
Zend Framework 2 Documentation
Release 2.0.0

Zend Technologies Ltd.

March 19, 2013

CONTENTS

i

ii

CHAPTER

ONE

OVERVIEW

Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented code and utilises most of the new features of PHP 5.3, namely namespaces,
late static binding, lambda functions and closures.

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million downloads.

Note: ZF2 is not backward compatible with ZF1, because of the new features in PHP 5.3+ implemented by the
framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few dependencies on
other components. ZF2 follows the SOLID object oriented design principle. This loosely coupled architecture allows
developers to use whichever components they want. We call this a “use-at-will” design. We support Pyrus and
Composer as installation and dependency tracking mechanisms for the framework as a whole and for each component,
further enhancing this design.

We use PHPUnit to test our code and Travis CI as a Continuous Integration service.

While they can be used separately, Zend Framework 2 components in the standard library form a powerful and exten-
sible web application framework when combined. Also, it offers a robust, high performance MVC implementation, a
database abstraction that is simple to use, and a forms component that implements HTML5 form rendering, validation,
and filtering so that developers can consolidate all of these operations using one easy-to-use, object oriented interface.
Other components, such as ZendAuthentication and ZendPermissionsAcl, provide user authentication
and authorization against all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most popular web
services available. Whatever your application needs are, you’re likely to find a Zend Framework 2 component that can
be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies, but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and StrikeIron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available to Zend
Framework 2 developers.

Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework
2 community. Community members, including contributors, make themselves available on mailing lists, IRC channels
and other forums. Whatever question you have about Zend Framework 2, the community is always available to address
it.

1

http://en.wikipedia.org/wiki/Object-oriented_programming
http://php.net/manual/en/language.namespaces.php
http://it.php.net/lsb
http://it2.php.net/manual/en/functions.anonymous.php
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29
http://pear.php.net/manual/en/pyrus.php
http://getcomposer.org/
http://www.phpunit.de
http://travis-ci.org/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP
http://www.w3.org/TR/html5/forms.html#forms
http://www.zend.com
http://framework.zend.com/archives
http://www.zftalk.com

Zend Framework 2 Documentation, Release 2.0.0

2 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

• New to Zend Framework? Download the latest stable release. Available in .zip and .tar.gz formats.

• Brave, cutting edge? Download Zend Framework’s Git repository using a Git client. Zend Framework is open
source software, and the Git repository used for its development is publicly available on GitHub. Consider using
Git to get Zend Framework if you want to contribute back to the framework, or need to upgrade your framework
version more often than releases occur.

Once you have a copy of Zend Framework available, your application needs to be able to access the framework classes
found in the library folder. Though there are several ways to achieve this, your PHP include_path needs to contain the
path to Zend Framework’s library.

Rob Allen has kindly provided the community with an introduction to :user-guide:‘Getting Started with Zend
Framework 2 <overview>‘. Other Zend Framework community members are actively working on expanding the
tutorial.

3

http://packages.zendframework.com/
https://github.com/zendframework/zf2
http://git-scm.com/
http://github.com/
http://www.php.net/manual/en/configuration.changes.php
http://www.php.net/manual/en/ini.core.php#ini.include-path
http://akrabat.com/about
http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html
http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html

Zend Framework 2 Documentation, Release 2.0.0

4 Chapter 2. Installation

CHAPTER

THREE

GETTING STARTED WITH ZEND
FRAMEWORK 2

This tutorial is intended to give an introduction to using Zend Framework 2 by creating a simple database driven
application using the Model-View-Controller paradigm. By the end you will have a working ZF2 application and you
can then poke around the code to nd out more about how it all works and ts together.

3.1 Some assumptions

This tutorial assumes that you are running PHP 5.3.10 with the Apache web server and MySQL, accessible via the
PDO extension. Your Apache installation must have the mod_rewrite extension installed and congured.

You must also ensure that Apache is congured to support .htaccess les. This is usually done by changing the
setting:

AllowOverride None

to

AllowOverride All

in your httpd.conf le. Check with your distribution’s documentation for exact details. You will not be able to
navigate to any page other than the home page in this tutorial if you have not congured mod_rewrite and .htaccess
usage correctly

3.2 The tutorial application

The application that we are going to build is a simple inventory system to display which albums we own. The main
page will list our collection and allow us to add, edit and delete CDs. We are going to need four pages in our website:

Page Description
List of
albums

This will display the list of albums and provide links to edit and delete them. Also, a link to enable
adding new albums will be provided.

Add new
album

This page will provide a form for adding a new album.

Edit album This page will provide a form for editing an album.
Delete
album

This page will confirm that we want to delete an album and then delete it.

We will also need to store our data into a database. We will only need one table with these elds in it:

5

Zend Framework 2 Documentation, Release 2.0.0

Field name Type Null? Notes
id integer No Primary key, auto-increment
artist varchar(100) No
title varchar(100) No

6 Chapter 3. Getting Started with Zend Framework 2

CHAPTER

FOUR

GETTING STARTED: A SKELETON
APPLICATION

In order to build our application, we will start with the ZendSkeletonApplication
available on github. Go to https://github.com/zendframework/ZendSkeletonApplication
and click the “Zip” button. This will download a le with a name like
zendframework-ZendSkeletonApplication-zfrelease-2.0.0beta5-2-gc2c7315.zip or
similar.

Unzip this le into the directory where you keep all your vhosts and rename the resultant directory to zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to resolve its dependencies. In this case,
the dependency is Zend Framework 2 itself.

To install Zend Framework 2 into our application we simply type:

php composer.phar self-update
php composer.phar install

from the zf2-tutorial folder. This takes a while. You should see an output like:

Installing dependencies from lock file
- Installing zendframework/zendframework (dev-master)

Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

Generating autoload files

Note: If you see this message:

[RuntimeException]
The process timed out.

then your connection was too slow to download the entire package in time, and composer timed out. To avoid this,
instead of running:

php composer.phar install

run instead:

COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar install

We can now move on to the virtual host.

7

https://github.com/zendframework/ZendSkeletonApplication
https://github.com/
https://github.com/zendframework/ZendSkeletonApplication
http://getcomposer.org

Zend Framework 2 Documentation, Release 2.0.0

4.1 Virtual host

You now need to create an Apache virtual host for the application and edit your hosts le so that http://zf2-
tutorial.localhost will serve index.php from the zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd.conf or extra/httpd-vhosts.conf. (If you are
using httpd-vhosts.conf, ensure that this le is included by your main httpd.conf le.)

Ensure that NameVirtualHost is dened and set to “*:80” or similar, and then dene a virtual host along these lines:

<VirtualHost *:80>
ServerName zf2-tutorial.localhost
DocumentRoot /path/to/zf2-tutorial/public
SetEnv APPLICATION_ENV "development"
<Directory /path/to/zf2-tutorial/public>

DirectoryIndex index.php
AllowOverride All
Order allow,deny
Allow from all

</Directory>
</VirtualHost>

Make sure that you update your /etc/hosts or c:\windows\system32\drivers\etc\hosts le so that
zf2-tutorial.localhost is mapped to 127.0.0.1. The website can then be accessed using http://zf2-
tutorial.localhost.

127.0.0.1 zf2-tutorial.localhost localhost

If you’ve done it right, you should see something like this:

To test that your .htaccess le is working, navigate to http://zf2-tutorial.localhost/1234 and you should see this:

If you see a standard Apache 404 error, then you need to x .htaccess usage before continuing.

You now have a working skeleton application and we can start adding the specics for our application.

8 Chapter 4. Getting started: A skeleton application

http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost/1234

CHAPTER

FIVE

MODULES

Zend Framework 2 uses a module system and you organise your main application-specic code within each module.
The Application module provided by the skeleton is used to provide bootstrapping, error and routing conguration to the
whole application. It is usually used to provide application level controllers for, say, the home page of an application,
but we are not going to use the default one provided in this tutorial as we want our album list to be the home page,
which will live in our own module.

We are going to put all our code into the Album module which will contain our controllers, models, forms and views,
along with conguration. We’ll also tweak the Application module as required.

Let’s start with the directories required.

5.1 Setting up the Album module

Start by creating a directory called Album under with the following subdirectories to hold the module’s les:

zf2-tutorial/
/module

/Album
/config
/src

/Album
/Controller
/Form
/Model

/view
/album

/album

As you can see the Album module has separate directories for the different types of les we will have. The PHP les
that contain classes within the Album namespace live in the src/Album directory so that we can have multiple
namespaces within our module should we require it. The view directory also has a sub-folder called album for our
module’s view scripts.

In order to load and congure a module, Zend Framework 2 has a ModuleManager. This will look for Module.php
in the root of the module directory (module/Album) and expect to nd a class called Album\Modulewithin it. That
is, the classes within a given module will have the namespace of the module’s name, which is the directory name of
the module.

Create Module.php in the Album module:

// module/Album/Module.php
namespace Album;

9

Zend Framework 2 Documentation, Release 2.0.0

class Module
{

public function getAutoloaderConfig()
{

return array(
’Zend\Loader\ClassMapAutoloader’ => array(

__DIR__ . ’/autoload_classmap.php’,
),
’Zend\Loader\StandardAutoloader’ => array(

’namespaces’ => array(
__NAMESPACE__ => __DIR__ . ’/src/’ . __NAMESPACE__,

),
),

);
}

public function getConfig()
{

return include __DIR__ . ’/config/module.config.php’;
}

}

The ModuleManager will call getAutoloaderConfig() and getConfig() automatically for us.

5.1.1 Autoloading les

Our getAutoloaderConfig() method returns an array that is compatible with ZF2’s AutoloaderFactory.
We congure it so that we add a class map le to the ClassmapAutoloader and also add this module’s namespace
to the StandardAutoloader. The standard autoloader requires a namespace and the path where to nd the les for
that namespace. It is PSR-0 compliant and so classes map directly to les as per the PSR-0 rules.

As we are in development, we don’t need to load les via the classmap, so we provide an empty array for the classmap
autoloader. Create autoload_classmap.php with these contents:

// module/Album/autoload_classmap.php:
return array();

As this is an empty array, whenever the autoloader looks for a class within the Album namespace, it will fall back to
the to StandardAutoloader for us.

Note: Note that as we are using Composer, as an alternative, you could not implement getAutoloaderConfig()
and instead add "Application": "module/Application/src" to the psr-0 key in composer.json.
If you go this way, then you need to run php composer.phar update to update the composer autoloading les.

5.2 Configuration

Having registered the autoloader, let’s have a quick look at the getConfig() method in Album\Module. This
method simply loads the config/module.config.php le.

Create the following conguration le for the Album module:

// module/Album/cong/module.config.php:
return array(

10 Chapter 5. Modules

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

Zend Framework 2 Documentation, Release 2.0.0

’controllers’ => array(
’invokables’ => array(

’Album\Controller\Album’ => ’Album\Controller\AlbumController’,
),

),
’view_manager’ => array(

’template_path_stack’ => array(
’album’ => __DIR__ . ’/../view’,

),
),

);

The cong information is passed to the relevant components by the ServiceManager. We need two initial sections:
controller and view_manager. The controller section provides a list of all the controllers provided by the mod-
ule. We will need one controller, AlbumController, which we’ll reference as Album\Controller\Album.
The controller key must be unique across all modules, so we prex it with our module name.

Within the view_manager section, we add our view directory to the TemplatePathStack conguration. This
will allow it to nd the view scripts for the Album module that are stored in our views/ directory.

5.3 Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done in the application’s
config/application.config.php file which is provided by the skeleton application. Update this file so
that its modules section contains the Album module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

// cong/application.cong.php:
return array(

’modules’ => array(
’Application’,
’Album’, // <-- Add this line

),
’module_listener_options’ => array(

’config_glob_paths’ => array(
’config/autoload/{,*.}{global,local}.php’,

),
’module_paths’ => array(

’./module’,
’./vendor’,

),
),

);

As you can see, we have added our Album module into the list of modules after the Application module.

We have now set up the module ready for putting our custom code into it.

5.3. Informing the application about our new module 11

Zend Framework 2 Documentation, Release 2.0.0

12 Chapter 5. Modules

CHAPTER

SIX

ROUTING AND CONTROLLERS

We will build a very simple inventory system to display our album collection. The home page will list our collection
and allow us to add, edit and delete albums. Hence the following pages are required:

Page Description
Home This will display the list of albums and provide links to edit and delete them. Also, a link to enable

adding new albums will be provided.
Add new
album

This page will provide a form for adding a new album.

Edit album This page will provide a form for editing an album.
Delete
album

This page will confirm that we want to delete an album and then delete it.

Before we set up our les, it’s important to understand how the framework expects the pages to be organised. Each page
of the application is known as an action and actions are grouped into controllers within modules. Hence, you would
generally group related actions into a controller; for instance, a news controller might have actions of current,
archived and view.

As we have four pages that all apply to albums, we will group them in a single controller AlbumController within
our Album module as four actions. The four actions will be:

Page Controller Action
Home AlbumController index
Add new album AlbumController add
Edit album AlbumController edit
Delete album AlbumController delete

The mapping of a URL to a particular action is done using routes that are dened in the module’s
module.config.php file. We will add a route for our album actions. This is the updated cong file with the
new code commented.

// module/Album/cong/module.cong.php:
return array(

’controllers’ => array(
’invokables’ => array(

’Album\Controller\Album’ => ’Album\Controller\AlbumController’,
),

),

// The following section is new and should be added to your file
’router’ => array(

’routes’ => array(
’album’ => array(

’type’ => ’segment’,
’options’ => array(

13

Zend Framework 2 Documentation, Release 2.0.0

’route’ => ’/album[/:action][/:id]’,
’constraints’ => array(

’action’ => ’[a-zA-Z][a-zA-Z0-9_-]*’,
’id’ => ’[0-9]+’,

),
’defaults’ => array(

’controller’ => ’Album\Controller\Album’,
’action’ => ’index’,

),
),

),
),

),

’view_manager’ => array(
’template_path_stack’ => array(

’album’ => __DIR__ . ’/../view’,
),

),
);

The name of the route is ‘album’ and has a type of ‘segment’. The segment route allows us to specify placeholders
in the URL pattern (route) that will be mapped to named parameters in the matched route. In this case, the route is
‘‘/album[/:action][/:id]‘‘ which will match any URL that starts with /album. The next segment will be an optional
action name, and then nally the next segment will be mapped to an optional id. The square brackets indicate that a
segment is optional. The constraints section allows us to ensure that the characters within a segment are as expected,
so we have limited actions to starting with a letter and then subsequent characters only being alphanumeric, underscore
or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

URL Page Action
/album Home (list of albums) index
/album/add Add new album add
/album/edit/2 Edit album with an id of 2 edit
/album/delete/4 Delete album with an id of 4 delete

6.1 Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller is a class that is generally called
{Controller name}Controller. Note that {Controller name} must start with a capital letter. This
class lives in a le called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is a public method within
the controller class that is named {action name}Action. In this case {action name} should start with a
lower case letter.

Note: This is by convention. Zend Framework 2 doesn’t provide many restrictions on controllers other
than that they must implement the Zend\Stdlib\Dispatchable interface. The framework provides
two abstract classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be using the stan-
dard AbstractActionController, but if you’re intending to write a RESTful web service,
AbstractRestfulController may be useful.

Let’s go ahead and create our controller class:

14 Chapter 6. Routing and controllers

Zend Framework 2 Documentation, Release 2.0.0

// module/Album/src/Album/Controller/AlbumController.php:
namespace Album\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class AlbumController extends AbstractActionController
{

public function indexAction()
{
}

public function addAction()
{
}

public function editAction()
{
}

public function deleteAction()
{
}

}

Note: We have already informed the module about our controller in the ‘controller’ section of
config/module.config.php.

We have now set up the four actions that we want to use. They won’t work yet until we set up the views. The URLs
for each action are:

URL Method called
http://zf2-tutorial.localhost/album Album\Controller\AlbumController::indexAction
http://zf2-tutorial.localhost/album/add Album\Controller\AlbumController::addAction
http://zf2-tutorial.localhost/album/edit Album\Controller\AlbumController::editAction
http://zf2-tutorial.localhost/album/delete Album\Controller\AlbumController::deleteAction

We now have a working router and the actions are set up for each page of our application.

It’s time to build the view and the model layer.

6.1.1 Initialise the view scripts

To integrate the view into our application all we need to do is create some view script files. These les will be executed
by the DefaultViewStrategy and will be passed any variables or view models that are returned from the con-
troller action method. These view scripts are stored in our module’s views directory within a directory named after the
controller. Create these four empty files now:

• module/Album/view/album/album/index.phtml

• module/Album/view/album/album/add.phtml

• module/Album/view/album/album/edit.phtml

• module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

6.1. Create the controller 15

http://zf2-tutorial.localhost/album
http://zf2-tutorial.localhost/album/add
http://zf2-tutorial.localhost/album/edit
http://zf2-tutorial.localhost/album/delete

Zend Framework 2 Documentation, Release 2.0.0

16 Chapter 6. Routing and controllers

CHAPTER

SEVEN

DATABASE AND MODELS

7.1 The database

Now that we have the Album module set up with controller action methods and view scripts, it is time to look at the
model section of our application. Remember that the model is the part that deals with the application’s core purpose
(the so-called “business rules”) and, in our case, deals with the database. We will make use of the Zend Framework
class Zend\Db\TableGateway\TableGateway which is used to find, insert, update and delete rows from a
database table.

We are going to use MySQL, via PHP’s PDO driver, so create a database called zf2tutorial, and run these SQL
statements to create the album table with some data in it.

CREATE TABLE album (
id int(11) NOT NULL auto_increment,
artist varchar(100) NOT NULL,
title varchar(100) NOT NULL,
PRIMARY KEY (id)

);
INSERT INTO album (artist, title)

VALUES (’The Military Wives’, ’In My Dreams’);
INSERT INTO album (artist, title)

VALUES (’Adele’, ’21’);
INSERT INTO album (artist, title)

VALUES (’Bruce Springsteen’, ’Wrecking Ball (Deluxe)’);
INSERT INTO album (artist, title)

VALUES (’Lana Del Rey’, ’Born To Die’);
INSERT INTO album (artist, title)

VALUES (’Gotye’, ’Making Mirrors’);

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of writing!)

We now have some data in a database and can write a very simple model for it.

7.2 The model files

Zend Framework does not provide a Zend\Model component as the model is your business logic and it’s up to you
to decide how you want it to work. There are many components that you can use for this depending on your needs.
One approach is to have model classes represent each entity in your application and then use mapper objects that load
and save entities to the database. Another is to use an ORM like Doctrine or Propel.

For this tutorial, we are going to create a very simple model by creating an AlbumTable class that extends
Zend\Db\TableGateway\TableGateway where each album object is an Album object (known as an en-

17

Zend Framework 2 Documentation, Release 2.0.0

tity). This is an implementation of the Table Data Gateway design pattern to allow for interfacing with data in
a database table. Be aware though that the Table Data Gateway pattern can become limiting in larger systems.
There is also a temptation to put database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!

Let’s start with our Album entity class within the Model directory:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

class Album
{

public $id;
public $artist;
public $title;

public function exchangeArray($data)
{

$this->id = (isset($data[’id’])) ? $data[’id’] : null;
$this->artist = (isset($data[’artist’])) ? $data[’artist’] : null;
$this->title = (isset($data[’title’])) ? $data[’title’] : null;

}
}

Our Album entity object is a simple PHP class. In order to work with Zend\Db’s AbstractTableGateway
class, we need to implement the exchangeArray() method. This method simply copies the data from the passed
in array to our entity’s properties. We will add an input filter for use with our form later.

Next, we extend Zend\Db\TableGateway\AbstractTableGateway and create our own AlbumTable
class in the module’s Model directory like this:

// module/Album/src/Album/Model/AlbumTable.php:
namespace Album\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\ResultSet\ResultSet;
use Zend\Db\TableGateway\AbstractTableGateway;

class AlbumTable extends AbstractTableGateway
{

protected $table =’album’;

public function __construct(Adapter $adapter)
{

$this->adapter = $adapter;
$this->resultSetPrototype = new ResultSet();
$this->resultSetPrototype->setArrayObjectPrototype(new Album());
$this->initialize();

}

public function fetchAll()
{

$resultSet = $this->select();
return $resultSet;

}

public function getAlbum($id)
{

$id = (int) $id;

18 Chapter 7. Database and models

Zend Framework 2 Documentation, Release 2.0.0

$rowset = $this->select(array(’id’ => $id));
$row = $rowset->current();
if (!$row) {

throw new \Exception("Could not find row $id");
}
return $row;

}

public function saveAlbum(Album $album)
{

$data = array(
’artist’ => $album->artist,
’title’ => $album->title,

);
$id = (int)$album->id;
if ($id == 0) {

$this->insert($data);
} else {

if ($this->getAlbum($id)) {
$this->update($data, array(’id’ => $id));

} else {
throw new \Exception(’Form id does not exist’);

}
}

}

public function deleteAlbum($id)
{

$this->delete(array(’id’ => $id));
}

}

There’s a lot going on here. Firstly, we set the protected property $table to the name of the database table, ‘album’
in this case. We then write a constructor that takes a database adapter as its only parameter and assigns it to the adapter
property of our class. We then need to tell the table gateway’s result set that whenever it creates a new row object, it
should use an Album object to do so. The TableGateway classes use the prototype pattern for creation of result
sets and entities. This means that instead of instantiating when required, the system clones a previously instantiated
object. See PHP Constructor Best Practices and the Prototype Pattern for more details.

We then create some helper methods that our application will use to interface with the database table. fetchAll()
retrieves all albums rows from the database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum() either creates a new row in the database or updates a row that already exists and
deleteAlbum() removes the row completely. The code for each of these methods is, hopefully, self-explanatory.

7.3 Using ServiceManager to configure the database credentials and
inject into the controller

In order to always use the same instance of our AlbumTable, we will use the ServiceManager to define how to
create one. This is most easily done in the Module class where we create a method called getServiceConfig()
which is automatically called by the ModuleManager and applied to the ServiceManager. We’ll then be able
to retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class to be instantiated or a factory
(closure or callback) that instantiates the object when the ServiceManager needs it. We start by implementing
getServiceConfig() to provide a factory that creates an AlbumTable. Add this method to the bottom of the

7.3. Using ServiceManager to configure the database credentials and inject into the controller 19

http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern

Zend Framework 2 Documentation, Release 2.0.0

Module class.

// module/Album/Module.php:
namespace Album;

// Add this import statement:
use Album\Model\AlbumTable;

class Module
{

// getAutoloaderConfig() and getConfig() methods here

// Add this method:
public function getServiceConfig()
{

return array(
’factories’ => array(

’Album\Model\AlbumTable’ => function($sm) {
$dbAdapter = $sm->get(’Zend\Db\Adapter\Adapter’);
$table = new AlbumTable($dbAdapter);
return $table;

},
),

);
}

}

This method returns an array of factories that are all merged together by the ModuleManager
before passing to the ServiceManager. We also need to configure the ServiceManager so
that it knows how to get a Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the merged config system.
Zend Framework 2’s ModuleManager merges all the configuration from each module’s module.config.php
file and then merges in the files in config/autoload (*.global.php and then *.local.php files). We’ll add
our database configuration information to global.php which you should commit to your version control system.
You can use local.php (outside of the VCS) to store the credentials for your database if you want to:

// config/autoload/global.php:
return array(

’db’ => array(
’driver’ => ’Pdo’,
’dsn’ => ’mysql:dbname=zf2tutorial;host=localhost’,
’driver_options’ => array(

PDO::MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’
),

),
’service_manager’ => array(

’factories’ => array(
’Zend\Db\Adapter\Adapter’

=> ’Zend\Db\Adapter\AdapterServiceFactory’,
),

),
);

You should put your database credentials in config/autoload/local.php so that they are not in the git repos-
itory (as local.php is ignored):

// config/autoload/local.php:
return array(

’db’ => array(

20 Chapter 7. Database and models

Zend Framework 2 Documentation, Release 2.0.0

’username’ => ’YOUR USERNAME HERE’,
’password’ => ’YOUR PASSWORD HERE’,

),
);

Now that the ServiceManager can create an AlbumTable instance for us, we can add a method to the controller
to retrieve it. Add getAlbumTable() to the AlbumController class:

// module/Album/src/Album/Controller/AlbumController.php:
public function getAlbumTable()
{

if (!$this->albumTable) {
$sm = $this->getServiceLocator();
$this->albumTable = $sm->get(’Album\Model\AlbumTable’);

}
return $this->albumTable;

}

You should also add:

protected $albumTable;

to the top of the class.

We can now call getAlbumTable() from within our controller whenever we need to interact with our model. Let’s
start with a list of albums when the index action is called.

7.4 Listing albums

In order to list the albums, we need to retrieve them from the model and pass them to the view. To do this, we fill in
indexAction() within AlbumController. Update the AlbumController’s indexAction() like this:

// module/Album/src/Album/Controller/AlbumController.php:
// ...

public function indexAction()
{

return new ViewModel(array(
’albums’ => $this->getAlbumTable()->fetchAll(),

));
}

// ...

With Zend Framework 2, in order to set variables in the view, we return a ViewModel instance where the first
parameter of the constructor is an array from the action containing data we need. These are then automatically passed
to the view script. The ViewModel object also allows us to change the view script that is used, but the default is to
use {controller name}/{action name}. We can now fill in the index.phtml view script:

<?php
// module/Album/view/album/album/index.phtml:

$title = ’My albums’;
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p><a href="<?php echo $this->url(’album’, array(
’action’=>’add’));?>">Add new album</p>

7.4. Listing albums 21

Zend Framework 2 Documentation, Release 2.0.0

<table class="table">
<tr>

<th>Title</th>
<th>Artist</th>
<th> </th>

</tr>
<?php foreach($albums as $album) : ?>
<tr>

<td><?php echo $this->escapeHtml($album->title);?></td>
<td><?php echo $this->escapeHtml($album->artist);?></td> <td>

<a href="<?php echo $this->url(’album’,
array(’action’=>’edit’, ’id’ => $album->id));?>">Edit

<a href="<?php echo $this->url(’album’,
array(’action’=>’delete’, ’id’ => $album->id));?>">Delete

</td>
</tr>
<?php endforeach; ?>
</table>

The first thing we do is to set the title for the page (used in the layout) and also set the title for the <head> section
using the headTitle() view helper which will display in the browser’s title bar. We then create a link to add a new
album.

The url() view helper is provided by Zend Framework 2 and is used to create the links we need. The first parameter
to url() is the route name we wish to use for construction of the URL, and the the second parameter is an array of
all the variables to fit into the placeholders to use. In this case we use our ‘album’ route which is set up to accept two
placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The Zend Framework 2 view system
automatically ensures that these variables are extracted into the scope of the view script, so that we don’t have to
worry about prefixing them with $this-> as we used to have to do with Zend Framework 1; however you can do so
if you wish.

We then create a table to display each album’s title and artist, and provide links to allow for editing and deleting the
record. A standard foreach: loop is used to iterate over the list of albums, and we use the alternate form using a
colon and endforeach; as it is easier to scan than to try and match up braces. Again, the url() view helper is
used to create the edit and delete links.

Note: We always use the escapeHtml() view helper to help protect ourselves from XSS vulnerabilities.

If you open http://zf2-tutorial.localhost/album you should see this:

22 Chapter 7. Database and models

http://zf2-tutorial.localhost/album

CHAPTER

EIGHT

STYLING AND TRANSLATIONS

We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to change the title and and remove the
copyright message.

The ZendSkeletonApplication is set up to use Zend\I18n’s translation functionality for all the text. It uses .po
files that live in Application/language, and you need to use poedit to change the text. Start poedit and open
application/language/en_US.po. Click on “Skeleton Application” in the list of Original strings and
then type in “Tutorial” as the translation.

Press Save in the toolbar and poedit will create an en_US.mo file for us. If you find that no .mo file is gen-
erated, check Preferences -> Editor -> Behavior and see if the checkbox marked Automatically
compile .mo file on save is checked.

To remove the copyright message, we need to edit the Application module’s layout.phtml view script:

// module/Application/view/layout/layout.phtml:
// Remove this line:
<p>© 2005 - 2012 by Zend Technologies Ltd. <?php echo $this->translate(’All
rights reserved.’) ?></p>

The page now looks ever so slightly better now!

23

http://www.poedit.net/download.php/

Zend Framework 2 Documentation, Release 2.0.0

24 Chapter 8. Styling and Translations

CHAPTER

NINE

FORMS AND ACTIONS

9.1 Adding new albums

We can now code up the functionality to add new albums. There are two bits to this part:

• Display a form for user to provide details

• Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form and for validation, we add a
Zend\InputFilter to our Album entity. We start by creating a new class Album\Form\AlbumForm that
extends from Zend\Form\Form to define our form. The class is stored in the AlbumForm.php file within the
module/Album/src/Album/Form directory.

Create this file file now:

// module/Album/src/Album/Form/AlbumForm.php:
namespace Album\Form;

use Zend\Form\Form;

class AlbumForm extends Form
{

public function __construct($name = null)
{

// we want to ignore the name passed
parent::__construct(’album’);
$this->setAttribute(’method’, ’post’);
$this->add(array(

’name’ => ’id’,
’attributes’ => array(

’type’ => ’hidden’,
),

));
$this->add(array(

’name’ => ’artist’,
’attributes’ => array(

’type’ => ’text’,
),
’options’ => array(

’label’ => ’Artist’,
),

));
$this->add(array(

’name’ => ’title’,

25

Zend Framework 2 Documentation, Release 2.0.0

’attributes’ => array(
’type’ => ’text’,

),
’options’ => array(

’label’ => ’Title’,
),

));
$this->add(array(

’name’ => ’submit’,
’attributes’ => array(

’type’ => ’submit’,
’value’ => ’Go’,
’id’ => ’submitbutton’,

),
));

}
}

Within the constructor of AlbumForm, we set the name when we call the parent’s constructor and then set the method
and then create four form elements for the id, artist, title, and submit button. For each item we set various attributes
and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework 2 is this done using an input filter which can either
be standalone or within any class that implements InputFilterAwareInterface, such as a model entity. We
are going to add the input filter to our Album entity:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

use Zend\InputFilter\Factory as InputFactory;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\InputFilterAwareInterface;
use Zend\InputFilter\InputFilterInterface;

class Album implements InputFilterAwareInterface
{

public $id;
public $artist;
public $title;
protected $inputFilter;

public function exchangeArray($data)
{

$this->id = (isset($data[’id’])) ? $data[’id’] : null;
$this->artist = (isset($data[’artist’])) ? $data[’artist’] : null;
$this->title = (isset($data[’title’])) ? $data[’title’] : null;

}

public function setInputFilter(InputFilterInterface $inputFilter)
{

throw new \Exception("Not used");
}

public function getInputFilter()
{

if (!$this->inputFilter) {
$inputFilter = new InputFilter();
$factory = new InputFactory();

26 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

$inputFilter->add($factory->createInput(array(
’name’ => ’id’,
’required’ => true,
’filters’ => array(

array(’name’ => ’Int’),
),

)));

$inputFilter->add($factory->createInput(array(
’name’ => ’artist’,
’required’ => true,
’filters’ => array(

array(’name’ => ’StripTags’),
array(’name’ => ’StringTrim’),

),
’validators’ => array(

array(
’name’ => ’StringLength’,
’options’ => array(

’encoding’ => ’UTF-8’,
’min’ => 1,
’max’ => 100,

),
),

),
)));

$inputFilter->add($factory->createInput(array(
’name’ => ’title’,
’required’ => true,
’filters’ => array(

array(’name’ => ’StripTags’),
array(’name’ => ’StringTrim’),

),
’validators’ => array(

array(
’name’ => ’StringLength’,
’options’ => array(

’encoding’ => ’UTF-8’,
’min’ => 1,
’max’ => 100,

),
),

),
)));

$this->inputFilter = $inputFilter;
}

return $this->inputFilter;
}

}

The InputFilterAwareInterface defines two methods: setInputFilter() and getInputFilter().
We only need to implement getInputFilter() so we simply throw an exception in setInputFilter().

Within getInputFilter(), we instantiate an InputFilter and then add the inputs that we require. We add
one input for each property that we wish to filter or validate. For the id field we add an Int filter as we only need

9.1. Adding new albums 27

Zend Framework 2 Documentation, Release 2.0.0

integers. For the text elements, we add two filters, StripTags and StringTrim to remove unwanted HTML and
unnecessary white space. We also set them to be required and add a StringLength validator to ensure that the user
doesn’t enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This is done within the
AlbumController’s addAction():

// module/Album/src/Album/Controller/AlbumController.php:

//...
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Album\Model\Album; // <-- Add this import
use Album\Form\AlbumForm; // <-- Add this import
//...

// Add content to this method:
public function addAction()
{

$form = new AlbumForm();
$form->get(’submit’)->setValue(’Add’);

$request = $this->getRequest();
if ($request->isPost()) {

$album = new Album();
$form->setInputFilter($album->getInputFilter());
$form->setData($request->getPost());

if ($form->isValid()) {
$album->exchangeArray($form->getData());
$this->getAlbumTable()->saveAlbum($album);

// Redirect to list of albums
return $this->redirect()->toRoute(’album’);

}
}
return array(’form’ => $form);

}
//...

After adding the AlbumForm to the use list, we implement addAction(). Let’s look at the addAction() code
in a little more detail:

$form = new AlbumForm();
$form->submit->setValue(’Add’);

We instantiate AlbumForm and set the label on the submit button to “Add”. We do this here as we’ll want to re-use the
form when editing an album and will use a different label.

$request = $this->getRequest();
if ($request->isPost()) {

$album = new Album();
$form->setInputFilter($album->getInputFilter());
$form->setData($request->getPost());
if ($form->isValid()) {

If the Request object’s isPost() method is true, then the form has been submitted and so we set the form’s
input filter from an album instance. We then set the posted data to the form and check to see if it is valid using the
isValid() member function of the form.

28 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

$album->exchangeArray($form->getData());
$this->getAlbumTable()->saveAlbum($album);

If the form is valid, then we grab the data from the form and store to the model using saveAlbum().

// Redirect to list of albums
return $this->redirect()->toRoute(’album’);

After we have saved the new album row, we redirect back to the list of albums using the Redirect controller plugin.

return array(’form’ => $form);

Finally, we return the variables that we want assigned to the view. In this case, just the form object. Note that Zend
Framework 2 also allows you to simply return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

<?php
// module/Album/view/album/album/add.phtml:

$title = ’Add new album’;
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>
<?php
$form = $this->form;
$form->setAttribute(’action’, $this->url(’album’, array(’action’ => ’add’)));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get(’id’));
echo $this->formRow($form->get(’title’));
echo $this->formRow($form->get(’artist’));
echo $this->formSubmit($form->get(’submit’));
echo $this->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework provides some view helpers to make
this a little easier. The form() view helper has an openTag() and closeTag() method which we use to open
and close the form. Then for each element with a label, we can use formRow(), but for the two elements that are
standalone, we use formHidden() and formSubmit().

You should now be able to use the “Add new album” link on the home page of the application to add a new album
record.

9.2 Editing an album

Editing an album is almost identical to adding one, so the code is very similar. This time we use editAction() in
the AlbumController:

// module/Album/src/Album/AlbumController.php:
//...

// Add content to this method:
public function editAction()
{

$id = (int) $this->params()->fromRoute(’id’, 0);

9.2. Editing an album 29

Zend Framework 2 Documentation, Release 2.0.0

if (!$id) {
return $this->redirect()->toRoute(’album’, array(

’action’ => ’add’
));

}
$album = $this->getAlbumTable()->getAlbum($id);

$form = new AlbumForm();
$form->bind($album);
$form->get(’submit’)->setAttribute(’value’, ’Edit’);

$request = $this->getRequest();
if ($request->isPost()) {

$form->setInputFilter($album->getInputFilter());
$form->setData($request->getPost());

if ($form->isValid()) {
$this->getAlbumTable()->saveAlbum($album);

// Redirect to list of albums
return $this->redirect()->toRoute(’album’);

}
}

return array(
’id’ => $id,
’form’ => $form,

);
}

//...

This code should look comfortably familiar. Let’s look at the differences from adding an album. Firstly, we look for
the id that is in the matched route and use it to load the album to be edited:

$id = (int) $this->params()->fromRoute(’id’, 0);
if (!$id) {

return $this->redirect()->toRoute(’album’, array(
’action’ => ’add’

));
}
$album = $this->getAlbumTable()->getAlbum($id);

params is a controller plugin that provides a convenient way to retrieve parameters from the matched route. We use
it to retrieve the id from the route we created in the modules’ module.config.php. If the id is zero, then we
redirect to the add action, otherwise, we continue by getting the album entity from the database.

$form = new AlbumForm();
$form->bind($album);
$form->get(’submit’)->setAttribute(’value’, ’Edit’);

The form’s bind() method attaches the model to the form. This is used in two ways:

When displaying the form, the initial values for each element are extracted from the model.

After successful validation in isValid(), the data from the form is put back into the model.

These operations are done using a hydrator object. There are a number of hydrators, but the default one
is Zend\Stdlib\Hydrator\ArraySerializable which expects to find two methods in the model:
getArrayCopy() and exchangeArray(). We have already written exchangeArray() in our Album entity,
so just need to write getArrayCopy():

30 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

// module/Album/src/Album/Model/Album.php:
// ...

public function exchangeArray($data)
{

$this->id = (isset($data[’id’])) ? $data[’id’] : null;
$this->artist = (isset($data[’artist’])) ? $data[’artist’] : null;
$this->title = (isset($data[’title’])) ? $data[’title’] : null;

}

// Add the following method:
public function getArrayCopy()
{

return get_object_vars($this);
}

// ...

As a result of using bind() with its hydrator, we do not need to populate the form’s data back into the $album as
that’s already been done, so we can just call the mappers’ saveAlbum() to store the changes back to the database.

The view template, edit.phtml, looks very similar to the one for adding an album:

<?php
// module/Album/view/album/album/edit.phtml:

$title = ’Edit album’;
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<?php
$form = $this->form;
$form->setAttribute(’action’, $this->url(

’album’,
array(

’action’ => ’edit’,
’id’ => $this->id,

)
));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get(’id’));
echo $this->formRow($form->get(’title’));
echo $this->formRow($form->get(’artist’));
echo $this->formSubmit($form->get(’submit’));
echo $this->form()->closeTag();

The only changes are to use the ‘Edit Album’ title and set the form’s action to the ‘edit’ action too.

You should now be able to edit albums.

9.3 Deleting an album

To round out our application, we need to add deletion. We have a Delete link next to each album on our list page and
the naïve approach would be to do a delete when it’s clicked. This would be wrong. Remembering our HTTP spec,
we recall that you shouldn’t do an irreversible action using GET and should use POST instead.

9.3. Deleting an album 31

Zend Framework 2 Documentation, Release 2.0.0

We shall show a confirmation form when the user clicks delete and if they then click “yes”, we will do the deletion.
As the form is trivial, we’ll code it directly into our view (Zend\Form is, after all, optional!).

Let’s start with the action code in AlbumController::deleteAction():

// module/Album/src/Album/AlbumController.php:
//...

// Add content to the following method:
public function deleteAction()
{

$id = (int) $this->params()->fromRoute(’id’, 0);
if (!$id) {

return $this->redirect()->toRoute(’album’);
}

$request = $this->getRequest();
if ($request->isPost()) {

$del = $request->getPost(’del’, ’No’);

if ($del == ’Yes’) {
$id = (int) $request->getPost(’id’);
$this->getAlbumTable()->deleteAlbum($id);

}

// Redirect to list of albums
return $this->redirect()->toRoute(’album’);

}

return array(
’id’ => $id,
’album’ => $this->getAlbumTable()->getAlbum($id)

);
}

//...

As before, we get the id from the matched route,and check the request object’s isPost() to determine whether
to show the confirmation page or to delete the album. We use the table object to delete the row using the
deleteAlbum() method and then redirect back the list of albums. If the request is not a POST, then we retrieve the
correct database record and assign to the view, along with the id.

The view script is a simple form:

<?php
// module/Album/view/album/album/delete.phtml:

$title = ’Delete album’;
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p>Are you sure that you want to delete
’<?php echo $this->escapeHtml($album->title); ?>’ by
’<?php echo $this->escapeHtml($album->artist); ?>’?

</p>
<?php
$url = $this->url(’album’, array(

’action’ => ’delete’,
’id’ => $this->id,

));
?>

32 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

<form action="<?php echo $url; ?>" method="post">
<div>

<input type="hidden" name="id" value="<?php echo (int) $album->id; ?>" />
<input type="submit" name="del" value="Yes" />
<input type="submit" name="del" value="No" />

</div>
</form>

In this script, we display a confirmation message to the user and then a form with “Yes” and “No” buttons. In the
action, we checked specifically for the “Yes” value when doing the deletion.

9.4 Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/ doesn’t display the list of albums.

This is due to a route set up in the Application module’s module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:

’home’ => array(
’type’ => ’Zend\Mvc\Router\Http\Literal’,
’options’ => array(

’route’ => ’/’,
’defaults’ => array(

’controller’ => ’Application\Controller\Index’,
’action’ => ’index’,

),
),

),

Change the controller from Application\Controller\Index to Album\Controller\Album:

’home’ => array(
’type’ => ’Zend\Mvc\Router\Http\Literal’,
’options’ => array(

’route’ => ’/’,
’defaults’ => array(

’controller’ => ’Album\Controller\Album’, // <-- change here
’action’ => ’index’,

),
),

),

That’s it - you now have a fully working application!

9.4. Ensuring that the home page displays the list of albums 33

http://zf2-tutorial.localhost/

Zend Framework 2 Documentation, Release 2.0.0

34 Chapter 9. Forms and actions

CHAPTER

TEN

CONCLUSION

This concludes our brief look at building a simple, but fully functional, MVC application using Zend Framework 2.

35

Zend Framework 2 Documentation, Release 2.0.0

36 Chapter 10. Conclusion

CHAPTER

ELEVEN

LEARNING DEPENDENCY INJECTION

11.1 Very brief introduction to Di.

Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes of
this quickstart, we’ll explain the act of injecting dependencies simply with this below code:

1 $b = new B(new A());

Above, A is a dependency of B, and A was injected into B. If you are not familar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy, Ralph Schindler’s Learning DI, or
Fabien Potencier’s Series on DI.

11.2 Very brief introduction to Di Container.

1 TBD.

11.3 Simplest usage case (2 classes, one consumes the other)

In the simplest use case, a developer might have one class (A) that is consumed by another class (B) through the
constructor. By having the dependency injected through the constructor, this requires an object of type A be instantiated
before an object of type B so that A can be injected into B.

1 namespace My {
2

3 class A
4 {
5 /* Some useful functionality */
6 }
7

8 class B
9 {

10 protected $a = null;
11 public function __construct(A $a)
12 {
13 $this->a = $a;
14 }
15 }
16 }

37

http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://fabien.potencier.org/article/11/what-is-dependency-injection

Zend Framework 2 Documentation, Release 2.0.0

To create B by hand, a developer would follow this work flow, or a similar workflow to this:

1 $b = new B(new A());

If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY up the code. While there are several ways to do this, using a dependency injection container is
one of these solutions. With Zend’s dependency injection container Zend\Di\DependencyInjector, the above
use case can be taken care of with no configuration (provided all of your autoloading is already configured properly)
with the following usage:

1 $di = new Zend\Di\DependencyInjector;
2 $b = $di->get(’My\B’); // will produce a B object that is consuming an A object

Moreover, by using the DependencyInjector::get() method, you are ensuring that the same exact object
is returned on subsequent calls. To force new objects to be created on each and every request, one would use the
DependencyInjector::newInstance() method:

1 $b = $di->newInstance(’My\B’);

Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):

1 namespace My {
2

3 class A
4 {
5 protected $username = null;
6 protected $password = null;
7 public function __construct($username, $password)
8 {
9 $this->username = $username;

10 $this->password = $password;
11 }
12 }
13

14 class B
15 {
16 protected $a = null;
17 public function __construct(A $a)
18 {
19 $this->a = $a;
20 }
21 }
22

23 class C
24 {
25 protected $b = null;
26 public function __construct(B $b)
27 {
28 $this->b = $b;
29 }
30 }
31

32 }

With the above, we need to ensure that our DependencyInjector is capable of seeing the A class with a few con-
figuration values (which are generally scalar in nature). To do this, we need to interact with the InstanceManager:

38 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

1 $di = new Zend\Di\DependencyInjector;
2 $di->getInstanceManager()->setProperty(’A’, ’username’, ’MyUsernameValue’);
3 $di->getInstanceManager()->setProperty(’A’, ’password’, ’MyHardToGuessPassword%$#’);

Now that our container has values it can use when creating A, and our new goal is to have a C object that consumes B
and in turn consumes A, the usage scenario is still the same:

1 $c = $di->get(’My\C’);
2 // or
3 $c = $di->newInstance(’My\C’);

Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default
DependencyInjector object ($di = new Zend\Di\DependencyInjector() without any configura-
tion to the InstanceManager), we could do the following:

1 $parameters = array(
2 ’username’ => ’MyUsernameValue’,
3 ’password’ => ’MyHardToGuessPassword%$#’,
4);
5

6 $c = $di->get(’My\C’, $parameters);
7 // or
8 $c = $di->newInstance(’My\C’, $parameters);

Constructor injection is not the only supported type of injection. The other most popular method of injection is also
supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our previous
example with the exception, for example, of our B class now looking like this:

1 namespace My {
2 class B
3 {
4 protected $a;
5 public function setA(A $a)
6 {
7 $this->a = $a;
8 }
9 }

10 }

Since the method is prefixed with set, and is followed by a capital letter, the DependencyInjector knows that
this method is used for setter injection, and again, the use case $c = $di->get(’C’), will once again know how
to fill the dependencies when needed to create an object of type C.

Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.

11.4 Simplest Usage Case Without Type-hints

If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does practice
dependency injection, you can still use the DependencyInjector, but you might find you need to describe your
dependencies explicitly. To do this, you will need to interact with one of the definitions that is capable of letting a devel-
oper describe, with objects, the map between classes. This particular definition is called the BuilderDefinition
and can work with, or in place of, the default RuntimeDefinition.

Definitions are a part of the DependencyInjector that attempt to describe the relationship between classes so
that DependencyInjector::newInstance() and DependencyInjector::get() can know what the
dependencies are that need to be filled for a particular class/object. With no configuration, DependencyInjector

11.4. Simplest Usage Case Without Type-hints 39

Zend Framework 2 Documentation, Release 2.0.0

will use the RuntimeDefinition which uses reflection and the type-hints in your code to determine the depen-
dency map. Without type-hints, it will assume that all dependencies are scalar or required configuration parameters.

The BuilderDefinition, which can be used in tandem with the RuntimeDefinition (technically, it can
be used in tandem with any definition by way of the AggregateDefinition), allows you to programmatically
describe the mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that
class B now looks like this:

1 namespace My {
2 class B
3 {
4 protected $a;
5 public function setA($a)
6 {
7 $this->a = $a;
8 }
9 }

10 }

You’ll notice the only change is that setA now does not include any type-hinting information.

1 use Zend\Di\DependencyInjector;
2 use Zend\Di\Definition;
3 use Zend\Di\Definition\Builder;
4

5 // Describe this class:
6 $builder = new Definition\BuilderDefinition;
7 $builder->addClass(($class = new Builder\PhpClass));
8

9 $class->setName(’My\B’);
10 $class->addInjectableMethod(($im = new Builder\InjectibleMethod));
11

12 $im->setName(’setA’);
13 $im->addParameter(’a’, ’My\A’);
14

15 // Use both our Builder Definition as well as the default
16 // RuntimeDefinition, builder first
17 $aDef = new Definition\AggregateDefinition;
18 $aDef->addDefinition($builder);
19 $aDef->addDefinition(new Definition\RuntimeDefinition);
20

21 // Now make sure the DependencyInjector understands it
22 $di = new DependencyInjector;
23 $di->setDefinition($aDef);
24

25 // and finally, create C
26 $parameters = array(
27 ’username’ => ’MyUsernameValue’,
28 ’password’ => ’MyHardToGuessPassword%$#’,
29);
30

31 $c = $di->get(’My\C’, $parameters);

This above usage scenario provides that whatever the code looks like, you can ensure that it works with the dependency
injection container. In an ideal world, all of your code would have the proper type hinting and/or would be using a
mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a full definition
that is capable of instantiating all of the objects you might require.

40 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

11.5 Simplest usage case with Compiled Definition

Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box,
the DependencyInjector uses a RuntimeDefinition which does all class map resolution via PHP’s
Reflection extension. Couple that with the fact that PHP does not have a true application layer capable of storing
objects in-memory between requests, and you get a recipe that is less performant than similar solutions you’ll find in
Java and .Net (where there is an application layer with in-memory object storage.)

To mitigate this shortcoming, Zend\Di has several features built in capable of pre-compiling the most expensive tasks
that surround dependency injection. It is worth noting that the RuntimeDefition, which is used by default, is the
only definition that does lookups on-demand. The rest of the Definition objects are capable of being aggregated
and stored to disk in a very performant way.

Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships and
parameter/property needs of each class that is to be instantiated. This Definition would have been built as part of
some deployment or packaging task by this 3rd party. When this is not the case, you can create these Definitions
via any of the Definition types provided with the exception of the RuntimeDefinition. Here is a breakdown
of the job of each definition type:

• AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it
looks it up in the order the definitions were provided to this aggregate.

• ArrayDefinition- This definition takes an array of information and exposes it via the interface provided by
Zend\Di\Definition suitable for usage by DependencyInjector or an AggregateDefinition

• BuilderDefinition- Creates a definition based on an object graph consisting of various
Builder\PhpClass objects and Builder\InectionMethod objects that describe the mapping needs
of the target codebase and . . .

• Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(Zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).

The following is an example of producing a definition via a DirectoryScanner:

1 $compiler = new Zend\Di\Definition\Compiler();
2 $compiler->addCodeScannerDirectory(
3 new Zend\Code\Scanner\ScannerDirectory(’path/to/library/My/’)
4);
5 $definition = $compiler->compile();

This definition can then be directly used by the DependencyInjector (assuming the above A, B, C scenario
was actually a file per class on disk):

1 $di = new Zend\Di\DependencyInjector;
2 $di->setDefinition($definition);
3 $di->getInstanceManager()->setProperty(’My\A’, ’username’, ’foo’);
4 $di->getInstanceManager()->setProperty(’My\A’, ’password’, ’bar’);
5 $c = $di->get(’My\C’);

One strategy for persisting these compiled definitions would be the following:

1 if (!file_exists(__DIR__ . ’/di-definition.php’) && $isProduction) {
2 $compiler = new Zend\Di\Definition\Compiler();
3 $compiler->addCodeScannerDirectory(
4 new Zend\Code\Scanner\ScannerDirectory(’path/to/library/My/’)
5);
6 $definition = $compiler->compile();
7 file_put_contents(
8 __DIR__ . ’/di-definition.php’,

11.5. Simplest usage case with Compiled Definition 41

Zend Framework 2 Documentation, Release 2.0.0

9 ’<?php return ’ . var_export($definition->toArray(), true) . ’;’
10);
11 } else {
12 $definition = new Zend\Di\Definition\ArrayDefinition(
13 include __DIR__ . ’/di-definition.php’
14);
15 }
16

17 // $definition can now be used; in a production system it will be written
18 // to disk.

Since Zend\Code\Scanner does not include files, the classes contained within are not loaded into memory. In-
stead, Zend\Code\Scanner uses tokenization to determine the structure of your files. This makes this suitable to
use this solution during development and within the same request as any one of your application’s dispatched actions.

11.6 Creating a precompiled definition for others to use

If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so that
others can utilize this Definition without having to Reflect it via the RuntimeDefintion, or create it via
the Compiler. To do this, use the same technique as above. Instead of writing the resulting array to disk, you would
write the information into a definition directly, by way of Zend\CodeGenerator:

1 // First, compile the information
2 $compiler = new Zend\Di\Definition\Compiler();
3 $compiler->addCodeScannerDirectory(new Zend\Code\Scanner\DirectoryScanner(__DIR__ . ’/My/’));
4 $definition = $compiler->compile();
5

6 // Now, create a Definition class for this information
7 $codeGenerator = new Zend\CodeGenerator\Php\PhpFile();
8 $codeGenerator->setClass(($class = new Zend\CodeGenerator\Php\PhpClass()));
9 $class->setNamespaceName(’My’);

10 $class->setName(’DiDefinition’);
11 $class->setExtendedClass(’\Zend\Di\Definition\ArrayDefinition’);
12 $class->setMethod(array(
13 ’name’ => ’__construct’,
14 ’body’ => ’parent::__construct(’ . var_export($definition->toArray(), true) . ’);’
15));
16 file_put_contents(__DIR__ . ’/My/DiDefinition.php’, $codeGenerator->generate());

11.7 Using Multiple Definitions From Multiple Sources

In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from
multiple places:

1 use Zend\Di\DependencyInjector;
2 use Zend\Di\Definition;
3 use Zend\Di\Definition\Builder;
4

5 $di = new DependencyInjector;
6 $diDefAggregate = new Definition\Aggregate();
7

8 // first add in provided Definitions, for example

42 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

9 $diDefAggregate->addDefinition(new ThirdParty\Dbal\DiDefinition());
10 $diDefAggregate->addDefinition(new Zend\Controller\DiDefinition());
11

12 // for code that does not have TypeHints
13 $builder = new Definition\BuilderDefinition();
14 $builder->addClass(($class = Builder\PhpClass));
15 $class->addInjectionMethod(
16 ($injectMethod = new Builder\InjectionMethod())
17);
18 $injectMethod->setName(’injectImplementation’);
19 $injectMethod->addParameter(
20 ’implementation’, ’Class\For\Specific\Implementation’
21);
22

23 // now, your application code
24 $compiler = new Definition\Compiler()
25 $compiler->addCodeScannerDirectory(
26 new Zend\Code\Scanner\DirectoryScanner(__DIR__ . ’/App/’)
27);
28 $appDefinition = $compiler->compile();
29 $diDefAggregate->addDefinition($appDefinition);
30

31 // now, pass in properties
32 $im = $di->getInstanceManager();
33

34 // this could come from Zend\Config\Config::toArray
35 $propertiesFromConfig = array(
36 ’ThirdParty\Dbal\DbAdapter’ => array(
37 ’username’ => ’someUsername’,
38 ’password’ => ’somePassword’
39),
40 ’Zend\Controller\Helper\ContentType’ => array(
41 ’default’ => ’xhtml5’
42),
43);
44 $im->setProperties($propertiesFromConfig);

11.8 Generating Service Locators

In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?

The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance,
and generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.

The method getCodeGenerator() returns an instance of Zend\CodeGenerator\Php\PhpFile, from
which you can then write a class file with the new Service Locator. Methods on the Generator class allow you
to specify the namespace and class for the generated Service Locator.

As an example, consider the following:

1 use Zend\Di\ServiceLocator\Generator;
2

3 // $di is a fully configured DI instance

11.8. Generating Service Locators 43

Zend Framework 2 Documentation, Release 2.0.0

4 $generator = new Generator($di);
5

6 $generator->setNamespace(’Application’)
7 ->setContainerClass(’Context’);
8 $file = $generator->getCodeGenerator();
9 $file->setFilename(__DIR__ . ’/../Application/Context.php’);

10 $file->write();

The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:

1 <?php
2

3 namespace Application;
4

5 use Zend\Di\ServiceLocator;
6

7 class Context extends ServiceLocator
8 {
9

10 public function get($name, array $params = array())
11 {
12 switch ($name) {
13 case ’composed’:
14 case ’My\ComposedClass’:
15 return $this->getMyComposedClass();
16

17 case ’struct’:
18 case ’My\Struct’:
19 return $this->getMyStruct();
20

21 default:
22 return parent::get($name, $params);
23 }
24 }
25

26 public function getComposedClass()
27 {
28 if (isset($this->services[’My\ComposedClass’])) {
29 return $this->services[’My\ComposedClass’];
30 }
31

32 $object = new \My\ComposedClass();
33 $this->services[’My\ComposedClass’] = $object;
34 return $object;
35 }
36 public function getMyStruct()
37 {
38 if (isset($this->services[’My\Struct’])) {
39 return $this->services[’My\Struct’];
40 }
41

42 $object = new \My\Struct();
43 $this->services[’My\Struct’] = $object;
44 return $object;
45 }
46

47 public function getComposed()

44 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

48 {
49 return $this->get(’My\ComposedClass’);
50 }
51

52 public function getStruct()
53 {
54 return $this->get(’My\Struct’);
55 }
56 }

To use this class, you simply consume it as you would a DI container:

1 $container = new Application\Context;
2

3 $struct = $container->get(’struct’); // My\Struct instance

One note about this functionality in its current incarnation. Configuration is per-environment only at this time. This
means that you will need to generate a container per execution environment. Our recommendation is that you do so,
and then in your environment, specify the container class to use.

11.8. Generating Service Locators 45

Zend Framework 2 Documentation, Release 2.0.0

46 Chapter 11. Learning Dependency Injection

CHAPTER

TWELVE

INTRODUCTION

The Zend\Authentication component provides an API for authentication and includes concrete authentication
adapters for common use case scenarios.

Zend\Authentication is concerned only with authentication and not with authorization. Authentication is
loosely defined as determining whether an entity actually is what it purports to be (i.e., identification), based on some
set of credentials. Authorization, the process of deciding whether to allow an entity access to, or to perform operations
upon, other entities is outside the scope of Zend\Authentication. For more information about authorization and
access control with Zend Framework, please see the Zend\Permissions\Acl component.

Note: There is no Zend\Authentication\Authentication class, instead the class
Zend\Authentication\AuthenticationService is provided. This class uses underlying authenti-
cation adapters and persistent storage backends.

12.1 Adapters

Zend\Authentication adapters are used to authenticate against a particular type of authentication service, such
as LDAP, RDBMS, or file-based storage. Different adapters are likely to have vastly different options and behaviors,
but some basic things are common among authentication adapters. For example, accepting authentication creden-
tials (including a purported identity), performing queries against the authentication service, and returning results are
common to Zend\Authentication adapters.

Each Zend\Authentication adapter class implements Zend\Authentication\Adapter\AdapterInterface.
This interface defines one method, authenticate(), that an adapter class must implement for performing an
authentication query. Each adapter class must be prepared prior to calling authenticate(). Such adapter
preparation includes setting up credentials (e.g., username and password) and defining values for adapter-specific
configuration options, such as database connection settings for a database table adapter.

The following is an example authentication adapter that requires a username and password to be set for authentication.
Other details, such as how the authentication service is queried, have been omitted for brevity:

1 use Zend\Authentication\Adapter\AdapterInterface;
2

3 class My\Auth\Adapter implements AdapterInterface
4 {
5 /**
6 * Sets username and password for authentication
7 *
8 * @return void
9 */

10 public function __construct($username, $password)

47

Zend Framework 2 Documentation, Release 2.0.0

11 {
12 // ...
13 }
14

15 /**
16 * Performs an authentication attempt
17 *
18 * @return \Zend\Authentication\Result
19 * @throws \Zend\Authentication\Adapter\Exception\ExceptionInterface
20 * If authentication cannot be performed
21 */
22 public function authenticate()
23 {
24 // ...
25 }
26 }

As indicated in its docblock, authenticate() must return an instance of Zend\Authentication\Result
(or of a class derived from Zend\Authentication\Result). If for some reason performing
an authentication query is impossible, authenticate() should throw an exception that derives from
Zend\Authentication\Adapter\Exception\ExceptionInterface.

12.2 Results

Zend\Authentication adapters return an instance of Zend\Authentication\Result with
authenticate() in order to represent the results of an authentication attempt. Adapters populate the
Zend\Authentication\Result object upon construction, so that the following four methods provide a basic
set of user-facing operations that are common to the results of Zend\Authentication adapters:

• isValid()- returns TRUE if and only if the result represents a successful authentication attempt

• getCode()- returns a Zend\Authentication\Result constant identifier for determining the type of
authentication failure or whether success has occurred. This may be used in situations where the developer
wishes to distinguish among several authentication result types. This allows developers to maintain detailed au-
thentication result statistics, for example. Another use of this feature is to provide specific, customized messages
to users for usability reasons, though developers are encouraged to consider the risks of providing such detailed
reasons to users, instead of a general authentication failure message. For more information, see the notes below.

• getIdentity()- returns the identity of the authentication attempt

• getMessages()- returns an array of messages regarding a failed authentication attempt

A developer may wish to branch based on the type of authentication result in order to perform more specific op-
erations. Some operations developers might find useful are locking accounts after too many unsuccessful password
attempts, flagging an IP address after too many nonexistent identities are attempted, and providing specific, customized
authentication result messages to the user. The following result codes are available:

1 use Zend\Authentication\Result;
2

3 Result::SUCCESS
4 Result::FAILURE
5 Result::FAILURE_IDENTITY_NOT_FOUND
6 Result::FAILURE_IDENTITY_AMBIGUOUS
7 Result::FAILURE_CREDENTIAL_INVALID
8 Result::FAILURE_UNCATEGORIZED

The following example illustrates how a developer may branch on the result code:

48 Chapter 12. Introduction

Zend Framework 2 Documentation, Release 2.0.0

1 // inside of AuthController / loginAction
2 $result = $this->auth->authenticate($adapter);
3

4 switch ($result->getCode()) {
5

6 case Result::FAILURE_IDENTITY_NOT_FOUND:
7 /** do stuff for nonexistent identity **/
8 break;
9

10 case Result::FAILURE_CREDENTIAL_INVALID:
11 /** do stuff for invalid credential **/
12 break;
13

14 case Result::SUCCESS:
15 /** do stuff for successful authentication **/
16 break;
17

18 default:
19 /** do stuff for other failure **/
20 break;
21 }

12.3 Identity Persistence

Authenticating a request that includes authentication credentials is useful per se, but it is also important to support
maintaining the authenticated identity without having to present the authentication credentials with each request.

HTTP is a stateless protocol, however, and techniques such as cookies and sessions have been developed in order to
facilitate maintaining state across multiple requests in server-side web applications.

12.3.1 Default Persistence in the PHP Session

By default, Zend\Authentication provides persistent storage of the identity from a suc-
cessful authentication attempt using the PHP session. Upon a successful authentication at-
tempt, Zend\Authentication\AuthenticationService::authenticate() stores
the identity from the authentication result into persistent storage. Unless specified other-
wise, Zend\Authentication\AuthenticationService uses a storage class named
Zend\Authentication\Storage\Session, which, in turn, uses Zend\Session. A custom class may instead
be used by providing an object that implements Zend\Authentication\Storage\StorageInterface to
Zend\Authentication\AuthenticationService::setStorage().

Note: If automatic persistent storage of the identity is not appropriate for a particular use case, then developers
may forego using the Zend\Authentication\AuthenticationService class altogether, instead using an
adapter class directly.

Modifying the Session Namespace

Zend\Authentication\Storage\Session uses a session namespace of ‘Zend_Auth‘.
This namespace may be overridden by passing a different value to the constructor of
Zend\Authentication\Storage\Session, and this value is internally passed along to the
constructor of Zend\Session\Container. This should occur before authentication is attempted, since

12.3. Identity Persistence 49

Zend Framework 2 Documentation, Release 2.0.0

Zend\Authentication\AuthenticationService::authenticate() performs the automatic
storage of the identity.

1 use Zend\Authentication\AuthenticationService;
2 use Zend\Authentication\Storage\Session as SessionStorage;
3

4 $auth = new AuthenticationService();
5

6 // Use ’someNamespace’ instead of ’Zend_Auth’
7 $auth->setStorage(new SessionStorage(’someNamespace’));
8

9 /**
10 * @todo Set up the auth adapter, $authAdapter
11 */
12

13 // Authenticate, saving the result, and persisting the identity on
14 // success
15 $result = $auth->authenticate($authAdapter);

12.3.2 Implementing Customized Storage

Sometimes developers may need to use a different identity storage mechanism than that provided
by Zend\Authentication\Storage\Session. For such cases developers may simply imple-
ment Zend\Authentication\Storage\StorageInterface and supply an instance of the class to
Zend\Authentication\AuthenticationService::setStorage().

Using a Custom Storage Class

In order to use an identity persistence storage class other than Zend\Authentication\Storage\Session, a
developer implements Zend\Authentication\Storage\StorageInterface:

1 use Zend\Authentication\Storage\StorageInterface;
2

3 class My\Storage implements StorageInterface
4 {
5 /**
6 * Returns true if and only if storage is empty
7 *
8 * @throws \Zend\Authentication\Exception\ExceptionInterface
9 * If it is impossible to

10 * determine whether storage is empty
11 * @return boolean
12 */
13 public function isEmpty()
14 {
15 /**
16 * @todo implementation
17 */
18 }
19

20 /**
21 * Returns the contents of storage
22 *
23 * Behavior is undefined when storage is empty.
24 *
25 * @throws \Zend\Authentication\Exception\ExceptionInterface

50 Chapter 12. Introduction

Zend Framework 2 Documentation, Release 2.0.0

26 * If reading contents from storage is impossible
27 * @return mixed
28 */
29

30 public function read()
31 {
32 /**
33 * @todo implementation
34 */
35 }
36

37 /**
38 * Writes $contents to storage
39 *
40 * @param mixed $contents
41 * @throws \Zend\Authentication\Exception\ExceptionInterface
42 * If writing $contents to storage is impossible
43 * @return void
44 */
45

46 public function write($contents)
47 {
48 /**
49 * @todo implementation
50 */
51 }
52

53 /**
54 * Clears contents from storage
55 *
56 * @throws \Zend\Authentication\Exception\ExceptionInterface
57 * If clearing contents from storage is impossible
58 * @return void
59 */
60

61 public function clear()
62 {
63 /**
64 * @todo implementation
65 */
66 }
67 }

In order to use this custom storage class, Zend\Authentication\AuthenticationService::setStorage()
is invoked before an authentication query is attempted:

1 use Zend\Authentication\AuthenticationService;
2

3 // Instruct AuthenticationService to use the custom storage class
4 $auth = new AuthenticationService();
5

6 $auth->setStorage(new My\Storage());
7

8 /**
9 * @todo Set up the auth adapter, $authAdapter

10 */
11

12 // Authenticate, saving the result, and persisting the identity on

12.3. Identity Persistence 51

Zend Framework 2 Documentation, Release 2.0.0

13 // success
14 $result = $auth->authenticate($authAdapter);

12.4 Usage

There are two provided ways to use Zend\Authentication adapters:

. indirectly, through Zend\Authentication\AuthenticationService::authenticate()

. directly, through the adapter’s authenticate() method

The following example illustrates how to use a Zend\Authentication adapter indirectly, through the use of the
Zend\Authentication\AuthenticationService class:

1 use Zend\Authentication\AuthenticationService;
2

3 // instantiate the authentication service
4 $auth = new AuthenticationService();
5

6 // Set up the authentication adapter
7 $authAdapter = new My\Auth\Adapter($username, $password);
8

9 // Attempt authentication, saving the result
10 $result = $auth->authenticate($authAdapter);
11

12 if (!$result->isValid()) {
13 // Authentication failed; print the reasons why
14 foreach ($result->getMessages() as $message) {
15 echo "$message\n";
16 }
17 } else {
18 // Authentication succeeded; the identity ($username) is stored
19 // in the session
20 // $result->getIdentity() === $auth->getIdentity()
21 // $result->getIdentity() === $username
22 }

Once authentication has been attempted in a request, as in the above example, it is a simple matter to check whether a
successfully authenticated identity exists:

1 use Zend\Authentication\AuthenticationService;
2

3 $auth = new AuthenticationService();
4

5 /**
6 * @todo Set up the auth adapter, $authAdapter
7 */
8

9 if ($auth->hasIdentity()) {
10 // Identity exists; get it
11 $identity = $auth->getIdentity();
12 }

To remove an identity from persistent storage, simply use the clearIdentity() method. This typically would be
used for implementing an application “logout” operation:

52 Chapter 12. Introduction

Zend Framework 2 Documentation, Release 2.0.0

1 $auth->clearIdentity();

When the automatic use of persistent storage is inappropriate for a particular use case, a developer may simply
bypass the use of the Zend\Authentication\AuthenticationService class, using an adapter class di-
rectly. Direct use of an adapter class involves configuring and preparing an adapter object and then calling its
authenticate() method. Adapter-specific details are discussed in the documentation for each adapter. The
following example directly utilizes My\Auth\Adapter:

1 // Set up the authentication adapter
2 $authAdapter = new My\Auth\Adapter($username, $password);
3

4 // Attempt authentication, saving the result
5 $result = $authAdapter->authenticate();
6

7 if (!$result->isValid()) {
8 // Authentication failed; print the reasons why
9 foreach ($result->getMessages() as $message) {

10 echo "$message\n";
11 }
12 } else {
13 // Authentication succeeded
14 // $result->getIdentity() === $username
15 }

12.4. Usage 53

Zend Framework 2 Documentation, Release 2.0.0

54 Chapter 12. Introduction

CHAPTER

THIRTEEN

DATABASE TABLE AUTHENTICATION

13.1 Introduction

Zend\Authentication\Adapter\DbTable provides the ability to authenticate against credentials stored
in a database table. Because Zend\Authentication\Adapter\DbTable requires an instance of
Zend\Db\Adapter\Adapter to be passed to its constructor, each instance is bound to a particular database
connection. Other configuration options may be set through the constructor and through instance methods, one for
each option.

The available configuration options include:

• tableName: This is the name of the database table that contains the authentication credentials, and against
which the database authentication query is performed.

• identityColumn: This is the name of the database table column used to represent the identity. The identity
column must contain unique values, such as a username or e-mail address.

• credentialColumn: This is the name of the database table column used to represent the credential. Under a
simple identity and password authentication scheme, the credential value corresponds to the password. See also
the credentialTreatment option.

• credentialTreatment: In many cases, passwords and other sensitive data are encrypted, hashed, encoded, ob-
scured, salted or otherwise treated through some function or algorithm. By specifying a parameterized treatment
string with this method, such as ‘MD5(?)‘ or ‘PASSWORD(?)‘, a developer may apply such arbitrary SQL upon
input credential data. Since these functions are specific to the underlying RDBMS, check the database manual
for the availability of such functions for your database system.

Basic Usage

As explained in the introduction, the Zend\Authentication\Adapter\DbTable constructor requires an in-
stance of Zend\Db\Adapter\Adapter that serves as the database connection to which the authentication adapter
instance is bound. First, the database connection should be created.

The following code creates an adapter for an in-memory database, creates a simple table schema, and inserts a row
against which we can perform an authentication query later. This example requires the PDO SQLite extension to be
available:

1 use Zend\Db\Adapter\Adapter as DbAdapter;
2

3 // Create a SQLite database connection
4 $dbAdapter = new DbAdapter(array(
5 ’driver’ => ’Pdo_Sqlite’,
6 ’database’ => ’path/to/sqlite.db’

55

Zend Framework 2 Documentation, Release 2.0.0

7));
8

9 // Build a simple table creation query
10 $sqlCreate = ’CREATE TABLE [users] (’
11 . ’[id] INTEGER NOT NULL PRIMARY KEY, ’
12 . ’[username] VARCHAR(50) UNIQUE NOT NULL, ’
13 . ’[password] VARCHAR(32) NULL, ’
14 . ’[real_name] VARCHAR(150) NULL)’;
15

16 // Create the authentication credentials table
17 $dbAdapter->query($sqlCreate);
18

19 // Build a query to insert a row for which authentication may succeed
20 $sqlInsert = "INSERT INTO users (username, password, real_name) "
21 . "VALUES (’my_username’, ’my_password’, ’My Real Name’)";
22

23 // Insert the data
24 $dbAdapter->query($sqlInsert);

With the database connection and table data available, an instance of
Zend\Authentication\Adapter\DbTable may be created. Configuration option values may be passed to
the constructor or deferred as parameters to setter methods after instantiation:

1 use Zend\Authentication\Adapter\DbTable as AuthAdapter;
2

3 // Configure the instance with constructor parameters...
4 $authAdapter = new AuthAdapter($dbAdapter,
5 ’users’,
6 ’username’,
7 ’password’
8);
9

10 // ...or configure the instance with setter methods
11 $authAdapter = new AuthAdapter($dbAdapter);
12

13 $authAdapter
14 ->setTableName(’users’)
15 ->setIdentityColumn(’username’)
16 ->setCredentialColumn(’password’)
17 ;

At this point, the authentication adapter instance is ready to accept authentication queries. In order to formulate an
authentication query, the input credential values are passed to the adapter prior to calling the authenticate()
method:

1 // Set the input credential values (e.g., from a login form)
2 $authAdapter
3 ->setIdentity(’my_username’)
4 ->setCredential(’my_password’)
5 ;
6

7 // Perform the authentication query, saving the result

In addition to the availability of the getIdentity() method upon the authentication result object,
Zend\Authentication\Adapter\DbTable also supports retrieving the table row upon authentication suc-
cess:

56 Chapter 13. Database Table Authentication

Zend Framework 2 Documentation, Release 2.0.0

1 // Print the identity
2 echo $result->getIdentity() . "\n\n";
3

4 // Print the result row
5 print_r($authAdapter->getResultRowObject());
6

7 /* Output:
8 my_username
9

10 Array
11 (
12 [id] => 1
13 [username] => my_username
14 [password] => my_password
15 [real_name] => My Real Name
16)

Since the table row contains the credential value, it is important to secure the values against unintended access.

13.2 Advanced Usage: Persisting a DbTable Result Object

By default, Zend\Authentication\Adapter\DbTable returns the identity supplied back to the auth object
upon successful authentication. Another use case scenario, where developers want to store to the persistent storage
mechanism of Zend\Authentication an identity object containing other useful information, is solved by using
the getResultRowObject() method to return a stdClass object. The following code snippet illustrates its use:

1 // authenticate with Zend\Authentication\Adapter\DbTable
2 $result = $this->_auth->authenticate($adapter);
3

4 if ($result->isValid()) {
5 // store the identity as an object where only the username and
6 // real_name have been returned
7 $storage = $this->_auth->getStorage();
8 $storage->write($adapter->getResultRowObject(array(
9 ’username’,

10 ’real_name’,
11)));
12

13 // store the identity as an object where the password column has
14 // been omitted
15 $storage->write($adapter->getResultRowObject(
16 null,
17 ’password’
18));
19

20 /* ... */
21

22 } else {
23

24 /* ... */
25

26 }

13.2. Advanced Usage: Persisting a DbTable Result Object 57

Zend Framework 2 Documentation, Release 2.0.0

13.3 Advanced Usage By Example

While the primary purpose of the Zend\Authentication component (and consequently
Zend\Authentication\Adapter\DbTable) is primarily authentication and not authorization, there
are a few instances and problems that toe the line between which domain they fit within. Depending on how you’ve
decided to explain your problem, it sometimes makes sense to solve what could look like an authorization problem
within the authentication adapter.

With that disclaimer out of the way, Zend\Authentication\Adapter\DbTable has some built in mecha-
nisms that can be leveraged for additional checks at authentication time to solve some common user problems.

1 use Zend\Authentication\Adapter\DbTable as AuthAdapter;
2

3 // The status field value of an account is not equal to "compromised"
4 $adapter = new AuthAdapter($db,
5 ’users’,
6 ’username’,
7 ’password’,
8 ’MD5(?) AND status != "compromised"’
9);

10

11 // The active field value of an account is equal to "TRUE"
12 $adapter = new AuthAdapter($db,
13 ’users’,
14 ’username’,
15 ’password’,
16 ’MD5(?) AND active = "TRUE"’
17);

Another scenario can be the implementation of a salting mechanism. Salting is a term referring to a technique which
can highly improve your application’s security. It’s based on the idea that concatenating a random string to every
password makes it impossible to accomplish a successful brute force attack on the database using pre-computed hash
values from a dictionary.

Therefore, we need to modify our table to store our salt string:

1 $sqlAlter = "ALTER TABLE [users] "
2 . "ADD COLUMN [password_salt] "
3 . "AFTER [password]";

Here’s a simple way to generate a salt string for every user at registration:

1 for ($i = 0; $i < 50; $i++) {
2 $dynamicSalt .= chr(rand(33, 126));

And now let’s build the adapter:

1 $adapter = new AuthAdapter($db,
2 ’users’,
3 ’username’,
4 ’password’,
5 "MD5(CONCAT(’staticSalt’, ?, password_salt))"
6);

Note: You can improve security even more by using a static salt value hard coded into your application. In the case
that your database is compromised (e. g. by an SQL injection attack) but your web server is intact your data is still
unusable for the attacker.

58 Chapter 13. Database Table Authentication

Zend Framework 2 Documentation, Release 2.0.0

Another alternative is to use the getDbSelect()method of the Zend\Authentication\Adapter\DbTable
after the adapter has been constructed. This method will return the Zend\Db\Sql\Select object instance it will
use to complete the authenticate() routine. It is important to note that this method will always return the same
object regardless if authenticate() has been called or not. This object will not have any of the identity or
credential information in it as those values are placed into the select object at authenticate() time.

An example of a situation where one might want to use the getDbSelect() method would check the status of a
user, in other words to see if that user’s account is enabled.

1 // Continuing with the example from above
2 $adapter = new AuthAdapter($db,
3 ’users’,
4 ’username’,
5 ’password’,
6 ’MD5(?)’
7);
8

9 // get select object (by reference)
10 $select = $adapter->getDbSelect();
11 $select->where(’active = "TRUE"’);
12

13 // authenticate, this ensures that users.active = TRUE
14 $adapter->authenticate();

13.3. Advanced Usage By Example 59

Zend Framework 2 Documentation, Release 2.0.0

60 Chapter 13. Database Table Authentication

CHAPTER

FOURTEEN

DIGEST AUTHENTICATION

14.1 Introduction

Digest authentication is a method of HTTP authentication that improves upon Basic authentication by providing a way
to authenticate without having to transmit the password in clear text across the network.

This adapter allows authentication against text files containing lines having the basic elements of Digest authentication:

• username, such as “joe.user“

• realm, such as “Administrative Area“

• MD5 hash of the username, realm, and password, separated by colons

The above elements are separated by colons, as in the following example (in which the password is “somePassword”):

1 someUser:Some Realm:fde17b91c3a510ecbaf7dbd37f59d4f8

14.2 Specifics

The digest authentication adapter, Zend\Authentication\Adapter\Digest, requires several input parame-
ters:

• filename - Filename against which authentication queries are performed

• realm - Digest authentication realm

• username - Digest authentication user

• password - Password for the user of the realm

These parameters must be set prior to calling authenticate().

