src/Album/Controller/AlbumController.php:

 //...
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;
 use Album\Model\Album; // <-- Add this import
 use Album\Form\AlbumForm; // <-- Add this import
 //...

 // Add content to this method:
 public function addAction()
 {
 $form = new AlbumForm();
 $form->get('submit')->setValue('Add');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $album->exchangeArray($form->getData());
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }
 return array('form' => $form);
 }
 //...

After adding the AlbumForm to the use list, we implement addAction().
Let’s look at the addAction() code in a little more detail:

	1
2

	 $form = new AlbumForm();
 $form->get('submit')->setValue('Add');

We instantiate AlbumForm and set the label on the submit button to “Add”. We
do this here as we’ll want to re-use the form when editing an album and will use
a different label.

	1
2
3
4
5
6

	 $request = $this->getRequest();
 if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());
 if ($form->isValid()) {

If the Request object’s isPost() method is true, then the form has been
submitted and so we set the form’s input filter from an album instance. We then
set the posted data to the form and check to see if it is valid using the
isValid() member function of the form.

	1
2

	 $album->exchangeArray($form->getData());
 $this->getAlbumTable()->saveAlbum($album);

If the form is valid, then we grab the data from the form and store to the
model using saveAlbum().

	1
2

	 // Redirect to list of albums
 return $this->redirect()->toRoute('album');

After we have saved the new album row, we redirect back to the list of albums
using the Redirect controller plugin.

	1

	 return array('form' => $form);

Finally, we return the variables that we want assigned to the view. In this
case, just the form object. Note that Zend Framework 2 also allows you to simply
return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 <?php
 // module/Album/view/album/album/add.phtml:

 $title = 'Add new album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>
 <?php
 $form->setAttribute('action', $this->url('album', array('action' => 'add')));
 $form->prepare();

 echo $this->form()->openTag($form);
 echo $this->formHidden($form->get('id'));
 echo $this->formRow($form->get('title'));
 echo $this->formRow($form->get('artist'));
 echo $this->formSubmit($form->get('submit'));
 echo $this->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework
provides some view helpers to make this a little easier. The form() view
helper has an openTag() and closeTag() method which we use to open and
close the form. Then for each element with a label, we can use formRow(),
but for the two elements that are standalone, we use formHidden() and
formSubmit().

[image: ../_images/user-guide.forms-and-actions.add-album-form.png]
Alternatively, the process of rendering the form can be simplified by using the
bundled formCollection view helper. For example, in the view script above replace
all the form-rendering echo statements with:

	1

	 echo $this->formCollection($form);

Note: You still need to call the openTag and closeTag methods of the form. You replace
the other echo statements with the call to formCollection, above.

This will iterate over the form structure, calling the appropriate label, element
and error view helpers for each element, but you still have to wrap formCollection($form) with the open and close form tags.
This helps reduce the complexity of your view script in situations where the default
HTML rendering of the form is acceptable.

You should now be able to use the “Add new album” link on the home page of the
application to add a new album record.

Editing an album

Editing an album is almost identical to adding one, so the code is very similar.
This time we use editAction() in the AlbumController:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 // module/Album/src/Album/Controller/AlbumController.php:
 //...

 // Add content to this method:
 public function editAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
 }

 // Get the Album with the specified id. An exception is thrown
 // if it cannot be found, in which case go to the index page.
 try {
 $album = $this->getAlbumTable()->getAlbum($id);
 }
 catch (\Exception $ex) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'index'
));
 }

 $form = new AlbumForm();
 $form->bind($album);
 $form->get('submit')->setAttribute('value', 'Edit');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }

 return array(
 'id' => $id,
 'form' => $form,
);
 }
 //...

This code should look comfortably familiar. Let’s look at the differences from
adding an album. Firstly, we look for the id that is in the matched route
and use it to load the album to be edited:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
 }

 // Get the album with the specified id. An exception is thrown
 // if it cannot be found, in which case go to the index page.
 try {
 $album = $this->getAlbumTable()->getAlbum($id);
 }
 catch (\Exception $ex) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'index'
));
 }

params is a controller plugin that provides a convenient way to retrieve
parameters from the matched route. We use it to retrieve the id from the
route we created in the modules’ module.config.php. If the id is zero,
then we redirect to the add action, otherwise, we continue by getting the album
entity from the database.

We have to check to make sure that the Album with the specified id can actually be found.
If it cannot, then the data access method throws an exception. We catch that exception and re-route the user
to the index page.

	1
2
3

	 $form = new AlbumForm();
 $form->bind($album);
 $form->get('submit')->setAttribute('value', 'Edit');

The form’s bind() method attaches the model to the form. This is used in two
ways:

	When displaying the form, the initial values for each element are extracted
from the model.

	After successful validation in isValid(), the data from the form is put back
into the model.

These operations are done using a hydrator object. There are a number of
hydrators, but the default one is Zend\Stdlib\Hydrator\ArraySerializable
which expects to find two methods in the model: getArrayCopy() and
exchangeArray(). We have already written exchangeArray() in our
Album entity, so just need to write getArrayCopy():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 // module/Album/src/Album/Model/Album.php:
 // ...
 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 // Add the following method:
 public function getArrayCopy()
 {
 return get_object_vars($this);
 }
 // ...

As a result of using bind() with its hydrator, we do not need to populate the
form’s data back into the $album as that’s already been done, so we can just
call the mappers’ saveAlbum() to store the changes back to the database.

The view template, edit.phtml, looks very similar to the one for adding an
album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // module/Album/view/album/album/edit.phtml:

 $title = 'Edit album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>

 <?php
 $form = $this->form;
 $form->setAttribute('action', $this->url(
 'album',
 array(
 'action' => 'edit',
 'id' => $this->id,
)
));
 $form->prepare();

 echo $this->form()->openTag($form);
 echo $this->formHidden($form->get('id'));
 echo $this->formRow($form->get('title'));
 echo $this->formRow($form->get('artist'));
 echo $this->formSubmit($form->get('submit'));
 echo $this->form()->closeTag();

The only changes are to use the ‘Edit Album’ title and set the form’s action to
the ‘edit’ action too.

You should now be able to edit albums.

Deleting an album

To round out our application, we need to add deletion. We have a Delete link
next to each album on our list page and the naive approach would be to do a
delete when it’s clicked. This would be wrong. Remembering our HTTP spec, we
recall that you shouldn’t do an irreversible action using GET and should use
POST instead.

We shall show a confirmation form when the user clicks delete and if they then
click “yes”, we will do the deletion. As the form is trivial, we’ll code it
directly into our view (Zend\Form is, after all, optional!).

Let’s start with the action code in AlbumController::deleteAction():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 // module/Album/src/Album/Controller/AlbumController.php:
 //...
 // Add content to the following method:
 public function deleteAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album');
 }

 $request = $this->getRequest();
 if ($request->isPost()) {
 $del = $request->getPost('del', 'No');

 if ($del == 'Yes') {
 $id = (int) $request->getPost('id');
 $this->getAlbumTable()->deleteAlbum($id);
 }

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }

 return array(
 'id' => $id,
 'album' => $this->getAlbumTable()->getAlbum($id)
);
 }
 //...

As before, we get the id from the matched route, and check the request
object’s isPost() to determine whether to show the confirmation page or to
delete the album. We use the table object to delete the row using the
deleteAlbum() method and then redirect back the list of albums. If the
request is not a POST, then we retrieve the correct database record and assign
to the view, along with the id.

The view script is a simple form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // module/Album/view/album/album/delete.phtml:

 $title = 'Delete album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>

 <p>Are you sure that you want to delete
 '<?php echo $this->escapeHtml($album->title); ?>' by
 '<?php echo $this->escapeHtml($album->artist); ?>'?
 </p>
 <?php
 $url = $this->url('album', array(
 'action' => 'delete',
 'id' => $this->id,
));
 ?>
 <form action="<?php echo $url; ?>" method="post">
 <div>
 <input type="hidden" name="id" value="<?php echo (int) $album->id; ?>" />
 <input type="submit" name="del" value="Yes" />
 <input type="submit" name="del" value="No" />
 </div>
 </form>

In this script, we display a confirmation message to the user and then a form
with “Yes” and “No” buttons. In the action, we checked specifically for the “Yes”
value when doing the deletion.

Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/
doesn’t display the list of albums.

This is due to a route set up in the Application module’s
module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Application\Controller\Index',
 'action' => 'index',
),
),
),

Change the controller from Application\Controller\Index to
Album\Controller\Album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Album\Controller\Album', // <-- change here
 'action' => 'index',
),
),
),

That’s it - you now have a fully working application!

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Conclusion

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Conclusion

This concludes our brief look at building a simple, but fully functional, MVC
application using Zend Framework 2.

In this tutorial we but briefly touched quite a number of different parts of
the framework.

The most important part of applications built with Zend Framework 2 are the
modules, the building blocks of any
MVC ZF2 application.

To ease the work with dependencies inside our applications, we use the
service manager.

To be able to map a request to controllers and their actions, we use
routes.

Data persistence, in most cases, includes using Zend\Db
to communicate with one of the databases. Input data is filtered and validated
with input filters and together with
Zend\Form they provide a strong bridge between
the domain model and the view layer.

Zend\View is responsible for the View in the MVC
stack, together with a vast amount of view helpers.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Introducing our first “Blog” Module

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Introducing our first “Blog” Module

Now that we know about the basics of the Zend Framework 2 Skeleton Application, let’s continue and create our very own
module. We will create a module named “Blog”. This module will display a list of database entries that represent a
single blog post. Each post will have three properties: id, text and title. We will create
forms to enter new posts into our database and to edit existing posts. Furthermore we will do so by using
best-practices throughout the whole QuickStart.

Writing a new Module

Let’s start by creating a new folder under the /module directory called Blog.

To be recognized as a module by the ModuleManager
all we need to do is create a PHP class named Module under our module’s namespace, which is Blog. Create the
file /module/Blog/Module.php

	1
2
3
4
5
6
7

	 <?php
 // Filename: /module/Blog/Module.php
 namespace Blog;

 class Module
 {
 }

We now have a module that can be detected by ZF2s ModuleManager.
Let’s add this module to our application. Although our module doesn’t do anything yet, just having the Module.php
class allows it to be loaded by ZF2s ModuleManager.
To do this, add an entry for Blog to the modules array inside the main application config file at
/config/application.config.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 <?php
 // Filename: /config/application.config.php
 return array(
 'modules' => array(
 'Application',
 'Blog'
),

 // ...
);

If you refresh your application you should see no change at all (but also no errors).

At this point it’s worth taking a step back to discuss what modules are for. In short, a module is an encapsulated
set of features for your application. A module might add features to the application that you can see, like our
Blog module; or it might provide background functionality for other modules in the application to use, such as
interacting with a third party API.

Organizing your code into modules makes it easier for you to reuse functionality in other application, or to use
modules written by the community.

Configuring the Module

The next thing we’re going to do is add a route to our application so that our module can be accessed through the
URL localhost:8080/blog. We do this by adding router configuration to our module, but first we need to let the
ModuleManager know that our module has configuration that it needs to load.

This is done by adding a getConfig() function to the Module class that returns the configuration. (This function is
defined in the ConfigProviderInterface although actually implementing this interface in the module class is optional.)
This function should return either an array or a Traversable object. Continue by editing your
/module/Blog/Module.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 <?php
 // Filename: /module/Blog/Module.php
 namespace Blog;

 use Zend\ModuleManager\Feature\ConfigProviderInterface;

 class Module implements ConfigProviderInterface
 {
 public function getConfig()
 {
 return array();
 }
 }

With this our Module is now able to be configured. Configuration files can become quite big though and keeping
everything inside the getConfig() function won’t be optimal. To help keep our project organized we’re going to put
our array configuration in a separate file. Go ahead and create this file at /module/Blog/config/module.config.php:

	1
2
3

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array();

Now we will rewrite the getConfig() function to include this newly created file instead of directly returning the
array.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 <?php
 // Filename: /module/Blog/Module.php
 namespace Blog;

 use Zend\ModuleManager\Feature\ConfigProviderInterface;

 class Module implements ConfigProviderInterface
 {
 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
 }

Reload your application and you’ll see that everything remains as it was. Next we add the new route to our
configuration file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 // This lines opens the configuration for the RouteManager
 'router' => array(
 // Open configuration for all possible routes
 'routes' => array(
 // Define a new route called "post"
 'post' => array(
 // Define the routes type to be "Zend\Mvc\Router\Http\Literal", which is basically just a string
 'type' => 'literal',
 // Configure the route itself
 'options' => array(
 // Listen to "/blog" as uri
 'route' => '/blog',
 // Define default controller and action to be called when this route is matched
 'defaults' => array(
 'controller' => 'Blog\Controller\List',
 'action' => 'index',
)
)
)
)
)
);

We’ve now created a route called blog that listens to the URL localhost:8080/blog. Whenever someone accesses this
route, the indexAction() function of the class Blog\Controller\List will be executed. However, this controller
does not exist yet, so if you reload the page you will see this error message:

	1
2
3
4
5
6
7

	 A 404 error occurred
 Page not found.
 The requested controller could not be mapped to an existing controller class.

 Controller:
 Blog\Controller\List(resolves to invalid controller class or alias: Blog\Controller\List)
 No Exception available

We now need to tell our module where to find this controller named Blog\Controller\List. To achieve this we have
to add this key to the controllers configuration key inside your /module/Blog/config/module.config.php.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'controllers' => array(
 'invokables' => array(
 'Blog\Controller\List' => 'Blog\Controller\ListController'
)
),
 'router' => array(/** Route Configuration */)
);

This configuration defines Blog\Controller\List as an alias for the ListController under the namespace
Blog\Controller. Reloading the page should then give you:

	1

	 (!) Fatal error: Class 'Blog\Controller\ListController' not found in {libPath}/Zend/ServiceManager/AbstractPluginManager.php on line {lineNumber}

This error tells us that the application knows what class to load, but not where to find it. To fix this, we need to
configure autoloading [http://www.php.net/manual/en/language.oop5.autoload.php] for our Module. Autoloading is a
process to allow PHP to automatically load classes on demand. For our Module we set this up by adding a
getAutoloaderConfig() function to our Module class. (This function is defined in the AutoloaderProviderInterface [https://github.com/zendframework/zf2/:current_branch/library/Zend/ModuleManager/Feature/AutoloaderProviderInterface.php],
although the presence of the function is enough, actually implementing the interface is optional.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 <?php
 // Filename: /module/Blog/Module.php
 namespace Blog;

 use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
 use Zend\ModuleManager\Feature\ConfigProviderInterface;

 class Module implements
 AutoloaderProviderInterface,
 ConfigProviderInterface
 {
 /**
 * Return an array for passing to Zend\Loader\AutoloaderFactory.
 *
 * @return array
 */
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 // Autoload all classes from namespace 'Blog' from '/module/Blog/src/Blog'
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
)
)
);
 }

 /**
 * Returns configuration to merge with application configuration
 *
 * @return array|\Traversable
 */
 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
 }

Now this looks like a lot of change but don’t be afraid. We’ve added an getAutoloaderConfig() function which provides
configuration for the Zend\Loader\StandardAutoloader. This configuration tells the application that classes
in __NAMESPACE__ (Blog) can be found inside __DIR__ . '/src/' . __NAMESPACE__ (/module/Blog/src/Blog).

The Zend\Loader\StandardAutoloader uses a PHP community driven standard called PSR-0 <https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md>`_.
Amongst other things, this standard defines a way for PHP to map class names to the file system. So with this
configured, the application knows that our Blog\Controller\ListController class should exist at
/module/Blog/src/Blog/Controller/ListController.php.

If you refresh the browser now you’ll see the same error, as even though we’ve configured the autoloader, we still need
to create the controller class. Let’s create this file now:

	1
2
3
4
5
6
7

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 class ListController
 {
 }

Reloading the page now will finally result into a new screen. The new error message looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 A 404 error occurred
 Page not found.
 The requested controller was not dispatchable.

 Controller:
 Blog\Controller\List(resolves to invalid controller class or alias: Blog\Controller\List)

 Additional information:
 Zend\Mvc\Exception\InvalidControllerException

 File:
 {libraryPath}/Zend/Mvc/Controller/ControllerManager.php:{lineNumber}
 Message:
 Controller of type Blog\Controller\ListController is invalid; must implement Zend\Stdlib\DispatchableInterface

This happens because our controller must implement ZendStdlibDispatchableInterface [https://github.com/zendframework/zf2/:current_branch/library/Zend/Stdlib/DispatchableInterface.php] in order to be ‘dispatched’
(or run) by ZendFramework’s MVC layer. ZendFramework provides some base controller implementation of it with
AbstractActionController [https://github.com/zendframework/zf2/:current_branch/library/Zend/Mvc/Controller/AbstractActionController.php],
which we are going to use. Let’s modify our controller now:

	1
2
3
4
5
6
7
8
9

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Zend\Mvc\Controller\AbstractActionController;

 class ListController extends AbstractActionController
 {
 }

It’s now time for another refresh of the site. You should now see a new error message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 An error occurred
 An error occurred during execution; please try again later.