14.3 Identity

The digest authentication adapter returns a Zend\Authentication\Result object, which has been populated
with the identity as an array having keys of realm and username. The respective array values associated with these
keys correspond to the values set before authenticate() is called.

1 use Zend\Authentication\Adapter\Digest as AuthAdapter;
2

3 $adapter = new AuthAdapter($filename,

61

http://en.wikipedia.org/wiki/Digest_access_authentication
http://en.wikipedia.org/wiki/Basic_authentication_scheme

Zend Framework 2 Documentation, Release 2.0.0

4 $realm,
5 $username,
6 $password);
7

8 $result = $adapter->authenticate();
9

10 $identity = $result->getIdentity();
11

12 print_r($identity);
13

14 /*
15 Array
16 (
17 [realm] => Some Realm
18 [username] => someUser
19)
20 */

62 Chapter 14. Digest Authentication

CHAPTER

FIFTEEN

HTTP AUTHENTICATION ADAPTER

15.1 Introduction

Zend\Authentication\Adapter\Http provides a mostly-compliant implementation of RFC-2617, Basic and
Digest HTTP Authentication. Digest authentication is a method of HTTP authentication that improves upon Basic
authentication by providing a way to authenticate without having to transmit the password in clear text across the
network.

Major Features:

• Supports both Basic and Digest authentication.

• Issues challenges in all supported schemes, so client can respond with any scheme it supports.

• Supports proxy authentication.

• Includes support for authenticating against text files and provides an interface for authenticating against other
sources, such as databases.

There are a few notable features of RFC-2617 that are not implemented yet:

• Nonce tracking, which would allow for “stale” support, and increased replay attack protection.

• Authentication with integrity checking, or “auth-int”.

• Authentication-Info HTTP header.

15.2 Design Overview

This adapter consists of two sub-components, the HTTP authentication class itself, and the so-called “Resolvers.”
The HTTP authentication class encapsulates the logic for carrying out both Basic and Digest authentication. It uses
a Resolver to look up a client’s identity in some data store (text file by default), and retrieve the credentials from the
data store. The “resolved” credentials are then compared to the values submitted by the client to determine whether
authentication is successful.

15.3 Configuration Options

The Zend\Authentication\Adapter\Http class requires a configuration array passed to its constructor.
There are several configuration options available, and some are required:

63

http://tools.ietf.org/html/rfc2617
http://en.wikipedia.org/wiki/Basic_authentication_scheme
http://en.wikipedia.org/wiki/Digest_access_authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 15.1: Configuration Options

Option
Name

Required Description

ac-
cept_schemes

Yes Determines which authentication schemes the adapter will accept from the
client. Must be a space=separated list containing ‘basic’ and/or ‘digest’.

realm Yes Sets the authentication realm; usernames should be unique within a given
realm.

di-
gest_domains

Yes, when
accept_schemes
contains digest

Space-separated list of URIs for which the same authentication information
is valid. The URIs need not all point to the same server.

nonce_timeoutYes, when
accept_schemes
contains digest

Sets the number of seconds for which the nonce is valid. See notes below.

use_opaqueNo Specifies whether to send the opaque value in the header. True by default.
algo-
rithm

No Specified the algorithm. Defaults to MD5, the only supported option (for
now).

proxy_authNo Disabled by default. Enable to perform Proxy authentication, instead of
normal origin server authentication.

Note: The current implementation of the nonce_timeout has some interesting side effects. This setting is sup-
posed to determine the valid lifetime of a given nonce, or effectively how long a client’s authentication information
is accepted. Currently, if it’s set to 3600 (for example), it will cause the adapter to prompt the client for new cre-
dentials every hour, on the hour. This will be resolved in a future release, once nonce tracking and stale support are
implemented.

15.4 Resolvers

The resolver’s job is to take a username and realm, and return some kind of credential value. Basic authentication
expects to receive the Base64 encoded version of the user’s password. Digest authentication expects to receive a hash
of the user’s username, the realm, and their password (each separated by colons). Currently, the only supported hash
algorithm is MD5.

Zend\Authentication\Adapter\Http relies on objects implementing
Zend\Authentication\Adapter\Http\ResolverInterface. A text file resolver class is included with
this adapter, but any other kind of resolver can be created simply by implementing the resolver interface.

15.4.1 File Resolver

The file resolver is a very simple class. It has a single property specifying a filename, which can also be passed to the
constructor. Its resolve() method walks through the text file, searching for a line with a matching username and
realm. The text file format similar to Apache htpasswd files:

1 <username>:<realm>:<credentials>\n

Each line consists of three fields - username, realm, and credentials - each separated by a colon. The credentials field
is opaque to the file resolver; it simply returns that value as-is to the caller. Therefore, this same file format serves both
Basic and Digest authentication. In Basic authentication, the credentials field should be written in clear text. In Digest
authentication, it should be the MD5 hash described above.

There are two equally easy ways to create a File resolver:

64 Chapter 15. HTTP Authentication Adapter

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Authentication\Adapter\Http\FileResolver;
2 $path = ’files/passwd.txt’;
3 $resolver = new FileResolver($path);

or

1 $path = ’files/passwd.txt’;
2 $resolver = new FileResolver();
3 $resolver->setFile($path);

If the given path is empty or not readable, an exception is thrown.

15.5 Basic Usage

First, set up an array with the required configuration values:

1 $config = array(
2 ’accept_schemes’ => ’basic digest’,
3 ’realm’ => ’My Web Site’,
4 ’digest_domains’ => ’/members_only /my_account’,
5 ’nonce_timeout’ => 3600,
6);

This array will cause the adapter to accept either Basic or Digest authentication, and will require authenticated access
to all the areas of the site under /members_only and /my_account. The realm value is usually displayed by the
browser in the password dialog box. The nonce_timeout, of course, behaves as described above.

Next, create the Zend\Authentication\Adapter\Http object:

1 $adapter = new Zend\Authentication\Adapter\Http($config);

Since we’re supporting both Basic and Digest authentication, we need two different resolver objects. Note that this
could just as easily be two different classes:

1 use Zend\Authentication\Adapter\Http\FileResolver;
2

3 $basicResolver = new FileResolver();
4 $basicResolver->setFile(’files/basicPasswd.txt’);
5

6 $digestResolver = new FileResolver();
7 $digestResolver->setFile(’files/digestPasswd.txt’);
8

9 $adapter->setBasicResolver($basicResolver);
10 $adapter->setDigestResolver($digestResolver);

Finally, we perform the authentication. The adapter needs a reference to both the Request and Response objects in
order to do its job:

1 assert($request instanceof Zend\Http\Request);
2 assert($response instanceof Zend\Http\Response);
3

4 $adapter->setRequest($request);
5 $adapter->setResponse($response);
6

7 $result = $adapter->authenticate();
8 if (!$result->isValid()) {
9 // Bad userame/password, or canceled password prompt

10 }

15.5. Basic Usage 65

Zend Framework 2 Documentation, Release 2.0.0

66 Chapter 15. HTTP Authentication Adapter

CHAPTER

SIXTEEN

LDAP AUTHENTICATION

16.1 Introduction

Zend\Authentication\Adapter\Ldap supports web application authentication with LDAP services. Its fea-
tures include username and domain name canonicalization, multi-domain authentication, and failover capabilities. It
has been tested to work with Microsoft Active Directory and OpenLDAP, but it should also work with other LDAP
service providers.

This documentation includes a guide on using Zend\Authentication\Adapter\Ldap, an exploration of its
API, an outline of the various available options, diagnostic information for troubleshooting authentication problems,
and example options for both Active Directory and OpenLDAP servers.

16.2 Usage

To incorporate Zend\Authentication\Adapter\Ldap authentication into your application quickly, even if
you’re not using Zend\Mvc, the meat of your code should look something like the following:

1 use Zend\Authentication\AuthenticationService;
2 use Zend\Authentication\Adapter\Ldap as AuthAdapter;
3 use Zend\Config\Reader\Ini as ConfigReader;
4 use Zend\Log\Logger;
5 use Zend\Log\Writer\Stream as LogWriter;
6 use Zend\Log\Filter\Priority as LogFilter;
7

8 $username = $this->_request->getParam(’username’);
9 $password = $this->_request->getParam(’password’);

10

11

12 $auth = new AuthenticationService();
13

14 $config = new ConfigReader(’./ldap-config.ini’,’production’);
15

16 $log_path = $config->ldap->log_path;
17 $options = $config->ldap->toArray();
18 unset($options[’log_path’]);
19

20 $adapter = new AuthAdapter($options,
21 $username,
22 $password);
23

24 $result = $auth->authenticate($adapter);

67

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/
http://www.openldap.org/

Zend Framework 2 Documentation, Release 2.0.0

25

26 if ($log_path) {
27 $messages = $result->getMessages();
28

29 $logger = new Logger;
30 $writer = new LogWriter($log_path);
31

32 $logger->addWriter($writer);
33

34 $filter = new LogFilter(Logger::DEBUG);
35 $logger->addFilter($filter);
36

37 foreach ($messages as $i => $message) {
38 if ($i-- > 1) { // $messages[2] and up are log messages
39 $message = str_replace("\n", "\n ", $message);
40 $logger->log("Ldap: $i: $message", Logger::DEBUG);
41 }
42 }
43 }

Of course, the logging code is optional, but it is highly recommended that you use a logger.
Zend\Authentication\Adapter\Ldap will record just about every bit of information anyone could want
in $messages (more below), which is a nice feature in itself for something that has a history of being notoriously
difficult to debug.

The Zend\Config\Reader\Ini code is used above to load the adapter options. It is also optional. A regular array
would work equally well. The following is an example ldap-config.ini file that has options for two separate
servers. With multiple sets of server options the adapter will try each, in order, until the credentials are successfully
authenticated. The names of the servers (e.g., ‘server1’ and ‘server2’) are largely arbitrary. For details regarding the
options array, see the Server Options section below. Note that Zend\Config\Reader\Ini requires that any
values with “equals” characters (=) will need to be quoted (like the DNs shown below).

1 [production]
2

3 ldap.log_path = /tmp/ldap.log
4

5 ; Typical options for OpenLDAP
6 ldap.server1.host = s0.foo.net
7 ldap.server1.accountDomainName = foo.net
8 ldap.server1.accountDomainNameShort = FOO
9 ldap.server1.accountCanonicalForm = 3

10 ldap.server1.username = "CN=user1,DC=foo,DC=net"
11 ldap.server1.password = pass1
12 ldap.server1.baseDn = "OU=Sales,DC=foo,DC=net"
13 ldap.server1.bindRequiresDn = true
14

15 ; Typical options for Active Directory
16 ldap.server2.host = dc1.w.net
17 ldap.server2.useStartTls = true
18 ldap.server2.accountDomainName = w.net
19 ldap.server2.accountDomainNameShort = W
20 ldap.server2.accountCanonicalForm = 3
21 ldap.server2.baseDn = "CN=Users,DC=w,DC=net"

The above configuration will instruct Zend\Authentication\Adapter\Ldap to attempt to authenticate users
with the OpenLDAP server s0.foo.net first. If the authentication fails for any reason, the AD server dc1.w.net
will be tried.

With servers in different domains, this configuration illustrates multi-domain authentication. You can also have multi-

68 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

ple servers in the same domain to provide redundancy.

Note that in this case, even though OpenLDAP has no need for the short NetBIOS style domain name used by Win-
dows, we provide it here for name canonicalization purposes (described in the Username Canonicalization section
below).

16.3 The API

The Zend\Authentication\Adapter\Ldap constructor accepts three parameters.

The $options parameter is required and must be an array containing one or more sets of options. Note that it is an
array of arrays of Zend\Ldap\Ldap options. Even if you will be using only one LDAP server, the options must still
be within another array.

Below is print_r() output of an example options parameter containing two sets of server options for LDAP servers
s0.foo.net and dc1.w.net (the same options as the above INI representation):

1 Array
2 (
3 [server2] => Array
4 (
5 [host] => dc1.w.net
6 [useStartTls] => 1
7 [accountDomainName] => w.net
8 [accountDomainNameShort] => W
9 [accountCanonicalForm] => 3

10 [baseDn] => CN=Users,DC=w,DC=net
11)
12

13 [server1] => Array
14 (
15 [host] => s0.foo.net
16 [accountDomainName] => foo.net
17 [accountDomainNameShort] => FOO
18 [accountCanonicalForm] => 3
19 [username] => CN=user1,DC=foo,DC=net
20 [password] => pass1
21 [baseDn] => OU=Sales,DC=foo,DC=net
22 [bindRequiresDn] => 1
23)
24

25)

The information provided in each set of options above is different mainly because AD does not require a username be
in DN form when binding (see the bindRequiresDn option in the Server Options section below), which means
we can omit a number of options associated with retrieving the DN for a username being authenticated.

Note: What is a Distinguished Name?

A DN or “distinguished name” is a string that represents the path to an object within the LDAP directory. Each
comma-separated component is an attribute and value representing a node. The components are evaluated in re-
verse. For example, the user account CN=Bob Carter,CN=Users,DC=w,DC=net is located directly within the
CN=Users,DC=w,DC=net container. This structure is best explored with an LDAP browser like the ADSI Edit
MMC snap-in for Active Directory or phpLDAPadmin.

16.3. The API 69

http://php.net/print_r

Zend Framework 2 Documentation, Release 2.0.0

The names of servers (e.g. ‘server1’ and ‘server2’ shown above) are largely arbitrary, but for the sake of using
Zend\Config\Reader\Ini, the identifiers should be present (as opposed to being numeric indexes) and should
not contain any special characters used by the associated file formats (e.g. the ‘.‘INI property separator, ‘&‘ for XML
entity references, etc).

With multiple sets of server options, the adapter can authenticate users in multiple domains and provide failover so
that if one server is not available, another will be queried.

Note: The Gory Details: What Happens in the Authenticate Method?

When the authenticate() method is called, the adapter iterates over each set of server options, sets them on
the internal Zend\Ldap\Ldap instance, and calls the Zend\Ldap\Ldap::bind() method with the username
and password being authenticated. The Zend\Ldap\Ldap class checks to see if the username is qualified with a
domain (e.g., has a domain component like alice@foo.net or FOO\alice). If a domain is present, but does
not match either of the server’s domain names (foo.net or FOO), a special exception is thrown and caught by
Zend\Authentication\Adapter\Ldap that causes that server to be ignored and the next set of server op-
tions is selected. If a domain does match, or if the user did not supply a qualified username, Zend\Ldap\Ldap
proceeds to try to bind with the supplied credentials. if the bind is not successful, Zend\Ldap\Ldap throws a
Zend\Ldap\Exception\LdapException which is caught by Zend\Authentication\Adapter\Ldap
and the next set of server options is tried. If the bind is successful, the iteration stops, and the adapter’s
authenticate() method returns a successful result. If all server options have been tried without success, the
authentication fails, and authenticate() returns a failure result with error messages from the last iteration.

The username and password parameters of the Zend\Authentication\Adapter\Ldap constructor represent
the credentials being authenticated (i.e., the credentials supplied by the user through your HTML login form). Alter-
natively, they may also be set with the setUsername() and setPassword() methods.

16.4 Server Options

Each set of server options in the context of ZendAuthenticationAdapterLdap consists of the following options,
which are passed, largely unmodified, to Zend\Ldap\Ldap::setOptions():

70 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 16.1: Server Options

Name Description
host The hostname of LDAP server that these options represent. This option is required.
port The port on which the LDAP server is listening. If useSsl is TRUE, the default port value is

636. If useSsl is FALSE, the default port value is 389.
useStartTls Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of

TRUE is strongly favored in production environments to prevent passwords from be transmitted
in clear text. The default value is FALSE, as servers frequently require that a certificate be
installed separately after installation. The useSsl and useStartTls options are mutually
exclusive. The useStartTls option should be favored over useSsl but not all servers support this
newer mechanism.

useSsl Whether or not the LDAP client should use SSL encrypted transport. The useSsl and
useStartTls options are mutually exclusive, but useStartTls should be favored if the server and
LDAP client library support it. This value also changes the default port value (see port
description above).

username The DN of the account used to perform account DN lookups. LDAP servers that require the
username to be in DN form when performing the “bind” require this option. Meaning, if
bindRequiresDn is TRUE, this option is required. This account does not need to be a privileged
account; an account with read-only access to objects under the baseDn is all that is necessary
(and preferred based on the Principle of Least Privilege).

password The password of the account used to perform account DN lookups. If this option is not supplied,
the LDAP client will attempt an “anonymous bind” when performing account DN lookups.

bindRequiresDn Some LDAP servers require that the username used to bind be in DN form like CN=Alice
Baker,OU=Sales,DC=foo,DC=net (basically all servers except AD). If this option is TRUE, this
instructs Zend\Ldap\Ldap to automatically retrieve the DN corresponding to the username
being authenticated, if it is not already in DN form, and then re-bind with the proper DN. The
default value is FALSE. Currently only Microsoft Active Directory Server (ADS) is known not
to require usernames to be in DN form when binding, and therefore this option may be FALSE
with AD (and it should be, as retrieving the DN requires an extra round trip to the server).
Otherwise, this option must be set to TRUE (e.g. for OpenLDAP). This option also controls the
default acountFilterFormat used when searching for accounts. See the accountFilterFormat
option.

baseDn The DN under which all accounts being authenticated are located. This option is required. if
you are uncertain about the correct baseDn value, it should be sufficient to derive it from the
user’s DNS domain using DC= components. For example, if the user’s principal name is
alice@foo.net, a baseDn of DC=foo,DC=net should work. A more precise location (e.g.,
OU=Sales,DC=foo,DC=net) will be more efficient, however.

accountCanon-
icalForm

A value of 2, 3 or 4 indicating the form to which account names should be canonicalized after
successful authentication. Values are as follows: 2 for traditional username style names (e.g.,
alice), 3 for backslash-style names (e.g., FOO\alice) or 4 for principal style usernames (e.g.,
alice@foo.net). The default value is 4 (e.g., alice@foo.net). For example, with a value of 3, the
identity returned by Zend\Authentication\Result::getIdentity() (and
Zend\Authentication\AuthenticationService::getIdentity(), if
Zend\Authentication\AuthenticationService was used) will always be FOO\alice, regardless of
what form Alice supplied, whether it be alice, alice@foo.net, FOO\alice, FoO\aLicE,
foo.net\alice, etc. See the Account Name Canonicalization section in the Zend\Ldap\Ldap
documentation for details. Note that when using multiple sets of server options it is
recommended, but not required, that the same accountCanonicalForm be used with all server
options so that the resulting usernames are always canonicalized to the same form (e.g., if you
canonicalize to EXAMPLE\username with an AD server but to username@example.com with
an OpenLDAP server, that may be awkward for the application’s high-level logic).

accountDo-
mainName

The FQDN domain name for which the target LDAP server is an authority (e.g., example.com).
This option is used to canonicalize names so that the username supplied by the user can be
converted as necessary for binding. It is also used to determine if the server is an authority for
the supplied username (e.g., if accountDomainName is foo.net and the user supplies
bob@bar.net, the server will not be queried, and a failure will result). This option is not
required, but if it is not supplied, usernames in principal name form (e.g., alice@foo.net) are
not supported. It is strongly recommended that you supply this option, as there are many
use-cases that require generating the principal name form.

accountDo-
main-
NameShort

The ‘short’ domain for which the target LDAP server is an authority (e.g., FOO). Note that
there is a 1:1 mapping between the accountDomainName and accountDomainNameShort. This
option should be used to specify the NetBIOS domain name for Windows networks, but may
also be used by non-AD servers (e.g., for consistency when multiple sets of server options with
the backslash style accountCanonicalForm). This option is not required but if it is not supplied,
usernames in backslash form (e.g., FOO\alice) are not supported.

accountFilter-
Format

The LDAP search filter used to search for accounts. This string is a printf()-style expression
that must contain one ‘%s’ to accomodate the username. The default value is
‘(&(objectClass=user)(sAMAccountName=%s))’, unless bindRequiresDn is set to TRUE, in
which case the default is ‘(&(objectClass=posixAccount)(uid=%s))’. For example, if for some
reason you wanted to use bindRequiresDn = true with AD you would need to set
accountFilterFormat = ‘(&(objectClass=user)(sAMAccountName=%s))’.

optReferrals If set to TRUE, this option indicates to the LDAP client that referrals should be followed. The
default value is FALSE.

16.4. Server Options 71

mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:username@example.com
mailto:bob@bar.net
mailto:alice@foo.net

Zend Framework 2 Documentation, Release 2.0.0

Note: If you enable useStartTls = TRUE or useSsl = TRUE you may find that the LDAP client generates an
error claiming that it cannot validate the server’s certificate. Assuming the PHP LDAP extension is ultimately linked
to the OpenLDAP client libraries, to resolve this issue you can set “TLS_REQCERT never” in the OpenLDAP
client ldap.conf (and restart the web server) to indicate to the OpenLDAP client library that you trust the server.
Alternatively, if you are concerned that the server could be spoofed, you can export the LDAP server’s root certificate
and put it on the web server so that the OpenLDAP client can validate the server’s identity.

16.5 Collecting Debugging Messages

Zend\Authentication\Adapter\Ldap collects debugging information within its authenticate()
method. This information is stored in the Zend\Authentication\Result object as messages. The array re-
turned by Zend\Authentication\Result::getMessages() is described as follows

Table 16.2: Debugging Messages

Messages
Array Index

Description

Index 0 A generic, user=friendly message that is suitable for displaying to users (e.g., “Invalid
credentials”). If the authentication is successful, this string is empty.

Index 1 A more detailed error message that is not suitable to be displayed to users but should be logged
for the benefit of server operators. If the authentication is successful, this string is empty.

Indexes 2 and
higher

All log messages in order starting at index 2.

In practice, index 0 should be displayed to the user (e.g., using the FlashMessenger helper), index 1 should be logged
and, if debugging information is being collected, indexes 2 and higher could be logged as well (although the final
message always includes the string from index 1).

16.6 Common Options for Specific Servers

16.6.1 Options for Active Directory

For ADS, the following options are noteworthy:

72 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 16.3: Options for Active Directory

Name Additional Notes
host As with all servers, this option is required.
useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.
useSsl Possibly used as an alternative to useStartTls (see above).
baseDn As with all servers, this option is required. By default AD places all user accounts under the

Users container (e.g., CN=Users,DC=foo,DC=net), but the default is not common in larger
organizations. Ask your AD administrator what the best DN for accounts for your application
would be.

accountCanon-
icalForm

You almost certainly want this to be 3 for backslash style names (e.g., FOO\alice), which are
most familiar to Windows users. You should not use the unqualified form 2 (e.g., alice), as this
may grant access to your application to users with the same username in other trusted domains
(e.g., BAR\alice and FOO\alice will be treated as the same user). (See also note below.)

accountDo-
mainName

This is required with AD unless accountCanonicalForm 2 is used, which, again, is discouraged.

accountDo-
main-
NameShort

The NetBIOS name of the domain that users are in and for which the AD server is an authority.
This is required if the backslash style accountCanonicalForm is used.

Note: Technically there should be no danger of accidental cross-domain authentication with the current
Zend\Authentication\Adapter\Ldap implementation, since server domains are explicitly checked, but this
may not be true of a future implementation that discovers the domain at runtime, or if an alternative adapter is used
(e.g., Kerberos). In general, account name ambiguity is known to be the source of security issues, so always try to use
qualified account names.

16.6.2 Options for OpenLDAP

For OpenLDAP or a generic LDAP server using a typical posixAccount style schema, the following options are note-
worthy:

16.6. Common Options for Specific Servers 73

Zend Framework 2 Documentation, Release 2.0.0

Table 16.4: Options for OpenLDAP

Name Additional Notes
host As with all servers, this option is required.
useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.
useSsl Possibly used as an alternative to useStartTls (see above).
username Required and must be a DN, as OpenLDAP requires that usernames be in DN form when

performing a bind. Try to use an unprivileged account.
password The password corresponding to the username above, but this may be omitted if the LDAP

server permits an anonymous binding to query user accounts.
bindRequiresDn Required and must be TRUE, as OpenLDAP requires that usernames be in DN form when

performing a bind.
baseDn As with all servers, this option is required and indicates the DN under which all accounts being

authenticated are located.
accountCanon-
icalForm

Optional, but the default value is 4 (principal style names like alice@foo.net), which may not
be ideal if your users are used to backslash style names (e.g., FOO\alice). For backslash style
names use value 3.

accountDo-
mainName

Required unless you’re using accountCanonicalForm 2, which is not recommended.

accountDo-
main-
NameShort

If AD is not also being used, this value is not required. Otherwise, if accountCanonicalForm 3
is used, this option is required and should be a short name that corresponds adequately to the
accountDomainName (e.g., if your accountDomainName is foo.net, a good
accountDomainNameShort value might be FOO).

74 Chapter 16. LDAP Authentication

mailto:alice@foo.net

CHAPTER

SEVENTEEN

INTRODUCTION

Zend\Barcode\Barcode provides a generic way to generate barcodes. The Zend\Barcode component is
divided into two subcomponents: barcode objects and renderers. Objects allow you to create barcodes independently
of the renderer. Renderer allow you to draw barcodes based on the support required.

75

Zend Framework 2 Documentation, Release 2.0.0

76 Chapter 17. Introduction

CHAPTER

EIGHTEEN

BARCODE CREATION USING
ZEND\BARCODE\BARCODE CLASS

18.1 Using Zend\Barcode\Barcode::factory

Zend_Barcode uses a factory method to create an instance of a renderer that extends
Zend\Barcode\Renderer\AbstractRenderer. The factory method accepts five arguments.

. The name of the barcode format (e.g., “code39”) or a Traversable object (required)

. The name of the renderer (e.g., “image”) (required)

. Options to pass to the barcode object (an array or a Traversable object) (optional)

. Options to pass to the renderer object (an array or a Traversable object) (optional)

. Boolean to indicate whether or not to automatically render errors. If an exception occurs, the provided barcode
object will be replaced with an Error representation (optional default TRUE)

Getting a Renderer with Zend\Barcode\Barcode::factory()

Zend\Barcode\Barcode::factory() instantiates barcode objects and renderers and ties them together. In
this first example, we will use the Code39 barcode type together with the Image renderer.

1 use Zend\Barcode;
2

3 // Only the text to draw is required
4 $barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’);
5

6 // No required options
7 $rendererOptions = array();
8 $renderer = Barcode::factory(
9 ’code39’, ’image’, $barcodeOptions, $rendererOptions

10);

Using Zend\Barcode\Barcode::factory() with Zend\Config\Config objects

You may pass a Zend\Config\Config object to the factory in order to create the necessary objects. The following
example is functionally equivalent to the previous.

77

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Config;
2 use Zend\Barcode;
3

4 // Using only one Zend\Config\Config object
5 $config = new Config(array(
6 ’barcode’ => ’code39’,
7 ’barcodeParams’ => array(’text’ => ’ZEND-FRAMEWORK’),
8 ’renderer’ => ’image’,
9 ’rendererParams’ => array(’imageType’ => ’gif’),

10));
11

12 $renderer = Barcode::factory($config);

18.2 Drawing a barcode

When you draw the barcode, you retrieve the resource in which the barcode is drawn. To draw a barcode, you can call
the draw() of the renderer, or simply use the proxy method provided by Zend\Barcode\Barcode.

Drawing a barcode with the renderer object

1 use Zend\Barcode;
2

3 // Only the text to draw is required
4 $barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’);
5

6 // No required options
7 $rendererOptions = array();
8

9 // Draw the barcode in a new image,
10 $imageResource = Barcode::factory(
11 ’code39’, ’image’, $barcodeOptions, $rendererOptions
12)->draw();

Drawing a barcode with Zend\Barcode\Barcode::draw()

1 use Zend\Barcode;
2

3 // Only the text to draw is required
4 $barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’);
5

6 // No required options
7 $rendererOptions = array();
8

9 // Draw the barcode in a new image,
10 $imageResource = Barcode::draw(
11 ’code39’, ’image’, $barcodeOptions, $rendererOptions
12);

78 Chapter 18. Barcode creation using Zend\Barcode\Barcode class

Zend Framework 2 Documentation, Release 2.0.0

18.3 Renderering a barcode

When you render a barcode, you draw the barcode, you send the headers and you send the resource (e.g. to a browser).
To render a barcode, you can call the render() method of the renderer or simply use the proxy method provided by
Zend\Barcode\Barcode.

Renderering a barcode with the renderer object

1 use Zend\Barcode;
2

3 // Only the text to draw is required
4 $barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’);
5

6 // No required options
7 $rendererOptions = array();
8

9 // Draw the barcode in a new image,
10 // send the headers and the image
11 Barcode::factory(
12 ’code39’, ’image’, $barcodeOptions, $rendererOptions
13)->render();

This will generate this barcode:

Renderering a barcode with Zend\Barcode\Barcode::render()

1 use Zend\Barcode;
2

3 // Only the text to draw is required
4 $barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’);
5

6 // No required options
7 $rendererOptions = array();
8

9 // Draw the barcode in a new image,
10 // send the headers and the image
11 Barcode::render(
12 ’code39’, ’image’, $barcodeOptions, $rendererOptions
13);

This will generate the same barcode as the previous example.

18.3. Renderering a barcode 79

Zend Framework 2 Documentation, Release 2.0.0

80 Chapter 18. Barcode creation using Zend\Barcode\Barcode class

CHAPTER

NINETEEN

ZEND\BARCODE\BARCODE OBJECTS

Barcode objects allow you to generate barcodes independently of the rendering support. After generation, you can
retrieve the barcode as an array of drawing instructions that you can provide to a renderer.

Objects have a large number of options. Most of them are common to all objects. These options can be set in three
ways:

• As an array or a Traversable object) object passed to the constructor.

• As an array passed to the setOptions() method.

• Via individual setters for each configuration type.

Different ways to parameterize a barcode object

1 use Zend\Barcode;
2

3 $options = array(’text’ => ’ZEND-FRAMEWORK’, ’barHeight’ => 40);
4

5 // Case 1: constructor
6 $barcode = new Object\Code39($options);
7

8 // Case 2: setOptions()
9 $barcode = new Object\Code39();

10 $barcode->setOptions($options);
11

12 // Case 3: individual setters
13 $barcode = new Object\Code39();
14 $barcode->setText(’ZEND-FRAMEWORK’)
15 ->setBarHeight(40);

19.1 Common Options

In the following list, the values have no units; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit”. The real units depend on the rendering support (see the renderers documentation for more
information). Setters are each named by uppercasing the initial letter of the option and prefixing the name with
“set” (e.g. “barHeight” becomes “setBarHeight”). All options have a corresponding getter prefixed with “get” (e.g.
“getBarHeight”). Available options are:

81

Zend Framework 2 Documentation, Release 2.0.0

Table 19.1: Common Options

Option Data
Type

Default
Value

Description

barcode-
Namespace

String Zend\Barcode\ObjectNamespace of the barcode; for example, if you need to extend the
embedding objects

barHeight Integer 50 Height of the bars
barThick-
Width

Integer 3 Width of the thick bar

barThin-
Width

Integer 1 Width of the thin bar

factor Integer 1 Factor by which to multiply bar widths and font sizes (barHeight,
barThinWidth, barThickWidth and fontSize)

foreColor Integer 0x000000
(black)

Color of the bar and the text. Could be provided as an integer or as a
HTML value (e.g. “#333333”)

background-
Color

Integer or
String

0xFFFFFF
(white)

Color of the background. Could be provided as an integer or as a
HTML value (e.g. “#333333”)

orientation Float 0 Orientation of the barcode
font String or

Integer
NULL Font path to a TTF font or a number between 1 and 5 if using image

generation with GD (internal fonts)
fontSize Float 10 Size of the font (not applicable with numeric fonts)
withBorder Boolean FALSE Draw a border around the barcode and the quiet zones
withQuiet-
Zones

Boolean TRUE Leave a quiet zone before and after the barcode

drawText Boolean TRUE Set if the text is displayed below the barcode
stretchText Boolean FALSE Specify if the text is stretched all along the barcode
withCheck-
sum

Boolean FALSE Indicate whether or not the checksum is automatically added to the
barcode

withCheck-
sumInText

Boolean FALSE Indicate whether or not the checksum is displayed in the textual
representation

text String NULL The text to represent as a barcode

19.1.1 Particular case of static setBarcodeFont()

You can set a commont font for all your objects by using the static method
Zend\Barcode\Barcode::setBarcodeFont(). This value can be always be overridden for individ-
ual objects by using the setFont() method.

1 use Zend\Barcode;
2

3 // In your bootstrap:
4 Barcode::setBarcodeFont(’my_font.ttf’);
5

6 // Later in your code:
7 Barcode::render(
8 ’code39’,
9 ’pdf’,

10 array(’text’ => ’ZEND-FRAMEWORK’)
11); // will use ’my_font.ttf’
12

13 // or:
14 Barcode::render(
15 ’code39’,
16 ’image’,

82 Chapter 19. Zend\Barcode\Barcode Objects

Zend Framework 2 Documentation, Release 2.0.0

17 array(
18 ’text’ => ’ZEND-FRAMEWORK’,
19 ’font’ => 3
20)
21); // will use the 3rd GD internal font

19.2 Common Additional Getters

Table 19.2: Common Getters

Getter Data
Type

Description

getType() String Return the name of the barcode class without the namespace (e.g.
Zend\Barcode\Object\Code39 returns simply “code39”)

getRawText() String Return the original text provided to the object
getTextToDisplay() String Return the text to display, including, if activated, the checksum value
getQuietZone() Integer Return the size of the space needed before and after the barcode without any

drawing
getInstructions() Array Return drawing instructions as an array.
getH-
eight($recalculate =
false)

Integer Return the height of the barcode calculated after possible rotation

getWidth($recalculate
= false)

Integer Return the width of the barcode calculated after possible rotation

getOffset-
Top($recalculate =
false)

Integer Return the position of the top of the barcode calculated after possible rotation

getOff-
setLeft($recalculate =
false)

Integer Return the position of the left of the barcode calculated after possible rotation

19.2. Common Additional Getters 83

Zend Framework 2 Documentation, Release 2.0.0

84 Chapter 19. Zend\Barcode\Barcode Objects

CHAPTER

TWENTY

DESCRIPTION OF SHIPPED
BARCODES

You will find below detailed information about all barcode types shipped by default with Zend Framework.

20.1 Zend\Barcode\Object\Error

This barcode is a special case. It is internally used to automatically render an exception caught by the Zend\Barcode
component.

20.2 Zend\Barcode\Object\Code128

• Name: Code 128

• Allowed characters: the complete ASCII-character set

• Checksum: optional (modulo 103)

• Length: variable

There are no particular options for this barcode.

20.3 Zend\Barcode\Object\Codabar

• Name: Codabar (or Code 2 of 7)

• Allowed characters:‘0123456789-$:/.+’ with ‘ABCD’ as start and stop characters

• Checksum: none

• Length: variable

There are no particular options for this barcode.

85

Zend Framework 2 Documentation, Release 2.0.0

20.4 Zend\Barcode\Object\Code25

• Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)

• Allowed characters:‘0123456789’

• Checksum: optional (modulo 10)

• Length: variable

There are no particular options for this barcode.

20.5 Zend\Barcode\Object\Code25interleaved

This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options,
and adds the following:

• Name: Code 2 of 5 Interleaved

• Allowed characters:‘0123456789’

• Checksum: optional (modulo 10)

• Length: variable (always even number of characters)

Available options include:

Table 20.1: Zend\Barcode\Object\Code25interleaved Options

Option Data Type Default Value Description
withBearerBars Boolean FALSE Draw a thick bar at the top and the bottom of the barcode.

Note: If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automati-
cally prepend the missing zero to the barcode text.

20.6 Zend\Barcode\Object\Ean2

This barcode extends Zend\Barcode\Object\Ean5 (EAN 5), and has the same particulars and options, and adds
the following:

• Name: EAN-2

• Allowed characters:‘0123456789’

• Checksum: only use internally but not displayed

• Length: 2 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 2, Zend\Barcode\Object\Ean2 will automatically prepend the
missing zero to the barcode text.

86 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

20.7 Zend\Barcode\Object\Ean5

This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and
adds the following:

• Name: EAN-5

• Allowed characters:‘0123456789’

• Checksum: only use internally but not displayed

• Length: 5 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 5, Zend\Barcode\Object\Ean5 will automatically prepend the
missing zero to the barcode text.

20.8 Zend\Barcode\Object\Ean8

This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and
adds the following:

• Name: EAN-8

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Object\Ean8 will automatically prepend the
missing zero to the barcode text.

20.9 Zend\Barcode\Object\Ean13

• Name: EAN-13

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 13 characters (including checksum)

20.7. Zend\Barcode\Object\Ean5 87

Zend Framework 2 Documentation, Release 2.0.0

There are no particular options for this barcode.

Note: If the number of characters is lower than 13, Zend\Barcode\Object\Ean13 will automatically prepend
the missing zero to the barcode text.

The option withQuietZones has no effect with this barcode.

20.10 Zend\Barcode\Object\Code39

• Name: Code 39

• Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’

• Checksum: optional (modulo 43)

• Length: variable

Note: Zend\Barcode\Object\Code39 will automatically add the start and stop characters (‘*’) for you.

There are no particular options for this barcode.

20.11 Zend\Barcode\Object\Identcode

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

• Name: Identcode (Deutsche Post Identcode)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10 different from Code25)

• Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically
prepend missing zeros to the barcode text.

20.12 Zend\Barcode\Object\Itf14

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

• Name: ITF-14

• Allowed characters:‘0123456789’

88 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

• Checksum: mandatory (modulo 10)

• Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Itf14 will automatically prepend
missing zeros to the barcode text.

20.13 Zend\Barcode\Object\Leitcode

This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.

• Name: Leitcode (Deutsche Post Leitcode)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10 different from Code25)

• Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically
prepend missing zeros to the barcode text.

20.14 Zend\Barcode\Object\Planet

• Name: Planet (PostaL Alpha Numeric Encoding Technique)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 12 or 14 characters (including checksum)

There are no particular options for this barcode.

20.15 Zend\Barcode\Object\Postnet

• Name: Postnet (POSTal Numeric Encoding Technique)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 6, 7, 10 or 12 characters (including checksum)

There are no particular options for this barcode.

20.13. Zend\Barcode\Object\Leitcode 89

Zend Framework 2 Documentation, Release 2.0.0

20.16 Zend\Barcode\Object\Royalmail

• Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)

• Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’

• Checksum: mandatory

• Length: variable

There are no particular options for this barcode.

20.17 Zend\Barcode\Object\Upca

This barcode extends Zend\Barcode\Object\Ean13 (EAN-13), and inherits some of its capabilities; it also has
a few particulars of its own.

• Name: UPC-A (Universal Product Code)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object\Upca will automatically prepend
missing zeros to the barcode text.

The option withQuietZones has no effect with this barcode.

20.18 Zend\Barcode\Object\Upce

This barcode extends Zend\Barcode\Object\Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).

• Name: UPC-E (Universal Product Code)

• Allowed characters:‘0123456789’

• Checksum: mandatory (modulo 10)

• Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Object\Upce will automatically prepend
missing zeros to the barcode text.

90 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

Note: If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object\Upce will automatically
replace it by 0.

The option withQuietZones has no effect with this barcode.

20.18. Zend\Barcode\Object\Upce 91

Zend Framework 2 Documentation, Release 2.0.0

92 Chapter 20. Description of shipped barcodes

CHAPTER

TWENTYONE

ZEND\BARCODE RENDERERS

Renderers have some common options. These options can be set in three ways:

• As an array or a Traversable object passed to the constructor.

• As an array passed to the setOptions() method.

• As discrete values passed to individual setters.

Different ways to parameterize a renderer object

1 use Zend\Barcode;
2

3 $options = array(’topOffset’ => 10);
4

5 // Case 1
6 $renderer = new Renderer\Pdf($options);
7

8 // Case 2
9 $renderer = new Renderer\Pdf();

10 $renderer->setOptions($options);
11

12 // Case 3
13 $renderer = new Renderer\Pdf();
14 $renderer->setTopOffset(10);

21.1 Common Options

In the following list, the values have no unit; we will use the term “unit.” For example, the default value of the “thin
bar” is “1 unit.” The real units depend on the rendering support. The individual setters are obtained by uppercasing the
initial letter of the option and prefixing the name with “set” (e.g. “barHeight” => “setBarHeight”). All options have a
correspondant getter prefixed with “get” (e.g. “getBarHeight”). Available options are:

93

Zend Framework 2 Documentation, Release 2.0.0

Table 21.1: Common Options

Option Data
Type

Default
Value

Description

render-
erNames-
pace

String Zend\Barcode\RendererNamespace of the renderer; for example, if you need to extend the
renderers

horizon-
talPosi-
tion

String “left” Can be “left”, “center” or “right”. Can be useful with PDF or if the
setWidth() method is used with an image renderer.

vertical-
Position

String “top” Can be “top”, “middle” or “bottom”. Can be useful with PDF or if the
setHeight() method is used with an image renderer.

leftOffset Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “horizontalPosition” option.

topOffset Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “verticalPosition” option.

automati-
cRender-
Error

Boolean FALSE Whether or not to automatically render errors. If an exception occurs, the
provided barcode object will be replaced with an Error representation.
Note that some errors (or exceptions) can not be rendered.

module-
Size

Float 1 Size of a rendering module in the support.

barcode Zend\Barcode\ObjectNULL The barcode object to render.

An additional getter exists: getType(). It returns the name of the renderer class without the namespace (e.g.
Zend\Barcode\Renderer\Image returns “image”).

21.2 Zend\Barcode\Renderer\Image

The Image renderer will draw the instruction list of the barcode object in an image resource. The component requires
the GD extension. The default width of a module is 1 pixel.

Available options are:

Table 21.2: Zend\Barcode\Renderer\Image Options

Op-
tion

Data
Type

Default
Value

Description

height Integer 0 Allow you to specify the height of the result image. If “0”, the height will be
calculated by the barcode object.

width Integer 0 Allow you to specify the width of the result image. If “0”, the width will be
calculated by the barcode object.

im-
ageType

String “png” Specify the image format. Can be “png”, “jpeg”, “jpg” or “gif”.

21.3 Zend\Barcode\Renderer\Pdf

The PDF renderer will draw the instruction list of the barcode object in a PDF document. The default width of a
module is 0.5 point.

There are no particular options for this renderer.

94 Chapter 21. Zend\Barcode Renderers

CHAPTER

TWENTYTWO

ZEND\CACHE\STORAGE\ADAPTER

22.1 Overview

Storage adapters are wrappers for real storage resources such as memory and the filesystem, using the well known
adapter pattern.

They comes with tons of methods to read, write and modify stored items and to get information about stored items and
the storage.

All adapters implements the interface Zend\Cache\Storage\StorageInterface and most extend
Zend\Cache\Storage\Adapter\AbstractAdapter, which comes with basic logic.

Configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or an adapter-
specific options class if it exists. You may pass the options instance to the class at instantiation or via the
setOptions() method, or alternately pass an associative array of options in either place (internally, these are
then passed to an options class instance). Alternately, you can pass either the options instance or associative array to
the Zend\Cache\StorageFactory::factory method.

Note: Many methods throw exceptions

Because many caching methods can throw exceptions, you need to catch them manually or you can use the plug-
in Zend\Cache\Storage\Plugin\ExceptionHandler to automatically catch them and redirect exceptions
into a log file using the option “exception_callback”.

22.2 Quick Start

Caching adapters can either be created from the provided Zend\Cache\StorageFactory factory, or by simply
instantiating one of the Zend\Cache\Storage\Adapter*classes.

To make life easier, the Zend\Cache\StorageFactory comes with a factory method to create an adapter
and create/add all requested plugins at once.

1 use Zend\Cache\StorageFactory;
2

3 // Via factory:
4 $cache = StorageFactory::factory(array(
5 ’adapter’ => ’apc’,
6 ’plugins’ => array(
7 ’exception_handler’ => array(’throw_exceptions’ => false),
8),
9));

95

Zend Framework 2 Documentation, Release 2.0.0

10

11 // Alternately:
12 $cache = StorageFactory::adapterFactory(’apc’);
13 $plugin = StorageFactory::pluginFactory(’exception_handler’, array(
14 ’throw_exceptions’ => false,
15));
16 $cache->addPlugin($plugin);
17

18 // Or manually:
19 $cache = new Zend\Cache\Storage\Adapter\Apc();
20 $plugin = new Zend\Cache\Storage\Plugin\ExceptionHandler(array(
21 ’throw_exceptions’ => false,
22));
23 $cache->addPlugin($plugin);

22.3 Basic configuration Options

key_pattern Pattern against which to validate cache keys.

• setKeyPattern(null|string $pattern) Implements a fluent interface.

• getKeyPattern() Returns string

namespace The “namespace” in which cache items will live.

• setNamespace(string $namespace) Implements a fluent interface.

• getNamespace() Returns string

readable Enable/Disable reading data from cache.

• setReadable(boolean $flag) Implements a fluent interface.

• getReadable() Returns boolean

ttl Set time to live.

• setTtl(int|float $ttl) Implements a fluent interface.

• getTtl() Returns float

writable Enable/Disable writing data to cache.

• setWritable(boolean $flag) Implements a fluent interface.

• getWritable() Returns boolean

22.4 Available Methods defined by Zend\Cache\Storage\StorageInterface

setOptions setOptions(array|Traversable|Zend\Cache\Storage\Adapter\AdapterOptions
$options)

Set options.

Implements a fluent interface.

getOptions getOptions()

Get options

Returns Zend\Cache\Storage\Adapter\AdapterOptions

96 Chapter 22. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.0.0

getItem getItem(string $key, boolean & $success = null, mixed & $casToken =
null)

Load an item with the given $key, set parameter $success to TRUE and set parameter $casToken.

If item can’t load this method returns NULL and set parameter $success to FALSE.

getItems getItems(array $keys)

Load all items given by $keys.

Returns an array of key-value pairs of available items.

hasItem hasItem(string $key)

Test if an item exists.

Returns boolean

hasItems hasItems(array $keys)

Test multiple items.

Returns array

getMetadata getMetadata(string $key)

Get metadata of an item.

Returns array|boolean

getMetadatas getMetadatas(array $keys)

Get multiple metadata

Returns array

setItem setItem(string $key, mixed $value)

Store an item.

Returns boolean

setItems setItems(array $keyValuePairs)

Store multiple items.

Returns boolean

addItem addItem(string $key, mixed $value)

Add an item.

Returns boolean

addItems addItems(array $keyValuePairs)

Add multiple items.

Returns boolean

replaceItem replaceItem(string $key, mixed $value)

Replace an item.

Returns boolean

replaceItems replaceItems(array $keyValuePairs)

Replace multiple items.

22.4. Available Methods defined by Zend\Cache\Storage\StorageInterface 97

Zend Framework 2 Documentation, Release 2.0.0

Returns boolean

checkAndSetItem checkAndSetItem(mixed $token, string $key, mixed $value)

Set item only if token matches

It uses the token from received from getItem() to check if the item has changed before overwriting it.

Returns boolean

touchItem touchItem(string $key)

Reset lifetime of an item

Returns boolean

touchItems touchItems(array $keys)

Reset lifetime of multiple items.

Returns boolean

removeItem removeItem(string $key)

Remove an item.

Returns boolean

removeItems removeItems(array $keys)

Remove multiple items.

Returns boolean

incrementItem incrementItem(string $key, int $value)

Increment an item.

Returns int|boolean

incrementItems incrementItems(array $keyValuePairs)

Increment multiple items.

Returns boolean

decrementItem decrementItem(string $key, int $value)

Decrement an item.

Returns int|boolean

decrementItems decrementItems(array $keyValuePairs)

Decrement multiple items.

Returns boolean

getCapabilities getCapabilities()

Capabilities of this storage

Returns Zend\Cache\Storage\Capabilities

98 Chapter 22. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.0.0

22.5 Available Methods defined by Zend\Cache\Storage\AvailableSpaceCapableInterface

getAvailableSpace getAvailableSpace()

Get available space in bytes

Returns int|float

22.6 Available Methods defined by Zend\Cache\Storage\TotalSpaceCapableInterface

getTotalSpace getTotalSpace()

Get total space in bytes

Returns int|float

22.7 Available Methods defined by Zend\Cache\Storage\ClearByNamespaceInterface

clearByNamespace clearByNamespace(string $namespace)

Remove items of given namespace

Returns boolean

22.8 Available Methods defined by Zend\Cache\Storage\ClearByPrefixInterface

clearByPrefix clearByPrefix(string $prefix)

Remove items matching given prefix

Returns boolean

22.9 Available Methods defined by Zend\Cache\Storage\ClearExpiredInterface

clearExpired clearExpired()

Remove expired items

Returns boolean

22.10 Available Methods defined by Zend\Cache\Storage\FlushableInterface

flush flush()

Flush the whole storage

Returns boolean

22.5. Available Methods defined by Zend\Cache\Storage\AvailableSpaceCapableInterface99

Zend Framework 2 Documentation, Release 2.0.0

22.11 Available Methods defined by Zend\Cache\Storage\IterableInterface
(extends IteratorAggregate)

getIterator getIterator()

Get an Iterator

Returns Zend\Cache\Storage\IteratorInterface

22.12 Available Methods defined by Zend\Cache\Storage\OptimizableInterface

optimize optimize()

Optimize the storage

Returns boolean

22.13 Available Methods defined by Zend\Cache\Storage\TaggableInterface

setTags setTags(string $key, string[] $tags)

Set tags to an item by given key. An empty array will remove all tags.

Returns boolean

getTags getTags(string $key)

Get tags of an item by given key

Returns string[]|FALSE

clearByTags clearByTags(string[] $tags, boolean $disjunction = false)

Remove items matching given tags.

If $disjunction only one of the given tags must match else all given tags must match.

Returns boolean

22.14 TODO: Examples

100 Chapter 22. Zend\Cache\Storage\Adapter

CHAPTER

TWENTYTHREE

ZEND\CACHE\STORAGE\CAPABILITIES

23.1 Overview

Storage capabilities describes how a storage adapter works and which features it supports.

To get capabilities of a storage adapter, you can use the method getCapabilities() of the storage adapter but
only the storage adapter and its plugins have permissions to change them.

Because capabilities are mutable, for example, by changing some options, you can subscribe to the “change” event to
get notifications; see the examples for details.

If you are writing your own plugin or adapter, you can also change capabilities because you have access to the marker
object and can create your own marker to instantiate a new object of Zend\Cache\Storage\Capabilities.

23.2 Available Methods

__construct __construct(stdClass $marker, array $capabilities = array
(), null|Zend\Cache\Storage\Capabilities $baseCapabilities)
__construct(Zend\Cache\Storage\StorageInterface $storage, stdClass
$marker, array $capabilities = array(), Capabilities $baseCapabilities
= null)

Constructor

getSupportedDatatypes getSupportedDatatypes()

Get supported datatypes.

Returns array.

setSupportedDatatypes setSupportedDatatypes(stdClass $marker, array $datatypes)

Set supported datatypes.

Implements a fluent interface.

getSupportedMetadata getSupportedMetadata()

Get supported metadata.

Returns array.

setSupportedMetadata setSupportedMetadata(stdClass $marker, string $metadata)

Set supported metadata

101

Zend Framework 2 Documentation, Release 2.0.0

Implements a fluent interface.

getMinTtl getMinTtl()

Get minimum supported time-to-live

Returns int (0 means items never expire)

setMinTtl setMinTtl(stdClass $marker, int $minTtl)

Set minimum supported time-to-live

Implements a fluent interface.

getMaxTtl getMaxTtl()

Get maximum supported time-to-live

Returns int

setMaxTtl setMaxTtl(stdClass $marker, int $maxTtl)

Set maximum supported time-to-live

Implements a fluent interface.

getStaticTtl getStaticTtl()

Is the time-to-live handled static (on write), or dynamic (on read).

Returns boolean

setStaticTtl setStaticTtl(stdClass $marker, boolean $flag)

Set if the time-to-live is handled statically (on write) or dynamically (on read)

Implements a fluent interface.

getTtlPrecision getTtlPrecision()

Get time-to-live precision.

Returns float.

setTtlPrecision setTtlPrecision(stdClass $marker, float $ttlPrecision)

Set time-to-live precision.

Implements a fluent interface.

getUseRequestTime getUseRequestTime()

Get the “use request time” flag status

Returns boolean

setUseRequestTime setUseRequestTime(stdClass $marker, boolean $flag)

Set the “use request time” flag.

Implements a fluent interface.

getExpiredRead getExpiredRead()

Get flag indicating if expired items are readable.

Returns boolean

102 Chapter 23. Zend\Cache\Storage\Capabilities

Zend Framework 2 Documentation, Release 2.0.0

setExpiredRead setExpiredRead(stdClass $marker, boolean $flag)

Set if expired items are readable.

Implements a fluent interface.

getMaxKeyLength getMaxKeyLength()

Get maximum key lenth.

Returns int

setMaxKeyLength setMaxKeyLength(stdClass $marker, int $maxKeyLength)

Set maximum key lenth.

Implements a fluent interface.

getNamespaceIsPrefix getNamespaceIsPrefix()

Get if namespace support is implemented as a key prefix.

Returns boolean

setNamespaceIsPrefix setNamespaceIsPrefix(stdClass $marker, boolean $flag)

Set if namespace support is implemented as a key prefix.

Implements a fluent interface.

getNamespaceSeparator getNamespaceSeparator()

Get namespace separator if namespace is implemented as a key prefix.

Returns string

setNamespaceSeparator setNamespaceSeparator(stdClass $marker, string $separator)

Set the namespace separator if namespace is implemented as a key prefix.

Implements a fluent interface.

23.3 Examples

Get storage capabilities and do specific stuff in base of it

1 use Zend\Cache\StorageFactory;
2

3 $cache = StorageFactory::adapterFactory(’filesystem’);
4 $supportedDatatypes = $cache->getCapabilities()->getSupportedDatatypes();
5

6 // now you can run specific stuff in base of supported feature
7 if ($supportedDatatypes[’object’]) {
8 $cache->set($key, $object);
9 } else {

10 $cache->set($key, serialize($object));
11 }

23.3. Examples 103

Zend Framework 2 Documentation, Release 2.0.0

Listen to change event

1 use Zend\Cache\StorageFactory;
2

3 $cache = StorageFactory::adapterFactory(’filesystem’, array(
4 ’no_atime’ => false,
5));
6

7 // Catching capability changes
8 $cache->getEventManager()->attach(’capability’, function($event) {
9 echo count($event->getParams()) . ’ capabilities changed’;

10 });
11

12 // change option which changes capabilities
13 $cache->getOptions()->setNoATime(true);

104 Chapter 23. Zend\Cache\Storage\Capabilities

CHAPTER

TWENTYFOUR

ZEND\CACHE\STORAGE\PLUGIN

24.1 Overview

Cache storage plugins are objects to add missing functionality or to influence behavior of a storage adapter.

The plugins listen to events the adapter triggers and can change called method arguments (*.post
- events), skipping and directly return a result (using stopPropagation), changing the re-
sult (with setResult of Zend\Cache\Storage\PostEvent) and catching exceptions (with
Zend\Cache\Storage\ExceptionEvent).

24.2 Quick Start

Storage plugins can either be created from Zend\Cache\StorageFactory with the pluginFactory, or by
simply instantiating one of the Zend\Cache\Storage\Plugin*classes.

To make life easier, the Zend\Cache\StorageFactory comes with the method factory to create an adapter
and all given plugins at once.

1 use Zend\Cache\StorageFactory;
2

3 // Via factory:
4 $cache = StorageFactory::factory(array(
5 ’adapter’ => ’filesystem’,
6 ’plugins’ => array(’serializer’),
7));
8

9 // Alternately:
10 $cache = StorageFactory::adapterFactory(’filesystem’);
11 $plugin = StorageFactory::pluginFactory(’serializer’);
12 $cache->addPlugin($plugin);
13

14 // Or manually:
15 $cache = new Zend\Cache\Storage\Adapter\Filesystem();
16 $plugin = new Zend\Cache\Storage\Plugin\Serializer();
17 $cache->addPlugin($plugin);

24.3 Configuration Options

clearing_factor Set the automatic clearing factor. Used by the ClearByFactor plugin.

105

Zend Framework 2 Documentation, Release 2.0.0

• setClearingFactor(int $clearingFactor) Implements a fluent interface.

• getClearingFactor() Returns int

clear_by_namespace Flag indicating whether or not to clear by namespace. Used by the ClearByFactor plugin.

• setClearByNamespace(bool $clearByNamespace) Implements a fluent interface.

• getClearByNamespace() Returns bool

exception_callback Set callback to call on intercepted exception. Used by the ExceptionHandler plugin.

• setExceptionCallback(callable $exceptionCallback) Implements a fluent interface.

• getExceptionCallback() Returns null|callable

optimizing_factor Set automatic optimizing factor. Used by the OptimizeByFactor plugin.

• setOptimizingFactor(int $optimizingFactor) Implements a fluent interface.

• getOptimizingFactor() Returns int

serializer Set serializer adapter to use. Used by Serializer plugin.

• setSerializer(string|Zend\Serializer\Adapter $serializer) Implements a fluent
interface.

• getSerializer() Returns Zend\Serializer\Adapter

serializer_options Set configuration options for instantiating a serializer adapter. Used by the Serializer plugin.

• setSerializerOptions(array $serializerOptions) Implements a fluent interface.

• getSerializerOptions() Returns array

throw_exceptions Set flag indicating we should re-throw exceptions. Used by the ExceptionHandler plugin.

• setThrowExceptions(bool $throwExceptions) Implements a fluent interface.

• getThrowExceptions() Returns bool

24.4 Available Methods

setOptions setOptions(Zend\Cache\Storage\Plugin\PluginOptions $options)

Set options

Implements a fluent interface.

getOptions getOptions()

Get options

Returns PluginOptions

attach attach(EventCollection $events)

Defined by Zend\EventManager\ListenerAggregate, attach one or more listeners.

Returns void

detach detach(EventCollection $events)

Defined by Zend\EventManager\ListenerAggregate, detach all previously attached listeners.

Returns void

106 Chapter 24. Zend\Cache\Storage\Plugin

Zend Framework 2 Documentation, Release 2.0.0

24.5 TODO: Examples

24.5. TODO: Examples 107

Zend Framework 2 Documentation, Release 2.0.0

108 Chapter 24. Zend\Cache\Storage\Plugin

CHAPTER

TWENTYFIVE

ZEND\CACHE\PATTERN

25.1 Overview

Cache patterns are configurable objects to solve known performance bottlenecks. Each should be used only in the spe-
cific situations they are designed to address. For example you can use one of the CallbackCache, ObjectCache
or ClassCache patterns to cache method and function calls; to cache output generation, the OutputCache pattern
could assist.

All cache patterns implements the same interface, Zend\Cache\Pattern, and most extend the abstract class
Zend\Cache\Pattern\AbstractPattern to implement basic logic.

Configuration is provided via the Zend\Cache\Pattern\PatternOptions class, which can simply be instan-
tiated with an associative array of options passed to the constructor. To configure a pattern object, you can set an
instance of Zend\Cache\Pattern\PatternOptions with setOptions, or provide your options (either as
an associative array or PatternOptions instance) as the second argument to the factory.

It’s also possible to use a single instance of Zend\Cache\Pattern\PatternOptions and pass it to multiple
pattern objects.

25.2 Quick Start

Pattern objects can either be created from the provided Zend\Cache\PatternFactory factory, or, by simply
instantiating one of the Zend\Cache\Pattern* classes.

1 use Zend\Cache\PatternFactory;
2 use Zend\Cache\Pattern\PatternOptions;
3

4 // Via the factory:
5 $callbackCache = PatternFactory::factory(’callback’, array(
6 ’storage’ => ’apc’,
7 ’cache_output’ => true,
8));
9

10 // OR, the equivalent manual instantiation:
11 $callbackCache = new \Zend\Cache\Pattern\CallbackCache();
12 $callbackCache->setOptions(new PatternOptions(array(
13 ’storage’ => ’apc’,
14 ’cache_output’ => true,
15)));

109

Zend Framework 2 Documentation, Release 2.0.0

25.3 Configuration Options

cache_by_default Flag indicating whether or not to cache by default. Used by the ClassCache and
ObjectCache patterns.

• setCacheByDefault(bool $cacheByDefault) Implements a fluent interface.

• getCacheByDefault() Returns boolean.

cache_output Used by the CallbackCache, ClassCache, and ObjectCache patterns. Flag used to determine
whether or not to cache output.

• setCacheOutput(bool $cacheOutput) Implements a fluent interface.

• getCacheOutput() Returns boolean

class Set the name of the class to cache. Used by the ClassCache pattern.

• setclass(string $class) Implements a fluent interface.

• getClass() Returns null|string

class_cache_methods Set list of method return values to cache. Used by ClassCache Pattern.

• setClassCacheMethods(array $classCacheMethods) Implements a fluent interface.

• getClassCacheMethods() Returns array

class_non_cache_methods Set list of method return values that should not be cached. Used by the ClassCache
pattern.

• setClassNonCacheMethods(array $classNonCacheMethods) Implements a fluent inter-
face.

• getClassNonCacheMethods() Returns array

dir_perm Set directory permissions; proxies to “dir_umask” property, setting the inverse of the provided value. Used
by the CaptureCache pattern.

• setDirPerm(string|int $dirPerm) Implements a fluent interface.

• getDirPerm() Returns int

dir_umask Set the directory umask value. Used by the CaptureCache pattern.

• setDirUmask(int $dirUmask) Implements a fluent interface.

• getDirUmask() Returns int

file_locking Set whether or not file locking should be used. Used by the CaptureCache pattern.

• setFileLocking(bool $fileLocking) Implements a fluent interface.

• getFileLocking() Returns bool

file_perm Set file permissions; proxies to the “file_umask” property, setting the inverse of the value provided. Used
by the CaptureCache pattern.

• setFilePerm(int|string $filePerm) Implements a fluent interface.

• getFilePerm() Returns int

file_umask Set file umask; used by the CaptureCache pattern.

• setFileUmask(int $fileUmask) Implements a fluent interface.

• getFileUmask() Returns int

110 Chapter 25. Zend\Cache\Pattern

Zend Framework 2 Documentation, Release 2.0.0

index_filename Set value for index filename. Used by the CaptureCache pattern.

• setIndexFilename(string $indexFilename) Implements a fluent interface.

• getIndexFilename() Returns string

object Set object to cache; used by the ObjectCache pattern.

• setObject(object $object) Implements a fluent interface.

• getObject() Returns null|object.

object_cache_magic_properties Set flag indicating whether or not to cache magic properties. Used by the
ObjectCache pattern.

• setObjectCacheMagicProperties(bool $objectCacheMagicProperties) Imple-
ments a fluent interface.

• getObjectCacheMagicProperties() Returns bool

object_cache_methods Set list of object methods for which to cache return values. Used by ObjectCache pattern.

• setObjectCacheMethods(array $objectCacheMethods) Implements a fluent interface.

• getObjectCacheMethods() Returns array

object_key Set the object key part; used to generate a callback key in order to speed up key generation. Used by the
ObjectCache pattern.

• setObjectKey(null|string $objectKey) Implements a fluent interface.

• getObjectKey() Returns null|string

object_non_cache_methods Set list of object methods for which not to cache return values. Used by the
ObjectCache pattern.

• setObjectNonCacheMethods(array $objectNonCacheMethods) Implements a fluent in-
terface.

• getObjectNonCacheMethods() Returns array

public_dir Set location of public directory; used by the CaptureCache pattern.

• setPublicDir() Implements a fluent interface.

• getPublicDir() Returns null|string

storage Set the storage adapter. Required for the following Pattern classes: CallbackCache, ClassCache,
ObjectCache, OutputCache.

• setStorage(string|array|Zend\Cache\Storage\Adapter $storage) Implements a
fluent interface.

• getStorage() Returns null|Zend\Cache\Storage\Adapter

tag_key Set the prefix used for tag keys. Used by the CaptureCache pattern.

• setTagKey(string $tagKey) Implements a fluent interface.

• getTagKey() Returns string

tags Set list of tags to use for captured content. Used by the CaptureCache pattern.

• setTags(array $tags) Implements a fluent interface.

• getTags() Returns array

Set storage adapter to use for tags. Used by the CaptureCache pattern.

25.3. Configuration Options 111

Zend Framework 2 Documentation, Release 2.0.0

• setTagStorage(string|array|Zend\Cache\Storage\Adapter $tagStorage)
Implements a fluent interface.

• getTagStorage() Returns null|Zend\Cache\Storage\Adapter

25.4 Available Methods

setOptions setOptions(Zend\Cache\Pattern\PatternOptions $options)

Set pattern options

Returns Zend\Cache\Pattern

getOptions getOptions()

Get all pattern options

Returns PatternOptions instance.

25.5 Examples

Using the callback cache pattern

1 use Zend\Cache\PatternFactory;
2

3 $callbackCache = PatternFactory::factory(’callback’, array(
4 ’storage’ => ’apc’
5));
6

7 // Calls and caches the function doResourceIntensiceStuff with three arguments
8 // and returns result
9 $result = $callbackCache->call(’doResourceIntensiveStuff’, array(

10 ’argument1’,
11 ’argument2’,
12 ’argumentN’,
13));

Using the object cache pattern

1 use Zend\Cache\PatternFactory;
2

3 $object = new MyObject();
4 $objectProxy = PatternFactory::factory(’object’, array(
5 ’object’ => $object,
6 ’storage’ => ’apc’,
7));
8

9 // Calls and caches $object->doResourceIntensiveStuff with three arguments
10 // and returns result
11 $result = $objectProxy->doResourceIntensiveStuff(’argument1’, ’argument2’, ’argumentN’);

112 Chapter 25. Zend\Cache\Pattern

Zend Framework 2 Documentation, Release 2.0.0

Using the class cache pattern

1 use Zend\Cache\PatternFactory;
2

3 $classProxy = PatternFactory::factory(’class’, array(
4 ’class’ => ’MyClass’,
5 ’storage’ => ’apc’,
6));
7

8 // Calls and caches MyClass::doResourceIntensiveStuff with three arguments
9 // and returns result

10 $result = $classProxy->doResourceIntensiveStuff(’argument1’, ’argument2’, ’argumentN’);

Using the output cache pattern

1 use Zend\Cache\PatternFactory;
2

3 $outputCache = PatternFactory::factory(’output’, array(
4 ’storage’ => ’filesystem’,
5));
6

7 // Start capturing all output (excluding headers) and write it to storage.
8 // If there is already a cached item with the same key it will be
9 // output and return true, else false.

10 if ($outputCache->start(’MyUniqueKey’) === false) {
11 echo ’cache output since: ’ . date(’H:i:s’) . "
\n";
12

13 // end capturing output, write content to cache storage and display
14 // captured content
15 $outputCache->end();
16 }
17

18 echo ’This output is never cached.’;

Using the capture cache pattern

You need to configure your HTTP server to redirect missing content to run your script generating it.

This example uses Apache with the following .htaccess:

1 ErrorDocument 404 /index.php

Within your index.php you can add the following content:

1 use Zend\Cache\PatternFactory;
2

3 $capture = PatternFactory::factory(’capture’, array(
4 ’public_dir’ => __DIR__,
5));
6

7 // Start capturing all output excl. headers. and write to public directory
8 // If the request was already written the file will be overwritten.
9 $capture->start();

10

11 // do stuff to dynamically generate output

25.5. Examples 113

Zend Framework 2 Documentation, Release 2.0.0

114 Chapter 25. Zend\Cache\Pattern

CHAPTER

TWENTYSIX

INTRODUCTION

CAPTCHA stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”; it is used as
a challenge-response to ensure that the individual submitting information is a human and not an automated process.
Typically, a captcha is used with form submissions where authenticated users are not necessary, but you want to prevent
spam submissions.

Captchas can take a variety of forms, including asking logic questions, presenting skewed fonts, and presenting multi-
ple images and asking how they relate. The Zend\Captcha component aims to provide a variety of back ends that
may be utilized either standalone or in conjunction with the Zend\Form component.

115

http://en.wikipedia.org/wiki/Captcha

Zend Framework 2 Documentation, Release 2.0.0

116 Chapter 26. Introduction

CHAPTER

TWENTYSEVEN

CAPTCHA OPERATION

All CAPTCHA adapter implement Zend\Captcha\AdapterInterface, which looks like the following:

1 namespace Zend\Captcha;
2

3 use Zend\Validator\ValidatorInterface;
4

5 interface AdapterInterface extends ValidatorInterface
6 {
7 public function generate();
8

9 public function setName($name);
10

11 public function getName();
12

13 // Get helper name used for rendering this captcha type
14 public function getHelperName();
15 }

The name setter and getter are used to specify and retrieve the CAPTCHA identifier. The most interesting methods are
generate() and render(). generate() is used to create the CAPTCHA token. This process typically will
store the token in the session so that you may compare against it in subsequent requests. render() is used to render
the information that represents the CAPTCHA, be it an image, a figlet, a logic problem, or some other CAPTCHA.

A simple use case might look like the following:

1 // Originating request:
2 $captcha = new Zend\Captcha\Figlet(array(
3 ’name’ => ’foo’,
4 ’wordLen’ => 6,
5 ’timeout’ => 300,
6));
7

8 $id = $captcha->generate();
9

10 //this will output a Figlet string
11 echo $captcha->getFiglet()->render($captcha->getWord());
12

13

14 // On a subsequent request:
15 // Assume a captcha setup as before, with corresponding form fields, the value of $_POST[’foo’]
16 // would be key/value array: id => captcha ID, input => captcha value
17 if ($captcha->isValid($_POST[’foo’], $_POST)) {
18 // Validated!
19 }

117

Zend Framework 2 Documentation, Release 2.0.0

Note: Under most circumstances, you probably prefer the use of Zend\Captcha functionality combined with the
power of the Zend\Form component. For an example on how to use Zend\Form\Element\Captcha, have a
look at the Zend\Form Quick Start.

118 Chapter 27. Captcha Operation

CHAPTER

TWENTYEIGHT

CAPTCHA ADAPTERS

The following adapters are shipped with Zend Framework by default.

28.1 Zend\Captcha\Word

Zend\Captcha\Word is an abstract adapter that serves as the base class for most other CAPTCHA
adapters. It provides mutators for specifying word length, session TTL and the session container object to use.
Zend\Captcha\Word also encapsulates validation logic.

By default, the word length is 8 characters, the session timeout is 5 minutes, and Zend\Session\Container is
used for persistence (using the namespace “Zend_Form_Captcha_<captcha ID>”).

In addition to the methods required by the Zend\Captcha\AdapterInterface interface,
Zend\Captcha\Word exposes the following methods:

• setWordLen($length) and getWordLen() allow you to specify the length of the generated “word” in
characters, and to retrieve the current value.

• setTimeout($ttl) and getTimeout() allow you to specify the time-to-live of the session token, and to
retrieve the current value. $ttl should be specified in seconds.

• setUseNumbers($numbers) and getUseNumbers() allow you to specify if numbers will be consid-
ered as possible characters for the random work or only letters would be used.

• setSessionClass($class) and getSessionClass() allow you to specify an alternate
Zend\Session\Container implementation to use to persist the CAPTCHA token and to retrieve
the current value.

• getId() allows you to retrieve the current token identifier.

• getWord() allows you to retrieve the generated word to use with the CAPTCHA. It will generate the word for
you if none has been generated yet.

• setSession(Zend\Session\Container $session) allows you to specify a session object to use
for persisting the CAPTCHA token. getSession() allows you to retrieve the current session object.

All word CAPTCHAs allow you to pass an array of options or Traversable object to the constructor, or, alternately,
pass them to setOptions(). By default, the wordLen, timeout, and sessionClass keys may all be used. Each
concrete implementation may define additional keys or utilize the options in other ways.

Note: Zend\Captcha\Word is an abstract class and may not be instantiated directly.

119

Zend Framework 2 Documentation, Release 2.0.0

28.2 Zend\Captcha\Dumb

The Zend\Captcha\Dumb adapter is mostly self-descriptive. It provides a random string that must be typed in
reverse to validate. As such, it’s not a good CAPTCHA solution and should only be used for testing. It extends
Zend\Captcha\Word.

28.3 Zend\Captcha\Figlet

The Zend\Captcha\Figlet adapter utilizes Zend\Text\Figlet to present a figlet to the user.

Options passed to the constructor will also be passed to the Zend\Text\Figlet object. See the Zend\Text\Figlet docu-
mentation for details on what configuration options are available.

28.4 Zend\Captcha\Image

The Zend\Captcha\Image adapter takes the generated word and renders it as an image, performing various skew-
ing permutations to make it difficult to automatically decipher. It requires the GD extension compiled with TrueType
or Freetype support. Currently, the Zend\Captcha\Image adapter can only generate PNG images.

Zend\Captcha\Image extends Zend\Captcha\Word, and additionally exposes the following methods:

• setExpiration($expiration) and getExpiration() allow you to specify a maximum lifetime the
CAPTCHA image may reside on the filesystem. This is typically a longer than the session lifetime. Garbage
collection is run periodically each time the CAPTCHA object is invoked, deleting all images that have expired.
Expiration values should be specified in seconds.

• setGcFreq($gcFreq) and getGcFreg() allow you to specify how frequently garbage collection should
run. Garbage collection will run every 1/$gcFreq calls. The default is 100.

• setFont($font) and getFont() allow you to specify the font you will use. $font should be a fully
qualified path to the font file. This value is required; the CAPTCHA will throw an exception during generation
if the font file has not been specified.

• setFontSize($fsize) and getFontSize() allow you to specify the font size in pixels for generating
the CAPTCHA. The default is 24px.

• setHeight($height) and getHeight() allow you to specify the height in pixels of the generated
CAPTCHA image. The default is 50px.

• setWidth($width) and getWidth() allow you to specify the width in pixels of the generated CAPTCHA
image. The default is 200px.

• setImgDir($imgDir) and getImgDir() allow you to specify the directory for storing CAPTCHA im-
ages. The default is “./images/captcha/”, relative to the bootstrap script.

• setImgUrl($imgUrl) and getImgUrl() allow you to specify the relative path to a CAPTCHA image to
use for HTML markup. The default is “/images/captcha/”.

• setSuffix($suffix) and getSuffix() allow you to specify the filename suffix for the CAPTCHA
image. The default is “.png”. Note: changing this value will not change the type of the generated image.

• setDotNoiseLevel($level) and getDotNoiseLevel(), along with
setLineNoiseLevel($level) and getLineNoiseLevel(), allow you to control how much
“noise” in the form of random dots and lines the image would contain. Each unit of $level produces one
random dot or line. The default is 100 dots and 5 lines. The noise is added twice - before and after the image
distortion transformation.

120 Chapter 28. CAPTCHA Adapters

http://php.net/gd

Zend Framework 2 Documentation, Release 2.0.0

All of the above options may be passed to the constructor by simply removing the ‘set’ method prefix and casting the
initial letter to lowercase: “suffix”, “height”, “imgUrl”, etc.

28.5 Zend\Captcha\ReCaptcha

The Zend\Captcha\ReCaptcha adapter uses Zend\Service\ReCaptcha\ReCaptcha to generate and validate
CAPTCHAs. It exposes the following methods:

• setPrivKey($key) and getPrivKey() allow you to specify the private key to use for the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

• setPubKey($key) and getPubKey() allow you to specify the public key to use with the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

• setService(Zend\Service\ReCaptcha\ReCaptcha $service) and getService() allow
you to set and get the ReCaptcha service object.

28.5. Zend\Captcha\ReCaptcha 121

Zend Framework 2 Documentation, Release 2.0.0

122 Chapter 28. CAPTCHA Adapters

CHAPTER

TWENTYNINE

INTRODUCTION

Zend\Config is designed to simplify access to configuration data within applications. It provides a nested object
property-based user interface for accessing this configuration data within application code. The configuration data
may come from a variety of media supporting hierarchical data storage. Currently, Zend\Config provides adapters
that read and write configuration data stored in .ini, JSON, YAML and XML files.

29.1 Using Zend\Config\Config with a Reader Class

Normally, it is expected that users would use one of the reader classes to read a configuration file, but if configuration
data are available in a PHP array, one may simply pass the data to Zend\Config\Config‘s constructor in order
to utilize a simple object-oriented interface:

1 // An array of configuration data is given
2 $configArray = array(
3 ’webhost’ => ’www.example.com’,
4 ’database’ => array(
5 ’adapter’ => ’pdo_mysql’,
6 ’params’ => array(
7 ’host’ => ’db.example.com’,
8 ’username’ => ’dbuser’,
9 ’password’ => ’secret’,

10 ’dbname’ => ’mydatabase’
11)
12)
13);
14

15 // Create the object-oriented wrapper using the configuration data
16 $config = new Zend\Config\Config($configArray);
17

18 // Print a configuration datum (results in ’www.example.com’)
19 echo $config->webhost;

As illustrated in the example above, Zend\Config\Config provides nested object property syntax to access con-
figuration data passed to its constructor.

Along with the object oriented access to the data values, Zend\Config\Config also has get() method that
returns the supplied value if the data element doesn’t exist in the configuration array. For example:

1 $host = $config->database->get(’host’, ’localhost’);

123

Zend Framework 2 Documentation, Release 2.0.0

29.2 Using Zend\Config\Config with a PHP Configuration File

It is often desirable to use a purely PHP-based configuration file. The following code illustrates how easily this can be
accomplished:

1 // config.php
2 return array(
3 ’webhost’ => ’www.example.com’,
4 ’database’ => array(
5 ’adapter’ => ’pdo_mysql’,
6 ’params’ => array(
7 ’host’ => ’db.example.com’,
8 ’username’ => ’dbuser’,
9 ’password’ => ’secret’,

10 ’dbname’ => ’mydatabase’
11)
12)
13);

1 // Consumes the configuration array
2 $config = new Zend\Config\Config(include ’config.php’);
3

4 // Print a configuration datum (results in ’www.example.com’)
5 echo $config->webhost;

124 Chapter 29. Introduction

CHAPTER

THIRTY

THEORY OF OPERATION

Configuration data are made accessible to Zend\Config\Config‘s constructor with an associative array, which
may be multi-dimensional, so data can be organized from general to specific. Concrete adapter classes adapt configu-
ration data from storage to produce the associative array for Zend\Config\Config‘s constructor. If needed, user
scripts may provide such arrays directly to Zend\Config\Config‘s constructor, without using a reader class.

Each value in the configuration data array becomes a property of the Zend\Config\Config object. The key
is used as the property name. If a value is itself an array, then the resulting object property is created as a new
Zend\Config\Config object, loaded with the array data. This occurs recursively, such that a hierarchy of config-
uration data may be created with any number of levels.

Zend\Config\Config implements the Countable and Iterator interfaces in order to facilitate simple access to
configuration data. Thus, Zend\Config\Config objects support the count() function and PHP constructs such as
foreach.

By default, configuration data made available through Zend\Config\Config are read-only, and an assignment
(e.g. $config->database->host = ’example.com’;) results in a thrown exception. This default behav-
ior may be overridden through the constructor, allowing modification of data values. Also, when modifications are
allowed, Zend\Config\Config supports unsetting of values (i.e. unset($config->database->host)).
The isReadOnly() method can be used to determine if modifications to a given Zend\Config\Config
object are allowed and the setReadOnly() method can be used to stop any further modifications to a
Zend\Config\Config object that was created allowing modifications.

Note: Modifying Config does not save changes

It is important not to confuse such in-memory modifications with saving configuration data out to specific storage
media. Tools for creating and modifying configuration data for various storage media are out of scope with respect
to Zend\Config\Config. Third-party open source solutions are readily available for the purpose of creating and
modifying configuration data for various storage media.

If you have two Zend\Config\Config objects, you can merge them into a single object using the merge() func-
tion. For example, given $config and $localConfig, you can merge data from $localConfig to $config
using $config->merge($localConfig);. The items in $localConfig will override any items with the
same name in $config.

Note: The Zend\Config\Config object that is performing the merge must have been constructed to allow
modifications, by passing TRUE as the second parameter of the constructor. The setReadOnly() method can then
be used to prevent any further modifications after the merge is complete.

125

http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.iterator.php
http://php.net/count
http://php.net/foreach

Zend Framework 2 Documentation, Release 2.0.0

126 Chapter 30. Theory of Operation

CHAPTER

THIRTYONE

ZEND\CONFIG\READER

Zend\Config\Reader gives you the ability to read a config file. It works with concrete implementations for
different file format. The Zend\Config\Reader is only an interface, that define the two methods fromFile()
and fromString(). The concrete implementations of this interface are:

• Zend\Config\Reader\Ini

• Zend\Config\Reader\Xml

• Zend\Config\Reader\Json

• Zend\Config\Reader\Yaml

The fromFile() and fromString() return a PHP array contains the data of the configuration file.

Note: Differences from ZF1

The Zend\Config\Reader component no longer supports the following features:

• Inheritance of sections.

• Reading of specific sections.

31.1 Zend\Config\Reader\Ini

Zend\Config\Reader\Ini enables developers to store configuration data in a familiar INI format and read them
in the application by using an array syntax.

Zend\Config\Reader\Ini utilizes the parse_ini_file() PHP function. Please review this documentation to be
aware of its specific behaviors, which propagate to Zend\Config\Reader\Ini, such as how the special values
of “TRUE”, “FALSE”, “yes”, “no”, and “NULL” are handled.

Note: Key Separator

By default, the key separator character is the period character (“.”). This can be changed, however, using the
setNestSeparator() method. For example:

1 $reader = new Zend\Config\Reader\Ini();
2 $reader->setNestSeparator(’-’);

The following example illustrates a basic use of Zend\Config\Reader\Ini for loading configuration data from
an INI file. In this example there are configuration data for both a production system and for a staging system. Suppose
we have the following INI configuration file:

127

http://php.net/parse_ini_file

Zend Framework 2 Documentation, Release 2.0.0

1 webhost = ’www.example.com’
2 database.adapter = ’pdo_mysql’
3 database.params.host = ’db.example.com’
4 database.params.username = ’dbuser’
5 database.params.password = ’secret’
6 database.params.dbname = ’dbproduction’

We can use the Zend\Config\Reader\Ini to read this INI file:

1 $reader = new Zend\Config\Reader\Ini();
2 $data = $reader->fromFile(’/path/to/config.ini’);
3

4 echo $data[’webhost’] // prints "www.example.com"
5 echo $data[’database’][’params’][’dbname’]; // prints "dbproduction"

The Zend\Config\Reader\Ini supports a feature to include the content of a INI file in a specific section of
another INI file. For instance, suppose we have an INI file with the database configuration:

1 database.adapter = ’pdo_mysql’
2 database.params.host = ’db.example.com’
3 database.params.username = ’dbuser’
4 database.params.password = ’secret’
5 database.params.dbname = ’dbproduction’

We can include this configuration in another INI file, for instance:

1 webhost = ’www.example.com’
2 @include = ’database.ini’

If we read this file using the component Zend\Config\Reader\Ini we will obtain the same configuration data
structure of the previous example.

The @include = ’file-to-include.ini’ can be used also in a subelement of a value. For instance we can
have an INI file like that:

1 adapter = ’pdo_mysql’
2 params.host = ’db.example.com’
3 params.username = ’dbuser’
4 params.password = ’secret’
5 params.dbname = ’dbproduction’

And assign the @include as sublement of the database value:

1 webhost = ’www.example.com’
2 database.@include = ’database.ini’

31.2 Zend\Config\Reader\Xml

Zend\Config\Reader\Xml enables developers to read configuration data in a familiar XML format and read
them in the application by using an array syntax. The root element of the XML file or string is irrelevant and may be
named arbitrarily.

The following example illustrates a basic use of Zend\Config\Reader\Xml for loading configuration data from
an XML file. Suppose we have the following XML configuration file:

1 <?xml version="1.0" encoding="utf-8"?>?>
2 <config>
3 <webhost>www.example.com</webhost>

128 Chapter 31. Zend\Config\Reader

Zend Framework 2 Documentation, Release 2.0.0

4 <database>
5 <adapter value="pdo_mysql"/>
6 <params>
7 <host value="db.example.com"/>
8 <username value="dbuser"/>
9 <password value="secret"/>

10 <dbname value="dbproduction"/>
11 </params>
12 </database>
13 </config>

We can use the Zend\Config\Reader\Xml to read this XML file:

1 $reader = new Zend\Config\Reader\Xml();
2 $data = $reader->fromFile(’/path/to/config.xml’);
3

4 echo $data[’webhost’] // prints "www.example.com"
5 echo $data[’database’][’params’][’dbname’]; // prints "dbproduction"

Zend\Config\Reader\Xml utilizes the XMLReader PHP class. Please review this documentation to be aware
of its specific behaviors, which propagate to Zend\Config\Reader\Xml.

Using Zend\Config\Reader\Xml we can include the content of XML files in a specific XML element. This
is provided using the standard function XInclude of XML. To use this function you have to add the namespace
xmlns:xi="http://www.w3.org/2001/XInclude" to the XML file. Suppose we have an XML files that
contains only the database configuration:

1 <?xml version="1.0" encoding="utf-8"?>
2 <config>
3 <database>
4 <adapter>pdo_mysql</adapter>
5 <params>
6 <host>db.example.com</host>
7 <username>dbuser</username>
8 <password>secret</password>
9 <dbname>dbproduction</dbname>

10 </params>
11 </database>
12 </config>

We can include this configuration in another XML file, for instance:

1 <?xml version="1.0" encoding="utf-8"?>
2 <config xmlns:xi="http://www.w3.org/2001/XInclude">
3 <webhost>www.example.com</webhost>
4 <xi:include href="database.xml"/>
5 </config>

The syntax to include an XML file in a specific element is <xi:include href="file-to-include.xml"/>

31.3 Zend\Config\Reader\Json

Zend\Config\Reader\Json enables developers to read configuration data in a JSON format and read them in
the application by using an array syntax.

The following example illustrates a basic use of Zend\Config\Reader\Json for loading configuration data from
a JSON file. Suppose we have the following JSON configuration file:

31.3. Zend\Config\Reader\Json 129

http://php.net/xmlreader
http://www.w3.org/TR/xinclude/

Zend Framework 2 Documentation, Release 2.0.0

1 {
2 "webhost" : "www.example.com",
3 "database" : {
4 "adapter" : "pdo_mysql",
5 "params" : {
6 "host" : "db.example.com",
7 "username" : "dbuser",
8 "password" : "secret",
9 "dbname" : "dbproduction"

10 }
11 }
12 }

We can use the Zend\Config\Reader\>Json to read this JSON file:

1 $reader = new Zend\Config\Reader\Json();
2 $data = $reader->fromFile(’/path/to/config.json’);
3

4 echo $data[’webhost’] // prints "www.example.com"
5 echo $data[’database’][’params’][’dbname’]; // prints "dbproduction"

Zend\Config\Reader\Json utilizes the Zend\Json\Json class.

Using Zend\Config\Reader\Json we can include the content of a JSON file in a specific JSON section or
element. This is provided using the special syntax @include. Suppose we have a JSON file that contains only the
database configuration:

1 {
2 "database" : {
3 "adapter" : "pdo_mysql",
4 "params" : {
5 "host" : "db.example.com",
6 "username" : "dbuser",
7 "password" : "secret",
8 "dbname" : "dbproduction"
9 }

10 }
11 }

We can include this configuration in another JSON file, for instance:

1 {
2 "webhost" : "www.example.com",
3 "@include" : "database.json"
4 }

31.4 Zend\Config\Reader\Yaml

Zend\Config\Reader\Yaml enables developers to read configuration data in a YAML format and read them in
the application by using an array syntax. In order to use the YAML reader we need to pass a callback to an external
PHP library or use the Yaml PECL extension.

The following example illustrates a basic use of Zend\Config\Reader\Yaml that use the Yaml PECL extension.
Suppose we have the following YAML configuration file:

1 webhost: www.example.com
2 database:

130 Chapter 31. Zend\Config\Reader

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.0.0

3 adapter: pdo_mysql
4 params:
5 host: db.example.com
6 username: dbuser
7 password: secret
8 dbname: dbproduction

We can use the Zend\Config\Reader\Yaml to read this YAML file:

1 $reader = new Zend\Config\Reader\Yaml();
2 $data = $reader->fromFile(’/path/to/config.yaml’);
3

4 echo $data[’webhost’] // prints "www.example.com"
5 echo $data[’database’][’params’][’dbname’]; // prints "dbproduction"

If you want to use an external YAML reader you have to pass the callback function in the constructor of the class. For
instance, if you want to use the Spyc library:

1 // include the Spyc library
2 require_once (’path/to/spyc.php’);
3

4 $reader = new Zend\Config\Reader\Yaml(array(’Spyc’,’YAMLLoadString’));
5 $data = $reader->fromFile(’/path/to/config.yaml’);
6

7 echo $data[’webhost’] // prints "www.example.com"
8 echo $data[’database’][’params’][’dbname’]; // prints "dbproduction"

You can also instantiate the Zend\Config\Reader\Yaml without any parameter and specify the YAML reader
in a second moment using the setYamlDecoder() method.

Using Zend\Config\ReaderYaml we can include the content of a YAML file in a specific YAML section or
element. This is provided using the special syntax @include. Suppose we have a YAML file that contains only the
database configuration:

1 database:
2 adapter: pdo_mysql
3 params:
4 host: db.example.com
5 username: dbuser
6 password: secret
7 dbname: dbproduction

We can include this configuration in another YAML file, for instance:

webhost: www.example.com
@include: database.yaml

31.4. Zend\Config\Reader\Yaml 131

http://code.google.com/p/spyc/

Zend Framework 2 Documentation, Release 2.0.0

132 Chapter 31. Zend\Config\Reader

CHAPTER

THIRTYTWO

ZEND\CONFIG\WRITER

Zend\Config\Writer gives you the ability to write config files out of array, Zend\Config\Config and
any Traversable object. The Zend\Config\Writer is an interface that defines two methods: toFile() and
toString(). We have five specific writers that implement this interface:

• Zend\Config\Writer\Ini

• Zend\Config\Writer\Xml

• Zend\Config\Writer\PhpArray

• Zend\Config\Writer\Json

• Zend\Config\Writer\Yaml

32.1 Zend\Config\Writer\Ini

The INI writer has two modes for rendering with regard to sections. By default the top-level configuration is always
written into section names. By calling $writer->setRenderWithoutSectionsFlags(true); all options
are written into the global namespace of the INI file and no sections are applied.

As an addition Zend\Config\Writer\Ini has an additional option parameter nestSeparator, which de-
fines with which character the single nodes are separated. The default is a single dot, like it is accepted by
Zend\Config\Reader\Ini by default.

When modifying or creating a Zend\Config\Config object, there are some things to know. To create or modify
a value, you simply say set the parameter of the Config object via the parameter accessor (->). To create a section in
the root or to create a branch, you just create a new array (“$config->branch = array();”).

Using Zend\Config\Writer\Ini

This example illustrates the basic use of Zend\Config\Writer\Ini to create a new config file:

1 // Create the config object
2 $config = new Zend\Config\Config(array(), true);
3 $config->production = array();
4

5 $config->production->webhost = ’www.example.com’;
6 $config->production->database = array();
7 $config->production->database->params = array();
8 $config->production->database->params->host = ’localhost’;
9 $config->production->database->params->username = ’production’;

10 $config->production->database->params->password = ’secret’;

133

Zend Framework 2 Documentation, Release 2.0.0

11 $config->production->database->params->dbname = ’dbproduction’;
12

13 $writer = new Zend\Config\Writer\Ini();
14 echo $writer->toString($config);

The result of this code is an INI string contains the following values:

1 [production]
2 webhost = "www.example.com"
3 database.params.host = "localhost"
4 database.params.username = "production"
5 database.params.password = "secret"
6 database.params.dbname = "dbproduction"

You can use the method toFile() to store the INI data in a file.

32.2 Zend\Config\Writer\Xml

The Zend\Config\Writer\Xmlcan be used to generate an XML string or file starting from a
Zend\Config\Config object.

Using Zend\Config\Writer\Ini

This example illustrates the basic use of Zend\Config\Writer\Xml to create a new config file:

1 // Create the config object
2 $config = new Zend\Config\Config(array(), true);
3 $config->production = array();
4

5 $config->production->webhost = ’www.example.com’;
6 $config->production->database = array();
7 $config->production->database->params = array();
8 $config->production->database->params->host = ’localhost’;
9 $config->production->database->params->username = ’production’;

10 $config->production->database->params->password = ’secret’;
11 $config->production->database->params->dbname = ’dbproduction’;
12

13 $writer = new Zend\Config\Writer\Xml();
14 echo $writer->toString($config);

The result of this code is an XML string contains the following data:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <zend-config>
3 <production>
4 <webhost>www.example.com</webhost>
5 <database>
6 <params>
7 <host>localhost</host>
8 <username>production</username>
9 <password>secret</password>

10 <dbname>dbproduction</dbname>
11 </params>
12 </database>
13 </production>
14 </zend-config>

134 Chapter 32. Zend\Config\Writer

Zend Framework 2 Documentation, Release 2.0.0

You can use the method toFile() to store the XML data in a file.

32.3 Zend\Config\Writer\PhpArray

The Zend\Config\Writer\PhpArraycan be used to generate a PHP code that returns an array representation
of an Zend\Config\Config object.

Using Zend\Config\Writer\PhpArray

This example illustrates the basic use of Zend\Config\Writer\PhpArray to create a new config file:

1 // Create the config object
2 $config = new Zend\Config\Config(array(), true);
3 $config->production = array();
4

5 $config->production->webhost = ’www.example.com’;
6 $config->production->database = array();
7 $config->production->database->params = array();
8 $config->production->database->params->host = ’localhost’;
9 $config->production->database->params->username = ’production’;

10 $config->production->database->params->password = ’secret’;
11 $config->production->database->params->dbname = ’dbproduction’;
12

13 $writer = new Zend\Config\Writer\PhpArray();
14 echo $writer->toString($config);

The result of this code is a PHP script that returns an array as follow:

1 <?php
2 return array (
3 ’production’ =>
4 array (
5 ’webhost’ => ’www.example.com’,
6 ’database’ =>
7 array (
8 ’params’ =>
9 array (

10 ’host’ => ’localhost’,
11 ’username’ => ’production’,
12 ’password’ => ’secret’,
13 ’dbname’ => ’dbproduction’,
14),
15),
16),
17);

You can use the method toFile() to store the PHP script in a file.

32.4 Zend\Config\Writer\Json

The Zend\Config\Writer\Jsoncan be used to generate a PHP code that returns the JSON representation of a
Zend\Config\Config object.

32.3. Zend\Config\Writer\PhpArray 135

Zend Framework 2 Documentation, Release 2.0.0

Using Zend\Config\Writer\Json

This example illustrates the basic use of Zend\Config\Writer\Json to create a new config file:

1 // Create the config object
2 $config = new Zend\Config\Config(array(), true);
3 $config->production = array();
4

5 $config->production->webhost = ’www.example.com’;
6 $config->production->database = array();
7 $config->production->database->params = array();
8 $config->production->database->params->host = ’localhost’;
9 $config->production->database->params->username = ’production’;

10 $config->production->database->params->password = ’secret’;
11 $config->production->database->params->dbname = ’dbproduction’;
12

13 $writer = new Zend\Config\Writer\Json();
14 echo $writer->toString($config);

The result of this code is a JSON string contains the following values:

1 { "webhost" : "www.example.com",
2 "database" : {
3 "params" : {
4 "host" : "localhost",
5 "username" : "production",
6 "password" : "secret",
7 "dbname" : "dbproduction"
8 }
9 }

10 }

You can use the method toFile() to store the JSON data in a file.

The Zend\Config\Writer\Json class uses the Zend\Json\Json component to convert the data in a JSON
format.

32.5 Zend\Config\Writer\Yaml

The Zend\Config\Writer\Yamlcan be used to generate a PHP code that returns the YAML representation of
a Zend\Config\Config object. In order to use the YAML writer we need to pass a callback to an external PHP
library or use the Yaml PECL extension.

Using Zend\Config\Writer\Yaml

This example illustrates the basic use of Zend\Config\Writer\Yaml to create a new config file using the Yaml
PECL extension:

1 // Create the config object
2 $config = new Zend\Config\Config(array(), true);
3 $config->production = array();
4

5 $config->production->webhost = ’www.example.com’;
6 $config->production->database = array();
7 $config->production->database->params = array();

136 Chapter 32. Zend\Config\Writer

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.0.0

8 $config->production->database->params->host = ’localhost’;
9 $config->production->database->params->username = ’production’;

10 $config->production->database->params->password = ’secret’;
11 $config->production->database->params->dbname = ’dbproduction’;
12

13 $writer = new Zend\Config\Writer\Yaml();
14 echo $writer->toString($config);

The result of this code is a YAML string contains the following values:

1 webhost: www.example.com
2 database:
3 params:
4 host: localhost
5 username: production
6 password: secret
7 dbname: dbproduction

You can use the method toFile() to store the YAML data in a file.

If you want to use an external YAML writer library you have to pass the callback function in the constructor of the
class. For instance, if you want to use the Spyc library:

1 // include the Spyc library
2 require_once (’path/to/spyc.php’);
3

4 $writer = new Zend\Config\Writer\Yaml(array(’Spyc’,’YAMLDump’));
5 echo $writer->toString($config);

32.5. Zend\Config\Writer\Yaml 137

http://code.google.com/p/spyc/

Zend Framework 2 Documentation, Release 2.0.0

138 Chapter 32. Zend\Config\Writer

CHAPTER

THIRTYTHREE

ZEND\CONFIG\PROCESSOR

Zend\Config\Processor gives you the ability to perform some operations on a Zend\Config\Config
object. The Zend\Config\Processor is an interface that defines two methods: process() and
processValue(). These operations are provided by the following concrete implementations:

• Zend\Config\Processor\Constant: manage PHP constant values;

• Zend\Config\Processor\Filter: filter the configuration data using Zend\Filter;

• Zend\Config\Processor\Queue: manage a queue of operations to apply to configuration data;

• Zend\Config\Processor\Token: find and replace specific tokens;

• Zend\Config\Processor\Translator: translate configuration values in other languages using
Zend\I18n\Translator;

Below we reported some examples for each type of processor.

33.1 Zend\Config\Processor\Constant

Using Zend\Config\Processor\Constant

This example illustrates the basic use of Zend\Config\Processor\Constant:

1 define (’TEST_CONST’, ’bar’);
2 // set true to Zend\Config\Config to allow modifications
3 $config = new Zend\Config\Config(array(’foo’ => ’TEST_CONST’), true);
4 $processor = new Zend\Config\Processor\Constant();
5

6 echo $config->foo . ’,’;
7 $processor->process($config);
8 echo $config->foo;

This example returns the output: TEST_CONST, bar..

33.2 Zend\Config\Processor\Filter

Using Zend\Config\Processor\Filter

This example illustrates the basic use of Zend\Config\Processor\Filter:

139

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Filter\StringToUpper;
2 use Zend\Config\Processor\Filter as FilterProcessor;
3 use Zend\Config\Config;
4

5 $config = new Config(array (’foo’ => ’bar’), true);
6 $upper = new StringToUpper();
7

8 $upperProcessor = new FilterProcessor($upper);
9

10 echo $config->foo . ’,’;
11 $upperProcessor->process($config);
12 echo $config->foo;

This example returns the output: bar,BAR.

33.3 Zend\Config\Processor\Queue

Using Zend\Config\Processor\Queue

This example illustrates the basic use of Zend\Config\Processor\Queue:

1 use Zend\Filter\StringToLower;
2 use Zend\Filter\StringToUpper;
3 use Zend\Config\Processor\Filter as FilterProcessor;
4 use Zend\Config\Processor\Queue;
5 use Zend\Config\Config;
6

7 $config = new Config(array (’foo’ => ’bar’), true);
8 $upper = new StringToUpper();
9 $lower = new StringToLower();

10

11 $lowerProcessor = new FilterProcessor($lower);
12 $upperProcessor = new FilterProcessor($upper);
13

14 $queue = new Queue();
15 $queue->insert($upperProcessor);
16 $queue->insert($lowerProcessor);
17 $queue->process($config);
18

19 echo $config->foo;

This example returns the output: bar. The filters in the queue are applied with a FIFO logic (First In, First Out).

33.4 Zend\Config\Processor\Token

Using Zend\Config\Processor\Token

This example illustrates the basic use of Zend\Config\Processor\Token:

1 // set the Config to true to allow modifications
2 $config = new Config(array(’foo’ => ’Value is TOKEN’), true);
3 $processor = new TokenProcessor();
4

140 Chapter 33. Zend\Config\Processor

Zend Framework 2 Documentation, Release 2.0.0

5 $processor->addToken(’TOKEN’, ’bar’);
6 echo $config->foo . ’,’;
7 $processor->process($config);
8 echo $config->foo;

This example returns the output: Value is TOKEN,Value is bar.

33.5 Zend\Config\Processor\Translator

Using Zend\Config\Processor\Translator

This example illustrates the basic use of Zend\Config\Processor\Translator:

1 use Zend\Config\Config;
2 use Zend\Config\Processor\Translator as TranslatorProcessor;
3 use Zend\I18n\Translator\Translator;
4

5 $config = new Config(array(’animal’ => ’dog’), true);
6

7 /*
8 * The following mapping would exist for the translation
9 * loader you provide to the translator instance

10 * $italian = array(
11 * ’dog’ => ’cane’
12 *);
13 */
14

15 $translator = new Translator();
16 // ... configure the translator ...
17 $processor = new TranslatorProcessor($translator);
18

19 echo "English: {$config->animal}, ";
20 $processor->process($config);
21 echo "Italian: {$config->animal}";

This example returns the output: English: dog, Italian: cane.

33.5. Zend\Config\Processor\Translator 141

Zend Framework 2 Documentation, Release 2.0.0

142 Chapter 33. Zend\Config\Processor

CHAPTER

THIRTYFOUR

INTRODUCTION

Zend\Crypt provides support of some cryptographic tools. The available features are:

• encrypt-then-authenticate using symmetric ciphers (the authentication step is provided using HMAC);

• encrypt/decrypt using symmetric and public key algorithm (e.g. RSA algorithm);

• generate digital sign using public key algorithm (e.g. RSA algorithm);

• key exchange using the Diffie-Hellman method;

• Key derivation function (e.g. using PBKDF2 algorithm);

• Secure password hash (e.g. using Bcrypt algorithm);

• generate Hash values;

• generate HMAC values;

The main scope of this component is to offer an easy and secure way to protect and authenticate sensitive data in PHP.
Because the use of cryptography is not so easy we recommend to use the Zend\Crypt component only if you have
a minimum background on this topic. For an introduction to cryptography we suggest the following references:

• Dan Boneh “Cryptography course” Stanford University, Coursera - free online course

• N.Ferguson, B.Schneier, and T.Kohno, “Cryptography Engineering”, John Wiley & Sons (2010)

• B.Schneier “Applied Cryptography”, John Wiley & Sons (1996)

Note: PHP-CryptLib

Most of the ideas behind the Zend\Crypt component have been inspired by the PHP-CryptLib project of Anthony
Ferrara. PHP-CryptLib is an all-inclusive pure PHP cryptographic library for all cryptographic needs. It is meant to
be easy to install and use, yet extensible and powerful enough for even the most experienced developer.

143

https://www.coursera.org/course/crypto
http://www.schneier.com/book-ce.html
http://www.schneier.com/book-applied.html
https://github.com/ircmaxell/PHP-CryptLib
http://blog.ircmaxell.com/
http://blog.ircmaxell.com/

Zend Framework 2 Documentation, Release 2.0.0

144 Chapter 34. Introduction

CHAPTER

THIRTYFIVE

ENCRYPT/DECRYPT USING BLOCK
CIPHERS

Zend\Crypt\BlockCipher implements the encrypt-then-authenticate mode using HMAC to provide authentica-
tion.

The symmetric cipher can be choose with a specific adapter that implements the
Zend\Crypt\Symmetric\SymmetricInterface. We support the standard algorithms of the Mcrypt
extension. The adapter that implements the Mcrypt is Zend\Crypt\Symmetric\Mcrypt.

In the following code we reported an example on how to use the BlockCipher class to encrypt-then-authenticate a string
using the AES block cipher (with a key of 256 bit) and the HMAC algorithm (using the SHA-256 hash function).

1 use Zend\Crypt\BlockCipher;
2

3 $blockCipher = BlockCipher::factory(’mcrypt’, array(’algo’ => ’aes’));
4 $blockCipher->setKey(’encryption key’);
5 $result = $blockCipher->encrypt(’this is a secret message’);
6 echo "Encrypted text: $result \n";

The BlockCipher is initialized using a factory method with the name of the cipher adapter to use (mcrypt) and the
parameters to pass to the adapter (the AES algorithm). In order to encrypt a string we need to specify an encryption
key and we used the setKey() method for that scope. The encryption is provided by the encrypt() method.

The output of the encryption is a string, encoded in Base64 (default), that contains the HMAC value, the IV vector, and
the encrypted text. The encryption mode used is the CBC (with a random IV by default) and SHA256 as default hash
algorithm of the HMAC. The Mcrypt adapter encrypts using the PKCS#7 padding mechanism by default. You can
specify a different padding method using a special adapter for that (Zend\Crypt\Symmetric\Padding). The encryption
and authentication keys used by the BlockCipher are generated with the PBKDF2 algorithm, used as key derivation
function from the user’s key specified using the setKey() method.

Note: Key size

BlockCipher try to use always the longest size of the key for the specified cipher. For instance, for the AES algorithm
it uses 256 bits and for the Blowfish algorithm it uses 448 bits.

You can change all the default settings passing the values to the factory parameters. For instance, if you want to use
the Blowfish algorithm, with the CFB mode and the SHA512 hash function for HMAC you have to initialize the class
as follow:

1 use Zend\Crypt\BlockCipher;
2

3 $blockCipher = BlockCipher::factory(’mcrypt’, array(

145

http://en.wikipedia.org/wiki/HMAC
http://php.net/manual/en/book.mcrypt.php
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Padding_%28cryptography%29
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Blowfish_%28cipher%29

Zend Framework 2 Documentation, Release 2.0.0

4 ’algo’ => ’blowfish’,
5 ’mode’ => ’cfb’,
6 ’hash’ => ’sha512’
7));

Note: Recommendation

If you are not familiar with symmetric encryption techniques we strongly suggest to use the default values of the
BlockCipher class. The default values are: AES algorithm, CBC mode, HMAC with SHA256, PKCS#7 padding.

To decrypt a string we can use the decrypt() method. In order to successfully decrypt a string we have to configure
the BlockCipher with the same parameters of the encryption.

We can also initialize the BlockCipher manually without use the factory method. We can inject the symmetric cipher
adapter directly to the constructor of the BlockCipher class. For instance, we can rewrite the previous example as
follow:

1 use Zend\Crypt\BlockCipher;
2 use Zend\Crypt\Symmetric\Mcrypt;
3

4 $blockCipher = new BlockCipher(new Mcrypt(array(’algo’ => ’aes’));
5 $blockCipher->setKey(’encryption key’);
6 $result = $blockCipher->encrypt(’this is a secret message’);
7 echo "Encrypted text: $result \n";

146 Chapter 35. Encrypt/decrypt using block ciphers

CHAPTER

THIRTYSIX

KEY DERIVATION FUNCTION

In cryptography, a key derivation function (or KDF) derives one or more secret keys from a secret value such as
a master key or other known information such as a password or passphrase using a pseudo-random function. For
instance, a KDF function can be used to generate encryption or authentication keys from a user password. The
Zend\Crypt\Key\Derivation implements a key derivation function using specific adapters.

User passwords are not really suitable to be used as keys in cryptographic algorithms, since users normally choose
keys they can write on keyboard. These passwords use only 6 to 7 bits per character (or less). It is highly recommended
to use always a KDF function of transformation a user’s password to a cryptography key.

36.1 Pbkdf2 adapter

Pbkdf2 is a KDF that applies a pseudorandom function, such as a cryptographic hash, to the input password or
passphrase along with a salt value and repeats the process many times to produce a derived key, which can then
be used as a cryptographic key in subsequent operations. The added computational work makes password cracking
much more difficult, and is known as key stretching.

In the example below we show a typical usage of the Pbkdf2 adapter.

1 use Zend\Crypt\Key\Derivation\Pbkdf2;
2 use Zend\Math\Rand;
3

4 $pass = ’password’;
5 $salt = Rand::getBytes(strlen($pass), true);
6 $key = Pbkdf2::calc(’sha256’, $pass, $salt, 10000, strlen($pass)*2);
7

8 echo "Original password: $pass \n";
9 echo "Key derivation : $key \n";

The Pbkdf2 adapter takes the password ($pass) and generate a binary key with a size double of the password. The
syntax is calc($hash, $pass, $salt, $iterations, $length)where $hash is the name of the hash
function to use, $pass is the password, $salt is a pseudo random value, $iterations is the number of iterations
of the algorithm and $length is the size of the key to be generated. We used the Rand::getBytes function of
the Zend\Math\Rand class to generate a random bytes using a strong generators (the true value means the usage
of strong generators).

The number of iterations is a very important parameter for the security of the algorithm. Big values means more
security. There is not a fixed value for that because the number of iterations depends on the CPU power. You should
always choose a number of iteration that prevent brute force attacks. For instance, a value of 1‘000‘000 iterations, that
is equal to 1 sec of elaboration for the PBKDF2 algorithm, is enough secure using an Intel Core i5-2500 CPU at 3.3
Ghz.

147

http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Key_stretching

Zend Framework 2 Documentation, Release 2.0.0

36.2 SaltedS2k adapter

The SaltedS2k algorithm uses an hash function and a salt to generate a key based on a user’s password. This algorithm
doesn’t use a parameter that specify the number of iterations and for that reason it’s considered less secure compared
with Pbkdf2. We suggest to use the SaltedS2k algorithm only if you really need it.

Below is reported a usage example of the SaltedS2k adapter.

1 use Zend\Crypt\Key\Derivation\SaltedS2k;
2 use Zend\Math\Rand;
3

4 $pass = ’password’;
5 $salt = Rand::getBytes(strlen($pass), true);
6 $key = SaltedS2k::calc(’sha256’, $pass, $salt, strlen($pass)*2);
7

8 echo "Original password: $pass \n";
9 echo "Key derivation : $key \n";

148 Chapter 36. Key derivation function

http://www.faqs.org/rfcs/rfc2440.html

CHAPTER

THIRTYSEVEN

SECURE PASSWORD STORING

Zend\Crypt\Password stores a user’s password in a secure way using dedicated adapters like the bcrypt algo-
rithm.

The example below shows how to use the bcrypt algorithm to store a user’s password:

1 use Zend\Crypt\Password\Bcrypt;
2

3 $bcrypt = new Bcrypt()
4 $securePass = $bcrypt->create(’user password’);

The output of the create() method is the encrypted password. This value can then be stored in a repository like a
database. Classic hashing mechanisms like MD5 or SHA are not considered secure anymore (read this post to know
why).

To verify if a given password is valid against a bcrypt value you can use the verify() method. Example time:

1 use Zend\Crypt\Password\Bcrypt;
2

3 $bcrypt = new Bcrypt();
4 $securePass = ’the stored bcrypt value’;
5 $password = ’the password to check’;
6

7 if ($bcrypt->verify($password, $bcrypt)) {
8 echo "The password is correct! \n";
9 } else {

10 echo "The password is NOT correct.\n";
11 }

By default, the Zend\Crypt\Password\Bcrypt class uses a value of 14 for bcrypts cost parameter. The cost
parameter is an integer between 4 to 31. A greater value means longer execution time for bcrypt, thus more secure
against brute force or dictionary attacks.

If you want to change the cost parameter of the bcrypt algorithm you can use the setCost() method.

Note: Bcrypt with non-ASCII passwords (8-bit characters)

The bcrypt implementation used by PHP < 5.3.7 can contains a security flaw if the password uses 8-bit characters
(here’s the security report). The impact of this bug was that most (but not all) passwords containing non-ASCII char-
acters with the 8th bit set were hashed incorrectly, resulting in password hashes incompatible with those of OpenBSD’s
original implementation of bcrypt. This security flaw has been fixed starting from PHP 5.3.7 and the prefix used in the
output was changed to ‘$2y$’ in order to put evidence on the correctness of the hash value. If you are using PHP <
5.3.7 with 8-bit passwords, the Zend\Crypt\Password\Bcrypt throws an exception suggesting to upgrade to
PHP 5.3.7+ or use only 7-bit passwords.

149

http://en.wikipedia.org/wiki/Bcrypt
http://codahale.com/how-to-safely-store-a-password/
http://codahale.com/how-to-safely-store-a-password/
http://php.net/security/crypt_blowfish.php

Zend Framework 2 Documentation, Release 2.0.0

150 Chapter 37. Secure Password Storing

CHAPTER

THIRTYEIGHT

PUBLIC KEY CRYPTOGRAPHY

Public-key cryptography refers to a cryptographic system requiring two separate keys, one of which is secret and one
of which is public. Although different, the two parts of the key pair are mathematically linked. One key locks or
encrypts the plaintext, and the other unlocks or decrypts the cyphertext. Neither key can perform both functions. One
of these keys is published or public, while the other is kept private.

In Zend Framework we implemented two public key algorithms: Diffie-Hellman key exchange and RSA.

38.1 Diffie-Hellman

The Diffie-Hellman algorithm is a specific method of exchanging cryptographic keys. It is one of the earliest practical
examples of key exchange implemented within the field of cryptography. The Diffie–Hellman key exchange method
allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure
communications channel. This key can then be used to encrypt subsequent communications using a symmetric key
cipher.

The diagram of operation of the Diffie-Hellman algorithm can be defined by the following picture (taken by the Diffie-
Hellman Wikipedia page):

The schema’s colors represent the parameters of the algorithm. Here is reported an example of usage using the
Zend\Crypt\PublicKey\DiffieHellman class:

1 use Zend\Crypt\PublicKey\DiffieHellman;
2

3 $aliceOptions = array(
4 ’prime’ => ’155172898181473697471232257763715539915724801966915404479707795314057629378541917580651227’ .
5 ’423698188993727816152646631438561595825688188889951272158842675419950341258706556549803580’ .
6 ’104870537681476726513255747040765857479291291572334510643245094715007229621094194349783925’ .
7 ’984760375594985848253359305585439638443’,
8 ’generator’=> ’2’,
9 ’private’ => ’992093140665725952364085695919679885571412495614942674862518080355353963322786201435363176’ .

10 ’813127128916726230726309951803243888416814918577455156967890911274095150092503589658166661’ .
11 ’463420498381785213791321533481399080168191962194483101070726325157493390557981225386151351’ .
12 ’04828702523796951800575031871051678091’
13);
14

15 $bobOptions = array(
16 ’prime’ => $aliceOptions[’prime’],
17 ’generator’=> ’2’,
18 ’private’ => ’334117357926395586257336357178925636125481806504021611510774783148414637079488997861035889’ .
19 ’123256347304105519467727528801778689728169635518217403867000760342134081539246925625431179’ .

151

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Zend Framework 2 Documentation, Release 2.0.0

20 ’634647331566005454845108330724270034742070646507148310833044977371603820970833568760781462’ .
21 ’31616972608703322302585471319261275664’
22);
23

24 $alice = new DiffieHellman($aliceOptions[’prime’], $aliceOptions[’generator’], $aliceOptions[’private’]);
25 $bob = new DiffieHellman($bobOptions[’prime’], $bobOptions[’generator’], $bobOptions[’private’]);
26

27 $alice->generateKeys();
28 $bob->generateKeys();
29

30 $aliceSecretKey = $alice->computeSecretKey($bob->getPublicKey(DiffieHellman::FORMAT_BINARY),
31 DiffieHellman::FORMAT_BINARY,
32 DiffieHellman::FORMAT_BINARY);
33

34 $bobSecretKey = $bob->computeSecretKey($alice->getPublicKey(DiffieHellman::FORMAT_BINARY),
35 DiffieHellman::FORMAT_BINARY,
36 DiffieHellman::FORMAT_BINARY);
37

38 if ($aliceSecretKey !== $bobSecretKey) {
39 echo "ERROR!\n";
40 } else {
41 printf("The secret key is: %s\n", base64_encode($aliceSecretKey));
42 }

The parameters of the Diffie-Hellman class are: a prime number (p), a generator (g) that is a primitive root mod p
and a private integer number. The security of the Diffie-Hellman exchange algorithm is related to the choice of these
parameters. To know how to choose secure numbers you can read the RFC 3526 document.

Note: The Zend\Crypt\PublicKey\DiffieHellman class use by default the OpenSSL extension of
PHP to generate the parameters. If you want don’t want to use the OpenSSL library you have to set the
useOpensslExtension static method to false.

38.2 RSA

RSA is an algorithm for public-key cryptography that is based on the presumed difficulty of factoring large integers,
the factoring problem. A user of RSA creates and then publishes the product of two large prime numbers, along with
an auxiliary value, as their public key. The prime factors must be kept secret. Anyone can use the public key to encrypt
a message, but with currently published methods, if the public key is large enough, only someone with knowledge of
the prime factors can feasibly decode the message. Whether breaking RSA encryption is as hard as factoring is an
open question known as the RSA problem.

The RSA algorithm can be used to encrypt/decrypt message and also to provide authenticity and integrity generating
a digital signature of a message. Suppose that Alice wants to send an encrypted message to Bob. Alice must use
the public key of Bob to encrypt the message. Bob can decrypt the message using his private key. Because Bob he
is the only one that can access to his private key, he is the only one that can decrypt the message. If Alice wants to
provide authenticity and integrity of a message to Bob she can use her private key to sign the message. Bob can check
the correctness of the digital signature using the public key of Alice. Alice can provide encryption, authenticity and
integrity of a message to Bob using the previous schemas in sequence, applying the encryption first and the digital
signature after.

Below we reported some examples of usage of the Zend\Crypt\PublicKey\Rsa class in order to:

• generate a public key and a private key;

• encrypt/decrypt a string;

152 Chapter 38. Public key cryptography

http://tools.ietf.org/html/rfc3526
http://php.net/manual/en/book.openssl.php
http://en.wikipedia.org/wiki/Factoring_problem

Zend Framework 2 Documentation, Release 2.0.0

• generate a digital signature of a file.

38.2.1 Generate a public key and a private key

In order to generate a public and private key you can use the following code:

1 use Zend\Crypt\PublicKey\RsaOptions;
2

3 $rsaOptions = new RsaOptions(array(
4 ’pass_phrase’ => ’test’
5));
6

7 $rsaOptions->generateKeys(array(
8 ’private_key_bits’ => 2048,
9));

10

11 file_put_contents(’private_key.pem’, $rsaOptions->getPrivateKey());
12 file_put_contents(’public_key.pub’, $rsaOptions->getPublicKey());

This example generates a public and privat key of 2048 bit storing the keys in two separate files, the
private_key.pem for the private key and the public_key.pub for the public key. You can also generate
the public and private key using OpenSSL from the command line (Unix style syntax):

ssh-keygen -t rsa

38.2.2 Encrypt and decrypt a string

Below is reported an example on how to encrypt and decrypt a string using the RSA algorithm. You can encrypt only
small strings. The maximum size of encryption is given by the length of the public/private key - 88 bits. For instance,
if we use a size of 2048 bit you can encrypt string with a maximum size of 1960 bit (245 characters). This limitation
is related to the OpenSSL implementation for a security reason related to the nature of the RSA algorithm.

The normal application of a public key encryption algorithm is to store a key or a hash of the data you want to
respectively encrypt or sign. A hash is typically 128-256 bits (the PHP sha1() function returns a 160 bit hash). An
AES encryption key is 128 to 256 bits. So either of those will comfortably fit inside a single RSA encryption.

1 use Zend\Crypt\PublicKey\Rsa;
2

3 $rsa = Rsa::factory(array(
4 ’public_key’ => ’public_key.pub’,
5 ’private_key’ => ’private_key.pem’,
6 ’pass_phrase’ => ’test’,
7 ’binary_output’ => false
8));
9

10 $text = ’This is the message to encrypt’;
11

12 $encrypt = $rsa->encrypt($text);
13 printf("Encrypted message:\n%s\n", $encrypt);
14

15 $decrypt = $rsa->decrypt($encrypt);
16

17 if ($text !== $decrypt) {
18 echo "ERROR\n";
19 } else {

38.2. RSA 153

Zend Framework 2 Documentation, Release 2.0.0

20 echo "Encryption and decryption performed successfully!\n";
21 }

38.2.3 Generate a digital signature of a file

Below is reported an example of how to generate a digital signature of a file.

1 use Zend\Crypt\PublicKey\Rsa;
2

3 $rsa = Rsa::factory(array(
4 ’private_key’ => ’path/to/private_key’,
5 ’pass_phrase’ => ’passphrase of the private key’,
6 ’binary_output’ => false
7));
8

9 $file = file_get_contents(’path/file/to/sign’);
10

11 $signature = $rsa->sign($file, $rsa->getOptions()->getPrivateKey());
12 $verify = $rsa->verify($file, $signature, $rsa->getOptions()->getPublicKey());
13

14 if ($verify) {
15 echo "The signature is OK\n";
16 file_put_contents($filename . ’.sig’, $signature);
17 echo "Signature save in $filename.sig\n";
18 } else {
19 echo "The signature is not valid!\n";
20 }

In this example we used the Base64 format to encode the digital signature of the file (binary_output is false).

Note: The implementation of Zend\Crypt\PublicKey\Rsa algorithm uses the OpenSSL extension of PHP.

154 Chapter 38. Public key cryptography

CHAPTER

THIRTYNINE

ZEND\DB\ADAPTER

The Adapter object is the most important sub-component of Zend\Db. It is responsible for adapting any code written
in or for Zend\Db to the targeted php extensions and vendor databases. In doing this, it creates an abstraction layer
for the PHP extensions, which is called the “Driver” portion of the Zend\Db adapter. It also creates a lightweight
abstraction layer for the various idiosyncrasies that each vendor specific platform might have in it’s SQL/RDBMS
implementation which is called the “Platform” portion of the adapter.

39.1 Creating an Adapter (Quickstart)

Creating an adapter can simply be done by instantiating the Zend\Db\Adapter\Adapter class. The most com-
mon use case, while not the most explicit, is to pass an array of information to the Adapter.

1 $adapter = new Zend\Db\Adapter\Adapter($driverArray);

This driver array is an abstraction for the extension level required parameters. Here is a table for the

Table 39.1: Connection Array Keys

Name Required Notes
driver required Mysqli, Sqlsrv, Pdo_Sqlite, Pdo_Mysql, Pdo=OtherPdoDriver
database generally required the name of the database (schema)
username generally required the connection username
password generally required the connection password
hostname not generally required the IP address or hostname to connect to
port not generally required the port to connect to (if applicable)
characterset not generally required the character set to use

* other names will work as well. Effectively, if the PHP manual uses a particular naming, this naming will be supported
by our Driver. For example, dbname in most cases will also work for ‘database’. Another example is that in the case
of Sqlsrv, UID will work in place of username. Which format you chose is up to you, but the above table represents
the official abstraction names.

So, for example, a MySQL connection using ext/mysqli:

1 $adapter = new Zend\Db\Adapter\Adapter(array(
2 ’driver’ => ’Mysqli’,
3 ’database’ => ’zend_db_example’,
4 ’username’ => ’developer’,
5 ’password’ => ’developer-password’
6));

Another example, of a Sqlite connection via PDO:

155

Zend Framework 2 Documentation, Release 2.0.0

1 $adapter = new Zend\Db\Adapter\Adapter(array(
2 ’driver’ => ’Pdo_Sqlite’,
3 ’database’ => ’path/to/sqlite.db’
4));

It is important to know that by using this style of adapter creation, the Adapter will attempt to create any dependencies
that were not explicitly provided. A Driver object will be created from the contents of the $driver array provided in
the constructor. A Platform object will be created based off the type of Driver object that was instantiated. And lastly,
a default ResultSet object is created and utilized. Any of these objects can be injected, to do this, see the next section.

The list of officially supported drivers:

• Mysqli: The ext/mysqli driver

• Pgsql: The ext/pgsql driver

• Sqlsrv: The ext/sqlsrv driver (from Microsoft)

• Pdo_Mysql: MySQL through the PDO extension

• Pdo_Sqlite: SQLite though the PDO extension

• Pdo_Pgsql: PostgreSQL through the PDO extension

39.2 Creating an Adapter (By Injecting Dependencies)

The more expressive and explicit way of creating an adapter is by injecting all your dependencies up front.
Zend\Db\Adapter\Adapter uses constructor injection, and all required dependencies are injected through the
constructor, which has the following signature (in pseudo-code):

1 use Zend\Db\Adapter\Platform\PlatformInterface;
2 use Zend\Db\ResultSet\ResultSet;
3

4 class Zend\Db\Adapter\Adapter {
5 public function __construct($driver, PlatformInterface $platform = null, ResultSet $queryResultSetPrototype = null)
6 }

What can be injected:

• $driver - an array of connection parameters (see above) or an instance of
Zend\Db\Adapter\Driver\DriverInterface

• $platform - (optional) an instance of Zend\Db\Platform\PlatformInterface, the default will be cre-
ated based off the driver implementation

• $queryResultSetPrototype - (optional) an instance of Zend\Db\ResultSet\ResultSet, to understand
this object’s role, see the section below on querying through the adapter

39.3 Query Preparation Through Zend\Db\Adapter\Adapter::query()

By default, query() prefers that you use “preparation” as a means for processing SQL statements. This generally means
that you will supply a SQL statement with the values substituted by placeholders, and then the parameters for those
placeholders are supplied separately. An example of this workflow with Zend\Db\Adapter\Adapter is:

1 $adapter->query(’SELECT * FROM ‘artist‘ WHERE ‘id‘ = ?’, array(5));

The above example will go through the following steps:

156 Chapter 39. Zend\Db\Adapter

Zend Framework 2 Documentation, Release 2.0.0

• create a new Statement object

• prepare an array into a ParameterContainer if necessary

• inject the ParameterContainer into the Statement object

• execute the Statement object, producing a Result object

• check the Result object to check if the supplied sql was a “query”, or a result set producing statement

• if it is a result set producing query, clone the ResultSet prototype, inject Result as datasource, return it

• else, return the Result

39.4 Query Execution Through Zend\Db\Adapter\Adapter::query()

In some cases, you have to execute statements directly. The primary purpose for needing to execute sql instead of
prepare and execute a sql statement, might be because you are attempting to execute a DDL statement (which in most
extensions and vendor platforms), are un-preparable. An example of executing:

1 $adapter->query(’ALTER TABLE ADD INDEX(‘foo_index‘) ON (‘foo_column‘))’, Adapter::QUERY_MODE_EXECUTE);

The primary difference to notice is that you must provide the Adapter::QUERY_MODE_EXECUTE (execute) as the
second parameter.

39.5 Creating Statements

While query() is highly useful for one-off and quick querying of a database through Adapter, it generally makes more
sense to create a statement and interact with it directly, so that you have greater control over the prepare-then-execute
workflow. To do this, Adapter gives you a routine called createStatement() that allows you to create a Driver specific
Statement to use so you can manage your own prepare-then-execute workflow.

1 // with optional parameters to bind up-front
2 $statement = $adapter->createStatement($sql, $optionalParameters);
3 $result = $statement->execute();

39.6 Using the Driver Object

The Driver object is the primary place where Zend\Db\Adapter\Adapter implements the connection level ab-
straction making it possible to use all of ZendDb’s interfaces via the various ext/mysqli, ext/sqlsrv, PDO, and other
PHP level drivers. To make this possible, each driver is composed of 3 objects:

• A connection: Zend\Db\Adapter\Driver\ConnectionInterface

• A statement: Zend\Db\Adapter\Driver\StatementInterface

• A result: Zend\Db\Adapter\Driver\ResultInterface

Each of the built-in drivers practices “prytotyping” as a means of creating objects when new instances are requested.
The workflow looks like this:

• An adapter is created with a set of connection parameters

• The adapter chooses the proper driver to instantiate, for example Zend\Db\Adapter\Driver\Mysqli

• That driver object is instantiated

39.4. Query Execution Through Zend\Db\Adapter\Adapter::query() 157

Zend Framework 2 Documentation, Release 2.0.0

• If no connection, statement or result objects are injected, defaults are instantiated

This driver is now ready to be called on when particular workflows are requested. Here is what the Driver API looks
like:

1 interface DriverInterface
2 {
3 const PARAMETERIZATION_POSITIONAL = ’positional’;
4 const PARAMETERIZATION_NAMED = ’named’;
5 const NAME_FORMAT_CAMELCASE = ’camelCase’;
6 const NAME_FORMAT_NATURAL = ’natural’;
7 public function getDatabasePlatformName($nameFormat = self::NAME_FORMAT_CAMELCASE);
8 public function checkEnvironment();
9 public function getConnection();

10 public function createStatement($sqlOrResource = null);
11 public function createResult($resource);
12 public function getPrepareType();
13 public function formatParameterName($name, $type = null);
14 public function getLastGeneratedValue();
15 }

From this DriverInterface, you can

• Determine the name of the platform this driver supports (useful for choosing the proper platform object)

• Check that the environment can support this driver

• Return the Connnection object

• Create a Statement object which is optionally seeded by an SQL statement (this will generally be a clone of a
prototypical statement object)

• Create a Result object which is optionally seeded by a statement resource (this will generally be a clone of a
prototypical result object)

• Format parameter names, important to distinguish the difference between the various ways parameters are named
between extensions

• Retrieve the overall last generated value (such as an auto-increment value)

Statement objects generally look like this:

1 interface StatementInterface extends StatementContainerInterface
2 {
3 public function getResource();
4 public function prepare($sql = null);
5 public function isPrepared();
6 public function execute($parameters = null);
7

8 /** Inherited from StatementContainerInterface */
9 public function setSql($sql);

10 public function getSql();
11 public function setParameterContainer(ParameterContainer $parameterContainer);
12 public function getParameterContainer();
13 }

Result objects generally look like this:

1 interface ResultInterface extends \Countable, \Iterator
2 {
3 public function buffer();
4 public function isQueryResult();

158 Chapter 39. Zend\Db\Adapter

Zend Framework 2 Documentation, Release 2.0.0

5 public function getAffectedRows();
6 public function getGeneratedValue();
7 public function getResource();
8 public function getFieldCount();
9 }

39.7 Using The Platform Object

The Platform object provides an API to assist in crafting queries in a way that is specific to the SQL implementation
of a particular vendor. Nuances such as how identifiers or values are quoted, or what the identifier separator character
is are handled by this object. To get an idea of the capabilities, the interface for a platform object looks like this:

1 interface Zend\Db\Adapter\Platform\PlatformInterface
2 {
3 public function getName();
4 public function getQuoteIdentifierSymbol();
5 public function quoteIdentifier($identifier);
6 public function quoteIdentifierChain($identiferChain)
7 public function getQuoteValueSymbol();
8 public function quoteValue($value);
9 public function quoteValueList($valueList);

10 public function getIdentifierSeparator();
11 public function quoteIdentifierInFragment($identifier, array $additionalSafeWords = array());
12 }

While one can instantiate your own Plaform object, generally speaking, it is easier to get the proper Platform instance
from the configured adapter (by default the Platform type will match the underlying driver implementation):

1 $platform = $adapter->getPlatform();
2 // or
3 $platform = $adapter->platform; // magic property access

The following is a couple of example of Platform usage:

1 /** @var $adapter Zend\Db\Adapter\Adapter */
2 /** @var $platform Zend\Db\Adapter\Platform\Sql92 */
3 $platform = $adapter->getPlatform();
4

5 // "first_name"
6 echo $platform->quoteIdentifier(’first_name’);
7

8 // "
9 echo $platform->getQuoteIdentifierSymbol();

10

11 // "schema"."mytable"
12 echo $platform->quoteIdentifierChain(array(’schema’,’mytable’)));
13

14 // ’
15 echo $platform->getQuoteValueSymbol();
16

17 // ’myvalue’
18 echo $platform->quoteValue(’myvalue’);
19

20 // ’value’, ’Foo O\\’Bar’
21 echo $platform->quoteValueList(array(’value’,"Foo O’Bar")));
22

39.7. Using The Platform Object 159

Zend Framework 2 Documentation, Release 2.0.0

23 // .
24 echo $platform->getIdentifierSeparator();
25

26 // "foo" as "bar"
27 echo $platform->quoteIdentifierInFragment(’foo as bar’);
28

29 // additionally, with some safe words:
30 // ("foo"."bar" = "boo"."baz")
31 echo $platform->quoteIdentifierInFragment(’(foo.bar = boo.baz)’, array(’(’, ’)’, ’=’));

39.8 Using The Parameter Container

The ParameterContainer object is a container for the various parameters that need to be passed into a Statement object
to fulfill all the various parameterized parts of the SQL statement. This object implements the ArrayAccess interface.
Below is the ParameterContainer API:

class ParameterContainer implements \Iterator, \ArrayAccess, \Countable {
public function __construct(array $data = array())

/** methods to interact with values */
public function offsetExists($name)
public function offsetGet($name)
public function offsetSetReference($name, $from)
public function offsetSet($name, $value, $errata = null)
public function offsetUnset($name)

/** set values from array (will reset first) */
public function setFromArray(Array $data)

/** methods to interact with value errata */
public function offsetSetErrata($name, $errata)
public function offsetGetErrata($name)
public function offsetHasErrata($name)
public function offsetUnsetErrata($name)

/** errata only iterator */
public function getErrataIterator()

/** get array with named keys */
public function getNamedArray()

/** get array with int keys, ordered by position */
public function getPositionalArray()

/** iterator: */
public function count()
public function current()
public function next()
public function key()
public function valid()
public function rewind()

/** merge existing array of parameters with existing parameters */
public function merge($parameters)

}

160 Chapter 39. Zend\Db\Adapter

Zend Framework 2 Documentation, Release 2.0.0

In addition to handling parameter names and values, the container will assist in tracking parameter types for PHP type
to SQL type handling. For example, it might be important that:

$container->offsetSet(’limit’, 5);

be bound as an integer. To achieve this, pass in the ParameterContainer::TYPE_INTEGER constant as the 3rd param-
eter:

$container->offsetSet(’limit’, 5, $container::TYPE_INTEGER);

This will ensure that if the underlying driver supports typing of bound parameters, that this translated information will
also be passed along to the actual php database driver.

39.9 Examples

Creating a Driver and Vendor portable Query, Preparing and Iterating Result

1 $adapter = new Zend\Db\Adapter\Adapter($driverConfig);
2

3 $qi = function($name) use ($adapter) { return $adapter->platform->quoteIdentifier($name); };
4 $fp = function($name) use ($adapter) { return $adapter->driver->formatParameterName($name); };
5

6 $sql = ’UPDATE ’ . $qi(’artist’)
7 . ’ SET ’ . $qi(’name’) . ’ = ’ . $fp(’name’)
8 . ’ WHERE ’ . $qi(’id’) . ’ = ’ . $fp(’id’);
9

10 /** @var $statement Zend\Db\Adapter\Driver\StatementInterface */
11 $statement = $adapter->query($sql);
12

13 $parameters = array(
14 ’name’ => ’Updated Artist’,
15 ’id’ => 1
16);
17

18 $statement->execute($parameters);
19

20 // DATA INSERTED, NOW CHECK
21

22 /* @var $statement Zend\Db\Adapter\DriverStatementInterface */
23 $statement = $adapter->query(’SELECT * FROM ’
24 . $qi(’artist’)
25 . ’ WHERE id = ’ . $fp(’id’));
26

27 /* @var $results Zend\Db\ResultSet\ResultSet */
28 $results = $statement->execute(array(’id’ => 1));
29

30 $row = $results->current();
31 $name = $row[’name’];

39.9. Examples 161

Zend Framework 2 Documentation, Release 2.0.0

162 Chapter 39. Zend\Db\Adapter

CHAPTER

FORTY

ZEND\DB\RESULTSET

Zend\Db\ResultSet is a sub-component of Zend\Db for abstracting the iteration of rowset
producing queries. While data sources for this can be anything that is iterable, generally a
Zend\Db\Adpater\Driver\ResultInterface based object is the primary source for retrieving data.

Zend\Db\ResultSet‘s must implement the Zend\Db\ResultSet\ResultSetInterface and all sub-
components of Zend\Db that return a ResultSet as part of their API will assume an instance of a
ResultSetInterface should be returned. In most casts, the Prototype pattern will be used by consuming object
to clone a prototype of a ResultSet and return a specialized ResultSet with a specific data source injected. The interface
of ResultSetInterface looks like this:

1 interface ResultSetInterface extends \Traversable, \Countable
2 {
3 public function initialize($dataSource);
4 public function getFieldCount();
5 }

40.1 Quickstart

Zend\Db\ResultSet\ResultSet is the most basic form of a ResultSet object that will expose each row
as either an ArrayObject-like object or an array of row data. By default, Zend\Db\Adapter\Adapter
will use a prototypical Zend\Db\ResultSet\ResultSet object for iterating when using the
Zend\Db\Adapter\Adapter::query() method.

The following is an example workflow similar to what one might find inside
Zend\Db\Adapter\Adapter::query():

1 use Zend\Db\Adapter\Driver\ResultInterface;
2 use Zend\Db\ResultSet\ResultSet;
3

4 $stmt = $driver->createStatement(’SELECT * FROM users’);
5 $stmt->prepare($parameters);
6 $result = $stmt->execute();
7

8 if ($result instanceof ResultInterface && $result->isQueryResult()) {
9 $resultSet = new ResultSet;

10 $resultSet->initialize($result);
11

12 foreach ($resultSet as $row) {
13 echo $row->my_column . PHP_EOL;
14 }
15 }

163

Zend Framework 2 Documentation, Release 2.0.0

40.2 Zend\Db\ResultSet\ResultSet and Zend\Db\ResultSet\AbstractResultSet

For most purposes, either a instance of Zend\Db\ResultSet\ResultSet or a derivative of
Zend\Db\ResultSet\AbstractResultSet will be being used. The implementation of the
AbstractResultSet offers the following core functionality:

1 abstract class AbstractResultSet implements Iterator, ResultSetInterface
2 {
3 public function initialize($dataSource)
4 public function getDataSource()
5 public function getFieldCount()
6

7 /** Iterator */
8 public function next()
9 public function key()

10 public function current()
11 public function valid()
12 public function rewind()
13

14 /** countable */
15 public function count()
16

17 /** get rows as array */
18 public function toArray()
19 }

40.3 Zend\Db\ResultSet\HydratingResultSet

Zend\Db\ResultSet\HydratingResultSet is a more flexible ResultSet object that allows the devel-
oper to choose an appropriate “hydration strategy” for getting row data into a target object. While iterating,
HydratingResultSet will take a prototype of a target object and clone it for each successive new row it iter-
ates. With this newly cloned row, HydratingResultSet will hydrate the target object with the row data.

In the example below, rows from the database will be iterated, and during iteration, HydratingRowSet will use the
Reflection based hydrator to inject the row data directly into the protected members of the cloned UserEntity object:

1 use Zend\Db\Adapter\Driver\ResultInterface;
2 use Zend\Db\ResultSet\HydratingResultSet;
3 use Zend\Stdlib\Hydrator\Reflection as ReflectionHydrator;
4

5 class UserEntity {
6 protected $first_name;
7 protected $last_name;
8 public function getFirstName() { return $this->first_name; }
9 public function getLastName() { return $this->last_name; }

10 }
11

12 $stmt = $driver->createStatement($sql);
13 $stmt->prepare($parameters);
14 $result = $stmt->execute();
15

16 if ($result instanceof ResultInterface && $result->isQueryResult()) {
17 $resultSet = new HydratingResultSet(new ReflectionHydrator, new UserEntity);
18 $resultSet->initialize($result);
19

20 foreach ($resultSet as $user) {

164 Chapter 40. Zend\Db\ResultSet

Zend Framework 2 Documentation, Release 2.0.0

21 echo $user->getFirstName() . ’ ’ . $user->getLastName() . PHP_EOL;
22 }
23 }

For more information, see the Zend\Stdlib\Hydrator documentation to get a better sense of the different strate-
gies that can be employed in order to populate a target object.

40.3. Zend\Db\ResultSet\HydratingResultSet 165

Zend Framework 2 Documentation, Release 2.0.0

166 Chapter 40. Zend\Db\ResultSet

CHAPTER

FORTYONE

ZEND\DB\SQL

Zend\Db\Sql is a SQL abstraction layer for building platform specific SQL queries via a object-oriented API. The
end result of an Zend\Db\Sql object will be to either produce a Statement and Parameter container that repre-
sents the target query, or a full string that can be directly executed against the database platform. To achieve this,
Zend\Db\Sql objects require a Zend\Db\Adapter\Adapter object in order to produce the desired results.

41.1 Zend\Db\Sql\Sql (Quickstart)

As there are for primary tasks associated with interacting with a database (from the DML, or Data Manipulation
Language): selecting, inserting, updating and deleting. As such, there are four primary objects that developers can
interact or building queries, Zend\Db\Sql\Select, Insert, Update and Delete.

Since these four tasks are so closely related, and generally used together within the same application,
Zend\Db\Sql\Sql objects help you create them and produce the result you are attempting to achieve.

1 use Zend\Db\Sql\Sql;
2 $sql = new Sql($adapter);
3 $select = $sql->select(); // @return Zend\Db\Sql\Select
4 $insert = $sql->insert(); // @return Zend\Db\Sql\Insert
5 $update = $sql->update(); // @return Zend\Db\Sql\Update
6 $delete = $sql->delete(); // @return Zend\Db\Sql\Delete

As a developer, you can now interact with these objects, as described in the sections below, to specialize each query.
Once they have been populated with values, they are ready to either be prepared or executed.

To prepare (using a Select object):

1 use Zend\Db\Sql\Sql;
2 $sql = new Sql($adapter);
3 $select = $sql->select();
4 $select->from(’foo’);
5 $select->where(array(’id’ => 2));
6

7 $statement = $sql->prepareStatementForSqlObject($select);
8 $results = $statement->execute();

To execute (using a Select object)

1 use Zend\Db\Sql\Sql;
2 $sql = new Sql($adapter);
3 $select = $sql->select();
4 $select->from(’foo’);
5 $select->where(array(’id’ => 2));

167

Zend Framework 2 Documentation, Release 2.0.0

6

7 $selectString = $sql->getSqlStringForSqlObject($select);
8 $results = $adapter->query($selectString, $adapter::QUERY_MODE_EXECUTE);

Zend\Db\Sql\Sql objects can also be bound to a particular table so that in getting a select, insert, update, or delete
object, they are all primarily seeded with the same table when produced.

1 use Zend\Db\Sql\Sql;
2 $sql = new Sql($adapter, ’foo’);
3 $select = $sql->select();
4 $select->where(array(’id’ => 2)); // $select already has the from(’foo’) applied

41.2 Zend\Db\Sql’s Select, Insert, Update and Delete

Each of these objects implement the following (2) interfaces:

1 interface PreparableSqlInterface {
2 public function prepareStatement(Adapter $adapter, StatementInterface $statement);
3 }
4 interface SqlInterface {
5 public function getSqlString(PlatformInterface $adapterPlatform = null);
6 }

These are the functions you can call to either produce (a) a prepared statement, or (b) a string to be executed.

41.3 Zend\Db\Sql\Select

Zend\Db\Sql\Select is an object who’s primary function is to present a unified API for building platform specific
SQL SELECT queries. The object can be instantiated and consumed without Zend\Db\Sql\Sql:

1 use Zend\Db\Sql\Select;
2 $select = new Select();
3 // or, to produce a $select bound to a specific table
4 $select = new Select(’foo’);

If a table is provided to the Select object, then from() cannot be called later to change the name of the table.

Once you have a valid Select object, the following API can be used to further specify various select statement parts:

1 class Select extends AbstractSql implements SqlInterface, PreparableSqlInterface
2 {
3 const JOIN_INNER = ’inner’;
4 const JOIN_OUTER = ’outer’;
5 const JOIN_LEFT = ’left’;
6 const JOIN_RIGHT = ’right’;
7 const SQL_STAR = ’*’;
8 const ORDER_ASCENDING = ’ASC’;
9 const ORDER_DESENDING = ’DESC’;

10

11 public $where; // @param Where $where
12

13 public function __construct($table = null);
14 public function from($table);
15 public function columns(array $columns, $prefixColumnsWithTable = true);
16 public function join($name, $on, $columns = self::SQL_STAR, $type = self::JOIN_INNER);

168 Chapter 41. Zend\Db\Sql

Zend Framework 2 Documentation, Release 2.0.0

17 public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
18 public function group($group);
19 public function having($predicate, $combination = Predicate\PredicateSet::OP_AND);
20 public function order($order);
21 public function limit($limit);
22 public function offset($offset);
23 }

41.3.1 from():

1 // as a string:
2 $select->from(’foo’);
3

4 // as an array to specify an alias:
5 // produces SELECT "t".* FROM "table" AS "t"
6

7 $select->from(array(’t’ => ’table’));
8

9 // using a Sql\TableIdentifier:
10 // same output as above
11

12 $select->from(new TableIdentifier(array(’t’ => ’table’)));

41.3.2 columns():

1 // as array of names
2 $select->columns(array(’foo’, ’bar’));
3

4 // as an associative array with aliases as the keys:
5 // produces ’bar’ AS ’foo’, ’bax’ AS ’baz’
6

7 $select->columns(array(’foo’ => ’bar’, ’baz’ => ’bax’));

41.3.3 join():

1 $select->join(
2 ’foo’ // table name,
3 ’id = bar.id’, // expression to join on (will be quoted by platform object before insertion),
4 array(’bar’, ’baz’), // (optional) list of columns, same requiremetns as columns() above
5 $select::JOIN_OUTER // (optional), one of inner, outer, left, right also represtned by constants in the API
6);
7

8 $select->from(array(’f’ => ’foo’)) // base table
9 ->join(array(’b’ => ’bar’), // join table with alias

10 ’f.foo_id = b.foo_id’); // join expression

41.3.4 where(), having():

The Zend\Db\Sql\Select object provides bit of flexibility as it regards to what kind of parameters are acceptable
when calling where() or having(). The method signature is listed as:

41.3. Zend\Db\Sql\Select 169

Zend Framework 2 Documentation, Release 2.0.0

1 /**
2 * Create where clause
3 *
4 * @param Where|\Closure|string|array $predicate
5 * @param string $combination One of the OP_* constants from Predicate\PredicateSet
6 * @return Select
7 */
8 public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);

As you can see, there are a number of different ways to pass criteria to both having() and where().

If you provide a Zend\Db\Sql\Where object to where() or a Zend\Db\Sql\Having object to having(), the
internal objects for Select will be replaced completely. When the where/having() is processed, this object will be
iterated to produce the WHERE or HAVING section of the SELECT statement.

If you provide a Closure to where() or having(), this function will be called with the Select’s Where object as the
only parameter. So the following is possible:

1 $spec = function (Where $where) {
2 $where->like(’username’, ’ralph%’);
3 };
4

5 $select->where($spec);

If you provide a string, this string will be used to instantiate a Zend\Db\Sql\Predicate\Expression object
so that it’s contents will be applied as is. This means that there will be no quoting in the fragment provided.

Consider the following code:

1 // SELECT "foo".* FROM "foo" WHERE x = 5
2 $select->from(’foo’)->where(’x = 5’);

If you provide an array who’s values are keyed by an integer, the value can either be a string that will be then used to
build a Predicate\Expression or any object that implements Predicate\PredicateInterface. These
objects are pushed onto the Where stack with the $combination provided.

Consider the following code:

1 // SELECT "foo".* FROM "foo" WHERE x = 5 AND y = z
2 $select->from(’foo’)->where(array(’x = 5’, ’y = z’));

If you provide an array who’s values are keyed with a string, these values will be handled in the following:

• PHP value nulls will be made into a Predicate\IsNull object

• PHP value array()s will be made into a Predicate\In object

• PHP value strings will be made into a Predicate\Operator object such that the string key will be identifier,
and the value will target value.

Consider the following code:

1 // SELECT "foo".* FROM "foo" WHERE "c1" IS NULL AND "c2" IN (?, ?, ?) AND "c3" IS NOT NULL
2 $select->from(’foo’)->where(array(
3 ’c1’ => null,
4 ’c2’ => array(1, 2, 3),
5 new \Zend\Db\Sql\Predicate\IsNotNull(’c3’)
6));

170 Chapter 41. Zend\Db\Sql

Zend Framework 2 Documentation, Release 2.0.0

41.3.5 order():

1 $select = new Select;
2 $select->order(’id DESC’); // produces ’id’ DESC
3

4 $select = new Select;
5 $select->order(’id DESC’)
6 ->order(’name ASC, age DESC’); // produces ’id’ DESC, ’name’ ASC, ’age’ DESC
7

8 $select = new Select;
9 $select->order(array(’name ASC’, ’age DESC’)); // produces ’name’ ASC, ’age’ DESC

41.3.6 limit() and offset():

1 $select = new Select;
2 $select->limit(5); // always takes an integer/numeric
3 $select->offset(10); // similarly takes an integer/numeric

41.4 Zend\Db\Sql\Insert

The Insert API:

1 class Insert implements SqlInterface, PreparableSqlInterface
2 {
3 const VALUES_MERGE = ’merge’;
4 const VALUES_SET = ’set’;
5

6 public function __construct($table = null);
7 public function into($table);
8 public function columns(array $columns);
9 public function values(array $values, $flag = self::VALUES_SET);

10 }

Similarly to Select objects, the table can be set at construction time or via into().

41.4.1 columns():

1 $insert->columns(array(’foo’, ’bar’)); // set the valid columns

41.4.2 values():

1 // default behavior of values is to set the values
2 // succesive calls will not preserve values from previous calls
3 $insert->values(array(
4 ’col_1’ => ’value1’,
5 ’col_2’ => ’value2’
6));

1 // merging values with previous calls
2 $insert->values(array(’col_2’ => ’value2’), $insert::VALUES);

41.4. Zend\Db\Sql\Insert 171

Zend Framework 2 Documentation, Release 2.0.0

41.5 Zend\Db\Sql\Update

1 class Update
2 {
3 const VALUES_MERGE = ’merge’;
4 const VALUES_SET = ’set’;
5

6 public $where; // @param Where $where
7 public function __construct($table = null);
8 public function table($table);
9 public function set(array $values, $flag = self::VALUES_SET);

10 public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
11 }

41.5.1 set():

1 $update->set(array(’foo’ => ’bar’, ’baz’ => ’bax’));

41.5.2 where():

See where section below.

41.6 Zend\Db\Sql\Delete

1 class Delete
2 {
3 public $where; // @param Where $where
4 public function __construct($table = null);
5 public function from($table);
6 public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
7 }

41.6.1 where():

See where section below.

41.7 Zend\Db\Sql\Where & Zend\Db\Sql\Having

In the following, we will talk about Where, Having is implies as being the same API.

Effectively, Where and Having extend from the same base object, a Predicate (and PredicateSet). All of the parts that
make up a where or having that are and’ed or or’d together are called predicates. The full set of predicates is called
a PredicateSet. This object set generally contains the values (and identifiers) separate from the fragment they belong
to until the last possible moment when the statement is either used to be prepared (parameteritized), or executed. In
parameterization, the parameters will be replaced with their proper placeholder (a named or positional parameter),
and the values stored inside a Adapter\ParameterContainer. When executed, the values will be interpolated into the
fragments they belong to and properly quoted.

172 Chapter 41. Zend\Db\Sql

Zend Framework 2 Documentation, Release 2.0.0

It is important to know that in this API, a distinction is made between what elements are considered identifiers
(TYPE_IDENTIFIER) and which of those is a value (TYPE_VALUE). There is also a special use case type for literal
values (TYPE_LITERAL). These are all exposed via the Zend\Db\Sql\ExpressionInterface interface.

The Zend\Db\Sql\Where (Predicate/PredicateSet) API:

1 // Where & Having:
2 class Predicate extends PredicateSet
3 {
4 public $and;
5 public $or;
6 public $AND;
7 public $OR;
8 public $NEST;
9 public $UNNSET;

10

11 public function nest();
12 public function setUnnest(Predicate $predicate);
13 public function unnest();
14 public function equalTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
15 public function lessThan($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
16 public function greaterThan($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
17 public function lessThanOrEqualTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
18 public function greaterThanOrEqualTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
19 public function like($identifier, $like);
20 public function literal($literal, $parameter);
21 public function isNull($identifier);
22 public function isNotNull($identifier);
23 public function in($identifier, array $valueSet = array());
24 public function between($identifier, $minValue, $maxValue);
25

26

27 // Inherited From PredicateSet
28

29 public function addPredicate(PredicateInterface $predicate, $combination = null);
30 public function getPredicates();
31 public function orPredicate(PredicateInterface $predicate);
32 public function andPredicate(PredicateInterface $predicate);
33 public function getExpressionData();
34 public function count();
35 }

Each method in the Where API will produce a corresponding Predicate object of a similarly named type, described
below, with the full API of the object:

41.7.1 equalTo(), lessThan(), greaterThan(), lessThanOrEqualTo(), greaterThanOrE-
qualTo():

1 $where->equalTo(’id’, 5);
2

3 // same as the following workflow
4 $where->addPredicate(
5 new Predicate\Operator($left, Operator::OPERATOR_EQUAL_TO, $right, $leftType, $rightType)
6);
7

8 class Operator implements PredicateInterface
9 {

41.7. Zend\Db\Sql\Where & Zend\Db\Sql\Having 173

Zend Framework 2 Documentation, Release 2.0.0

10 const OPERATOR_EQUAL_TO = ’=’;
11 const OP_EQ = ’=’;
12 const OPERATOR_NOT_EQUAL_TO = ’!=’;
13 const OP_NE = ’!=’;
14 const OPERATOR_LESS_THAN = ’<’;
15 const OP_LT = ’<’;
16 const OPERATOR_LESS_THAN_OR_EQUAL_TO = ’<=’;
17 const OP_LTE = ’<=’;
18 const OPERATOR_GREATER_THAN = ’>’;
19 const OP_GT = ’>’;
20 const OPERATOR_GREATER_THAN_OR_EQUAL_TO = ’>=’;
21 const OP_GTE = ’>=’;
22

23 public function __construct($left = null, $operator = self::OPERATOR_EQUAL_TO, $right = null, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
24 public function setLeft($left);
25 public function getLeft();
26 public function setLeftType($type);
27 public function getLeftType();
28 public function setOperator($operator);
29 public function getOperator();
30 public function setRight($value);
31 public function getRight();
32 public function setRightType($type);
33 public function getRightType();
34 public function getExpressionData();
35 }

41.7.2 like($identifier, $like):

1 $where->like($identifier, $like):
2

3 // same as
4 $where->addPredicate(
5 new Predicate\Like($identifier, $like)
6);
7

8 // full API
9

10 class Like implements PredicateInterface
11 {
12 public function __construct($identifier = null, $like = null);
13 public function setIdentifier($identifier);
14 public function getIdentifier();
15 public function setLike($like);
16 public function getLike();
17 }

41.7.3 literal($literal, $parameter);

1 $where->literal($literal, $parameter);
2

3 // same as
4 $where->addPredicate(
5 new Predicate\Expression($literal, $parameter)
6);

174 Chapter 41. Zend\Db\Sql

Zend Framework 2 Documentation, Release 2.0.0

7

8 // full API
9 class Expression implements ExpressionInterface, PredicateInterface

10 {
11 const PLACEHOLDER = ’?’;
12 public function __construct($expression = null, $valueParameter = null /*[, $valueParameter, ...]*/);
13 public function setExpression($expression);
14 public function getExpression();
15 public function setParameters($parameters);
16 public function getParameters();
17 public function setTypes(array $types);
18 public function getTypes();
19 }

41.7.4 isNull($identifier);

1 $where->isNull($identifier);
2

3 // same as
4 $where->addPredicate(
5 new Predicate\IsNull($identifier)
6);
7

8 // full API
9 class IsNull implements PredicateInterface

10 {
11 public function __construct($identifier = null);
12 public function setIdentifier($identifier);
13 public function getIdentifier();
14 }

41.7.5 isNotNull($identifier);

1 $where->isNotNull($identifier);
2

3 // same as
4 $where->addPredicate(
5 new Predicate\IsNotNull($identifier)
6);
7

8 // full API
9 class IsNotNull implements PredicateInterface

10 {
11 public function __construct($identifier = null);
12 public function setIdentifier($identifier);
13 public function getIdentifier();
14 }

41.7.6 in($identifier, array $valueSet = array());

1 $where->in($identifier, array $valueSet = array());
2

3 // same as

41.7. Zend\Db\Sql\Where & Zend\Db\Sql\Having 175

Zend Framework 2 Documentation, Release 2.0.0

4 $where->addPredicate(
5 new Predicate\In($identifier, $valueSet)
6);
7

8 // full API
9 class In implements PredicateInterface

10 {
11 public function __construct($identifier = null, array $valueSet = array());
12 public function setIdentifier($identifier);
13 public function getIdentifier();
14 public function setValueSet(array $valueSet);
15 public function getValueSet();
16 }

41.7.7 between($identifier, $minValue, $maxValue);

1 $where->between($identifier, $minValue, $maxValue);
2

3 // same as
4 $where->addPredicate(
5 new Predicate\Between($identifier, $minValue, $maxValue)
6);
7

8 // full API
9 class Between implements PredicateInterface

10 {
11 public function __construct($identifier = null, $minValue = null, $maxValue = null);
12 public function setIdentifier($identifier);
13 public function getIdentifier();
14 public function setMinValue($minValue);
15 public function getMinValue();
16 public function setMaxValue($maxValue);
17 public function getMaxValue();
18 public function setSpecification($specification);
19 }

176 Chapter 41. Zend\Db\Sql

CHAPTER

FORTYTWO

ZEND\DB\TABLEGATEWAY

The Table Gateway object is intended to provide an object that represents a table in a database, and the methods of
this object mirror the most common operations on a database table. In code, the interface for such an object looks like
this:

1 interface Zend\Db\TableGateway\TableGatewayInterface
2 {
3 public function getTable();
4 public function select($where = null);
5 public function insert($set);
6 public function update($set, $where = null);
7 public function delete($where);
8 }

There are two primary implementations of the TableGatewayInterface that are of the most useful:
AbstractTableGateway and TableGateway. The AbstractTableGateway is an abstract basic imple-
mentation that provides functionality for select(), insert(), update(), delete(), as well as an addi-
tional API for doing these same kinds of tasks with explicit SQL objects. These methods are selectWith(),
insertWith(), updateWith() and deleteWith(). In addition, AbstractTableGateway also implements a
“Feature” API, that allows for expanding the behaviors of the base TableGateway implementation without having
to extend the class with this new functionality. The TableGateway concrete implementation simply adds a sensible
constructor to the AbstractTableGateway class so that out-of-the-box, TableGateway does not need to be
extended in order to be consumed and utilized to its fullest.