 Additional information:
 Zend\View\Exception\RuntimeException

 File:
 {libraryPath}/library/Zend/View/Renderer/PhpRenderer.php:{lineNumber}
 Message:
 Zend\View\Renderer\PhpRenderer::render: Unable to render template "blog/list/index"; resolver could not resolve to a file

Now the application tells you that a view template-file can not be rendered, which is to be expected as we’ve not
created it yet. The application is expecting it to be at /module/Blog/view/blog/list/index.phtml. Create this
file and add some dummy content to it:

	1
2

	 <!-- Filename: /module/Blog/view/blog/list/index.phtml -->
 <h1>Blog\ListController::indexAction()</h1>

Before we continue let us quickly take a look at where we placed this file. Note that view files are found within the
/view subdirectory, not /src as they are not PHP class files, but template files for rendering HTML. The
following path however deserves some explanation but it’s very simple. First we have the lowercased namespace. Followed
by the lowercased controller name without the appendix ‘controller’ and lastly comes the name of the action that we are
accessing, again without the appendix ‘action’. All in all it looks like this: /view/{namespace}/{controller}/{action}.phtml.
This has become a community standard but can potentionally be changed by you at any time.

However creating this file alone is not enough and this brings as to the final topic of this part of the QuickStart. We
need to let the application know where to look for view files. We do this within our modules configuration file module.config.php.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'view_manager' => array(
 'template_path_stack' => array(
 __DIR__ . '/../view',
),
),
 'controllers' => array(/** Controller Configuration */),
 'router' => array(/** Route Configuration */)
);

The above configuration tells the application that the folder /module/Blog/view has view files in it that match the
above described default scheme. It is important to note that with this you can not only ship view files for your module
but you can also overwrite view files from other modules.

Reload your site now. Finally we are at a point where we see something different than an error being displayed.
Congratulations, not only have you created a simple “Hello World” style module, you also learned about many error
messages and their causes. If we didn’t exhaust you too much, continue with our QuickStart and let’s create a module
that actually does something.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Introducing Services and the ServiceManager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Introducing Services and the ServiceManager

In the previous chapter we’ve learned how to create a simple “Hello World” Application in Zend Framework 2. This is a
good start and easy to understand but the application itself doesn’t really do anything. In this chapter we will
introduce you into the concept of Services and with this the introduction to Zend\ServiceManager\ServiceManager.

What is a Service?

A Service is an object that executes complex application logic. It’s the part of the application that wires all
difficult stuff together and gives you easy to understand results.

For what we’re trying to accomplish with our Blog-Module this means that we want to have a Service that will give
us the data that we want. The Service will get it’s data from some source and when writing the Service we don’t really
care about what the source actually is. The Service will be written against an Interface that we define and that
future Data-Providers have to implement.

Writing the PostService

When writing a Service it is a common best-practice to define an Interface first. Interfaces are a good way to
ensure that other programmers can easily build extensions for our Services using their own implementations. In other
words, they can write Services that have the same function names but internally do completely different things but have
the same specified result.

In our case we want to create a PostService. This means first we are going to define a PostServiceInterface.
The task of our Service is to provide us with data of our blog posts. For now we are going to focus on the read-only
side of things. We will define a function that will give us all posts and we will define a function that will give us a
single post.

Let’s start by creating the Interface at /module/Blog/src/Blog/Service/PostServiceInterface.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostServiceInterface.php
 namespace Blog\Service;

 use Blog\Model\PostInterface;

 interface PostServiceInterface
 {
 /**
 * Should return a set of all blog posts that we can iterate over. Single entries of the array are supposed to be
 * implementing \Blog\Model\PostInterface
 *
 * @return array|PostInterface[]
 */
 public function findAllPosts();

 /**
 * Should return a single blog post
 *
 * @param int $id Identifier of the Post that should be returned
 * @return PostInterface
 */
 public function findPost($id);
 }

As you can see we define two functions. The first being findAllPosts() that is supposed to return all posts and the
second one being findPost($id) that is supposed to return the post matching the given identifier $id. What’s new
in here is the fact that we actually define a return value that doesn’t exist yet. We make the assumption that the
return value all in all are of type Blog\Model\PostInterface. We will define this class at a later point and for
now we simply create the PostService first.

Create the class PostService at /module/Blog/src/Blog/Service/PostService.php, be sure to implement the
PostServiceInterface and its required functions (we will fill in these functions later). You then should have a
class that looks like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 class PostService implements PostServiceInterface
 {
 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 // TODO: Implement findAllPosts() method.
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 // TODO: Implement findPost() method.
 }
 }

Writing the required Model Files

Since our PostService will return Models, we should create them, too. Be sure to write an Interface for the
Model first! Let’s create /module/Blog/src/Blog/Model/PostInterface.php and /module/Blog/src/Blog/Model/Post.php.
First the PostInterface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 <?php
 // Filename: /module/Blog/src/Blog/Model/PostInterface.php
 namespace Blog\Model;

 interface PostInterface
 {
 /**
 * Will return the ID of the blog post
 *
 * @return int
 */
 public function getId();

 /**
 * Will return the TITLE of the blog post
 *
 * @return string
 */
 public function getTitle();

 /**
 * Will return the TEXT of the blog post
 *
 * @return string
 */
 public function getText();
 }

Notice that we only created getter-functions here. This is because right now we don’t bother how the data gets inside
the Post-class. All we care for is that we’re able to access the properties through these getter-functions.

And now we’ll create the appropriate Model file associated with the interface. Make sure to set the required class
properties and fill the getter functions defined by our PostInterface with some useful content. Even if our interface
doesn’t care about setter functions we will write them as we will fill our class with data through these. You then
should have a class that looks like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	 <?php
 // Filename: /module/Blog/src/Blog/Model/Post.php
 namespace Blog\Model;

 class Post implements PostInterface
 {
 /**
 * @var int
 */
 protected $id;

 /**
 * @var string
 */
 protected $title;

 /**
 * @var string
 */
 protected $text;

 /**
 * {@inheritDoc}
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * @param int $id
 */
 public function setId($id)
 {
 $this->id = $id;
 }

 /**
 * {@inheritDoc}
 */
 public function getTitle()
 {
 return $this->title;
 }

 /**
 * @param string $title
 */
 public function setTitle($title)
 {
 $this->title = $title;
 }

 /**
 * {@inheritDoc}
 */
 public function getText()
 {
 return $this->text;
 }

 /**
 * @param string $text
 */
 public function setText($text)
 {
 $this->text = $text;
 }
 }

Bringing Life into our PostService

Now that we have our Model files in place we can actually bring life into our PostService class. To keep the
Service-Layer easy to understand for now we will only return some hard-coded content from our PostService class directly. Create
a property inside the PostService called $data and make this an array of our Model type. Edit PostService like
this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 class PostService implements PostServiceInterface
 {
 protected $data = array(
 array(
 'id' => 1,
 'title' => 'Hello World #1',
 'text' => 'This is our first blog post!'
),
 array(
 'id' => 2,
 'title' => 'Hello World #2',
 'text' => 'This is our second blog post!'
),
 array(
 'id' => 3,
 'title' => 'Hello World #3',
 'text' => 'This is our third blog post!'
),
 array(
 'id' => 4,
 'title' => 'Hello World #4',
 'text' => 'This is our fourth blog post!'
),
 array(
 'id' => 5,
 'title' => 'Hello World #5',
 'text' => 'This is our fifth blog post!'
)
);

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 // TODO: Implement findAllPosts() method.
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 // TODO: Implement findPost() method.
 }
 }

After we now have some data, let’s modify our find*() functions to return the appropriate model files:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 use Blog\Model\Post;

 class PostService implements PostServiceInterface
 {
 protected $data = array(
 array(
 'id' => 1,
 'title' => 'Hello World #1',
 'text' => 'This is our first blog post!'
),
 array(
 'id' => 2,
 'title' => 'Hello World #2',
 'text' => 'This is our second blog post!'
),
 array(
 'id' => 3,
 'title' => 'Hello World #3',
 'text' => 'This is our third blog post!'
),
 array(
 'id' => 4,
 'title' => 'Hello World #4',
 'text' => 'This is our fourth blog post!'
),
 array(
 'id' => 5,
 'title' => 'Hello World #5',
 'text' => 'This is our fifth blog post!'
)
);

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 $allPosts = array();

 foreach ($this->data as $index => $post) {
 $allPosts[] = $this->findPost($index);
 }

 return $allPosts;
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 $postData = $this->data[$id];

 $model = new Post();
 $model->setId($postData['id']);
 $model->setTitle($postData['title']);
 $model->setText($postData['text']);

 return $model;
 }
 }

As you can see, both our functions now have appropriate return values. Please note that from a technical point of view
the current implementation is far from perfect. We will improve this Service a lot in the future but for now we have
a working Service that is able to give us some data in a way that is defined by our PostServiceInterface.

Bringing the Service into the Controller

Now that we have our PostService written, we want to get access to this Service in our Controllers. For this task
we will step foot into a new topic called “Dependency Injection”, short “DI”.

When we’re talking about dependency injection we’re talking about a way to get dependencies into our classes. The most
common form, “Constructor Injection”, is used for all dependencies that are required by a class at all times.

In our case we want to have our Blog-Modules ListController somehow interact with our PostService. This means
that the class PostService is a dependency of the class ListController. Without the PostService our
ListController will not be able to function properly. To make sure that our ListController will always get the
appropriate dependency, we will first define the dependency inside the ListControllers constructor function
__construct(). Go on and modify the ListController like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;

 class ListController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }
 }

As you can see our __construct() function now has a required argument. We will not be able to call this class anymore
without passing it an instance of a class that matches our defined PostServiceInterface. If you were to go back to
your browser and reload your project with the url localhost:8080/blog, you’d see the following error message:

	1
2
3
4

	 (!) Catchable fatal error: Argument 1 passed to Blog\Controller\ListController::__construct()
 must be an instance of Blog\Service\PostServiceInterface, none given,
 called in {libraryPath}\Zend\ServiceManager\AbstractPluginManager.php on line {lineNumber}
 and defined in \module\Blog\src\Blog\Controller\ListController.php on line 15

And this error message is expected. It tells you exactly that our ListController expects to be passed an implementation
of the PostServiceInterface. So how do we make sure that our ListController will receive such an implementation?
To solve this, we need to tell the application how to create instances of the Blog\Controller\ListController. If you
remember back to when we created the controller, we added an entry to the invokables array in the module config:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(
 'invokables' => array(
 'Blog\Controller\List' => 'Blog\Controller\ListController'
)
),
 'router' => array(/** Router Config */)
);

An invokable is a class that can be constructed without any arguments. Since our Blog\Controller\ListController
now has a required argument, we need to change this. The ControllerManager, which is responsible for instantiating
controllers, also support using factories. A factory is a class that creates instances of another class.
We’ll now create one for our ListController. Let’s modify our configuration like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(
 'factories' => array(
 'Blog\Controller\List' => 'Blog\Factory\ListControllerFactory'
)
),
 'router' => array(/** Router Config */)
);

As you can see we no longer have the key invokables, instead we now have the key factories. Furthermore the value
of our controller name Blog\Controller\List has been changed to not match the class Blog\Controller\ListController
directly but to rather call a class called Blog\Factory\ListControllerFactory. If you refresh your browser
you’ll see a different error message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 An error occurred
 An error occurred during execution; please try again later.

 Additional information:
 Zend\ServiceManager\Exception\ServiceNotCreatedException

 File:
 {libraryPath}\Zend\ServiceManager\AbstractPluginManager.php:{lineNumber}

 Message:
 While attempting to create blogcontrollerlist(alias: Blog\Controller\List) an invalid factory was registered for this instance type.

This message should be quite easy to understand. The Zend\Mvc\Controller\ControllerManager
is accessing Blog\Controller\List, which internally is saved as blogcontrollerlist. While it does so it notices
that a factory class is supposed to be called for this controller name. However, it doesn’t find this factory class so
to the Manager it is an invalid factory. Using easy words: the Manager doesn’t find the Factory class so that’s probably
where our error lies. And of course, we have yet to write the factory, so let’s go ahead and do this.

Writing a Factory Class

Factory classes within Zend Framework 2 always need to implement the Zend\ServiceManager\FactoryInterface.
Implementing this class lets the ServiceManager know that the function createService() is supposed to be called. And
createService() actually expects to be passed an instance of the ServiceLocatorInterface so the ServiceManager will
always inject this using Dependency Injection as we have learned above. Let’s implement our factory class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // Filename: /module/Blog/src/Blog/Factory/ListControllerFactory.php
 namespace Blog\Factory;

 use Blog\Controller\ListController;
 use Zend\ServiceManager\FactoryInterface;
 use Zend\ServiceManager\ServiceLocatorInterface;

 class ListControllerFactory implements FactoryInterface
 {
 /**
 * Create service
 *
 * @param ServiceLocatorInterface $serviceLocator
 *
 * @return mixed
 */
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 $realServiceLocator = $serviceLocator->getServiceLocator();
 $postService = $realServiceLocator->get('Blog\Service\PostServiceInterface');

 return new ListController($postService);
 }
 }

Now this looks complicated! Let’s start to look at the $realServiceLocator. When using a Factory-Class that will be
called from the ControllerManager it will actually inject itself as the $serviceLocator. However, we need the real
ServiceManager to get to our Service-Classes. This is why we call the function getServiceLocator()` who will give us
the real ``ServiceManager.

After we have the $realServiceLocator set up we try to get a Service called Blog\Service\PostServiceInterface.
This name that we’re accessing is supposed to return a Service that matches the PostServiceInterface. This Service
is then passed along to the ListController which will directly be returned.

Note though that we have yet to register a Service called Blog\Service\PostServiceInterface. There’s no magic
happening that does this for us just because we give the Service the name of an Interface. Refresh your browser and you
will see this error message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 An error occurred
 An error occurred during execution; please try again later.

 Additional information:
 Zend\ServiceManager\Exception\ServiceNotFoundException

 File:
 {libraryPath}\Zend\ServiceManager\ServiceManager.php:{lineNumber}

 Message:
 Zend\ServiceManager\ServiceManager::get was unable to fetch or create an instance for Blog\Service\PostServiceInterface

Exactly what we expected. Somewhere in our application - currently our factory class - a service called
Blog\Service\PostServiceInterface is requested but the ServiceManager doesn’t know about this Service yet.
Therefore it isn’t able to create an instance for the requested name.

Registering Services

Registering a Service is as simple as registering a Controller. All we need to do is modify our module.config.php and
add a new key called service_manager that then has invokables and factories, too, the same way like we have it
inside our controllers array. Check out the new configuration file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'service_manager' => array(
 'invokables' => array(
 'Blog\Service\PostServiceInterface' => 'Blog\Service\PostService'
)
),
 'view_manager' => array(/** View Manager Config */),
 'controllers' => array(/** Controller Config */),
 'router' => array(/** Router Config */)
);

As you can see we now have added a new Service that listens to the name Blog\Service\PostServiceInterface and
points to our own implementation which is Blog\Service\PostService. Since our Service has no dependencies we are
able to add this Service under the invokables array. Try refreshing your browser. You should see no more error
messages but rather exactly the page that we have created in the previous chapter of the Tutorial.

Using the Service at our Controller

Let’s now use the PostService within our ListController. For this we will need to overwrite the default
indexAction() and return the values of our PostService into the view. Modify the ListController like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class ListController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }

 public function indexAction()
 {
 return new ViewModel(array(
 'posts' => $this->postService->findAllPosts()
));
 }
 }

First please note that our controller imported another class. We need to import Zend\View\Model\ViewModel, which
usually is what your Controllers will return. When returning an instance of a ViewModel you’re able to always
assign so called View-Variables. In this case we have assigned a variable called $posts with the value of whatever
the function findAllPosts() of our PostService returns. In our case it is an array of Blog\Model\Post classes.
Refreshing the browser won’t change anything yet because we obviously need to modify our view-file to be able to display
the data we want to.

Note

You do not actually need to return an instance of ViewModel. When you return a normal php array it will
internally be converted into a ViewModel. So in short:

return new ViewModel(array('foo' => 'bar'));

equals

return array('foo' => 'bar');

Accessing View Variables

When pushing variables to the view they are accessible through two ways. Either directly like $this->posts or
implicitly like $posts. Both are the same, however, calling $posts implicitly will result in a little round-trip
through the __call() function.