42.1 Basic Usage

The quickest way to get up and running with Zend\Db\TableGateway is to configure and utilize the concrete imple-
mentation of the TableGateway. The API of the concrete TableGateway is:

1 class TableGateway extends AbstractTableGateway
2 {
3 public $lastInsertValue;
4 public $table;
5 public $adapter;
6

7 public function __construct($table, Adapter $adapter, $features = null, ResultSet $resultSetPrototype = null, Sql $sql = null)
8

9 /** Inherited from AbstractTableGateway */
10

11 public function isInitialized();
12 public function initialize();
13 public function getTable();

177

Zend Framework 2 Documentation, Release 2.0.0

14 public function getAdapter();
15 public function getColumns();
16 public function getFeatureSet();
17 public function getResultSetPrototype();
18 public function getSql();
19 public function select($where = null);
20 public function selectWith(Select $select);
21 public function insert($set);
22 public function insertWith(Insert $insert);
23 public function update($set, $where = null);
24 public function updateWith(Update $update);
25 public function delete($where);
26 public function deleteWith(Delete $delete);
27 public function getLastInsertValue();
28

29 }

The concrete TableGateway object practices constructor injection for getting dependencies and options into the
instance. The table name and an instance of an Adapter are all that is needed to setup a working TableGateway
object.

Out of the box, this implementation makes no assumptions about table structure or metadata, and when select()
is executed, a simple ResultSet object with the populated Adapter’s Result (the datasource) will be returned and ready
for iteration.

1 use Zend\Db\TableGateway\TableGateway;
2 $projectTable = new TableGateway(’project’, $adapter);
3 $rowset = $projectTable->select(array(’type’ => ’PHP’));
4

5 echo ’Projects of type PHP: ’;
6 foreach ($rowset as $projectRow) {
7 echo $projectRow[’name’] . PHP_EOL;
8 }
9

10 // or, when expecting a single row:
11 $artistTable = new TableGateway(’artist’, $adapter);
12 $rowset = $artistTable->select(array(’id’ => 2));
13 $artistRow = $rowset->current();
14

15 var_dump($artistRow);

The select() method takes the same arguments as Zend\Db\Sql\Select::where() with the addition of
also being able to accept a closure, which in turn, will be passed the current Select object that is being used to build
the SELECT query. The following usage is possible:

1 use Zend\Db\TableGateway\TableGateway;
2 use Zend\Db\Sql\Select;
3 $artistTable = new TableGateway(’artist’, $adapter);
4

5 // search for at most 2 artists who’s name starts with Brit, ascending
6 $rowset = $artistTable->select(function (Select $select) {
7 $select->where->like(’name’, ’Brit%’);
8 $select->order(’name ASC’)->limit(2);
9 });

178 Chapter 42. Zend\Db\TableGateway

Zend Framework 2 Documentation, Release 2.0.0

42.2 TableGateway Features

The Features API allows for extending the functionality of the base TableGateway object without having to poly-
morphically extend the base class. This allows for a wider array of possible mixing and matching of features to
achieve a particular behiavior that needs to be attained to make the base implementation of TableGateway useful
for a particular problem.

With the TableGateway object, features should be injected though the constructor. The constructor can take Fea-
tures in 3 different forms: as a single feature object, as a FeatureSet object, or as an array of Feature objects.

There are a number of features built-in and shipped with Zend\Db:

• GlobalAdapterFeature: the ability to use a global/static adapter without needing to inject it into a
TableGateway instance. This is more useful when you are extending the AbstractTableGateway im-
plementation:

1 class MyTableGateway extends <classname>AbstractTableGateway</classname>
2 {
3 public function __construct()
4 {
5 $this->table = ’my_table’;
6 $this->featureSet = new Feature\FeatureSet();
7 $this->featureSet->addFeature(new Feature\GlobalAdapterFeature());
8 $this->initialize();
9 }

10 }
11

12 // elsewhere in code, in a bootstrap
13 Zend\Db\TableGateway\Feature\GlobalAdapterFeature::setStaticAdapter($adapter);
14

15 // in a controller, or model somewhere
16 $table = new MyTableGateway(); // adapter is statially loaded

• MasterSlaveFeature: the ability to use a master adapter for insert(), update(), and delete() while using a slave
adapter for all select() operations.

1 $table = new TableGateway(’artist’, $adapter, new Feature\MasterSlaveFeature($slaveAdapter));

• MetadataFeature: the ability populate TableGateway with column information from a Metadata object. It
will also store the primary key information in case RowGatewayFeature needs to consume this information.

1 $table = new TableGateway(’artist’, $adapter, new Feature\MeatadataFeature());

• EventFeature: the ability utilize a TableGateway object with Zend\EventManager and to be able to subscribe
to various events in a TableGateway lifecycle.

1 $table = new TableGateway(’artist’, $adapter, new Feature\EventFeature($eventManagerInstance));

• RowGatewayFeature: the ability for select() to return a ResultSet object that upon iteration will

1 $table = new TableGateway(’artist’, $adapter, new Feature\RowGatewayFeature(’id’));
2 $results = $table->select(array(’id’ => 2));
3

4 $artistRow = $results->current();
5 $artistRow->name = ’New Name’;
6 $artistRow->save();

42.2. TableGateway Features 179

Zend Framework 2 Documentation, Release 2.0.0

180 Chapter 42. Zend\Db\TableGateway

CHAPTER

FORTYTHREE

ZEND\DB\ROWGATEWAY

Zend\Db\RowGateway is a sub-component of Zend\Db that implements the Row Gateway pattern from PoEAA.
This effectively means that Row Gateway objects primarily model a row in a database, and have methods such as
save() and delete() that will help persist this row-as-an-object in the database itself. Likewise, after a row from the
database is retrieved, it can then be manipulated and save()’d back to the database in the same position (row), or it can
be delete()’d from the table.

The interface for a Row Gateway object simply adds save() and delete() and this is the interface that should be assumed
when a component has a dependency that is expected to be an instance of a RowGateway object:

1 interface RowGatewayInterface
2 {
3 public function save();
4 public function delete();
5 }

43.1 Quickstart

While most of the time, RowGateway will be used in conjucntion with other Zend\Db\ResultSet producing objects, it
is possible to use it standalone. To use it standalone, you simply need an Adapter and a set of data to work with. The
following use case demonstrates Zend\Db\RowGateway\RowGateway usage in its simplest form:

1 use Zend\Db\RowGateway\RowGateway;
2

3 // query the database
4 $resultSet = $adapter->query(’SELECT * FROM ‘user‘ WHERE ‘id‘ = ?’, array(2));
5

6 // get array of data
7 $rowData = $resultSet->current()->getArrayCopy();
8

9 // row gateway
10 $rowGateway = new RowGateway(’id’, ’my_table’, $adapter);
11 $rowGateway->populate($rowData);
12

13 $rowGateway->first_name = ’New Name’;
14 $rowGateway->save();
15

16 // or delete this row:
17 $rowGateway->delete();

The workflow described above is greatly simplified when RowGateway is used in conjunction with the TableGateway
feature. What this achieves is a Table Gateway object that when select()’ing from a table, will produce a ResultSet

181

Zend Framework 2 Documentation, Release 2.0.0

that is then capable of producing valid Row Gateway objects. Its usage looks like this:

1 use Zend\Db\TableGateway\Feature\RowGatewayFeature;
2 use Zend\Db\TableGateway\TableGateway;
3

4 $table = new TableGateway(’artist’, $adapter, new RowGatewayFeature(’id’));
5 $results = $table->select(array(’id’ => 2));
6

7 $artistRow = $results->current();
8 $artistRow->name = ’New Name’;
9 $artistRow->save();

182 Chapter 43. Zend\Db\RowGateway

CHAPTER

FORTYFOUR

ZEND\DB\METADATA

Zend\Db\Metadata is as sub-component of Zend\Db that makes it possible to get metadata information about
tables, columns, constraints, triggers, and other information from a database in a standardized way. The primary
interface for the Metadata objects is:

1 interface MetadataInterface
2 {
3 public function getSchemas();
4

5 public function getTableNames($schema = null, $includeViews = false);
6 public function getTables($schema = null, $includeViews = false);
7 public function getTable($tableName, $schema = null);
8

9 public function getViewNames($schema = null);
10 public function getViews($schema = null);
11 public function getView($viewName, $schema = null);
12

13 public function getColumnNames($table, $schema = null);
14 public function getColumns($table, $schema = null);
15 public function getColumn($columnName, $table, $schema = null);
16

17 public function getConstraints($table, $schema = null);
18 public function getConstraint($constraintName, $table, $schema = null);
19 public function getConstraintKeys($constraint, $table, $schema = null);
20

21 public function getTriggerNames($schema = null);
22 public function getTriggers($schema = null);
23 public function getTrigger($triggerName, $schema = null);
24 }

44.1 Basic Usage

Usage of Zend\Db\Metadata is very straight forward. The top level class Zend\Db\Metadata\Metadata will, given
an adapter, choose the best strategy (based on the database platform being used) for retrieving metadata. In most
cases, information will come from querying the INFORMATION_SCHEMA tables generally accessible to all database
connections about the currently accessible schema.

Metadata::get*Names() methods will return an array of strings, while the other methods will return specific value
objects with the containing information. This is best demonstrated by the script below.

1 $metadata = new Zend\Db\Metadata\Metadata($adapter);
2

183

Zend Framework 2 Documentation, Release 2.0.0

3 // get the table names
4 $tableNames = $metadata->getTableNames();
5

6 foreach ($tableNames as $tableName) {
7 echo ’In Table ’ . $tableName . PHP_EOL;
8

9 $table = $metadata->getTable($tableName);
10

11

12 echo ’ With columns: ’ . PHP_EOL;
13 foreach ($table->getColumns() as $column) {
14 echo ’ ’ . $column->getName()
15 . ’ -> ’ . $column->getDataType()
16 . PHP_EOL;
17 }
18

19 echo PHP_EOL;
20 echo ’ With constraints: ’ . PHP_EOL;
21

22 foreach ($metadata->getConstraints($tableName) as $constraint) {
23 /** @var $constraint Zend\Db\Metadata\Object\ConstraintObject */
24 echo ’ ’ . $constraint->getName()
25 . ’ -> ’ . $constraint->getType()
26 . PHP_EOL;
27 if (!$constraint->hasColumns()) {
28 continue;
29 }
30 echo ’ column: ’ . implode(’, ’, $constraint->getColumns());
31 if ($constraint->isForeignKey()) {
32 $fkCols = array();
33 foreach ($constraint->getReferencedColumns() as $refColumn) {
34 $fkCols[] = $constraint->getReferencedTableName() . ’.’ . $refColumn;
35 }
36 echo ’ => ’ . implode(’, ’, $fkCols);
37 }
38 echo PHP_EOL;
39

40 }
41

42 echo ’----’ . PHP_EOL;
43 }

Metadata returns value objects that provide an interface to help developers better explore the metadata. Below is the
API for the various value objects:

The TableObject:

1 class Zend\Db\Metadata\Object\TableObject
2 {
3 public function __construct($name);
4 public function setColumns(array $columns);
5 public function getColumns();
6 public function setConstraints($constraints);
7 public function getConstraints();
8 public function setName($name);
9 public function getName();

10 }

The ColumnObject:

184 Chapter 44. Zend\Db\Metadata

Zend Framework 2 Documentation, Release 2.0.0

1 class Zend\Db\Metadata\Object\ColumnObject {
2 public function __construct($name, $tableName, $schemaName = null);
3 public function setName($name);
4 public function getName();
5 public function getTableName();
6 public function setTableName($tableName);
7 public function setSchemaName($schemaName);
8 public function getSchemaName();
9 public function getOrdinalPosition();

10 public function setOrdinalPosition($ordinalPosition);
11 public function getColumnDefault();
12 public function setColumnDefault($columnDefault);
13 public function getIsNullable();
14 public function setIsNullable($isNullable);
15 public function isNullable();
16 public function getDataType();
17 public function setDataType($dataType);
18 public function getCharacterMaximumLength();
19 public function setCharacterMaximumLength($characterMaximumLength);
20 public function getCharacterOctetLength();
21 public function setCharacterOctetLength($characterOctetLength);
22 public function getNumericPrecision();
23 public function setNumericPrecision($numericPrecision);
24 public function getNumericScale();
25 public function setNumericScale($numericScale);
26 public function getNumericUnsigned();
27 public function setNumericUnsigned($numericUnsigned);
28 public function isNumericUnsigned();
29 public function getErratas();
30 public function setErratas(array $erratas);
31 public function getErrata($errataName);
32 public function setErrata($errataName, $errataValue);
33 }

The ConstraintObject:

1 class Zend\Db\Metadata\Object\ConstraintObject
2 {
3 public function __construct($name, $tableName, $schemaName = null);
4 public function setName($name);
5 public function getName();
6 public function setSchemaName($schemaName);
7 public function getSchemaName();
8 public function getTableName();
9 public function setTableName($tableName);

10 public function setType($type);
11 public function getType();
12 public function hasColumns();
13 public function getColumns();
14 public function setColumns(array $columns);
15 public function getReferencedTableSchema();
16 public function setReferencedTableSchema($referencedTableSchema);
17 public function getReferencedTableName();
18 public function setReferencedTableName($referencedTableName);
19 public function getReferencedColumns();
20 public function setReferencedColumns(array $referencedColumns);
21 public function getMatchOption();
22 public function setMatchOption($matchOption);

44.1. Basic Usage 185

Zend Framework 2 Documentation, Release 2.0.0

23 public function getUpdateRule();
24 public function setUpdateRule($updateRule);
25 public function getDeleteRule();
26 public function setDeleteRule($deleteRule);
27 public function getCheckClause();
28 public function setCheckClause($checkClause);
29 public function isPrimaryKey();
30 public function isUnique();
31 public function isForeignKey();
32 public function isCheck();
33

34 }

The TriggerObject:

1 class Zend\Db\Metadata\Object\TriggerObject
2 {
3 public function getName();
4 public function setName($name);
5 public function getEventManipulation();
6 public function setEventManipulation($eventManipulation);
7 public function getEventObjectCatalog();
8 public function setEventObjectCatalog($eventObjectCatalog);
9 public function getEventObjectSchema();

10 public function setEventObjectSchema($eventObjectSchema);
11 public function getEventObjectTable();
12 public function setEventObjectTable($eventObjectTable);
13 public function getActionOrder();
14 public function setActionOrder($actionOrder);
15 public function getActionCondition();
16 public function setActionCondition($actionCondition);
17 public function getActionStatement();
18 public function setActionStatement($actionStatement);
19 public function getActionOrientation();
20 public function setActionOrientation($actionOrientation);
21 public function getActionTiming();
22 public function setActionTiming($actionTiming);
23 public function getActionReferenceOldTable();
24 public function setActionReferenceOldTable($actionReferenceOldTable);
25 public function getActionReferenceNewTable();
26 public function setActionReferenceNewTable($actionReferenceNewTable);
27 public function getActionReferenceOldRow();
28 public function setActionReferenceOldRow($actionReferenceOldRow);
29 public function getActionReferenceNewRow();
30 public function setActionReferenceNewRow($actionReferenceNewRow);
31 public function getCreated();
32 public function setCreated($created);
33 }

186 Chapter 44. Zend\Db\Metadata

CHAPTER

FORTYFIVE

INTRODUCTION TO ZEND\DI

45.1 Dependency Injection

Dependency Injection (here-in called DI) is a concept that has been talked about in numerous places over the web.
Simply put, we’ll explain the act of injecting dependencies simply with this below code:

1 $b = new MovieLister(new MovieFinder));

Above, MovieFinder is a dependency of MovieLister, and MovieFinder was injected into MovieLister. If you are
not familiar with the concept of DI, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy, Ralph
Schindler’s Learning DI, or Fabien Potencier’s Series on DI.

45.2 Dependency Injection Containers

When your code is written in such a way that all your dependencies are injected into consuming objects, you might
find that the simple act of wiring an object has gotten more complex. When this becomes the case, and you find that
this wiring is creating more boilerplate code, this makes for an excellent opportunity to utilize a Dependency Injection
Container.

In it’s simplest form, a Dependency Injection Container (here-in called a DiC for brevity), is an object that is capable of
creating objects on request and managing the “wiring”, or the injection of required dependencies, for those requested
objects. Since the patterns that developers employ in writing DI capable code vary, DiC’s are generally either in the
form of smallish objects that suit a very specific pattern, or larger DiC frameworks.

Zend\Di is a DiC framework. While for the simplest code there is no configuration needed, and the use cases are quite
simple; for more complex code, Zend\Di is capable of being configured to wire these complex use cases

187

http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://fabien.potencier.org/article/11/what-is-dependency-injection

Zend Framework 2 Documentation, Release 2.0.0

188 Chapter 45. Introduction to Zend\Di

CHAPTER

FORTYSIX

ZEND\DI QUICKSTART

This QuickStart is intended to get developers familiar with the concepts of the Zend\Di DiC. Generally speaking, code
is never as simple as it is inside this example, so working knowledge of the other sections of the manual is suggested.

Assume for a moment, you have the following code as part of your application that you feel is a good candidate for
being managed by a DiC, after all, you are already injecting all your dependencies:

1 namespace MyLibrary
2 {
3 class DbAdapter
4 {
5 protected $username = null;
6 protected $password = null;
7 public function __construct($username, $password)
8 {
9 $this->username = $username;

10 $this->password = $password;
11 }
12 }
13 }
14

15 namespace MyMovieApp
16 {
17 class MovieFinder
18 {
19 protected $dbAdapter = null;
20 public function __construct(\MyLibrary\DbAdapter $dbAdapter)
21 {
22 $this->dbAdapter = $dbAdapter;
23 }
24 }
25

26 class MovieLister
27 {
28 protected $movieFinder = null;
29 public function __construct(MovieFinder $movieFinder)
30 {
31 $this->movieFinder = $movieFinder;
32 }
33 }
34 }

With the above code, you find yourself writing the following to wire and utilize this code:

189

Zend Framework 2 Documentation, Release 2.0.0

1 // $config object is assumed
2

3 $dbAdapter = new MyLibrary\DbAdapter($config->username, $config->password);
4 $movieFinder = new MyMovieApp\MovieFinder($dbAdapter);
5 $movieLister = new MyMovieApp\MovieLister($movieFinder);
6 foreach ($movieLister as $movie) {
7 // iterate and display $movie
8 }

If you are doing this above wiring in each controller or view that wants to list movies, not only can this become
repetitive and boring to write, but also unmaintainable if for example you want to swap out one of these dependencies
on a wholesale scale.

Since this example of code already practices good dependency injection, with constructor injection, it is a great candi-
date for using Zend\Di. The usage is as simple as:

1 // inside a bootstrap somewhere
2 $di = new Zend\Di\Di();
3 $di->instanceManager()->setParameters(’MyLibrary\DbAdapter’, array(
4 ’username’ => $config->username,
5 ’password’ => $config->password
6));
7

8 // inside each controller
9 $movieLister = $di->get(’MyMovieApp\MovieLister’);

10 foreach ($movieLister as $movie) {
11 // iterate and display $movie
12 }

In the above example, we are obtaining a default instance of Zend\Di\Di. By ‘default’, we mean that Zend\Di\Di is
constructed with a DefinitionList seeded with a RuntimeDefinition (uses Reflection) and an empty instance manager
and no configuration. Here is the Zend\Di\Di constructor:

1 public function __construct(DefinitionList $definitions = null, InstanceManager $instanceManager = null, Configuration $config = null)
2 {
3 $this->definitions = ($definitions) ?: new DefinitionList(new Definition\RuntimeDefinition());
4 $this->instanceManager = ($instanceManager) ?: new InstanceManager();
5

6 if ($config) {
7 $this->configure($config);
8 }
9 }

This means that when $di->get() is called, it will be consulting the RuntimeDefinition, which uses reflection to un-
derstand the structure of the code. Once it knows the structure of the code, it can then know how the dependencies
fit together and how to go about wiring your objects for you. Zend\Di\Definition\RuntimeDefinition will utilize the
names of the parameters in the methods as the class parameter names. This is how both username and password key
are mapped to the first and second parameter, respectively, of the constructor consuming these named parameters.

If you were to want to pass in the username and password at call time, this is achieved by passing them as the second
argument of get():

1 // inside each controller
2 $di = new Zend\Di\Di();
3 $movieLister = $di->get(’MyMovieApp\MovieLister’, array(
4 ’username’ => $config->username,
5 ’password’ => $config->password
6));
7 foreach ($movieLister as $movie) {

190 Chapter 46. Zend\Di Quickstart

Zend Framework 2 Documentation, Release 2.0.0

8 // iterate and display $movie
9 }

It is important to note that when using call time parameters, these parameter names will be applied to any class that
accepts a parameter of such name.

By calling $di->get(), this instance of MovieLister will be automatically shared. This means subsequent calls to get()
will return the same instance as previous calls. If you wish to have completely new instances of MovieLister, you can
utilize $di->newInstance().

191

Zend Framework 2 Documentation, Release 2.0.0

192 Chapter 46. Zend\Di Quickstart

CHAPTER

FORTYSEVEN

ZEND\DI DEFINITION

Definitions are the place where Zend\Di attempts to understand the structure of the code it is attempting to wire. This
means that if you’ve written non-ambiguous, clear and concise code; Zend\Di has a very good chance of understanding
how to wire things up without much added complexity.

47.1 DefinitionList

Definitions are introduced to the Zend\Di\Di object through a definition list implemented as Zend\Di\DefinitionList
(SplDoublyLinkedList). Order is important. Definitions in the front of the list will be consulted on a class before
definitions at the end of the list.

Note: Regardless of what kind of Definition strategy you decide to use, it is important that your autoloaders are already
setup and ready to use.

47.2 RuntimeDefinition

The default DefinitionList instantiated by Zend\Di\Di, when no other DefinitionList is provided, has as Defini-
tion\RuntimeDefinition baked-in. The RuntimeDefinition will respond to query’s about classes by using Reflection.
This Runtime definitions uses any available information inside methods: their signature, the names of parameters, the
type-hints of the parameters, and the default values to determine if something is optional or required when making a
call to that method. The more explicit you can be in your method naming and method signatures, the easier of a time
Zend\Di\Definition\RuntimeDefinition will have determining the structure of your code.

This is what the constructor of a RuntimeDefinition looks like:

1 public function __construct(IntrospectionStrategy $introspectionStrategy = null, array $explicitClasses = null)
2 {
3 $this->introspectionStrategy = ($introspectionStrategy) ?: new IntrospectionStrategy();
4 if ($explicitClasses) {
5 $this->setExplicitClasses($explicitClasses);
6 }
7 }

The IntrospectionStrategy object is an object that determines the rules, or guidelines, for how the RuntimeDefinition
will introspect information about your classes. Here are the things it knows how to do:

• Whether or not to use Annotations (Annotations are expensive and off by default, read more about these in the
Annotations section)

• Which method names to include in the introspection, by default, the pattern /^set[A-Z]{1}\w*/ is registered by
default, this is a list of patterns.

193

Zend Framework 2 Documentation, Release 2.0.0

• Which interface names represent the interface injection pattern. By default, the pattern /\w*Aware\w*/ is regis-
tered, this is a list of patterns.

The constructor for the IntrospectionStrategy looks like this:

1 public function __construct(AnnotationManager $annotationManager = null)
2 {
3 $this->annotationManager = ($annotationManager) ?: $this->createDefaultAnnotationManager();
4 }

This goes to say that an AnnotationManager is not required, but if you wish to create a special AnnotationManager
with your own annotations, and also wish to extend the RuntimeDefinition to look for these special Annotations, this
is the place to do it.

The RuntimeDefinition also can be used to look up either all classes (implicitly, which is default), or explicitly look up
for particular pre-defined classes. This is useful when your strategy for inspecting one set of classes might differ from
those of another strategy for another set of classes. This can be achieved by using the setExplictClasses() method or
by passing a list of classes as a second argument to the constructor of the RuntimeDefinition.

47.3 CompilerDefinition

The CompilerDefinition is very much similar in nature to the RuntimeDefinition with the exception that it can be
seeded with more information for the purposes of “compiling” a definition. This is useful when you do not want to be
making all those (sometimes expensive) calls to reflection and the annotation scanning system during the request of
your application. By using the compiler, a definition can be created and written to disk to be used during a request, as
opposed to the task of scanning the actual code.

For example, let’s assume we want to create a script that will create definitions for some of our library code:

1 // in "package name" format
2 $components = array(
3 ’My_MovieApp’,
4 ’My_OtherClasses’,
5);
6

7 foreach ($components as $component) {
8 $diCompiler = new Zend\Di\Definition\CompilerDefinition;
9 $diCompiler->addDirectory(’/path/to/classes/’ . str_replace(’_’, ’/’, $component));

10

11 $diCompiler->compile();
12 file_put_contents(
13 __DIR__ . ’/../data/di/’ . $component . ’-definition.php’,
14 ’<?php return ’ . var_export($diCompiler->toArrayDefinition()->toArray(), true) . ’;’
15);
16 }

This will create a couple of files that will return an array of the definition for that class. To utilize this in an application,
the following code will suffice:

1 protected function setupDi(Application $app)
2 {
3 $definitionList = new DefinitionList(array(
4 new Definition\ArrayDefinition(include __DIR__ . ’/path/to/data/di/My_MovieApp-definition.php’),
5 new Definition\ArrayDefinition(include __DIR__ . ’/path/to/data/di/My_OtherClasses-definition.php’),
6 $runtime = new Definition\RuntimeDefinition(),
7));
8 $di = new Di($definitionList, null, new Configuration($this->config->di));

194 Chapter 47. Zend\Di Definition

Zend Framework 2 Documentation, Release 2.0.0

9 $di->instanceManager()->addTypePreference(’Zend\Di\LocatorInterface’, $di);
10 $app->setLocator($di);
11 }

The above code would more than likely go inside your application’s or module’s bootstrap file. This represents the
simplest and most performant way of configuring your DiC for usage.

47.4 ClassDefinition

The idea behind using a ClassDefinition is two-fold. First, you may want to override some information inside of a
RuntimeDefinition. Secondly, you might want to simply define your complete class’s definition with an xml, ini, or
php file describing the structure. This class definition can be fed in via Configuration or by directly instantiating and
registering the Definition with the DefinitionList.

Todo - example

47.4. ClassDefinition 195

Zend Framework 2 Documentation, Release 2.0.0

196 Chapter 47. Zend\Di Definition

CHAPTER

FORTYEIGHT

ZEND\DI INSTANCEMANAGER

The InstanceManage is responsible for any runtime information associated with the Zend\Di\Di DiC. This means that
the information that goes into the instance manager is specific to both how the particular consuming Application’s
needs and even more specifically to the environment in which the application is running.

48.1 Parameters

Parameters are simply entry points for either dependencies or instance configuration values. A class consist of a set of
parameters, each uniquely named. When writing your classes, you should attempt to not use the same parameter name
twice in the same class when you expect that that parameters is used for either instance configuration or an object
dependency. This leads to an ambiguous parameter, and is a situation best avoided.

Our movie finder example can be further used to explain these concepts:

1 namespace MyLibrary
2 {
3 class DbAdapter
4 {
5 protected $username = null;
6 protected $password = null;
7 public function __construct($username, $password)
8 {
9 $this->username = $username;

10 $this->password = $password;
11 }
12 }
13 }
14

15 namespace MyMovieApp
16 {
17 class MovieFinder
18 {
19 protected $dbAdapter = null;
20 public function __construct(\MyLibrary\DbAdapter $dbAdapter)
21 {
22 $this->dbAdapter = $dbAdapter;
23 }
24 }
25

26 class MovieLister
27 {
28 protected $movieFinder = null;

197

Zend Framework 2 Documentation, Release 2.0.0

29 public function __construct(MovieFinder $movieFinder)
30 {
31 $this->movieFinder = $movieFinder;
32 }
33 }
34 }

In the above example, the class DbAdapter has 2 parameters: username and password; MovieFinder has one parameter:
dbAdapter, and MovieLister has one parameter: movieFinder. Any of these can be utilized for injection of either
dependencies or scalar values during instance configuration or during call time.

When looking at the above code, since the dbAdapter parameter and the movieFinder parameter are both type-hinted
with concrete types, the DiC can assume that it can fulfill these object tendencies by itself. On the other hand, username
and password do not have type-hints and are, more than likely, scalar in nature. Since the DiC cannot reasonably know
this information, it must be provided to the instance manager in the form of parameters. Not doing so will force
$di->get(‘MyMovieApp\MovieLister’) to throw an exception.

The following ways of using parameters are available:

1 // setting instance configuration into the instance manager
2 $di->instanceManager()->setParameters(’MyLibrary\DbAdapter’, array(
3 ’username’ => ’myusername’,
4 ’password’ => ’mypassword’
5));
6

7 // forcing a particular dependency to be used by the instance manager
8 $di->instanceManager()->setParameters(’MyMovieApp\MovieFinder’, array(
9 ’dbAdapter’ => new MyLibrary\DbAdaper(’myusername’, ’mypassword’)

10));
11

12 // passing instance parameters at call time
13 $movieLister = $di->get(’MyMovieApp\MovieLister’, array(
14 ’username’ => $config->username,
15 ’password’ => $config->password
16));
17

18 // passing a specific instance at call time
19 $movieLister = $di->get(’MyMovieApp\MovieLister’, array(
20 ’dbAdapter’ => new MyLibrary\DbAdaper(’myusername’, ’mypassword’)
21));

48.2 Preferences

In some cases, you might be using interfaces as type hints as opposed to concrete types. Lets assume the movie
example was modified in the following way:

1 namespace MyMovieApp
2 {
3 interface MovieFinderInterface
4 {
5 // methods required for this type
6 }
7

8 class GenericMovieFinder implements MovieFinderInterface
9 {

10 protected $dbAdapter = null;

198 Chapter 48. Zend\Di InstanceManager

Zend Framework 2 Documentation, Release 2.0.0

11 public function __construct(\MyLibrary\DbAdapter $dbAdapter)
12 {
13 $this->dbAdapter = $dbAdapter;
14 }
15 }
16

17 class MovieLister
18 {
19 protected $movieFinder = null;
20 public function __construct(MovieFinderInterface $movieFinder)
21 {
22 $this->movieFinder = $movieFinder;
23 }
24 }
25 }

What you’ll notice above is that now the MovieLister type minimally expects that the dependency injected implements
the MovieFinderInterface. This allows multiple implementations of this base interface to be used as a dependency,
if that is what the consumer decides they want to do. As you can imagine, Zend\Di, by itself would not be able to
determine what kind of concrete object to use fulfill this dependency, so this type of ‘preference’ needs to be made
known to the instance manager.

To give this information to the instance manager, see the following code example:

1 $di->instanceManager()->addTypePreference(’MyMovieApp\MovieFinderInterface’, ’MyMovieApp\GenericMovieFinder’);
2 // assuming all instance config for username, password is setup
3 $di->get(’MyMovieApp\MovieLister’);

48.3 Aliases

In some situations, you’ll find that you need to alias an instance. There are two main reasons to do this. First, it creates
a simpler, alternative name to use when using the DiC, as opposed to using the full class name. Second, you might
find that you need to have the same object type in two separate contexts. This means that when you alias a particular
class, you can then attach a specific instance configuration to that alias; as opposed to attaching that configuration to
the class name.

To demonstrate both of these points, we’ll look at a use case where we’ll have two separate DbAdapters, one will be
for read-only operations, the other will be for read-write operations:

Note: Aliases can also have parameters registered at alias time

1 // assume the MovieLister example of code from the QuickStart
2

3 $im = $di->instanceManager();
4

5 // add alias for short naming
6 $im->addAlias(’movielister’, ’MyMovieApp\MovieLister’);
7

8 // add aliases for specific instances
9 $im->addAlias(’dbadapter-readonly’, ’MyLibrary\DbAdapter’, array(

10 ’username’ => $config->db->readAdapter->username,
11 ’password’ => $config->db->readAdapter->password,
12));
13 $im->addAlias(’dbadapter-readwrite’, ’MyLibrary\DbAdapter’, array(
14 ’username’ => $config->db->readWriteAdapter>username,
15 ’password’ => $config->db->readWriteAdapter>password,

48.3. Aliases 199

Zend Framework 2 Documentation, Release 2.0.0

16));
17

18 // set a default type to use, pointing to an alias
19 $im->addTypePreference(’MyLibrary\DbAdapter’, ’dbadapter-readonly’);
20

21 $movieListerRead = $di->get(’MyMovieApp\MovieLister’);
22 $movieListerReadWrite = $di->get(’MyMovieApp\MovieLister’, array(’dbAdapter’ => ’dbadapter-readwrite’));

200 Chapter 48. Zend\Di InstanceManager

CHAPTER

FORTYNINE

ZEND\DI CONFIGURATION

Most of the configuration for both the setup of Definitions as well as the setup of the Instance Manager can be attained
by a configuration file. This file will produce an array (typically) and have a particular iterable structure.

The top two keys are ‘definition’ and ‘instance’, each specifying values for respectively, definition setup and instance
manager setup.

The definition section expects the following information expressed as a PHP array:

1 $config = array(
2 ’definition’ => array(
3 ’compiler’ => array(/* @todo compiler information */),
4 ’runtime’ => array(/* @todo runtime information */),
5 ’class’ => array(
6 ’instantiator’ => ’’, // the name of the instantiator, by default this is __construct
7 ’supertypes’ => array(), // an array of supertypes the class implements
8 ’methods’ => array(
9 ’setSomeParameter’ => array(// a method name

10 ’parameterName’ => array(
11 ’name’, // string parameter name
12 ’type’, // type or null
13 ’is-required’ // bool
14)
15)
16

17)
18)
19)
20);

201

Zend Framework 2 Documentation, Release 2.0.0

202 Chapter 49. Zend\Di Configuration

CHAPTER

FIFTY

ZEND\DI DEBUGGING & COMPLEX
USE CASES

50.1 Debugging a DiC

It is possible to dump the information contained within both the Definition and InstanceManager for a Di instance.

The easiest way is to do the following:

1 Zend\Di\Display\Console::export($di);

If you are using a RuntimeDefinition where upon you expect a particular definition to be resolve at the first-call, you
can see that information to the console display to force it to read that class:

1 Zend\Di\Display\Console::export($di, array(’A\ClassIWantTo\GetTheDefinitionFor’));

50.2 Complex Use Cases

50.2.1 Interface Injection

1 namespace Foo\Bar {
2 class Baz implements BamAwareInterface {
3 public $bam;
4 public function setBam(Bam $bam){
5 $this->bam = $bam;
6 }
7 }
8 class Bam {
9 }

10 interface BamAwareInterface
11 {
12 public function setBam(Bam $bam);
13 }
14 }
15

16 namespace {
17 include ’zf2bootstrap.php’;
18 $di = new Zend\Di\Di;
19 $baz = $di->get(’Foo\Bar\Baz’);
20 }

203

Zend Framework 2 Documentation, Release 2.0.0

50.2.2 Setter Injection with Class Definition

1 namespace Foo\Bar {
2 class Baz {
3 public $bam;
4 public function setBam(Bam $bam){
5 $this->bam = $bam;
6 }
7 }
8 class Bam {
9 }

10 }
11

12 namespace {
13 $di = new Zend\Di\Di;
14 $di->configure(new Zend\Di\Config(array(
15 ’definition’ => array(
16 ’class’ => array(
17 ’Foo\Bar\Baz’ => array(
18 ’setBam’ => array(’required’ => true)
19)
20)
21)
22)));
23 $baz = $di->get(’Foo\Bar\Baz’);
24 }

50.2.3 Multiple Injections To A Single Injection Point

1 namespace Application {
2 class Page {
3 public $blocks;
4 public function addBlock(Block $block){
5 $this->blocks[] = $block;
6 }
7 }
8 interface Block {
9 }

10 }
11

12 namespace MyModule {
13 class BlockOne implements \Application\Block {}
14 class BlockTwo implements \Application\Block {}
15 }
16

17 namespace {
18 include ’zf2bootstrap.php’;
19 $di = new Zend\Di\Di;
20 $di->configure(new Zend\Di\Config(array(
21 ’definition’ => array(
22 ’class’ => array(
23 ’Application\Page’ => array(
24 ’addBlock’ => array(
25 ’block’ => array(’type’ => ’Application\Block’, ’required’ => true)
26)
27)
28)

204 Chapter 50. Zend\Di Debugging & Complex Use Cases

Zend Framework 2 Documentation, Release 2.0.0

29),
30 ’instance’ => array(
31 ’Application\Page’ => array(
32 ’injections’ => array(
33 ’MyModule\BlockOne’,
34 ’MyModule\BlockTwo’
35)
36)
37)
38)));
39 $page = $di->get(’Application\Page’);
40 }

50.2. Complex Use Cases 205

Zend Framework 2 Documentation, Release 2.0.0

206 Chapter 50. Zend\Di Debugging & Complex Use Cases

CHAPTER

FIFTYONE

INTRODUCTION

The Zend\Dom component provides tools for working with DOM documents and structures. Currently, we offer
Zend\Dom\Query, which provides a unified interface for querying DOM documents utilizing both XPath and CSS
selectors.

207

Zend Framework 2 Documentation, Release 2.0.0

208 Chapter 51. Introduction

CHAPTER

FIFTYTWO

ZEND\DOM\QUERY

Zend\Dom\Query provides mechanisms for querying XML and (X) HTML documents utilizing either XPath or
CSS selectors. It was developed to aid with functional testing of MVC applications, but could also be used for rapid
development of screen scrapers.

CSS selector notation is provided as a simpler and more familiar notation for web developers to utilize when querying
documents with XML structures. The notation should be familiar to anybody who has developed Cascading Style
Sheets or who utilizes Javascript toolkits that provide functionality for selecting nodes utilizing CSS selectors (Proto-
type’s $$() and Dojo’s dojo.query were both inspirations for the component).

52.1 Theory of Operation

To use Zend\Dom\Query, you instantiate a Zend\Dom\Query object, optionally passing a document to query (a
string). Once you have a document, you can use either the query() or queryXpath() methods; each method will
return a Zend\Dom\NodeList object with any matching nodes.

The primary difference between Zend\Dom\Query and using DOMDocument + DOMXPath is the ability to select
against CSS selectors. You can utilize any of the following, in any combination:

• element types: provide an element type to match: ‘div’, ‘a’, ‘span’, ‘h2’, etc.

• style attributes: CSS style attributes to match: ‘.error‘, ‘div.error‘, ‘label.required‘, etc. If an
element defines more than one style, this will match as long as the named style is present anywhere in the style
declaration.

• id attributes: element ID attributes to match: ‘#content’, ‘div#nav’, etc.

• arbitrary attributes: arbitrary element attributes to match. Three different types of matching are provided:

– exact match: the attribute exactly matches the string: ‘div[bar=”baz”]’ would match a div element with a
“bar” attribute that exactly matches the value “baz”.

– word match: the attribute contains a word matching the string: ‘div[bar~=”baz”]’ would match a div
element with a “bar” attribute that contains the word “baz”. ‘<div bar=”foo baz”>’ would match, but ‘<div
bar=”foo bazbat”>’ would not.

– substring match: the attribute contains the string: ‘div[bar*=”baz”]’ would match a div element with a
“bar” attribute that contains the string “baz” anywhere within it.

• direct descendents: utilize ‘>’ between selectors to denote direct descendents. ‘div > span’ would select only
‘span’ elements that are direct descendents of a ‘div’. Can also be used with any of the selectors above.

• descendents: string together multiple selectors to indicate a hierarchy along which to search. ‘div .foo
span #one‘ would select an element of id ‘one’ that is a descendent of arbitrary depth beneath a ‘span’
element, which is in turn a descendent of arbitrary depth beneath an element with a class of ‘foo’, that is an

209

http://prototypejs.org/api/utility/dollar-dollar
http://prototypejs.org/api/utility/dollar-dollar
http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query
http://php.net/domdocument
http://php.net/domxpath

Zend Framework 2 Documentation, Release 2.0.0

descendent of arbitrary depth beneath a ‘div’ element. For example, it would match the link to the word ‘One’
in the listing below:

1 <div>
2 <table>
3 <tr>
4 <td class="foo">
5 <div>
6 Lorem ipsum
7 One
8 Two
9 Three

10 Four
11
12 </div>
13 </td>
14 </tr>
15 </table>
16 </div>

Once you’ve performed your query, you can then work with the result object to determine information about the nodes,
as well as to pull them and/or their content directly for examination and manipulation. Zend\Dom\NodeList
implements Countable and Iterator, and stores the results internally as a DOMDocument and DOMNodeList.
As an example, consider the following call, that selects against the HTML above:

1 use Zend\Dom\Query;
2

3 $dom = new Query($html);
4 $results = $dom->query(’.foo .bar a’);
5

6 $count = count($results); // get number of matches: 4
7 foreach ($results as $result) {
8 // $result is a DOMElement
9 }

Zend\Dom\Query also allows straight XPath queries utilizing the queryXpath()method; you can pass any valid
XPath query to this method, and it will return a Zend\Dom\NodeList object.

52.2 Methods Available

The Zend\Dom\Query family of classes have the following methods available.

52.2.1 Zend\Dom\Query

The following methods are available to Zend\Dom\Query:

• setDocumentXml($document, $encoding = null): specify an XML string to query against.

• setDocumentXhtml($document, $encoding = null): specify an XHTML string to query against.

• setDocumentHtml($document, $encoding = null): specify an HTML string to query against.

• setDocument($document, $encoding = null): specify a string to query against;
Zend\Dom\Query will then attempt to autodetect the document type.

• setEncoding($encoding): specify an encoding string to use. This encoding will be passed to DOMDoc-
ument’s constructor if specified.

210 Chapter 52. Zend\Dom\Query

http://php.net/domdocument
http://php.net/domnodelist
http://php.net/domdocument.construct
http://php.net/domdocument.construct

Zend Framework 2 Documentation, Release 2.0.0

• getDocument(): retrieve the original document string provided to the object.

• getDocumentType(): retrieve the document type of the document provided to the object; will be one of the
DOC_XML, DOC_XHTML, or DOC_HTML class constants.

• getEncoding(): retrieves the specified encoding.

• execute($query): query the document using CSS selector notation.

• queryXpath($xPathQuery): query the document using XPath notation.

52.2.2 Zend\Dom\NodeList

As mentioned previously, Zend\Dom\NodeList implements both Iterator and Countable, and as such can
be used in a foreach() loop as well as with the count() function. Additionally, it exposes the following methods:

• getCssQuery(): return the CSS selector query used to produce the result (if any).

• getXpathQuery(): return the XPath query used to produce the result. Internally, Zend\Dom\Query
converts CSS selector queries to XPath, so this value will always be populated.

• getDocument(): retrieve the DOMDocument the selection was made against.

52.2. Methods Available 211

Zend Framework 2 Documentation, Release 2.0.0

212 Chapter 52. Zend\Dom\Query

CHAPTER

FIFTYTHREE

THE EVENTMANAGER

53.1 Overview

The EventManager is a component designed for the following use cases:

• Implementing simple subject/observer patterns.

• Implementing Aspect-Oriented designs.

• Implementing event-driven architectures.

The basic architecture allows you to attach and detach listeners to named events, both on a per-instance basis as well
as via shared collections; trigger events; and interrupt execution of listeners.

53.2 Quick Start

Typically, you will compose an EventManager instance in a class.

1 use Zend\EventManager\EventCollection;
2 use Zend\EventManager\EventManager;
3 use Zend\EventManager\EventManagerAware;
4

5 class Foo implements EventManagerAware
6 {
7 protected $events;
8

9 public function setEventManager(EventCollection $events)
10 {
11 $events->setIdentifiers(array(
12 __CLASS__,
13 get_called_class(),
14));
15 $this->events = $events;
16 return $this;
17 }
18

19 public function getEventManager()
20 {
21 if (null === $this->events) {
22 $this->setEventManager(new EventManager());
23 }
24 return $this->events;

213

Zend Framework 2 Documentation, Release 2.0.0

25 }
26 }

The above allows users to access the EventManager instance, or reset it with a new instance; if one does not exist,
it will be lazily instantiated on-demand.

An EventManager is really only interesting if it triggers some events. Basic triggering takes three arguments: the
event name, which is usually the current function/method name; the “context”, which is usually the current object
instance; and the arguments, which are usually the arguments provided to the current function/method.

1 class Foo
2 {
3 // ... assume events definition from above
4

5 public function bar($baz, $bat = null)
6 {
7 $params = compact(’baz’, ’bat’);
8 $this->getEventManager()->trigger(__FUNCTION__, $this, $params);
9 }

10 }

In turn, triggering events is only interesting if something is listening for the event. Listeners attach to the
EventManager, specifying a named event and the callback to notify. The callback receives an Event object,
which has accessors for retrieving the event name, context, and parameters. Let’s add a listener, and trigger the event.

1 use Zend\Log\Factory as LogFactory;
2

3 $log = LogFactory($someConfig);
4 $foo = new Foo();
5 $foo->getEventManager()->attach(’bar’, function ($e) use ($log) {
6 $event = $e->getName();
7 $target = get_class($e->getTarget());
8 $params = json_encode($e->getParams());
9

10 $log->info(sprintf(
11 ’%s called on %s, using params %s’,
12 $event,
13 $target,
14 $params
15));
16 });
17

18 // Results in log message:
19 $foo->bar(’baz’, ’bat’);
20 // reading: bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"

Note that the second argument to attach() is any valid callback; an anonymous function is shown in the example
in order to keep the example self-contained. However, you could also utilize a valid function name, a functor, a string
referencing a static method, or an array callback with a named static method or instance method. Again, any PHP
callback is valid.

Sometimes you may want to specify listeners without yet having an object instance of the class composing an
EventManager. Zend Framework enables this through the concept of a SharedEventCollection. Simply
put, you can inject individual EventManager instances with a well-known SharedEventCollection, and the
EventManager instance will query it for additional listeners. Listeners attach to a SharedEventCollection
in roughly the same way the do normal event managers; the call to attach is identical to the EventManager,
but expects an additional parameter at the beginning: a named instance. Remember the example of composing an
EventManager, how we passed it __CLASS__? That value, or any strings you provide in an array to the con-
structor, may be used to identify an instance when using a SharedEventCollection. As an example, assuming

214 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

we have a SharedEventManager instance that we know has been injected in our EventManager instances (for
instance, via dependency injection), we could change the above example to attach via the shared collection:

1 use Zend\Log\Factory as LogFactory;
2

3 // Assume $events is a Zend\EventManager\SharedEventManager instance
4

5 $log = LogFactory($someConfig);
6 $events->attach(’Foo’, ’bar’, function ($e) use ($log) {
7 $event = $e->getName();
8 $target = get_class($e->getTarget());
9 $params = json_encode($e->getParams());

10

11 $log->info(sprintf(
12 ’%s called on %s, using params %s’,
13 $event,
14 $target,
15 $params
16));
17 });
18

19 // Later, instantiate Foo:
20 $foo = new Foo();
21 $foo->getEventManager()->setSharedEventCollection($events);
22

23 // And we can still trigger the above event:
24 $foo->bar(’baz’, ’bat’);
25 // results in log message:
26 // bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"

Note: StaticEventManager

As of 2.0.0beta3, you can use the StaticEventManager singleton as a SharedEventCollection. As such,
you do not need to worry about where and how to get access to the SharedEventCollection; it’s globally
available by simply calling StaticEventManager::getInstance().

Be aware, however, that its usage is deprecated within the framework, and starting with 2.0.0beta4, you will
instead configure a SharedEventManager instance that will be injected by the framework into individual
EventManager instances.

The EventManager also provides the ability to detach listeners, short-circuit execution of an event either from
within a listener or by testing return values of listeners, test and loop through the results returned by listeners, prioritize
listeners, and more. Many of these features are detailed in the examples.

53.2.1 Wildcard Listeners

Sometimes you’ll want to attach the same listener to many events or to all events of a given instance – or potentially,
with a shared event collection, many contexts, and many events. The EventManager component allows for this.

Attaching to many events at once

1 $events = new EventManager();
2 $events->attach(array(’these’, ’are’, ’event’, ’names’), $callback);

Note that if you specify a priority, that priority will be used for all events specified.

53.2. Quick Start 215

Zend Framework 2 Documentation, Release 2.0.0

Attaching using the wildcard

1 $events = new EventManager();
2 $events->attach(’*’, $callback);

Note that if you specify a priority, that priority will be used for this listener for any event triggered.

What the above specifies is that any event triggered will result in notification of this particular listener.

Attaching to many events at once via a SharedEventManager

1 $events = new SharedEventManager();
2 // Attach to many events on the context "foo"
3 $events->attach(’foo’, array(’these’, ’are’, ’event’, ’names’), $callback);
4

5 // Attach to many events on the contexts "foo" and "bar"
6 $events->attach(array(’foo’, ’bar’), array(’these’, ’are’, ’event’, ’names’), $callback);

Note that if you specify a priority, that priority will be used for all events specified.

Attaching to many events at once via a SharedEventManager

1 $events = new SharedEventManager();
2 // Attach to all events on the context "foo"
3 $events->attach(’foo’, ’*’, $callback);
4

5 // Attach to all events on the contexts "foo" and "bar"
6 $events->attach(array(’foo’, ’bar’), ’*’, $callback);

Note that if you specify a priority, that priority will be used for all events specified.

The above is specifying that for the contexts “foo” and “bar”, the specified listener should be notified for any event
they trigger.

53.3 Configuration Options

EventManager Options

identifier A string or array of strings to which the given EventManager instance can answer when accessed via a
SharedEventManager.

event_class The name of an alternate Event class to use for representing events passed to listeners.

shared_collections An instance of a SharedEventCollection instance to use when triggering events.

53.4 Available Methods

__construct __construct(null|string|int $identifier)

Constructs a new EventManager instance, using the given identifier, if provided, for purposes of shared
collections.

216 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

setEventClass setEventClass(string $class)

Provide the name of an alternate Event class to use when creating events to pass to triggered listeners.

setSharedCollections setSharedCollections(SharedEventCollection $collections =
null)

An instance of a SharedEventCollection instance to use when triggering events.

getSharedCollections getSharedCollections()

Returns the currently attached SharedEventCollection instance. Returns either a null if no collection
is attached, or a SharedEventCollection instance otherwise.

trigger trigger(string $event, mixed $target, mixed $argv, callback $callback)

Triggers all listeners to a named event. The recommendation is to use the current function/method name for
$event, appending it with values such as ”.pre”, ”.post”, etc. as needed. $context should be the cur-
rent object instance, or the name of the function if not triggering within an object. $params should typically
be an associative array or ArrayAccess instance; we recommend using the parameters passed to the func-
tion/method (compact() is often useful here). This method can also take a callback and behave in the same
way as triggerUntil().

The method returns an instance of ResponseCollection, which may be used to introspect return values of
the various listeners, test for short-circuiting, and more.

triggerUntil triggerUntil(string $event, mixed $context, mixed $argv, callback
$callback)

Triggers all listeners to a named event, just like trigger(), with the addition that it passes the return value
from each listener to $callback; if $callback returns a boolean true value, execution of the listeners is
interrupted. You can test for this using $result->stopped().

attach attach(string $event, callback $callback, int $priority)

Attaches $callback to the EventManager instance, listening for the event $event. If a $priority is
provided, the listener will be inserted into the internal listener stack using that priority; higher values execute
earliest. (Default priority is “1”, and negative priorities are allowed.)

The method returns an instance of Zend\Stdlib\CallbackHandler; this value can later be passed to
detach() if desired.

attachAggregate attachAggregate(string|ListenerAggregate $aggregate)

If a string is passed for $aggregate, instantiates that class. The $aggregate is then passed the
EventManager instance to its attach() method so that it may register listeners.

The ListenerAggregate instance is returned.

detach detach(CallbackHandler $listener)

Scans all listeners, and detaches any that match $listener so that they will no longer be triggered.

Returns a boolean true if any listeners have been identified and unsubscribed, and a boolean false otherwise.

detachAggregate detachAggregate(ListenerAggregate $aggregate)

Loops through all listeners of all events to identify listeners that are represented by the aggregate; for all matches,
the listeners will be removed.

Returns a boolean true if any listeners have been identified and unsubscribed, and a boolean false otherwise.

getEvents getEvents()

Returns an array of all event names that have listeners attached.

53.4. Available Methods 217

Zend Framework 2 Documentation, Release 2.0.0

getListeners getListeners(string $event)

Returns a Zend\Stdlib\PriorityQueue instance of all listeners attached to $event.

clearListeners clearListeners(string $event)

Removes all listeners attached to $event.

prepareArgs prepareArgs(array $args)

Creates an ArrayObject from the provided $args. This can be useful if you want yours listeners to be able
to modify arguments such that later listeners or the triggering method can see the changes.

53.5 Examples

Modifying Arguments

Occasionally it can be useful to allow listeners to modify the arguments they receive so that later listeners or the calling
method will receive those changed values.

As an example, you might want to pre-filter a date that you know will arrive as a string and convert it to a DateTime
argument.

To do this, you can pass your arguments to prepareArgs(), and pass this new object when triggering an event.
You will then pull that value back into your method.

1 class ValueObject
2 {
3 // assume a composed event manager
4

5 function inject(array $values)
6 {
7 $argv = compact(’values’);
8 $argv = $this->getEventManager()->prepareArgs($argv);
9 $this->getEventManager()->trigger(__FUNCTION__, $this, $argv);

10 $date = isset($argv[’values’][’date’]) ? $argv[’values’][’date’] : new DateTime(’now’);
11

12 // ...
13 }
14 }
15

16 $v = new ValueObject();
17

18 $v->getEventManager()->attach(’inject’, function($e) {
19 $values = $e->getParam(’values’);
20 if (!$values) {
21 return;
22 }
23 if (!isset($values[’date’])) {
24 $values[’date’] = new DateTime(’now’);
25 return;
26 }
27 $values[’date’] = new Datetime($values[’date’]);
28 });
29

30 $v->inject(array(
31 ’date’ => ’2011-08-10 15:30:29’,
32));

218 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

Short Circuiting

One common use case for events is to trigger listeners until either one indicates no further processing should be done,
or until a return value meets specific criteria. As examples, if an event creates a Response object, it may want execution
to stop.

1 $listener = function($e) {
2 // do some work
3

4 // Stop propagation and return a response
5 $e->stopPropagation(true);
6 return $response;
7 };

Alternately, we could do the check from the method triggering the event.

1 class Foo implements DispatchableInterface
2 {
3 // assume composed event manager
4

5 public function dispatch(Request $request, Response $response = null)
6 {
7 $argv = compact(’request’, ’response’);
8 $results = $this->getEventManager()->triggerUntil(__FUNCTION__, $this, $argv, function($v) {
9 return ($v instanceof Response);

10 });
11 }
12 }

Typically, you may want to return a value that stopped execution, or use it some way. Both trigger() and
triggerUntil() return a ResponseCollection instance; call its stopped() method to test if execution
was stopped, and last() method to retrieve the return value from the last executed listener:

1 class Foo implements DispatchableInterface
2 {
3 // assume composed event manager
4

5 public function dispatch(Request $request, Response $response = null)
6 {
7 $argv = compact(’request’, ’response’);
8 $results = $this->getEventManager()->triggerUntil(__FUNCTION__, $this, $argv, function($v) {
9 return ($v instanceof Response);

10 });
11

12 // Test if execution was halted, and return last result:
13 if ($results->stopped()) {
14 return $results->last();
15 }
16

17 // continue...
18 }
19 }

Assigning Priority to Listeners

One use case for the EventManager is for implementing caching systems. As such, you often want to check the
cache early, and save to it late.

53.5. Examples 219

Zend Framework 2 Documentation, Release 2.0.0

The third argument to attach() is a priority value. The higher this number, the earlier that listener will execute; the
lower it is, the later it executes. The value defaults to 1, and values will trigger in the order registered within a given
priority.

So, to implement a caching system, our method will need to trigger an event at method start as well as at method end.
At method start, we want an event that will trigger early; at method end, an event should trigger late.

Here is the class in which we want caching:

1 class SomeValueObject
2 {
3 // assume it composes an event manager
4

5 public function get($id)
6 {
7 $params = compact(’id’);
8 $results = $this->getEventManager()->trigger(’get.pre’, $this, $params);
9

10 // If an event stopped propagation, return the value
11 if ($results->stopped()) {
12 return $results->last();
13 }
14

15 // do some work...
16

17 $params[’__RESULT__’] = $someComputedContent;
18 $this->getEventManager()->trigger(’get.post’, $this, $params);
19 }
20 }

Now, let’s create a ListenerAggregateInterface that can handle caching for us:

1 use Zend\Cache\Cache;
2 use Zend\EventManager\EventCollection;
3 use Zend\EventManager\ListenerAggregateInterface;
4 use Zend\EventManager\EventInterface;
5

6 class CacheListener implements ListenerAggregateInterface
7 {
8 protected $cache;
9

10 protected $listeners = array();
11

12 public function __construct(Cache $cache)
13 {
14 $this->cache = $cache;
15 }
16

17 public function attach(EventCollection $events)
18 {
19 $this->listeners[] = $events->attach(’get.pre’, array($this, ’load’), 100);
20 $this->listeners[] = $events->attach(’get.post’, array($this, ’save’), -100);
21 }
22

23 public function detach(EventManagerInterface $events)
24 {
25 foreach ($this->listeners as $index => $listener) {
26 if ($events->detach($listener)) {
27 unset($this->listeners[$index]);
28 }

220 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

29 }
30 }
31

32 public function load(EventInterface $e)
33 {
34 $id = get_class($e->getTarget()) . ’-’ . json_encode($e->getParams());
35 if (false !== ($content = $this->cache->load($id))) {
36 $e->stopPropagation(true);
37 return $content;
38 }
39 }
40

41 public function save(EventInterface $e)
42 {
43 $params = $e->getParams();
44 $content = $params[’__RESULT__’];
45 unset($params[’__RESULT__’]);
46

47 $id = get_class($e->getTarget()) . ’-’ . json_encode($params);
48 $this->cache->save($content, $id);
49 }
50 }

We can then attach the aggregate to an instance.

1 $value = new SomeValueObject();
2 $cacheListener = new CacheListener($cache);
3 $value->getEventManager()->attachAggregate($cacheListener);

Now, as we call get(), if we have a cached entry, it will be returned immediately; if not, a computed entry will be
cached when we complete the method.

53.5. Examples 221

Zend Framework 2 Documentation, Release 2.0.0

222 Chapter 53. The EventManager

CHAPTER

FIFTYFOUR

INTRODUCTION TO ZEND\FORM

Zend\Form is intended primarily as a bridge between your domain models and the View Layer. It composes a thin
layer of objects representing form elements, an InputFilter, and a small number of methods for binding data to and
from the form and attached objects.

The component consists of:

• Elements, which simply consist of a name and attributes.

• Fieldsets, which extend from Elements, but allow composing other fieldsets and elements.

• Forms, which extend from Fieldsets (and thus Elements), provide data and object binding, and compose
InputFilters. Data binding is done via Zend\Stdlib\Hydrator.

To facilitate usage with the view layer, the Zend\Form component also aggregates a number of form-specific view
helpers. These accept elements, fieldsets, and/or forms, and use the attributes they compose to render markup.

A small number of specialized elements are provided for accomplishing application-centric tasks. These include the
Csrf element, used to prevent Cross Site Request Forgery attacks, and the Captcha element, used to display and
validate CAPTCHAs.

A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. The default
Form implementation is backed by a factory to facilitate extension and ease the process of form creation.

The code related to forms can often spread between a variety of concerns: a form definition, an input filter def-
inition, a domain model class, and one or more hydrator implementations. As such, finding the various bits of
code and how they relate can become tedious. To simplify the situation, you can also annotate your domain
model class, detailing the various input filter definitions, attributes, and hydrators that should all be used together.
Zend\Form\Annotation\AnnotationBuilder can then be used to build the various objects you need.

223

Zend Framework 2 Documentation, Release 2.0.0

224 Chapter 54. Introduction to Zend\Form

CHAPTER

FIFTYFIVE

FORM QUICK START

Forms are relatively easy to create. At the bare minimum, each element or fieldset requires a name; typically, you’ll
also provide some attributes to hint to the view layer how it might render the item. The form itself will also typically
compose an InputFilter– which you can also conveniently create directly in the form via a factory. Individual
elements can hint as to what defaults to use when generating a related input for the input filter.

Form validation is as easy as providing an array of data to the setData() method. If you want to simplify your
work even more, you can bind an object to the form; on successful validation, it will be populated from the validated
values.

Programmatic Form Creation

If nothing else, you can simply start creating elements, fieldsets, and forms and wiring them together.

1 use Zend\Captcha;
2 use Zend\Form\Element;
3 use Zend\Form\Fieldset;
4 use Zend\Form\Form;
5 use Zend\InputFilter\Input;
6 use Zend\InputFilter\InputFilter;
7

8 $name = new Element(’name’);
9 $name->setLabel(’Your name’);

10 $name->setAttributes(array(
11 ’type’ => ’text’
12));
13

14 $email = new Element(’email’);
15 $email->setLabel(’Your email address’);
16 $email->setAttributes(array(
17 ’type’ => ’email’
18));
19

20 $subject = new Element(’subject’);
21 $subject->setLabel(’Subject’);
22 $subject->setAttributes(array(
23 ’type’ => ’text’
24));
25

26 $message = new Element(’message’);
27 $message->setLabel(’Message’);
28 $message->setAttributes(array(
29 ’type’ => ’textarea’

225

Zend Framework 2 Documentation, Release 2.0.0

30));
31

32 $captcha = new Element\Captcha(’captcha’);
33 $captcha->setCaptcha(new Captcha\Dumb());
34 $captcha->setLabel(’Please verify you are human’);
35

36 $csrf = new Element\Csrf(’security’);
37

38 $submit = new Element(’send’);
39 $submit->setLabel(’Send’);
40 $submit->setAttributes(array(
41 ’type’ => ’submit’
42));
43

44

45 $form = new Form(’contact’);
46 $form->add($name);
47 $form->add($email);
48 $form->add($subject);
49 $form->add($message);
50 $form->add($captcha);
51 $form->add($csrf);
52 $form->add($send);
53

54 $nameInput = new Input(’name’);
55 // configure input... and all others
56 $inputFilter = new InputFilter();
57 // attach all inputs
58

59 $form->setInputFilter($inputFilter);

As a demonstration of fieldsets, let’s alter the above slightly. We’ll create two fieldsets, one for the sender information,
and another for the message details.

1 $sender = new Fieldset(’sender’);
2 $sender->add($name);
3 $sender->add($email);
4

5 $details = new Fieldset(’details’);
6 $details->add($subject);
7 $details->add($message);
8

9 $form = new Form(’contact’);
10 $form->add($sender);
11 $form->add($details);
12 $form->add($captcha);
13 $form->add($csrf);
14 $form->add($send);

Regardles of approach, as you can see, this can be tedious.

Creation via Factory

You can create the entire form, and input filter, using the Factory. This is particularly nice if you want to store your
forms as pure configuration; you can simply pass the configuration to the factory and be done.

226 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Form\Factory;
2 $factory = new Factory();
3 $form = $factory->createForm(array(
4 ’hydrator’ => ’Zend\Stdlib\Hydrator\ArraySerializable’
5 ’elements’ => array(
6 array(
7 ’name’ => ’name’,
8 ’options’ => array(
9 ’label’ => ’Your name’,

10),
11 ’attributes’ => array(
12 ’type’ => ’text’
13),
14),
15 array(
16 ’name’ => ’email’,
17 ’options’ => array(
18 ’label’ => ’Your email address’,
19),
20 ’attributes’ => array(
21 ’type’ => ’email’,
22),
23),
24 array(
25 ’name’ => ’subject’,
26 ’options’ => array(
27 ’label’ => ’Subject’,
28),
29 ’attributes’ => array(
30 ’type’ => ’text’,
31),
32),
33 array(
34 ’name’ => ’message’,
35 ’options’ => array(
36 ’label’ => ’Message’,
37),
38 ’attributes’ => array(
39 ’type’ => ’textarea’,
40),
41),
42 array(
43 ’type’ => ’Zend\Form\Element\Captcha’,
44 ’name’ => ’captcha’,
45 ’options’ => array(
46 ’label’ => ’Please verify you are human’,
47),
48 ’attributes’ => array(
49 ’captcha’ => array(
50 ’class’ => ’Dumb’,
51),
52),
53),
54 array(
55 ’type’ => ’Zend\Form\Element\Csrf’,
56 ’name’ => ’security’,
57),
58 array(

227

Zend Framework 2 Documentation, Release 2.0.0

59 ’name’ => ’send’,
60 ’options’ => array(
61 ’label’ => ’Send’,
62),
63 ’attributes’ => array(
64 ’type’ => ’submit’,
65),
66),
67),
68 /* If we had fieldsets, they’d go here; fieldsets contain
69 * "elements" and "fieldsets" keys, and potentially a "type"
70 * key indicating the specific FieldsetInterface
71 * implementation to use.
72 ’fieldsets’ => array(
73),
74 */
75

76 // Configuration to pass on to
77 // Zend\InputFilter\Factory::createInputFilter()
78 ’input_filter’ => array(
79 /* ... */
80),
81));

If we wanted to use fieldsets, as we demonstrated in the previous example, we could do the following:

1 use Zend\Form\Factory;
2 $factory = new Factory();
3 $form = $factory->createForm(array(
4 ’hydrator’ => ’Zend\Stdlib\Hydrator\ArraySerializable’
5 ’fieldsets’ => array(
6 array(
7 ’name’ => ’sender’,
8 ’elements’ => array(
9 array(

10 ’name’ => ’name’,
11 ’options’ => array(
12 ’label’ => ’Your name’,
13),
14 ’attributes’ => array(
15 ’type’ => ’text’
16),
17),
18 array(
19 ’name’ => ’email’,
20 ’options’ => array(
21 ’label’ => ’Your email address’,
22),
23 ’attributes’ => array(
24 ’type’ => ’email’,
25),
26),
27),
28),
29 array(
30 ’name’ => ’details’,
31 ’elements’ => array(
32 array(
33 ’name’ => ’subject’,

228 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

34 ’options’ => array(
35 ’label’ => ’Subject’,
36),
37 ’attributes’ => array(
38 ’type’ => ’text’,
39),
40),
41 array(
42 ’name’ => ’message’,
43 ’options’ => array(
44 ’label’ => ’Message’,
45),
46 ’attributes’ => array(
47 ’type’ => ’textarea’,
48),
49),
50),
51),
52),
53 ’elements’ => array(
54 array(
55 ’type’ => ’Zend\Form\Element\Captcha’,
56 ’name’ => ’captcha’,
57 ’options’ => array(
58 ’label’ => ’Please verify you are human’,
59),
60 ’attributes’ => array(
61 ’captcha’ => array(
62 ’class’ => ’Dumb’,
63),
64),
65),
66 array(
67 ’type’ => ’Zend\Form\Element\Csrf’,
68 ’name’ => ’security’,
69),
70 array(
71 ’name’ => ’send’,
72 ’options’ => array(
73 ’label’ => ’Send’,
74),
75 ’attributes’ => array(
76 ’type’ => ’submit’,
77),
78),
79),
80

81 // Configuration to pass on to
82 // Zend\InputFilter\Factory::createInputFilter()
83 ’input_filter’ => array(
84 /* ... */
85),
86));

Note that the chief difference is nesting; otherwise, the information is basically the same.

The chief benefits to using the Factory are allowing you to store definitions in configuration, and usage of significant
whitespace.

229

Zend Framework 2 Documentation, Release 2.0.0

Factory-backed Form Extension

The default Form implementation is backed by the Factory. This allows you to extend it, and define your form
internally. This has the benefit of allowing a mixture of programmatic and factory-backed creation, as well as defining
a form for re-use in your application.

1 namespace Contact;
2

3 use Zend\Captcha\AdapterInterface as CaptchaAdapter;
4 use Zend\Form\Element;
5 use Zend\Form\Form;
6

7 class ContactForm extends Form
8 {
9 protected $captcha;

10

11 public function setCaptcha(CaptchaAdapter $captcha)
12 {
13 $this->captcha = $captcha;
14 }
15

16 public function prepareElements()
17 {
18 // add() can take either an Element/Fieldset instance,
19 // or a specification, from which the appropriate object
20 // will be built.
21

22 $this->add(array(
23 ’name’ => ’name’,
24 ’options’ => array(
25 ’label’ => ’Your name’,
26),
27 ’attributes’ => array(
28 ’type’ => ’text’,
29),
30));
31 $this->add(array(
32 ’name’ => ’email’,
33 ’options’ => array(
34 ’label’ => ’Your email address’,
35),
36 ’attributes’ => array(
37 ’type’ => ’email’,
38),
39));
40 $this->add(array(
41 ’name’ => ’subject’,
42 ’options’ => array(
43 ’label’ => ’Subject’,
44),
45 ’attributes’ => array(
46 ’type’ => ’text’,
47),
48));
49 $this->add(array(
50 ’name’ => ’message’,
51 ’options’ => array(
52 ’label’ => ’Message’,

230 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

53),
54 ’attributes’ => array(
55 ’type’ => ’textarea’,
56),
57));
58 $this->add(array(
59 ’type’ => ’Zend\Form\Element\Captcha’,
60 ’name’ => ’captcha’,
61 ’options’ => array(
62 ’label’ => ’Please verify you are human’,
63),
64 ’attributes’ => array(
65 ’captcha’ => $this->captcha,
66),
67)),
68 $this->add(new Element\Csrf(’security’));
69 $this->add(array(
70 ’name’ => ’send’,
71 ’options’ => array(
72 ’label’ => ’Send’,
73),
74 ’attributes’ => array(
75 ’type’ => ’submit’,
76),
77));
78

79 // We could also define the input filter here, or
80 // lazy-create it in the getInputFilter() method.
81 }
82));

You’ll note that this example introduces a method, prepareElements(). This is done to allow altering and/or
configuring either the form or input filter factory instances, which could then have bearing on how elements, inputs,
etc. are created. In this case, it also allows injection of the CAPTCHA adapter, allowing us to configure it elsewhere
in our application and inject it into the form.

Validating Forms

Validating forms requires three steps. First, the form must have an input filter attached. Second, you must inject the
data to validate into the form. Third, you validate the form. If invalid, you can retrieve the error messages, if any.

1 $form = new Contact\ContactForm();
2

3 // If the form doesn’t define an input filter by default, inject one.
4 $form->setInputFilter(new Contact\ContactFilter());
5

6 // Get the data. In an MVC application, you might try:
7 $data = $request->post(); // for POST data
8 $data = $request->query(); // for GET (or query string) data
9

10 $form->setData($data);
11

12 // Validate the form
13 if ($form->isValid() {
14 $validatedData = $form->getData();
15 } else {
16 $messages = $form->getMessages();

231

Zend Framework 2 Documentation, Release 2.0.0

17 }

You can get the raw data if you want, by accessing the composed input filter.

1 $filter = $form->getInputFilter();
2

3 $rawValues = $filter->getRawValues();
4 $nameRawValue = $filter->getRawValue(’name’);

Hinting to the Input Filter

Often, you’ll create elements that you expect to behave in the same way on each usage, and for which you’ll want
specific filters or validation as well. Since the input filter is a separate object, how can you achieve these latter points?

Because the default form implementation composes a factory, and the default factory composes an input filter factory,
you can have your elements and/or fieldsets hint to the input filter. If no input or input filter is provided in the input
filter for that element, these hints will be retrieved and used to create them.

To do so, one of the following must occur. For elements, they must implement
Zend\InputFilter\InputProviderInterface, which defines a getInputSpecification()
method; for fieldsets, they must implement Zend\InputFilter\InputFilterProviderInterface,
which defines a getInputFilterSpecification() method.

In the case of an element, the getInputSpecification() method should return data to be used by the input
filter factory to create an input.

1 namespace Contact\Form;
2

3 use Zend\Form\Element;
4 use Zend\InputFilter\InputProviderInterface;
5 use Zend\Validator;
6

7 class EmailElement extends Element implements InputProviderInterface
8 {
9 protected $attributes = array(

10 ’type’ => ’email’,
11);
12

13 public function getInputSpecification()
14 {
15 return array(
16 ’name’ => $this->getName(),
17 ’required’ => true,
18 ’filters’ => array(
19 array(’name’ => ’Zend\Filter\StringTrim’),
20),
21 ’validators’ => array(
22 new Validator\Email(),
23),
24);
25 }
26 }

The above would hint to the input filter to create and attach an input named after the element, marking it as required,
and giving it a StringTrim filter and an Email validator. Note that you can either rely on the input filter to create
filters and validators, or directly instantiate them.

232 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

For fieldsets, you do very similarly; the difference is that getInputFilterSpecification() must return
configuration for an input filter.

1 namespace Contact\Form;
2

3 use Zend\Form\Fieldset;
4 use Zend\InputFilter\InputFilterProviderInterface;
5

6 class SenderFieldset extends Fieldset implements InputFilterProviderInterface
7 {
8 public function getInputFilterSpecification()
9 {

10 return array(
11 ’name’ => array(
12 ’required’ => true,
13 ’filters’ => array(
14 array(’name’ => ’Zend\Filter\StringTrim’),
15),
16),
17 ’email’ => array(
18 ’required’ => true,
19 ’filters’ => array(
20 array(’name’ => ’Zend\Filter\StringTrim’),
21),
22 ’validators’ => array(
23 new Validator\Email(),
24),
25),
26);
27 }
28 }

Specifications are a great way to make forms, fieldsets, and elements re-usable trivially in your applications. In fact,
the Captcha and Csrf elements define specifications in order to ensure they can work without additional user
configuration!

Binding an object

As noted in the intro, forms in Zend Framework bridge the domain model and the view layer. Let’s see that in action.

When you bind() an object to the form, the following happens:

• The composed Hydrator calls extract() on the object, and uses the values returned, if any, to populate
the value attributes of all elements.

• When isValid() is called, if setData() has not been previously set, the form uses the composed
Hydrator to extract values from the object, and uses those during validation.

• If isValid() is successful (and the bindOnValidate flag is enabled, which is true by default), then the
Hydrator will be passed the validated values to use to hydrate the bound object. (If you do not want this
behavior, call setBindOnValidate(FormInterface::BIND_MANUAL)).

• If the object implements Zend\InputFilter\InputFilterAwareInterface, the input filter it com-
poses will be used instead of the one composed on the form.

This is easier to understand in practice.

1 $contact = new ArrayObject;
2 $contact[’subject’] = ’[Contact Form] ’;

233

Zend Framework 2 Documentation, Release 2.0.0

3 $contact[’message’] = ’Type your message here’;
4

5 $form = new Contact\ContactForm;
6

7 $form->bind($contact); // form now has default values for
8 // ’subject’ and ’message’
9

10 $data = array(
11 ’name’ => ’John Doe’,
12 ’email’ => ’j.doe@example.tld’,
13 ’subject’ => ’[Contact Form] \’sup?’,
14);
15 $form->setData($data);
16

17 if ($form->isValid()) {
18 // $contact now looks like:
19 // array(
20 // ’name’ => ’John Doe’,
21 // ’email’ => ’j.doe@example.tld’,
22 // ’subject’ => ’[Contact Form] \’sup?’,
23 // ’message’ => ’Type your message here’,
24 //)
25 // only as an ArrayObject
26 }

When an object is bound to the form, calling getData() will return that object by default. If you want to return an
associative array instead, you can pass the FormInterface::VALUES_AS_ARRAY flag to the method.