Let’s modify our view to display a table of all blog posts that our PostService returns.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <!-- Filename: /module/Blog/view/blog/list/index.phtml -->
 <h1>Blog</h1>

 <?php foreach ($this->posts as $post): ?>
 <article>
 <h1 id="post<?= $post->getId() ?>"><?= $post->getTitle() ?></h1>
 <p>
 <?= $post->getText() ?>
 </p>
 </article>
 <?php endforeach ?>

In here we simply run a foreach over the array $this->posts. Since every
single entry of our array is of type Blog\Model\Post we can use the respective getter functions to receive the data
we want to get.

Summary

And with this the current chapter is finished. We now have learned how to interact with the ServiceManager and we
also know what dependency injection is all about. We are now able to pass variables from our services into the view
through a controller and we know how to iterate over arrays inside a view-script.

In the next chapter we will take a first look at the things we should do when we want to get data from a database.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Preparing for different Database-Backends

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Preparing for different Database-Backends

In the previous chapter we have created a PostService that returns some data from blog posts. While this served
an easy to understand learning purpose it is quite impractical for real world applications. No one would want to modify
the source files each time a new post is added. But luckily we all know about databases. All we need to learn is how
to interact with databases from our ZF2 application.

But there is a catch. There are many database backend systems, namely SQL and NoSQL databases. While in a real-world
you would probably jump right to the solution that fits you the most at the time being, it is a better practice to
create another layer in front of the actual database access that abstracts the database interaction. We call this the
Mapper-Layer.

What is database abstraction?

The term “database abstraction” may sound quite confusing but this is actually a very simple thing. Consider a SQL and
a NoSQL database. Both have methods for CRUD (Create, Read, Update, Delete) operations. For example to query the
database against a given row in MySQL you’d do a mysqli_query('SELECT foo FROM bar'). But using an ORM for MongoDB
for example you’d do something like $mongoODM->getRepository('bar')->find('foo'). Both engines would give you the
same result but the execution is different.

So if we start using a SQL database and write those codes directly into our PostService and a year later we decide
to switch to a NoSQL database, we would literally have to delete all previously coded lines and write new ones. And
in a few years later a new thing pops up and we have to delete and re-write codes again. This isn’t really the best
approach and that’s precisely where database abstraction or the Mapper-Layer comes in handy.

Basically what we do is to create a new Interface. This interface then defines how our database interaction should
function but the actual implementation is left out. But let’s stop the theory and go over to code this thing.

Creating the PostMapperInterface

Let’s first think a bit about what possible database interactions we can think of. We need to be able to:

	find a single blog post

	find all blog posts

	insert new blog post

	update existing blog posts

	delete existing blog posts

Those are the most important ones I’d guess for now. Considering insert() and update() both write into the
database it’d be nice to have just a single save()-function that calls the proper function internally.

Start by creating a new file inside a new namespace Blog\Mapper called PostMapperInterface.php and add the
following content to it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/PostMapperInterface.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;

 interface PostMapperInterface
 {
 /**
 * @param int|string $id
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id);

 /**
 * @return array|PostInterface[]
 */
 public function findAll();
 }

As you can see we define two different functions. We say that a mapper-implementation is supposed to have one
find()-function that returns a single object implementing the PostInterface. Then we want to have one function
called findAll() that returns an array of objects implementing the PostInterface. Definitions for a possible
save() or delete() functionality will not be added to the interface yet since we’ll only be looking at the
read-only side of things for now. They will be added at a later point though!

Refactoring the PostService

Now that we have defined how our mapper should act we can make use of it inside our PostService. To start off the
refactoring process let’s empty our class and delete all current content. Then implement the functions defined by the
PostServiceInterface and you should have an empty PostService that looks like this:

The first thing we need to keep in mind is that this interface isn’t implemented in our PostService but is rather
used as a dependency. A required dependency, therefore we need to create a __construct() that takes any
implementation of this interface as a parameter. Also you should create a protected variable to store the parameter
into.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 use Blog\Mapper\PostMapperInterface;

 class PostService implements PostServiceInterface
 {
 /**
 * @var \Blog\Mapper\PostMapperInterface
 */
 protected $postMapper;

 /**
 * @param PostMapperInterface $postMapper
 */
 public function __construct(PostMapperInterface $postMapper)
 {
 $this->postMapper = $postMapper;
 }

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 }
 }

With this we now require an implementation of the PostMapperInterface for our PostService to function. Since
none exists yet we can not get our application to work and we’ll be seeing the following PHP error:

	1
2
3
4

	 Catchable fatal error: Argument 1 passed to Blog\Service\PostService::__construct()
 must implement interface Blog\Mapper\PostMapperInterface, none given,
 called in {path}\module\Blog\src\Blog\Service\PostServiceFactory.php on line 19
 and defined in {path}\module\Blog\src\Blog\Service\PostService.php on line 17

But the power of what we’re doing lies within assumptions that we can make. This PostService will always have
a mapper passed as an argument. So in our find*()-functions we can assume that it is there. Recall that the
PostMapperInterface defines a find($id) and a findAll() function. Let’s use those within our
Service-functions:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 use Blog\Mapper\PostMapperInterface;

 class PostService implements PostServiceInterface
 {
 /**
 * @var \Blog\Mapper\PostMapperInterface
 */
 protected $postMapper;

 /**
 * @param PostMapperInterface $postMapper
 */
 public function __construct(PostMapperInterface $postMapper)
 {
 $this->postMapper = $postMapper;
 }

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 return $this->postMapper->findAll();
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 return $this->postMapper->find($id);
 }
 }

Looking at this code you’ll see that we use the postMapper to get access to the data we want. How this is happening
isn’t the business of the PostService anymore. But the PostService does know what data it will receive and
that’s the only important thing.

The PostService has a dependency

Now that we have introduced the PostMapperInterface as a dependency for the PostService we are no longer able to
define this service as an invokable because it has a dependency. So we need to create a factory for the service. Do
this by creating a factory the same way we have done for the ListController. First change the configuration from an
invokables-entry to a factories-entry and assign the proper factory class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'service_manager' => array(
 'factories' => array(
 'Blog\Service\PostServiceInterface' => 'Blog\Factory\PostServiceFactory'
)
),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** ControllerManager Config */),
 'router' => array(/** Router Config */)
);

Going by the above configuration we now need to create the class Blog\Factory\PostServiceFactory so let’s go ahead
and create it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 <?php
 // Filename: /module/Blog/src/Blog/Factory/PostServiceFactory.php
 namespace Blog\Factory;

 use Blog\Service\PostService;
 use Zend\ServiceManager\FactoryInterface;
 use Zend\ServiceManager\ServiceLocatorInterface;

 class PostServiceFactory implements FactoryInterface
 {
 /**
 * Create service
 *
 * @param ServiceLocatorInterface $serviceLocator
 * @return mixed
 */
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 return new PostService(
 $serviceLocator->get('Blog\Mapper\PostMapperInterface')
);
 }
 }

With this in place you should now be able to see the ServiceNotFoundException, thrown by the ServiceManager,
saying that the requested service cannot be found.

	1
2
3
4
5
6

	 Additional information:
 Zend\ServiceManager\Exception\ServiceNotFoundException
 File:
 {libraryPath}\Zend\ServiceManager\ServiceManager.php:529
 Message:
 Zend\ServiceManager\ServiceManager::get was unable to fetch or create an instance for Blog\Mapper\PostMapperInterface

Conclusion

We finalize this chapter with the fact that we successfully managed to keep the database-logic outside of our service.
Now we are able to implement different database solution depending on our need and change them easily when the time
requires it.

In the next chapter we will create the actual implementation of our PostMapperInterface using Zend\Db\Sql.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Introducing Zend\Db\Sql and Zend\Stdlib\Hydrator

In the last chapter we have introduced the mapping layer and created the PostMapperInterface. Now it is time to
create an implementation of this interface so that we can make use of our PostService again. As an introductionary
example we will be using the Zend\Db\Sql classes. So let’s jump right into it.

Preparing the Database

Before we can start using a database we should prepare one. In this example we’ll be using a MySQL-Database called
blog which is accessible on the localhost. The database will have one table called posts with three columns
id, title and text with the id being the primary key. For demo purpose, please use this database-dump.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 CREATE TABLE posts (
 id int(11) NOT NULL auto_increment,
 title varchar(100) NOT NULL,
 text TEXT NOT NULL,
 PRIMARY KEY (id)
);

 INSERT INTO posts (title, text)
 VALUES ('Blog #1', 'Welcome to my first blog post');
 INSERT INTO posts (title, text)
 VALUES ('Blog #2', 'Welcome to my second blog post');
 INSERT INTO posts (title, text)
 VALUES ('Blog #3', 'Welcome to my third blog post');
 INSERT INTO posts (title, text)
 VALUES ('Blog #4', 'Welcome to my fourth blog post');
 INSERT INTO posts (title, text)
 VALUES ('Blog #5', 'Welcome to my fifth blog post');

Quick Facts Zend\Db\Sql

To create queries against a database using Zend\Db\Sql you need to have a database connection available. This
connection is served through any class implementing the Zend\Db\Adapter\AdapterInterface. The most handy way to
create such a class is through the use of the Zend\Db\Adapter\AdapterServiceFactory which listens to the config-key
db. Let’s start by creating the required configuration entries and modify your module.config.php adding a new
top-level key called db:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(
 'driver' => 'Pdo',
 'username' => 'SECRET_USERNAME', //edit this
 'password' => 'SECRET_PASSWORD', //edit this
 'dsn' => 'mysql:dbname=blog;host=localhost',
 'driver_options' => array(
 \PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
)
),
 'service_manager' => array(/** ServiceManager Config */),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** ControllerManager Config */),
 'router' => array(/** Router Config */)
);

As you can see we’ve added the db-key and inside we create the parameters required to create a driver instance.

Note

One important thing to note is that in general you do not want to have your credentials inside the normal
configuration file but rather in a local configuration file like /config/autoload/db.local.php, that will
not be pushed to servers using zend-skeletons .gitignore file. Keep this in mind when you share your codes!

Taking this example you would have this file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<?php
// Filename: /config/autoload/db.local.php
return array(
 'db' => array(
 'driver' => 'Pdo',
 'username' => 'SECRET_USERNAME', //edit this
 'password' => 'SECRET_PASSWORD', //edit this
 'dsn' => 'mysql:dbname=blog;host=localhost',
 'driver_options' => array(
 \PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
)
),
);

The next thing we need to do is by making use of the AdapterServiceFactory. This is a ServiceManager entry that
will look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(
 'driver' => 'Pdo',
 'username' => 'SECRET_USERNAME', //edit this
 'password' => 'SECRET_PASSWORD', //edit this
 'dsn' => 'mysql:dbname=blog;host=localhost',
 'driver_options' => array(
 \PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
)
),
 'service_manager' => array(
 'factories' => array(
 'Blog\Service\PostServiceInterface' => 'Blog\Service\Factory\PostServiceFactory',
 'Zend\Db\Adapter\Adapter' => 'Zend\Db\Adapter\AdapterServiceFactory'
)
),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** ControllerManager Config */),
 'router' => array(/** Router Config */)
);

Note the new Service that we called Zend\Db\Adapter\Adapter. Calling this Service will now always give back a
running instance of the Zend\Db\Adapter\AdapterInterface depending on what driver we assign.

With the adapter in place we’re now able to run queries against the database. The construction of queries is best done
through the “QueryBuilder” features of Zend\Db\Sql which are Zend\Db\Sql\Sql for select queries,
Zend\Db\Sql\Insert for insert queries, Zend\Db\Sql\Update for update queries and Zend\Db\Sql\Delete for
delete queries. The basic workflow of these components is:

	Build a query using Sql, Insert, Update or Delete

	Create an Sql-Statement from the Sql object

	Execute the query

	Do something with the result

Knowing this we can now write the implementation for the PostMapperInterface.

Writing the mapper implementation

Our mapper implementation will reside inside the same namespace as its interface. Go ahead and create a class called
ZendDbSqlMapper and implement the PostMapperInterface.

Now recall what we have learned earlier. For Zend\Db\Sql to function we will need a working implementation of the
AdapterInterface. This is a requirement and therefore will be injected using constructor-injection. Create a
__construct() function that accepts an AdapterInterface as parameter and store it within the class.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @param AdapterInterface $dbAdapter
 */
 public function __construct(AdapterInterface $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 }
 }

As you know from previous chapters, whenever we have a required parameter we need to write a factory for the class. Go
ahead and create a factory for our mapper implementation.

We’re now able to register our mapper implementation as a service. If you recall from the previous chapter, or if you
were to look at the current error message, you’ll note that we call the Service Blog\Mapper\PostMapperInterface to
get a mapper implementation. Modify the configuration so that this key will call the newly called factory class.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** Db Config */),
 'service_manager' => array(
 'factories' => array(
 'Blog\Mapper\PostMapperInterface' => 'Blog\Factory\ZendDbSqlMapperFactory',
 'Blog\Service\PostServiceInterface' => 'Blog\Service\Factory\PostServiceFactory',
 'Zend\Db\Adapter\Adapter' => 'Zend\Db\Adapter\AdapterServiceFactory'
)
),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** ControllerManager Config */),
 'router' => array(/** Router Config */)
);

With the adapter in place you’re now able to refresh the blog index at localhost:8080/blog and you’ll notice that
the ServiceNotFoundException is gone and we get the following PHP Warning:

	1
2

	 Warning: Invalid argument supplied for foreach() in /module/Blog/view/blog/list/index.phtml on line 13
 ID Text Title

This is due to the fact that our mapper doesn’t return anything yet. Let’s modify the findAll() function to return
all blogs from the database table.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Zend\Db\Adapter\AdapterInterface;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @param AdapterInterface $dbAdapter
 */
 public function __construct(AdapterInterface $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 }

 /**
 * @param int|string $id
 *
 * @return \Blog\Entity\PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|\Blog\Entity\PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 return $result;
 }
 }

The above code should look fairly straight forward to you. Sadly, though, a refresh of the application reveals another
error message.

Let’s not return the $result variable for now and do a dump of it to see what we get here. Change the findAll()
function and do a data dumping of the $result variable:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Sql\Sql;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @param AdapterInterface $dbAdapter
 */
 public function __construct(AdapterInterface $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 \Zend\Debug\Debug::dump($result);die();
 }
 }

Refreshing the application you should now see the following output:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 object(Zend\Db\Adapter\Driver\Pdo\Result)#303 (8) {
 ["statementMode":protected] => string(7) "forward"
 ["resource":protected] => object(PDOStatement)#296 (1) {
 ["queryString"] => string(29) "SELECT `posts`.* FROM `posts`"
 }
 ["options":protected] => NULL
 ["currentComplete":protected] => bool(false)
 ["currentData":protected] => NULL
 ["position":protected] => int(-1)
 ["generatedValue":protected] => string(1) "0"
 ["rowCount":protected] => NULL
 }

As you can see we do not get any data returned. Instead we are presented with a dump of some Result object that
appears to have no data in it whatsoever. But this is a faulty assumption. This Result object only has information
available for you when you actually try to access it. To make use of the data within the Result object the best
approach would be to pass the Result object over into a ResultSet object, as long as the query was successful.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Adapter\Driver\ResultInterface;
 use Zend\Db\ResultSet\ResultSet;
 use Zend\Db\Sql\Sql;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @param AdapterInterface $dbAdapter
 */
 public function __construct(AdapterInterface $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new ResultSet();

 \Zend\Debug\Debug::dump($resultSet->initialize($result));die();
 }

 die("no data");
 }
 }

Refreshing the page you should now see the dump of a ResultSet object that has a property
["count":protected] => int(5). Meaning we have five rows inside our database.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 object(Zend\Db\ResultSet\ResultSet)#304 (8) {
 ["allowedReturnTypes":protected] => array(2) {
 [0] => string(11) "arrayobject"
 [1] => string(5) "array"
 }
 ["arrayObjectPrototype":protected] => object(ArrayObject)#305 (1) {
 ["storage":"ArrayObject":private] => array(0) {
 }
 }
 ["returnType":protected] => string(11) "arrayobject"
 ["buffer":protected] => NULL
 ["count":protected] => int(2)
 ["dataSource":protected] => object(Zend\Db\Adapter\Driver\Pdo\Result)#303 (8) {
 ["statementMode":protected] => string(7) "forward"
 ["resource":protected] => object(PDOStatement)#296 (1) {
 ["queryString"] => string(29) "SELECT `posts`.* FROM `posts`"
 }
 ["options":protected] => NULL
 ["currentComplete":protected] => bool(false)
 ["currentData":protected] => NULL
 ["position":protected] => int(-1)
 ["generatedValue":protected] => string(1) "0"
 ["rowCount":protected] => int(2)
 }
 ["fieldCount":protected] => int(3)
 ["position":protected] => int(0)
 }

Another very interesting property is ["returnType":protected] => string(11) "arrayobject". This tells us that all
database entries will be returned as an ArrayObject. And this is a little problem as the PostMapperInterface
requires us to return an array of PostInterface objects. Luckily there is a very simple option for us available to
make this happen. In the examples above we have used the default ResultSet object. There is also a
HydratingResultSet which will hydrate the given data into a provided object.