1 use Zend\Form\FormInterface;
2 $data = $form->getData(FormInterface::VALUES_AS_ARRAY);

Zend Framework ships several standard hydrators, and implementation is as simple as implementing
Zend\Stdlib\Hydrator\HydratorInterface, which looks like this:

1 namespace Zend\Stdlib\Hydrator;
2

3 interface Hydrator
4 {
5 /** @return array */
6 public function extract($object);
7 public function hydrate(array $data, $object);
8 }

Rendering

As noted previously, forms are meant to bridge the domain model and view layer. We’ve discussed the domain model
binding, but what about the view?

The form component ships a set of form-specific view helpers. These accept the various form objects, and introspect
them in order to generate markup. Typically, they will inspect the attributes, but in special cases, they may look at
other properties and composed objects.

When preparing to render, you will likely want to call prepare(). This method ensures that certain injections are
done, and will likely in the future munge names to allow for scoped[array][notation].

The simplest view helpers available are Form, FormElement, FormLabel, and FormElementErrors. Let’s
use them to display the contact form.

234 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

1 <?php
2 // within a view script
3 $form = $this->form;
4 $form->prepare();
5

6 // Assuming the "contact/process" route exists...
7 $form->setAttribute(’action’, $this->url(’contact/process’));
8

9 // Set the method attribute for the form
10 $form->setAttribute(’method’, ’post’);
11

12 // Get the form label plugin
13 $formLabel = $this->plugin(’formLabel’);
14

15 // Render the opening tag
16 echo $this->form()->openTag($form);
17 ?>
18 <div class="form_element">
19 <?php
20 $name = $form->get(’name’);
21 echo $formLabel->openTag() . $name->getAttribute(’label’);
22 echo $this->formInput($name);
23 echo $this->formElementErrors($name);
24 echo $formLabel->closeTag();
25 ?></div>
26

27 <div class="form_element">
28 <?php
29 $subject = $form->get(’subject’);
30 echo $formLabel->openTag() . $subject->getAttribute(’label’);
31 echo $this->formInput($subject);
32 echo $this->formElementErrors($subject);
33 echo $formLabel->closeTag();
34 ?></div>
35

36 <div class="form_element">
37 <?php
38 $message = $form->get(’message’);
39 echo $formLabel->openTag() . $message->getAttribute(’label’);
40 echo $this->formInput($message);
41 echo $this->formElementErrors($message);
42 echo $formLabel->closeTag();
43 ?></div>
44

45 <div class="form_element">
46 <?php
47 $captcha = $form->get(’captcha’);
48 echo $formLabel->openTag() . $captcha->getAttribute(’label’);
49 echo $this->formInput($captcha);
50 echo $this->formElementErrors($captcha);
51 echo $formLabel->closeTag();
52 ?></div>
53

54 <?php echo $this->formElement($form->get(’security’) ?>
55 <?php echo $this->formElement($form->get(’send’) ?>
56

57 <?php echo $this->form()->closeTag() ?>

235

Zend Framework 2 Documentation, Release 2.0.0

There are a few things to note about this. First, to prevent confusion in IDEs and editors when syntax highlighting,
we use helpers to both open and close the form and label tags. Second, there’s a lot of repetition happening here; we
could easily create a partial view script or a composite helper to reduce boilerplate. Third, note that not all elements
are created equal – the CSRF and submit elements don’t need labels or error messages necessarily. Finally, note that
the FormElement helper tries to do the right thing – it delegates actual markup generation toother view helpers;
however, it can only guess what specific form helper to delegate to based on the list it has. If you introduce new form
view helpers, you’ll need to extend the FormElement helper, or create your own.

However, your view files can quickly become long and repetitive to write. While we do not currently provide a single-
line form view helper (as this reduces the form customization), the simplest and most recommended way to render your
form is by using the FormRow view helper. This view helper automatically renders a label (if present), the element
itself using the FormElement helper, as well as any errors that could arise. Here is the previous form, rewritten to
take advantage of this helper :

1 <?php
2 // within a view script
3 $form = $this->form;
4 $form->prepare();
5

6 // Assuming the "contact/process" route exists...
7 $form->setAttribute(’action’, $this->url(’contact/process’));
8

9 // Set the method attribute for the form
10 $form->setAttribute(’method’, ’post’);
11

12 // Render the opening tag
13 echo $this->form()->openTag($form);
14 ?>
15 <div class="form_element">
16 <?php
17 $name = $form->get(’name’);
18 echo $this->formRow($name);
19 ?></div>
20

21 <div class="form_element">
22 <?php
23 $subject = $form->get(’subject’);
24 echo $this->formRow($subject);
25 ?></div>
26

27 <div class="form_element">
28 <?php
29 $message = $form->get(’message’);
30 echo $this->formRow($message);
31 ?></div>
32

33 <div class="form_element">
34 <?php
35 $captcha = $form->get(’captcha’);
36 echo $this->formRow($captcha);
37 ?></div>
38

39 <?php echo $this->formElement($form->get(’security’) ?>
40 <?php echo $this->formElement($form->get(’send’) ?>
41

42 <?php echo $this->form()->closeTag() ?>

Note that FormRow helper automatically prepends the label. If you want it to be rendered after the element itself, you

236 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

can pass an optional parameter to the FormRow view helper :

1 <div class="form_element">
2 <?php
3 $name = $form->get(’name’);
4 echo $this->formRow($name, **’append’**);
5 ?></div>

Validation Groups

Sometimes you want to validate only a subset of form elements. As an example, let’s say we’re re-using our contact
form over a web service; in this case, the Csrf, Captcha, and submit button elements are not of interest, and
shouldn’t be validated.

Zend\Form provides a proxy method to the underlying InputFilter‘s setValidationGroup() method,
allowing us to perform this operation.

1 $form->setValidationGroup(’name’, ’email’, ’subject’, ’message’);
2 $form->setData($data);
3 if ($form->isValid()) {
4 // Contains only the "name", "email", "subject", and "message" values
5 $data = $form->getData();
6 }

If you later want to reset the form to validate all, simply pass the FormInterface::VALIDATE_ALL flag to the
setValidationGroup() method.

1 use Zend\Form\FormInterface;
2 $form->setValidationGroup(FormInterface::VALIDATE_ALL);

When your form contains nested fieldsets, you can use an array notation to validate only a subset of the fieldsets :

1 $form->setValidationGroup(array(
2 ’profile’ => array(
3 ’firstname’,
4 ’lastname’
5)
6));
7 $form->setData($data);
8 if ($form->isValid()) {
9 // Contains only the "firstname" and "lastname" values from the

10 // "profile" fieldset
11 $data = $form->getData();
12 }

Using Annotations

Creating a complete forms solution can often be tedious: you’ll create some domain model object, an input filter
for validating it, a form object for providing a representation for it, and potentially a hydrator for mapping the form
elements and fieldsets to the domain model. Wouldn’t it be nice to have a central place to define all of these?

Annotations allow us to solve this problem. You can define the following behaviors with the shipped annotations in
Zend\Form:

• AllowEmpty: mark an input as allowing an empty value. This annotation does not require a value.

• Attributes: specify the form, fieldset, or element attributes. This annotation requires an associative array of
values, in a JSON object format: @Attributes({"class":"zend_form","type":"text"}).

237

Zend Framework 2 Documentation, Release 2.0.0

• ComposedObject: specify another object with annotations to parse. Typically, this is used if a property refer-
ences another object, which will then be added to your form as an additional fieldset. Expects a string value
indicating the class for the object being composed.

• ErrorMessage: specify the error message to return for an element in the case of a failed validation. Expects a
string value.

• Exclude: mark a property to exclude from the form or fieldset. This annotation does not require a value.

• Filter: provide a specification for a filter to use on a given element. Expects an associative array of values, with a
“name” key pointing to a string filter name, and an “options” key pointing to an associatve array of filter options
for the constructor: @Filter({"name": "Boolean", "options": {"casting":true}}).
This annotation may be specified multiple times.

• Flags: flags to pass to the fieldset or form composing an element or fieldset; these are usually used to specify
the name or priority. The annotation expects an associative array: @Flags({"priority": 100}).

• Hydrator: specify the hydrator class to use for this given form or fieldset. A string value is expected.

• InputFilter: specify the input filter class to use for this given form or fieldset. A string value is expected.

• Input: specify the input class to use for this given element. A string value is expected.

• Name: specify the name of the current element, fieldset, or form. A string value is expected.

• Options: options to pass to the fieldset or form that are used to inform behavior – things that are not attributes;
e.g. labels, CAPTCHA adapters, etc. The annotation expects an associative array: @Options({"label":
"Username:"}).

• Required: indicate whether an element is required. A boolean value is expected. By default, all elements are
required, so this annotation is mainly present to allow disabling a requirement.

• Type: indicate the class to use for the current element, fieldset, or form. A string value is expected.

• Validator: provide a specification for a validator to use on a given element. Expects an associative array of val-
ues, with a “name” key pointing to a string validator name, and an “options” key pointing to an associatve array
of validator options for the constructor: @Validator({"name": "StringLength", "options":
{"min":3, "max": 25}}). This annotation may be specified multiple times.

To use annotations, you simply include them in your class and/or property docblocks. Annotation names will be
resolved according to the import statements in your class; as such, you can make them as long or as short as you want
depending on what you import.

Here’s a simple example.

1 use Zend\Form\Annotation;
2

3 /**
4 * @Annotation\Name("user")
5 * @Annotation\Hydrator("Zend\Stdlib\Hydrator\ObjectProperty")
6 */
7 class User
8 {
9 /**

10 * @Annotation\Exclude()
11 */
12 public $id;
13

14 /**
15 * @Annotation\Filter({"name":"StringTrim"})
16 * @Annotation\Validator({"name":"StringLength", "options":{"min":1, "max":25}})
17 * @Annotation\Validator({"name":"Regex", "options":{"pattern":"/^[a-zA-Z][a-zA-Z0-9_-]{0,24}$/"}})
18 * @Annotation\Attributes({"type":"text"})

238 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

19 * @Annotation\Options({"label":"Username:"})
20 */
21 public $username;
22

23 /**
24 * @Annotation\Type("Zend\Form\Element\Email")
25 * @Annotation\Options({"label":"Your email address:"})
26 */
27 public $email;
28 }

The above will hint to the annotation build to create a form with name “user”, which uses the hydrator
Zend\Stdlib\Hydrator\ObjectProperty. That form will have two elements, “username” and “email”.
The “username” element will have an associated input that has a StringTrim filter, and two validators: a
StringLength validator indicating the username is between 1 and 25 characters, and a Regex validator assert-
ing it follows a specific accepted pattern. The form element itself will have an attribute “type” with value “text” (a text
element), and a label “Username:”. The “email” element will be of type Zend\Form\Element\Email, and have
the label “Your email address:”.

To use the above, we need Zend\Form\Annotation\AnnotationBuilder:

1 use Zend\Form\Annotation\AnnotationBuilder;
2

3 $builder = new AnnotationBuilder();
4 $form = $builder->createForm(’User’);

At this point, you have a form with the appropriate hydrator attached, an input filter with the appropriate inputs, and
all elements.

Note: You’re not done

In all likelihood, you’ll need to add some more elements to the form you construct. For example, you’ll want a submit
button, and likely a CSRF-protection element. We recommend creating a fieldset with common elements such as these
that you can then attach to the form you build via annotations.

239

Zend Framework 2 Documentation, Release 2.0.0

240 Chapter 55. Form Quick Start

CHAPTER

FIFTYSIX

FORM COLLECTIONS

Often, fieldsets or elements in your forms will correspond to other domain objects. In some cases, they may correspond
to collections of domain objects. In this latter case, in terms of user interfaces, you may want to add items dynamically
in the user interface – a great example is adding tasks to a task list.

This document is intended to demonstrate these features. To do so, we first need to define some domain objects that
we’ll be using.

namespace Application\Entity;

class Product
{

/**
* @var string
*/

protected $name;

/**
* @var int
*/

protected $price;

/**
* @var Brand
*/

protected $brand;

/**
* @var array
*/

protected $categories;

/**
* @param string $name

* @return Product
*/

public function setName($name)
{

$this->name = $name;
return $this;

}

/**
* @return string
*/

241

Zend Framework 2 Documentation, Release 2.0.0

public function getName()
{

return $this->name;
}

/**
* @param int $price

* @return Product
*/

public function setPrice($price)
{

$this->price = $price;
return $this;

}

/**
* @return int
*/

public function getPrice()
{

return $this->price;
}

/**
* @param Brand $brand

* @return Product
*/

public function setBrand(Brand $brand)
{

$this->brand = $brand;
return $this;

}

/**
* @return Brand
*/

public function getBrand()
{

return $this->brand;
}

/**
* @param array $categories

* @return Product
*/

public function setCategories(array $categories)
{

$this->categories = $categories;
return $this;

}

/**
* @return array
*/

public function getCategories()
{

return $this->categories;
}

242 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

}

class Brand
{

/**
* @var string
*/

protected $name;

/**
* @var string
*/

protected $url;

/**
* @param string $name

* @return Brand
*/

public function setName($name)
{

$this->name = $name;
return $this;

}

/**
* @return string
*/

public function getName()
{

return $this->name;
}

/**
* @param string $url

* @return Brand
*/

public function setUrl($url)
{

$this->url = $url;
return $this;

}

/**
* @return string
*/

public function getUrl()
{

return $this->url;
}

}

class Category
{

/**
* @var string
*/

protected $name;

243

Zend Framework 2 Documentation, Release 2.0.0

/**
* @param string $name

* @return Category
*/

public function setName($name)
{

$this->name = $name;
return $this;

}

/**
* @return string
*/

public function getName()
{

return $this->name;
}

}

As you can see, this is really simple code. A Product has two scalar properties (name and price), a OneToOne
relationship (one product has one brand), and a OneToMany relationship (one product has many categories).

56.1 Creating Fieldsets

The first step is to create three fieldsets. Each fieldset will contain all the fields and relationships for a specific entity.

Here is the Brand fieldset:

namespace Application\Form;

use Application\Entity\Brand;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class BrandFieldset extends Fieldset implements InputFilterProviderInterface
{

public function __construct()
{

parent::__construct(’brand’);
$this->setHydrator(new ClassMethodsHydrator(false))

->setObject(new Brand());

$this->setLabel(’Brand’);

$this->add(array(
’name’ => ’name’,
’options’ => array(

’label’ => ’Name of the brand’
),
’attributes’ => array(

’required’ => ’required’
)

));

$this->add(array(
’name’ => ’url’,

244 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

’type’ => ’Zend\Form\Element\Url’,
’options’ => array(

’label’ => ’Website of the brand’
),
’attributes’ => array(

’required’ => ’required’
)

));
}

/**
* @return array
*/

public function getInputFilterSpecification()
{

return array(
’name’ => array(

’required’ => true,
)

);
}

}

We can discover some new things here. As you can see, the fieldset calls the method setHydrator(), giving it a
ClassMethods hydrator, and the setObject() method, giving it an empty instance of a concrete Brand object.

When the data will be validated, the Form will automatically iterate through all the field sets it contains, and automat-
ically populate the sub-objects, in order to return a complete entity.

Also notice that the Url element has a type of Zend\Form\Element\Url. This information will be used to
validate the input field. You don’t need to manually add filters or validators for this input as that element provides a
reasonable input specification.

Finally, getInputSpecification() gives the specification for the remaining input (“name”), indicating that
this input is required. Note that required in the array “attributes” (when elements are added) is only meant to add the
“required” attribute to the form markup (and therefore has semantic meaning only).

Here is the Category fieldset:

namespace Application\Form;

use Application\Entity\Category;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CategoryFieldset extends Fieldset implements InputFilterProviderInterface
{

public function __construct()
{

parent::__construct(’category’);
$this->setHydrator(new ClassMethodsHydrator(false))

->setObject(new Category());

$this->setLabel(’Category’);

$this->add(array(
’name’ => ’name’,
’options’ => array(

56.1. Creating Fieldsets 245

Zend Framework 2 Documentation, Release 2.0.0

’label’ => ’Name of the category’
),
’attributes’ => array(

’required’ => ’required’
)

));
}

/**
* @return array
*/

public function getInputFilterSpecification()
{

return array(
’name’ => array(

’required’ => true,
)

);
}

}

Nothing new here.

And finally the Product fieldset:

namespace Application\Form;

use Application\Entity\Product;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class ProductFieldset extends Fieldset implements InputFilterProviderInterface
{

public function __construct()
{

parent::__construct(’product’);
$this->setHydrator(new ClassMethodsHydrator(false))

->setObject(new Product());

$this->add(array(
’name’ => ’name’,
’options’ => array(

’label’ => ’Name of the product’
),
’attributes’ => array(

’required’ => ’required’
)

));

$this->add(array(
’name’ => ’price’,
’options’ => array(

’label’ => ’Price of the product’
),
’attributes’ => array(

’required’ => ’required’
)

));

246 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

$this->add(array(
’type’ => ’Application\Form\BrandFieldset’,
’name’ => ’brand’,
’options’ => array(

’label’ => ’Brand of the product’
)

));

$this->add(array(
’type’ => ’Zend\Form\Element\Collection’,
’name’ => ’categories’,
’options’ => array(

’label’ => ’Please choose categories for this product’,
’count’ => 2,
’should_create_template’ => true,
’allow_add’ => true,
’target_element’ => array(

’type’ => ’Application\Form\CategoryFieldset’
)

)
));

}

/**
* Should return an array specification compatible with

* {@link Zend\InputFilter\Factory::createInputFilter()}.

*
* @return array
*/

public function getInputFilterSpecification()
{

return array(
’name’ => array(

’required’ => true,
),
’price’ => array(

’required’ => true,
’validators’ => array(

array(
’name’ => ’Float’

)
)

)
);

}
}

We have a lot of new things here!

First, notice how the brand element is added: we specify it to be of type Application\Form\BrandFieldset.
This is how you handle a OneToOne relationship. When the form is validated, the BrandFieldset will first be
populated, and will return a Brand entity (as we have specified a ClassMethods hydrator, and bound the fieldset
to a Brand entity using the setObject() method). This Brand entity will then be used to populate the Product
entity by calling the setBrand() method.

The next element shows you how to handle OneToMany relationship. The type is
Zend\Form\Element\Collection, which is a specialized element to handle such cases. As you can
see, the name of the element (“categories”) perfectly matches the name of the property in the Product entity.

56.1. Creating Fieldsets 247

Zend Framework 2 Documentation, Release 2.0.0

This element has a few interesting options:

• count: this is how many times the element (in this case a category) has to be rendered. We’ve set it to two in
this examples.

• should_create_template: if set to true, it will generate a template markup in a element, in
order to simplify adding new element on the fly (we will speak about this one later).

• allow_add: if set to true (which is the default), dynamically added elements will be retrieved and validated;
otherwise, they will be completely ignored. This, of course, depends on what you want to do.

• target_element: this is either an element or, as this is the case in this example, an array that describes the
element or fieldset that will be used in the collection. In this case, the target_element is a Category
fieldset.

56.2 The Form Element

So far, so good. We now have our field sets in place. But those are field sets, not forms. And only Form instances can
be validated. So here is the form :

namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form
{

public function __construct()
{

parent::__construct(’create_product’);

$this->setAttribute(’method’, ’post’)
->setHydrator(new ClassMethodsHydrator(false))
->setInputFilter(new InputFilter());

$this->add(array(
’type’ => ’Application\Form\ProductFieldset’,
’options’ => array(

’use_as_base_fieldset’ => true
)

));

$this->add(array(
’type’ => ’Zend\Form\Element\Csrf’,
’name’ => ’csrf’

));

$this->add(array(
’name’ => ’submit’,
’attributes’ => array(

’type’ => ’submit’
)

));
}

}

248 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

CreateForm is quite simple, as it only defines a Product fieldset, as well as some other useful fields (CSRF for
security, and a Submit button).

Notice the use_base_fieldset option. This option is here to say to the form: “hey, the object I bind to you is, in
fact, bound to the fieldset that is the base fieldset.” This will be to true most of the times.

What’s cool with this approach is that each entity can have its own Fieldset and can be reused. You describe the
elements, the filters, and validators for each entity only once, and the concrete Form instance will only compose those
fieldsets. You no longer have to add the “username” input to every form that deals with users!

56.3 The Controller

Now, let’s create the action in the controller:

/**
* @return array
*/

public function indexAction()
{

$form = new CreateProduct();
$product = new Product();
$form->bind($product);

if ($this->request->isPost()) {
$form->setData($this->request->getPost());

if ($form->isValid()) {
var_dump($product);

}
}

return array(
’form’ => $form

);
}

This is super easy. Nothing to do in the controllers. All the magic is done behind the scene.

56.4 The View

And finally, the view:

<?php
$form->setAttribute(’action’, $this->url(’home’))

->prepare();

echo $this->form()->openTag($form);

$product = $form->get(’product’);

echo $this->formRow($product->get(’name’));
echo $this->formRow($product->get(’price’));
echo $this->formCollection($product->get(’categories’));

$brand = $product->get(’brand’);

56.3. The Controller 249

Zend Framework 2 Documentation, Release 2.0.0

echo $this->formRow($brand->get(’name’));
echo $this->formRow($brand->get(’url’));

echo $this->formHidden($form->get(’csrf’));
echo $this->formElement($form->get(’submit’));

echo $this->form()->closeTag();

A few new things here :

• the prepare() method. You msut call it prior to rendering anything in the view (this function is only meant
to be called in views, not in controllers).

• the FormRow helper renders a label (if present), the input itself, and errors.

• the FormCollection helper will iterate through every element in the collection, and render every element
with the FormRow helper (you may specify an alternate helper if desired, using the setElementHelper()
method on that FormCollection helper instance). If you need more control about the way you render your
forms, you can iterate through the elements in the collection, and render them manually one by one.

Here is the result:

As you can see, collections are wrapped inside a fieldset, and every item in the collection is itself wrapped in the field-
set. In fact, the Collection element uses label for each item in the collection, while the label of the Collection
element itself is used as the legend of the fieldset. If you don’t want the fieldset created (just the elements within it),
just add a boolean false as the second parameter of the the FormCollection view helper.

If you validate, all elements will show errors (this is normal, as we’ve marked them as required). As soon as the form
is valid, this is what we get :

As you can see, the bound object is completely filled, not with arrays, but with objects!

But that’s not all.

56.5 Adding New Elements Dynamically

Remember the should_create_template? We are going to use it now.

Often, forms are not completely static. In our case, let’s say that we don’t want only two categories, but we want the
user to be able to add other ones at runtime. Zend\Form has this capability. First, let’s see what it generates when
we ask it to create a template:

As you can see, the collection generates two fieldsets (the two categories) plus a span with a data-template at-
tribute that contains the full HTML code to copy to create a new element in the collection. Of course __index__ (this
is the placeholder generated) has to be changed to a valid value. Currently, we have 2 elements (categories[0]
and categories[1], so __index__ has to be changed to 2.

If you want, this placeholder (__index__ is the default) can be changed using the template_placeholder
option key:

$this->add(array(
’type’ => ’Zend\Form\Element\Collection’,
’name’ => ’categories’,
’options’ => array(

’label’ => ’Please choose categories for this product’,
’count’ => 2,
’should_create_template’ => true,
’template_placeholder’ => ’__placeholder__’,

250 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

’target_element’ => array(
’type’ => ’Application\Form\CategoryFieldset’

)
)

));

First, let’s add a small button “Add new category” anywhere in the form:

<button onclick="return add_category()">Add a new category</button>

The add_category function is fairly simple:

First, count the number of elements we already have. # Get the template from the span‘s data-template
attribute. # Change the placeholder to a valid index. # Add the element to the DOM.

Here is the code:

<script>
function add_category() {

var currentCount = $(’form > fieldset > fieldset’).length;
var template = $(’form > fieldset > span’).data(’template’);
template = template.replace(’__index__’, currentCount);

$(’form > fieldset’).append(template);

return false;
}

</script>

(Note: the above example assumes $() is defined, and equivalent to jQuery’s $() function, Dojo’s dojo.query,
etc.)

One small remark about the template.replace: the example uses currentCount and not currentCount
+ 1, as the indices are zero-based (so, if we have two elements in the collection, the third one will have the index 2).

Now, if we validate the form, it will automatically take into account this new element by validating it, filtering it and
retrieving it:

Of course, if you don’t want to allow adding elements in a collection, you must to set the option allow_add to
‘‘false. This way, even if new elements are added, they won’t be validated and, hence, not added to the entity. Here is
how you do it (and, as we don’t want elements to be added, we don’t need the data template, either):

$this->add(array(
’type’ => ’Zend\Form\Element\Collection’,
’name’ => ’categories’,
’options’ => array(

’label’ => ’Please choose categories for this product’,
’count’ => 2,
’should_create_template’ => false,
’allow_add’ => false,
’target_element’ => array(

’type’ => ’Application\Form\CategoryFieldset’
)

)
));

There are some limitations of this capability:

• Although you can add new elements and remove them, you CANNOT remove more elements in a collection
than the initial count (for instance, if your code specifies count == 2, you will be able to add a third one

56.5. Adding New Elements Dynamically 251

Zend Framework 2 Documentation, Release 2.0.0

and remove it, but you won’t be able to remove any others. If the initial count is 2, you must have at least two
elements.

• Dynamically added elements have to be added at the end of the collection. They can be added anywhere (these
elements will still be validated and inserted into the entity), but if the validation fails, this newly added element
will be automatically be replaced at the end of the collection.

56.6 Validation groups for fieldsets and collection

Validation groups allow you to validate a subset of fields.

As an example, although the Brand entity has a URL property, we don’t want to user to specify it in the creation form
(but may wish to later in the “Edit Product” form, for instance). Let’s update the view to remove the URL input:

<?php
$form->setAttribute(’action’, $this->url(’home’))

->prepare();

echo $this->form()->openTag($form);

$product = $form->get(’product’);

echo $this->formRow($product->get(’name’));
echo $this->formRow($product->get(’price’));
echo $this->formCollection($product->get(’categories’));

$brand = $product->get(’brand’);

echo $this->formRow($brand->get(’name’));

echo $this->formHidden($form->get(’csrf’));
echo $this->formElement($form->get(’submit’));

echo $this->form()->closeTag();

This is what we get:

The URL input has disappeared, but even if we fill every input, the form won’t validate. In fact, this is normal. We
specified in the input filter that the URL is a required field, so if the form does not have it, it won’t validate, even
though we didn’t add it to the view!

Of course, you could create a BrandFieldsetWithoutURL fieldset, but of course this is not recommended, as a
lot of code will be duplicated.

The solution: validation groups. A validation group is specified in a Form object (hence, in our case, in the
CreateProduct form) by giving an array of all the elements we want to validate. Our CreateForm now looks
like this:

namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form
{

public function __construct()
{

252 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

parent::__construct(’create_product’);

$this->setAttribute(’method’, ’post’)
->setHydrator(new ClassMethodsHydrator())
->setInputFilter(new InputFilter());

$this->add(array(
’type’ => ’Application\Form\ProductFieldset’,
’options’ => array(

’use_as_base_fieldset’ => true
)

));

$this->add(array(
’type’ => ’Zend\Form\Element\Csrf’,
’name’ => ’csrf’

));

$this->add(array(
’name’ => ’submit’,
’attributes’ => array(

’type’ => ’submit’
)

));

$this->setValidationGroup(array(
’csrf’,
’product’ => array(

’name’,
’price’,
’brand’ => array(

’name’
),
’categories’ => array(

’name’
)

)
));

}
}

Of course, don’t forget to add the CSRF element, as we want it to be validated too (but notice that I didn’t write the
submit element, as we don’t care about it). You can recursively select the elements you want.

There is one simple limitation currently: validation groups for collections are set on a per-collection basis, not element
in a collection basis. This means you cannot say, “validate the name input for the first element of the categories
collection, but don’t validate it for the second one.” But, honestly, this is really an edge-case.

Now, the form validates (and the URL is set to null as we didn’t specify it).

56.6. Validation groups for fieldsets and collection 253

Zend Framework 2 Documentation, Release 2.0.0

254 Chapter 56. Form Collections

CHAPTER

FIFTYSEVEN

FORM ELEMENTS

57.1 Introduction

A set of specialized elements are provided for accomplishing application-centric tasks. These include several HTML5
input elements with matching server-side validators, the Csrf element (to prevent Cross Site Request Forgery attacks),
and the Captcha element (to display and validate CAPTCHAs).

A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. See the
Zend\Form Quick Start for more information.

57.2 Element Base Class

Zend\Form\Element is a base class for all specialized elements and Zend\\Form\\Fieldset.

57.2.1 Basic Usage

At the bare minimum, each element or fieldset requires a name. You will also typically provide some attributes to hint
to the view layer how it might render the item.

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $username = new Element\Text(’username’);
5 $username
6 ->setLabel(’Username’);
7 ->setAttributes(array(
8 ’class’ => ’username’,
9 ’size’ => ’30’,

10));
11

12 $password = new Element\Password(’password’);
13 $password
14 ->setLabel(’Password’);
15 ->setAttributes(array(
16 ’size’ => ’30’,
17));
18

19 $form = new Form(’my-form’);
20 $form

255

Zend Framework 2 Documentation, Release 2.0.0

21 ->add($username)
22 ->add($password);

57.2.2 Public Methods

setName(string $name)
Set the name for this element.

getName()
Return the name for this element.

Return type string

setLabel(string $label)
Set the label content for this element.

getLabel()
Return the label content for this element.

Return type string

setLabelAttributes(array $labelAttributes)
Set the attributes to use with the label.

getLabelAttributes()
Return the attributes to use with the label.

Return type array

setOptions(array $options)
Set options for an element. Accepted options are: "label" and "label_attributes", which call
setLabel and setLabelAttributes, respectively.

setAttribute(string $key, mixed $value)
Set a single element attribute.

getAttribute(string $key)
Retrieve a single element attribute.

Return type mixed

hasAttribute(string $key)
Check if a specific attribute exists for this element.

Return type boolean

setAttributes(array|Traversable $arrayOrTraversable)
Set many attributes at once. Implementation will decide if this will overwrite or merge.

getAttributes()
Retrieve all attributes at once.

Return type array|Traversable

clearAttributes()
Clear all attributes for this element.

setMessages(array|Traversable $messages)
Set a list of messages to report when validation fails.

getMessages()
Returns a list of validation failure messages, if any.

256 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

Return type array|Traversable

57.3 Standard Elements

57.3.1 Captcha Element

Zend\Form\Element\Captcha can be used with forms where authenticated users are not necessary, but you
want to prevent spam submissions. It is pairs with one of the Zend/Form/View/Helper/Captcha/* view
helpers that matches the type of CAPTCHA adapter in use.

Basic Usage

A CAPTCHA adapter must be attached in order for validation to be included in the element’s input filter specification.
See the section on Zend CAPTCHA Adapters for more information on what adapters are available.

1 use Zend\Captcha;
2 use Zend\Form\Element;
3 use Zend\Form\Form;
4

5 $captcha = new Element\Captcha(’captcha’);
6 $captcha
7 ->setCaptcha(new Captcha\Dumb())
8 ->setLabel(’Please verify you are human’);
9

10 $form = new Form(’my-form’);
11 $form->add($captcha);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

setCaptcha(array|Zend\Captcha\AdapterInterface $captcha)
Set the CAPTCHA adapter for this element. If $captcha is an array,
Zend\Captcha\Factory::factory() will be run to create the adapter from the array configura-
tion.

getCaptcha()
Return the CAPTCHA adapter for this element.

Return type Zend\Captcha\AdapterInterface

getInputSpecification()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a CAPTCHA
validator.

Return type array

57.3.2 Checkbox Element

Zend\Form\Element\Checkbox is meant to be paired with the Zend/Form/View/Helper/FormCheckbox
for HTML inputs with type checkbox. This element adds an InArray validator to its input filter specification in
order to validate on the server if the checkbox contains either the checked value or the unchecked value.

57.3. Standard Elements 257

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type" attribute of value "checkbox".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $checkbox = new Element\Checkbox(’checkbox’);
5 $checkbox->setLabel(’A checkbox’);
6 $checkbox->setUseHiddenElement(true);
7 $checkbox->setCheckedValue("good");
8 $checkbox->setUncheckedValue("bad");
9

10 $form = new Form(’my-form’);
11 $form->add($checkbox);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element .

setOptions(array $options)
Set options for an element of type Checkbox. Accepted options, in addition to the inherited options
of Zend\Form\Element <zend.form.element.methods.set-options>‘ , are: "use_hidden_element",
"checked_value" and "unchecked_value" , which call setUseHiddenElement,
setCheckedValue and setUncheckedValue , respectively.

setUseHiddenElement(boolean $useHiddenElement)
If set to true (which is default), the view helper will generate a hidden element that contains the unchecked
value. Therefore, when using custom unchecked value, this option have to be set to true.

useHiddenElement()
Return if a hidden element is generated.

Return type boolean

setCheckedValue(string $checkedValue)
Set the value to use when the checkbox is checked.

getCheckedValue()
Return the value used when the checkbox is checked.

Return type string

setUncheckedValue(string $uncheckedValue)
Set the value to use when the checkbox is unchecked. For this to work, you must make sure that
use_hidden_element is set to true.

getUncheckedValue()
Return the value used when the checkbox is unchecked.

Return type string

getInputSpecification()
Returns a input filter specification, which includes a Zend\Validator\InArray to validate if the value is
either checked value or unchecked value.

Return type array

258 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

57.3.3 Collection Element

Sometimes, you may want to add input (or a set of inputs) multiple times, either because you don’t want to duplicate
code, or because you does not know in advance how many elements you need (in the case of elements dynamically
added to a form using JavaScript, for instance).

Zend\Form\Element\Collection is meant to be paired with the Zend\Form\View\Helper\FormCollection.

Basic Usage

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $colors = new Element\Collection(’collection’);
5 $colors->setLabel(’Colors’);
6 $colors->setCount(2);
7 $colors->setTargetElement(new Element\Color());
8 $colors->setShouldCreateTemplate(true);
9

10 $form = new Form(’my-form’);
11 $form->add($colors);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element .

setOptions(array $options)
Set options for an element of type Collection. Accepted options, in addition to the inherited op-
tions of Zend\Form\Element <zend.form.element.methods.set-options>‘ , are: "target_element",
"count", "allow_add", "should_create_template" and "template_placeholder" ,
which call setTargetElement, setCount, setAllowAdd, setShouldCreateTemplate and
setTemplatePlaceholder , respectively.

setCount($count)
Defines how many times the target element will be rendered by the
Zend/Form/View/Helper/FormCollection view helper.

getCount()
Return the number of times the target element will be initially rendered by the
Zend/Form/View/Helper/FormCollection view helper.

Return type integer

setTargetElement($elementOrFieldset)
This function either takes an Zend/Form/ElementInterface, Zend/Form/FieldsetInterface
instance or an array to pass to the form factory. When the Collection element will be validated, the input filter
will be retrieved from this target element and be used to validate each element in the collection.

getTargetElement()
Return the target element used by the collection.

Return type ElementInterface | null

setAllowAdd($allowAdd)
If allowAdd is set to true (which is the default), new elements added dynamically in the form (using JavaScript,
for instance) will also be validated and retrieved.

57.3. Standard Elements 259

Zend Framework 2 Documentation, Release 2.0.0

allowAdd()
Return if new elements can by dynamically added in the collection.

Return type boolean

setAllowRemove($allowRemove)
If allowRemove is set to true (which is the default), new elements added dynamically in the form (using
JavaScript, for instance) will be allowed to be removed.

allowRemove()
Return if new elements can by dynamically added in the collection.

Return type boolean

setShouldCreateTemplate($shouldCreateTemplate)
If shouldCreateTemplate is set to true (defaults to false), a element will be generated by the
Zend/Form/View/Helper/FormCollection view helper. This non-semantic span element contains
a single data-template HTML5 attribute whose value is the whole HTML to copy to create a new element in the
form. The template is indexed using the templatePlaceholder value.

shouldCreateTemplate()
Return if a template should be created.

Return type boolean

setTemplatePlaceholder($templatePlaceholder)
Set the template placeholder (defaults to __index__) used to index element in the template.

getTemplatePlaceholder()
Returns the template placeholder used to index element in the template.

Return type string

57.3.4 Csrf Element

Zend\Form\Element\Csrf pairs with the Zend/Form/View/Helper/FormHidden to provide protection
from CSRF attacks on forms, ensuring the data is submitted by the user session that generated the form and not by a
rogue script. Protection is achieved by adding a hash element to a form and verifying it when the form is submitted.

Basic Usage

This element automatically adds a "type" attribute of value "hidden".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $csrf = new Element\Csrf(’csrf’);
5

6 $form = new Form(’my-form’);
7 $form->add($csrf);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter and a
Zend\Validator\Csrf to validate the CSRF value.

260 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

Return type array

57.3.5 Email Element

Zend\Form\Element\Email is meant to be paired with the Zend/Form/View/Helper/FormEmail for
HTML5 inputs with type email. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 valid email address on the server.

Basic Usage

This element automatically adds a "type" attribute of value "email".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $form = new Form(’my-form’);
5

6 // Single email address
7 $email = new Element\Email(’email’);
8 $email->setLabel(’Email Address’)
9 $form->add($email);

10

11 // Comma separated list of emails
12 $emails = new Element\Email(’emails’);
13 $emails
14 ->setLabel(’Email Addresses’)
15 ->setAttribute(’multiple’, true);
16 $form->add($emails);

Note: Note: the multiple attribute should be set prior to calling Zend\Form::prepare(). Otherwise, the default
input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a validator
based on the multiple attribute.

If the multiple attribute is unset or false, a Zend\Validator\Regex validator will be added to validate
a single email address.

If the multiple attribute is true, a Zend\Validator\Explode validator will be added to ensure the input
string value is split by commas before validating each email address with Zend\Validator\Regex.

Return type array

57.3.6 Hidden Element

Zend\Form\Element\Hidden represents a hidden form input. It can be used with the
Zend/Form/View/Helper/FormHidden view helper.

Zend\Form\Element\Hidden extends from Zend\Form\Element.

57.3. Standard Elements 261

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#e-mail-state-(type=email)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#valid-e-mail-address

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type" attribute of value "hidden".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $hidden = new Element\Hidden(’my-hidden’);
5 $hidden->setValue(’foo’);
6

7 $form = new Form(’my-form’);
8 $form->add($hidden);

57.3.7 Url Element

Zend\Form\Element\Url is meant to be paired with the Zend/Form/View/Helper/FormUrl for HTML5
inputs with type url. This element adds filters and a Zend\Validator\Uri validator to it’s input filter specification
for validating HTML5 URL input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "url".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $url = new Element\Url(’webpage-url’);
5 $url->setLabel(’Webpage URL’);
6

7 $form = new Form(’my-form’);
8 $form->add($url);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a
Zend\Validator\Uri to validate the URI string.

Return type array

57.4 HTML5 Elements

57.4.1 Color Element

Zend\Form\Element\Color is meant to be paired with the Zend/Form/View/Helper/FormColor for
HTML5 inputs with type color. This element adds filters and a Regex validator to it’s input filter specification in
order to validate a HTML5 valid simple color value on the server.

262 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#color-state-(type=color)
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-simple-color

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type" attribute of value "color".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $color = new Element\Color(’color’);
5 $color->setLabel(’Background color’);
6

7 $form = new Form(’my-form’);
8 $form->add($color);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and
Zend\Filter\StringToLower filters, and a Zend\Validator\Regex to validate the RGB
hex format.

Return type array

57.4.2 Date Element

Zend\Form\Element\Date is meant to be paired with the Zend/Form/View/Helper/FormDate for
HTML5 inputs with type date. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 date input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "date".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $date = new Element\Date(’appointment-date’);
5 $date
6 ->setLabel(’Appointment Date’)
7 ->setAttributes(array(
8 ’min’ => ’2012-01-01’,
9 ’max’ => ’2020-01-01’,

10 ’step’ => ’1’, // days; default step interval is 1 day
11));
12

13 $form = new Form(’my-form’);
14 $form->add($date);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

57.4. HTML5 Elements 263

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-state-(type=date)

Zend Framework 2 Documentation, Release 2.0.0

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of days (default is 1 day).

Return type array

57.4.3 DateTime Element

Zend\Form\Element\DateTime is meant to be paired with the Zend/Form/View/Helper/FormDateTime
for HTML5 inputs with type datetime. This element adds filters and validators to it’s input filter specification in order
to validate HTML5 datetime input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "datetime".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $dateTime = new Element\DateTime(’appointment-date-time’);
5 $dateTime
6 ->setLabel(’Appointment Date/Time’)
7 ->setAttributes(array(
8 ’min’ => ’2010-01-01T00:00:00Z’,
9 ’max’ => ’2020-01-01T00:00:00Z’,

10 ’step’ => ’1’, // minutes; default step interval is 1 min
11));
12

13 $form = new Form(’my-form’);
14 $form->add($dateTime);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.

If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the date
value is greater than the minimum value.

If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure
the date value is less than the maximum value.

264 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-and-time-state-(type=datetime)

Zend Framework 2 Documentation, Release 2.0.0

If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\DateStep validator will be added to ensure the date value is within a certain interval of
minutes (default is 1 minute).

Return type array

57.4.4 DateTimeLocal Element

Zend\Form\Element\DateTimeLocal is meant to be paired with the
Zend/Form/View/Helper/FormDateTimeLocal for HTML5 inputs with type datetime-local. This el-
ement adds filters and validators to it’s input filter specification in order to validate HTML5 a local datetime input
values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "datetime-local".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $dateTimeLocal = new Element\DateTimeLocal(’appointment-date-time’);
5 $dateTimeLocal
6 ->setLabel(’Appointment Date’)
7 ->setAttributes(array(
8 ’min’ => ’2010-01-01T00:00:00’,
9 ’max’ => ’2020-01-01T00:00:00’,

10 ’step’ => ’1’, // minutes; default step interval is 1 min
11));
12

13 $form = new Form(’my-form’);
14 $form->add($dateTimeLocal);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\DateTime for more information.

Return type array

57.4.5 Month Element

Zend\Form\Element\Month is meant to be paired with the Zend/Form/View/Helper/FormMonth for
HTML5 inputs with type month. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 month input values on the server.

57.4. HTML5 Elements 265

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#local-date-and-time-state-(type=datetime-local)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#month-state-(type=month)

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type" attribute of value "month".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $month = new Element\Month(’month’);
5 $month
6 ->setLabel(’Month’)
7 ->setAttributes(array(
8 ’min’ => ’2012-01’,
9 ’max’ => ’2020-01’,

10 ’step’ => ’1’, // months; default step interval is 1 month
11));
12

13 $form = new Form(’my-form’);
14 $form->add($month);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of months (default is 1 month).

Return type array

57.4.6 Number Element

Zend\Form\Element\Number is meant to be paired with the Zend/Form/View/Helper/FormNumber for
HTML5 inputs with type number. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 number input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "number".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $number = new Element\Number(’quantity’);
5 $number
6 ->setLabel(’Quantity’)
7 ->setAttributes(array(
8 ’min’ => ’0’,

266 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#number-state-(type=number)

Zend Framework 2 Documentation, Release 2.0.0

9 ’max’ => ’10’,
10 ’step’ => ’1’, // default step interval is 1
11));
12

13 $form = new Form(’my-form’);
14 $form->add($number);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.

If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the number
value is greater than the minimum value. The min value should be a valid floating point number.

If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure
the number value is less than the maximum value. The max value should be a valid floating point number.

If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a Zend\Validator\Step
validator will be added to ensure the number value is within a certain interval (default is 1). The step value
should be either “any” or a valid floating point number.

Return type array

57.4.7 Range Element

Zend\Form\Element\Range is meant to be paired with the Zend/Form/View/Helper/FormRange for
HTML5 inputs with type range. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 range values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "range".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $range = new Element\Range(’range’);
5 $range
6 ->setLabel(’Minimum and Maximum Amount’)
7 ->setAttributes(array(
8 ’min’ => ’0’, // default minimum is 0
9 ’max’ => ’100’, // default maximum is 100

10 ’step’ => ’1’, // default interval is 1
11));
12

13 $form = new Form(’my-form’);
14 $form->add($range);

57.4. HTML5 Elements 267

http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#range-state-(type=range)

Zend Framework 2 Documentation, Release 2.0.0

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\Number.

getInputSpecification()‘‘
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\Number for more information.

The Range element differs from Zend\Form\Element\Number in that the
Zend\Validator\GreaterThan and Zend\Validator\LessThan validators will always be
present. The default minimum is 1, and the default maximum is 100.

Return type array

57.4.8 Time Element

Zend\Form\Element\Time is meant to be paired with the Zend/Form/View/Helper/FormTime for
HTML5 inputs with type time. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 time input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "time".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $time = new Element\Month(’time’);
5 $time
6 ->setLabel(’Time’)
7 ->setAttributes(array(
8 ’min’ => ’00:00:00’,
9 ’max’ => ’23:59:59’,

10 ’step’ => ’60’, // seconds; default step interval is 60 seconds
11));
12

13 $form = new Form(’my-form’);
14 $form->add($time);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.

268 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#time-state-(type=time)

Zend Framework 2 Documentation, Release 2.0.0

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of seconds (default is 60 seconds).

Return type array

57.4.9 Week Element

Zend\Form\Element\Week is meant to be paired with the Zend/Form/View/Helper/FormWeek for
HTML5 inputs with type week. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 week input values on the server.

Basic Usage

This element automatically adds a "type" attribute of value "week".

1 use Zend\Form\Element;
2 use Zend\Form\Form;
3

4 $week = new Element\Week(’week’);
5 $week
6 ->setLabel(’Week’)
7 ->setAttributes(array(
8 ’min’ => ’2012-W01’,
9 ’max’ => ’2020-W01’,

10 ’step’ => ’1’, // weeks; default step interval is 1 week
11));
12

13 $form = new Form(’my-form’);
14 $form->add($week);

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of weeks (default is 1 week).

Return type array

57.4. HTML5 Elements 269

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#week-state-(type=week)

Zend Framework 2 Documentation, Release 2.0.0

270 Chapter 57. Form Elements

CHAPTER

FIFTYEIGHT

FORM VIEW HELPERS

58.1 Introduction

Zend Framework comes with an initial set of helper classes related to Forms: e.g., rendering a text input, selection
box, or form labels. You can use helper, or plugin, classes to perform these behaviors for you.

See the section on view helpers for more information.

58.2 Standard Helpers

58.2.1 Form

The Form view helper is used to render a <form> HTML element and its attributes.

Basic usage:

1 use Zend\Form\Form;
2 use Zend\Form\Element;
3

4 // Within your view...
5

6 $form = new Form();
7 // ...add elements and input filter to form...
8

9 // Set attributes
10 $form->setAttribute(’action’, $this->url(’contact/process’));
11 $form->setAttribute(’method’, ’post’);
12

13 // Prepare the form elements
14 $form->prepare();
15

16 // Render the opening tag
17 echo $this->form()->openTag($form);
18 // <form action="/contact/process" method="post">
19

20 // ...render the form elements...
21

22 // Render the closing tag
23 echo $this->form()->closeTag();
24 // </form>

The following public methods are in addition to those inherited from Zend\Form\View\Helper\AbstractHelper.

271

Zend Framework 2 Documentation, Release 2.0.0

openTag(FormInterface $form = null)
Renders the <form> open tag for the $form instance.

Return type string

closeTag()
Renders a </form> closing tag.

Return type string

58.2.2 FormButton

The FormButton view helper is used to render a <button> HTML element and its attributes.

Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Button(’my-button’);
4 $element->setLabel("Reset");
5

6 // Within your view...
7

8 /**
9 * Example #1: Render entire button in one shot...

10 */
11 echo $this->formButton($element);
12 // <button name="my-button" type="button">Reset</button>
13

14 /**
15 * Example #2: Render button in 3 steps
16 */
17 // Render the opening tag
18 echo $this->formButton()->openTag($element);
19 // <button name="my-button" type="button">
20

21 echo ’’ . $element->getLabel() . ’’;
22

23 // Render the closing tag
24 echo $this->formButton()->closeTag();
25 // </button>
26

27 /**
28 * Example #3: Override the element label
29 */
30 echo $this->formButton()->render($element, ’My Content’);
31 // <button name="my-button" type="button">My Content</button>

The following public methods are in addition to those inherited from Zend\Form\View\Helper\FormInput.

openTag($element = null)
Renders the <button> open tag for the $element instance.

Return type string

closeTag()
Renders a </button> closing tag.

Return type string

272 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

render(ElementInterface $element[, $buttonContent = null])
Renders a button’s opening tag, inner content, and closing tag.

Parameters

• $element – The button element.

• $buttonContent – (optional) The inner content to render. If null, will default to the
$element‘s label.

Return type string

58.2.3 FormCheckbox

The FormCheckbox view helper can be used to render a <input type="checkbox"> HTML form input. It
is meant to work with the Zend\Form\Element\Checkbox element, which provides a default input specification for
validating the checkbox values.

FormCheckbox extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Checkbox(’my-checkbox’);
4

5 // Within your view...
6

7 /**
8 * Example #1: Default options
9 */

10 echo $this->formCheckbox($element);
11 // <input type="hidden" name="my-checkbox" value="0">
12 // <input type="checkbox" name="my-checkbox" value="1">
13

14 /**
15 * Example #2: Disable hidden element
16 */
17 $element->setUseHiddenElement(false);
18 echo $this->formCheckbox($element);
19 // <input type="checkbox" name="my-checkbox" value="1">
20

21 /**
22 * Example #3: Change checked/unchecked values
23 */
24 $element->setUseHiddenElement(true)
25 ->setUncheckedValue(’no’)
26 ->setCheckedValue(’yes’);
27 echo $this->formCheckbox($element);
28 // <input type="hidden" name="my-checkbox" value="no">
29 // <input type="checkbox" name="my-checkbox" value="yes">

58.2.4 FormElement

The FormElement view helper proxies the rendering to specific form view helpers depending on the type of
the Zend\\Form\\Element that is passed in. For instance, if the passed in element had a type of “text”, the
FormElement helper will retrieve and use the FormText helper to render the element.

Basic usage:

58.2. Standard Helpers 273

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Form\Form;
2 use Zend\Form\Element;
3

4 // Within your view...
5

6 /**
7 * Example #1: Render different types of form elements
8 */
9 $textElement = new Element\Text(’my-text’);

10 $checkboxElement = new Element\Checkbox(’my-checkbox’);
11

12 echo $this->formElement($textElement);
13 // <input type="text" name="my-text" value="">
14

15 echo $this->formElement($checkboxElement);
16 // <input type="hidden" name="my-checkbox" value="0">
17 // <input type="checkbox" name="my-checkbox" value="1">
18

19 /**
20 * Example #2: Loop through form elements and render them
21 */
22 $form = new Form();
23 // ...add elements and input filter to form...
24 $form->prepare();
25

26 // Render the opening tag
27 echo $this->form()->openTag($form);
28

29 // ...loop through and render the form elements...
30 foreach ($form as $element) {
31 echo $this->formElement($element); // <-- Magic!
32 echo $this->formElementErrors($element);
33 }
34

35 // Render the closing tag
36 echo $this->form()->closeTag();

58.2.5 FormElementErrors

The FormElementErrors view helper is used to render the validation error messages of an element.

Basic usage:

1 use Zend\Form\Form;
2 use Zend\Form\Element;
3 use Zend\InputFilter\InputFilter;
4 use Zend\InputFilter\Input;
5

6 // Create a form
7 $form = new Form();
8 $element = new Element\Text(’my-text’);
9 $form->add($element);

10

11 // Create a input
12 $input = new Input(’my-text’);
13 $input->setRequired(true);
14

274 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

15 $inputFilter = new InputFilter();
16 $inputFilter->add($input);
17 $form->setInputFilter($inputFilter);
18

19 // Force a failure
20 $form->setData(array()); // Empty data
21 $form->isValid(); // Not valid
22

23 // Within your view...
24

25 /**
26 * Example #1: Default options
27 */
28 echo $this->formElementErrors($element);
29 // Value is required and can't be empty
30

31 /**
32 * Example #2: Add attributes to open format
33 */
34 echo $this->formElementErrors($element, array(’class’ => ’help-inline’));
35 // <ul class="help-inline">Value is required and can't be empty
36

37 /**
38 * Example #3: Custom format
39 */
40 echo $this->formElementErrors()
41 ->setMessageOpenFormat(’<div class="help-inline">’)
42 ->setMessageSeparatorString(’</div><div class="help-inline">’)
43 ->setMessageCloseString(’</div>’)
44 ->render($element);
45 // <div class="help-inline">Value is required and can't be empty</div>

The following public methods are in addition to those inherited from Zend\Form\View\Helper\AbstractHelper.

setMessageOpenFormat(string $messageOpenFormat)
Set the formatted string used to open message representation.

Parameters $messageOpenFormat – The formatted string to use to open the messages. Uses
’<ul%s>’ by default. Attributes are inserted here.

getMessageOpenFormat()
Returns the formatted string used to open message representation.

Return type string

setMessageSeparatorString(string $messageSeparatorString)
Sets the string used to separate messages.

Parameters $messageSeparatorString – The string to use to separate the messages. Uses
’’ by default.

getMessageSeparatorString()
Returns the string used to separate messages.

Return type string

setMessageCloseString(string $messageCloseString)
Sets the string used to close message representation.

Parameters $messageCloseString – The string to use to close the messages. Uses
’’ by default.

58.2. Standard Helpers 275

Zend Framework 2 Documentation, Release 2.0.0

getMessageCloseString()
Returns the string used to close message representation.

Return type string

setAttributes(array $attributes)
Set the attributes that will go on the message open format.

Parameters $attributes – Key value pairs of attributes.

getAttributes()
Returns the attributes that will go on the message open format.

Return type array

render(ElementInterface $element[, array $attributes = array()])
Renders validation errors for the provided $element.

Parameters

• $element – The element.

• $attributes – Additional attributes that will go on the message open format. These are
merged with those set via setAttributes().

Return type string

58.2.6 FormHidden

The FormHidden view helper can be used to render a <input type="hidden"> HTML form input. It is meant
to work with the Zend\Form\Element\Hidden element.

FormHidden extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Hidden(’my-hidden’);
4 $element->setValue(’foo’);
5

6 // Within your view...
7

8 echo $this->formHidden($element);
9 // <input type="hidden" name="my-hidden" value="foo">

58.2.7 FormImage

The FormImage view helper can be used to render a <input type="image"> HTML form input. It is meant to
work with the Zend\Form\Element\Image element.

FormImage extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Image(’my-image’);
4 $element->setAttribute(’src’, ’/img/my-pic.png’);
5

6 // Within your view...
7

8 echo $this->formImage($element);
9 // <input type="image" name="my-image" src="/img/my-pic.png">

276 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

58.2.8 FormInput

The FormInput view helper is used to render a <input> HTML form input tag. It acts as a base class for all of the
specifically typed form input helpers (FormText, FormCheckbox, FormSubmit, etc.), and is not suggested for direct
use.

It contains a general map of valid tag attributes and types for attribute filtering. Each subclass of FormInput imple-
ments it’s own specific map of valid tag attributes. The following public methods are in addition to those inherited
from Zend\Form\View\Helper\AbstractHelper.

render(ElementInterface $element)
Renders the <input> tag for the $element.

Return type string

58.2.9 FormLabel

The FormLabel view helper is used to render a <label> HTML element and its attributes. If you have a
Zend\\I18n\\Translator\\Translator attached, FormLabel will translate the label contents during it’s
rendering.

Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Text(’my-text’);
4 $element->setLabel(’Label’)
5 ->setAttribute(’id’, ’text-id’)
6 ->setLabelAttributes(array(’class’ => ’control-label’));
7

8 // Within your view...
9

10 /**
11 * Example #1: Render label in one shot
12 */
13 echo $this->formLabel($element);
14 // <label class="control-label" for="text-id">Label</label>
15

16 echo $this->formLabel($element, $this->formText($element));
17 // <label class="control-label" for="text-id">Label<input type="text" name="my-text"></label>
18

19 echo $this->formLabel($element, $this->formText($element), ’append’);
20 // <label class="control-label" for="text-id"><input type="text" name="my-text">Label</label>
21

22 /**
23 * Example #2: Render label in separate steps
24 */
25 // Render the opening tag
26 echo $this->formLabel()->openTag($element);
27 // <label class="control-label" for="text-id">
28

29 // Render the closing tag
30 echo $this->formLabel()->closeTag();
31 // </label>

Attaching a translator and setting a text domain:

58.2. Standard Helpers 277

Zend Framework 2 Documentation, Release 2.0.0

1 // Setting a translator
2 $this->formLabel()->setTranslator($translator);
3

4 // Setting a text domain
5 $this->formLabel()->setTranslatorTextDomain(’my-text-domain’);
6

7 // Setting both
8 $this->formLabel()->setTranslator($translator, ’my-text-domain’);

Note: Note: If you have a translator in the Service Manager under the key, ‘translator’, the
view helper plugin manager will automatically attach the translator to the FormLabel view helper. See
Zend\\View\\HelperPluginManager::injectTranslator() for more information.

The following public methods are in addition to those inherited from Zend\Form\View\Helper\AbstractHelper.

__invoke(ElementInterface $element = null, string $labelContent = null, string $position = null)
Render a form label, optionally with content.

Always generates a “for” statement, as we cannot assume the form input will be provided in the
$labelContent.

Parameters

• $element – A form element.

• $labelContent – If null, will attempt to use the element’s label value.

• $position – Append or prepend the element’s label value to the $labelContent. One of
FormLabel::APPEND or FormLabel::PREPEND (default)

Return type string

openTag(array|ElementInterface $attributesOrElement = null)
Renders the <label> open tag and attributes.

Parameters $attributesOrElement – An array of key value attributes or a ElementInterface
instance.

Return type string

closeTag()
Renders a </label> closing tag.

Return type string

58.2.10 AbstractHelper

The AbstractHelper is used as a base abstract class for Form view helpers, providing methods for vali-
dating form HTML attributes, as well as controlling the doctype and character encoding. AbstractHelper
also extends from Zend\I18n\View\Helper\AbstractTranslatorHelper which provides an imple-
mentation for the Zend\I18n\Translator\TranslatorAwareInterface that allows setting a trans-
lator and text domain. The following public methods are in addition to the inherited methods of
Zend\I18n\View\Helper\AbstractTranslatorHelper.

setDoctype(string $doctype)
Sets a doctype to use in the helper.

getDoctype()
Returns the doctype used in the helper.

278 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

Return type string

setEncoding(string $encoding)
Set the translation text domain to use in helper when translating.

getEncoding()
Returns the character encoding used in the helper.

Return type string

getId()
Returns the element id. If no ID attribute present, attempts to use the name attribute. If name attribute is also
not present, returns null.

Return type string or null

58.3 HTML5 Helpers

58.3.1 FormColor

The FormColor view helper can be used to render a <input type="color">HTML5 form input. It is meant to
work with the Zend\Form\Element\Color element, which provides a default input specification for validating HTML5
color values.

FormColor extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Color(’my-color’);
4

5 // Within your view...
6

7 echo $this->formColor($element);
8 // <input type="color" name="my-color" value="">

58.3.2 FormDate

The FormDate view helper can be used to render a <input type="date"> HTML5 form input. It is meant to
work with the Zend\Form\Element\Date element, which provides a default input specification for validating HTML5
date values.

FormDate extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Date(’my-date’);
4

5 // Within your view...
6

7 echo $this->formDate($element);
8 // <input type="date" name="my-date" value="">

58.3. HTML5 Helpers 279

Zend Framework 2 Documentation, Release 2.0.0

58.3.3 FormDateTime

The FormDateTime view helper can be used to render a <input type="datetime"> HTML5 form input.
It is meant to work with the Zend\Form\Element\DateTime element, which provides a default input specification for
validating HTML5 datetime values.

FormDateTime extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\DateTime(’my-datetime’);
4

5 // Within your view...
6

7 echo $this->formDateTime($element);
8 // <input type="datetime" name="my-datetime" value="">

58.3.4 FormDateTimeLocal

The FormDateTimeLocal view helper can be used to render a <input type="datetime-local">HTML5
form input. It is meant to work with the Zend\Form\Element\DateTimeLocal element, which provides a default input
specification for validating HTML5 datetime values.

FormDateTimeLocal extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\DateTimeLocal(’my-datetime’);
4

5 // Within your view...
6

7 echo $this->formDateTimeLocal($element);
8 // <input type="datetime-local" name="my-datetime" value="">

58.3.5 FormEmail

The FormEmail view helper can be used to render a <input type="email">HTML5 form input. It is meant to
work with the Zend\Form\Element\Email element, which provides a default input specification with an email validator.

FormEmail extends from Zend\Form\View\Helper\FormInput. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Email(’my-email’);
4

5 // Within your view...
6

7 echo $this->formEmail($element);
8 // <input type="email" name="my-email" value="">

58.3.6 FormMonth

The FormMonth view helper can be used to render a <input type="month">HTML5 form input. It is meant to
work with the Zend\Form\Element\Month element, which provides a default input specification for validating HTML5
date values.

280 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

FormMonth extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Month(’my-month’);
4

5 // Within your view...
6

7 echo $this->formMonth($element);
8 // <input type="month" name="my-month" value="">

58.3.7 FormTime

The FormTime view helper can be used to render a <input type="time"> HTML5 form input. It is meant to
work with the Zend\Form\Element\Time element, which provides a default input specification for validating HTML5
time values.

FormTime extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Time(’my-time’);
4

5 // Within your view...
6

7 echo $this->formTime($element);
8 // <input type="time" name="my-time" value="">

58.3.8 FormWeek

The FormWeek view helper can be used to render a <input type="week"> HTML5 form input. It is meant to
work with the Zend\Form\Element\Week element, which provides a default input specification for validating HTML5
week values.

FormWeek extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

1 use Zend\Form\Element;
2

3 $element = new Element\Week(’my-week’);
4

5 // Within your view...
6

7 echo $this->formWeek($element);
8 // <input type="week" name="my-week" value="">

58.3. HTML5 Helpers 281

Zend Framework 2 Documentation, Release 2.0.0

282 Chapter 58. Form View Helpers

CHAPTER

FIFTYNINE

ZEND\HTTP

59.1 Overview

Zend\Http is a primary foundational component of Zend Framework. Since much of what PHP does is web-based,
specifically HTTP, it makes sense to have a performant, extensible, concise and consistent API to do all things HTTP.
In nutshell, there are several parts of Zend\Http:

• Context-less Request and Response classes that expose a fluent API for introspecting several aspects of
HTTP messages:

– Request line information and response status information

– Parameters, such as those found in POST and GET

– Message Body

– Headers

• A Client implementation with various adapters that allow for sending requests and introspecting responses.

59.2 Zend\Http Request, Response and Headers

The Request, Response and Headers portion of the Zend\Http component provides a fluent, object-oriented inter-
face for introspecting information from all the various parts of an HTTP request or HTTP response. The two main
objects are Zend\Http\Request and Zend\Http\Response. These two classes are “context-less”, meaning
that they model a request or response in the same way whether it is presented by a client (to send a request and receive
a response) or by a server (to receive a request and send a response). In other words, regardless of the context, the API
remains the same for introspecting their various respective parts. Each attempts to fully model a request or response
so that a developer can create these objects from a factory, or create and populate them manually.

283

Zend Framework 2 Documentation, Release 2.0.0

284 Chapter 59. Zend\Http

CHAPTER

SIXTY

ZEND\HTTP\REQUEST

60.1 Overview

The Zend\Http\Request object is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP request.

A typical HTTP request looks like this:

| METHOD | URI | VERSION |

| HEADERS |

| BODY |

In simplified terms, the request consist of a method, URI and the HTTP version number which all make up the “Request
Line.” Next is a set of headers; there can be 0 or an unlimited number of headers. After that is the request body, which
is typically used when a client wishes to send data to the server in the form of an encoded file, or include a set of
POST parameters, for example. More information on the structure and specification of an HTTP request can be found
in RFC-2616 on the W3.org site.

60.2 Quick Start

Request objects can either be created from the provided fromString() factory, or, if you wish to have a completely
empty object to start with, by simply instantiating the Zend\Http\Request class.

1 use Zend\Http\Request;
2 $request = Request::fromString(<<<EOS
3 POST /foo HTTP/1.1
4 HeaderField1: header-field-value
5 HeaderField2: header-field-value2
6

7 foo=bar&
8 EOS);
9

10 // OR, the completely equivalent
11

12 $request = new Request();
13 $request->setMethod(Request::METHOD_POST);
14 $request->setUri(’/foo’);
15 $request->header()->addHeaders(array(

285

http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Zend Framework 2 Documentation, Release 2.0.0

16 ’HeaderField1’ => ’header-field-value’,
17 ’HeaderField2’ => ’header-field-value2’,
18);
19 $request->post()->set(’foo’, ’bar’);

60.3 Configuration Options

None currently

60.4 Available Methods

Request::fromString Request::fromString(string $string)

A factory that produces a Request object from a well-formed Http Request string

Returns Zend\Http\Request

setMethod setMethod(string $method)

Set the method for this request.

Returns Zend\Http\Request

getMethod getMethod()

Return the method for this request.

Returns string.

setUri setUri(string|\Zend\Stdlib\RequestInterface|\Zend\Stdlib\Message|\Zend\Stdlib\ParametersInterface|\Zend\Stdlib\Parameters|\Zend\Uri\Http
$uri)

Set the URI/URL for this request; this can be a string or an instance of Zend\Uri\Http.

Returns Zend\Http\Request

getUri getUri()

Return the URI for this request object.

Returns string.

uri uri()

Return the URI for this request object as an instance of Zend\Uri\Http.

Returns Zend\Uri\Http.

setVersion setVersion(string $version)

Set the HTTP version for this object, one of 1.0 or 1.1 (Request::VERSION_10,
Request::VERSION_11).

Returns Zend\Http\Request.

setVersion getVersion()

Return the HTTP version for this request

Returns string

286 Chapter 60. Zend\Http\Request

Zend Framework 2 Documentation, Release 2.0.0

setQuery setQuery(Zend\Stdlib\ParametersInterface $query)

Provide an alternate Parameter Container implementation for query parameters in this object. (This is NOT the
primary API for value setting; for that, see query().)

Returns Zend\Http\Request

setQuery query()

Return the parameter container responsible for query parameters.

Returns Zend\Stdlib\ParametersInterface

setPost setPost(Zend\Stdlib\ParametersInterface $post)

Provide an alternate Parameter Container implementation for post parameters in this object. (This is NOT the
primary API for value setting; for that, see post().)

Returns Zend\Http\Request

post post()

Return the parameter container responsible for post parameters.

Returns Zend\Stdlib\ParametersInterface

cookie cookie()

Return the Cookie header, this is the same as calling $request->header()->get(‘Cookie’);.

Returns Zend\Http\Header\Cookie

setFile setFile(Zend\Stdlib\ParametersInterface $files)

Provide an alternate Parameter Container implementation for file parameters in this object. (This is NOT the
primary API for value setting; for that, see file().)

Returns Zend\Http\Request

file file()

Return the parameter container responsible for file parameters

Returns Zend\Stdlib\ParametersInterface

setServer setServer(Zend\Stdlib\ParametersInterface $server)

Provide an alternate Parameter Container implementation for server parameters in this object. (This is NOT the
primary API for value setting; for that, see server().)

Returns Zend\Http\Request

server server()

Return the parameter container responsible for server parameters

Returns Zend\Stdlib\ParametersInterface

setEnv setEnv(Zend\Stdlib\ParametersInterface $env)

Provide an alternate Parameter Container implementation for env parameters in this object. (This is NOT the
primary API for value setting; for that, see env().)

Returns Zend\Http\Request

env env()

Return the parameter container responsible for env parameters

Returns Zend\Stdlib\ParametersInterface

60.4. Available Methods 287

Zend Framework 2 Documentation, Release 2.0.0

setHeader setHeader(Zend\Http\Headers $headers)

Provide an alternate Parameter Container implementation for headers in this object. (This is NOT the primary
API for value setting; for that, see header().)

Returns Zend\Http\Request

header header()

Return the header container responsible for headers

Returns Zend\Http\Headers

setRawBody setRawBody(string $string)

Set the raw body for the request

Returns Zend\Http\Request

getRawBody getRawBody()

Get the raw body for the request

Returns string

isOptions isOptions()

Is this an OPTIONS method request?

Returns bool

isGet isGet()

Is this a GET method request?

Returns bool

isHead isHead()

Is this a HEAD method request?

Returns bool

isPost isPost()

Is this a POST method request?

Returns bool

isPut isPut()

Is this a PUT method request?

Returns bool

isDelete isDelete()

Is this a DELETE method request?

Returns bool

isTrace isTrace()

Is this a TRACE method request?

Returns bool

isConnect isConnect()

Is this a CONNECT method request?

288 Chapter 60. Zend\Http\Request

Zend Framework 2 Documentation, Release 2.0.0

Returns bool

renderRequestLine renderRequestLine()

Return the formatted request line (first line) for this HTTP request

Returns string

toString toString()

Returns string

__toString __toString()

Allow PHP casting of this object

Returns string

setMetadata setMetadata(string|int|array|Traversable $spec, mixed $value)

Set message metadata

Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata
container.

Returns Zend\Stdlib\Message

getMetadata getMetadata(null|string|int $key, null|mixed $default)

Retrieve all metadata or a single metadatum as specified by key

Returns mixed

setContent setContent(mixed $value)

Set message content

Returns Zend\Stdlib\Message

getContent getContent()

Get message content

Returns mixed

60.5 Examples

Generating a Request object from a string

1 use Zend\Http\Request;
2 $string = "GET /foo HTTP/1.1\r\n\r\nSome Content";
3 $request = Request::fromString($string);
4

5 $request->getMethod(); // returns Request::METHOD_GET
6 $request->getUri(); // returns ’/foo’
7 $request->getVersion(); // returns Request::VERSION_11 or ’1.1’
8 $request->getRawBody(); // returns ’Some Content’

60.5. Examples 289

Zend Framework 2 Documentation, Release 2.0.0

Generating a Request object from an array

1 N/A

Retrieving and setting headers

1 use Zend\Http\Request;
2 $request = new Request();
3 $request->getHeaders()->get(’Content-Type’); // return content type
4 $request->getHeaders()->addHeader(new Cookie(’foo’ => ’bar’));
5 foreach ($request->getHeaders() as $header) {
6 echo $header->getFieldName() . ’ with value ’ . $header->getFieldValue();
7 }

Retrieving and setting GET and POST values

1 use Zend\Http\Request;
2 $request = new Request();
3

4 // post() and get() both return, by default, a Parameters object, which extends ArrayObject
5 $request->post()->foo = ’value’;
6 echo $request->get()->myVar;
7 echo $request->get()->offsetGet(’myVar’);

Generating a formatted HTTP Request from a Request object

1 use Zend\Http\Request;
2 $request = new Request();
3 $request->setMethod(Request::METHOD_POST);
4 $request->setUri(’/foo’);
5 $request->header()->addHeaders(array(
6 ’HeaderField1’ => ’header-field-value’,
7 ’HeaderField2’ => ’header-field-value2’,
8);
9 $request->post()->set(’foo’, ’bar’);

10 echo $request->toString();
11

12 /** Will produce:
13 POST /foo HTTP/1.1
14 HeaderField1: header-field-value
15 HeaderField2: header-field-value2
16

17 foo=bar
18 */

290 Chapter 60. Zend\Http\Request

CHAPTER

SIXTYONE

ZEND\HTTP\RESPONSE

61.1 Overview

The Zend\Http\Response class is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP response.

A typical HTTP Response looks like this:

| VERSION | CODE | REASON |

| HEADERS |

| BODY |

The first line of the response consists of the HTTP version, status code, and the reason string for the provided status
code; this is called the Response Line. Next is a set of headers; there can be 0 or an unlimited number of headers.
The remainder of the response is the response body, which is typically a string of HTML that will render on the
client’s browser, but which can also be a place for request/response payload data typical of an AJAX request. More
information on the structure and specification of an HTTP response can be found in RFC-2616 on the W3.org site.

61.2 Quick Start

Response objects can either be created from the provided fromString() factory, or, if you wish to have a com-
pletely empty object to start with, by simply instantiating the Zend\Http\Response class.

1 use Zend\Http\Response;
2 $response = Response::fromString(<<<EOS
3 HTTP/1.0 200 OK
4 HeaderField1: header-field-value
5 HeaderField2: header-field-value2
6

7 <html>
8 <body>
9 Hello World

10 </body>
11 </html>
12 EOS);
13

14 // OR
15

291

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Zend Framework 2 Documentation, Release 2.0.0

16 $response = new Response();
17 $response->setStatusCode(Response::STATUS_CODE_200);
18 $response->getHeaders()->addHeaders(array(
19 ’HeaderField1’ => ’header-field-value’,
20 ’HeaderField2’ => ’header-field-value2’,
21);
22 $response->setRawBody(<<<EOS
23 <html>
24 <body>
25 Hello World
26 </body>
27 </html>
28 EOS);

61.3 Configuration Options

None currently available

61.4 Available Methods

Response::fromString Response::fromString(string $string)

Populate object from string

Returns Zend\Http\Response

renderStatusLine renderStatusLine()

Render the status line header

Returns string

setHeaders setHeaders(Zend\Http\Headers $headers)

Set response headers

Returns Zend\Http\Response

headers headers()

Get response headers

Returns Zend\Http\Headers

setVersion setVersion(string $version)

Returns Zend\Http\Response

getVersion getVersion()

Returns string

getStatusCode getStatusCode()

Retrieve HTTP status code

Returns int

setReasonPhrase setReasonPhrase(string $reasonPhrase)

Returns Zend\Http\Response

292 Chapter 61. Zend\Http\Response

Zend Framework 2 Documentation, Release 2.0.0

getReasonPhrase getReasonPhrase()

Get HTTP status message

Returns string

setStatusCode setStatusCode(numeric $code)

Set HTTP status code and (optionally) message

Returns Zend\Http\Response

isClientError isClientError()

Does the status code indicate a client error?

Returns bool

isForbidden isForbidden()

Is the request forbidden due to ACLs?

Returns bool

isInformational isInformational()

Is the current status “informational”?

Returns bool

isNotFound isNotFound()

Does the status code indicate the resource is not found?

Returns bool

isOk isOk()

Do we have a normal, OK response?

Returns bool

isServerError isServerError()

Does the status code reflect a server error?

Returns bool

isRedirect isRedirect()

Do we have a redirect?

Returns bool

isSuccess isSuccess()

Was the response successful?

Returns bool

decodeChunkedBody decodeChunkedBody(string $body)

Decode a “chunked” transfer-encoded body and return the decoded text

Returns string

decodeGzip decodeGzip(string $body)

Decode a gzip encoded message (when Content-encoding = gzip)

Currently requires PHP with zlib support

61.4. Available Methods 293

Zend Framework 2 Documentation, Release 2.0.0

Returns string

decodeGzip decodeDeflate(string $body)

Decode a zlib deflated message (when Content-encoding = deflate)

Currently requires PHP with zlib support

Returns string

setMetadata setMetadata(string|int|array|Traversable $spec, mixed $value)

Set message metadata

Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata
container.

Returns Zend\Stdlib\Message

getMetadata getMetadata(null|string|int $key, null|mixed $default)

Retrieve all metadata or a single metadatum as specified by key

Returns mixed

setContent setContent(mixed $value)

Set message content

Returns Zend\Stdlib\Message

getContent getContent()

Get message content

Returns mixed

toString toString()

Returns string

61.5 Examples

Generating a Response object from a string

1 use Zend\Http\Response;
2 $request = Response::fromString(<<<EOS
3 HTTP/1.0 200 OK
4 HeaderField1: header-field-value
5 HeaderField2: header-field-value2
6

7 <html>
8 <body>
9 Hello World

10 </body>
11 </html>
12 EOS);

294 Chapter 61. Zend\Http\Response

Zend Framework 2 Documentation, Release 2.0.0

Generating a Response object from a string

1 use Zend\Http\Response;
2 $response = new Response();
3 $response->setStatusCode(Response::STATUS_CODE_200);
4 $response->getHeaders()->addHeaders(array(
5 ’HeaderField1’ => ’header-field-value’,
6 ’HeaderField2’ => ’header-field-value2’,
7);
8 $response->setRawBody(<<<EOS
9 <html>

10 <body>
11 Hello World
12 </body>
13 </html>
14 EOS);

61.5. Examples 295

Zend Framework 2 Documentation, Release 2.0.0

296 Chapter 61. Zend\Http\Response

CHAPTER

SIXTYTWO

ZEND\HTTP\HEADERS AND THE
VARIOUS HEADER CLASSES

62.1 Overview

The Zend\Http\Headers class is a container for HTTP headers. It is typically accessed as part of a
Zend\Http\Request or Zend\Http\Response header() call. The Headers container will lazily load ac-
tual Header objects as to reduce the overhead of header specific parsing.

The Zend\Http\Header* classes are the domain specific implementations for the various types of Headers
that one might encounter during the typical HTTP request. If a header of unknown type is encountered, it will be
implemented as a Zend\Http\Header\GenericHeader instance. See the below table for a list of the various
HTTP headers and the API that is specific to each header type.

62.2 Quick Start

The quickest way to get started interacting with header objects is by getting an already populated Headers container
from a request or response object.

62.3 Configuration Options

None currently available.

62.4 Available Methods

Headers::fromString Headers::fromString(string $string)

Populates headers from string representation

Parses a string for headers, and aggregates them, in order, in the current instance, primarily as strings until they
are needed (they will be lazy loaded).

Returns Zend\Http\Headers

setPluginClassLoader setPluginClassLoader(Zend\Loader\PluginClassLocator
$pluginClassLoader)

Set an alternate implementation for the plugin class loader

297

Zend Framework 2 Documentation, Release 2.0.0

Returns Zend\Http\Headers

getPluginClassLoader getPluginClassLoader()

Return an instance of a Zend\Loader\PluginClassLocator, lazyload and inject map if necessary.

Returns Zend\Loader\PluginClassLocator

addHeaders addHeaders(array|Traversable $headers)

Add many headers at once

Expects an array (or Traversable object) of type/value pairs.