This means: if we tell the HydratingResultSet to use the database data to create Post objects for us, then it
will do exactly this. Let’s modify our code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Adapter\Driver\ResultInterface;
 use Zend\Db\ResultSet\HydratingResultSet;
 use Zend\Db\Sql\Sql;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @param AdapterInterface $dbAdapter
 */
 public function __construct(AdapterInterface $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new HydratingResultSet(new \Zend\Stdlib\Hydrator\ClassMethods(), new \Blog\Model\Post());

 return $resultSet->initialize($result);
 }

 return array();
 }
 }

We have changed a couple of things here. Firstly instead of a normal ResultSet we are using the
HydratingResultSet. This Object requires two parameters, the second one being the object to hydrate into and the
first one being the hydrator that will be used. A hydrator, in short, is an object that changes any sort of
data from one format to another. The InputFormat that we have is an ArrayObject but we want Post-Models. The
ClassMethods-hydrator will take care of this using the setter- and getter functions of our Post-model.

Instead of dumping the $result variable we now directly return the initialized HydratingResultSet so we’ll be
able to access the data stored within. In case we get something else returned that is not an instance of a
ResultInterface we return an empty array.

Refreshing the page you will now see all your blog posts listed on the page. Great!

Refactoring hidden dependencies

There’s one little thing that we have done that’s not a best-practice. We use both a Hydrator and an Object inside our

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Adapter\Driver\ResultInterface;
 use Zend\Db\ResultSet\HydratingResultSet;
 use Zend\Db\Sql\Sql;
 use Zend\Stdlib\Hydrator\HydratorInterface;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @var \Zend\Stdlib\Hydrator\HydratorInterface
 */
 protected $hydrator;

 /**
 * @var \Blog\Model\PostInterface
 */
 protected $postPrototype;

 /**
 * @param AdapterInterface $dbAdapter
 * @param HydratorInterface $hydrator
 * @param PostInterface $postPrototype
 */
 public function __construct(
 AdapterInterface $dbAdapter,
 HydratorInterface $hydrator,
 PostInterface $postPrototype
) {
 $this->dbAdapter = $dbAdapter;
 $this->hydrator = $hydrator;
 $this->postPrototype = $postPrototype;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new HydratingResultSet($this->hydrator, $this->postPrototype);

 return $resultSet->initialize($result);
 }

 return array();
 }
 }

Now that our mapper requires more parameters we need to update the ZendDbSqlMapperFactory and inject those
parameters.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 <?php
 // Filename: /module/Blog/src/Blog/Factory/ZendDbSqlMapperFactory.php
 namespace Blog\Factory;

 use Blog\Mapper\ZendDbSqlMapper;
 use Blog\Model\Post;
 use Zend\ServiceManager\FactoryInterface;
 use Zend\ServiceManager\ServiceLocatorInterface;
 use Zend\Stdlib\Hydrator\ClassMethods;

 class ZendDbSqlMapperFactory implements FactoryInterface
 {
 /**
 * Create service
 *
 * @param ServiceLocatorInterface $serviceLocator
 *
 * @return mixed
 */
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 return new ZendDbSqlMapper(
 $serviceLocator->get('Zend\Db\Adapter\Adapter'),
 new ClassMethods(false),
 new Post()
);
 }
 }

With this in place you can refresh the application again and you’ll see your blog posts listed once again. Our Mapper
has now a really good architecture and no more hidden dependencies.

Finishing the mapper

Before we jump into the next chapter let’s quickly finish the mapper by writing an implementation for the find()
method.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Adapter\Driver\ResultInterface;
 use Zend\Db\ResultSet\HydratingResultSet;
 use Zend\Db\Sql\Sql;
 use Zend\Stdlib\Hydrator\HydratorInterface;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @var \Zend\Stdlib\Hydrator\HydratorInterface
 */
 protected $hydrator;

 /**
 * @var \Blog\Model\PostInterface
 */
 protected $postPrototype;

 /**
 * @param AdapterInterface $dbAdapter
 * @param HydratorInterface $hydrator
 * @param PostInterface $postPrototype
 */
 public function __construct(
 AdapterInterface $dbAdapter,
 HydratorInterface $hydrator,
 PostInterface $postPrototype
) {
 $this->dbAdapter = $dbAdapter;
 $this->hydrator = $hydrator;
 $this->postPrototype = $postPrototype;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');
 $select->where(array('id = ?' => $id));

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult() && $result->getAffectedRows()) {
 return $this->hydrator->hydrate($result->current(), $this->postPrototype);
 }

 throw new \InvalidArgumentException("Blog with given ID:{$id} not found.");
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new HydratingResultSet($this->hydrator, $this->postPrototype);

 return $resultSet->initialize($result);
 }

 return array();
 }
 }

The find() function looks really similar to the findAll() function. There’s just three simple differences.
Firstly we need to add a condition to the query to only select one row. This is done using the where() function of
the Sql object. Then we also check if the $result has a row in it through getAffectedRows(). The return
statement then will be hydrated using the injected hydrator into the prototype that has also been injected.

This time, when we do not find a row we will throw an \InvalidArgumentException so that the application will easily
be able to handle the scenario.

Conclusion

Finishing this chapter you now know how to query for data using the Zend\Db\Sql classes. You have also learned about
the Zend\Stdlib\Hydrator-Component which is one of the new key components of ZF2. Furthermore you have once again
proven that you are able to manage proper dependency injection.

In the next chapter we’ll take a closer look at the router so we’ll be able to do some more action within our Module.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Understanding the Router

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Understanding the Router

Right now we have a pretty solid set up for our module. However, we’re not really doing all too much yet, to be
precise, all we do is display all Blog entries on one page. In this chapter you will learn everything you need
to know about the Router to create other routes to be able to display only a single blog, to add new blogs
to your application and to edit and delete existing blogs.

Different route types

Before we go into details on our application, let’s take a look at the most important route types that Zend
Framework offers.

Zend\Mvc\Router\Http\Literal

The first common route type is the Literal-Route. As mentioned in a previous chapter a literal route is one that
matches a specific string. Examples for URLs that are usually literal routes are:

	http://domain.com/blog

	http://domain.com/blog/add

	http://domain.com/about-me

	http://domain.com/my/very/deep/page

	http://domain.com/my/very/deep/page

Configuration for a literal route requires you to set up the route that should be matched and needs you to define
some defaults to be used, for example which controller and which action to call. A simple configuration for a
literal route looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 'router' => array(
 'routes' => array(
 'about' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/about-me',
 'defaults' => array(
 'controller' => 'AboutMeController',
 'action' => 'aboutme',
),
),
)
)
)

Zend\Mvc\Router\Http\Segment

The second most commonly used route type is the Segment-Route. A segmented route is used for whenever your url
is supposed to contain variable parameters. Pretty often those parameters are used to identify certain objects
within your application. Some examples for URLs that contain parameters and are usually segment routes are:

Configuring a Segment-Route takes a little more effort but isn’t difficult to understand. The tasks you have to
do are similar at first, you have to define the route-type, just be sure to make it Segment. Then you have to
define the route and add parameters to it. Then as usual you define the defaults to be used, the only thing that
differs in this part is that you can assign defaults for your parameters, too. The new part that is used on routes
of the Segment type is to define so called constraints. They are used to tell the Router what “rules” are
given for parameters. For example, an id-parameter is only allowed to be of type integer, the year-parameter
is only allowed to be of type integer and may only contain exactly four digits. A sample configuration can
look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 'router' => array(
 'routes' => array(
 'archives' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/news/archive/:year',
 'defaults' => array(
 'controller' => 'ArchiveController',
 'action' => 'byYear',
),
 'constraints' => array(
 'year' => '\d{4}'
)
),
)
)
)

This configuration defines a route for a URL like domain.com/news/archive/2014. As you can see, our route now
contains the part :year. This is called a route-parameter. Route parameters for Segment-Routes are defined by a
full-colon (“:”) in front of a string; the string is the parameter name.

Under constraints you see that we have another array. This array contains regular expression rules for each
parameter of your route. In our example case the regex uses two parts, the first one being \d which means “a
digit”, so any number from 0-9. The second part is {4} which means that the part before this has to match exactly
four times. So in easy words we say “four digits”.

If now you call the URL domain.com/news/archive/123, the router will not match the URL because we only support
years with four digits.

You may notice that we did not define any defaults for the parameter year. This is because the parameter is
currently set up as a required parameter. If a parameter is supposed to be optional we need to define this
inside the route definition. This is done by adding square brackets around the parameter. Let’s modify the above
example route to have the year parameter optional and use the current year as default:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 'router' => array(
 'routes' => array(
 'archives' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/news/archive[/:year]',
 'defaults' => array(
 'controller' => 'ArchiveController',
 'action' => 'byYear',
 'year' => date('Y')
),
 'constraints' => array(
 'year' => '\d{4}'
)
),
)
)
)

Notice that now we have a part in our route that is optional. Not only the parameter year is optional. The slash
that is separating the year parameter from the URL string archive is optional, too, and may only be there
whenever the year parameter is present.

Different routing concepts

When thinking about the whole application it becomes clear that there are a lot of routes to be matched. When
writing these routes you have two options. One option is to spend less time writing routes that in turn
are a little slow in matching. Another option is to write very explicit routes that match a little faster
but require more work to define. Let’s take a look at both of them.

Generic routes

A generic route is one that matches many URLs. You may remember this concept from Zend Framework 1 where basically
you didn’t even bother about routes because we had one “god route” that was used for everything. You define the
controller, the action, and all parameters within just one single route.

The big advantage of this approach is the immense time you save when developing your application. The downside,
however, is that matching such a route can take a little bit longer due to the fact that so many variables need to
be checked. However, as long as you don’t overdo it, this is a viable concept. For this reason the
ZendSkeletonApplication uses a very generic route, too. Let’s take a look at a generic route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 'router' => array(
 'routes' => array(
 'default' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/[:controller[/:action]]',
 'defaults' => array(
 '__NAMESPACE__' => 'Application\Controller',
 'controller' => 'Index',
 'action' => 'index',
),
 'constraints' => [
 'controller' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
]
),
)
)
)

Let’s take a closer look as to what has been defined in this configuration. The route part now contains two
optional parameters, controller and action. The action parameter is optional only when the controller
parameter is present.

Within the defaults-section it looks a little bit different, too. The __NAMESPACE__ will be used to concatenate
with the controller parameter at all times. So for example when the controller parameter is “news” then the
controller to be called from the Router will be Application\Controller\news, if the parameter is “archive”
the Router will call the controller Application\Controller\archive.

The defaults-section then is pretty straight forward again. Both parameters, controller and action, only
have to follow the conventions given by PHP-Standards. They have to start with a letter from a-z, upper- or
lowercase and after that first letter there can be an (almost) infinite amount of letters, digits, underscores or
dashes.

The big downside to this approach not only is that matching this route is a little slower, it is that there
is no error-checking going on. For example, when you were to call a URL like domain.com/weird/doesntExist then
the controller would be “Application\Controller\weird” and the action would be “doesntExistAction”. As you can
guess by the names let’s assume neither controller nor action does exist. The route will still match but an
Exception will be thrown because the Router will be unable to find the requested resources and we’ll receive
a 404-Response.

Explicit routes using child_routes

Explicit routing is done by defining all possible routes yourself. For this method you actually have two options
available, too.

Without config structure

The probably most easy to understand way to write explicit routes would be to write many top level routes like
in the following configuration:

As you can see with this little example, all routes have an explicit name and there’s lots of repetition going on.
We have to redefine the default controller to be used every single time and we don’t really have any structure
within the configuration. Let’s take a look at how we could bring more structure into a configuration like this.

Using child_routes for more structure

Another option to define explicit routes is to be using child_routes. Child routes inherit all options from
their respective parents. Meaning: when the controller doesn’t change, you do not need to redefine it. Let’s take
a look at a child routes configuration using the same example as above:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 'router' => array(
 'routes' => array(
 'news' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/news',
 'defaults' => array(
 'controller' => 'NewsController',
 'action' => 'showAll',
),
),
 // Defines that "/news" can be matched on its own without a child route being matched
 'may_terminate' => true,
 'child_routes' => array(
 'archive' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/archive[/:year]',
 'defaults' => array(
 'action' => 'archive',
),
 'constraints' => array(
 'year' => '\d{4}'
)
),
),
 'single' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/:id',
 'defaults' => array(
 'action' => 'detail',
),
 'constraints' => array(
 'id' => '\d+'
)
),
),
)
),
)
)

This routing configuration requires a little more explanation. First of all we have a new configuration entry which
is called may_terminate. This property defines that the parent route can be matched alone, without child routes
needing to be matched, too. In other words all of the following routes are valid:

	/news

	/news/archive

	/news/archive/2014

	/news/42

If, however, you were to set may_terminate => false, then the parent route would only be used for global defaults
that all child_routes were to inherit. In other words: only child_routes can be matched, so the only valid
routes would be:

	/news/archive

	/news/archive/2014

	/news/42

The parent route would not be able to be matched on its own.

Next to that we have a new entry called child_routes. In here we define new routes that will be appended to the
parent route. There’s no real difference in configuration from routes you define as a child route to routes that
are on the top level of the configuration. The only thing that may fall away is the re-definition of shared
default values.

The big advantage you have with this kind of configuration is the fact that you explicitly define the routes and
therefore you will never run into problems of non-existing controllers like you would with generic routes like
described above. The second advantage would be that this kind of routing is a little bit faster than generic routes
and the last advantage would be that you can easily see all possible URLs that start with /news.

While ultimately this falls into the category of personal preference bare in mind that debugging of explicit routes
is significantly easier than debugging generic routes.

A practical example for our Blog Module

Now that we know how to configure new routes, let’s first create a route to display only a single Blog from our
Database. We want to be able to identify blog posts by their internal ID. Given that ID is a variable parameter we need
a route of type Segment. Furthermore we want to put this route as a child route to the route of name blog.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	 <?php
 // FileName: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** DB Config */),
 'service_manager' => array(/* ServiceManager Config */),
 'view_manager' => array(/* ViewManager Config */),
 'controllers' => array(/* ControllerManager Config */),
 'router' => array(
 'routes' => array(
 'blog' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/blog',
 'defaults' => array(
 'controller' => 'Blog\Controller\List',
 'action' => 'index',
),
),
 'may_terminate' => true,
 'child_routes' => array(
 'detail' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/:id',
 'defaults' => array(
 'action' => 'detail'
),
 'constraints' => array(
 'id' => '[1-9]\d*'
)
)
)
)
)
)
)
);

With this we have set up a new route that we use to display a single blog entry. We have assigned a parameter
called id that needs to be a positive digit excluding 0. Database entries usually start with a 0 when it comes
to primary ID keys and therefore our regular expression constraints for the id fields looks a little more
complicated. Basically we tell the router that the parameter id has to start with an integer between 1 and 9,
that’s the [1-9] part, and after that zero or more digits can follow (that’s the \d* part).

The route will call the same controller like the parent route but it will call the detailAction() instead. Go
to your browser and request the URL http://localhost:8080/blog/2. You’ll see the following error message:

	1
2
3
4
5
6
7
8
9

	 A 404 error occurred

 Page not found.
 The requested controller was unable to dispatch the request.

 Controller:
 Blog\Controller\List

 No Exception available

This is due to the fact that the controller tries to access the detailAction() which does not yet exist. Let’s go
ahead and create this action now. Go to your ListController and add the action. Return an empty ViewModel and
then refresh the page.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 <?php
 // FileName: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class ListController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }

 public function indexAction()
 {
 return new ViewModel(array(
 'posts' => $this->postService->findAllPosts()
));
 }

 public function detailAction()
 {
 return new ViewModel();
 }
 }

Now you’ll see the all familiar message that a template was unable to be rendered. Let’s create this template now
and assume that we will get one Post-Object passed to the template to see the details of our blog. Create a new
view file under /view/blog/list/detail.phtml:

	1
2
3
4
5
6
7
8
9

	 <!-- FileName: /module/Blog/view/blog/list/detail.phtml -->
 <h1>Post Details</h1>

 <dl>
 <dt>Post Title</dt>
 <dd><?php echo $this->escapeHtml($this->post->getTitle());?></dd>
 <dt>Post Text</dt>
 <dd><?php echo $this->escapeHtml($this->post->getText());?></dd>
 </dl>

Looking at this template we’re expecting the variable $this->post to be an instance of our Post-Model. Let’s
now modify our ListController so that a Post will be passed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 <?php
 // FileName: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class ListController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }

 public function indexAction()
 {
 return new ViewModel(array(
 'posts' => $this->postService->findAllPosts()
));
 }

 public function detailAction()
 {
 $id = $this->params()->fromRoute('id');

 return new ViewModel(array(
 'post' => $this->postService->findPost($id)
));
 }
 }

If you refresh your application now you’ll see the details for our Post to be displayed. However, there is one
little Problem with what we have done. While we do have our Service set up to throw an \InvalidArgumentException
whenever no Post matching a given id is found, we don’t make use of this just yet. Go to your browser and
open the URL http://localhost:8080/blog/99. You will see the following error message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 An error occurred
 An error occurred during execution; please try again later.

 Additional information:
 InvalidArgumentException

 File:
 {rootPath}/module/Blog/src/Blog/Service/PostService.php:40

 Message:
 Could not find row 99

This is kind of ugly, so our ListController should be prepared to do something whenever an
InvalidArgumentException is thrown by the PostService. Whenever an invalid Post is requested we want the
User to be redirected to the Post-Overview. Let’s do this by putting the call against the PostService in a
try-catch statement.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 <?php
 // FileName: /module/Blog/src/Blog/Controller/ListController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class ListController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }

 public function indexAction()
 {
 return new ViewModel(array(
 'posts' => $this->postService->findAllPosts()
));
 }

 public function detailAction()
 {
 $id = $this->params()->fromRoute('id');

 try {
 $post = $this->postService->findPost($id);
 } catch (\InvalidArgumentException $ex) {
 return $this->redirect()->toRoute('blog');
 }

 return new ViewModel(array(
 'post' => $post
));
 }
 }

Now whenever you access an invalid id you’ll be redirected to the route blog which is our list of blog posts,
perfect!

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Making use of Forms and Fieldsets

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Making use of Forms and Fieldsets

So far all we did was read data from the database. In a real-life-application this won’t get us very far as very often
the least we need to do is to support full Create, Read, Update and Delete operations (CRUD). Most
often the process of getting data into our database is that a user enters the data into a web <form> and the
application then uses the user input and saves it into our backend.

We want to be able to do exactly this and Zend Framework provides us with all the tools we need to achieve our goal.
Before we jump into coding, we need to understand the two core components for this task first. So let’s take a look at
what these components are and what they are used for.

Zend\Form\Fieldset

The first component that you have to know about is Zend\Form\Fieldset. A Fieldset is a component that contains a
reusable set of elements. You will use the Fieldset to create the frontend-input for your backend-models. It is
considered good practice to have one Fieldset for every Model of your application.

The Fieldset-component, however, is no Form, meaning you will not be able to use a Fieldset without attaching it
to the Form-component. The advantage here is that you have one set of elements that you can re-use for as many
Forms as you like without having to re-declare all the inputs for the Model that’s represented by the Fieldset.

Zend\Form\Form

The main component you’ll need and that most probably you’ve heard about already is Zend\Form\Form. The
Form-component is the main container for all elements of your web <form>. You are able to add single
elements or a set of elements in the form of a Fieldset, too.

Creating your first Fieldset

Explaining how the Zend\Form component works is best done by giving you real code to work with. So let’s jump right
into it and create all the forms we need to finish our Blog module. We start by creating a Fieldset that contains
all the input elements that we need to work with our Blog-data.

	You will need one hidden input for the id property, which is only needed for editting and deleting data.

	You will need one text input for the text property

	You will need one text input for the title property

Create the file /module/Blog/src/Blog/Form/PostFieldset.php and add the following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	<?php
// Filename: /module/Blog/src/Blog/Form/PostFieldset.php
namespace Blog\Form;

use Zend\Form\Fieldset;

class PostFieldset extends Fieldset
{
 public function __construct()
 {
 $this->add(array(
 'type' => 'hidden',
 'name' => 'id'
));

 $this->add(array(
 'type' => 'text',
 'name' => 'text',
 'options' => array(
 'label' => 'The Text'
)
));

 $this->add(array(
 'type' => 'text',
 'name' => 'title',
 'options' => array(
 'label' => 'Blog Title'
)
));
 }
}

As you can see this class is pretty handy. All we do is to have our class extend Zend\Form\Fieldset and then we
write a __construct() method and add all the elements we need to the fieldset. This Fieldset can now be used by
as many forms as we want. So let’s go ahead and create our first Form.

Creating the PostForm

Now that we have our PostFieldset in place, we need to use it inside a Form. We then need to add a Submit-Button
to the form so that the user will be able to submit the data and we’re done. So create the PostForm within the
same directory under /module/Blog/src/Blog/Form/PostForm and add the PostFieldset to it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 <?php
 // Filename: /module/Blog/src/Blog/Form/PostForm.php
 namespace Blog\Form;

 use Zend\Form\Form;

 class PostForm extends Form
 {
 public function __construct()
 {
 $this->add(array(
 'name' => 'post-fieldset',
 'type' => 'Blog\Form\PostFieldset'
));

 $this->add(array(
 'type' => 'submit',
 'name' => 'submit',
 'attributes' => array(
 'value' => 'Insert new Post'
)
));
 }
 }

And that’s our form. Nothing special here, we add our PostFieldset to the Form, we add a submit button to the form
and nothing more. Let’s now make use of the Form.

Adding a new Post

Now that we have the PostForm written we want to use it. But there are a couple more tasks that you need to do.
The tasks that are standing right in front of you are:

	create a new controller WriteController

	add PostService as a dependency to the WriteController

	add PostForm as a dependency to the WriteController

	create a new route blog/add that routes to the WriteController and its addAction()

	create a new view that displays the form

Creating the WriteController

As you can see from the task-list we need a new controller and this controller is supposed to have two dependencies.
One dependency being the PostService that’s also being used within our ListController and the other dependency
being the PostForm which is new. Since the PostForm is a dependency that the ListController doesn’t
need to display blog-data, we will create a new controller to keep things properly separated. First, register a
controller-factory within the configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** DB Config */),
 'service_manager' => array(/** ServiceManager Config */),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(
 'factories' => array(
 'Blog\Controller\List' => 'Blog\Factory\ListControllerFactory',
 'Blog\Controller\Write' => 'Blog\Factory\WriteControllerFactory'
)
),
 'router' => array(/** Router Config */)
);

Next step would be to write the WriteControllerFactory. Have the factory return the WriteController and add the
required dependencies within the constructor.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 <?php
 // Filename: /module/Blog/src/Blog/Factory/WriteControllerFactory.php
 namespace Blog\Factory;

 use Blog\Controller\WriteController;
 use Zend\ServiceManager\FactoryInterface;
 use Zend\ServiceManager\ServiceLocatorInterface;

 class WriteControllerFactory implements FactoryInterface
 {
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 $realServiceLocator = $serviceLocator->getServiceLocator();
 $postService = $realServiceLocator->get('Blog\Service\PostServiceInterface');
 $postInsertForm = $realServiceLocator->get('FormElementManager')->get('Blog\Form\PostForm');

 return new WriteController(
 $postService,
 $postInsertForm
);
 }
 }

In this code-example there are a couple of things to be aware of. First, the WriteController doesn’t exist yet, but we
will create this in the next step so we’re just assuming that it will exist later on. Second, we access the
FormElementManager to get access to our PostForm. All forms should be accessed through the FormElementManager.
Even though we haven’t registered the PostForm in our config files yet the FormElementManager automatically knows
about forms that act as invokables. As long as you have no dependencies you don’t need to register them explicitly.

Next up is the creation of our controller. Be sure to type hint the dependencies by their interfaces and to add the
addAction()!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 }
 }

Right on to creating the new route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** Db Config */),
 'service_manager' => array(/** ServiceManager Config */),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** Controller Config */),
 'router' => array(
 'routes' => array(
 'blog' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/blog',
 'defaults' => array(
 'controller' => 'Blog\Controller\List',
 'action' => 'index',
)
),
 'may_terminate' => true,
 'child_routes' => array(
 'detail' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/:id',
 'defaults' => array(
 'action' => 'detail'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
 'add' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/add',
 'defaults' => array(
 'controller' => 'Blog\Controller\Write',
 'action' => 'add'
)
)
)
)
)
)
)
);

And lastly let’s create a dummy template:

	1
2

	 <!-- Filename: /module/Blog/view/blog/write/add.phtml -->
 <h1>WriteController::addAction()</h1>

Checking the current status

If you try to access the new route localhost:8080/blog/add you’re supposed to see the following error message:

	1
2

	 Fatal error: Call to a member function insert() on a non-object in
 {libraryPath}/Zend/Form/Fieldset.php on line {lineNumber}

If this is not the case, be sure to follow the tutorial correctly and carefully check all your files. Assuming you are
getting this error, let’s find out what it means and fix it!

The above error message is very common and its solution isn’t that intuitive. It appears that there is an error within
the Zend/Form/Fieldset.php but that’s not the case. The error message let’s you know that something didn’t go right
while you were creating your form. In fact, while creating both the PostForm as well as the PostFieldset we
have forgotten something very, very important.

Note

When overwriting a __construct() method within the Zend\Form-component, be sure to always call
parent::__construct()!

Without this, forms and fieldsets will not be able to get initiated correctly. Let’s now fix
the problem by calling the parents constructor in both form and fieldset. To have more flexibility we will also
include the signature of the __construct() function which accepts a couple of parameters.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 <?php
 // Filename: /module/Blog/src/Blog/Form/PostForm.php
 namespace Blog\Form;

 use Zend\Form\Form;

 class PostForm extends Form
 {
 public function __construct($name = null, $options = array())
 {
 parent::__construct($name, $options);

 $this->add(array(
 'name' => 'post-fieldset',
 'type' => 'Blog\Form\PostFieldset'
));

 $this->add(array(
 'type' => 'submit',
 'name' => 'submit',
 'attributes' => array(
 'value' => 'Insert new Post'
)
));
 }
 }

As you can see our PostForm now accepts two parameters to give our form a name and to set a couple of options. Both
parameters will be passed along to the parent. If you look closely at how we add the PostFieldset to the form you’ll
notice that we assign a name to the fieldset. Those options will be passed from the FormElementManager when the
PostFieldset is created. But for this to function we need to do the same step inside our fieldset, too:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	 <?php
 // Filename: /module/Blog/src/Blog/Form/PostFieldset.php
 namespace Blog\Form;

 use Zend\Form\Fieldset;

 class PostFieldset extends Fieldset
 {
 public function __construct($name = null, $options = array())
 {
 parent::__construct($name, $options);

 $this->add(array(
 'type' => 'hidden',
 'name' => 'id'
));

 $this->add(array(
 'type' => 'text',
 'name' => 'text',
 'options' => array(
 'label' => 'The Text'
)
));

 $this->add(array(
 'type' => 'text',
 'name' => 'title',
 'options' => array(
 'label' => 'Blog Title'
)
));
 }
 }

Reloading your application now will yield you the desired result.

Displaying the form

Now that we have our PostForm within our WriteController it’s time to pass this form to the view and have
it rendered using the provided ViewHelpers from the Zend\Form component. First change your controller so that the
form is passed to the view.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 return new ViewModel(array(
 'form' => $this->postForm
));
 }
 }

And then we need to modify our view to have the form rendered.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 <!-- Filename: /module/Blog/view/blog/write/add.phtml -->
 <h1>WriteController::addAction()</h1>
 <?php
 $form = $this->form;
 $form->setAttribute('action', $this->url());
 $form->prepare();

 echo $this->form()->openTag($form);

 echo $this->formCollection($form);

 echo $this->form()->closeTag();

Firstly, we tell the form that it should send its data to the current URL and then we tell the form to prepare()
itself which triggers a couple of internal things.

Note

HTML-Forms can be sent using POST and GET. ZF2s default is POST, therefore you don’t have to be
explicit in setting this option. If you want to change it to GET though, all you have to do is set the
specific attribute prior to the prepare() call.

$form->setAttribute('method', 'GET');

Next we’re using a couple of ViewHelpers which take care of rendering the form for us. There are many different ways
to render a form within Zend Framework but using formCollection() is probably the fastest one.

Refreshing the browser you will now see your form properly displayed. However, if we’re submitting the form all we see
is our form being displayed again. And this is due to the simple fact that we didn’t add any logic to the controller
yet.

Note

Keep in mind that this tutorial focuses solely on the OOP aspect of things. Rendering the form like this, without
any stylesheets added doesn’t really reflect most designers’ idea of a beautiful form. You’ll find out more about
the rendering of forms in the chapter of Zend\Form\View\Helper.

Controller Logic for basically all Forms

Writing a Controller that handles a form workflow is pretty simple and it’s basically identical for each and every
form you have within your application.

	You want to check if the current request is a POST-Request, meaning if the form has been sent

	
	If the form has been sent, you want to:

	
	store the POST-Data within the Form

	check if the form passes validation

	
	If the form passes validation, you want to:

	
	pass the form data to your service to have it stored

	redirect the user to either the detail page of the entered data or to some overview page

	In all other cases, you want the form displayed, sometimes alongside given error messages

And all of this is really not that much code. Modify your WriteController to the following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 $request = $this->getRequest();

 if ($request->isPost()) {
 $this->postForm->setData($request->getPost());

 if ($this->postForm->isValid()) {
 try {
 $this->postService->savePost($this->postForm->getData());

 return $this->redirect()->toRoute('blog');
 } catch (\Exception $e) {
 // Some DB Error happened, log it and let the user know
 }
 }
 }

 return new ViewModel(array(
 'form' => $this->postForm
));
 }
 }

This example code should be pretty straight forward. First we save the current request into a local variable. Then we
check if the current request is a POST-Request and if so, we store the requests POST-data into the form. If the form
turns out to be valid we try to save the form data through our service and then redirect the user to the route blog.
If any error occurred at any point we simply display the form again.

Submitting the form right now will return into the following error

	1
2

	 Fatal error: Call to undefined method Blog\Service\PostService::savePost() in
 /module/Blog/src/Blog/Controller/WriteController.php on line 33

Let’s fix this by extending our PostService. Be sure to also change the signature of the PostServiceInterface!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostServiceInterface.php
 namespace Blog\Service;

 use Blog\Model\PostInterface;

 interface PostServiceInterface
 {
 /**
 * Should return a set of all blog posts that we can iterate over. Single entries of the array are supposed to be
 * implementing \Blog\Model\PostInterface
 *
 * @return array|PostInterface[]
 */
 public function findAllPosts();

 /**
 * Should return a single blog post
 *
 * @param int $id Identifier of the Post that should be returned
 * @return PostInterface
 */
 public function findPost($id);

 /**
 * Should save a given implementation of the PostInterface and return it. If it is an existing Post the Post
 * should be updated, if it's a new Post it should be created.
 *
 * @param PostInterface $blog
 * @return PostInterface
 */
 public function savePost(PostInterface $blog);
 }

As you can see the savePost() function has been added and needs to be implemented within the PostService now.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 use Blog\Mapper\PostMapperInterface;

 class PostService implements PostServiceInterface
 {
 /**
 * @var \Blog\Mapper\PostMapperInterface
 */
 protected $postMapper;

 /**
 * @param PostMapperInterface $postMapper
 */
 public function __construct(PostMapperInterface $postMapper)
 {
 $this->postMapper = $postMapper;
 }

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 return $this->postMapper->findAll();
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 return $this->postMapper->find($id);
 }

 /**
 * {@inheritDoc}
 */
 public function savePost(PostInterface $post)
 {
 return $this->postMapper->save($post);
 }
 }

And now that we’re making an assumption against our postMapper we need to extend the PostMapperInterface and its
implementation, too. Start by extending the interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/PostMapperInterface.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;

 interface PostMapperInterface
 {
 /**
 * @param int|string $id
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id);

 /**
 * @return array|PostInterface[]
 */
 public function findAll();

 /**
 * @param PostInterface $postObject
 *
 * @param PostInterface $postObject
 * @return PostInterface
 * @throws \Exception
 */
 public function save(PostInterface $postObject);
 }

And now the implementation of the save function.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

	<?php
// Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
namespace Blog\Mapper;

use Blog\Model\PostInterface;
use Zend\Db\Adapter\AdapterInterface;
use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Db\Sql\Insert;
use Zend\Db\Sql\Sql;
use Zend\Db\Sql\Update;
use Zend\Stdlib\Hydrator\HydratorInterface;

class ZendDbSqlMapper implements PostMapperInterface
{
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 /**
 * @var \Zend\Stdlib\Hydrator\HydratorInterface
 */
 protected $hydrator;

 /**
 * @var \Blog\Model\PostInterface
 */
 protected $blogPrototype;

 /**
 * @param AdapterInterface $dbAdapter
 * @param HydratorInterface $hydrator
 * @param PostInterface $postPrototype
 */
 public function __construct(
 AdapterInterface $dbAdapter,
 HydratorInterface $hydrator,
 PostInterface $postPrototype
) {
 $this->dbAdapter = $dbAdapter;
 $this->hydrator = $hydrator;
 $this->postPrototype = $postPrototype;
 }

 /**
 * @param int|string $id
 *
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id)
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');
 $select->where(array('id = ?' => $id));

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult() && $result->getAffectedRows()) {
 return $this->hydrator->hydrate($result->current(), $this->postPrototype);
 }

 throw new \InvalidArgumentException("Blog with given ID:{$id} not found.");
 }

 /**
 * @return array|PostInterface[]
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new HydratingResultSet($this->hydrator, $this->postPrototype);

 return $resultSet->initialize($result);
 }

 return array();
 }

 /**
 * @param PostInterface $postObject
 *
 * @return PostInterface
 * @throws \Exception
 */
 public function save(PostInterface $postObject)
 {
 $postData = $this->hydrator->extract($postObject);
 unset($postData['id']); // Neither Insert nor Update needs the ID in the array

 if ($postObject->getId()) {
 // ID present, it's an Update
 $action = new Update('posts');
 $action->set($postData);
 $action->where(array('id = ?' => $postObject->getId()));
 } else {
 // ID NOT present, it's an Insert
 $action = new Insert('posts');
 $action->values($postData);
 }

 $sql = new Sql($this->dbAdapter);
 $stmt = $sql->prepareStatementForSqlObject($action);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface) {
 if ($newId = $result->getGeneratedValue()) {
 // When a value has been generated, set it on the object
 $postObject->setId($newId);
 }

 return $postObject;
 }

 throw new \Exception("Database error");
 }
}

The save() function handles two cases. The insert and update routine. Firstly we extract the Post-Object
since we need array data to work with Insert and Update. Then we remove the id from the array since this
field is not wanted. When we do an update of a row, we don’t update the id property itself and therefore it isn’t
needed. On the insert routine we don’t need an id either so we can simply strip it away.