Returns Zend\Http\Headers

addHeaders addHeaderLine(string $headerFieldNameOrLine, string $fieldValue)

Add a raw header line, either in name => value, or as a single string ‘name: value’

This method allows for lazy-loading in that the parsing and instantiation of Header object will be delayed until
they are retrieved by either get() or current().

Returns Zend\Http\Headers

addHeader addHeader(Zend\Http\Header\HeaderInterface $header)

Add a Header to this container, for raw values see addHeaderLine() and addHeaders().

Returns Zend\Http\Headers

removeHeader removeHeader(Zend\Http\Header\HeaderInterface $header)

Remove a Header from the container

Returns bool

clearHeaders clearHeaders()

Clear all headers

Removes all headers from queue

Returns Zend\Http\Headers

get get(string $name)

Get all headers of a certain name/type

Returns false| Zend\Http\Header\HeaderInterface| ArrayIterator

has has(string $name)

Test for existence of a type of header

Returns bool

next next()

Advance the pointer for this object as an interator

Returns void

key key()

Return the current key for this object as an interator

Returns mixed

298 Chapter 62. Zend\Http\Headers And The Various Header Classes

Zend Framework 2 Documentation, Release 2.0.0

valid valid()

Is this iterator still valid?

Returns bool

rewind rewind()

Reset the internal pointer for this object as an iterator

Returns void

current current()

Return the current value for this iterator, lazy loading it if need be

Returns Zend\Http\Header\HeaderInterface

count count()

Return the number of headers in this container. If all headers have not been parsed, actual count could increase
if MultipleHeader objects exist in the Request/Response. If you need an exact count, iterate.

Returns int

toString toString()

Render all headers at once

This method handles the normal iteration of headers; it is up to the concrete classes to prepend with the appro-
priate status/request line.

Returns string

toArray toArray()

Return the headers container as an array

Returns array

forceLoading forceLoading()

By calling this, it will force parsing and loading of all headers, after this count() will be accurate

Returns bool

62.5 Examples

62.6 Zend\Http\Header* Base Methods

fromString fromString(string $headerLine)

Factory to generate a header object from a string

Returns Zend\Http\Header\GenericHeader

getFieldName getFieldName()

Retrieve header field name

Returns string

62.5. Examples 299

Zend Framework 2 Documentation, Release 2.0.0

getFieldValue getFieldValue()

Retrieve header field value

Returns string

toString toString()

Cast to string as a well formed HTTP header line

Returns in form of “NAME: VALUE\r\n”

Returns string

62.7 List of Http Header Types

Table 62.1: Zend\Http\Header* Classes

Class Name Additional Methods
Accept N/A
AcceptCharset N/A
AcceptEncoding N/A
AcceptLanguage N/A
AcceptRanges getRangeUnit() / setRangeUnit() - The range unit of the accept ranges header
Age getDeltaSeconds() / setDeltaSeconds() - The age in delta seconds
Allow getAllowedMethods() / setAllowedMethods() - An array of allowed methods
AuthenticationInfo N/A
Authorization N/A
CacheControl N/A
Connection N/A
ContentDisposition N/A
ContentEncoding N/A
ContentLanguage N/A
ContentLength N/A
ContentLocation N/A
ContentMD5 N/A
ContentRange N/A
ContentType N/A
Cookie Extends \ArrayObjectsetEncodeValue() / getEncodeValue() - Whether or not to encode values
Date N/A
Etag N/A
Expect N/A
Expires N/A
From N/A
Host N/A
IfMatch N/A
IfModifiedSince N/A
IfNoneMatch N/A
IfRange N/A
IfUnmodifiedSince N/A
KeepAlive N/A
LastModified N/A

Continued on next page

300 Chapter 62. Zend\Http\Headers And The Various Header Classes

Zend Framework 2 Documentation, Release 2.0.0

Table 62.1 – continued from previous page
Class Name Additional Methods

Location N/A
MaxForwards N/A
Pragma N/A
ProxyAuthenticate N/A
ProxyAuthorization N/A
Range N/A
Referer N/A
Refresh N/A
RetryAfter N/A
Server N/A
SetCookie getName() / setName() - The cookies namegetValue() / setValue() - The cookie valuegetDomain() / setDomain() - The domain the cookie applies togetExpires() / setExpires() - The time frame the cookie is valid for, null is a session cookiegetPath() / setPath() - The uri path the cookie is bound toisSecure() / setSecure() - Whether the cookies contains the Secure flagisHttponly() / setHttponly() - Whether the cookies can be accessed via HTTP only
TE N/A
Trailer N/A
TransferEncoding N/A
Upgrade N/A
UserAgent N/A
Vary N/A
Via N/A
Warning N/A
WWWAuthenticate N/A

62.7. List of Http Header Types 301

Zend Framework 2 Documentation, Release 2.0.0

302 Chapter 62. Zend\Http\Headers And The Various Header Classes

CHAPTER

SIXTYTHREE

ZEND_HTTP_COOKIE AND
ZEND_HTTP_COOKIEJAR

63.1 Introduction

Zend_Http_Cookie, as expected, is a class that represents an HTTP cookie. It provides methods for parsing HTTP
response strings, collecting cookies, and easily accessing their properties. It also allows checking if a cookie matches
against a specific scenario, IE a request URL, expiration time, secure connection, etc.

Zend_Http_CookieJar is an object usually used by Zend_Http_Client to hold a set of
Zend_Http_Cookie objects. The idea is that if a Zend_Http_CookieJar object is attached to a
Zend_Http_Client object, all cookies going from and into the client through HTTP requests and responses will
be stored by the CookieJar object. Then, when the client will send another request, it will first ask the CookieJar
object for all cookies matching the request. These will be added to the request headers automatically. This is highly
useful in cases where you need to maintain a user session over consecutive HTTP requests, automatically sending the
session ID cookies when required. Additionally, the Zend_Http_CookieJar object can be serialized and stored
in $_SESSION when needed.

63.2 Instantiating Zend_Http_Cookie Objects

Instantiating a Cookie object can be done in two ways:

• Through the constructor, using the following syntax: new Zend_Http_Cookie(string
$name, string $value, string $domain, [int $expires, [string
$path, [boolean $secure]]]);

– $name: The name of the cookie (eg. ‘PHPSESSID’) (required)

– $value: The value of the cookie (required)

– $domain: The cookie’s domain (eg. ‘.example.com’) (required)

– $expires: Cookie expiration time, as UNIX time stamp (optional, defaults to NULL). If not
set, cookie will be treated as a ‘session cookie’ with no expiration time.

– $path: Cookie path, eg. ‘/foo/bar/’ (optional, defaults to ‘/’)

– $secure: Boolean, Whether the cookie is to be sent over secure (HTTPS) connections only
(optional, defaults to boolean FALSE)

• By calling the fromString($cookieStr, [$refUri, [$encodeValue]]) static method, with a cookie string
as represented in the ‘Set-Cookie ‘HTTP response header or ‘Cookie’HTTP request header. In this

303

Zend Framework 2 Documentation, Release 2.0.0

case, the cookie value must already be encoded. When the cookie string does not contain a ‘domain’
part, you must provide a reference URI according to which the cookie’s domain and path will be set.

The fromString() method accepts the following parameters:

– $cookieStr: a cookie string as represented in the ‘Set-Cookie’HTTP response header or
‘Cookie’HTTP request header (required)

– $refUri: a reference URI according to which the cookie’s domain and path will be set.
(optional, defaults to parsing the value from the $cookieStr)

– $encodeValue: If the value should be passed through urldecode. Also effects the cookie’s
behavior when being converted back to a cookie string. (optional, defaults to true)

Instantiating a Zend_Http_Cookie object

1 // First, using the constructor. This cookie will expire in 2 hours
2 $cookie = new Zend_Http_Cookie(’foo’,
3 ’bar’,
4 ’.example.com’,
5 time() + 7200,
6 ’/path’);
7

8 // You can also take the HTTP response Set-Cookie header and use it.
9 // This cookie is similar to the previous one, only it will not expire, and

10 // will only be sent over secure connections
11 $cookie = Zend_Http_Cookie::fromString(’foo=bar; domain=.example.com; ’ .
12 ’path=/path; secure’);
13

14 // If the cookie’s domain is not set, you have to manually specify it
15 $cookie = Zend_Http_Cookie::fromString(’foo=bar; secure;’,
16 ’http://www.example.com/path’);

Note: When instantiating a cookie object using the Zend_Http_Cookie::fromString() method, the
cookie value is expected to be URL encoded, as cookie strings should be. However, when using the
constructor, the cookie value string is expected to be the real, decoded value.

A cookie object can be transferred back into a string, using the __toString() magic method. This method will produce
a HTTP request “Cookie” header string, showing the cookie’s name and value, and terminated by a semicolon (‘;’).
The value will be URL encoded, as expected in a Cookie header:

Stringifying a Zend_Http_Cookie object

1 // Create a new cookie
2 $cookie = new Zend_Http_Cookie(’foo’,
3 ’two words’,
4 ’.example.com’,
5 time() + 7200,
6 ’/path’);
7

8 // Will print out ’foo=two+words;’ :
9 echo $cookie->__toString();

10

11 // This is actually the same:

304 Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

Zend Framework 2 Documentation, Release 2.0.0

12 echo (string) $cookie;
13

14 // In PHP 5.2 and higher, this also works:
15 echo $cookie;

63.3 Zend_Http_Cookie getter methods

Once a Zend_Http_Cookie object is instantiated, it provides several getter methods to get the different properties
of the HTTP cookie:

• getName(): Get the name of the cookie

• getValue(): Get the real, decoded value of the cookie

• getDomain(): Get the cookie’s domain

• getPath(): Get the cookie’s path, which defaults to ‘/’

• getExpiryTime(): Get the cookie’s expiration time, as UNIX time stamp. If the cookie has no expiration
time set, will return NULL.

Additionally, several boolean tester methods are provided:

• isSecure(): Check whether the cookie is set to be sent over secure connections only. Generally speaking, if
TRUE the cookie should only be sent over HTTPS.

• isExpired(int $time = null): Check whether the cookie is expired or not. If the cookie has no
expiration time, will always return TRUE. If $time is provided, it will override the current time stamp as the
time to check the cookie against.

• isSessionCookie(): Check whether the cookie is a “session cookie” - that is a cookie with no expiration
time, which is meant to expire when the session ends.

Using getter methods with Zend_Http_Cookie

1 // First, create the cookie
2 $cookie =
3 Zend_Http_Cookie::fromString(’foo=two+words; ’ +
4 ’domain=.example.com; ’ +
5 ’path=/somedir; ’ +
6 ’secure; ’ +
7 ’expires=Wednesday, 28-Feb-05 20:41:22 UTC’);
8

9 echo $cookie->getName(); // Will echo ’foo’
10 echo $cookie->getValue(); // will echo ’two words’
11 echo $cookie->getDomain(); // Will echo ’.example.com’
12 echo $cookie->getPath(); // Will echo ’/’
13

14 echo date(’Y-m-d’, $cookie->getExpiryTime());
15 // Will echo ’2005-02-28’
16

17 echo ($cookie->isExpired() ? ’Yes’ : ’No’);
18 // Will echo ’Yes’
19

20 echo ($cookie->isExpired(strtotime(’2005-01-01’) ? ’Yes’ : ’No’);
21 // Will echo ’No’
22

63.3. Zend_Http_Cookie getter methods 305

Zend Framework 2 Documentation, Release 2.0.0

23 echo ($cookie->isSessionCookie() ? ’Yes’ : ’No’);
24 // Will echo ’No’

63.4 Zend_Http_Cookie: Matching against a scenario

The only real logic contained in a Zend_Http_Cookie object, is in the match() method. This method is used to
test a cookie against a given HTTP request scenario, in order to tell whether the cookie should be sent in this request
or not. The method has the following syntax and parameters: Zend_Http_Cookie->match(mixed $uri,
[boolean $matchSessionCookies, [int $now]]);

• $uri: A Zend_Uri_Http object with a domain name and path to be checked. Optionally, a string represent-
ing a valid HTTP URL can be passed instead. The cookie will match if the URL‘s scheme (HTTP or HTTPS),
domain and path all match.

• $matchSessionCookies: Whether session cookies should be matched or not. Defaults to TRUE. If set to
FALSE, cookies with no expiration time will never match.

• $now: Time (represented as UNIX time stamp) to check a cookie against for expiration. If not specified, will
default to the current time.

Matching cookies

1 // Create the cookie object - first, a secure session cookie
2 $cookie = Zend_Http_Cookie::fromString(’foo=two+words; ’ +
3 ’domain=.example.com; ’ +
4 ’path=/somedir; ’ +
5 ’secure;’);
6

7 $cookie->match(’https://www.example.com/somedir/foo.php’);
8 // Will return true
9

10 $cookie->match(’http://www.example.com/somedir/foo.php’);
11 // Will return false, because the connection is not secure
12

13 $cookie->match(’https://otherexample.com/somedir/foo.php’);
14 // Will return false, because the domain is wrong
15

16 $cookie->match(’https://example.com/foo.php’);
17 // Will return false, because the path is wrong
18

19 $cookie->match(’https://www.example.com/somedir/foo.php’, false);
20 // Will return false, because session cookies are not matched
21

22 $cookie->match(’https://sub.domain.example.com/somedir/otherdir/foo.php’);
23 // Will return true
24

25 // Create another cookie object - now, not secure, with expiration time
26 // in two hours
27 $cookie = Zend_Http_Cookie::fromString(’foo=two+words; ’ +
28 ’domain=www.example.com; ’ +
29 ’expires=’
30 . date(DATE_COOKIE, time() + 7200));
31

32 $cookie->match(’http://www.example.com/’);
33 // Will return true

306 Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

Zend Framework 2 Documentation, Release 2.0.0

34

35 $cookie->match(’https://www.example.com/’);
36 // Will return true - non secure cookies can go over secure connections
37 // as well!
38

39 $cookie->match(’http://subdomain.example.com/’);
40 // Will return false, because the domain is wrong
41

42 $cookie->match(’http://www.example.com/’, true, time() + (3 * 3600));
43 // Will return false, because we added a time offset of +3 hours to
44 // current time

63.5 The Zend_Http_CookieJar Class: Instantiation

In most cases, there is no need to directly instantiate a Zend_Http_CookieJar object. If you want to attach a
new cookie jar to your Zend_Http_Client object, just call the Zend_Http_Client->setCookieJar() method, and
a new, empty cookie jar will be attached to your client. You could later get this cookie jar using Zend_Http_Client-
>getCookieJar().

If you still wish to manually instantiate a CookieJar object, you can do so by calling “new Zend_Http_CookieJar()”
directly - the constructor method does not take any parameters. Another way to instantiate a CookieJar ob-
ject is to use the static Zend_Http_CookieJar::fromResponse() method. This method takes two parameters: a
Zend_Http_Response object, and a reference URI, as either a string or a Zend_Uri_Http object. This method
will return a new Zend_Http_CookieJar object, already containing the cookies set by the passed HTTP response.
The reference URI will be used to set the cookie’s domain and path, if they are not defined in the Set-Cookie headers.

63.6 Adding Cookies to a Zend_Http_CookieJar object

Usually, the Zend_Http_Client object you attached your CookieJar object to will automatically add cookies set
by HTTP responses to your jar. if you wish to manually add cookies to your jar, this can be done by using two methods:

• Zend_Http_CookieJar->addCookie($cookie[, $ref_uri]): Add a single cookie to the jar.
$cookie can be either a Zend_Http_Cookie object or a string, which will be converted automatically into a
Cookie object. If a string is provided, you should also provide $ref_uri - which is a reference URI either as a
string or Zend_Uri_Http object, to use as the cookie’s default domain and path.

• Zend_Http_CookieJar->addCookiesFromResponse($response, $ref_uri): Add all cook-
ies set in a single HTTP response to the jar. $response is expected to be a Zend_Http_Response object with
Set-Cookie headers. $ref_uri is the request URI, either as a string or a Zend_Uri_Http object, according to
which the cookies’ default domain and path will be set.

63.7 Retrieving Cookies From a Zend_Http_CookieJar object

Just like with adding cookies, there is usually no need to manually fetch cookies from a CookieJar object. Your
Zend_Http_Client object will automatically fetch the cookies required for an HTTP request for you. However,
you can still use 3 provided methods to fetch cookies from the jar object: getCookie(), getAllCookies(),
and getMatchingCookies(). Additionnaly, iterating over the CookieJar will let you retrieve all the
Zend_Http_Cookie objects from it.

It is important to note that each one of these methods takes a special parameter, which sets the return type of the
method. This parameter can have 3 values:

63.5. The Zend_Http_CookieJar Class: Instantiation 307

Zend Framework 2 Documentation, Release 2.0.0

• Zend_Http_CookieJar::COOKIE_OBJECT: Return a Zend_Http_Cookie object. If the method re-
turns more than one cookie, an array of objects will be returned.

• Zend_Http_CookieJar::COOKIE_STRING_ARRAY: Return cookies as strings, in a “foo=bar” format,
suitable for sending in a HTTP request “Cookie” header. If more than one cookie is returned, an array of strings
is returned.

• Zend_Http_CookieJar::COOKIE_STRING_CONCAT: Similar to COOKIE_STRING_ARRAY, but if
more than one cookie is returned, this method will concatenate all cookies into a single, long string separated
by semicolons (;), and return it. This is especially useful if you want to directly send all matching cookies in a
single HTTP request “Cookie” header.

The structure of the different cookie-fetching methods is described below:

• Zend_Http_CookieJar->getCookie($uri, $cookie_name[, $ret_as]): Get a single
cookie from the jar, according to its URI (domain and path) and name. $uri is either a string or a
Zend_Uri_Http object representing the URI. $cookie_name is a string identifying the cookie name. $ret_as
specifies the return type as described above. $ret_type is optional, and defaults to COOKIE_OBJECT.

• Zend_Http_CookieJar->getAllCookies($ret_as): Get all cookies from the jar. $ret_as specifies
the return type as described above. If not specified, $ret_type defaults to COOKIE_OBJECT.

• Zend_Http_CookieJar->getMatchingCookies($uri[, $matchSessionCookies[,
$ret_as[, $now]]]): Get all cookies from the jar that match a specified scenario, that is a URI
and expiration time.

– $uri is either a Zend_Uri_Http object or a string specifying the connection type (secure or non-
secure), domain and path to match against.

– $matchSessionCookies is a boolean telling whether to match session cookies or not. Session cookies
are cookies that have no specified expiration time. Defaults to TRUE.

– $ret_as specifies the return type as described above. If not specified, defaults to COOKIE_OBJECT.

– $now is an integer representing the UNIX time stamp to consider as “now” - that is any cookies who are
set to expire before this time will not be matched. If not specified, defaults to the current time.

You can read more about cookie matching here: this section.

308 Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

CHAPTER

SIXTYFOUR

ZEND\HTTP\CLIENT

64.1 Overview

Zend\Http\Client provides an easy interface for performing Hyper-Text Transfer Protocol (HTTP) requests.
Zend\Http\Client supports most simple features expected from an HTTP client, as well as some more complex
features such as HTTP authentication and file uploads. Successful requests (and most unsuccessful ones too) return a
Zend\Http\Response object, which provides access to the response’s headers and body (see this section).

64.2 Quick Start

The class constructor optionally accepts a URL as its first parameter (can be either a string or a Zend\Uri\Http
object), and an array or Zend\Config\Config object containing configuration options. Both can be left out, and
set later using the setUri() and setConfig() methods.

1 use Zend\Http\Client;
2 $client = new Client(’http://example.org’, array(
3 ’maxredirects’ => 0,
4 ’timeout’ => 30
5));
6

7 // This is actually exactly the same:
8 $client = new Client();
9 $client->setUri(’http://example.org’);

10 $client->setConfig(array(
11 ’maxredirects’ => 0,
12 ’timeout’ => 30
13));
14

15 // You can also use a Zend\Config\Ini object to set the client’s configuration
16 $config = new Zend\Config\Ini(’httpclient.ini’, ’secure’);
17 $client->setConfig($config);

Note: Zend\Http\Client uses Zend\Uri\Http to validate URLs. This means that some special characters
like the pipe symbol (‘|’) or the caret symbol (‘^’) will not be accepted in the URL by default. This can be modified
by setting the ‘allowunwise’ option of Zend\Uri to ‘TRUE‘. See this section for more information.

309

Zend Framework 2 Documentation, Release 2.0.0

64.3 Configuration Options

The constructor and setConfig() method accept an associative array of configuration parameters, or a
Zend\Config\Config object. Setting these parameters is optional, as they all have default values.

Table 64.1: Zend\Http\Client configuration parameters

Pa-
ram-
eter

Description Ex-
pected
Values

Default
Value

maxredi-
rects

Maximum number of redirections to follow (0 = none) integer 5

strict Whether perform validation on header names. When set to
FALSE, validation functions will be skipped. Usually this should
not be changed

boolean TRUE

stric-
tredi-
rects

Whether to strictly follow the RFC when redirecting (see this
section)

boolean FALSE

user-
agent

User agent identifier string (sent in request headers) string ‘Zend\Http\Client’

time-
out

Connection timeout (seconds) integer 10

httpver-
sion

HTTP protocol version (usually ‘1.1’ or ‘1.0’) string ‘1.1’

adapter Connection adapter class to use (see this section) mixed ‘Zend\Http\Client\Adapter\Socket’
keepaliveWhether to enable keep-alive connections with the server. Useful

and might improve performance if several consecutive requests to
the same server are performed.

boolean FALSE

stor-
ere-
sponse

Whether to store last response for later retrieval with
getLastResponse(). If set to FALSEgetLastResponse() will return
NULL.

boolean TRUE

en-
code-
cook-
ies

Whether to pass the cookie value through urlencode/urldecode.
Enabling this breaks support with some web servers. Disabling
this limits the range of values the cookies can contain.

boolean TRUE

64.4 Available Methods

__construct __construct(string $uri, array $config)

Constructor

Returns void

setConfig setConfig(Config|array $config = array ())

Set configuration parameters for this HTTP client

Returns Zend\Http\Client

setAdapter setAdapter(Zend\Http\Client\Adapter|string $adapter)

Load the connection adapter

While this method is not called more than one for a client, it is seperated from ->send() to preserve logic and
readability

310 Chapter 64. Zend\Http\Client

Zend Framework 2 Documentation, Release 2.0.0

Returns null

getAdapter getAdapter()

Load the connection adapter

Returns Zend\Http\Client\Adapter

getRequest getRequest()

Get Request

Returns Request

getResponse getResponse()

Get Response

Returns Response

setRequest setRequest(Zend\Http\Zend\Http\Request $request)

Set request

Returns void

setResponse setResponse(Zend\Http\Zend\Http\Response $response)

Set response

Returns void

getLastRequest getLastRequest()

Get the last request (as a string)

Returns string

getLastResponse getLastResponse()

Get the last response (as a string)

Returns string

getRedirectionsCount getRedirectionsCount()

Get the redirections count

Returns integer

setUri setUri(string|Zend\Http\Zend\Uri\Http $uri)

Set Uri (to the request)

Returns void

getUri getUri()

Get uri (from the request)

Returns Zend\Http\Zend\Uri\Http

setMethod setMethod(string $method)

Set the HTTP method (to the request)

Returns Zend\Http\Client

64.4. Available Methods 311

Zend Framework 2 Documentation, Release 2.0.0

getMethod getMethod()

Get the HTTP method

Returns string

setEncType setEncType(string $encType, string $boundary)

Set the encoding type and the boundary (if any)

Returns void

getEncType getEncType()

Get the encoding type

Returns type

setRawBody setRawBody(string $body)

Set raw body (for advanced use cases)

Returns Zend\Http\Client

setParameterPost setParameterPost(array $post)

Set the POST parameters

Returns Zend\Http\Client

setParameterGet setParameterGet(array $query)

Set the GET parameters

Returns Zend\Http\Client

getCookies getCookies()

Return the current cookies

Returns array

addCookie addCookie(ArrayIterator|SetCookie|string $cookie, string $value,
string $domain, string $expire, string $path, boolean $secure = false,
boolean $httponly = true)

Add a cookie

Returns Zend\Http\Client

setCookies setCookies(array $cookies)

Set an array of cookies

Returns Zend\Http\Client

clearCookies clearCookies()

Clear all the cookies

Returns void

setHeaders setHeaders(Headers|array $headers)

Set the headers (for the request)

Returns Zend\Http\Client

312 Chapter 64. Zend\Http\Client

Zend Framework 2 Documentation, Release 2.0.0

hasHeader hasHeader(string $name)

Check if exists the header type specified

Returns boolean

getHeader getHeader(string $name)

Get the header value of the request

Returns string|boolean

setStream setStream(string|boolean $streamfile = true)

Set streaming for received data

Returns Zend\Http\Client

getStream getStream()

Get status of streaming for received data

Returns boolean|string

setAuth setAuth(string $user, string $password, string $type = ’basic’)

Create a HTTP authentication “Authorization:” header according to the specified user, password and authenti-
cation method.

Returns Zend\Http\Client

resetParameters resetParameters()

Reset all the HTTP parameters (auth,cookies,request, response, etc)

Returns void

send send(Request $request)

Send HTTP request

Returns Response

setFileUpload setFileUpload(string $filename, string $formname, string $data,
string $ctype)

Set a file to upload (using a POST request)

Can be used in two ways: 1. $data is null (default): $filename is treated as the name if a local file which will be
read and sent. Will try to guess the content type using mime_content_type(). 2. $data is set - $filename is sent
as the file name, but $data is sent as the file contents and no file is read from the file system. In this case, you
need to manually set the Content-Type ($ctype) or it will default to application/octet-stream.

Returns Zend\Http\Client

removeFileUpload removeFileUpload(string $filename)

Remove a file to upload

Returns boolean

encodeFormData encodeFormData(string $boundary, string $name, mixed $value,
string $filename, array $headers = array ())

Encode data to a multipart/form-data part suitable for a POST request.

Returns string

64.4. Available Methods 313

Zend Framework 2 Documentation, Release 2.0.0

64.5 Examples

Performing a Simple GET Request

Performing simple HTTP requests is very easily done using the request() method, and rarely needs more than three
lines of code:

1 use Zend\Config\Client;
2 $client = new Client(’http://example.org’);
3 $response = $client->send();

The request() method takes one optional parameter - the request method. This can be either GET, POST, PUT, HEAD,
DELETE, TRACE, OPTIONS or CONNECT as defined by the HTTP protocol 1.

Using Request Methods Other Than GET

For convenience, these are all defined as class constants: Zend\Http\Client::GET, Zend\Http\Client::POST and so on.

If no method is specified, the method set by the last setMethod() call is used. If setMethod() was never called,
the default request method is GET (see the above example).

1 use Zend\Http\Client;
2 $client = new Client();
3 // Performing a POST request
4 $response = $client->send(’POST’);
5

6 // Yet another way of performing a POST request
7 $client->setMethod(Client::POST);
8 $response = $client->send();

Adding GET and POST parameters

Adding GET parameters to an HTTP request is quite simple, and can be done either by specifying them as part of the
URL, or by using the setParameterGet() method. This method takes the GET parameter’s name as its first parameter,
and the GET parameter’s value as its second parameter. For convenience, the setParameterGet() method can also
accept a single associative array of name => value GET variables - which may be more comfortable when several GET
parameters need to be set.

1 use Zend\Http\Client;
2 $client = new Client();
3

4 // Setting a get parameter using the setParameterGet method
5 $client->setParameterGet(’knight’, ’lancelot’);
6

7 // This is equivalent to setting such URL:
8 $client->setUri(’http://example.com/index.php?knight=lancelot’);
9

10 // Adding several parameters with one call
11 $client->setParameterGet(array(
12 ’first_name’ => ’Bender’,
13 ’middle_name’ => ’Bending’,
14 ’made_in’ => ’Mexico’,
15));

1 See RFC 2616 -http://www.w3.org/Protocols/rfc2616/rfc2616.html.

314 Chapter 64. Zend\Http\Client

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Zend Framework 2 Documentation, Release 2.0.0

Setting POST Parameters

While GET parameters can be sent with every request method, POST parameters are only sent in the body of POST
requests. Adding POST parameters to a request is very similar to adding GET parameters, and can be done with the
setParameterPost() method, which is similar to the setParameterGet() method in structure.

1 use Zend\Http\Client;
2 $client = new Client();
3 // Setting a POST parameter
4 $client->setParameterPost(’language’, ’fr’);
5

6 // Setting several POST parameters, one of them with several values
7 $client->setParameterPost(array(
8 ’language’ => ’es’,
9 ’country’ => ’ar’,

10 ’selection’ => array(45, 32, 80)
11));

Note that when sending POST requests, you can set both GET and POST parameters. On the other hand, while setting
POST parameters for a non-POST request will not trigger and error, it is useless. Unless the request is a POST request,
POST parameters are simply ignored.

Using A Request Object With The Client

1 use Zend\Http\Request;
2 use Zend\Http\Client;
3 $request = new Request();
4 $request->setUri(’http://www.test.com’);
5 $request->setMethod(’POST’);
6 $request->setParameterPost(array(’foo’ => ’bar’));
7

8 $client = new Client();
9 $response = $client->dispatch($request);

10

11 if ($response->isSuccess()) {
12 // the POST was successful
13 }

64.5. Examples 315

Zend Framework 2 Documentation, Release 2.0.0

316 Chapter 64. Zend\Http\Client

CHAPTER

SIXTYFIVE

ZEND_HTTP_CLIENT - CONNECTION
ADAPTERS

65.1 Overview

Zend_Http_Client is based on a connection adapter design. The connection adapter is the object in charge of
performing the actual connection to the server, as well as writing requests and reading responses. This connection
adapter can be replaced, and you can create and extend the default connection adapters to suite your special needs,
without the need to extend or replace the entire HTTP client class, and with the same interface.

Currently, the Zend_Http_Client class provides four built-in connection adapters:

• Zend_Http_Client_Adapter_Socket (default)

• Zend_Http_Client_Adapter_Proxy

• Zend_Http_Client_Adapter_Curl

• Zend_Http_Client_Adapter_Test

The Zend_Http_Client object’s adapter connection adapter is set using the ‘adapter’ configuration op-
tion. When instantiating the client object, you can set the ‘adapter’ configuration option to a string con-
taining the adapter’s name (eg. ‘Zend_Http_Client_Adapter_Socket’) or to a variable holding an adapter ob-
ject (eg. new Zend_Http_Client_Adapter_Test). You can also set the adapter later, using the
Zend_Http_Client->setConfig() method.

65.2 The Socket Adapter

The default connection adapter is the Zend_Http_Client_Adapter_Socket adapter - this adapter will be used
unless you explicitly set the connection adapter. The Socket adapter is based on PHP‘s built-in fsockopen() function,
and does not require any special extensions or compilation flags.

The Socket adapter allows several extra configuration options that can be set using
Zend_Http_Client->setConfig() or passed to the client constructor.

317

Zend Framework 2 Documentation, Release 2.0.0

Table 65.1: Zend_Http_Client_Adapter_Socket configuration parameters

Pa-
rame-
ter

Description Expected
Type

Default
Value

persis-
tent

Whether to use persistent TCP connections boolean FALSE

ssltrans-
port

SSL transport layer (eg. ‘sslv2’, ‘tls’) string ssl

sslcert Path to a PEM encoded SSL certificate string NULL
sslpassphrasePassphrase for the SSL certificate file string NULL
sslusec-
ontext

Enables proxied connections to use SSL even if the
proxy connection itself does not.

boolean FALSE

Note: Persistent TCP Connections

Using persistent TCP connections can potentially speed up HTTP requests - but in most use cases, will
have little positive effect and might overload the HTTP server you are connecting to.

It is recommended to use persistent TCP connections only if you connect to the same server very fre-
quently, and are sure that the server is capable of handling a large number of concurrent connections. In
any case you are encouraged to benchmark the effect of persistent connections on both the client speed
and server load before using this option.

Additionally, when using persistent connections it is recommended to enable Keep-Alive HTTP requests
as described in the configuration section- otherwise persistent connections might have little or no effect.

Note: HTTPS SSL Stream Parameters

ssltransport, sslcert and sslpassphrase are only relevant when connecting using HTTPS.

While the default SSL settings should work for most applications, you might need to change them if the
server you are connecting to requires special client setup. If so, you should read the sections about SSL
transport layers and options here.

Changing the HTTPS transport layer

1 // Set the configuration parameters
2 $config = array(
3 ’adapter’ => ’Zend_Http_Client_Adapter_Socket’,
4 ’ssltransport’ => ’tls’
5);
6

7 // Instantiate a client object
8 $client = new Zend_Http_Client(’https://www.example.com’, $config);
9

10 // The following request will be sent over a TLS secure connection.
11 $response = $client->request();

The result of the example above will be similar to opening a TCP connection using the following PHP command:

fsockopen(’tls://www.example.com’, 443)

318 Chapter 65. Zend_Http_Client - Connection Adapters

http://www.php.net/manual/en/transports.php#transports.inet

Zend Framework 2 Documentation, Release 2.0.0

65.2.1 Customizing and accessing the Socket adapter stream context

Starting from Zend Framework 1.9, Zend_Http_Client_Adapter_Socket provides direct access to the under-
lying stream context used to connect to the remote server. This allows the user to pass specific options and parameters
to the TCP stream, and to the SSL wrapper in case of HTTPS connections.

You can access the stream context using the following methods of Zend_Http_Client_Adapter_Socket:

• setStreamContext($context) Sets the stream context to be used by the adapter. Can accept either a stream
context resource created using the stream_context_create() PHP function, or an array of stream context options,
in the same format provided to this function. Providing an array will create a new stream context using these
options, and set it.

• getStreamContext() Get the stream context of the adapter. If no stream context was set, will create a default
stream context and return it. You can then set or get the value of different context options using regular PHP
stream context functions.

Setting stream context options for the Socket adapter

1 // Array of options
2 $options = array(
3 ’socket’ => array(
4 // Bind local socket side to a specific interface
5 ’bindto’ => ’10.1.2.3:50505’
6),
7 ’ssl’ => array(
8 // Verify server side certificate,
9 // do not accept invalid or self-signed SSL certificates

10 ’verify_peer’ => true,
11 ’allow_self_signed’ => false,
12

13 // Capture the peer’s certificate
14 ’capture_peer_cert’ => true
15)
16);
17

18 // Create an adapter object and attach it to the HTTP client
19 $adapter = new Zend_Http_Client_Adapter_Socket();
20 $client = new Zend_Http_Client();
21 $client->setAdapter($adapter);
22

23 // Method 1: pass the options array to setStreamContext()
24 $adapter->setStreamContext($options);
25

26 // Method 2: create a stream context and pass it to setStreamContext()
27 $context = stream_context_create($options);
28 $adapter->setStreamContext($context);
29

30 // Method 3: get the default stream context and set the options on it
31 $context = $adapter->getStreamContext();
32 stream_context_set_option($context, $options);
33

34 // Now, perform the request
35 $response = $client->request();
36

37 // If everything went well, you can now access the context again
38 $opts = stream_context_get_options($adapter->getStreamContext());

65.2. The Socket Adapter 319

http://php.net/manual/en/stream.contexts.php
http://php.net/manual/en/function.stream-context-create.php

Zend Framework 2 Documentation, Release 2.0.0

39 echo $opts[’ssl’][’peer_certificate’];

Note: Note that you must set any stream context options before using the adapter to perform actual requests. If no
context is set before performing HTTP requests with the Socket adapter, a default stream context will be created. This
context resource could be accessed after performing any requests using the getStreamContext() method.

65.3 The Proxy Adapter

The Zend_Http_Client_Adapter_Proxy adapter is similar to the default Socket adapter - only the connection
is made through an HTTP proxy server instead of a direct connection to the target server. This allows usage of
Zend_Http_Client behind proxy servers - which is sometimes needed for security or performance reasons.

Using the Proxy adapter requires several additional configuration parameters to be set, in addition to the default
‘adapter’ option:

Table 65.2: Zend_Http_Client configuration parameters

Parame-
ter

Description Expected
Type

Example Value

proxy_host Proxy server address string ‘proxy.myhost.com’ or ‘10.1.2.3’
proxy_port Proxy server TCP port integer 8080 (default) or 81
proxy_user Proxy user name, if

required
string ‘shahar’ or ‘’ for none (default)

proxy_pass Proxy password, if required string ‘secret’ or ‘’ for none (default)
proxy_auth Proxy HTTP authentication

type
string Zend_Http_Client::AUTH_BASIC

(default)

proxy_host should always be set - if it is not set, the client will fall back to a direct connection using
Zend_Http_Client_Adapter_Socket. proxy_port defaults to ‘8080’ - if your proxy listens on a different
port you must set this one as well.

proxy_user and proxy_pass are only required if your proxy server requires you to authenticate. Providing these will
add a ‘Proxy-Authentication’ header to the request. If your proxy does not require authentication, you can leave these
two options out.

proxy_auth sets the proxy authentication type, if your proxy server requires authentication. Possibly values are
similar to the ones accepted by the Zend_Http_Client::setAuth() method. Currently, only basic authentication
(Zend_Http_Client::AUTH_BASIC) is supported.

Using Zend_Http_Client behind a proxy server

1 // Set the configuration parameters
2 $config = array(
3 ’adapter’ => ’Zend_Http_Client_Adapter_Proxy’,
4 ’proxy_host’ => ’proxy.int.zend.com’,
5 ’proxy_port’ => 8000,
6 ’proxy_user’ => ’shahar.e’,
7 ’proxy_pass’ => ’bananashaped’
8);
9

10 // Instantiate a client object
11 $client = new Zend_Http_Client(’http://www.example.com’, $config);

320 Chapter 65. Zend_Http_Client - Connection Adapters

Zend Framework 2 Documentation, Release 2.0.0

12

13 // Continue working...

As mentioned, if proxy_host is not set or is set to a blank string, the connection will fall back to a regular direct
connection. This allows you to easily write your application in a way that allows a proxy to be used optionally,
according to a configuration parameter.

Note: Since the proxy adapter inherits from Zend_Http_Client_Adapter_Socket, you can use the stream
context access method (see this section) to set stream context options on Proxy connections as demonstrated above.

65.4 The cURL Adapter

cURL is a standard HTTP client library that is distributed with many operating systems and can be used in PHP via
the cURL extension. It offers functionality for many special cases which can occur for a HTTP client and make it a
perfect choice for a HTTP adapter. It supports secure connections, proxy, all sorts of authentication mechanisms and
shines in applications that move large files around between servers.

Setting cURL options

1 $config = array(
2 ’adapter’ => ’Zend_Http_Client_Adapter_Curl’,
3 ’curloptions’ => array(CURLOPT_FOLLOWLOCATION => true),
4);
5 $client = new Zend_Http_Client($uri, $config);

By default the cURL adapter is configured to behave exactly like the Socket Adapter and it also accepts the same
configuration parameters as the Socket and Proxy adapters. You can also change the cURL options by either specifying
the ‘curloptions’ key in the constructor of the adapter or by calling setCurlOption($name, $value). The
$name key corresponds to the CURL_* constants of the cURL extension. You can get access to the Curl handle by
calling $adapter->getHandle();

Transfering Files by Handle

You can use cURL to transfer very large files over HTTP by filehandle.

1 $putFileSize = filesize("filepath");
2 $putFileHandle = fopen("filepath", "r");
3

4 $adapter = new Zend_Http_Client_Adapter_Curl();
5 $client = new Zend_Http_Client();
6 $client->setAdapter($adapter);
7 $adapter->setConfig(array(
8 ’curloptions’ => array(
9 CURLOPT_INFILE => $putFileHandle,

10 CURLOPT_INFILESIZE => $putFileSize
11)
12));
13 $client->request("PUT");

65.4. The cURL Adapter 321

Zend Framework 2 Documentation, Release 2.0.0

65.5 The Test Adapter

Sometimes, it is very hard to test code that relies on HTTP connections. For example, testing an application that pulls
an RSS feed from a remote server will require a network connection, which is not always available.

For this reason, the Zend_Http_Client_Adapter_Test adapter is provided. You can write your application
to use Zend_Http_Client, and just for testing purposes, for example in your unit testing suite, you can replace
the default adapter with a Test adapter (a mock object), allowing you to run tests without actually performing server
connections.

The Zend_Http_Client_Adapter_Test adapter provides an additional method, setResponse() method. This
method takes one parameter, which represents an HTTP response as either text or a Zend_Http_Response object.
Once set, your Test adapter will always return this response, without even performing an actual HTTP request.

Testing Against a Single HTTP Response Stub

1 // Instantiate a new adapter and client
2 $adapter = new Zend_Http_Client_Adapter_Test();
3 $client = new Zend_Http_Client(’http://www.example.com’, array(
4 ’adapter’ => $adapter
5));
6

7 // Set the expected response
8 $adapter->setResponse(
9 "HTTP/1.1 200 OK" . "\r\n" .

10 "Content-type: text/xml" . "\r\n" .
11 "\r\n" .
12 ’<?xml version="1.0" encoding="UTF-8"?>’ .
13 ’<rss version="2.0" ’ .
14 ’ xmlns:content="http://purl.org/rss/1.0/modules/content/"’ .
15 ’ xmlns:wfw="http://wellformedweb.org/CommentAPI/"’ .
16 ’ xmlns:dc="http://purl.org/dc/elements/1.1/">’ .
17 ’ <channel>’ .
18 ’ <title>Premature Optimization</title>’ .
19 // and so on...
20 ’</rss>’);
21

22 $response = $client->request(’GET’);
23 // .. continue parsing $response..

The above example shows how you can preset your HTTP client to return the response you need. Then, you can
continue testing your own code, without being dependent on a network connection, the server’s response, etc. In this
case, the test would continue to check how the application parses the XML in the response body.

Sometimes, a single method call to an object can result in that object performing multiple HTTP transactions. In
this case, it’s not possible to use setResponse() alone because there’s no opportunity to set the next response(s) your
program might need before returning to the caller.

Testing Against Multiple HTTP Response Stubs

1 // Instantiate a new adapter and client
2 $adapter = new Zend_Http_Client_Adapter_Test();
3 $client = new Zend_Http_Client(’http://www.example.com’, array(
4 ’adapter’ => $adapter
5));

322 Chapter 65. Zend_Http_Client - Connection Adapters

Zend Framework 2 Documentation, Release 2.0.0

6

7 // Set the first expected response
8 $adapter->setResponse(
9 "HTTP/1.1 302 Found" . "\r\n" .

10 "Location: /" . "\r\n" .
11 "Content-Type: text/html" . "\r\n" .
12 "\r\n" .
13 ’<html>’ .
14 ’ <head><title>Moved</title></head>’ .
15 ’ <body><p>This page has moved.</p></body>’ .
16 ’</html>’);
17

18 // Set the next successive response
19 $adapter->addResponse(
20 "HTTP/1.1 200 OK" . "\r\n" .
21 "Content-Type: text/html" . "\r\n" .
22 "\r\n" .
23 ’<html>’ .
24 ’ <head><title>My Pet Store Home Page</title></head>’ .
25 ’ <body><p>...</p></body>’ .
26 ’</html>’);
27

28 // inject the http client object ($client) into your object
29 // being tested and then test your object’s behavior below

The setResponse() method clears any responses in the Zend_Http_Client_Adapter_Test‘s buffer and sets
the first response that will be returned. The addResponse() method will add successive responses.

The responses will be replayed in the order that they were added. If more requests are made than the number of
responses stored, the responses will cycle again in order.

In the example above, the adapter is configured to test your object’s behavior when it encounters a 302 redirect.
Depending on your application, following a redirect may or may not be desired behavior. In our example, we expect
that the redirect will be followed and we configure the test adapter to help us test this. The initial 302 response is set
up with the setResponse() method and the 200 response to be returned next is added with the addResponse() method.
After configuring the test adapter, inject the HTTP client containing the adapter into your object under test and test its
behavior.

If you need the adapter to fail on demand you can use setNextRequestWillFail($flag). The method will
cause the next call to connect() to throw an Zend_Http_Client_Adapter_Exception exception. This
can be useful when your application caches content from an external site (in case the site goes down) and you want to
test this feature.

Forcing the adapter to fail

1 // Instantiate a new adapter and client
2 $adapter = new Zend_Http_Client_Adapter_Test();
3 $client = new Zend_Http_Client(’http://www.example.com’, array(
4 ’adapter’ => $adapter
5));
6

7 // Force the next request to fail with an exception
8 $adapter->setNextRequestWillFail(true);
9

10 try {
11 // This call will result in a Zend_Http_Client_Adapter_Exception
12 $client->request();

65.5. The Test Adapter 323

Zend Framework 2 Documentation, Release 2.0.0

13 } catch (Zend_Http_Client_Adapter_Exception $e) {
14 // ...
15 }
16

17 // Further requests will work as expected until
18 // you call setNextRequestWillFail(true) again

65.6 Creating your own connection adapters

You can create your own connection adapters and use them. You could, for example, create a connection adapter that
uses persistent sockets, or a connection adapter with caching abilities, and use them as needed in your application.

In order to do so, you must create your own adapter class that implements the
Zend_Http_Client_Adapter_Interface interface. The following example shows the skeleton of a
user-implemented adapter class. All the public functions defined in this example must be defined in your adapter as
well:

Creating your own connection adapter

1 class MyApp_Http_Client_Adapter_BananaProtocol
2 implements Zend_Http_Client_Adapter_Interface
3 {
4 /**
5 * Set the configuration array for the adapter
6 *
7 * @param array $config
8 */
9 public function setConfig($config = array())

10 {
11 // This rarely changes - you should usually copy the
12 // implementation in Zend_Http_Client_Adapter_Socket.
13 }
14

15 /**
16 * Connect to the remote server
17 *
18 * @param string $host
19 * @param int $port
20 * @param boolean $secure
21 */
22 public function connect($host, $port = 80, $secure = false)
23 {
24 // Set up the connection to the remote server
25 }
26

27 /**
28 * Send request to the remote server
29 *
30 * @param string $method
31 * @param Zend_Uri_Http $url
32 * @param string $http_ver
33 * @param array $headers
34 * @param string $body
35 * @return string Request as text

324 Chapter 65. Zend_Http_Client - Connection Adapters

Zend Framework 2 Documentation, Release 2.0.0

36 */
37 public function write($method,
38 $url,
39 $http_ver = ’1.1’,
40 $headers = array(),
41 $body = ’’)
42 {
43 // Send request to the remote server.
44 // This function is expected to return the full request
45 // (headers and body) as a string
46 }
47

48 /**
49 * Read response from server
50 *
51 * @return string
52 */
53 public function read()
54 {
55 // Read response from remote server and return it as a string
56 }
57

58 /**
59 * Close the connection to the server
60 *
61 */
62 public function close()
63 {
64 // Close the connection to the remote server - called last.
65 }
66 }
67

68 // Then, you could use this adapter:
69 $client = new Zend_Http_Client(array(
70 ’adapter’ => ’MyApp_Http_Client_Adapter_BananaProtocol’
71));

65.6. Creating your own connection adapters 325

Zend Framework 2 Documentation, Release 2.0.0

326 Chapter 65. Zend_Http_Client - Connection Adapters

CHAPTER

SIXTYSIX

ZEND_HTTP_CLIENT - ADVANCED
USAGE

66.1 HTTP Redirections

By default, Zend_Http_Client automatically handles HTTP redirections, and will follow up to 5 redirections.
This can be changed by setting the ‘maxredirects’ configuration parameter.

According to the HTTP/1.1 RFC, HTTP 301 and 302 responses should be treated by the client by resending the same
request to the specified location - using the same request method. However, most clients to not implement this and
always use a GET request when redirecting. By default, Zend_Http_Client does the same - when redirecting on
a 301 or 302 response, all GET and POST parameters are reset, and a GET request is sent to the new location. This
behavior can be changed by setting the ‘strictredirects’ configuration parameter to boolean TRUE:

Forcing RFC 2616 Strict Redirections on 301 and 302 Responses

1 // Strict Redirections
2 $client->setConfig(array(’strictredirects’ => true));
3

4 // Non-strict Redirections
5 $client->setConfig(array(’strictredirects’ => false));

You can always get the number of redirections done after sending a request using the getRedirectionsCount() method.

66.2 Adding Cookies and Using Cookie Persistence

Zend_Http_Client provides an easy interface for adding cookies to your request, so that no direct header modi-
fication is required. This is done using the setCookie() method. This method can be used in several ways:

Setting Cookies Using setCookie()

1 // Easy and simple: by providing a cookie name and cookie value
2 $client->setCookie(’flavor’, ’chocolate chips’);
3

4 // By directly providing a raw cookie string (name=value)
5 // Note that the value must be already URL encoded
6 $client->setCookie(’flavor=chocolate%20chips’);

327

Zend Framework 2 Documentation, Release 2.0.0

7

8 // By providing a Zend_Http_Cookie object
9 $cookie = Zend_Http_Cookie::fromString(’flavor=chocolate%20chips’);

10 $client->setCookie($cookie);

For more information about Zend_Http_Cookie objects, see this section.

Zend_Http_Client also provides the means for cookie stickiness - that is having the client internally store all sent
and received cookies, and resend them automatically on subsequent requests. This is useful, for example when you
need to log in to a remote site first and receive and authentication or session ID cookie before sending further requests.

Enabling Cookie Stickiness

1 // To turn cookie stickiness on, set a Cookie Jar
2 $client->setCookieJar();
3

4 // First request: log in and start a session
5 $client->setUri(’http://example.com/login.php’);
6 $client->setParameterPost(’user’, ’h4x0r’);
7 $client->setParameterPost(’password’, ’1337’);
8 $client->request(’POST’);
9

10 // The Cookie Jar automatically stores the cookies set
11 // in the response, like a session ID cookie.
12

13 // Now we can send our next request - the stored cookies
14 // will be automatically sent.
15 $client->setUri(’http://example.com/read_member_news.php’);
16 $client->request(’GET’);

For more information about the Zend_Http_CookieJar class, see this section.

66.3 Setting Custom Request Headers

Setting custom headers can be done by using the setHeaders() method. This method is quite diverse and can be used
in several ways, as the following example shows:

Setting A Single Custom Request Header

1 // Setting a single header, overwriting any previous value
2 $client->setHeaders(’Host’, ’www.example.com’);
3

4 // Another way of doing the exact same thing
5 $client->setHeaders(’Host: www.example.com’);
6

7 // Setting several values for the same header
8 // (useful mostly for Cookie headers):
9 $client->setHeaders(’Cookie’, array(

10 ’PHPSESSID=1234567890abcdef1234567890abcdef’,
11 ’language=he’
12));

setHeader() can also be easily used to set multiple headers in one call, by providing an array of headers as a single
parameter:

328 Chapter 66. Zend_Http_Client - Advanced Usage

Zend Framework 2 Documentation, Release 2.0.0

Setting Multiple Custom Request Headers

1 // Setting multiple headers, overwriting any previous value
2 $client->setHeaders(array(
3 ’Host’ => ’www.example.com’,
4 ’Accept-encoding’ => ’gzip,deflate’,
5 ’X-Powered-By’ => ’Zend Framework’));
6

7 // The array can also contain full array strings:
8 $client->setHeaders(array(
9 ’Host: www.example.com’,

10 ’Accept-encoding: gzip,deflate’,
11 ’X-Powered-By: Zend Framework’));

66.4 File Uploads

You can upload files through HTTP using the setFileUpload method. This method takes a file name as the first
parameter, a form name as the second parameter, and data as a third optional parameter. If the third data parameter is
NULL, the first file name parameter is considered to be a real file on disk, and Zend_Http_Client will try to read
this file and upload it. If the data parameter is not NULL, the first file name parameter will be sent as the file name,
but no actual file needs to exist on the disk. The second form name parameter is always required, and is equivalent
to the “name” attribute of an >input< tag, if the file was to be uploaded through an HTML form. A fourth optional
parameter provides the file’s content-type. If not specified, and Zend_Http_Client reads the file from the disk,
the mime_content_type function will be used to guess the file’s content type, if it is available. In any case, the default
MIME type will be application/octet-stream.

Using setFileUpload to Upload Files

1 // Uploading arbitrary data as a file
2 $text = ’this is some plain text’;
3 $client->setFileUpload(’some_text.txt’, ’upload’, $text, ’text/plain’);
4

5 // Uploading an existing file
6 $client->setFileUpload(’/tmp/Backup.tar.gz’, ’bufile’);
7

8 // Send the files
9 $client->request(’POST’);

In the first example, the $text variable is uploaded and will be available as $_FILES[’upload’] on the server side.
In the second example, the existing file /tmp/Backup.tar.gz is uploaded to the server and will be available as
$_FILES[’bufile’]. The content type will be guesses automatically if possible - and if not, the content type will
be set to ‘application/octet-stream’.

Note: Uploading files

When uploading files, the HTTP request content-type is automatically set to multipart/form-data. Keep in mind that
you must send a POST or PUT request in order to upload files. Most servers will ignore the requests body on other
request methods.

66.4. File Uploads 329

Zend Framework 2 Documentation, Release 2.0.0

66.5 Sending Raw POST Data

You can use a Zend_Http_Client to send raw POST data using the setRawData() method. This method takes two
parameters: the first is the data to send in the request body. The second optional parameter is the content-type of the
data. While this parameter is optional, you should usually set it before sending the request - either using setRawData(),
or with another method: setEncType().

Sending Raw POST Data

1 $xml = ’<book>’ .
2 ’ <title>Islands in the Stream</title>’ .
3 ’ <author>Ernest Hemingway</author>’ .
4 ’ <year>1970</year>’ .
5 ’</book>’;
6

7 $client->setRawData($xml, ’text/xml’)->request(’POST’);
8

9 // Another way to do the same thing:
10 $client->setRawData($xml)->setEncType(’text/xml’)->request(’POST’);

The data should be available on the server side through PHP‘s $HTTP_RAW_POST_DATA variable or through the
php://input stream.

Note: Using raw POST data

Setting raw POST data for a request will override any POST parameters or file uploads. You should not try to use both
on the same request. Keep in mind that most servers will ignore the request body unless you send a POST request.

66.6 HTTP Authentication

Currently, Zend_Http_Client only supports basic HTTP authentication. This feature is utilized using the
setAuth() method, or by specifying a username and a password in the URI. The setAuth() method takes 3
parameters: The user name, the password and an optional authentication type parameter. As mentioned, currently only
basic authentication is supported (digest authentication support is planned).

Setting HTTP Authentication User and Password

1 // Using basic authentication
2 $client->setAuth(’shahar’, ’myPassword!’, Zend_Http_Client::AUTH_BASIC);
3

4 // Since basic auth is default, you can just do this:
5 $client->setAuth(’shahar’, ’myPassword!’);
6

7 // You can also specify username and password in the URI
8 $client->setUri(’http://christer:secret@example.com’);

330 Chapter 66. Zend_Http_Client - Advanced Usage

Zend Framework 2 Documentation, Release 2.0.0

66.7 Sending Multiple Requests With the Same Client

Zend_Http_Client was also designed specifically to handle several consecutive requests with the same object.
This is useful in cases where a script requires data to be fetched from several places, or when accessing a specific
HTTP resource requires logging in and obtaining a session cookie, for example.

When performing several requests to the same host, it is highly recommended to enable the ‘keepalive’ configuration
flag. This way, if the server supports keep-alive connections, the connection to the server will only be closed once
all requests are done and the Client object is destroyed. This prevents the overhead of opening and closing TCP
connections to the server.

When you perform several requests with the same client, but want to make sure all the request-specific parameters are
cleared, you should use the resetParameters() method. This ensures that GET and POST parameters, request body and
request-specific headers are reset and are not reused in the next request.

Note: Resetting parameters

Note that non-request specific headers are not reset by default when the resetParameters() method is used.
Only the ‘Content-length’ and ‘Content-type’ headers are reset. This allows you to set-and-forget headers like ‘Accept-
language’ and ‘Accept-encoding’

To clean all headers and other data except for URI and method, use resetParameters(true).

Another feature designed specifically for consecutive requests is the Cookie Jar object. Cookie Jars allow you to
automatically save cookies set by the server in the first request, and send them on consecutive requests transparently.
This allows, for example, going through an authentication request before sending the actual data fetching request.

If your application requires one authentication request per user, and consecutive requests might be performed in more
than one script in your application, it might be a good idea to store the Cookie Jar object in the user’s session. This
way, you will only need to authenticate the user once every session.

Performing consecutive requests with one client

1 // First, instantiate the client
2 $client = new Zend_Http_Client(’http://www.example.com/fetchdata.php’, array(
3 ’keepalive’ => true
4));
5

6 // Do we have the cookies stored in our session?
7 if (isset($_SESSION[’cookiejar’]) &&
8 $_SESSION[’cookiejar’] instanceof Zend_Http_CookieJar) {
9

10 $client->setCookieJar($_SESSION[’cookiejar’]);
11 } else {
12 // If we don’t, authenticate and store cookies
13 $client->setCookieJar();
14 $client->setUri(’http://www.example.com/login.php’);
15 $client->setParameterPost(array(
16 ’user’ => ’shahar’,
17 ’pass’ => ’somesecret’
18));
19 $client->request(Zend_Http_Client::POST);
20

21 // Now, clear parameters and set the URI to the original one
22 // (note that the cookies that were set by the server are now
23 // stored in the jar)

66.7. Sending Multiple Requests With the Same Client 331

Zend Framework 2 Documentation, Release 2.0.0

24 $client->resetParameters();
25 $client->setUri(’http://www.example.com/fetchdata.php’);
26 }
27

28 $response = $client->request(Zend_Http_Client::GET);
29

30 // Store cookies in session, for next page
31 $_SESSION[’cookiejar’] = $client->getCookieJar();

66.8 Data Streaming

By default, Zend_Http_Client accepts and returns data as PHP strings. However, in many cases there are
big files to be sent or received, thus keeping them in memory might be unnecessary or too expensive. For these
cases, Zend_Http_Client supports reading data from files (and in general, PHP streams) and writing data to files
(streams).

In order to use stream to pass data to Zend_Http_Client, use setRawData() method with data argument being
stream resource (e.g., result of fopen()).

Sending file to HTTP server with streaming

1 $fp = fopen("mybigfile.zip", "r");
2 $client->setRawData($fp, ’application/zip’)->request(’PUT’);

Only PUT requests currently support sending streams to HTTP server.

In order to receive data from the server as stream, use setStream(). Optional argument specifies the filename
where the data will be stored. If the argument is just TRUE (default), temporary file will be used and will be deleted
once response object is destroyed. Setting argument to FALSE disables the streaming functionality.

When using streaming, request() method will return object of class
Zend_Http_Client_Response_Stream, which has two useful methods: getStreamName() will re-
turn the name of the file where the response is stored, and getStream() will return stream from which the response
could be read.

You can either write the response to pre-defined file, or use temporary file for storing it and send it out or write it to
another file using regular stream functions.

Receiving file from HTTP server with streaming

1 $client->setStream(); // will use temp file
2 $response = $client->request(’GET’);
3 // copy file
4 copy($response->getStreamName(), "my/downloads/file");
5 // use stream
6 $fp = fopen("my/downloads/file2", "w");
7 stream_copy_to_stream($response->getStream(), $fp);
8 // Also can write to known file
9 $client->setStream("my/downloads/myfile)->request(’GET’);

332 Chapter 66. Zend_Http_Client - Advanced Usage

CHAPTER

SIXTYSEVEN

TRANSLATING

Zend_I18n comes with a complete translation suite which supports all major formats and includes popular features
like plural translations and text domains. The Translator component is mostly dependency free, except for the fallback
to a default locale, where it relies on the Intl PHP extension.

The translator itself is initialized without any parameters, as any configuration to it is optional. A translator without
any translations will actually do nothing but just return the given message IDs.

67.1 Adding translations

To add translations to the translator, there are two options. You can either add every translation file individually, which
is the best way if you use translation formats which store multiple locales in the same file, or you can add translations
via a pattern, which works best for formats which contain one locale per file.

To add a single file to the translator, use the addTranslationFile() method:

1 use Zend\I18n\Translator\Translator;
2

3 $translator = new Translator();
4 $translator->addTranslationFile($type, $filename, $textDomain, $locale);

The type given there is a name of one of the format loaders listed in the next section. Filename points to the file
containing the file containing the translations and the text domain specifies a category name for the translations. If the
text domain is omitted, it will default to the “default” value. The locale specifies which language the translated strings
are from and is only required for formats which contain translations for a single locale.

Note: For each text domain and locale combination, there can only be one file loaded. Every successive file would
override the translations which were loaded prior.

When storing one locale per file, you should specify those files via a pattern. This allows you to add new translations
to the file system, without touching your code. Patterns are added with the addTranslationPattern() method:

1 use Zend\I18n\Translator\Translator;
2

3 $translator = new Translator();
4 $translator->addTranslationPattern($type, $pattern, $textDomain);

The parameters for adding patterns is pretty similar to adding individual files, except that don’t specify a locale and
give the file location as sprtinf pattern. The locale is passed to the sprintf call, so you can either use %s oder %1$s
where it should be substituted. So when youf translation files are located in /var/messages/LOCALE/messages.mo,
you would specify your pattern as /var/messages/%s/messages.mo.

333

Zend Framework 2 Documentation, Release 2.0.0

67.2 Supported formats

The translator supports the following major translation formats:

• PHP arrays

• Gettext

• Tmx

• Xliff

67.3 Setting a locale

By default, the translator will get the locale to use from the Intl extension’s Locale class. If you want to set an
alternative locale explicitly, you can do so by passing it to the setLocale() method.

When there is not translation for a specific message ID in a locale, the message ID itself will be returned by default.
Alternatively you can set a fallback locale which is used to retrieve a fallback translation. To do so, pass it to the
setFallbackLocale() method.

67.4 Translating messages

Translating messages can accomplished by calling the translate() method of the translator:

1 $translator->translate($message, $textDomain, $locale);

The message is the ID of your message to translate. If it does not exist in the loader translations or is empty, the
original message ID will be returned. The text domain parameter is the one you specified when adding translations.
If omitted, the default text domain will be used. The locale parameter will usually not be used in this context, as by
default the locale is taken from the locale set in the translator.

To translate plural messages, you can use the translatePlural() method. It works similar to translate(),
but instead of a single messages it takes a singluar and a plural value and an additional integer number on which the
returned plural form is based on:

1 $translator->translatePlural($singular, $plural, $number, $textDomain, $locale);

Plural translations are only available if the underlying format supports the transport of plural messages and plural rule
definitions.

67.5 Caching

In production it makes sense to cache your translations. This not only saves you from loading and parsing the in-
dividual formats each time, but also guarantees an optimized loading procedure. To enable caching, simply pass a
Zend\Cache\Storage\Adapter to the setCache() method. To disable the cache, you can just pass a null
value to it.

334 Chapter 67. Translating

CHAPTER

SIXTYEIGHT

I18N VIEW HELPERS

68.1 Introduction

Zend Framework comes with an initial set of helper classes related to Internationalization: e.g., formatting a date,
formatting currency, or displaying translated content. You can use helper, or plugin, classes to perform these behaviors
for you.

See the section on view helpers for more information.

68.2 CurrencyFormat Helper

The CurrencyFormat view helper can be used to simplify rendering of localized currency values. It acts as a
wrapper for the NumberFormatter class within the Internationalization extension (Intl). Basic Usage

1 // Within your view
2

3 echo $this->currencyFormat(1234.56, "USD", "en_US");
4 // This returns: "$1,234.56"
5

6 echo $this->currencyFormat(1234.56, "EUR", "de_DE");
7 // This returns: "1.234,56 C"

currencyFormat(float $number, string $currencyCode[, string $locale])
Parameters

• $number – The numeric currency value.

• $currencyCode – The 3-letter ISO 4217 currency code indicating the currency to use.

• $locale – (Optional) Locale in which the currency would be formatted (locale name, e.g.
en_US). If unset, it will use the default locale (Locale::getDefault())

Public Methods

The $currencyCode and $locale options can be set prior to formatting and will be applied each time the helper
is used:

1 // Within your view
2 $this->plugin("currencyformat")->setCurrencyCode("USD")->setLocale("en_US");
3

4 echo $this->currencyFormat(1234.56); // "$1,234.56"
5 echo $this->currencyFormat(5678.90); // "$5,678.90"

335

Zend Framework 2 Documentation, Release 2.0.0

68.3 DateFormat Helper

The DateFormat view helper can be used to simplify rendering of localized date/time values. It acts as a wrapper
for the IntlDateFormatter class within the Internationalization extension (Intl). Basic Usage

1 // Within your view
2

3 // Date and Time
4 echo $this->dateFormat(
5 new DateTime(),
6 IntlDateFormatter::MEDIUM, // date
7 IntlDateFormatter::MEDIUM, // time
8 "en_US"
9);

10 // This returns: "Jul 2, 2012 6:44:03 PM"
11

12 // Date Only
13 echo $this->dateFormat(
14 new DateTime(),
15 IntlDateFormatter::LONG, // date
16 IntlDateFormatter::NONE, // time
17 "en_US"
18);
19 // This returns: "July 2, 2012"
20

21 // Time Only
22 echo $this->dateFormat(
23 new DateTime(),
24 IntlDateFormatter::NONE, // date
25 IntlDateFormatter::SHORT, // time
26 "en_US"
27);
28 // This returns: "6:44 PM"

dateFormat(mixed $date[, int $dateType[, int $timeType[, string $locale]]])
Parameters

• $date – The value to format. This may be a DateTime object, an integer representing a
Unix timestamp value or an array in the format output by localtime().

• $dateType – (Optional) Date type to use (none, short, medium, long, full). This is one of
the IntlDateFormatter constants. Defaults to IntlDateFormatter::NONE.

• $timeType – (Optional) Time type to use (none, short, medium, long, full). This is one of
the IntlDateFormatter constants. Defaults to IntlDateFormatter::NONE.

• $locale – (Optional) Locale in which the date would be formatted (locale name, e.g. en_US).
If unset, it will use the default locale (Locale::getDefault())

Public Methods

The $locale option can be set prior to formatting with the setLocale() method and will be applied each time
the helper is used.

By default, the system’s default timezone will be used when formatting. This overrides any timezone that may be set
inside a DateTime object. To change the timezone when formatting, use the setTimezone method.

1 // Within your view
2 $this->plugin("dateFormat")->setTimezone("America/New_York")->setLocale("en_US");
3

336 Chapter 68. I18n View Helpers

http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants
http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants

Zend Framework 2 Documentation, Release 2.0.0

4 echo $this->dateFormat(new DateTime(), IntlDateFormatter::MEDIUM); // "Jul 2, 2012"
5 echo $this->dateFormat(new DateTime(), IntlDateFormatter::SHORT); // "7/2/12"

68.4 NumberFormat Helper

The NumberFormat view helper can be used to simplify rendering of locale-specific number and percentage strings.
It acts as a wrapper for the NumberFormatter class within the Internationalization extension (Intl). Basic Usage

1 // Within your view
2

3 // Example of Decimal formatting:
4 echo $this->numberFormat(
5 1234567.891234567890000,
6 NumberFormatter::DECIMAL,
7 NumberFormatter::TYPE_DEFAULT,
8 "de_DE"
9);

10 // This returns: "1.234.567,891"
11

12 // Example of Percent formatting:
13 echo $this->numberFormat(
14 0.80,
15 NumberFormatter::PERCENT,
16 NumberFormatter::TYPE_DEFAULT,
17 "en_US"
18);
19 // This returns: "80%"
20

21 // Example of Scientific notation formatting:
22 echo $this->numberFormat(
23 0.00123456789,
24 NumberFormatter::SCIENTIFIC,
25 NumberFormatter::TYPE_DEFAULT,
26 "fr_FR"
27);
28 // This returns: "1,23456789E-3"

numberFormat(number $number[, int $formatStyle[, int $formatType[, string $locale]]])
Parameters

• $number – The numeric value.

• $formatStyle – (Optional) Style of the formatting, one of the format style constants. If
unset, it will use NumberFormatter::DECIMAL as the default style.

• $formatType – (Optional) The formatting type to use. If unset, it will use
NumberFormatter::TYPE_DEFAULT as the default type.

• $locale – (Optional) Locale in which the number would be formatted (locale name, e.g.
en_US). If unset, it will use the default locale (Locale::getDefault())

Public Methods

The $formatStyle, $formatType, and $locale options can be set prior to formatting and will be applied each
time the helper is used.

68.4. NumberFormat Helper 337

http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle
http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types

Zend Framework 2 Documentation, Release 2.0.0

1 // Within your view
2 $this->plugin("numberformat")
3 ->setFormatStyle(NumberFormatter::PERCENT)
4 ->setFormatType(NumberFormatter::TYPE_DOUBLE)
5 ->setLocale("en_US");
6

7 echo $this->numberFormat(0.56); // "56%"
8 echo $this->numberFormat(0.90); // "90%"

68.5 Translate Helper

The Translate view helper can be used to translate content. It acts as a wrapper for the
Zend\I18n\Translator\Translator class. Setup

Before using the Translate view helper, you must have first created a Translator object and have attached it to
the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper, this will be done
automatically for you. Basic Usage

1 // Within your view
2

3 echo $this->translate("Some translated text.");
4

5 echo $this->translate("Translated text from a custom text domain.", "customDomain");
6

7 echo sprintf($this->translate("The current time is %s."), $currentTime);
8

9 echo $this->translate("Translate in a specific locale", "default", "de_DE");

translate(string $message[, string $textDomain[, string $locale]])
Parameters

• $message – The message to be translated.

• $textDomain – (Optional) The text domain where this translation lives. Defaults to the
value “default”.

• $locale – (Optional) Locale in which the message would be translated (locale name, e.g.
en_US). If unset, it will use the default locale (Locale::getDefault())

Gettext

The xgettext utility can be used to compile *.po files from PHP source files containing the translate view helper.

xgettext --language=php --add-location --keyword=translate my-view-file.phtml

See the Gettext Wikipedia page for more information. Public Methods

Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from
Zend\I18n\View\Helper\AbstractTranslatorHelper.

68.6 TranslatePlural Helper

The TranslatePlural view helper can be used to translate words which take into account numeric meanings.
English, for example, has a singular definition of “car”, for one car. And has the plural definition, “cars”, meaning
zero “cars” or more than one car. Other languages like Russian or Polish have more plurals with different rules.

338 Chapter 68. I18n View Helpers

http://en.wikipedia.org/wiki/Gettext

Zend Framework 2 Documentation, Release 2.0.0

The viewhelper acts as a wrapper for the Zend\I18n\Translator\Translator class. Setup

Before using the TranslatePlural view helper, you must have first created a Translator object and have
attached it to the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper, this
will be done automatically for you. Basic Usage

1 // Within your view
2 echo $this->translatePlural("car", "cars", $num);
3

4 // Use a custom domain
5 echo $this->translatePlural("monitor", "monitors", $num, "customDomain");
6

7 // Change locale
8 echo $this->translate("locale", "locales", $num, "default", "de_DE");

translatePlural(string $singular, string $plural, int $number[, string $textDomain[, string $locale]])
Parameters

• $singular – The singular message to be translated.

• $plural – The plural message to be translated.

• $number – The number to evaluate and determine which message to use.

• $textDomain – (Optional) The text domain where this translation lives. Defaults to the
value “default”.

• $locale – (Optional) Locale in which the message would be translated (locale name, e.g.
en_US). If unset, it will use the default locale (Locale::getDefault())

Public Methods

Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from
Zend\I18n\View\Helper\AbstractTranslatorHelper.

68.7 Abstract Translator Helper

The AbstractTranslatorHelper view helper is used as a base abstract class for any helpers that need to trans-
late content. It provides an implementation for the Zend\I18n\Translator\TranslatorAwareInterface
which allows injecting a translator and setting a text domain. Public Methods

setTranslator(Translator $translator[, string $textDomain = null])
Sets Zend\I18n\Translator\Translator to use in helper. The $textDomain argument is optional.
It is provided as a convenience for setting both the translator and textDomain at the same time.

getTranslator()
Returns the Zend\I18n\Translator\Translator used in the helper.

Return type Zend\I18n\Translator\Translator

hasTranslator()
Returns a true if a Zend\I18n\Translator\Translator is set in the helper, and false if otherwise.

Return type boolean

setTranslatorEnabled(boolean $enabled)
Sets whether translations should be enabled or disabled.

isTranslatorEnabled()
Returns true if translations are enabled, and false if disabled.

68.7. Abstract Translator Helper 339

Zend Framework 2 Documentation, Release 2.0.0

Return type boolean

setTranslatorTextDomain(string $textDomain)
Set the translation text domain to use in helper when translating.

getTranslatorTextDomain()
Returns the translation text domain used in the helper.

Return type string

340 Chapter 68. I18n View Helpers

CHAPTER

SIXTYNINE

I18N FILTERS

Zend Framework comes with a set of filters related to Internationalization.

341

Zend Framework 2 Documentation, Release 2.0.0

342 Chapter 69. I18n Filters

CHAPTER

SEVENTY

ALNUM FILTER

The Alnum filter can be used to return only alphabetic characters and digits in the unicode “letter” and “number”
categories, respectively. All other characters are supressed.

Supported options for Alnum Filter

The following options are supported for Alnum:

Alnum([boolean $allowWhiteSpace [, string $locale]])

• $allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).

Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()

• $locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset, it
will use the default locale (Locale::getDefault()).

Methods for getting/setting the locale are also available: getLocale() and setLocale()

Alnum Filter Usage

1 // Default settings, deny whitespace
2 $filter = \Zend\I18n\Filter\Alnum();
3 echo $filter->filter("This is (my) content: 123");
4 // Returns "Thisismycontent123"
5

6 // First param in constructor is $allowWhiteSpace
7 $filter = \Zend\I18n\Filter\Alnum(true);
8 echo $filter->filter("This is (my) content: 123");
9 // Returns "This is my content 123"

Note: Note: Alnum works on almost all languages, except: Chinese, Japanese and Korean. Within these languages
the english alphabet is used instead of the characters from these languages. The language itself is detected using the
Locale.

343

Zend Framework 2 Documentation, Release 2.0.0

344 Chapter 70. Alnum Filter

CHAPTER

SEVENTYONE

ALPHA FILTER

The Alpha filter can be used to return only alphabetic characters in the unicode “letter” category. All other characters
are supressed.

Supported options for Alpha Filter

The following options are supported for Alpha:

Alpha([boolean $allowWhiteSpace [, string $locale]])

• $allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).

Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()

• $locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset, it
will use the default locale (Locale::getDefault()).

Methods for getting/setting the locale are also available: getLocale() and setLocale()

Alpha Filter Usage

1 // Default settings, deny whitespace
2 $filter = \Zend\I18n\Filter\Alpha();
3 echo $filter->filter("This is (my) content: 123");
4 // Returns "Thisismycontent"
5

6 // Allow whitespace
7 $filter = \Zend\I18n\Filter\Alpha(true);
8 echo $filter->filter("This is (my) content: 123");
9 // Returns "This is my content "

Note: Note: Alpha works on almost all languages, except: Chinese, Japanese and Korean. Within these languages
the english alphabet is used instead of the characters from these languages. The language itself is detected using the
Locale.

345

Zend Framework 2 Documentation, Release 2.0.0

346 Chapter 71. Alpha Filter

CHAPTER

SEVENTYTWO

NUMBERFORMAT FILTER

The NumberFormat filter can be used to return locale-specific number and percentage strings. It acts as a wrapper
for the NumberFormatter class within the Internationalization extension (Intl).

Supported options for NumberFormat Filter

The following options are supported for NumberFormat:

NumberFormat([string $locale [, int $style [, int $type]]])

• $locale: (Optional) Locale in which the number would be formatted (locale name, e.g. en_US). If unset, it
will use the default locale (Locale::getDefault())

Methods for getting/setting the locale are also available: getLocale() and setLocale()

• $style: (Optional) Style of the formatting, one of the format style constants. If unset, it will use
NumberFormatter::DEFAULT_STYLE as the default style.

Methods for getting/setting the format style are also available: getStyle() and setStyle()

• $type: (Optional) The formatting type to use. If unset, it will use NumberFormatter::TYPE_DOUBLE
as the default type.

Methods for getting/setting the format type are also available: getType() and setType()

NumberFormat Filter Usage

1 $filter = \Zend\I18n\Filter\NumberFormat("de_DE");
2 echo $filter->filter(1234567.8912346);
3 // Returns "1.234.567,891"
4

5 $filter = \Zend\I18n\Filter\NumberFormat("en_US", NumberFormatter::PERCENT);
6 echo $filter->filter(0.80);
7 // Returns "80%"
8

9 $filter = \Zend\I18n\Filter\NumberFormat("fr_FR", NumberFormatter::SCIENTIFIC);
10 echo $filter->filter(0.00123456789);
11 // Returns "1,23456789E-3"

347

http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle
http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types

Zend Framework 2 Documentation, Release 2.0.0

348 Chapter 72. NumberFormat Filter

CHAPTER

SEVENTYTHREE

INTRODUCTION

The Zend\InputFilter component can be used to filter and validate generic sets of input data. For instance, you
could use it to filter $_GET or $_POST values, CLI arguments, etc.

To pass input data to the InputFilter, you can use the setData() method. The data must be specified using an
associative array. Below is an example on how to validate the data coming from a form using the POST method.

1 use Zend\InputFilter\InputFilter;
2 use Zend\InputFilter\Input;
3 use Zend\Validator;
4

5 $email = new Input(’email’);
6 $email->getValidatorChain()
7 ->addValidator(new Validator\EmailAddress());
8

9 $password = new Input(’password’);
10 $password->getValidatorChain()
11 ->addValidator(new Validator\StringLength(8));
12

13 $inputFilter = new InputFilter();
14 $inputFilter->add($email)
15 ->add($password)
16 ->setData($_POST);
17

18 if ($inputFilter->isValid()) {
19 echo "The form is valid\n";
20 } else {
21 echo "The form is not valid\n";
22 foreach ($inputFilter->getInvalidInput() as $error) {
23 print_r ($error->getMessages());
24 }
25 }

In this example we validated the email and password values. The email must be a valid address and the password
must be composed with at least 8 characters. If the input data are not valid, we report the list of invalid input using the
getInvalidInput() method.

You can add one or more validators to each input using the addValidator() method for each validator. It
is also possible to specify a “validation group”, a subset of the data to be validated; this may be done using the
setValidationGroup() method. You can specify the list of the input names as an array or as individual param-
eters.