After the id field has been removed we check what action is supposed to be called. If the Post-Object has an id
set we create a new Update-Object and if not we create a new Insert-Object. We set the data for both actions
accordingly and after that the data is passed over to the Sql-Object for the actual query into the database.

At last we check if we receive a valid result and if there has been an id generated. If it’s the case we call the
setId()-function of our blog and return the object in the end.

Let’s submit our form again and see what we get.

	1
2
3
4

	 Catchable fatal error: Argument 1 passed to Blog\Service\PostService::savePost()
 must implement interface Blog\Model\PostInterface, array given,
 called in /module/Blog/src/Blog/Controller/InsertController.php on line 33
 and defined in /module/Blog/src/Blog/Service/PostService.php on line 49

Forms, per default, give you data in an array format. But our PostService expects the format to be an implementation
of the PostInterface. This means we need to find a way to have this array data become object data. If you recall the
previous chapter, this is done through the use of hydrators.

Note

On the Update-Query you’ll notice that we have assigned a condition to only update the row matching a given id

$action->where(array('id = ?' => $postObject->getId()));

You’ll see here that the condition is: id equals ?. With the question-mark being the id of the post-object. In
the same way you could assign a condition to update (or select) rows with all entries higher than a given id:

$action->where(array('id > ?' => $postObject->getId()));

This works for all conditions. =, >, <, >= and <=

Zend\Form and Zend\Stdlib\Hydrator working together

Before we go ahead and put the hydrator into the form, let’s first do a data-dump of the data coming from the form. That
way we can easily notice all changes that the hydrator does. Modify your WriteController to the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 $request = $this->getRequest();

 if ($request->isPost()) {
 $this->postForm->setData($request->getPost());

 if ($this->postForm->isValid()) {
 try {
 \Zend\Debug\Debug::dump($this->postForm->getData());die();
 $this->postService->savePost($this->postForm->getData());

 return $this->redirect()->toRoute('blog');
 } catch (\Exception $e) {
 // Some DB Error happened, log it and let the user know
 }
 }
 }

 return new ViewModel(array(
 'form' => $this->postForm
));
 }
 }

With this set up go ahead and submit the form once again. You should now see a data dump like the following:

	1
2
3
4
5
6
7
8

	 array(2) {
 ["submit"] => string(16) "Insert new Post"
 ["post-fieldset"] => array(3) {
 ["id"] => string(0) ""
 ["text"] => string(3) "foo"
 ["title"] => string(3) "bar"
 }
 }

Now telling your fieldset to hydrate its data into an Post-object is very simple. All you need to do is to assign
the hydrator and the object prototype like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 <?php
 // Filename: /module/Blog/src/Blog/Form/PostFieldset.php
 namespace Blog\Form;

 use Blog\Model\Post;
 use Zend\Form\Fieldset;
 use Zend\Stdlib\Hydrator\ClassMethods;

 class PostFieldset extends Fieldset
 {
 public function __construct($name = null, $options = array())
 {
 parent::__construct($name, $options);

 $this->setHydrator(new ClassMethods(false));
 $this->setObject(new Post());

 $this->add(array(
 'type' => 'hidden',
 'name' => 'id'
));

 $this->add(array(
 'type' => 'text',
 'name' => 'text',
 'options' => array(
 'label' => 'The Text'
)
));

 $this->add(array(
 'type' => 'text',
 'name' => 'title',
 'options' => array(
 'label' => 'Blog Title'
)
));
 }
 }

As you can see we’re doing two things. We tell the fieldset to be using the ClassMethods hydrator and then we tell the
fieldset that the default object to be returned is our Blog-Model. However, when you’re re-submitting the form now
you’ll notice that nothing has changed. We’re still only getting array data returned and no object.

This is due to the fact that the form itself doesn’t know that it has to return an object. When the form doesn’t know
that it’s supposed to return an object it uses the ArraySeriazable hydrator recursively. To change this, all we need
to do is to make our PostFieldset a so-called base_fieldset.

A base_fieldset basically tells the form “this form is all about me, don’t worry about other data, just worry about
me”. And when the form knows that this fieldset is the real deal, then the form will use the hydrator presented by the
fieldset and return the object that we desire. Modify your PostForm and assign the PostFieldset as
base_fieldset:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 <?php
 // Filename: /module/Blog/src/Blog/Form/PostForm.php
 namespace Blog\Form;

 use Zend\Form\Form;

 class PostForm extends Form
 {
 public function __construct($name = null, $options = array())
 {
 parent::__construct($name, $options);

 $this->add(array(
 'name' => 'post-fieldset',
 'type' => 'Blog\Form\PostFieldset',
 'options' => array(
 'use_as_base_fieldset' => true
)
));

 $this->add(array(
 'type' => 'submit',
 'name' => 'submit',
 'attributes' => array(
 'value' => 'Insert new Post'
)
));
 }
 }

Now submit your form again. You should see the following output:

	1
2
3
4
5

	 object(Blog\Model\Post)#294 (3) {
 ["id":protected] => string(0) ""
 ["title":protected] => string(3) "foo"
 ["text":protected] => string(3) "bar"
 }

You can now revert back your WriteController to its previous form to have the form-data passed through the
PostService.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 $request = $this->getRequest();

 if ($request->isPost()) {
 $this->postForm->setData($request->getPost());

 if ($this->postForm->isValid()) {
 try {
 $this->postService->savePost($this->postForm->getData());

 return $this->redirect()->toRoute('blog');
 } catch (\Exception $e) {
 // Some DB Error happened, log it and let the user know
 }
 }
 }

 return new ViewModel(array(
 'form' => $this->postForm
));
 }
 }

If you send the form now you’ll now be able to add as many new blogs as you want. Great!

Conclusion

In this chapter you’ve learned a great deal about the Zend\Form component. You’ve learned that Zend\Stdlib\Hydrator
takes a big part within the Zend\Form component and by making use of both components you’ve been able to create an
insert form for the blog module.

In the next chapter we will finalize the CRUD functionality by creating the update and delete routines for the blog
module.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Editing and Deleting Data

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Editing and Deleting Data

In the previous chapter we’ve come to learn how we can use the Zend\Form- and Zend\Db-components to create the
functionality of creating new data-sets. This chapter will focus on finalizing the CRUD functionality by introducing
the concepts for editting and deleting data. We start by editting the data.

Binding Objects to Forms

The one fundamental difference between an insert- and an edit-form is the fact that inside an edit-form there is
already data preset. This means we need to find a way to get data from our database into the form. Luckily Zend\Form
provides us with a very handy way of doing so and it’s called data-binding.

All you need to do when providing an edit-form is to get the object of interest from your service and bind it to the
form. This is done the following way inside your controller.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/WriteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Form\FormInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class WriteController extends AbstractActionController
 {
 protected $postService;

 protected $postForm;

 public function __construct(
 PostServiceInterface $postService,
 FormInterface $postForm
) {
 $this->postService = $postService;
 $this->postForm = $postForm;
 }

 public function addAction()
 {
 $request = $this->getRequest();

 if ($request->isPost()) {
 $this->postForm->setData($request->getPost());

 if ($this->postForm->isValid()) {
 try {
 $this->postService->savePost($this->postForm->getData());

 return $this->redirect()->toRoute('blog');
 } catch (\Exception $e) {
 die($e->getMessage());
 // Some DB Error happened, log it and let the user know
 }
 }
 }

 return new ViewModel(array(
 'form' => $this->postForm
));
 }

 public function editAction()
 {
 $request = $this->getRequest();
 $post = $this->postService->findPost($this->params('id'));

 $this->postForm->bind($post);

 if ($request->isPost()) {
 $this->postForm->setData($request->getPost());

 if ($this->postForm->isValid()) {
 try {
 $this->postService->savePost($post);

 return $this->redirect()->toRoute('blog');
 } catch (\Exception $e) {
 die($e->getMessage());
 // Some DB Error happened, log it and let the user know
 }
 }
 }

 return new ViewModel(array(
 'form' => $this->postForm
));
 }
 }

Compared to the addAction() the editAction() has only three different lines. The first one is used to simply
get the relevant Post-object from the service identified by the id-parameter of the route (which we’ll be
writing soon).

The second line then shows you how you can bind data to the Zend\Form-Component. We’re able to use an object here
because our PostFieldset will use the hydrator to display the data coming from the object.

Lastly instead of actually doing $form->getData() we simply use the previous $post-variable since it will be
updated with the latest data from the form thanks to the data-binding. And that’s all there is to it. The only things
we need to add now is the new edit-route and the view for it.

Adding the edit-route

The edit route is a normal segment route just like the route blog/detail. Configure your route config to include the
new route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** Db Config */),
 'service_manager' => array(/** ServiceManager Config */),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(/** ControllerManager Config* */),
 'router' => array(
 'routes' => array(
 'blog' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/blog',
 'defaults' => array(
 'controller' => 'Blog\Controller\List',
 'action' => 'index',
)
),
 'may_terminate' => true,
 'child_routes' => array(
 'detail' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/:id',
 'defaults' => array(
 'action' => 'detail'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
 'add' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/add',
 'defaults' => array(
 'controller' => 'Blog\Controller\Write',
 'action' => 'add'
)
)
),
 'edit' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/edit/:id',
 'defaults' => array(
 'controller' => 'Blog\Controller\Write',
 'action' => 'edit'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
)
)
)
)
);

Creating the edit-template

Next in line is the creation of the new template blog/write/edit:

All that is really changing on the view-end is that you need to pass the current id to the url() view helper. To
achieve this you have two options. The first one would be to pass the ID to the parameters array like

	1

	 $this->url('blog/edit', array('id' => $id));

The downside is that $id is not available as we have not assigned it to the view. The Zend\Mvc\Router-component
however provides us with a nice functionality to re-use the currently matched parameters. This is done by setting the
last parameter of the view-helper to true.

	1

	 $this->url('blog/edit', array(), true);

Checking the status

If you go to your browser and open up the edit form at localhost:8080/blog/edit/1 you’ll see that the form contains
the data from your selected blog. And when you submit the form you’ll notice that the data has been changed
successfully. However sadly the submit-button still contains the text Insert new Post. This can be changed inside
the view, too.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 <!-- Filename: /module/Blog/view/blog/write/add.phtml -->
 <h1>WriteController::editAction()</h1>
 <?php
 $form = $this->form;
 $form->setAttribute('action', $this->url('blog/edit', array(), true));
 $form->prepare();

 $form->get('submit')->setValue('Update Post');

 echo $this->form()->openTag($form);

 echo $this->formCollection($form);

 echo $this->form()->closeTag();

Implementing the delete functionality

Last but not least it’s time to delete some data. We start this process by creating a new route and adding a new
controller:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

	 <?php
 // Filename: /module/Blog/config/module.config.php
 return array(
 'db' => array(/** Db Config */),
 'service_manager' => array(/** ServiceManager Config */),
 'view_manager' => array(/** ViewManager Config */),
 'controllers' => array(
 'factories' => array(
 'Blog\Controller\List' => 'Blog\Factory\ListControllerFactory',
 'Blog\Controller\Write' => 'Blog\Factory\WriteControllerFactory',
 'Blog\Controller\Delete' => 'Blog\Factory\DeleteControllerFactory'
)
),
 'router' => array(
 'routes' => array(
 'post' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/blog',
 'defaults' => array(
 'controller' => 'Blog\Controller\List',
 'action' => 'index',
)
),
 'may_terminate' => true,
 'child_routes' => array(
 'detail' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/:id',
 'defaults' => array(
 'action' => 'detail'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
 'add' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/add',
 'defaults' => array(
 'controller' => 'Blog\Controller\Write',
 'action' => 'add'
)
)
),
 'edit' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/edit/:id',
 'defaults' => array(
 'controller' => 'Blog\Controller\Write',
 'action' => 'edit'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
 'delete' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/delete/:id',
 'defaults' => array(
 'controller' => 'Blog\Controller\Delete',
 'action' => 'delete'
),
 'constraints' => array(
 'id' => '\d+'
)
)
),
)
)
)
)
);

Notice here that we have assigned yet another controller Blog\Controller\Delete. This is due to the fact that this
controller will not require the PostForm. A DeleteForm is a perfect example for when you do not even need to
make use of the Zend\Form component. Let’s go ahead and create our controller first:

The Factory

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // Filename: /module/Blog/src/Blog/Factory/DeleteControllerFactory.php
 namespace Blog\Factory;

 use Blog\Controller\DeleteController;
 use Zend\ServiceManager\FactoryInterface;
 use Zend\ServiceManager\ServiceLocatorInterface;

 class DeleteControllerFactory implements FactoryInterface
 {
 /**
 * Create service
 *
 * @param ServiceLocatorInterface $serviceLocator
 *
 * @return mixed
 */
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 $realServiceLocator = $serviceLocator->getServiceLocator();
 $postService = $realServiceLocator->get('Blog\Service\PostServiceInterface');

 return new DeleteController($postService);
 }
 }

The Controller

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	 <?php
 // Filename: /module/Blog/src/Blog/Controller/DeleteController.php
 namespace Blog\Controller;

 use Blog\Service\PostServiceInterface;
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class DeleteController extends AbstractActionController
 {
 /**
 * @var \Blog\Service\PostServiceInterface
 */
 protected $postService;

 public function __construct(PostServiceInterface $postService)
 {
 $this->postService = $postService;
 }

 public function deleteAction()
 {
 try {
 $post = $this->postService->findPost($this->params('id'));
 } catch (\InvalidArgumentException $e) {
 return $this->redirect()->toRoute('blog');
 }

 $request = $this->getRequest();

 if ($request->isPost()) {
 $del = $request->getPost('delete_confirmation', 'no');

 if ($del === 'yes') {
 $this->postService->deletePost($post);
 }

 return $this->redirect()->toRoute('blog');
 }

 return new ViewModel(array(
 'post' => $post
));
 }
 }

As you can see this is nothing new. We inject the PostService into the controller and inside the action we first
check if the blog exists. If so we check if it’s a post request and inside there we check if a certain post parameter
called delete_confirmation is present. If the value of that then is yes we delete the blog through the
PostService‘s deletePost() function.

When you’re writing this code you’ll notice that you don’t get typehints for the deletePost() function because we
haven’t added it to the service / interface yet. Go ahead and add the function to the interface and implement it inside
the service.

The Interface

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostServiceInterface.php
 namespace Blog\Service;

 use Blog\Model\PostInterface;

 interface PostServiceInterface
 {
 /**
 * Should return a set of all blog posts that we can iterate over. Single entries of the array are supposed to be
 * implementing \Blog\Model\PostInterface
 *
 * @return array|PostInterface[]
 */
 public function findAllPosts();

 /**
 * Should return a single blog post
 *
 * @param int $id Identifier of the Post that should be returned
 * @return PostInterface
 */
 public function findPost($id);

 /**
 * Should save a given implementation of the PostInterface and return it. If it is an existing Post the Post
 * should be updated, if it's a new Post it should be created.
 *
 * @param PostInterface $blog
 * @return PostInterface
 */
 public function savePost(PostInterface $blog);

 /**
 * Should delete a given implementation of the PostInterface and return true if the deletion has been
 * successful or false if not.
 *
 * @param PostInterface $blog
 * @return bool
 */
 public function deletePost(PostInterface $blog);
 }

The Service

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	 <?php
 // Filename: /module/Blog/src/Blog/Service/PostService.php
 namespace Blog\Service;

 use Blog\Mapper\PostMapperInterface;
 use Blog\Model\PostInterface;

 class PostService implements PostServiceInterface
 {
 /**
 * @var \Blog\Mapper\PostMapperInterface
 */
 protected $postMapper;

 /**
 * @param PostMapperInterface $postMapper
 */
 public function __construct(PostMapperInterface $postMapper)
 {
 $this->postMapper = $postMapper;
 }

 /**
 * {@inheritDoc}
 */
 public function findAllPosts()
 {
 return $this->postMapper->findAll();
 }

 /**
 * {@inheritDoc}
 */
 public function findPost($id)
 {
 return $this->postMapper->find($id);
 }

 /**
 * {@inheritDoc}
 */
 public function savePost(PostInterface $post)
 {
 return $this->postMapper->save($post);
 }

 /**
 * {@inheritDoc}
 */
 public function deletePost(PostInterface $post)
 {
 return $this->postMapper->delete($post);
 }
 }

Now we assume that the PostMapperInterface has a delete()-function. We haven’t yet implemented this one so go
ahead and add it to the PostMapperInterface.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/PostMapperInterface.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;

 interface PostMapperInterface
 {
 /**
 * @param int|string $id
 * @return PostInterface
 * @throws \InvalidArgumentException
 */
 public function find($id);

 /**
 * @return array|PostInterface[]
 */
 public function findAll();

 /**
 * @param PostInterface $postObject
 *
 * @param PostInterface $postObject
 * @return PostInterface
 * @throws \Exception
 */
 public function save(PostInterface $postObject);

 /**
 * @param PostInterface $postObject
 *
 * @return bool
 * @throws \Exception
 */
 public function delete(PostInterface $postObject);
 }

Now that we have declared the function inside the interface it’s time to implement it inside our ZendDbSqlMapper:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

	 <?php
 // Filename: /module/Blog/src/Blog/Mapper/ZendDbSqlMapper.php
 namespace Blog\Mapper;

 use Blog\Model\PostInterface;
 use Zend\Db\Adapter\AdapterInterface;
 use Zend\Db\Adapter\Driver\ResultInterface;
 use Zend\Db\ResultSet\HydratingResultSet;
 use Zend\Db\Sql\Delete;
 use Zend\Db\Sql\Insert;
 use Zend\Db\Sql\Sql;
 use Zend\Db\Sql\Update;
 use Zend\Stdlib\Hydrator\HydratorInterface;

 class ZendDbSqlMapper implements PostMapperInterface
 {
 /**
 * @var \Zend\Db\Adapter\AdapterInterface
 */
 protected $dbAdapter;

 protected $hydrator;

 protected $postPrototype;

 /**
 * @param AdapterInterface $dbAdapter
 * @param HydratorInterface $hydrator
 * @param PostInterface $postPrototype
 */
 public function __construct(
 AdapterInterface $dbAdapter,
 HydratorInterface $hydrator,
 PostInterface $postPrototype
) {
 $this->dbAdapter = $dbAdapter;
 $this->hydrator = $hydrator;
 $this->postPrototype = $postPrototype;
 }

 /**
 * {@inheritDoc}
 */
 public function find($id)
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');
 $select->where(array('id = ?' => $id));

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult() && $result->getAffectedRows()) {
 return $this->hydrator->hydrate($result->current(), $this->postPrototype);
 }

 throw new \InvalidArgumentException("Blog with given ID:{$id} not found.");
 }

 /**
 * {@inheritDoc}
 */
 public function findAll()
 {
 $sql = new Sql($this->dbAdapter);
 $select = $sql->select('posts');

 $stmt = $sql->prepareStatementForSqlObject($select);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface && $result->isQueryResult()) {
 $resultSet = new HydratingResultSet($this->hydrator, $this->postPrototype);

 return $resultSet->initialize($result);
 }

 return array();
 }

 /**
 * {@inheritDoc}
 */
 public function save(PostInterface $postObject)
 {
 $postData = $this->hydrator->extract($postObject);
 unset($postData['id']); // Neither Insert nor Update needs the ID in the array

 if ($postObject->getId()) {
 // ID present, it's an Update
 $action = new Update('post');
 $action->set($postData);
 $action->where(array('id = ?' => $postObject->getId()));
 } else {
 // ID NOT present, it's an Insert
 $action = new Insert('post');
 $action->values($postData);
 }

 $sql = new Sql($this->dbAdapter);
 $stmt = $sql->prepareStatementForSqlObject($action);
 $result = $stmt->execute();

 if ($result instanceof ResultInterface) {
 if ($newId = $result->getGeneratedValue()) {
 // When a value has been generated, set it on the object
 $postObject->setId($newId);
 }

 return $postObject;
 }

 throw new \Exception("Database error");
 }

 /**
 * {@inheritDoc}
 */
 public function delete(PostInterface $postObject)
 {
 $action = new Delete('posts');
 $action->where(array('id = ?' => $postObject->getId()));

 $sql = new Sql($this->dbAdapter);
 $stmt = $sql->prepareStatementForSqlObject($action);
 $result = $stmt->execute();

 return (bool)$result->getAffectedRows();
 }
 }

The Delete statement should look fairly similar to you as this is basically the same deal as all other queries we’ve
created so far. With all of this set up now we’re good to go ahead and write our view file so we can delete blogs.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <!-- Filename: /module/Blog/view/blog/delete/delete.phtml -->
 <h1>DeleteController::deleteAction()</h1>
 <p>
 Are you sure that you want to delete
 '<?php echo $this->escapeHtml($this->post->getTitle()); ?>' by
 '<?php echo $this->escapeHtml($this->post->getText()); ?>'?
 </p>
 <form action="<?php echo $this->url('blog/delete', array(), true) ?>" method="post">
 <input type="submit" name="delete_confirmation" value="yes">
 <input type="submit" name="delete_confirmation" value="no">
 </form>

Summary

In this chapter we’ve learned how data binding within the Zend\Form-component works and through it we have finished
our update-routine. Then we have learned how we can use HTML-Forms and checking it’s data without relying on
Zend\Form, which ultimately lead us to having a full CRUD-Routine for the Blog example.

In the next chapter we’ll recapitulate everything we’ve done. We’ll talk about the design-patterns we’ve used and we’re
going to cover a couple of questions that highly likely arose during the course of this tutorial.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Reviewing the Blog-application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Reviewing the Blog-application

Throughout the past seven chapters we have created a fully functional CRUD-Application using music-blogs as an example.
While doing so we’ve made use of several different design-patterns and best-practices. Now it’s time to reiterate and
take a look at some of the code-samples we’ve written. This is going to be done in a Q&A fashion.

	Do we always need all the layers and interfaces?

	`Having many objects, won’t there be many code-duplication?`_

	Why are there so many controllers?

Do we always need all the layers and interfaces?

Short answer: no.

Long answer: The importance of interfaces goes up the bigger your application becomes. If you can foresee that
your application will be used by other people or is supposed to be extendable, then you should strongly consider to
always code against interfaces. This is a very common best-practice that is not tied to ZF2 specifically but rather
aimed at strict OOP programming.

The main role of the multiple layers that we have introduced (Controller -> Service -> Mapper ->
Backend) are to get a strict separation of concerns for all of our objects. There are many resources who can
explain in detail the big advantages of each layer so please go ahead and read up on them.

For a very simple application, though, you’re most likely to strip away the Mapper-layer. In practice all the code
from the mapper layer often resides inside the services directly. And this works for most of the applications but as
soon as you plan to support multiple backends (i.e. open source software) or you want to be prepared for changing
backends, you should always consider including this layer.

Having many objects, won’t there be much code-duplication?

Short answer: yes.

Long answer: there doesn’t need to be. Most code-duplication would come from the mapper-layer, too. If you take a
closer look at the class you’ll notice that there’s just two things that are tied to a specific object. First, it is
the name of the database-table. Second, it is the object-prototype that’s passed into the mapper.

The prototype is already passed into the class from the __construct() function so that’s already interchangeable.
If you want to make the table-name interchangeable, too, all you need to do is to provide the table-name from the
constructor, too, and you have a fully versatile db-mapper-implementation that can be used for pretty much every
object of your application.

You could then write a factory class that could look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 <?php

 class NewsMapperFactory implements FactoryInterface
 {
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 return new ZendDbSqlMapper(
 $serviceLocator->get('Zend\Db\Adapter\Adapter'), // DB-Adapter
 'news', // Table-Name
 new ClassMethods(false), // Object-Hydrator
 new News() // Object-Prototype
);
 }
 }

Why are there so many controllers?

Looking back at code-examples from a couple of years back you’ll notice that there was a lot of code inside each
controller. This has become a bad-practice that’s known as Fat Controllers or Bloated Controllers.

The major difference about each controller we have created is that there are different dependencies. For example, the
WriteController required the PostForm as well as the PostService while the DeleteController only required the
PostService. In this example it wouldn’t make sense to write the deleteAction() into the WriteController because
we then would needlessly create an instance of the PostForm which is not required. In large scale applications this
would create a huge bottleneck that would slow down the application.

Looking at the DeleteController as well as the ListController you’ll notice that both controllers have the same
dependency. Both require only the PostService so why not merge them into one controller? The reason here is for
semantical reasons. Would you look for a deleteAction() in a ListController? Most of us wouldn’t and therefore we
have created a new class for that.

In applications where the InsertForm differs from the UpdateForm you’d always want to have two different controllers
for each of them instead of one united WriteController like we have in our example. These things heavily differ from
application to application but the general intent always is: keep your controllers slim / lightweight!

Do you have more questions? PR them!

If there’s anything you feel that’s missing in this FAQ, please PR your question and we will give you the answer that
you need!

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 Getting Started with Zend Framework 2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by
creating a simple database driven application using the Model-View-Controller
paradigm. By the end you will have a working ZF2 application and you can then
poke around the code to find out more about how it all works and fits together.

We will develop this application using Zend Studio 10 and run the application on
Zend Server 6.

Zend Server is a PHP application server that includes the PHP runtime. It comes
in both free and paid editions, both of which provide lots of features; however
the most interesting ones for developers are the dead-simple environment setup
and the ability to investigate application problems, including profiling
performance and memory issues with code-tracing abilities. Zend Server also
ships with Zend Framework 2, which is convenient.

Zend Studio is a PHP-focused IDE based on Eclipse that comes in two flavours:
the free Eclipse PDT and Zend Studio, a paid-for product that provides enhanced
features and support options. Usefully, Eclipse PDT provides Zend Framework 2
support out of the box along with Zend Server integration. You don’t get the
mobile features though, or integrated PHP Documenter & PHPUnit features.

In this tutorial we’re going to build a small, simple database application to
manage a list of to-do items. We’ll need a list of items along with the ability
to add, edit and delete items. We’ll use a database to store information about
each to-do item.

Installation

Firstly you’ll need to install Zend Server and Eclipse PDT. If you have a
license for Zend Studio 10, you can use that too. You can download the latest
version of Zend Server [http://www.zend.com/en/products/server/downloads?src=zft]. Grab Eclipse PDT [http://www.zend.com/en/company/community/pdt/downloads?src=zft] or Zend
Studio [http://www.zend.com/en/products/studio/downloads?src=zft] (which comes
with a free 30-day trial) and install it. In this tutorial we will use the
phrase Zend Studio, but it will all work with Eclipse PDT too.

On Linux, you can install Zend Server with either Apache or Nginx. This tutorial
has assumed that you have installed the Apache version. The only important
difference for this tutorial is the creation of rewrite rules.

Once you have installed Zend Server, enter the administration application, which
can usually be found at http://localhost:10081/. Set the time zone in
Configuration -> PHP, and then restart the server (third button from the right
in the top right corner).

[image: ../_images/getting-started-with-zend-studio.server2.png]
You will also need to install MySQL using your Linux distribution’s package
manager or from mysql.com if you are on Windows. For OS X users, Zend Server
already includes MySQL for you.

On OS X, the document root for the Zend Server installed Apache is at
/usr/local/zend/apache2/htdocs. On Linux, Zend Server uses the web server
supplied by the distribution. On Ubuntu 12.04, with Apache, it is /var/www
and with nginx it is at /usr/share/nginx/html. On Windows, it is
C:\Program Files (x86)\Zend\Apache2\htdocs.

Ensure that this folder is writeable by your own user. The easiest way to do
this is to change the owner of the html directory. On a Mac, this would be:

$ sudo chown {your username} /usr/local/zend/apache2/htdocs

Getting Started

We start by creating a new Local PHP project in Zend Studio. Open Zend Studio
and select File -> New -> Local PHP Project. This will display the New Local PHP
Project wizard as shown:

[image: ../_images/getting-started-with-zend-studio.studio1.png]
Enter MyTaskList as the Project Name and set the location to the Zend Server
document root. Due to the integration between Zend Server and Zend Studio, you
should find the correct directory as an option in the drop down list. Select
Zend Framework as the Content and you can then select which version of Zend
Framework to use. Select the latest Zend Framework 2 version and press Next.

The next step is the Launch Settings tab. Choose Launch URL and set the host to
http://localhost (or http://localhost:10088 on OS X) and the Base Path to
/MyTaskList/:

[image: ../_images/getting-started-with-zend-studio.studio2.png]
Press Finish to create your new project in Zend Studio.

Zend Studio has now created a default Zend Framework project for us:

[image: ../_images/getting-started-with-zend-studio.studio3.png]
This is a standard Zend Framework 2 Skeleton Application and is a great starting
point for a new ZF2 application.

To set up Zend Studio to run this project, select Run -> Run Configurations...
and double click on PHP Web Application in the left hand list. Enter MyTaskList
as the name, Local Zend Server as the PHP Server and then click the Browse
button and select index.php within the public folder of the MyTaskList project.
Uncheck Auto Generate in the URL section and then set the path to
/MyTaskList/public and press Apply and then Close:

[image: ../_images/getting-started-with-zend-studio.studio4.png]
To test that all is working, press the run button in the toolbar (white arrow in
a green circle). The ZF2 Skeleton Application home page will display in a new
tab within Zend Studio:

[image: ../_images/getting-started-with-zend-studio.studio5.png]
You can also navigate to the same URL (http://localhost:10088/MyTaskList/public/
on a Mac) in any browser.

We have successfully installed both Zend Server and Zend Studio, created a
project and tested it. Let’s start by looking at what we have so far in our Zend
Framework project.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 A quick tour of the skeleton application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

A quick tour of the skeleton application

The skeleton application provides a lot of files, so it’s worth having a quick
high-level look at what has been generated for us. There are a number of high
level directories created for us (along with Composer [http://getcomposer.org] and other support files):

	Folder
	Information stored

	config
	Application-level configuration files.

	data
	Data files generated by the application, such as caches.

	module
	The source files that make up this application are stored within
separate modules within this folder.

	public
	The web server’s document root. All files served directly by the
web server are in here.

	vendor
	Third party libraries.

One of the key features of Zend Framework 2 is its module system. This provides
organisation within your application; all application code lives within a
module. The skeleton provides the Application module for bootstrapping, error
and routing configuration. It also provides the application-level controllers
for the home page and error display. The Application module contains these key
folders:

	Folder
	Information stored

	config
	Module-specific configuration files.

	language
	Translation files.

	src/Application
	PHP files for this module, including controller and model files.
The controller for the
home page, IndexController.php, is provided.

	view/application
	View scripts for each controller action.

	view/error
	Error view scripts for 404 and generic errors.

	view/layout
	Layout view scripts. These contain the common HTML shared by a
number of pages within the
website. An initial default file, layout.phtml, is provided.

Modules are simply namespaces containing a top level Module class. They are
intended to be reusable and no additional constraints are placed on how they are
organised. An application consists of multiple modules, both third party and
application specific, with the list of modules to load stored in
config/application.config.php.

The dispatch cycle

Zend Framework 2 applications use the Front Controller [http://www.martinfowler.com/eaaCatalog/frontController.html] design pattern.
This means that all requests are directed to a single entry point, the
public/index.php file. This is done using a .htaccess file containing
rewrite rules that serves all static files (such as CSS & Javascript) and
directs all other requests to the index.php. The index.php file initialises the
autoloader and then bootstraps Zend\Mvc\Application before finally running
the application. The process looks like this:

[image: ../_images/getting-started-with-zend-studio.process.png]

Starting up

To set up the application for running, a number of things happen. Firstly an
instance of Zend\ServiceManager is created as the master locator for all
class instances used by the application. The Module Manager is then used to load
all the application’s modules. It does this by reading its configuration file,
application.config.php, which is solely for use by the Module Manager and
does not contain the configuration used by the application itself.

The modules are loaded in the order listed in the configuration file and for
each module a number of steps takes place:

	Configuration of autoloading.

	Loading of module configuration.

	Registration of event listeners.

	Configuration of the Service Manager.