1 // As individual parameters
2 $filterInput->setValidationGroup(’email’, ’password’);
3

349

Zend Framework 2 Documentation, Release 2.0.0

4 // or as an array of names
5 $filterInput->setValidationGroup(array(’email’, ’password’));

You can validate and/or filter the data using the InputFilter. To filter data, use the getFilterChain()method
of individual Input instances, and attach filters to the returned filter chain. Below is an example that uses filtering
without validation.

1 use Zend\InputFilter\Input;
2 use Zend\InputFilter\InputFilter;
3

4 $input = new Input(’foo’);
5 $input->getFilterChain()
6 ->attachByName(’stringtrim’)
7 ->attachByName(’alpha’);
8

9 $inputfilter = new InputFilter();
10 $inputfilter->add($input, ’foo’)
11 ->setData(array(
12 ’foo’ => ’ Bar3 ’;
13));
14

15 echo "Before:\n";
16 echo $inputFilter->getRawValue(’foo’) . "\n"; // the output is ’ Bar3 ’
17 echo "After:\n";
18 echo $inputFilter->getValue(’foo’) . "\n"; // the output is ’Bar’

The getValue() method returns the filtered value of the ‘foo’ input, while getRawValue() returns the original
value of the input.

We provide also Zend\InputFilter\Factory, to allow initialization of the InputFilter based on a config-
uration array (or Traversable object). Below is an example where we create a password input value with the same
constraints proposed before (a string with at least 8 characters):

1 use Zend\InputFilter\Factory;
2

3 $factory = new Factory();
4 $inputFilter = $factory->createInputFilter(array(
5 ’password’ => array(
6 ’name’ => ’password’,
7 ’required’ => true,
8 ’validators’ => array(
9 array(

10 ’name’ => ’not_empty’,
11),
12 array(
13 ’name’ => ’string_length’,
14 ’options’ => array(
15 ’min’ => 8
16),
17),
18),
19),
20));
21

22 $inputFilter->setData($_POST);
23 echo $inputFilter->isValid() ? "Valid form" : "Invalid form";

The factory may be used to create not only Input instances, but also nested InputFilters, allowing you to create
validation and filtering rules for hierarchical data sets.

350 Chapter 73. Introduction

Zend Framework 2 Documentation, Release 2.0.0

Finally, the default InputFilter implementation is backed by a Factory. This means that when calling add(),
you can provide a specification that the Factory would understand, and it will create the appropriate object. You
may create either Input or InputFilter objects in this fashion.

1 use Zend\InputFilter\InputFilter;
2

3 $filter = new InputFilter();
4

5 // Adding a single input
6 $filter->add(array(
7 ’name’ => ’password’,
8 ’required’ => true,
9 ’validators’ => array(

10 array(
11 ’name’ => ’not_empty’,
12),
13 array(
14 ’name’ => ’string_length’,
15 ’options’ => array(
16 ’min’ => 8
17),
18),
19),
20));
21

22 // Adding an input filter composing a single input to the current filter
23 $filter->add(array(
24 ’type’ => ’Zend\Filter\InputFilter’,
25 ’password’ => array(
26 ’name’ => ’password’,
27 ’required’ => true,
28 ’validators’ => array(
29 array(
30 ’name’ => ’not_empty’,
31),
32 array(
33 ’name’ => ’string_length’,
34 ’options’ => array(
35 ’min’ => 8
36),
37),
38),
39),
40));

351

Zend Framework 2 Documentation, Release 2.0.0

352 Chapter 73. Introduction

CHAPTER

SEVENTYFOUR

INTRODUCTION

Zend\Ldap\Ldap is a class for performing LDAP operations including but not limited to binding, searching and
modifying entries in an LDAP directory.

74.1 Theory of operation

This component currently consists of the main Zend\Ldap\Ldap class, that conceptually represents a binding to
a single LDAP server and allows for executing operations against a LDAP server such as OpenLDAP or ActiveDi-
rectory (AD) servers. The parameters for binding may be provided explicitly or in the form of an options array.
Zend\Ldap\Node provides an object-oriented interface for single LDAP nodes and can be used to form a basis for
an active-record-like interface for a LDAP-based domain model.

The component provides several helper classes to perform operations on LDAP entries (Zend\Ldap\Attribute)
such as setting and retrieving attributes (date values, passwords, boolean values, ...), to create and modify LDAP filter
strings (Zend\Ldap\Filter) and to manipulate LDAP distinguished names (DN) (Zend\Ldap\Dn).

Additionally the component abstracts LDAP schema browsing for OpenLDAP and ActiveDirectory servers
Zend\Ldap\Node\Schema and server information retrieval for OpenLDAP-, ActiveDirectory- and Novell eDi-
rectory servers (Zend\Ldap\Node\RootDse).

Using the Zend\Ldap\Ldap class depends on the type of LDAP server and is best summarized with some simple
examples.

If you are using OpenLDAP, a simple example looks like the following (note that the bindRequiresDn option is
important if you are not using AD):

1 $options = array(
2 ’host’ => ’s0.foo.net’,
3 ’username’ => ’CN=user1,DC=foo,DC=net’,
4 ’password’ => ’pass1’,
5 ’bindRequiresDn’ => true,
6 ’accountDomainName’ => ’foo.net’,
7 ’baseDn’ => ’OU=Sales,DC=foo,DC=net’,
8);
9 $ldap = new Zend\Ldap\Ldap($options);

10 $acctname = $ldap->getCanonicalAccountName(’abaker’,
11 Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
12 echo "$acctname\n";

If you are using Microsoft AD a simple example is:

1 $options = array(
2 ’host’ => ’dc1.w.net’,

353

Zend Framework 2 Documentation, Release 2.0.0

3 ’useStartTls’ => true,
4 ’username’ => ’user1@w.net’,
5 ’password’ => ’pass1’,
6 ’accountDomainName’ => ’w.net’,
7 ’accountDomainNameShort’ => ’W’,
8 ’baseDn’ => ’CN=Users,DC=w,DC=net’,
9);

10 $ldap = new Zend\Ldap\Ldap($options);
11 $acctname = $ldap->getCanonicalAccountName(’bcarter’,
12 Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
13 echo "$acctname\n";

Note that we use the getCanonicalAccountName() method to retrieve the account DN here only because that
is what exercises the most of what little code is currently present in this class.

74.1.1 Automatic Username Canonicalization When Binding

If bind() is called with a non-DN username but bindRequiresDN is TRUE and no username in DN form was
supplied as an option, the bind will fail. However, if a username in DN form is supplied in the options array,
Zend\Ldap\Ldap will first bind with that username, retrieve the account DN for the username supplied to bind()
and then re-bind with that DN.

This behavior is critical to Zend\Authentication\Adapter\Ldap, which passes the username supplied by the user directly
to bind().

The following example illustrates how the non-DN username ‘abaker‘ can be used with bind():

1 $options = array(
2 ’host’ => ’s0.foo.net’,
3 ’username’ => ’CN=user1,DC=foo,DC=net’,
4 ’password’ => ’pass1’,
5 ’bindRequiresDn’ => true,
6 ’accountDomainName’ => ’foo.net’,
7 ’baseDn’ => ’OU=Sales,DC=foo,DC=net’,
8);
9 $ldap = new Zend\Ldap\Ldap($options);

10 $ldap->bind(’abaker’, ’moonbike55’);
11 $acctname = $ldap->getCanonicalAccountName(’abaker’,
12 Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
13 echo "$acctname\n";

The bind() call in this example sees that the username ‘abaker‘ is not in DN form, finds bindRequiresDn is TRUE,
uses ‘CN=user1,DC=foo,DC=net‘ and ‘pass1‘ to bind, retrieves the DN for ‘abaker‘, unbinds and then rebinds
with the newly discovered ‘CN=Alice Baker,OU=Sales,DC=foo,DC=net‘.

74.1.2 Account Name Canonicalization

The accountDomainName and accountDomainNameShort options are used for two purposes: (1) they facilitate
multi-domain authentication and failover capability, and (2) they are also used to canonicalize usernames. Specifically,
names are canonicalized to the form specified by the accountCanonicalForm option. This option may one of the
following values:

354 Chapter 74. Introduction

Zend Framework 2 Documentation, Release 2.0.0

Table 74.1: Options for accountCanonicalForm

Name Value Example
ACCTNAME_FORM_DN 1 CN=Alice Baker,CN=Users,DC=example,DC=com
ACCTNAME_FORM_USERNAME 2 abaker
ACCTNAME_FORM_BACKSLASH 3 EXAMPLE\abaker
ACCTNAME_FORM_PRINCIPAL 4 abaker@example.com

The default canonicalization depends on what account domain name options were supplied. If accountDomain-
NameShort was supplied, the default accountCanonicalForm value is ACCTNAME_FORM_BACKSLASH. Other-
wise, if accountDomainName was supplied, the default is ACCTNAME_FORM_PRINCIPAL.

Account name canonicalization ensures that the string used to identify an account is consistent regardless of what was
supplied to bind(). For example, if the user supplies an account name of abaker@example.com or just abaker
and the accountCanonicalForm is set to 3, the resulting canonicalized name would be EXAMPLEabaker.

74.1.3 Multi-domain Authentication and Failover

The Zend\Ldap\Ldap component by itself makes no attempt to authenticate with multiple servers. However,
Zend\Ldap\Ldap is specifically designed to handle this scenario gracefully. The required technique is to simply
iterate over an array of arrays of serve options and attempt to bind with each server. As described above bind() will
automatically canonicalize each name, so it does not matter if the user passes abaker@foo.net or Wbcarter or
cdavis- the bind() method will only succeed if the credentials were successfully used in the bind.

Consider the following example that illustrates the technique required to implement multi-domain authentication and
failover:

1 $acctname = ’W\\user2’;
2 $password = ’pass2’;
3

4 $multiOptions = array(
5 ’server1’ => array(
6 ’host’ => ’s0.foo.net’,
7 ’username’ => ’CN=user1,DC=foo,DC=net’,
8 ’password’ => ’pass1’,
9 ’bindRequiresDn’ => true,

10 ’accountDomainName’ => ’foo.net’,
11 ’accountDomainNameShort’ => ’FOO’,
12 ’accountCanonicalForm’ => 4, // ACCT_FORM_PRINCIPAL
13 ’baseDn’ => ’OU=Sales,DC=foo,DC=net’,
14),
15 ’server2’ => array(
16 ’host’ => ’dc1.w.net’,
17 ’useSsl’ => true,
18 ’username’ => ’user1@w.net’,
19 ’password’ => ’pass1’,
20 ’accountDomainName’ => ’w.net’,
21 ’accountDomainNameShort’ => ’W’,
22 ’accountCanonicalForm’ => 4, // ACCT_FORM_PRINCIPAL
23 ’baseDn’ => ’CN=Users,DC=w,DC=net’,
24),
25);
26

27 $ldap = new Zend\Ldap\Ldap();
28

29 foreach ($multiOptions as $name => $options) {
30

74.1. Theory of operation 355

mailto:abaker@example.com

Zend Framework 2 Documentation, Release 2.0.0

31 echo "Trying to bind using server options for ’$name’\n";
32

33 $ldap->setOptions($options);
34 try {
35 $ldap->bind($acctname, $password);
36 $acctname = $ldap->getCanonicalAccountName($acctname);
37 echo "SUCCESS: authenticated $acctname\n";
38 return;
39 } catch (Zend\Ldap\Exception\LdapException $zle) {
40 echo ’ ’ . $zle->getMessage() . "\n";
41 if ($zle->getCode() === Zend\Ldap\Exception\LdapException::LDAP_X_DOMAIN_MISMATCH) {
42 continue;
43 }
44 }
45 }

If the bind fails for any reason, the next set of server options is tried.

The getCanonicalAccountName() call gets the canonical account name that the application would presumably
use to associate data with such as preferences. The accountCanonicalForm = 4 in all server options ensures that the
canonical form is consistent regardless of which server was ultimately used.

The special LDAP_X_DOMAIN_MISMATCH exception occurs when an account name with a domain component was
supplied (e.g., abaker@foo.net or FOOabaker and not just abaker) but the domain component did not match
either domain in the currently selected server options. This exception indicates that the server is not an authority for
the account. In this case, the bind will not be performed, thereby eliminating unnecessary communication with the
server. Note that the continue instruction has no effect in this example, but in practice for error handling and debugging
purposes, you will probably want to check for LDAP_X_DOMAIN_MISMATCH as well as LDAP_NO_SUCH_OBJECT
and LDAP_INVALID_CREDENTIALS.

The above code is very similar to code used within Zend\Authentication\Adapter\Ldap. In fact, we recommend that
you simply use that authentication adapter for multi-domain + failover LDAP based authentication (or copy the code).

356 Chapter 74. Introduction

CHAPTER

SEVENTYFIVE

API OVERVIEW

75.1 Configuration / options

The Zend\Ldap\Ldap component accepts an array of options either supplied to the constructor or through the
setOptions() method. The permitted options are as follows:

357

Zend Framework 2 Documentation, Release 2.0.0

Table 75.1: Zend\Ldap\Ldap Options

Name Description
host The default hostname of LDAP server if not supplied to connect() (also may be used when

trying to canonicalize usernames in bind()).
port Default port of LDAP server if not supplied to connect().
useStartTls Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of

TRUE is strongly favored in production environments to prevent passwords from be transmitted
in clear text. The default value is FALSE, as servers frequently require that a certificate be
installed separately after installation. The useSsl and useStartTls options are mutually
exclusive. The useStartTls option should be favored over useSsl but not all servers support this
newer mechanism.

useSsl Whether or not the LDAP client should use SSL encrypted transport. The useSsl and
useStartTls options are mutually exclusive.

username The default credentials username. Some servers require that this be in DN form. This must be
given in DN form if the LDAP server requires a DN to bind and binding should be possible
with simple usernames.

password The default credentials password (used only with username above).
bindRequiresDn If TRUE, this instructs Zend\Ldap\Ldap to retrieve the DN for the account used to bind if the

username is not already in DN form. The default value is FALSE.
baseDn The default base DN used for searching (e.g., for accounts). This option is required for most

account related operations and should indicate the DN under which accounts are located.
accountCanon-
icalForm

A small integer indicating the form to which account names should be canonicalized. See the
Account Name Canonicalization section below.

accountDo-
mainName

The FQDN domain for which the target LDAP server is an authority (e.g., example.com).

accountDo-
main-
NameShort

The ‘short’ domain for which the target LDAP server is an authority. This is usually used to
specify the NetBIOS domain name for Windows networks but may also be used by non-AD
servers.

accountFilter-
Format

The LDAP search filter used to search for accounts. This string is a sprintf() style expression
that must contain one ‘%s’ to accommodate the username. The default value is
‘(&(objectClass=user)(sAMAccountName=%s))’ unless bindRequiresDn is set to TRUE, in
which case the default is ‘(&(objectClass=posixAccount)(uid=%s))’. Users of custom schemas
may need to change this option.

allowEmpty-
Password

Some LDAP servers can be configured to accept an empty string password as an anonymous
bind. This behavior is almost always undesirable. For this reason, empty passwords are
explicitly disallowed. Set this value to TRUE to allow an empty string password to be
submitted during the bind.

optReferrals If set to TRUE, this option indicates to the LDAP client that referrals should be followed. The
default value is FALSE.

tryUsernameS-
plit

If set to FALSE, this option indicates that the given username should not be split at the first @
or \ character to separate the username from the domain during the binding-procedure. This
allows the user to use usernames that contain an @ or \ character that do not inherit some
domain-information, e.g. using email-addresses for binding. The default value is TRUE.

networkTime-
out

Number of seconds to wait for LDAP connection before fail. If not set the default value is the
system value.

75.2 API Reference

Note: Method names in italics are static methods.

358 Chapter 75. API overview

CHAPTER

SEVENTYSIX

ZEND\LDAP\LDAP

Zend\Ldap\Ldap is the base interface into a LDAP server. It provides connection and binding methods as well as
methods to operate on the LDAP tree.

Table 76.1: Zend\Ldap\Ldap API

Method Description
__construct($options) Constructor. The $options parameter is optional and can be set to an array or a Traversable object. If no options are provided at instantiation, the connection parameters must be passed to the instance using Zend\Ldap\Ldap::setOptions(). The allowed options are specified in Zend\Ldap\Ldap Options
resource getResource() Returns the raw LDAP extension (ext/ldap) resource.
integer getLastErrorCode() Returns the LDAP error number of the last LDAP command.
string getLastError(integer &$errorCode, array &$errorMessages) Returns the LDAP error message of the last LDAP command. The optional $errorCode parameter is set to the LDAP error number when given. The optional $errorMessages array will be filled with the raw error messages when given. The various LDAP error retrieval functions can return different things, so they are all collected if $errorMessages is given.
Zend\Ldap\Ldap setOptions($options) Sets the LDAP connection and binding parameters. $options can be an array or an Traversable object. The allowed options are specified in Zend\Ldap\Ldap Options
array getOptions() Returns the current connection and binding parameters.
string getBaseDn() Returns the base DN this LDAP connection is bound to.
string getCanonicalAccountName(string $acctname, integer $form) Returns the canonical account name of the given account name $acctname. $form specifies the format into which the account name is canonicalized. See Account Name Canonicalization for more details.
Zend\Ldap\Ldap disconnect() Disconnects the Zend\Ldap\Ldap instance from the LDAP server.
Zend\Ldap\Ldap connect(string $host, integer $port, boolean $useSsl, boolean $useStartTls, integer $networkTimeout) Connects the Zend\Ldap\Ldap instance to the given LDAP server. All parameters are optional and will be taken from the LDAP connection and binding parameters passed to the instance via the constructor or via Zend\Ldap\Ldap::setOptions() when set to NULL.
Zend\Ldap\Ldap bind(string $username, string $password) Authenticates $username with $password at the LDAP server. If both parameters are omitted the binding will be carried out with the credentials given in the connection and binding parameters. If no credentials are given in the connection and binding parameters an anonymous bind will be performed. Note that this requires anonymous binds to be allowed on the LDAP server. An empty string ‘’ can be passed as $password together with a username if, and only if, allowEmptyPassword is set to TRUE in the connection and binding parameters.
Zend\Ldap\Collection search(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $collectionClass, integer $sizelimit, integer $timelimit) Searches the LDAP tree with the given $filter and the given search parameters. string|Zend\Ldap\Filter\AbstractFilter $filter The filter string to be used in the search, e.g. (objectClass=posixAccount). string|Zend\Ldap\Dn $basedn The search base for the search. If omitted or NULL, the baseDn from the connection and binding parameters is used. integer $scope The search scope. Zend\Ldap\Ldap::SEARCH_SCOPE_SUB searches the complete subtree including the $baseDn node. Zend\Ldap\Ldap::SEARCH_SCOPE_ONE restricts search to one level below $baseDn. Zend\Ldap\Ldap::SEARCH_SCOPE_BASE restricts search to the $baseDn itself; this can be used to efficiently retrieve a single entry by its DN. The default value is Zend\Ldap\Ldap::SEARCH_SCOPE_SUB. array $attributes Specifies the attributes contained in the returned entries. To include all possible attributes (ACL restrictions can disallow certain attribute to be retrieved by a given user) pass either an empty array array() or array(‘*’) to the method. On some LDAP servers you can retrieve special internal attributes by passing array(‘*’, ‘+’) to the method. string $sort If given the result collection will be sorted after the attribute $sort. Results can only be sorted after one single attribute as this parameter uses the ext/ldap function ldap_sort(). string $collectionClass If given the result will be wrapped in an object of type $collectionClass. By default an object of type Zend\Ldap\Collection will be returned. The custom class must extend Zend\Ldap\Collection and will be passed a Zend\Ldap\Collection\Iterator\Default on instantiation. integer $sizelimit Enables you to limit the count of entries fetched. Setting this to 0 means no limit. integer $timelimit Sets the number of seconds how long is spend on the search. Setting this to 0 means no limit.
integer count(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope) Counts the elements returned by the given search parameters. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.
integer countChildren(string|Zend\Ldap\Dn $dn) Counts the direct descendants (children) of the entry identified by the given $dn.
boolean exists(string|Zend\Ldap\Dn $dn) Checks whether the entry identified by the given $dn exists.
array searchEntries(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $reverseSort, integer $sizelimit, integer $timelimit) Performs a search operation and returns the result as an PHP array. This is essentially the same method as Zend\Ldap\Ldap::search() except for the return type. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.
array getEntry(string|Zend\Ldap\Dn $dn, array $attributes, boolean $throwOnNotFound) Retrieves the LDAP entry identified by $dn with the attributes specified in $attributes. if $attributes is omitted, all attributes (array()) are included in the result. $throwOnNotFound is FALSE by default, so the method will return NULL if the specified entry cannot be found. If set to TRUE, a Zend\Ldap\Exception\LdapException will be thrown instead.
void prepareLdapEntryArray(array &$entry) Prepare an array for the use in LDAP modification operations. This method does not need to be called by the end-user as it’s implicitly called on every data modification method.
Zend\Ldap\Ldap add(string|Zend\Ldap\Dn $dn, array $entry) Adds the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be added.
Zend\Ldap\Ldap update(string|Zend\Ldap\Dn $dn, array $entry) Updates the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be modified.
Zend\Ldap\Ldap save(string|Zend\Ldap\Dn $dn, array $entry) Saves the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be saved. This method decides by querying the LDAP tree if the entry will be added or updated.
Zend\Ldap\Ldap delete(string|Zend\Ldap\Dn $dn, boolean $recursively) Deletes the entry identified by $dn from the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be deleted. $recursively is FALSE by default. If set to TRUE the deletion will be carried out recursively and will effectively delete a complete subtree. Deletion will fail if $recursively is FALSE and the entry $dn is not a leaf entry.
Zend\Ldap\Ldap moveToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate) Moves the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation. All move-operations are carried out by copying and then deleting the corresponding entries in the LDAP tree. These operations are not atomic so that failures during the operation will result in an inconsistent state on the LDAP server. The same is true for all recursive operations. They also are by no means atomic. Please keep this in mind.
Zend\Ldap\Ldap move(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate) This is an alias for Zend\Ldap\Ldap::rename().
Zend\Ldap\Ldap rename(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate) Renames the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation.
Zend\Ldap\Ldap copyToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively) Copies the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.
Zend\Ldap\Ldap copy(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively) Copies the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.
Zend\Ldap\Node getNode(string|Zend\Ldap\Dn $dn) Returns the entry $dn wrapped in a Zend\Ldap\Node.
Zend\Ldap\Node getBaseNode() Returns the entry for the base DN $baseDn wrapped in a Zend\Ldap\Node.
Zend\Ldap\Node\RootDse getRootDse() Returns the RootDSE for the current server.
Zend\Ldap\Node\Schema getSchema() Returns the LDAP schema for the current server.

359

Zend Framework 2 Documentation, Release 2.0.0

76.1 Zend\Ldap\Collection

Zend\Ldap\Collection implements Iterator to allow for item traversal using foreach() and Countable to be
able to respond to count(). With its protected createEntry() method it provides a simple extension point for
developers needing custom result objects.

Table 76.2: Zend\Ldap\Collection API

Method Description
__con-
struct(Zend\Ldap\Collection\Iterator\Interface
$iterator)

Constructor. The constructor must be provided by a
Zend\Ldap\Collection\Iterator\Interface which does the real result iteration.
Zend\Ldap\Collection\Iterator\Default is the default implementation for iterating
ext/ldap results.

boolean close() Closes the internal iterator. This is also called in the destructor.
array toArray() Returns all entries as an array.
array getFirst() Returns the first entry in the collection or NULL if the collection is empty.

360 Chapter 76. Zend\Ldap\Ldap

CHAPTER

SEVENTYSEVEN

ZEND\LDAP\ATTRIBUTE

Zend\Ldap\Attribute is a helper class providing only static methods to manipulate arrays suitable to the struc-
ture used in Zend\Ldap\Ldap data modification methods and to the data format required by the LDAP server. PHP
data types are converted using Zend\Ldap\Converter\Converter methods.

361

Zend Framework 2 Documentation, Release 2.0.0

Table 77.1: Zend\Ldap\Attribute API

Method Description
void setAttribute(array &$data, string
$attribName, mixed $value, boolean
$append)

Sets the attribute $attribName in $data to the value $value. If
$append is TRUE (FALSE by default) $value will be appended to
the attribute. $value can be a scalar value or an array of scalar
values. Conversion will take place.

array|mixed getAttribute(array $data, string
$attribName, integer|null $index)

Returns the attribute $attribName from $data. If $index is NULL
(default) an array will be returned containing all the values for the
given attribute. An empty array will be returned if the attribute
does not exist in the given array. If an integer index is specified
the corresponding value at the given index will be returned. If the
index is out of bounds, NULL will be returned. Conversion will
take place.

boolean attributeHasValue(array &$data,
string $attribName, mixed|array $value)

Checks if the attribute $attribName in $data has the value(s) given
in $value. The method returns TRUE only if all values in $value
are present in the attribute. Comparison is done strictly
(respecting the data type).

void removeDuplicatesFromAttribute(array
&$data, string $attribName)

Removes all duplicates from the attribute $attribName in $data.

void removeFromAttribute(array &$data,
string $attribName, mixed|array $value)

Removes the value(s) given in $value from the attribute
$attribName in $data.

void setPassword(array &$data, string
$password, string $hashType, string
$attribName)

Sets a LDAP password for the attribute $attribName in $data.
$attribName defaults to ‘userPassword’ which is the standard
password attribute. The password hash can be specified with
$hashType. The default value here is
Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with
Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other
possibility.

string createPassword(string $password,
string $hashType)

Creates a LDAP password. The password hash can be specified
with $hashType. The default value here is
Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with
Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other
possibility.

void setDateTimeAttribute(array &$data,
string $attribName, integer|array $value,
boolean $utc, boolean $append)

Sets the attribute $attribName in $data to the date/time value
$value. if $append is TRUE (FALSE by default) $value will be
appended to the attribute. $value can be an integer value or an
array of integers. Date-time-conversion according to
Zend\Ldap\Converter\Converter::toLdapDateTime() will take
place.

array|integer getDateTimeAttribute(array
$data, string $attribName, integer|null
$index)

Returns the date/time attribute $attribName from $data. If $index
is NULL (default) an array will be returned containing all the
date/time values for the given attribute. An empty array will be
returned if the attribute does not exist in the given array. If an
integer index is specified the corresponding date/time value at the
given index will be returned. If the index is out of bounds, NULL
will be returned. Date-time-conversion according to
Zend\Ldap\Converter\Converter::fromLdapDateTime() will take
place.

362 Chapter 77. Zend\Ldap\Attribute

CHAPTER

SEVENTYEIGHT

ZEND\LDAP\CONVERTER\CONVERTER

Zend\Ldap\Converter\Converter is a helper class providing only static methods to manipulate arrays suit-
able to the data format required by the LDAP server. PHP data types are converted the following way:

string No conversion will be done.

integer and float The value will be converted to a string.

boolean TRUE will be converted to ‘TRUE’ and FALSE to ‘FALSE’

object and array The value will be converted to a string by using serialize().

Date/Time The value will be converted to a string with the following date() format YmdHisO, UTC timezone
(+0000) will be replaced with a Z. For example 01-30-2011 01:17:32 PM GMT-6 will be 20113001131732-
0600 and 30-01-2012 15:17:32 UTC will be 20120130151732Z

resource If a stream resource is given, the data will be fetched by calling stream_get_contents().

others All other data types (namely non-stream resources) will be omitted.

On reading values the following conversion will take place:

‘TRUE’ Converted to TRUE.

‘FALSE’ Converted to FALSE.

others All other strings won’t be automatically converted and are passed as they are.

363

Zend Framework 2 Documentation, Release 2.0.0

Table 78.1: Zend\Ldap\Converter\Converter API

Method Description
string ascToHex32(string $string) Convert all Ascii characters with decimal value less than 32 to hexadecimal

value.
string hex32ToAsc(string $string) Convert all hexadecimal characters by his Ascii value.
string|null toLdap(mixed $value,
int $type)

Converts a PHP data type into its LDAP representation. $type argument is
used to set the conversion method by default Converter::STANDARD where
the function will try to guess the conversion method to use, others
possibilities are Converter::BOOLEAN and
Converter::GENERALIZED_TIME See introduction for details.

mixed fromLdap(string $value, int
$type, boolean $dateTimeAsUtc)

Converts an LDAP value into its PHP data type. See introduction and
toLdap() and toLdapDateTime() for details.

string|null toLdapDate-
Time(integer|string|DateTime
$date, boolean $asUtc)

Converts a timestamp, a DateTime Object, a string that is parseable by
strtotime() or a DateTime into its LDAP date/time representation. If $asUtc
is TRUE (FALSE by default) the resulting LDAP date/time string will be
inUTC, otherwise a local date/time string will be returned.

DateTime
fromLdapDateTime(string $date,
boolean $asUtc)

Converts LDAP date/time representation into a PHP DateTime object.

string toLdap-
Boolean(boolean|integer|string
$value)

Converts a PHP data type into its LDAP boolean representation. By default
always return ‘FALSE’ except if the value is true , ‘true’ or 1

boolean fromLdapBoolean(string
$value)

Converts LDAP boolean representation into a PHP boolean data type.

string toLdapSerialize(mixed
$value)

The value will be converted to a string by using serialize().

mixed
fromLdapUnserialize(string
$value)

The value will be converted from a string by using unserialize().

364 Chapter 78. Zend\Ldap\Converter\Converter

CHAPTER

SEVENTYNINE

ZEND\LDAP\DN

Zend\Ldap\Dn provides an object-oriented interface to manipulating LDAP distinguished names (DN). The param-
eter $caseFold that is used in several methods determines the way DN attributes are handled regarding their case.
Allowed values for this parameter are:

ZendLdapDn::ATTR_CASEFOLD_NONE No case-folding will be done.

ZendLdapDn::ATTR_CASEFOLD_UPPER All attributes will be converted to upper-case.

ZendLdapDn::ATTR_CASEFOLD_LOWER All attributes will be converted to lower-case.

The default case-folding is Zend\Ldap\Dn::ATTR_CASEFOLD_NONE and can be set with
Zend\Ldap\Dn::setDefaultCaseFold(). Each instance of Zend\Ldap\Dn can have its own case-
folding-setting. If the $caseFold parameter is omitted in method-calls it defaults to the instance’s case-folding
setting.

The class implements ArrayAccess to allow indexer-access to the different parts of the DN.
The ArrayAccess-methods proxy to Zend\Ldap\Dn::get($offset, 1, null) for offset-
Get(integer $offset), to Zend\Ldap\Dn::set($offset, $value) for offsetSet() and to
Zend\Ldap\Dn::remove($offset, 1) for offsetUnset(). offsetExists() simply checks if
the index is within the bounds.

365

Zend Framework 2 Documentation, Release 2.0.0

Table 79.1: Zend\Ldap\Dn API

Method Description
Zend\Ldap\Dn factory(string|array
$dn, string|null $caseFold)

Creates a Zend\Ldap\Dn instance from an array or a string. The array
must conform to the array structure detailed under
Zend\Ldap\Dn::implodeDn().

Zend\Ldap\Dn fromString(string
$dn, string|null $caseFold)

Creates a Zend\Ldap\Dn instance from a string.

Zend\Ldap\Dn fromArray(array
$dn, string|null $caseFold)

Creates a Zend\Ldap\Dn instance from an array. The array must conform
to the array structure detailed under Zend\Ldap\Dn::implodeDn().

array getRdn(string|null $caseFold) Gets the RDN of the current DN. The return value is an array with the
RDN attribute names its keys and the RDN attribute values.

string getRdnString(string|null
$caseFold)

Gets the RDN of the current DN. The return value is a string.

Zend\Ldap\Dn getParentDn(integer
$levelUp)

Gets the DN of the current DN’s ancestor $levelUp levels up the tree.
$levelUp defaults to 1.

array get(integer $index, integer
$length, string|null $caseFold)

Returns a slice of the current DN determined by $index and $length.
$index starts with 0 on the DN part from the left.

Zend\Ldap\Dn set(integer $index,
array $value)

Replaces a DN part in the current DN. This operation manipulates the
current instance.

Zend\Ldap\Dn remove(integer
$index, integer $length)

Removes a DN part from the current DN. This operation manipulates the
current instance. $length defaults to 1

Zend\Ldap\Dn append(array $value) Appends a DN part to the current DN. This operation manipulates the
current instance.

Zend\Ldap\Dn prepend(array
$value)

Prepends a DN part to the current DN. This operation manipulates the
current instance.

Zend\Ldap\Dn insert(integer $index,
array $value)

Inserts a DN part after the index $index to the current DN. This operation
manipulates the current instance.

void setCaseFold(string|null
$caseFold)

Sets the case-folding option to the current DN instance. If $caseFold is
NULL the default case-folding setting
(Zend\Ldap\Dn::ATTR_CASEFOLD_NONE by default or set via
Zend\Ldap\Dn::setDefaultCaseFold() will be set for the current instance.

string toString(string|null $caseFold) Returns DN as a string.
array toArray(string|null $caseFold) Returns DN as an array.
string __toString() Returns DN as a string - proxies to Zend\Ldap\Dn::toString(null).
void setDefaultCaseFold(string
$caseFold)

Sets the default case-folding option used by all instances on creation by
default. Already existing instances are not affected by this setting.

array escapeValue(string|array
$values)

Escapes a DN value according to RFC 2253.

array unescapeValue(string|array
$values)

Undoes the conversion done by Zend\Ldap\Dn::escapeValue().

array explodeDn(string $dn, array
&$keys, array &$vals, string|null
$caseFold)

Explodes the DN $dn into an array containing all parts of the given DN.
$keys optionally receive DN keys (e.g. CN, OU, DC, ...). $vals optionally
receive DN values. The resulting array will be of type array(array(“cn”
=> “name1”, “uid” => “user”), array(“cn” => “name2”), array(“dc” =>
“example”), array(“dc” => “org”)) for a DN of
cn=name1+uid=user,cn=name2,dc=example,dc=org.

boolean checkDn(string $dn, array
&$keys, array &$vals, string|null
$caseFold)

Checks if a given DN $dn is malformed. If $keys or $keys and $vals are
given, these arrays will be filled with the appropriate DN keys and values.

string implodeRdn(array $part,
string|null $caseFold)

Returns a DN part in the form $attribute=$value

string implodeDn(array $dnArray,
string|null $caseFold, string
$separator)

Implodes an array in the form delivered by Zend\Ldap\Dn::explodeDn()
to a DN string. $separator defaults to ‘,’ but some LDAP servers also
understand ‘;’. $dnArray must of type array(array(“cn” => “name1”,
“uid” => “user”), array(“cn” => “name2”), array(“dc” => “example”),
array(“dc” => “org”))

boolean
isChildOf(string|Zend\Ldap\Dn
$childDn, string|Zend\Ldap\Dn
$parentDn)

Checks if given $childDn is beneath $parentDn subtree.

366 Chapter 79. Zend\Ldap\Dn

367

Zend Framework 2 Documentation, Release 2.0.0

CHAPTER

EIGHTY

ZEND\LDAP\FILTER

Table 80.1: Zend\Ldap\Filter API

Method Description
Zend\Ldap\Filter equals(string $attr,
string $value)

Creates an ‘equals’ filter: (attr=value).

Zend\Ldap\Filter begins(string $attr,
string $value)

Creates an ‘begins with’ filter: (attr=value*).

Zend\Ldap\Filter ends(string $attr,
string $value)

Creates an ‘ends with’ filter: (attr=*value).

Zend\Ldap\Filter contains(string $attr,
string $value)

Creates an ‘contains’ filter: (attr=*value*).

Zend\Ldap\Filter greater(string $attr,
string $value)

Creates an ‘greater’ filter: (attr>value).

Zend\Ldap\Filter greaterOrEqual(string
$attr, string $value)

Creates an ‘greater or equal’ filter: (attr>=value).

Zend\Ldap\Filter less(string $attr, string
$value)

Creates an ‘less’ filter: (attr<value).

Zend\Ldap\Filter lessOrEqual(string
$attr, string $value)

Creates an ‘less or equal’ filter: (attr<=value).

Zend\Ldap\Filter approx(string $attr,
string $value)

Creates an ‘approx’ filter: (attr~=value).

Zend\Ldap\Filter any(string $attr) Creates an ‘any’ filter: (attr=*).
Zend\Ldap\Filter string(string $filter) Creates a simple custom string filter. The user is responsible for all

value-escaping as the filter is used as is.
Zend\Ldap\Filter mask(string $mask,
string $value,...)

Creates a filter from a string mask. All $value parameters will be
escaped and substituted into $mask by using sprintf()

Zend\Ldap\Filter andFil-
ter(Zend\Ldap\Filter\AbstractFilter
$filter,...)

Creates an ‘and’ filter from all arguments given.

Zend\Ldap\Filter
orFilter(Zend\Ldap\Filter\AbstractFilter
$filter,...)

Creates an ‘or’ filter from all arguments given.

__construct(string $attr, string $value,
string $filtertype, string|null $prepend,
string|null $append)

Constructor. Creates an arbitrary filter according to the parameters
supplied. The resulting filter will be a concatenation $attr . $filtertype
. $prepend . $value . $append. Normally this constructor is not needed
as all filters can be created by using the appropriate factory methods.

string toString() Returns a string representation of the filter.
string __toString() Returns a string representation of the filter. Proxies to

Zend\Ldap\Filter::toString().
Zend\Ldap\Filter\AbstractFilter negate() Negates the current filter.
Zend\Ldap\Filter\AbstractFilter
addAnd(Zend\Ldap\Filter\AbstractFilter
$filter,...)

Creates an ‘and’ filter from the current filter and all filters passed in as
the arguments.

Zend\Ldap\Filter\AbstractFilter
addOr(Zend\Ldap\Filter\AbstractFilter
$filter,...)

Creates an ‘or’ filter from the current filter and all filters passed in as
the arguments.

string|array escapeValue(string|array
$values)

Escapes the given $values according to RFC 2254 so that they can be
safely used in LDAP filters. If a single string is given, a string is
returned - otherwise an array is returned. Any control characters with
an ASCII code < 32 as well as the characters with special meaning in
LDAP filters “*”, “(”, ”)”, and “\” (the backslash) are converted into
the representation of a backslash followed by two hex digits
representing the hexadecimal value of the character.

string|array unescapeValue(string|array
$values)

Undoes the conversion done by Zend\Ldap\Filter::escapeValue().
Converts any sequences of a backslash followed by two hex digits into
the corresponding character.

368 Chapter 80. Zend\Ldap\Filter

CHAPTER

EIGHTYONE

ZEND\LDAP\NODE

Zend\Ldap\Node includes the magic property accessors __set(), __get(), __unset() and
__isset() to access the attributes by their name. They proxy to Zend\Ldap\Node::setAttribute(),
Zend\Ldap\Node::getAttribute(), Zend\Ldap\Node::deleteAttribute() and
Zend\Ldap\Node::existsAttribute() respectively. Furthermore the class implements ArrayAccess
for array-style-access to the attributes. Zend\Ldap\Node also implements Iterator and RecursiveIterator to allow
for recursive tree-traversal.

Table 81.1: Zend\Ldap\Node API

Method Description
Zend\Ldap\Ldap getLdap() Returns the current LDAP connection. Throws Zend\Ldap\Exception\LdapException if current node is in detached mode (not connected to a Zend\Ldap\Ldap instance).
Zend\Ldap\Node attachLdap(Zend\Ldap\Ldap $ldap) Attach the current node to the $ldapZend\Ldap\Ldap instance. Throws Zend\Ldap\Exception\LdapException if $ldap is not responsible for the current node (node is not a child of the $ldap base DN).
Zend\Ldap\Node detachLdap() Detach node from LDAP connection.
boolean isAttached() Checks if the current node is attached to a LDAP connection.
Zend\Ldap\Node create(string|array|Zend\Ldap\Dn $dn, array $objectClass) Factory method to create a new detached Zend\Ldap\Node for a given DN. Creates a new Zend\Ldap\Node with the DN $dn and the object-classes $objectClass.
Zend\Ldap\Node fromLdap(string|array|Zend\Ldap\Dn $dn, Zend\Ldap\Ldap $ldap) Factory method to create an attached Zend\Ldap\Node for a given DN. Loads an existing Zend\Ldap\Node with the DN $dn from the LDAP connection $ldap.
Zend\Ldap\Node fromArray((array $data, boolean $fromDataSource) Factory method to create a detached Zend\Ldap\Node from array data $data. if $fromDataSource is TRUE (FALSE by default), the data is treated as being present in a LDAP tree.
boolean isNew() Tells if the node is considered as new (not present on the server). Please note, that this doesn’t tell if the node is really present on the server. Use Zend\Ldap\Node::exists() to see if a node is already there.
boolean willBeDeleted() Tells if this node is going to be deleted once Zend\Ldap\Node::update() is called.
Zend\Ldap\Node delete() Marks this node as to be deleted. Node will be deleted on calling Zend\Ldap\Node::update() if Zend\Ldap\Node::willBeDeleted() is TRUE.
boolean willBeMoved() Tells if this node is going to be moved once Zend\Ldap\Node::update() is called.
Zend\Ldap\Node update(Zend\Ldap\Ldap $ldap) Sends all pending changes to the LDAP server. If $ldap is omitted the current LDAP connection is used. If the current node is detached from a LDAP connection a Zend\Ldap\Exception\LdapException will be thrown. If $ldap is provided the current node will be attached to the given LDAP connection.
Zend\Ldap\Dn getCurrentDn() Gets the current DN of the current node as a Zend\Ldap\Dn. This does not reflect possible rename-operations.
Zend\Ldap\Dn getDn() Gets the original DN of the current node as a Zend\Ldap\Dn. This reflects possible rename-operations.
string getDnString(string $caseFold) Gets the original DN of the current node as a string. This reflects possible rename-operations.
array getDnArray(string $caseFold) Gets the original DN of the current node as an array. This reflects possible rename-operations.
string getRdnString(string $caseFold) Gets the RDN of the current node as a string. This reflects possible rename-operations.
array getRdnArray(string $caseFold) Gets the RDN of the current node as an array. This reflects possible rename-operations.
Zend\Ldap\Node setDn(Zend\Ldap\Dn|string|array $newDn) Sets the new DN for this node effectively moving the node once Zend\Ldap\Node::update() is called.
Zend\Ldap\Node move(Zend\Ldap\Dn|string|array $newDn) This is an alias for Zend\Ldap\Node::setDn().
Zend\Ldap\Node rename(Zend\Ldap\Dn|string|array $newDn) This is an alias for Zend\Ldap\Node::setDn().
array getObjectClass() Returns the objectClass of the node.
Zend\Ldap\Node setObjectClass(array|string $value) Sets the objectClass attribute.
Zend\Ldap\Node appendObjectClass(array|string $value) Appends to the objectClass attribute.
string toLdif(array $options) Returns a LDIF representation of the current node. $options will be passed to the Zend\Ldap\Ldif\Encoder.
array getChangedData() Gets changed node data. The array contains all changed attributes. This format can be used in Zend\Ldap\Ldap::add() and Zend\Ldap\Ldap::update().
array getChanges() Returns all changes made.
string toString() Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().

Continued on next page

369

Zend Framework 2 Documentation, Release 2.0.0

Table 81.1 – continued from previous page
Method Description

string __toString() Casts to string representation - proxies to Zend\Ldap\Dn::toString().
array toArray(boolean $includeSystemAttributes) Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node::getAttributes() the resulting array contains the DN with key ‘dn’.
string toJson(boolean $includeSystemAttributes) Returns a JSON representation of the current node using Zend\Ldap\Node::toArray().
array getData(boolean $includeSystemAttributes) Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).
boolean existsAttribute(string $name, boolean $emptyExists) Checks whether a given attribute exists. If $emptyExists is FALSE empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.
boolean attributeHasValue(string $name, mixed|array $value) Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).
integer count() Returns the number of attributes in the node. Implements Countable.
mixed getAttribute(string $name, integer|null $index) Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().
array getAttributes(boolean $includeSystemAttributes) Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.
Zend\Ldap\Node setAttribute(string $name, mixed $value) Sets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().
Zend\Ldap\Node appendToAttribute(string $name, mixed $value) Appends to a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().
array|integer getDateTimeAttribute(string $name, integer|null $index) Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().
Zend\Ldap\Node setDateTimeAttribute(string $name, integer|array $value, boolean $utc) Sets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().
Zend\Ldap\Node appendToDateTimeAttribute(string $name, integer|array $value, boolean $utc) Appends to a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().
Zend\Ldap\Node setPasswordAttribute(string $password, string $hashType, string $attribName) Sets a LDAP password on $attribName (defaults to ‘userPassword’) to $password with the hash type $hashType (defaults to Zend\Ldap\Attribute::PASSWORD_HASH_MD5).
Zend\Ldap\Node deleteAttribute(string $name) Deletes a LDAP attribute.
void removeDuplicatesFromAttribute(string$name) Removes duplicate values from a LDAP attribute.
void removeFromAttribute(string $attribName, mixed|array $value) Removes the given values from a LDAP attribute.
boolean exists(Zend\Ldap\Ldap $ldap) Checks if the current node exists on the given LDAP server (current server is used if NULL is passed).
Zend\Ldap\Node reload(Zend\Ldap\Ldap $ldap) Reloads the current node’s attributes from the given LDAP server (current server is used if NULL is passed).
Zend\Ldap\Node\Collection searchSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope, string $sort) Searches the nodes’s subtree with the given $filter and the given search parameters. See Zend\Ldap\Ldap::search() for details on the parameters $scope and $sort.
integer countSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope) Count the nodes’s subtree items matching the given $filter and the given search scope. See Zend\Ldap\Ldap::search() for details on the $scope parameter.
integer countChildren() Count the nodes’s children.
Zend\Ldap\Node\Collection searchChildren(string|Zend\Ldap\Filter\AbstractFilter $filter, string $sort) Searches the nodes’s children matching the given $filter. See Zend\Ldap\Ldap::search() for details on the $sort parameter.
boolean hasChildren() Returns whether the current node has children.
Zend\Ldap\Node\ChildrenIterator getChildren() Returns all children of the current node.
Zend\Ldap\Node getParent(Zend\Ldap\Ldap $ldap) Returns the parent of the current node using the LDAP connection $ldap (uses the current LDAP connection if omitted).

370 Chapter 81. Zend\Ldap\Node

CHAPTER

EIGHTYTWO

ZEND\LDAP\NODE\ROOTDSE

The following methods are available on all vendor-specific subclasses.

Zend\Ldap\Node\RootDse includes the magic property accessors __get() and __isset() to ac-
cess the attributes by their name. They proxy to Zend\Ldap\Node\RootDse::getAttribute() and
Zend\Ldap\Node\RootDse::existsAttribute() respectively. __set() and __unset() are also
implemented but they throw a BadMethodCallException as modifications are not allowed on RootDSE nodes.
Furthermore the class implements ArrayAccess for array-style-access to the attributes. offsetSet() and
offsetUnset() also throw a BadMethodCallException due ro obvious reasons.

371

Zend Framework 2 Documentation, Release 2.0.0

Table 82.1: Zend\Ldap\Node\RootDse API

Method Description
Zend\Ldap\Dn getDn() Gets the DN of the current node as a Zend\Ldap\Dn.
string getDnString(string
$caseFold)

Gets the DN of the current node as a string.

array getDnArray(string
$caseFold)

Gets the DN of the current node as an array.

string getRdnString(string
$caseFold)

Gets the RDN of the current node as a string.

array getRdnArray(string
$caseFold)

Gets the RDN of the current node as an array.

array getObjectClass() Returns the objectClass of the node.
string toString() Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().
string __toString() Casts to string representation - proxies to Zend\Ldap\Dn::toString().
array toArray(boolean
$includeSystemAttributes)

Returns an array representation of the current node. If
$includeSystemAttributes is FALSE (defaults to TRUE) the system specific
attributes are stripped from the array. Unlike
Zend\Ldap\Node\RootDse::getAttributes() the resulting array contains the DN
with key ‘dn’.

string toJson(boolean
$includeSystemAttributes)

Returns a JSON representation of the current node using
Zend\Ldap\Node\RootDse::toArray().

array getData(boolean
$includeSystemAttributes)

Returns the node’s attributes. The array contains all attributes in its internal
format (no conversion).

boolean existsAttribute(string
$name, boolean $emptyExists)

Checks whether a given attribute exists. If $emptyExists is FALSE, empty
attributes (containing only array()) are treated as non-existent returning
FALSE. If $emptyExists is TRUE, empty attributes are treated as existent
returning TRUE. In this case the method returns FALSE only if the attribute
name is missing in the key-collection.

boolean
attributeHasValue(string $name,
mixed|array $value)

Checks if the given value(s) exist in the attribute. The method returns TRUE
only if all values in $value are present in the attribute. Comparison is done
strictly (respecting the data type).

integer count() Returns the number of attributes in the node. Implements Countable.
mixed getAttribute(string
$name, integer|null $index)

Gets a LDAP attribute. Data conversion is applied using
Zend\Ldap\Attribute::getAttribute().

array getAttributes(boolean
$includeSystemAttributes)

Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to
TRUE) the system specific attributes are stripped from the array.

array|integer
getDateTimeAttribute(string
$name, integer|null $index)

Gets a LDAP date/time attribute. Data conversion is applied using
Zend\Ldap\Attribute::getDateTimeAttribute().

Zend\Ldap\Node\RootDse
reload(Zend\Ldap\Ldap $ldap)

Reloads the current node’s attributes from the given LDAP server.

Zend\Ldap\Node\RootDse
create(Zend\Ldap\Ldap $ldap)

Factory method to create the RootDSE.

array getNamingContexts() Gets the namingContexts.
string|null
getSubschemaSubentry()

Gets the subschemaSubentry.

boolean
supportsVersion(string|int|array
$versions)

Determines if the LDAP version is supported.

boolean supportsSaslMecha-
nism(string|array
$mechlist)

Determines if the sasl mechanism is supported.

integer getServerType() Gets the server type. Returns
Zend\Ldap\Node\RootDse::SERVER_TYPE_GENERICfor unknown LDAP
serversZend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAPfor
OpenLDAP server-
sZend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORYfor
Microsoft ActiveDirectory
serversZend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORYFor
Novell eDirectory servers

Zend\Ldap\Dn getSchemaDn() Returns the schema DN.

372 Chapter 82. Zend\Ldap\Node\RootDse

Zend Framework 2 Documentation, Release 2.0.0

82.1 OpenLDAP

Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\OpenLdap.

Note: Refer to LDAP Operational Attributes and Objects for information on the attributes of OpenLDAP RootDSE.

Table 82.2: Zend\Ldap\Node\RootDse\OpenLdap API

Method Description
integer getServerType() Gets the server type. Returns

Zend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAP
string|null getConfigContext() Gets the configContext.
string|null getMonitorContext() Gets the monitorContext.
boolean supportsControl(string|array
$oids)

Determines if the control is supported.

boolean
supportsExtension(string|array $oids)

Determines if the extension is supported.

boolean supportsFeature(string|array
$oids)

Determines if the feature is supported.

82.2 ActiveDirectory

Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\ActiveDirectory.

Note: Refer to RootDSE for information on the attributes of Microsoft ActiveDirectory RootDSE.

82.1. OpenLDAP 373

http://www.zytrax.com/books/ldap/ch3/#operational
http://msdn.microsoft.com/en-us/library/ms684291(VS.85).aspx

Zend Framework 2 Documentation, Release 2.0.0

Table 82.3: Zend\Ldap\Node\RootDse\ActiveDirectory API

Method Description
integer getServerType() Gets the server type. Returns

Zend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORY
string|null
getConfigurationNamingContext()

Gets the configurationNamingContext.

string|null getCurrentTime() Gets the currentTime.
string|null
getDefaultNamingContext()

Gets the defaultNamingContext.

string|null getDnsHostName() Gets the dnsHostName.
string|null getDomainController-
Functionality()

Gets the domainControllerFunctionality.

string|null
getDomainFunctionality()

Gets the domainFunctionality.

string|null getDsServiceName() Gets the dsServiceName.
string|null getForestFunctionality() Gets the forestFunctionality.
string|null
getHighestCommittedUSN()

Gets the highestCommittedUSN.

string|null
getIsGlobalCatalogReady()

Gets the isGlobalCatalogReady.

string|null getIsSynchronized() Gets the isSynchronized.
string|null getLdapServiceName() Gets the ldapServiceName.
string|null
getRootDomainNamingContext()

Gets the rootDomainNamingContext.

string|null
getSchemaNamingContext()

Gets the schemaNamingContext.

string|null getServerName() Gets the serverName.
boolean
supportsCapability(string|array
$oids)

Determines if the capability is supported.

boolean
supportsControl(string|array $oids)

Determines if the control is supported.

boolean supportsPolicy(string|array
$policies)

Determines if the version is supported.

82.3 eDirectory

Additionally the common methods above apply to instances of ZendLdapNodeRootDseeDirectory.

Note: Refer to Getting Information about the LDAP Server for information on the attributes of Novell eDirectory
RootDSE.

374 Chapter 82. Zend\Ldap\Node\RootDse

http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/ah59jqq.html

Zend Framework 2 Documentation, Release 2.0.0

Table 82.4: Zend\Ldap\Node\RootDse\eDirectory API

Method Description
integer getServerType() Gets the server type. Returns

Zend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORY
boolean supportsExtension(string|array
$oids)

Determines if the extension is supported.

string|null getVendorName() Gets the vendorName.
string|null getVendorVersion() Gets the vendorVersion.
string|null getDsaName() Gets the dsaName.
string|null getStatisticsErrors() Gets the server statistics “errors”.
string|null getStatisticsSecurityErrors() Gets the server statistics “securityErrors”.
string|null getStatisticsChainings() Gets the server statistics “chainings”.
string|null
getStatisticsReferralsReturned()

Gets the server statistics “referralsReturned”.

string|null getStatisticsExtendedOps() Gets the server statistics “extendedOps”.
string|null getStatisticsAbandonOps() Gets the server statistics “abandonOps”.
string|null
getStatisticsWholeSubtreeSearchOps()

Gets the server statistics “wholeSubtreeSearchOps”.

82.3. eDirectory 375

Zend Framework 2 Documentation, Release 2.0.0

376 Chapter 82. Zend\Ldap\Node\RootDse

CHAPTER

EIGHTYTHREE

ZEND\LDAP\NODE\SCHEMA

The following methods are available on all vendor-specific subclasses.

ZendLdapNodeSchema includes the magic property accessors __get() and __isset() to access the attributes by their
name. They proxy to ZendLdapNodeSchema::getAttribute() and ZendLdapNodeSchema::existsAttribute() respec-
tively. __set() and __unset() are also implemented, but they throw a BadMethodCallException as modifications are not
allowed on RootDSE nodes. Furthermore the class implements ArrayAccess for array-style-access to the attributes.
offsetSet() and offsetUnset() also throw a BadMethodCallException due to obvious reasons.

377

Zend Framework 2 Documentation, Release 2.0.0

Table 83.1: Zend\Ldap\Node\Schema API

Method Description
Zend\Ldap\Dn getDn() Gets the DN of the current node as a Zend\Ldap\Dn.
string getDnString(string
$caseFold)

Gets the DN of the current node as a string.

array getDnArray(string
$caseFold)

Gets the DN of the current node as an array.

string getRdnString(string
$caseFold)

Gets the RDN of the current node as a string.

array getRdnArray(string
$caseFold)

Gets the RDN of the current node as an array.

array getObjectClass() Returns the objectClass of the node.
string toString() Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().
string __toString() Casts to string representation - proxies to Zend\Ldap\Dn::toString().
array toArray(boolean
$includeSystemAttributes)

Returns an array representation of the current node. If
$includeSystemAttributes is FALSE (defaults to TRUE), the system specific
attributes are stripped from the array. Unlike
Zend\Ldap\Node\Schema::getAttributes(), the resulting array contains the DN
with key ‘dn’.

string toJson(boolean
$includeSystemAttributes)

Returns a JSON representation of the current node using
Zend\Ldap\Node\Schema::toArray().

array getData(boolean
$includeSystemAttributes)

Returns the node’s attributes. The array contains all attributes in its internal
format (no conversion).

boolean existsAttribute(string
$name, boolean $emptyExists)

Checks whether a given attribute exists. If $emptyExists is FALSE, empty
attributes (containing only array()) are treated as non-existent returning
FALSE. If $emptyExists is TRUE, empty attributes are treated as existent
returning TRUE. In this case the method returns FALSE only if the attribute
name is missing in the key-collection.

boolean
attributeHasValue(string $name,
mixed|array $value)

Checks if the given value(s) exist in the attribute. The method returns TRUE
only if all values in $value are present in the attribute. Comparison is done
strictly (respecting the data type).

integer count() Returns the number of attributes in the node. Implements Countable.
mixed getAttribute(string
$name, integer|null $index)

Gets a LDAP attribute. Data conversion is applied using
Zend\Ldap\Attribute::getAttribute().

array getAttributes(boolean
$includeSystemAttributes)

Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to
TRUE) the system specific attributes are stripped from the array.

array|integer
getDateTimeAttribute(string
$name, integer|null $index)

Gets a LDAP date/time attribute. Data conversion is applied using
Zend\Ldap\Attribute::getDateTimeAttribute().

Zend\Ldap\Node\Schema
reload(Zend\Ldap\Ldap $ldap)

Reloads the current node’s attributes from the given LDAP server.

Zend\Ldap\Node\Schema
create(Zend\Ldap\Ldap $ldap)

Factory method to create the Schema node.

array getAttributeTypes() Gets the attribute types as an array of .
array getObjectClasses() Gets the object classes as an array of

Zend\Ldap\Node\Schema\ObjectClass\Interface.

378 Chapter 83. Zend\Ldap\Node\Schema

Zend Framework 2 Documentation, Release 2.0.0

Table 83.2: Zend\Ldap\Node\Schema\AttributeType\Interface API

Method Description
string getName() Gets the attribute name.
string getOid() Gets the attribute OID.
string getSyntax() Gets the attribute syntax.
int|null getMaxLength() Gets the attribute maximum length.
boolean isSingleValued() Returns if the attribute is single-valued.
string getDescription() Gets the attribute description

Table 83.3: Zend\Ldap\Node\Schema\ObjectClass\Interface API

Method Description
string
getName()

Returns the objectClass name.

string
getOid()

Returns the objectClass OID.

array
getMustCon-
tain()

Returns the attributes that this objectClass must contain.

array
getMayCon-
tain()

Returns the attributes that this objectClass may contain.

string getDe-
scription()

Returns the attribute description

integer
getType()

Returns the objectClass type. The method returns one of the following values:
Zend\Ldap\Node\Schema::OBJECTCLASS_TYPE_UNKNOWNfor unknown class
typesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_STRUCTURALfor structural
classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_ABSTRACTfor abstract
classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_AUXILIARYfor auxiliary classes

array getPar-
entClasses()

Returns the parent objectClasses of this class. This includes structural, abstract and auxiliary
objectClasses.

Classes representing attribute types and object classes extend ZendLdapNodeSchemaAbstractItem which provides
some core methods to access arbitrary attributes on the underlying LDAP node. ZendLdapNodeSchemaAbstractItem
includes the magic property accessors __get() and __isset() to access the attributes by their name. Furthermore the
class implements ArrayAccess for array-style-access to the attributes. offsetSet() and offsetUnset() throw a BadMethod-
CallException as modifications are not allowed on schema information nodes.

Table 83.4: Zend\Ldap\Node\Schema\AbstractItem API

Method Description
array getData() Gets all the underlying data from the schema information node.
integer count() Returns the number of attributes in this schema information node. Implements Countable.

83.1 OpenLDAP

Additionally the common methods above apply to instances of ZendLdapNodeSchemaOpenLDAP.

83.1. OpenLDAP 379

Zend Framework 2 Documentation, Release 2.0.0

Table 83.5: Zend\Ldap\Node\Schema\OpenLDAP API

Method Description
array getLdapSyntaxes() Gets the LDAP syntaxes.
array getMatchingRules() Gets the matching rules.
array getMatchingRuleUse() Gets the matching rule use.

Table 83.6: Zend\Ldap\Node\Schema\AttributeType\OpenLDAP API

Method Description
Zend\Ldap\Node\Schema\AttributeType\OpenLdap|null
getParent()

Returns the parent attribute type in the inheritance tree
if one exists.

Table 83.7: Zend\Ldap\Node\Schema\ObjectClass\OpenLDAP API

Method Description
array get-
Parents()

Returns the parent object classes in the inheritance tree if one exists. The returned array is an array
of Zend\Ldap\Node\Schema\ObjectClass\OpenLdap.

83.2 ActiveDirectory

Note: Schema browsing on ActiveDirectory servers

Due to restrictions on Microsoft ActiveDirectory servers regarding the number of entries returned by generic search
routines and due to the structure of the ActiveDirectory schema repository, schema browsing is currently not available
for Microsoft ActiveDirectory servers.

ZendLdapNodeSchemaActiveDirectory does not provide any additional methods.

Table 83.8: Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory API

Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory does not provide any additional methods.

Table 83.9: Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory API

Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory does not provide any additional methods.

380 Chapter 83. Zend\Ldap\Node\Schema

CHAPTER

EIGHTYFOUR

ZEND\LDAP\LDIF\ENCODER

Table 84.1: Zend\Ldap\Ldif\Encoder API

Method Description
array decode(string $string) Decodes the string $string into an array of LDIF items.
string en-
code(scalar|array|Zend\Ldap\Node
$value, array $options)

Encode $value into a LDIF representation. $options is an array that may
contain the following keys: ‘sort’ Sort the given attributes with dn following
objectClass and following all other attributes sorted alphabetically. TRUE by
default. ‘version’ The LDIF format version. 1 by default. ‘wrap’ The
line-length. 78 by default to conform to the LDIF specification.

381

Zend Framework 2 Documentation, Release 2.0.0

382 Chapter 84. Zend\Ldap\Ldif\Encoder

CHAPTER

EIGHTYFIVE

USAGE SCENARIOS

85.1 Authentication scenarios

85.1.1 OpenLDAP

85.1.2 ActiveDirectory

85.2 Basic CRUD operations

85.2.1 Retrieving data from the LDAP

Getting an entry by its DN

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $hm = $ldap->getEntry(’cn=Hugo Müller,ou=People,dc=my,dc=local’);
5 /*
6 $hm is an array of the following structure
7 array(
8 ’dn’ => ’cn=Hugo Müller,ou=People,dc=my,dc=local’,
9 ’cn’ => array(’Hugo Müller’),

10 ’sn’ => array(’Müller’),
11 ’objectclass’ => array(’inetOrgPerson’, ’top’),
12 ...
13)
14 */

Check for the existence of a given DN

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $isThere = $ldap->exists(’cn=Hugo Müller,ou=People,dc=my,dc=local’);

383

Zend Framework 2 Documentation, Release 2.0.0

Count children of a given DN

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $childrenCount = $ldap->countChildren(
5 ’cn=Hugo Müller,ou=People,dc=my,dc=local’);

Searching the LDAP tree

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $result = $ldap->search(’(objectclass=*)’,
5 ’ou=People,dc=my,dc=local’,
6 Zend\Ldap\Ldap::SEARCH_SCOPE_ONE);
7 foreach ($result as $item) {
8 echo $item["dn"] . ’: ’ . $item[’cn’][0] . PHP_EOL;
9 }

85.2.2 Adding data to the LDAP

Add a new entry to the LDAP

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $entry = array();
5 Zend\Ldap\Attribute::setAttribute($entry, ’cn’, ’Hans Meier’);
6 Zend\Ldap\Attribute::setAttribute($entry, ’sn’, ’Meier’);
7 Zend\Ldap\Attribute::setAttribute($entry, ’objectClass’, ’inetOrgPerson’);
8 $ldap->add(’cn=Hans Meier,ou=People,dc=my,dc=local’, $entry);

85.2.3 Deleting from the LDAP

Delete an existing entry from the LDAP

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $ldap->delete(’cn=Hans Meier,ou=People,dc=my,dc=local’);

85.2.4 Updating the LDAP

Update an existing entry on the LDAP

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();

384 Chapter 85. Usage Scenarios

Zend Framework 2 Documentation, Release 2.0.0

4 $hm = $ldap->getEntry(’cn=Hugo Müller,ou=People,dc=my,dc=local’);
5 Zend\Ldap\Attribute::setAttribute($hm, ’mail’, ’mueller@my.local’);
6 Zend\Ldap\Attribute::setPassword($hm,
7 ’newPa$$w0rd’,
8 Zend\Ldap\Attribute::PASSWORD_HASH_SHA1);
9 $ldap->update(’cn=Hugo Müller,ou=People,dc=my,dc=local’, $hm);

85.3 Extended operations

85.3.1 Copy and move entries in the LDAP

Copy a LDAP entry recursively with all its descendants

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $ldap->copy(’cn=Hugo Müller,ou=People,dc=my,dc=local’,
5 ’cn=Hans Meier,ou=People,dc=my,dc=local’,
6 true);

Move a LDAP entry recursively with all its descendants to a different subtree

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $ldap->moveToSubtree(’cn=Hugo Müller,ou=People,dc=my,dc=local’,
5 ’ou=Dismissed,dc=my,dc=local’,
6 true);

85.3. Extended operations 385

Zend Framework 2 Documentation, Release 2.0.0

386 Chapter 85. Usage Scenarios

CHAPTER

EIGHTYSIX

TOOLS

86.1 Creation and modification of DN strings

86.2 Using the filter API to create search filters

Create simple LDAP filters

1 $f1 = Zend\Ldap\Filter::equals(’name’, ’value’); // (name=value)
2 $f2 = Zend\Ldap\Filter::begins(’name’, ’value’); // (name=value*)
3 $f3 = Zend\Ldap\Filter::ends(’name’, ’value’); // (name=*value)
4 $f4 = Zend\Ldap\Filter::contains(’name’, ’value’); // (name=*value*)
5 $f5 = Zend\Ldap\Filter::greater(’name’, ’value’); // (name>value)
6 $f6 = Zend\Ldap\Filter::greaterOrEqual(’name’, ’value’); // (name>=value)
7 $f7 = Zend\Ldap\Filter::less(’name’, ’value’); // (name<value)
8 $f8 = Zend\Ldap\Filter::lessOrEqual(’name’, ’value’); // (name<=value)
9 $f9 = Zend\Ldap\Filter::approx(’name’, ’value’); // (name~=value)

10 $f10 = Zend\Ldap\Filter::any(’name’); // (name=*)

Create more complex LDAP filters

1 $f1 = Zend\Ldap\Filter::ends(’name’, ’value’)->negate(); // (!(name=*value))
2

3 $f2 = Zend\Ldap\Filter::equals(’name’, ’value’);
4 $f3 = Zend\Ldap\Filter::begins(’name’, ’value’);
5 $f4 = Zend\Ldap\Filter::ends(’name’, ’value’);
6

7 // (&(name=value)(name=value*)(name=*value))
8 $f5 = Zend\Ldap\Filter::andFilter($f2, $f3, $f4);
9

10 // (|(name=value)(name=value*)(name=*value))
11 $f6 = Zend\Ldap\Filter::orFilter($f2, $f3, $f4);

86.3 Modify LDAP entries using the Attribute API

387

Zend Framework 2 Documentation, Release 2.0.0

388 Chapter 86. Tools

CHAPTER

EIGHTYSEVEN

OBJECT ORIENTED ACCESS TO THE
LDAP TREE USING ZEND\LDAP\NODE

87.1 Basic CRUD operations

87.1.1 Retrieving data from the LDAP

87.1.2 Getting a node by its DN

87.1.3 Searching a node’s subtree

87.1.4 Adding a new node to the LDAP

87.1.5 Deleting a node from the LDAP

87.1.6 Updating a node on the LDAP

87.2 Extended operations

87.2.1 Copy and move nodes in the LDAP

87.3 Tree traversal

Traverse LDAP tree recursively

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $ldap->bind();
4 $ri = new RecursiveIteratorIterator($ldap->getBaseNode(),
5 RecursiveIteratorIterator::SELF_FIRST);
6 foreach ($ri as $rdn => $n) {
7 var_dump($n);
8 }

389

Zend Framework 2 Documentation, Release 2.0.0

390 Chapter 87. Object oriented access to the LDAP tree using Zend\Ldap\Node

CHAPTER

EIGHTYEIGHT

GETTING INFORMATION FROM THE
LDAP SERVER

88.1 RootDSE

See the following documents for more information on the attributes contained within the RootDSE for a given LDAP
server.

• OpenLDAP

• Microsoft ActiveDirectory

• Novell eDirectory

Getting hands on the RootDSE

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $rootdse = $ldap->getRootDse();
4 $serverType = $rootdse->getServerType();

88.2 Schema Browsing

Getting hands on the server schema

1 $options = array(/* ... */);
2 $ldap = new Zend\Ldap\Ldap($options);
3 $schema = $ldap->getSchema();
4 $classes = $schema->getObjectClasses();

88.2.1 OpenLDAP

88.2.2 ActiveDirectory

Note: Schema browsing on ActiveDirectory servers

391

http://www.zytrax.com/books/ldap/ch3/#operational
http://msdn.microsoft.com/en-us/library/ms684291(VS.85).aspx
http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/ah59jqq.html

Zend Framework 2 Documentation, Release 2.0.0

Due to restrictions on Microsoft ActiveDirectory servers regarding the number of entries returned by generic search
routines and due to the structure of the ActiveDirectory schema repository, schema browsing is currently not available
for Microsoft ActiveDirectory servers.

392 Chapter 88. Getting information from the LDAP server

CHAPTER

EIGHTYNINE

SERIALIZING LDAP DATA TO AND
FROM LDIF

89.1 Serialize a LDAP entry to LDIF

1 $data = array(
2 ’dn’ => ’uid=rogasawara,ou=,o=Airius’,
3 ’objectclass’ => array(’top’,
4 ’person’,
5 ’organizationalPerson’,
6 ’inetOrgPerson’),
7 ’uid’ => array(’rogasawara’),
8 ’mail’ => array(’rogasawara@airius.co.jp’),
9 ’givenname;lang-ja’ => array(’’),

10 ’sn;lang-ja’ => array(’’),
11 ’cn;lang-ja’ => array(’ ’),
12 ’title;lang-ja’ => array(’ ’),
13 ’preferredlanguage’ => array(’ja’),
14 ’givenname’ => array(’’),
15 ’sn’ => array(’’),
16 ’cn’ => array(’ ’),
17 ’title’ => array(’ ’),
18 ’givenname;lang-ja;phonetic’ => array(’’),
19 ’sn;lang-ja;phonetic’ => array(’’),
20 ’cn;lang-ja;phonetic’ => array(’ ’),
21 ’title;lang-ja;phonetic’ => array(’ ’),
22 ’givenname;lang-en’ => array(’Rodney’),
23 ’sn;lang-en’ => array(’Ogasawara’),
24 ’cn;lang-en’ => array(’Rodney Ogasawara’),
25 ’title;lang-en’ => array(’Sales, Director’),
26);
27 $ldif = Zend\Ldap\Ldif\Encoder::encode($data, array(’sort’ => false,
28 ’version’ => null));
29 /*
30 $ldif contains:
31 dn:: dWlkPXJvZ2FzYXdhcmEsb3U95Za25qWt6YOoLG89QWlyaXVz
32 objectclass: top
33 objectclass: person
34 objectclass: organizationalPerson
35 objectclass: inetOrgPerson
36 uid: rogasawara
37 mail: rogasawara@airius.co.jp

393

Zend Framework 2 Documentation, Release 2.0.0

38 givenname;lang-ja:: 44Ot44OJ44OL44O8
39 sn;lang-ja:: 5bCP56yg5Y6f
40 cn;lang-ja:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
41 title;lang-ja:: 5Za25qWt6YOoIOmDqOmVtw==
42 preferredlanguage: ja
43 givenname:: 44Ot44OJ44OL44O8
44 sn:: 5bCP56yg5Y6f
45 cn:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
46 title:: 5Za25qWt6YOoIOmDqOmVtw==
47 givenname;lang-ja;phonetic:: 44KN44Gp44Gr44O8
48 sn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJ
49 cn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJIOOCjeOBqeOBq+ODvA==
50 title;lang-ja;phonetic:: 44GI44GE44GO44KH44GG44G2IOOBtuOBoeOCh+OBhg==
51 givenname;lang-en: Rodney
52 sn;lang-en: Ogasawara
53 cn;lang-en: Rodney Ogasawara
54 title;lang-en: Sales, Director
55 */

89.2 Deserialize a LDIF string into a LDAP entry

1 $ldif = "dn:: dWlkPXJvZ2FzYXdhcmEsb3U95Za25qWt6YOoLG89QWlyaXVz
2 objectclass: top
3 objectclass: person
4 objectclass: organizationalPerson
5 objectclass: inetOrgPerson
6 uid: rogasawara
7 mail: rogasawara@airius.co.jp
8 givenname;lang-ja:: 44Ot44OJ44OL44O8
9 sn;lang-ja:: 5bCP56yg5Y6f

10 cn;lang-ja:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
11 title;lang-ja:: 5Za25qWt6YOoIOmDqOmVtw==
12 preferredlanguage: ja
13 givenname:: 44Ot44OJ44OL44O8
14 sn:: 5bCP56yg5Y6f
15 cn:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
16 title:: 5Za25qWt6YOoIOmDqOmVtw==
17 givenname;lang-ja;phonetic:: 44KN44Gp44Gr44O8
18 sn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJ
19 cn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJIOOCjeOBqeOBq+ODvA==
20 title;lang-ja;phonetic:: 44GI44GE44GO44KH44GG44G2IOOBtuOBoeOCh+OBhg==
21 givenname;lang-en: Rodney
22 sn;lang-en: Ogasawara
23 cn;lang-en: Rodney Ogasawara
24 title;lang-en: Sales, Director";
25 $data = Zend\Ldap\Ldif\Encoder::decode($ldif);
26 /*
27 $data = array(
28 ’dn’ => ’uid=rogasawara,ou=,o=Airius’,
29 ’objectclass’ => array(’top’,
30 ’person’,
31 ’organizationalPerson’,
32 ’inetOrgPerson’),
33 ’uid’ => array(’rogasawara’),
34 ’mail’ => array(’rogasawara@airius.co.jp’),
35 ’givenname;lang-ja’ => array(’’),

394 Chapter 89. Serializing LDAP data to and from LDIF

Zend Framework 2 Documentation, Release 2.0.0

36 ’sn;lang-ja’ => array(’’),
37 ’cn;lang-ja’ => array(’ ’),
38 ’title;lang-ja’ => array(’ ’),
39 ’preferredlanguage’ => array(’ja’),
40 ’givenname’ => array(’’),
41 ’sn’ => array(’’),
42 ’cn’ => array(’ ’),
43 ’title’ => array(’ ’),
44 ’givenname;lang-ja;phonetic’ => array(’’),
45 ’sn;lang-ja;phonetic’ => array(’’),
46 ’cn;lang-ja;phonetic’ => array(’ ’),
47 ’title;lang-ja;phonetic’ => array(’ ’),
48 ’givenname;lang-en’ => array(’Rodney’),
49 ’sn;lang-en’ => array(’Ogasawara’),
50 ’cn;lang-en’ => array(’Rodney Ogasawara’),
51 ’title;lang-en’ => array(’Sales, Director’),
52);
53 */

89.2. Deserialize a LDIF string into a LDAP entry 395

Zend Framework 2 Documentation, Release 2.0.0

396 Chapter 89. Serializing LDAP data to and from LDIF

CHAPTER

NINETY

THE AUTOLOADERFACTORY

90.1 Overview

Starting with version 2.0, Zend Framework now offers multiple autoloader strategies. Often, it will be useful to employ
multiple autoloading strategies; as an example, you may have a class map for your most used classes, but want to use
a PSR-0 style autoloader for 3rd party libraries.

While you could potentially manually configure these, it may be more useful to define the autoloader configuration
somewhere and cache it. For these cases, the AutoloaderFactory will be useful.

90.2 Quick Start

Configuration may be stored as a PHP array, or in some form of configuration file. As an example, consider the
following PHP array:

1 $config = array(
2 ’Zend\Loader\ClassMapAutoloader’ => array(
3 ’application’ => APPLICATION_PATH . ’/.classmap.php’,
4 ’zf’ => APPLICATION_PATH . ’/../library/Zend/.classmap.php’,
5),
6 ’Zend\Loader\StandardAutoloader’ => array(
7 ’namespaces’ => array(
8 ’Phly\Mustache’ => APPLICATION_PATH . ’/../library/Phly/Mustache’,
9 ’Doctrine’ => APPLICATION_PATH . ’/../library/Doctrine’,

10),
11),
12);

An equivalent INI-style configuration might look like the following:

1 Zend\Loader\ClassMapAutoloader.application = APPLICATION_PATH "/.classmap.php"
2 Zend\Loader\ClassMapAutoloader.zf = APPLICATION_PATH "/../library/Zend/.classmap.php"
3 Zend\Loader\StandardAutoloader.namespaces.Phly\Mustache = APPLICATION_PATH "/../library/Phly/Mustache"
4 Zend\Loader\StandardAutoloader.namespaces.Doctrine = APPLICATION_PATH "/../library/Doctrine"

Once you have your configuration in a PHP array, you simply pass it to the AutoloaderFactory.

1 // This example assumes ZF is on your include_path.
2 // You could also load the factory class from a path relative to the
3 // current script, or via an absolute path.
4 require_once ’Zend/Loader/AutoloaderFactory.php’;
5 Zend\Loader\AutoloaderFactory::factory($config);

397

Zend Framework 2 Documentation, Release 2.0.0

The AutoloaderFactory will instantiate each autoloader with the given options, and also call its register()
method to register it with the SPL autoloader.

90.3 Configuration Options

AutoloaderFactory Options

$options The AutoloaderFactory expects an associative array or Traversable object. Keys should be valid
autoloader class names, and the values should be the options that should be passed to the class constructor.

Internally, the AutoloaderFactory checks to see if the autoloader class referenced exists. If not, it will
use the StandardAutoloader to attempt to load the class via the include_path (or, in the case of “Zend”-
namespaced classes, using the Zend Framework library path). If the class is not found, or does not implement
the SplAutoloader interface, an exception will be raised.