The configuration information from all modules is merged together into one
configuration array. This means that configuration information in subsequent
modules can override information already set. Finally, the global configuration
files stored in the config/autoload directory are merged (the
*.global.php and then the *.local.php files). This means that any
module’s configuration can be overridden at the application level and is a key
feature that helps to ensure that the code within a third-party module does not
need to be changed.

The Service Manager and Event Manager are two other key features of a Zend
Framework 2 application. Zend\ServiceManager
allows for decoupling the instantiation and configuration of a class and its
dependencies from where that class is used. This is known as Dependency
Injection and is used extensively in Zend Framework 2.
Zend\EventManager is an
implementation of the Observer design pattern which allows decoupling of code.
In Zend Framework 2, every key process in the dispatch cycle is implemented as
an event. This means that you can write listeners for these events which can
then change the flow of operation or perform additional processes when something
else has happened.

Dispatching

Once all modules have been loaded, the application is run. This is done as a
series of events, with the first event, route, used to determine the
controller action that should be run based on the URL requested. Once this is
determined, the dispatch event is triggered which causes the action method
within the controller class to be executed. The view rendering event, render,
is then triggered if an HTML view is required. Finally the finish event is
triggered which sends the response back to the user’s web browser.

While this is a typical dispatch cycle, Zend Framework 2’s dispatch system is
very flexible and can be configured in a variety of ways depending on the
specific application. Now that we’ve looked at how Zend Framework works, let’s
move on and write the MyTaskList application.

 Copyright 2015, Zend Technologies Ltd..
 Created using Sphinx 1.3.1.

 [image: Edit this document]

 The MyTaskList application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zend Framework 2 2.3.7 documentation

The MyTaskList application

The application we are going to create is a to-do list manager. The application
will allow us to create to-do items and check them off. We’ll also need the
ability to edit and delete an item. As we are building a simple application, we
need just four pages:

	Page
	Notes

	Checklist homepage
	This will display the list of to-do items.

	Add new item
	This page will provide a form for adding a new item.

	Edit item
	This page will provide a form for editing an item.

	Delete item
	This page will confirm that we want to delete an item and then delete it.

Each page of the application is known as an action, and actions are grouped into
controllers within modules. Generally, related actions are placed into a single
controller; for instance, a news controller might have actions of current,
archived and view.

We will store information about our to-do items in a database. A single table
will suffice with the following fields:

	Field name
	Type
	Null?
	Notes

	id
	integer
	No
	Primary key, auto-increment

	title
	varchar(100)
	No
	Name of the file on disk

	completed
	tinyint
	No
	Zero if not done, one if done

	created
	datetime
	No
	Date that the to-do item was created

We are going to use MySQL, via PHP’s PDO driver, so create a database called
mytasklist using your preferred MySQL client, and run these SQL statements
to create the task_item table and some sample data:

CREATE TABLE task_item (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(100) NOT NULL,
 completed TINYINT NOT NULL DEFAULT '0',
 created DATETIME NOT NULL,

 PRIMARY KEY (id)
);

INSERT INTO task_item (title, completed, created)
 VALUES ('Purchase conference ticket', 0, NOW());
INSERT INTO task_item (title, completed, created)
 VALUES ('Book airline ticket', 0, NOW());
INSERT INTO task_item (title, completed, created)
 VALUES ('Book hotel', 0, NOW());
INSERT INTO task_item (title, completed, created)
 VALUES ('Enjoy conference', 0, NOW());

Note that if you have Zend Studio, you can use the built-in Database
Connectivity features. This if found in the Database Development perspective
(Window | Open Perspective | Other | Database Development menu item) and further
details are in the Zend Studio manual [http://files.zend.com/help/Zend-Studio/content/data_tools_platform.htm].

The Checklist module

We will create all our code within a module called Checklist. The
Checklist module will, therefore, contain our controllers, models, forms and
views, along with specific configuration files.

We create our new Checklist module in Zend Studio. In the PHP Explorer on
the left, right click on the MyTaskList project folder and choose New -> Zend
Framework Item. Click on Zend Module and press Next. The Source Folder should
already be set to /MyTaskList/module. Enter Checklist as the Module name
and Task as the Controller name and then press Finish:

[image: ../_images/getting-started-with-zend-studio.studio6.png]
The wizard will now go ahead and create a blank module for us and register it
with the Module Manager’s application.config.php. You can see what it has
done in the PHP Explorer view under the module folder:

[image: ../_images/getting-started-with-zend-studio.studio7.png]
As you can see the Checklist module has separate directories for the different
types of files we will have. The config folder contains configuration files,
and the PHP files that contain classes within the Checklist namespace live
in the src/Checklist directory. The view directory also has a sub-
folder called checklist for our module’s view scripts, and the tests
folder contains PHPUnit test files.

The Module class

As mentioned earlier, a module’s Module class contains methods that are
called during the start-up process and is also used to register listeners that
will be triggered during the dispatch process. The Module class created for
us contains three methods: getAutoloaderConfig(), getConfig() and
onBootstrap() which are called by the Module Manager during start-up.

Autoloading files

Our getAutoloaderConfig() method returns an array that is compatible with
ZF2’s AutoloaderFactory. It is configured for us with both a classmap file
(autoload_classmap.php) and a standard autoloader to load any files in
src/Checklist according to the PSR-0 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md] rules .

Classmap autoloading is faster, but requires adding each new class you create to
the array within the autoload_classmap.php file, which slows down development.
The standard autoloader, however, doesn’t have this requirement and will always
load a class if its file is named correctly. This allows us to develop quickly
by creating new classes when we need them and then gain a performance boost by
using the classmap autoloader in production. Zend Framework 2 provides
bin/classmap_generator.php to create and update the file.

Configuration

The getConfig() method in Checklist\Module is called by the Module
Manager to retrieve the configuration information for this module. By tradition,
this method simply loads the config/module.config.php file which is an
associative array. In practice, the Module Manager requires that the returned
value from getConfig() be a Traversable, which means that you can use
any configuration format that Zend\Config supports. You will find, though,
that most examples use arrays as they are easy to understand and fast.

The actual configuration information is placed in config/module.config.php.
This nested array provides the key configuration for our module. The
controllers sub-array is used to register this module’s controller classes
with the Controller Service Manager which is used by the dispatcher to
instantiate a controller. The one controller that we need, TaskController,
is already registered for us.

The router sub-array provides the configuration of the routes that are used
by this module. A route is the way that a URL is mapped to a to a particular
action method within a controller class. Zend Studio’s default configuration is
set up so that a URL of /checklist/foo/bar maps to the barAction()
method of the FooController within the Checklist module. We will modify
this later.

Finally, the view_manager sub-array within the module.config.php file is
used to register the directory where our view files are with the View sub-
system. This means that within the view/checklist sub-folder, there is a
folder for each controller. We have one controller, TaskController, so there
is a single sub-folder in view/checklist called task. Within this
folder, there are separate .phtml files which contain the specific HTML for
each action of our module.

Registering events

The onBootstrap() method in the Module class is the easiest place to
register listeners for the MVC events that are triggered by the Event Manager.
Note that the default method body provided by Zend Studio is not needed as the
ModuleRouteListener is already registered by the Application module. We
do not have to register any events for this tutorial, so go ahead and delete the
entire OnBootstrap() method.

The application’s pages

As we have four pages that all apply to tasks, we will group them in a single
controller called TaskController within our Checklist module as four
actions. Each action has a related URL which will result in that action being
dispatched. The four actions and URLs are:

	Page
	URL
	Action

	Homepage
	/task
	index

	Add new task
	/task/add
	add

	Edit task
	/task/edit
	edit

	Delete task
	/task/delete
	delete

The mapping of a URL to a particular action is done using routes that are
defined in the module’s module.config.php file. As noted earlier, the
configuration file, module.config.php created by Zend Studio has a route
called checklist set up for us.

Routing

The default route provided for us isn’t quite what we need. The checklist
route is defined like this:

module/Checklist/src/config/module.config.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 'router' => array(
 'routes' => array(
 'checklist' => array(
 'type' => 'Literal',
 'options' => array(
 'route' => '/task',
 'defaults' => array(
 '__NAMESPACE__' => 'Checklist\Controller',
 'controller' => 'Task',
 'action' => 'index',
),
),
 'may_terminate' => true,
 'child_routes' => array(
 'default' => array(
 'type' => 'Segment',
 'options' => array(
 'route' => '/[:controller[/:action]]',
),
),
),
),

This defines a main route called checklist, which maps the URL /task to
the index action of the Task controller and then there is a child route called
default which maps /task/{controller name}/{action name} to the {action
name} action of the {controller name} controller. This means that, by
default, the URL to call the add action of the Task controller would be
/task/task/add. This doesn’t look very nice and we would like to shorten it
to /task/add.

To fix this, we will rename the route from checklist to task because
this route will be solely for the Task controller. We will then redefine it to
be a single Segment type route that can handle actions as well as just route
to the index action

Open module/Checklist/config/module.config.php in Zend Studio and change the
entire router section of the array to be:

module/Checklist/src/config/module.config.php:

'router' => array(
 'routes' => array(
 'task' => array(
 'type' => 'Segment',
 'options' => array(
 'route' => '/task[/:action[/:id]]',
 'defaults' => array(
 '__NAMESPACE__' => 'Checklist\Controller',
 'controller' => 'Task',
 'action' => 'index',
),
 'constraints' => array(
 'action' => '(add|edit|delete)',
 'id' => '[0-9]+',
),
),
),
),
),

We have now renamed the route to task and have set it up as a Segment route
with two optional parameters in the URL: action and id. We have set a
default of index for the action, so that if the URL is simply /task,
then we shall use the index action in our controller.

The optional constraints section allow us to specify regular expression
patterns that match the characters that we expect for a given parameter. For
this route, we have specified that the action parameter must be either add,
edit or delete and that the id parameter must only contain numbers.

The routing for our Checklist module is now set up, so we can now turn our
attention to the controller.

The TaskController

In Zend Framework 2, the controller is a class that is generally called
{Controller name}Controller. Note that {Controller name} starts with a
capital letter. This class lives in a file called {Controller
name}Controller.php within the Controller directory for the module. In our
case that’s the module/Checklist/src/Checklist/Controller directory. Each
action is a public function within the controller class that is named {action
name}Action. In this case {action name} should start with a lower case
letter.

Note that this is merely a convention. Zend Framework 2’s only restrictions on a
controller is that it must implement the Zend\Stdlib\Dispatchable interface.
The framework provides two abstract classes that do this for us:
Zend\Mvc\Controller\ActionController and
Zend\Mvc\Controller\RestfulController. We’ll be using the
AbstractActionController, but if you’re intending to write a RESTful web service,
AbstractRestfulController may be useful.

Zend Studio’s module creation wizard has already created TaskController for
us with two action methods in it: indexAction() and fooAction(). Remove
the fooAction() method and the default “Copyright Zend” DocBlock comment at
the top of the file. Your controller should now look like this:

module/Checklist/src/Checklist/Controller/TaskController.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 namespace Checklist\Controller;

 use Zend\Mvc\Controller\AbstractActionController;

 class TaskController extends AbstractActionController
 {
 public function indexAction()
 {
 return array();
 }

 }

This controller now contains the action for the home page which will display our
list of to-do items. We now need to create a model-layer that can retrieve the
tasks from the database for display.

The model

It is time to look at the model section of our application. Remember that the
model is the part that deals with the application’s core purpose (the so-called
“business rules”) and, in our case, deals with the database. Zend Framework does
not provide a Zend\Model component because the model is your business logic
and it’s up to you to decide how you want it to work.

There are many components that you can use for this depending on your needs. One
approach is to have model classes represent each entity in your application and
then use mapper objects that load and save entities to the database. Another is
to use an Object-relational mapping (ORM) technology, such as Doctrine or
Propel. For this tutorial, we are going to create a fairly simple model layer
using an entity and a mapper that uses the Zend\Db component. In a larger,
more complex, application, you would probably also have a service class that
interfaces between the controller and the mapper.

We already have created the database table and added some sample data, so let’s
start by creating an entity object. An entity object is a simple PHP object that
represents a thing in the application. In our case, it represents a task to be
completed, so we will call it TaskEntity.

Create a new folder in module/Checklist/src/Checklist called Model and
then right click on the new Model folder and choose New -> PHP File. In the
New PHP File dialog, set the File Name to TaskEntity.php as shown and then
press Finish.

[image: ../_images/getting-started-with-zend-studio.studio8.png]
This will create a blank PHP file. Update it so that it looks like this:

module/Checklist/src/Checklist/Model/TaskEntity.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	 <?php
 namespace Checklist\Model;

 class TaskEntity
 {
 protected $id;
 protected $title;
 protected $completed = 0;
 protected $created;

 public function __construct()
 {
 $this->created = date('Y-m-d H:i:s');
 }

 public function getId()
 {
 return $this->id;
 }

 public function setId($Value)
 {
 $this->id = $Value;
 }

 public function getTitle()
 {
 return $this->title;
 }

 public function setTitle($Value)
 {
 $this->title = $Value;
 }

 public function getCompleted()
 {
 return $this->completed;
 }

 public function setCompleted($Value)
 {
 $this->completed = $Value;
 }

 public function getCreated()
 {
 return $this->created;
 }

 public function setCreated($Value)
 {
 $this->created = $Value;
 }
 }

The Task entity is a simple PHP class with four properties with getter and
setter methods for each property. We also have a constructor to fill in the
created property. If you are using Zend Studio rather than Eclipse PDT, then
you can generate the getter and setter methods by right clicking in the file and
choosing Source -> Generate Getters and Setters [http://files.zend.com/help/Zend-Studio-10/zend-studio.htm#creating_getters_and_setters.htm].

We now need a mapper class which is responsible for persisting task entities to
the database and populating them with new data. Again, right click on the Model
folder and choose New -> PHP File and create a PHP file called
TaskMapper.php. Update it so that it looks like this:

module/Checklist/src/Checklist/Model/TaskMapper.php:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 <?php
 namespace Checklist\Model;

 use Zend\Db\Adapter\Adapter;
 use Checklist\Model\TaskEntity;
 use Zend\Stdlib\Hydrator\ClassMethods;
 use Zend\Db\Sql\Sql;
 use Zend\Db\Sql\Select;
 use Zend\Db\ResultSet\HydratingResultSet;

 class TaskMapper
 {
 protected $tableName = 'task_item';
 protected $dbAdapter;
 protected $sql;

 public function __construct(Adapter $dbAdapter)
 {
 $this->dbAdapter = $dbAdapter;
 $this->sql = new Sql($dbAdapter);
 $this->sql->setTable($this->tableName);
 }

 public function fetchAll()
 {
 $select = $this->sql->select();
 $select->order(array('completed ASC', 'created ASC'));

 $statement = $this->sql->prepareStatementForSqlObject($select);
 $results = $statement->execute();

 $entityPrototype = new TaskEntity();
 $hydrator = new ClassMethods();
 $resultset = new HydratingResultSet($hydrator, $entityPrototype);
 $resultset->initialize($results);
 return $resultset;
 }
 }

Within this mapper class we have implemented the fetchAll() method and a
constructor. There’s quite a lot going on here as we’re dealing with the
Zend\Db component, so let’s break it down. Firstly we have the constructor
which takes a Zend\Db\Adapter\Adapter parameter as we can’t do anything
without a database adapter. Zend\Db\Sql is an object that abstracts SQL
statements that are compatible with the underlying database adapter in use. We
are going to use this object for all of our interaction with the database, so we
create it in the constructor.

The fetchAll() method retrieves data from the database and places it into a
HydratingResultSet which is able to return populated TaskEntity objects
when iterating. To do this, we have three distinct things happening. Firstly we
retrieve a Select object from the Sql object and use the order()
method to place completed items last. We then create a Statement object and
execute it to retrieve the data from the database. The $results object can
be iterated over, but will return an array for each row retrieved but we want a
`` TaskEntity`` object. To get this, we create a HydratingResultSet which
requires a hydrator and an entity prototype to work.

The hydrator is an object that knows how to populate an entity. As there are
many ways to create an entity object, there are multiple hydrator objects
provided with ZF2 and you can create your own. For our TaskEntity, we use
the ClassMethods hydrator which expects a getter and a setter method for
each column in the resultset. Another useful hydrator is ArraySerializable
which will call getArrayCopy() and populate() on the entity object when
transferring data. The HydratingResultSet uses the prototype design pattern
when creating the entities when iterating. This means that instead of
instantiating a new instance of the entity class on each iteration, it clones
the provided instantiated object. See http://ralphschindler.com/2012/03/09/php-
constructor-best-practices-and-the-prototype-pattern for more details.

Finally, fetchAll() returns the result set object with the correct data in it.

Using Service Manager to configure the database credentials and inject into the controller

In order to always use the same instance of our TaskMapper, we will use the
Service Manager to define how to create the mapper and also to retrieve it when
we need it. This is most easily done in the Module class where we create