90.4 Available Methods

factory Instantiate and register autoloaders factory($options)

factory() This method is static, and is used to instantiate autoloaders and register them with the SPL autoloader.
It expects either an array or Traversable object as denoted in the Options section.

getRegisteredAutoloaders Retrieve a list of all autoloaders registered using the factory
getRegisteredAutoloaders()

getRegisteredAutoloaders() This method is static, and may be used to retrieve a list of all autoloaders registered
via the factory() method. It returns simply an array of autoloader instances.

90.5 Examples

Please see the Quick Start for a detailed example.

398 Chapter 90. The AutoloaderFactory

CHAPTER

NINETYONE

THE PLUGINCLASSLOADER

91.1 Overview

Resolving plugin names to class names is a common requirement within Zend Framework applica-
tions. The PluginClassLoader implements the interfaces PluginClassLocator, ShortNameLocator, and
IteratorAggregate, providing a simple mechanism for aliasing plugin names to classnames for later retrieval.

While it can act as a standalone class, it is intended that developers will extend the class to provide a per-component
plugin map. This allows seeding the map with the most often-used plugins, while simultaneously allowing the end-user
to overwrite existing or register new plugins.

Additionally, PluginClassLoader provides the ability to statically seed all new instances of a given
PluginClassLoader or one of its extensions (via Late Static Binding). If your application will always call
for defining or overriding particular plugin maps on given PluginClassLoader extensions, this is a powerful
capability.

91.2 Quick Start

Typical use cases involve simply instantiating a PluginClassLoader, seeding it with one or more plugin/class
name associations, and then using it to retrieve the class name associated with a given plugin name.

1 use Zend\View\HelperLoader;
2

3 // Provide a global map, or override defaults:
4 HelperLoader::addStaticMap(array(
5 ’url’ => ’My\Custom\UrlHelper’,
6));
7

8 // Instantiate the loader:
9 $loader = new Zend\View\HelperLoader();

10

11 // Register a new plugin:
12 $loader->registerPlugin(’bugUrl’, ’My\Custom\BugUrlHelper’);
13

14 // Load/retrieve the associated plugin class:
15 $class = $loader->load(’url’); // ’My\Custom\UrlHelper’

Note: Case Sensitivity

The PluginClassLoader is designed to do case-insensitive plugin name lookups. While the above example
defines a “bugUrl” plugin name, internally, this will be stored as simply “bugurl”. If another plugin is registered with

399

Zend Framework 2 Documentation, Release 2.0.0

simply a different word case, it will overwrite this entry.

91.3 Configuration Options

PluginClassLoader Options

$map The constructor may take a single option, an array or Traversable object of key/value pairs corresponding
to a plugin name and class name, respectively.

91.4 Available Methods

__construct Instantiate and initialize the loader __construct($map = null)

__construct() The constructor is used to instantiate and intialize the plugin class loader. If passed a string, an
array, or a Traversable object, it will pass this to the registerPlugins() method in order to seed (or overwrite)
the plugin class map.

addStaticMap Statically seed the plugin loader map addStaticMap($map)

addStaticMap() Static method for globally pre-seeding the loader with a class map. It accepts either an array
or Traversable object of plugin name/class name pairs.

When using this method, be certain you understand the precedence in which maps will be merged; in decreasing
order of preference:

• Manually registered plugin/class name pairs (e.g., via registerPlugin() or registerPlugins()).

• A map passed to the constructor .

• The static map.

• The map defined within the class itself.

Also, please note that calling the method will not affect any instances already created.

registerPlugin Register a plugin/class association registerPlugin($shortName, $className)

registerPlugin() Defined by the PluginClassLocator interface. Expects two string arguments, the plugin
$shortName, and the class $className which it represents.

registerPlugins Register many plugin/class associations at once registerPlugins($map)

registerPlugins() Expects a string, an array or Traversable object of plugin name/class name pairs repre-
senting a plugin class map.

If a string argument is provided, registerPlugins() assumes this is a class name. If the class does not
exist, an exception will be thrown. If it does, it then instantiates the class and checks to see whether or not it
implements Traversable.

unregisterPlugin Remove a plugin/class association from the map unregisterPlugin($shortName)

unregisterPlugin() Defined by the PluginClassLocator interface; remove a plugin/class association from
the plugin class map.

getRegisteredPlugins Return the complete plugin class map getRegisteredPlugins()

getRegisteredPlugins() Defined by the PluginClassLocator interface; return the entire plugin class map
as an array.

400 Chapter 91. The PluginClassLoader

Zend Framework 2 Documentation, Release 2.0.0

isLoaded Determine if a given plugin name resolves isLoaded($name)

isLoaded() Defined by the ShortNameLocator interface; determine if the given plugin has been resolved to
a class name.

getClassName Return the class name to which a plugin resolves getClassName($name)

getClassName() Defined by the ShortNameLocator interface; return the class name to which a plugin name
resolves.

load Resolve a plugin name load($name)

load() Defined by the ShortNameLocator interface; attempt to resolve a plugin name to a class name. If
successful, returns the class name; otherwise, returns a boolean false.

getIterator Return iterator capable of looping over plugin class map getIterator()

getIterator() Defined by the IteratorAggregate interface; allows iteration over the plugin class map. This
can come in useful for using PluginClassLoader instances to other PluginClassLoader instances in
order to merge maps.

91.5 Examples

Using Static Maps

It’s often convenient to provide global overrides or additions to the maps in a PluginClassLoader instance. This
can be done using the addStaticMap() method:

1 use Zend\Loader\PluginClassLoader;
2

3 PluginClassLoader::addStaticMap(array(
4 ’url’ => ’Zend\View\Helper\Url’,
5));

Any later instances created will now have this map defined, allowing you to load that plugin.

1 use Zend\Loader\PluginClassLoader;
2

3 $loader = new PluginClassLoader();
4 $helper = $loader->load(’url’); // Zend\View\Helper\Url

Creating a pre-loaded map

In many cases, you know exactly which plugins you may be drawing upon on a regular basis, and which classes they
will refer to. In this case, simply extend the PluginClassLoader and define the map within the extending class.

1 namespace My\Plugins;
2

3 use Zend\Loader\PluginClassLoader;
4

5 class PluginLoader extends PluginClassLoader
6 {
7 /**
8 * @var array Plugin map
9 */

10 protected $plugins = array(
11 ’foo’ => ’My\Plugins\Foo’,

91.5. Examples 401

Zend Framework 2 Documentation, Release 2.0.0

12 ’bar’ => ’My\Plugins\Bar’,
13 ’foobar’ => ’My\Plugins\FooBar’,
14);
15 }

At this point, you can simply instantiate the map and use it.

1 $loader = new My\Plugins\PluginLoader();
2 $class = $loader->load(’foobar’); // My\Plugins\FooBar

PluginClassLoadermakes use of late static binding, allowing per-class static maps. If you want to allow defining
a static map specific to this extending class, simply declare a protected static $staticMap property:

1 namespace My\Plugins;
2

3 use Zend\Loader\PluginClassLoader;
4

5 class PluginLoader extends PluginClassLoader
6 {
7 protected static $staticMap = array();
8

9 // ...
10 }

To inject the static map, use the extending class’ name to call the static addStaticMap() method.

1 PluginLoader::addStaticMap(array(
2 ’url’ => ’Zend\View\Helper\Url’,
3));

Extending a plugin map using another plugin map

In some cases, a general map class may already exist; as an example, most components in Zend Framework that
utilize a plugin broker have an associated PluginClassLoader extension defining the plugins available for that
component within the framework. What if you want to define some additions to these? Where should that code go?

One possibility is to define the map in a configuration file, and then inject the configuration into an instance of the
plugin loader. This is certainly trivial to implement, but removes the code defining the plugin map from the library.

An alternate solution is to define a new plugin map class. The class name or an instance of the class may then be
passed to the constructor or registerPlugins().

1 namespace My\Plugins;
2

3 use Zend\Loader\PluginClassLoader;
4 use Zend\View\Helper\HelperLoader;
5

6 class PluginLoader extends PluginClassLoader
7 {
8 /**
9 * @var array Plugin map

10 */
11 protected $plugins = array(
12 ’foo’ => ’My\Plugins\Foo’,
13 ’bar’ => ’My\Plugins\Bar’,
14 ’foobar’ => ’My\Plugins\FooBar’,
15);
16 }

402 Chapter 91. The PluginClassLoader

Zend Framework 2 Documentation, Release 2.0.0

17

18 // Inject in constructor:
19 $loader = new HelperLoader(’My\Plugins\PluginLoader’);
20 $loader = new HelperLoader(new PluginLoader());
21

22 // Or via registerPlugins():
23 $loader->registerPlugins(’My\Plugins\PluginLoader’);
24 $loader->registerPlugins(new PluginLoader());

91.5. Examples 403

Zend Framework 2 Documentation, Release 2.0.0

404 Chapter 91. The PluginClassLoader

CHAPTER

NINETYTWO

THE SHORTNAMELOCATOR
INTERFACE

92.1 Overview

Within Zend Framework applications, it’s often expedient to provide a mechanism for using class aliases instead of
full class names to load adapters and plugins, or to allow using aliases for the purposes of slipstreaming alternate
implementations into the framework.

In the first case, consider the adapter pattern. It’s often unwieldy to utilize a full class name (e.g.,
Zend\Cloud\DocumentService\Adapter\SimpleDb); using the short name of the adapter, SimpleDb,
would be much simpler.

In the second case, consider the case of helpers. Let us assume we have a “url” helper; you may find that while the
shipped helper does 90% of what you need, you’d like to extend it or provide an alternate implementation. At the same
time, you don’t want to change your code to reflect the new helper. In this case, a short name allows you to alias an
alternate class to utilize.

Classes implementing the ShortNameLocator interface provide a mechanism for resolving a short name to a
fully qualified class name; how they do so is left to the implementers, and may combine strategies defined by other
interfaces, such as PluginClassLocator or PrefixPathMapper.

92.2 Quick Start

Implementing a ShortNameLocator is trivial, and requires only three methods, as shown below.

1 namespace Zend\Loader;
2

3 interface ShortNameLocator
4 {
5 public function isLoaded($name);
6 public function getClassName($name);
7 public function load($name);
8 }

92.3 Configuration Options

This component defines no configuration options, as it is an interface.

405

Zend Framework 2 Documentation, Release 2.0.0

92.4 Available Methods

isLoaded Is the requested plugin loaded? isLoaded($name)

isLoaded() Implement this method to return a boolean indicating whether or not the class has been able to
resolve the plugin name to a class.

getClassName Get the class name associated with a plugin name getClassName($name)

getClassName() Implement this method to return the class name associated with a plugin name.

load Resolve a plugin to a class name load($name)

load() This method should resolve a plugin name to a class name.

92.5 Examples

Please see the Quick Start for the interface specification.

406 Chapter 92. The ShortNameLocator Interface

CHAPTER

NINETYTHREE

THE PLUGINCLASSLOCATOR
INTERFACE

93.1 Overview

The PluginClassLocator interface describes a component capable of maintaining an internal map of plugin
names to actual class names. Classes implementing this interface can register and unregister plugin/class associations,
and return the entire map.

93.2 Quick Start

Classes implementing the PluginClassLocator need to implement only three methods, as illustrated below.

1 namespace Zend\Loader;
2

3 interface PluginClassLocator
4 {
5 public function registerPlugin($shortName, $className);
6 public function unregisterPlugin($shortName);
7 public function getRegisteredPlugins();
8 }

93.3 Configuration Options

This component defines no configuration options, as it is an interface.

93.4 Available Methods

registerPlugin Register a mapping of plugin name to class name registerPlugin($shortName,
$className)

registerPlugin() Implement this method to add or overwrite plugin name/class name associations in the internal
plugin map. $shortName will be aliased to $className.

407

Zend Framework 2 Documentation, Release 2.0.0

unregisterPlugin Remove a plugin/class name association unregisterPlugin($shortName)

unregisterPlugin() Implement this to allow removing an existing plugin mapping corresponding to
$shortName.

getRegisteredPlugins Retrieve the map of plugin name/class name associations getRegisteredPlugins()

getRegisteredPlugins() Implement this to allow returning the plugin name/class name map.

93.5 Examples

Please see the Quick Start for the interface specification.

408 Chapter 93. The PluginClassLocator interface

CHAPTER

NINETYFOUR

THE SPLAUTOLOADER INTERFACE

94.1 Overview

While any valid PHP callback may be registered with spl_autoload_register(), Zend Framework autoloaders
often provide more flexibility by being stateful and allowing configuration. To provide a common interface, Zend
Framework provides the SplAutoloader interface.

Objects implementing this interface provide a standard mechanism for configuration, a method that may be invoked to
attempt to load a class, and a method for registering with the SPL autoloading mechanism.

94.2 Quick Start

To create your own autoloading mechanism, simply create a class implementing the SplAutoloader interface (you
may review the methods defined in the Methods section). As a simple example, consider the following autoloader,
which will look for a class file named after the class within a list of registered directories.

1 namespace Custom;
2

3 use Zend\Loader\SplAutoloader;
4

5 class ModifiedIncludePathAutoloader implements SplAutoloader
6 {
7 protected $paths = array();
8

9 public function __construct($options = null)
10 {
11 if (null !== $options) {
12 $this->setOptions($options);
13 }
14 }
15

16 public function setOptions($options)
17 {
18 if (!is_array($options) && !($options instanceof \Traversable)) {
19 throw new \InvalidArgumentException();
20 }
21

22 foreach ($options as $path) {
23 if (!in_array($path, $this->paths)) {
24 $this->paths[] = $path;
25 }

409

Zend Framework 2 Documentation, Release 2.0.0

26 }
27 return $this;
28 }
29

30 public function autoload($classname)
31 {
32 $filename = $classname . ’.php’;
33 foreach ($this->paths as $path) {
34 $test = $path . DIRECTORY_SEPARATOR . $filename;
35 if (file_exists($test)) {
36 return include($test);
37 }
38 }
39 return false;
40 }
41

42 public function register()
43 {
44 spl_autoload_register(array($this, ’autoload’));
45 }
46 }

94.3 Configuration Options

This component defines no configuration options, as it is an interface.

94.4 Available Methods

__construct Initialize and configure an autoloader __construct($options = null)

Constructor Autoloader constructors should optionally receive configuration options. Typically, if received,
these will be passed to the setOptions() method to process.

setOptions Configure the autoloader state setOptions($options)

setOptions() Used to configure the autoloader. Typically, it should expect either an array or a Traversable
object, though validation of the options is left to implementation. Additionally, it is recommended that the
method return the autoloader instance in order to implement a fluent interface.

autoload Attempt to resolve a class name to the file defining it autoload($classname)

autoload() This method should be used to resolve a class name to the file defining it. When a positive match is
found, return the class name; otherwise, return a boolean false.

register Register the autoloader with the SPL autoloader register()

register() Should be used to register the autoloader instance with spl_autoload_register(). Invariably,
the method should look like the following:

1 public function register()
2 {
3 spl_autoload_register(array($this, ’autoload’));
4 }

410 Chapter 94. The SplAutoloader Interface

Zend Framework 2 Documentation, Release 2.0.0

94.5 Examples

Please see the Quick Start for a complete example.

94.5. Examples 411

Zend Framework 2 Documentation, Release 2.0.0

412 Chapter 94. The SplAutoloader Interface

CHAPTER

NINETYFIVE

THE CLASSMAPAUTOLOADER

95.1 Overview

The ClassMapAutoloader is designed with performance in mind. The idea behind it is simple: when asked to
load a class, see if it’s in the map, and, if so, load the file associated with the class in the map. This avoids unnecessary
filesystem operations, and can also ensure the autoloader “plays nice” with opcode caches and PHP’s realpath cache.

In order to use the ClassMapAutoloader, you first need class maps. Zend Framework ships with a class map per
component or, if you grabbed the entire ZF distribution, a class map for the entire Zend Framework. These maps are
typically in a file named .classmap.php within either the “Zend” directory, or an individual component’s source
directory.

Zend Framework also provides a tool for generating these class maps; you can find it in
bin/classmap_generator.php of the distribution. Full documentation of this too is provided in :ref:‘
<zend.loader.classmap-generator>‘.

95.2 Quick Start

The first step is to generate a class map file. You may run this over any directory containing source code anywhere
underneath it.

1 php classmap_generator.php Some/Directory/

This will create a file named Some/Directory/.classmap.php, which is a PHP file returning an associative
array that represents the class map.

Within your code, you will now instantiate the ClassMapAutoloader, and provide it the location of the map.

1 // This example assumes ZF is on your include_path.
2 // You could also load the autoloader class from a path relative to the
3 // current script, or via an absolute path.
4 require_once ’Zend/Loader/ClassMapAutoloader.php’;
5 $loader = new Zend\Loader\ClassMapAutoloader();
6

7 // Register the class map:
8 $loader->registerAutoloadMap(’Some/Directory/.classmap.php’);
9

10 // Register with spl_autoload:
11 $loader->register();

At this point, you may now use any classes referenced in your class map.

413

Zend Framework 2 Documentation, Release 2.0.0

95.3 Configuration Options

The ClassMapAutoloader defines the following options.

ClassMapAutoloader Options

$options The ClassMapAutoloader expects an array of options, where each option is either a filename referenc-
ing a class map, or an associative array of class name/filename pairs.

As an example:

1 // Configuration defining both a file-based class map, and an array map
2 $config = array(
3 __DIR__ . ’/library/.classmap.php’, // file-based class map
4 array(// array class map
5 ’Application\Bootstrap’ => __DIR__ . ’/application/Bootstrap.php’,
6 ’Test\Bootstrap’ => __DIR__ . ’/tests/Bootstrap.php’,
7),
8);

95.4 Available Methods

__construct Initialize and configure the object __construct($options = null)

Constructor Used during instantiation of the object. Optionally, pass options, which may be either an array or
Traversable object; this argument will be passed to setOptions().

setOptions Configure the autoloader setOptions($options)

setOptions() Configures the state of the autoloader, including registering class maps. Expects an array or
Traversable object; the argument will be passed to registerAutoloadMaps().

registerAutoloadMap Register a class map registerAutoloadMap($map)

registerAutoloadMap() Registers a class map with the autoloader. $map may be either a string referencing a
PHP script that returns a class map, or an array defining a class map.

More than one class map may be registered; each will be merged with the previous, meaning it’s possible for a
later class map to overwrite entries from a previously registered map.

registerAutoloadMaps Register multiple class maps at once registerAutoloadMaps($maps)

registerAutoloadMaps() Register multiple class maps with the autoloader. Expects either an array or
Traversable object; it then iterates over the argument and passes each value to registerAutoloadMap().

getAutoloadMap Retrieve the current class map getAutoloadMap()

getAutoloadMap() Retrieves the state of the current class map; the return value is simply an array.

autoload Attempt to load a class. autoload($class)

autoload() Attempts to load the class specified. Returns a boolean false on failure, or a string indicating the
class loaded on success.

register Register with spl_autoload. register()

register() Registers the autoload() method of the current instance with spl_autoload_register().

414 Chapter 95. The ClassMapAutoloader

Zend Framework 2 Documentation, Release 2.0.0

95.5 Examples

Using configuration to seed ClassMapAutoloader

Often, you will want to configure your ClassMapAutoloader. These values may come from a configuration file,
a cache (such as ShMem or memcached), or a simple PHP array. The following is an example of a PHP array that
could be used to configure the autoloader:

1 // Configuration defining both a file-based class map, and an array map
2 $config = array(
3 APPLICATION_PATH . ’/../library/.classmap.php’, // file-based class map
4 array(// array class map
5 ’Application\Bootstrap’ => APPLICATION_PATH . ’/Bootstrap.php’,
6 ’Test\Bootstrap’ => APPLICATION_PATH . ’/../tests/Bootstrap.php’,
7),
8);

An eqivalent INI style configuration might look like this:

1 classmap.library = APPLICATION_PATH "/../library/.classmap.php"
2 classmap.resources.Application\Bootstrap = APPLICATION_PATH "/Bootstrap.php"
3 classmap.resources.Test\Bootstrap = APPLICATION_PATH "/../tests/Bootstrap.php"

Once you have your configuration, you can pass it either to the constructor of the ClassMapAutoloader, to its
setOptions() method, or to registerAutoloadMaps().

1 /* The following are all equivalent */
2

3 // To the constructor:
4 $loader = new Zend\Loader\ClassMapAutoloader($config);
5

6 // To setOptions():
7 $loader = new Zend\Loader\ClassMapAutoloader();
8 $loader->setOptions($config);
9

10 // To registerAutoloadMaps():
11 $loader = new Zend\Loader\ClassMapAutoloader();
12 $loader->registerAutoloadMaps($config);

95.5. Examples 415

Zend Framework 2 Documentation, Release 2.0.0

416 Chapter 95. The ClassMapAutoloader

CHAPTER

NINETYSIX

THE STANDARDAUTOLOADER

96.1 Overview

Zend\Loader\StandardAutoloader is designed as a PSR-0-compliant autoloader. It assumes a 1:1 map-
ping of the namespace+classname to the filesystem, wherein namespace separators and underscores are translated to
directory separators. A simple statement that illustrates how resolution works is as follows:

1 $filename = str_replace(array(’_’, ’\\’), DIRECTORY_SEPARATOR, $classname)
2 . ’.php’;

Previous incarnations of PSR-0-compliant autoloaders in Zend Framework have relied upon the include_path for
file lookups. This has led to a number of issues:

• Due to the use of include, if the file is not found, a warning is raised – even if another autoloader is capable
of resolving the class later.

• Documenting how to setup the include_path has proven to be a difficult concept to convey.

• If multiple Zend Framework installations exist on the include_path, the first one on the path wins – even if
that was not the one the developer intended.

To solve these problems, the StandardAutoloader by default requires that you explicitly register namespace/path
pairs (or vendor prefix/path pairs), and will only load a file if it exists within the given path. Multiple pairs may be
provided.

As a measure of last resort, you may also use the StandardAutoloader as a “fallback” autoloader – one that
will look for classes of any namespace or vendor prefix on the include_path. This practice is not recommended,
however, due to performance implications.

Finally, as with all autoloaders in Zend Framework, the StandardAutoloader is capable of registering itself with
PHP’s SPL autoloader registry.

Note: Vocabulary: Namespaces vs. Vendor Prefixes

In terms of autloading, a “namespace” corresponds to PHP’s own definition of namespaces in PHP versions 5.3 and
above.

A “vendor prefix” refers to the practice, popularized in PHP versions prior to 5.3, of providing a pseudo-namespace
in the form of underscore-separated words in class names. As an example, the class Phly_Couch_Document uses
a vendor prefix of “Phly”, and a component prefix of “Phly_Couch” – but it is a class sitting in the global namespace
within PHP 5.3.

The StandardAutoloader is capable of loading either namespaced or vendor prefixed class names, but treats
them separately when attempting to match them to an appropriate path.

417

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

Zend Framework 2 Documentation, Release 2.0.0

96.2 Quick Start

Basic use of the StandardAutoloader requires simply registering namespace/path pairs. This can either be done
at instantiation, or via explicit method calls after the object has been initialized. Calling register() will register
the autoloader with the SPL autoloader registry.

If the option key ‘autoregister_zf’ is set to true then the class will register the “Zend” namespace to the directory above
where its own classfile is located on the filesystem.

Manual Configuration

1 // This example assumes ZF is on your include_path.
2 // You could also load the autoloader class from a path relative to the
3 // current script, or via an absolute path.
4 require_once ’Zend/Loader/StandardAutoloader.php’;
5 $loader = new Zend\Loader\StandardAutoloader(array(’autoregister_zf’ => true));
6

7 // Register the "Phly" namespace:
8 $loader->registerNamespace(’Phly’, APPLICATION_PATH . ’/../library/Phly’);
9

10 // Register the "Scapi" vendor prefix:
11 $loader->registerPrefix(’Scapi’, APPLICATION_PATH . ’/../library/Scapi’);
12

13 // Optionally, specify the autoloader as a "fallback" autoloader;
14 // this is not recommended.
15 $loader->setFallbackAutoloader(true);
16

17 // Register with spl_autoload:
18 $loader->register();

Configuration at Instantiation

The StandardAutoloader may also be configured at instantiation. Please note:

• The argument passed may be either an array or a Traversable object (such as a Zend\Config object.

• The argument passed is also a valid argument for passing to the setOptions() method.

The following is equivalent to the previous example.

1 require_once ’Zend/Loader/StandardAutoloader.php’;
2 $loader = new Zend\Loader\StandardAutoloader(array(
3 ’autoregister_zf’ => true,
4 ’namespaces’ => array(
5 ’Phly’ => APPLICATION_PATH . ’/../library/Phly’,
6),
7 ’prefixes’ => array(
8 ’Scapi’ => APPLICATION_PATH . ’/../library/Scapi’,
9),

10 ’fallback_autoloader’ => true,
11));
12

13 // Register with spl_autoload:
14 $loader->register();

418 Chapter 96. The StandardAutoloader

Zend Framework 2 Documentation, Release 2.0.0

96.3 Configuration Options

The StandardAutoloader defines the following options.

StandardAutoloader Options

namespaces An associative array of namespace/path pairs. The path should be an absolute path or path relative to the
calling script, and contain only classes that live in that namespace (or its subnamespaces). By default, the “Zend”
namespace is registered, pointing to the arent directory of the file defining the StandardAutoloader.

prefixes An associative array of vendor prefix/path pairs. The path should be an absolute path or path relative to the
calling script, and contain only classes that begin with the provided vendor prefix.

fallback_autoloader A boolean value indicating whether or not this instance should act as a “fallback” autoloader
(i.e., look for classes of any namespace or vendor prefix on the include_path). By default, false.

autoregister_zf An boolean value indicating that the class should register the “Zend” namespace to the directory
above where its own classfile is located on the filesystem.

96.4 Available Methods

__construct Initialize a new instance of the object __construct($options = null)

Constructor Takes an optional $options argument. This argument may be an associative array or
Traversable object. If not null, the argument is passed to setOptions().

setOptions Set object state based on provided options. setOptions($options)

setOptions() Takes an argument of either an associative array or Traversable object. Recognized keys are
detailed under :ref:‘ <zend.loader.standard-autoloader.options>‘, with the following behaviors:

• The namespaces value will be passed to registerNamespaces().

• The prefixes value will be passed to registerPrefixes().

• The fallback_autoloader value will be passed to setFallbackAutoloader().

setFallbackAutoloader Enable/disable fallback autoloader status setFallbackAutoloader($flag)

setFallbackAutoloader() Takes a boolean flag indicating whether or not to act as a fallback autoloader when
registered with the SPL autoloader.

isFallbackAutoloader Query fallback autoloader status isFallbackAutoloader()

isFallbackAutoloader() Indicates whether or not this instance is flagged as a fallback autoloader.

registerNamespace Register a namespace with the autoloader registerNamespace($namespace,
$directory)

registerNamespace() Register a namespace with the autoloader, pointing it to a specific directory on the filesys-
tem for class resolution. For classes matching that initial namespace, the autoloader will then perform lookups
within that directory.

registerNamespaces Register multiple namespaces with the autoloader registerNamespaces($namespaces)

registerNamespaces() Accepts either an array or Traversable object. It will then iterate through the argu-
ment, and pass each item to registerNamespace().

96.3. Configuration Options 419

Zend Framework 2 Documentation, Release 2.0.0

registerPrefix Register a vendor prefix with the autoloader. registerPrefix($prefix, $directory)

registerPrefix() Register a vendor prefix with the autoloader, pointing it to a specific directory on the filesystem
for class resolution. For classes matching that initial vendor prefix, the autoloader will then perform lookups
within that directory.

registerPrefixes Register many vendor prefixes with the autoloader registerPrefixes($prefixes)

registerPrefixes() Accepts either an array or Traversable object. It will then iterate through the argument,
and pass each item to registerPrefix().

autoload Attempt to load a class. autoload($class)

autoload() Attempts to load the class specified. Returns a boolean false on failure, or a string indicating the
class loaded on success.

register Register with spl_autoload. register()

register() Registers the autoload() method of the current instance with spl_autoload_register().

96.5 Examples

Please review the examples in the quick start for usage.

420 Chapter 96. The StandardAutoloader

CHAPTER

NINETYSEVEN

THE CLASS MAP GENERATOR
UTILITY:

BIN/CLASSMAP_GENERATOR.PHP

97.1 Overview

The script bin/classmap_generator.php can be used to generate class map files for use with the ClassMa-
pAutoloader.

Internally, it consumes both Zend\Console\Getopt (for parsing command-line options) and Zend\File\ClassFileLocator
for recursively finding all PHP class files in a given tree.

97.2 Quick Start

You may run the script over any directory containing source code. By default, it will look in the current directory, and
will write the script to .classmap.php in the directory you specify.

1 php classmap_generator.php Some/Directory/

97.3 Configuration Options

Class Map Generator Options

–help or -h Returns the usage message. If any other options are provided, they will be ignored.

–library or -l Expects a single argument, a string specifying the library directory to parse. If this option is not
specified, it will assume the current working directory.

–output or -o Where to write the autoload class map file. If not provided, assumes ”.classmap.php” in the library
directory.

–overwrite or -w If an autoload class map file already exists with the name as specified via the --output option,
you can overwrite it by specifying this flag. Otherwise, the script will not write the class map and return a
warning.

421

Zend Framework 2 Documentation, Release 2.0.0

422 Chapter 97. The Class Map Generator utility: bin/classmap_generator.php

CHAPTER

NINETYEIGHT

THE PREFIXPATHLOADER

98.1 Overview

Zend Framework’s 1.X series introduced a plugin methodology surrounding associations of vendor/component pre-
fixes and filesystem paths in the Zend_Loader_PluginLoader class. Zend Framework 2 provides equivalent
functionality with the PrefixPathLoader class, and expands it to take advantage of PHP 5.3 namespaces.

The concept is relatively simple: a given vendor prefix or namespace is mapped to one or more paths, and multiple
prefix/path maps may be provided. To resolve a plugin name, the prefixes are searched as a stack (i.e., last in, first out,
or LIFO), and each path associated with the prefix is also searched as a stack. As soon as a file is found matching the
plugin name, the class will be returned.

Since searching through the filesystem can lead to performance degradation, the PrefixPathLoader provides sev-
eral optimizations. First, it will attempt to autoload a plugin before scanning the filesystem. This allows you to benefit
from your autoloader and/or an opcode cache. Second, it aggregates the class name and class file associated with each
discovered plugin. You can then retrieve this information and cache it for later seeding a ClassMapAutoloader and
PluginClassLoader.

PrefixPathLoader implements the ShortNameLocator and PrefixPathMapper interfaces.

Note: Case Sensitivity

Unlike the PluginClassLoader, plugins resolved via the PrefixPathLoader are considered case sensitive. This is
due to the fact that the lookup is done on the filesystem, and thus a file exactly matching the plugin name must exist.

Note: Preference is for Namespaces

Unlike the Zend Framework 1 variant, the PrefixPathLoader assumes that “prefixes” are PHP 5.3 namespaces by
default. You can override this behavior, however, per prefix/path you map. Please see the documentation and examples
below for details.

98.2 Quick Start

The PrefixPathLoader invariably requires some configuration – it needs to know what namespaces and/or vendor
prefixes it should try, as well as the paths associated with each. You can inform the class of these at instantiation, or
later by calling either the addPrefixPath() or addPrefixPaths() methods.

423

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Loader\PrefixPathLoader;
2

3 // Configure at instantiation:
4 $loader = new PrefixPathLoader(array(
5 array(’prefix’ => ’Foo’, ’path’ => ’../library/Foo’),
6 array(’prefix’ => ’Bar’, ’path’ => ’../vendor/Bar’),
7));
8

9 // Or configure manually using methods:
10 $loader = new PrefixPathLoader();
11 $loader->addPrefixPath(’Foo’, ’../library/Foo’);
12

13 $loader->addPrefixPaths(array(
14 array(’prefix’ => ’Foo’, ’path’ => ’../library/Foo’),
15 array(’prefix’ => ’Bar’, ’path’ => ’../vendor/Bar’),
16));

Once configured, you may then attempt to lookup a plugin.

1 if (false === ($class = $loader->load(’bar’))) {
2 throw new Exception("Plugin class matching ’bar’ not found!");
3 }
4 $plugin = new $class();

98.3 Configuration Options

PrefixPathLoader Options

$options The constructor accepts either an array or a Traversable object of prefix paths. For the format allowed,
please see the addPrefixPaths() method documentation.

98.4 Available Methods

__construct Instantiate and initialize loader __construct($options = null)

__construct() Instantiates and initializes a PrefixPathLoader instance. If the $prefixPaths protected
member is defined, it re-initializes it to an Zend\Stdlib\ArrayStack instance, and passes the original
value to the addPrefixPaths() method. It then checks to see if $staticPaths has been populated, and, if so,
passes that on to the addPrefixPaths() method to merge the values. Finally, if $options is non-null, it
passes that to addPrefixPaths().

addStaticPaths Add paths statically addStaticPaths($paths)

addStaticPaths() Expects an array or Traversable object compatible with the addPrefixPaths()
method. This method is static, and populates the protected $staticPaths member, which is used during
instantiation to either override default paths or add additional prefix/path pairs to search.

setOptions Configure object state setOptions($options)

setOptions() Proxies to addPrefixPaths().

addPrefixPath Map a namespace/vendor prefix to the given filesystem path addPrefixPath($prefix,
$path, $namespaced = true)

424 Chapter 98. The PrefixPathLoader

Zend Framework 2 Documentation, Release 2.0.0

addPrefixPath() Use this method to map a single filesystem path to a given namespace or vendor prefix. By
default, the $prefix will be considered a PHP 5.3 namespace; you may specify that it is a vendor prefix by
passing a boolean false value to the $namespaced argument.

If the $prefix has been previously mapped, this method adds another $path to a stack – meaning the new
path will be searched first when attempting to resolve a plugin name to this $prefix.

addPrefixPaths Add many prefix/path pairs at once addPrefixPaths($prefixPaths)

addPrefixPaths() This method expects an array or Traversable object. Each item in the array or object
must be one of the following:

• An array, with the keys “prefix” and “path”, and optionally “namespaced”; the keys correspond to the ar-
guments to addPrefixPath(). The “prefix” and “path” keys should point to string values, while the “names-
paced” key should be a boolean.

• An object, with the attributes “prefix” and “path”, and optionally “namespaced”; the attributes correspond
to the arguments to addPrefixPath(). The “prefix” and “path” attributes should point to string values, while
the “namespaced” attribute should be a boolean.

The method will loop over arguments, and pass values to addPrefixPath() to process.

getPaths Retrieve all paths associated with a prefix, or all paths getPaths($prefix = null)

getPaths() Use this method to obtain the prefix/paths map. If no $prefix is provided, the return value is
an Zend\Stdlib\ArrayStack, where the keys are namespaces or vendor prefixes, and the values are
Zend\Stdlib\SplStack instances containing all paths associated with the given namespace or prefix.

If the $prefix argument is provided, two outcomes are possible. If the prefix is not found, a boolean false
value is returned. If the prefix is found, a Zend\Stdlib\SplStack instance containing all paths associated
with that prefix is returned.

clearPaths Clear all maps, or all paths for a given prefix clearPaths($prefix = null)

clearPaths() If no $prefix is provided, all prefix/path pairs are removed. If a $prefix is provided and
found within the map, only that prefix is removed. Finally, if a $prefix is provided, but not found, a boolean
false is returned.

removePrefixPath

removePrefixPath($prefix, $path)

removePrefixPath() Removes a single path from a given prefix.

isLoaded Has the given plugin been loaded? isLoaded($name)

isLoaded() Use this method to determine if the given plugin has been resolved to a class and file. Unlike
PluginClassLoader, this method can return a boolean false even if the loader is capable of loading
the plugin; it simply indicates whether or not the current instance has yet resolved the plugin via the load()
method.

getClassName Retrieve the class name to which a plugin resolves getClassName($name)

getClassName() Given a plugin name, this method will attempt to return the associated class name. The method
completes successfully if, and only if, the plugin has been successfully loaded via load(). Otherwise, it will
return a boolean false.

load Attempt to resolve a plugin to a class load($name)

load() Given a plugin name, the load() method will loop through the internal ArrayStack. The plugin
name is first normalized using ucwords(), and then appended to the current vendor prefix or namespace. If
the resulting class name resolves via autoloading, the class name is immediately returned. Otherwise, it then
loops through the associated SplStack of paths for the prefix, looking for a file matching the plugin name
(i.e., for plugin Foo, file name Foo.php) in the given path. If a match is found, the class name is returned.

98.4. Available Methods 425

Zend Framework 2 Documentation, Release 2.0.0

If no match is found, a boolean false is returned.

getPluginMap Get a list of plugin/class name pairs getPluginMap()

getPluginMap() Returns an array of resolved plugin name/class name pairs. This value may be used to seed a
PluginClassLoader instance.

getClassMap Get a list of class name/file name pairs getClassMap()

getClassMap() Returns an array of resolved class name/file name pairs. This value may be used to seed a
ClassMapAutoloader instance.

98.5 Examples

Using multiple paths for the same prefix

Sometimes you may have code containing the same namespace or vendor prefix in two different locations. Potentially,
the same class may be defined in different locations, but with slightly different functionality. (We do not recommend
this, but sometimes it happens.)

The PrefixPathLoader easily allows for these situations; simply register the path you want to take precedence
last.

Consider the following directory structures:

1 project
2 |-- library
3 | |-- Foo
4 | | |-- Bar.php
5 | | ‘-- Baz.php
6 |-- vendor
7 | |-- Foo
8 | | |-- Bar.php
9 | | ‘-- Foobar.php

For purposes of this example, we’ll assume that the common namespace is “Foo”, and that the “Bar” plugin from the
vendor branch is preferred. To make this possible, simply register the “vendor” directory last.

1 use Zend\Loader\PrefixPathLoader;
2

3 $loader = new PrefixPathLoader();
4

5 // Multiple calls to addPrefixPath():
6 $loader->addPrefixPath(’Foo’, PROJECT_ROOT . ’/library/Foo’)
7 ->addPrefixPath(’Foo’, PROJECT_ROOT . ’/vendor/Foo’);
8

9 // Or use a single call to addPrefixPaths():
10 $loader->addPrefixPaths(array(
11 array(’prefix’ => ’Foo’, ’path’ => PROJECT_ROOT . ’/library/Foo’),
12 array(’prefix’ => ’Foo’, ’path’ => PROJECT_ROOT . ’/vendor/Foo’),
13));
14

15 // And then resolve plugins:
16 $bar = $loader->load(’bar’); // Foo\Bar from vendor/Foo/Bar.php
17 $baz = $loader->load(’baz’); // Foo\Baz from library/Foo/Baz.php
18 $foobar = $loader->load(’foobar’); // Foo\Foobar from vendor/Foo/Baz.php

426 Chapter 98. The PrefixPathLoader

Zend Framework 2 Documentation, Release 2.0.0

Prototyping with PrefixPathLoader

PrefixPathLoader is quite useful for prototyping applications. With minimal configuration, you can access a full
directory of plugins, without needing to update maps as new plugins are added. However, this comes with a price:
performance. Since plugins are resolved typically using by searching the filesystem, you are introducing I/O calls
every time you request a new plugin.

With this in mind, PrefixPathLoader provides two methods for assisting in migrating to more performant solu-
tions. The first is getClassMap(). This method returns an array of class name/file name pairs suitable for use with
ClassMapAutoloader. Injecting your autoloader with that map will ensure that on subsequent calls, load() should
be able to find the appropriate class via autoloading – assuming that the match is on the first prefix checked.

The second solution is the getPluginMap() method, which creates a plugin name/class name map suitable for
injecting into a PluginClassLoader instance. Combine this with class map-based autoloading, and you can actually
eliminate I/O calls altogether when using an opcode cache.

Usage of these methods is quite simple.

1 // After a number of load() operations, or at the end of the request:
2 $classMap = $loader->getClassMap();
3 $pluginMap = $loader->getPluginMap();

From here, you will need to do a little work. First, you need to serialize this information somehow for later use. For
that, there are two options: Zend\Serializer or Zend\Cache.

1 // Using Zend\Serializer:
2 use Zend\Serializer\Serializer;
3

4 $adapter = Serializer::factory(’PhpCode’);
5 $content = "<?php\nreturn " . $adapter->serialize($classMap) . ";";
6 file_put_contents(APPLICATION_PATH . ’/.classmap.php’, $content);
7

8 // Using Zend\Cache:
9 use Zend\Cache\Cache;

10

11 $cache = Cache::factory(
12 ’Core’, ’File’,
13 array(’lifetime’ => null, ’automatic_serialization’ => true),
14 array(’cache_dir’ => APPLICATION_PATH . ’/../cache/classmaps’)
15);
16 $cache->save($pluginMap, ’pluginmap’);

Note: the examples alternate between the class map and plugin map; however, either technique applies to either map.

Once the data is cached, you can retrieve it late to populate. In the example of the class map above, you would simply
pass the filename to the ClassMapAutoloader instance:

1 $autoloader = new Zend\Loader\ClassMapAutoloader();
2 $autoloader->registerAutoloadMap(APPLICATION_PATH . ’/.classmap.php’);

If using Zend\Cache, you would retrieve the cached data, and pass it to the appropriate component; in this case, we
pass the value to a PluginClassLoader instance.

1 $map = $cache->load(’pluginmap’);
2

3 $loader = new Zend\Loader\PluginClassLoader($map);

With some creative and well disciplined architecture, you can likely automate these processes to ensure that devel-
opment can benefit from the dynamic nature of the PrefixPathLoader, and production can benefit from the
performance optimizations of the ClassMapAutoloader and PluginClassLoader.

98.5. Examples 427

Zend Framework 2 Documentation, Release 2.0.0

428 Chapter 98. The PrefixPathLoader

CHAPTER

NINETYNINE

THE PREFIXPATHMAPPER INTERFACE

99.1 Overview

One approach to resolving plugin names to class names utilizes prefix/path pairs. In this methodology, the developer
specifies one or more directories containing plugins that have a common namespace or prefix. When resolving a
plugin, the mapper will loop through these prefixes, and look for a class file matching the requested plugin; if found,
that plugin class is loaded from the file and used. The PrefixPathMapper interface defines a common interface
for specifying and modifying a map of prefix/path pairs.

99.2 Quick Start

The PrefixPathMapper provides simply two methods: one for registering a prefix path, and another for removing
one.

1 namespace Zend\Loader;
2

3 interface PrefixPathMapper
4 {
5 public function addPrefixPath($prefix, $path);
6 public function removePrefixPath($prefix, $path);
7 }

99.3 Configuration Options

This component defines no configuration options, as it is an interface.

99.4 Available Methods

addPrefixPath Register a prefix/path association addPrefixPath($prefix, $path)

addPrefixPath() Implement this method to allow registering a prefix/path pair. The prefix may be either an
older, PHP 5.2-style vendor prefix or a true PHP 5.3 namespace; the path should be a path to a directory of files
using the given prefix or namespace. The implemenation should determine whether or not to aggregate paths
for each namespace, or simply maintain a 1:1 association.

429

Zend Framework 2 Documentation, Release 2.0.0

removePrefixPath Remove a prefix/path association removePrefixPath($prefix, $path)

removePrefixPath() Implement this method to remove a prefix/path association from the internal map.

99.5 Examples

Please see the Quick Start for the interface specification.

430 Chapter 99. The PrefixPathMapper Interface

CHAPTER

OVERVIEW

Zend\Log\Logger is a component for general purpose logging. It supports multiple log backends, formatting
messages sent to the log, and filtering messages from being logged. These functions are divided into the following
objects:

• A Logger (instance of Zend\Log\Logger) is the object that your application uses the most. You can have
as many Logger objects as you like; they do not interact. A Logger object must contain at least one Writer, and
can optionally contain one or more Filters.

• A Writer (inherits from Zend\Log\Writer\AbstractWriter) is responsible for saving data to storage.

• A Filter (implements Zend\Log\Filter) blocks log data from being saved. A filter is applied to an individ-
ual writer. Filters can be chained.

• A Formatter (inheriting from Zend\Log\Formatter\AbstractFormatter) can format the log data
before it is written by a Writer. Each Writer has exactly one Formatter.

100.1 Creating a Log

To get started logging, instantiate a Writer and then pass it to a Logger instance:

1 $logger = new Zend\Log\Logger;
2 $writer = new Zend\Log\Writer\Stream(’php://output’);
3

4 $logger->addWriter($writer);

It is important to note that the Logger must have at least one Writer. You can add any number of Writers using the
Log’s addWriter() method.

You can also add a priority to each writer. The priority is specified as number and passed as second argument in the
addWriter() method.

Another way to add a writer to a Logger is to use the name of the writer as follow:

1 $logger = new Zend\Log\Logger;
2

3 $logger->addWriter(’stream’, null, array(’stream’ => ’php://output’));

In this example we passed the stream php://output as parameter (as array).

100.2 Logging Messages

To log a message, call the log() method of a Log instance and pass it the message with a corresponding priority:

431

Zend Framework 2 Documentation, Release 2.0.0

1 $logger->log(Zend\Log\Logger::INFO, ’Informational message’);

The first parameter of the log() method is an integer priority and the second parameter is a string message.
The priority must be one of the priorities recognized by the Logger instance. This is explained in the next section.
There is also an optional third parameter used to pass extra informations to the writer’s log.

A shortcut is also available. Instead of calling the log() method, you can call a method by the same name as the
priority:

1 $logger->log(Zend\Log\Logger::INFO, ’Informational message’);
2 $logger->info(’Informational message’);
3

4 $logger->log(Zend\Log\Logger::EMERG, ’Emergency message’);
5 $logger->emerg(’Emergency message’);

100.3 Destroying a Log

If the Logger object is no longer needed, set the variable containing it to NULL to destroy it. This will automatically
call the shutdown() instance method of each attached Writer before the Log object is destroyed:

1 $logger = null;

Explicitly destroying the log in this way is optional and is performed automatically at PHP shutdown.

100.4 Using Built-in Priorities

The Zend\Log\Logger class defines the following priorities:

1 EMERG = 0; // Emergency: system is unusable
2 ALERT = 1; // Alert: action must be taken immediately
3 CRIT = 2; // Critical: critical conditions
4 ERR = 3; // Error: error conditions
5 WARN = 4; // Warning: warning conditions
6 NOTICE = 5; // Notice: normal but significant condition
7 INFO = 6; // Informational: informational messages
8 DEBUG = 7; // Debug: debug messages

These priorities are always available, and a convenience method of the same name is available for each one.

The priorities are not arbitrary. They come from the BSD syslog protocol, which is described in RFC-3164. The
names and corresponding priority numbers are also compatible with another PHP logging system, PEAR Log, which
perhaps promotes interoperability between it and Zend\Log\Logger.

Priority numbers descend in order of importance. EMERG (0) is the most important priority. DEBUG (7) is the least
important priority of the built-in priorities. You may define priorities of lower importance than DEBUG. When selecting
the priority for your log message, be aware of this priority hierarchy and choose appropriately.

100.5 Understanding Log Events

When you call the log() method or one of its shortcuts, a log event is created. This is simply an associative array
with data describing the event that is passed to the writers. The following keys are always created in this array:
timestamp, message, priority, and priorityName.

432 Chapter 100. Overview

http://tools.ietf.org/html/rfc3164
http://pear.php.net/package/log

Zend Framework 2 Documentation, Release 2.0.0

The creation of the event array is completely transparent.

100.6 Log PHP Errors

Zend\Log\Logger can also be used to log PHP errors and intercept Exceptions. Calling the static method
registerErrorHandler($logger) will add the $logger object before the current PHP error handler, and will
pass the error along as well.

1 $logger = new Zend\Log\Logger;
2 $writer = new Zend\Log\Writer\Stream(’php://output’);
3

4 $logger->addWriter($writer);
5

6 Zend\Log\Logger::registerErrorHandler($logger);

If you want to unregister the error handler you can use the unregisterErrorHandler() static method.

Table 100.1: Zend\Log\Logger events from PHP errors fields matching handler (int $errno , string $errstr [, string
$errfile [, int $errline [, array $errcontext]]]) from set_error_handler

Name Error
Handler
Parameter

Description

mes-
sage

errstr Contains the error message, as a string.

er-
rno

errno Contains the level of the error raised, as an integer.

file errfile Contains the filename that the error was raised in, as a string.
line errline Contains the line number the error was raised at, as an integer.
con-
text

errcontext (optional) An array that points to the active symbol table at the point the error occurred.
In other words, errcontext will contain an array of every variable that existed in the
scope the error was triggered in. User error handler must not modify error context.

You can also configure a Logger to intercept Exceptions using the static method
registerExceptionHandler($logger).

100.6. Log PHP Errors 433

Zend Framework 2 Documentation, Release 2.0.0

434 Chapter 100. Overview

CHAPTER

ONE

WRITERS

A Writer is an object that inherits from Zend\Log\Writer\AbstractWriter. A Writer’s responsibility is to
record log data to a storage backend.

101.1 Writing to Streams

Zend\Log\Writer\Stream sends log data to a PHP stream.

To write log data to the PHP output buffer, use the URL php://output. Alternatively, you can send log data
directly to a stream like STDERR (php://stderr).

1 $writer = new Zend\Log\Writer\Stream(’php://output’);
2 $logger = new Zend\Log\Logger($writer);
3

4 $logger->info(’Informational message’);

To write data to a file, use one of the Filesystem URLs:

1 $writer = new Zend\Log\Writer\Stream(’/path/to/logfile’);
2 $logger = new Zend\Log\Logger($writer);
3

4 $logger->info(’Informational message’);

By default, the stream opens in the append mode (“a”). To open it with a different mode, the
Zend\Log\Writer\Stream constructor accepts an optional second parameter for the mode.

The constructor of Zend\Log\Writer\Stream also accepts an existing stream resource:

1 $stream = @fopen(’/path/to/logfile’, ’a’, false);
2 if (! $stream) {
3 throw new Exception(’Failed to open stream’);
4 }
5

6 $writer = new Zend\Log\Writer\Stream($stream);
7 $logger = new Zend\Log\Logger($writer);
8

9 $logger->info(’Informational message’);

You cannot specify the mode for existing stream resources. Doing so causes a Zend\Log\Exception to be thrown.

435

http://www.php.net/stream
http://www.php.net/manual/en/wrappers.php#wrappers.file

Zend Framework 2 Documentation, Release 2.0.0

101.2 Writing to Databases

Zend\Log\Writer\Db writes log information to a database table using Zend\Db\Adapter\Adapter. The
constructor of Zend\Log\Writer\Db receives a Zend\Db\Adapter\Adapter instance, a table name, an op-
tional mapping of event data to database columns, and an optional string contains the character separator for the log
array:

1 $dbconfig = array(
2 // Sqlite Configuration
3 ’driver’ => ’Pdo’,
4 ’dsn’ => ’sqlite:’ . __DIR__ . ’/tmp/sqlite.db’,
5);
6 $db = new Zend\Db\Adapter\Adapter($dbconfig);
7

8 $writer = new Zend\Log\Writer\Db($db, ’log_table_name’);
9 $logger = new Zend\Log\Logger($writer);

10

11 $logger->info(’Informational message’);

The example above writes a single row of log data to the database table named ‘log_table_name’ table. The database
column will be created according to the event array generated by the Zend\Log\Logger instance.

If we specify the mapping of the events with the database columns the log will store in the database only the selected
fields.

1 $dbconfig = array(
2 // Sqlite Configuration
3 ’driver’ => ’Pdo’,
4 ’dsn’ => ’sqlite:’ . __DIR__ . ’/tmp/sqlite.db’,
5);
6 $db = new Zend\Db\Adapter\Adapter($dbconfig);
7

8 $mapping = array(
9 ’timestamp’ => ’date’,

10 ’priority’ => ’type’,
11 ’message’ => ’event’
12);
13 $writer = new Zend\Log\Writer\Db($db, ’log_table_name’, $mapping);
14 $logger = new Zend\Log\Logger($writer);
15

16 $logger->info(’Informational message’);

The previous example will store only the log information timestamp, priority and message in the database fields date,
type and event.

The Zend\Log\Writer\Db has a second optional parameter in the constructor. This parameter is the character
separator for the log events managed by an array. For instance, if we have a log that contains an array extra fields, this
will be translated in ‘extra-field’, where ‘-‘ is the character separator (default) and field is the subname of the specific
extra field.

101.3 Stubbing Out the Writer

The Zend\Log\Writer\Null is a stub that does not write log data to anything. It is useful for disabling logging
or stubbing out logging during tests:

436 Chapter 101. Writers

Zend Framework 2 Documentation, Release 2.0.0

1 $writer = new Zend\Log\Writer\Null;
2 $logger = new Zend\Log\Logger($writer);
3

4 // goes nowhere
5 $logger->info(’Informational message’);

101.4 Testing with the Mock

The Zend\Log\Writer\Mock is a very simple writer that records the raw data it receives in an array exposed as a
public property.

1 $mock = new Zend\Log\Writer\Mock;
2 $logger = new Zend\Log\Logger($mock);
3

4 $logger->info(’Informational message’);
5

6 var_dump($mock->events[0]);
7

8 // Array
9 // (

10 // [timestamp] => 2007-04-06T07:16:37-07:00
11 // [message] => Informational message
12 // [priority] => 6
13 // [priorityName] => INFO
14 //)

To clear the events logged by the mock, simply set $mock->events = array().

101.5 Compositing Writers

There is no composite Writer object. However, a Log instance can write to any number of Writers. To do this, use the
addWriter() method:

1 $writer1 = new Zend\Log\Writer\Stream(’/path/to/first/logfile’);
2 $writer2 = new Zend\Log\Writer\Stream(’/path/to/second/logfile’);
3

4 $logger = new Zend\Log\Logger();
5 $logger->addWriter($writer1);
6 $logger->addWriter($writer2);
7

8 // goes to both writers
9 $logger->info(’Informational message’);

You can also specify the priority number for each writer to change the order of writing. The priority number is an
integer number (greater or equal to 1) passed as second parameter in the addWriter() method.

101.4. Testing with the Mock 437

Zend Framework 2 Documentation, Release 2.0.0

438 Chapter 101. Writers

CHAPTER

TWO

FILTERS

A Filter object blocks a message from being written to the log.

You can add a filter to a specific Writer using addFilter() method of that Writer:

1 use Zend\Log\Logger;
2

3 $logger = new Logger();
4

5 $writer1 = new Zend\Log\Writer\Stream(’/path/to/first/logfile’);
6 $logger->addWriter($writer1);
7

8 $writer2 = new Zend\Log\Writer\Stream(’/path/to/second/logfile’);
9 $logger->addWriter($writer2);

10

11 // add a filter only to writer2
12 $filter = new Zend\Log\Filter\Priority(Logger::CRIT);
13 $writer2->addFilter($filter);
14

15 // logged to writer1, blocked from writer2
16 $logger->info(’Informational message’);
17

18 // logged by both writers
19 $logger->emerg(’Emergency message’);

102.1 Available filters

The Zend\Log\Filter available are:

• Priority, filter logging by $priority. By default, it will accept any log event whose priority value is less than or
equal to $priority.

• Regex, filter out any log messages not matching the regex pattern. This filter use the preg_match() function of
PHP.

• SuppressFilter, this is a simple boolean filter. Call suppress(true) to suppress all log events. Call suppress(false)
to accept all log events.

• Validator, filter out any log messages not matching the Zend\Validator\Validator object passed to the filter.

439

Zend Framework 2 Documentation, Release 2.0.0

440 Chapter 102. Filters

CHAPTER

THREE

FORMATTERS

A Formatter is an object that is responsible for taking an event array describing a log event and outputting a string
with a formatted log line.

Some Writers are not line-oriented and cannot use a Formatter. An example is the Database Writer, which inserts the
event items directly into database columns. For Writers that cannot support a Formatter, an exception is thrown if you
attempt to set a Formatter.

103.1 Simple Formatting

Zend\Log\Formatter\Simple is the default formatter. It is configured automatically when you specify no
formatter. The default configuration is equivalent to the following:

1 $format = ’%timestamp% %priorityName% (%priority%): %message%’ . PHP_EOL;
2 $formatter = new Zend\Log\Formatter\Simple($format);

A formatter is set on an individual Writer object using the Writer’s setFormatter() method:

1 $writer = new Zend\Log\Writer\Stream(’php://output’);
2 $formatter = new Zend\Log\Formatter\Simple(’hello %message%’ . PHP_EOL);
3 $writer->setFormatter($formatter);
4

5 $logger = new Zend\Log\Logger();
6 $logger->addWriter($writer);
7

8 $logger->info(’there’);
9

10 // outputs "hello there"

The constructor of Zend\Log\Formatter\Simple accepts a single parameter: the format string. This
string contains keys surrounded by percent signs (e.g. %message%). The format string may contain any key
from the event data array. You can retrieve the default keys by using the DEFAULT_FORMAT constant from
Zend\Log\Formatter\Simple.

103.2 Formatting to XML

Zend\Log\Formatter\Xml formats log data into XML strings. By default, it automatically logs all items in the
event data array:

441

Zend Framework 2 Documentation, Release 2.0.0

1 $writer = new Zend\Log\Writer\Stream(’php://output’);
2 $formatter = new Zend\Log\Formatter\Xml();
3 $writer->setFormatter($formatter);
4

5 $logger = new Zend\Log\Logger();
6 $logger->addWriter($writer);
7

8 $logger->info(’informational message’);

The code above outputs the following XML (space added for clarity):

1 <logEntry>
2 <timestamp>2007-04-06T07:24:37-07:00</timestamp>
3 <message>informational message</message>
4 <priority>6</priority>
5 <priorityName>INFO</priorityName>
6 </logEntry>

It’s possible to customize the root element as well as specify a mapping of XML elements to the items in the event data
array. The constructor of Zend\Log\Formatter\Xml accepts a string with the name of the root element as the
first parameter and an associative array with the element mapping as the second parameter:

1 $writer = new Zend\Log\Writer\Stream(’php://output’);
2 $formatter = new Zend\Log\Formatter\Xml(’log’,
3 array(’msg’ => ’message’,
4 ’level’ => ’priorityName’)
5);
6 $writer->setFormatter($formatter);
7

8 $logger = new Zend\Log\Logger();
9 $logger->addWriter($writer);

10

11 $logger->info(’informational message’);

The code above changes the root element from its default of logEntry to log. It also maps the element msg to the
event data item message. This results in the following output:

1 <log>
2 <msg>informational message</msg>
3 <level>INFO</level>
4 </log>

103.3 Formatting to FirePhp

Zend\Log\Formatter\FirePhp formats log data for the Firebug extension for Firefox.

442 Chapter 103. Formatters

http://getfirebug.com/

CHAPTER

FOUR

ZEND\MAIL\MESSAGE

104.1 Overview

The Message class encapsulates a single email message as described in RFCs 822 and 2822. It acts basically as a
value object for setting mail headers and content.

If desired, multi-part email messages may also be created. This is as trivial as creating the message body using the
Zend\Mime component, assigning it to the mail message body.

The Message class is simply a value object. It is not capable of sending or storing itself; for those purposes, you will
need to use, respectively, a Storage adapter or Transport adapter.

104.2 Quick Start

Creating a Message is simple: simply instantiate it.

1 use Zend\Mail\Message;
2

3 $message = new Message();

Once you have your Message instance, you can start adding content or headers. Let’s set who the mail is from, who
it’s addressed to, a subject, and some content:

1 $message->addFrom("matthew@zend.com", "Matthew Weier O’Phinney")
2 ->addTo("foobar@example.com")
3 ->setSubject("Sending an email from Zend\Mail!");
4 $message->setBody("This is the message body.");

You can also add recipients to carbon-copy (“Cc:”) or blind carbon-copy (“Bcc:”).

1 $message->addCc("ralph.schindler@zend.com")
2 ->addBcc("enrico.z@zend.com");

If you want to specify an alternate address to which replies may be sent, that can be done, too.

1 $message->addReplyTo("matthew@weierophinney.net", "Matthew");

Interestingly, RFC822 allows for multiple “From:” addresses. When you do this, the first one will be used as the
sender, unless you specify a “Sender:” header. The Message class allows for this.

1 /*
2 * Mail headers created:
3 * From: Ralph Schindler <ralph.schindler@zend.com>, Enrico Zimuel <enrico.z@zend.com>

443

http://www.w3.org/Protocols/rfc822/
http://www.ietf.org/rfc/rfc2822.txt

Zend Framework 2 Documentation, Release 2.0.0

4 * Sender: Matthew Weier O’Phinney <matthew@zend.com></matthew>
5 */
6 $message->addFrom("ralph.schindler@zend.com", "Ralph Schindler")
7 ->addFrom("enrico.z@zend.com", "Enrico Zimuel")
8 ->setSender("matthew@zend.com", "Matthew Weier O’Phinney");

By default, the Message class assumes ASCII encoding for your email. If you wish to use another encoding, you can
do so; setting this will ensure all headers and body content are properly encoded using quoted-printable encoding.

1 $message->setEncoding("UTF-8");

If you wish to set other headers, you can do that as well.

1 /*
2 * Mail headers created:
3 * X-API-Key: FOO-BAR-BAZ-BAT
4 */
5 $message->getHeaders()->addHeaderLine(’X-API-Key’, ’FOO-BAR-BAZ-BAT’);

Sometimes you may want to provide HTML content, or multi-part content. To do that, you’ll first create a MIME
message object, and then set it as the body of your mail message object. When you do so, the Message class will
automatically set a “MIME-Version” header, as well as an appropriate “Content-Type” header.

1 use Zend\Mail\Message;
2 use Zend\Mime\Message as MimeMessage;
3 use Zend\Mime\Part as MimePart;
4

5 $text = new MimePart($textContent);
6 $text->type = "text/plain";
7

8 $html = new MimePart($htmlMarkup);
9 $html->type = "text/html";

10

11 $image = new MimePart(fopen($pathToImage));
12 $image->type = "image/jpeg";
13

14 $body = new MimeMessage();
15 $body->setParts(array($text, $html, $image));
16

17 $message = new Message();
18 $message->setBody($body);

If you want a string representation of your email, you can get that:

1 echo $message->toString();

Finally, you can fully introspect the message – including getting all addresses of recipients and senders, all ehaders,
and the message body.

1 // Headers
2 // Note: this will also grab all headers for which accessors/mutators exist in
3 // the Message object itself.
4 foreach ($message->getHeaders() as $header) {
5 echo $header->toString();
6 // or grab values: $header->getFieldName(), $header->getFieldValue()
7 }
8

9 // The logic below also works for the methods cc(), bcc(), to(), and replyTo()
10 foreach ($message->from() as $address) {

444 Chapter 104. Zend\Mail\Message

Zend Framework 2 Documentation, Release 2.0.0

11 printf("%s: %s\n", $address->getEmail(), $address->getName());
12 }
13

14 // Sender
15 $address = $message->getSender();
16 printf("%s: %s\n", $address->getEmail(), $address->getName());
17

18 // Subject
19 echo "Subject: ", $message->getSubject(), "\n";
20

21 // Encoding
22 echo "Encoding: ", $message->getEncoding(), "\n";
23

24 // Message body:
25 echo $message->getBody(); // raw body, or MIME object
26 echo $message->getBodyText(); // body as it will be sent

Once your message is shaped to your liking, pass it to a mail transport in order to send it!

1 $transport->send($message);

104.3 Configuration Options

The Message class has no configuration options, and is instead a value object.

104.4 Available Methods

isValid isValid()

Is the message valid?

If we don’t have any From addresses, we’re invalid, according to RFC2822.

Returns bool

setEncoding setEncoding(string $encoding)

Set the message encoding.

Implements a fluent interface.

getEncoding getEncoding()

Get the message encoding.

Returns string.

setHeaders setHeaders(Zend\Mail\Headers $headers)

Compose headers.

Implements a fluent interface.

getHeaders getHeaders()

Access headers collection.

Lazy-loads a Zend\Mail\Headers instance if none is already attached.

Returns a Zend\Mail\Headers instance.

104.3. Configuration Options 445

Zend Framework 2 Documentation, Release 2.0.0

setFrom setFrom(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressList, string|null $name)

Set (overwrite) From addresses.

Implements a fluent interface.

addFrom addFrom(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable
$emailOrAddressOrList, string|null $name)

Add a “From” address.

Implements a fluent interface.

from from()

Retrieve list of From senders

Returns Zend\Mail\AddressList instance.

setTo setTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressList, null|string $name)

Overwrite the address list in the To recipients.

Implements a fluent interface.

addTo addTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressOrList, null|string $name)

Add one or more addresses to the To recipients.

Appends to the list.

Implements a fluent interface.

to to()

Access the address list of the To header.

Lazy-loads a Zend\Mail\AddressList and populates the To header if not previously done.

Returns a Zend\Mail\AddressList instance.

setCc setCc(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressList, string|null $name)

Set (overwrite) CC addresses.

Implements a fluent interface.

addCc addCc(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable
$emailOrAddressOrList, string|null $name)

Add a “Cc” address.

Implements a fluent interface.

cc cc()

Retrieve list of CC recipients

Lazy-loads a Zend\Mail\AddressList and populates the Cc header if not previously done.

Returns a Zend\Mail\AddressList instance.

446 Chapter 104. Zend\Mail\Message

Zend Framework 2 Documentation, Release 2.0.0

setBcc setBcc(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressList, string|null $name)

Set (overwrite) BCC addresses.

Implements a fluent interface.

addBcc addBcc(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable
$emailOrAddressOrList, string|null $name)

Add a “Bcc” address.

Implements a fluent interface.

bcc bcc()

Retrieve list of BCC recipients.

Lazy-loads a Zend\Mail\AddressList and populates the Bcc header if not previously done.

Returns a Zend\Mail\AddressList instance.

setReplyTo setReplyTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressList, null|string $name)

Overwrite the address list in the Reply-To recipients.

Implements a fluent interface.

addReplyTo addReplyTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable
$emailOrAddressOrList, null|string $name)

Add one or more addresses to the Reply-To recipients.

Implements a fluent interface.

replyTo replyTo()

Access the address list of the Reply-To header

Lazy-loads a Zend\Mail\AddressList and populates the Reply-To header if not previously done.

Returns a Zend\Mail\AddressList instance.

setSender setSender(mixed $emailOrAddress, mixed $name)

Set the message envelope Sender header.

Implements a fluent interface.

getSender getSender()

Retrieve the sender address, if any.

Returns null or a Zend\Mail\AddressDescription instance.

setSubject setSubject(string $subject)

Set the message subject header value.

Implements a fluent interface.

getSubject getSubject()

Get the message subject header value.

Returns null or a string.

104.4. Available Methods 447

Zend Framework 2 Documentation, Release 2.0.0

setBody setBody(null|string|Zend\Mime\Message|object $body)

Set the message body.

Implements a fluent interface.

getBody getBody()

Return the currently set message body.

Returns null, a string, or an object.

getBodyText getBodyText()

Get the string-serialized message body text.

Returns null or a string.

toString toString()

Serialize to string.

Returns string.

104.5 Examples

Please see the Quick Start section.

448 Chapter 104. Zend\Mail\Message

CHAPTER

FIVE

ZEND\MAIL\TRANSPORT

105.1 Overview

Transports take care of the actual delivery of mail. Typically, you only need to worry about two possibilities: using
PHP’s native mail() functionality, which uses system resources to deliver mail, or using the SMTP protocol for
delivering mail via a remote server. Zend Framework also includes a “File” transport, which creates a mail file for
each message sent; these can later be introspected as logs or consumed for the purposes of sending via an alternate
transport mechanism later.

The Zend\Mail\Transport interface defines exactly one method, send(). This method accepts a
Zend\Mail\Message instance, which it then introspects and serializes in order to send.

105.2 Quick Start

Using a mail transport is typically as simple as instantiating it, optionally configuring it, and then passing a message
to it.

Sendmail Transport Usage

1 use Zend\Mail\Message;
2 use Zend\Mail\Transport\Sendmail as SendmailTransport;
3

4 $message = new Message();
5 $message->addTo(’matthew@zend.com’)
6 ->addFrom(’ralph.schindler@zend.com’)
7 ->setSubject(’Greetings and Salutations!’)
8 ->setBody("Sorry, I’m going to be late today!");
9

10 $transport = new SendmailTransport();
11 $transport->send($message);

SMTP Transport Usage

1 use Zend\Mail\Message;
2 use Zend\Mail\Transport\Smtp as SmtpTransport;
3 use Zend\Mail\Transport\SmtpOptions;
4

5 $message = new Message();

449

Zend Framework 2 Documentation, Release 2.0.0

6 $message->addTo(’matthew@zend.com’)
7 ->addFrom(’ralph.schindler@zend.com’)
8 ->setSubject(’Greetings and Salutations!’)
9 ->setBody("Sorry, I’m going to be late today!");

10

11 // Setup SMTP transport using LOGIN authentication
12 $transport = new SmtpTransport();
13 $options = new SmtpOptions(array(
14 ’name’ => ’localhost.localdomain’,
15 ’host’ => ’127.0.0.1’,
16 ’connection_class’ => ’login’,
17 ’connection_config’ => array(
18 ’username’ => ’user’,
19 ’password’ => ’pass’,
20),
21));
22 $transport->setOptions($options);
23 $transport->send($message);

File Transport Usage

1 use Zend\Mail\Message;
2 use Zend\Mail\Transport\File as FileTransport;
3 use Zend\Mail\Transport\FileOptions;
4

5 $message = new Message();
6 $message->addTo(’matthew@zend.com’)
7 ->addFrom(’ralph.schindler@zend.com’)
8 ->setSubject(’Greetings and Salutations!’)
9 ->setBody("Sorry, I’m going to be late today!");

10

11 // Setup SMTP transport using LOGIN authentication
12 $transport = new FileTransport();
13 $options = new FileOptions(array(
14 ’path’ => ’data/mail/’,
15 ’callback’ => function (FileTransport $transport) {
16 return ’Message_’ . microtime(true) . ’_’ . mt_rand() . ’.txt’;
17 },
18));
19 $transport->setOptions($options);
20 $transport->send($message);

105.3 Configuration Options

Configuration options are per transport. Please follow the links below for transport-specific options.

• SMTP Transport Options

• File Transport Options

105.4 Available Methods

send send(Zend\Mail\Message $message)

450 Chapter 105. Zend\Mail\Transport

Zend Framework 2 Documentation, Release 2.0.0

Send a mail message.

Returns void

105.5 Examples

Please see the Quick Start section for examples.

105.5. Examples 451

Zend Framework 2 Documentation, Release 2.0.0

452 Chapter 105. Zend\Mail\Transport

CHAPTER

SIX

ZEND\MAIL\TRANSPORT\SMTPOPTIONS

106.1 Overview

This document details the various options available to the Zend\Mail\Transport\Smtp mail transport.

106.2 Quick Start

Basic SMTP Transport Usage

1 use Zend\Mail\Transport\Smtp as SmtpTransport;
2 use Zend\Mail\Transport\SmtpOptions;
3

4 // Setup SMTP transport
5 $transport = new SmtpTransport();
6 $options = new SmtpOptions(array(
7 ’name’ => ’localhost.localdomain’,
8 ’host’ => ’127.0.0.1’,
9 ’port’ => 25,

10));
11 $transport->setOptions($options);

SMTP Transport Usage with PLAIN AUTH

1 use Zend\Mail\Transport\Smtp as SmtpTransport;
2 use Zend\Mail\Transport\SmtpOptions;
3

4 // Setup SMTP transport using LOGIN authentication
5 $transport = new SmtpTransport();
6 $options = new SmtpOptions(array(
7 ’name’ => ’localhost.localdomain’,
8 ’host’ => ’127.0.0.1’,
9 ’connection_class’ => ’plain’,

10 ’connection_config’ => array(
11 ’username’ => ’user’,
12 ’password’ => ’pass’,
13),
14));
15 $transport->setOptions($options);

453

Zend Framework 2 Documentation, Release 2.0.0

SMTP Transport Usage with LOGIN AUTH

1 use Zend\Mail\Transport\Smtp as SmtpTransport;
2 use Zend\Mail\Transport\SmtpOptions;
3

4 // Setup SMTP transport using LOGIN authentication
5 $transport = new SmtpTransport();
6 $options = new SmtpOptions(array(
7 ’name’ => ’localhost.localdomain’,
8 ’host’ => ’127.0.0.1’,
9 ’connection_class’ => ’login’,

10 ’connection_config’ => array(
11 ’username’ => ’user’,
12 ’password’ => ’pass’,
13),
14));
15 $transport->setOptions($options);

SMTP Transport Usage with CRAM-MD5 AUTH

1 use Zend\Mail\Transport\Smtp as SmtpTransport;
2 use Zend\Mail\Transport\SmtpOptions;
3

4 // Setup SMTP transport using LOGIN authentication
5 $transport = new SmtpTransport();
6 $options = new SmtpOptions(array(
7 ’name’ => ’localhost.localdomain’,
8 ’host’ => ’127.0.0.1’,
9 ’connection_class’ => ’crammd5’,

10 ’connection_config’ => array(
11 ’username’ => ’user’,
12 ’password’ => ’pass’,
13),
14));
15 $transport->setOptions($options);

106.3 Configuration Options

Configuration Options

name Name of the SMTP host; defaults to “localhost”.

host Remote hostname or IP address; defaults to “127.0.0.1”.

port Port on which the remote host is listening; defaults to “25”.

connection_class Fully-qualified classname or short name resolvable via Zend\Mail\Protocol\SmtpLoader.
Typically, this will be one of “smtp”, “plain”, “login”, or “crammd5”, and defaults to “smtp”.

Typically, the connection class should extend the Zend\Mail\Protocol\AbstractProtocol class, and
specifically the SMTP variant.

connection_config Optional associative array of parameters to pass to the connection class in order to configure it.
By default this is empty. For connection classes other than the default, you will typically need to define the
“username” and “password” options.

454 Chapter 106. Zend\Mail\Transport\SmtpOptions

Zend Framework 2 Documentation, Release 2.0.0

106.4 Available Methods

getName getName()

Returns the string name of the local client hostname.

setName setName(string $name)

Set the string name of the local client hostname.

Implements a fluent interface.

getConnectionClass getConnectionClass()

Returns a string indicating the connection class name to use.

setConnectionClass setConnectionClass(string $connectionClass)

Set the connection class to use.

Implements a fluent interface.

getConnectionConfig getConnectionConfig()

Get configuration for the connection class.

Returns array.

setConnectionConfig setConnectionConfig(array $config)

Set configuration for the connection class. Typically, if using anything other than the default connection class,
this will be an associative array with the keys “username” and “password”.

Implements a fluent interface.

getHost getHost()

Returns a string indicating the IP address or host name of the SMTP server via which to send messages.

setHost setHost(string $host)

Set the SMTP host name or IP address.

Implements a fluent interface.

getPort getPort()

Retrieve the integer port on which the SMTP host is listening.

setPort setPort(int $port)

Set the port on which the SMTP host is listening.

Implements a fluent interface.

__construct __construct(null|array|Traversable $config)

Instantiate the class, and optionally configure it with values provided.

106.5 Examples

Please see the Quick Start for examples.

106.4. Available Methods 455

Zend Framework 2 Documentation, Release 2.0.0

456 Chapter 106. Zend\Mail\Transport\SmtpOptions

CHAPTER

SEVEN

ZEND\MAIL\TRANSPORT\FILEOPTIONS

107.1 Overview

This document details the various options available to the Zend\Mail\Transport\File mail transport.

107.2 Quick Start

File Transport Usage

1 use Zend\Mail\Transport\File as FileTransport;
2 use Zend\Mail\Transport\FileOptions;
3

4 // Setup SMTP transport using LOGIN authentication
5 $transport = new FileTransport();
6 $options = new FileOptions(array(
7 ’path’ => ’data/mail/’,
8 ’callback’ => function (FileTransport $transport) {
9 return ’Message_’ . microtime(true) . ’_’ . mt_rand() . ’.txt’;

10 },
11));
12 $transport->setOptions($options);

107.3 Configuration Options

Configuration Options

path The path under which mail files will be written.

callback A PHP callable to be invoked in order to generate a unique name for a message file. By default, the following
is used:

1 function (Zend\Mail\FileTransport $transport) {
2 return ’ZendMail_’ . time() . ’_’ . mt_rand() . ’.tmp’;
3 }

457

Zend Framework 2 Documentation, Release 2.0.0

107.4 Available Methods

Zend\Mail\Transport\FileOptions extends Zend\Stdlib\Options, and inherits all functionality
from that class; this includes ArrayAccess and property overloading. Additionally, the following explicit setters
and getters are provided.

__construct setPath(string $path)

Set the path under which mail files will be written.

Implements fluent interface.

getPath getPath()

Get the path under which mail files will be written.

Returns string

setCallback setCallback(Callable $callback)

Set the callback used to generate unique filenames for messages.

Implements fluent interface.

getCallback getCallback()

Get the callback used to generate unique filenames for messages.

Returns PHP callable argument.

__construct __construct(null|array|Traversable $config)

Initialize the object. Allows passing a PHP array or Traversable object with which to populate the instance.

107.5 Examples

Please see the Quick Start for examples.

458 Chapter 107. Zend\Mail\Transport\FileOptions

CHAPTER

EIGHT

INTRODUCTION

Zend\Math namespace provides general mathematical functions. So far the supported functionalities are:

• Zend\Math\Rand, a random number generator;

• Zend\Math\BigInteger, a library to manage big integers.

We expect to add more functionalities in the future.

108.1 Random number generator

Zend\Math\Rand implements a random number generator that is able to generate random numbers for general
purpose usage and for cryptographic scopes. To generate good random numbers this component uses the OpenSSL and
the Mcrypt extension of PHP. If you don’t have the OpenSSL or the Mcrypt extension installed in your environment the
component will use the mt_rand function of PHP as fallback. The mt_rand is not considered secure for cryptographic
purpose, that means if you will try to use it to generate secure random number the class will throw an exception.

In particular, the algorithm that generates random bytes in Zend\Math\Rand tries to call the
openssl_random_pseudo_bytes function of the OpenSSL extension if installed. If the OpenSSL extension is
not present in the system the algorithm tries to use the the mcrypt_create_iv function of the Mcrypt extension (using
the MCRYPT_DEV_URANDOM parameter). Finally, if the OpenSSL and Mcrypt are not installed the generator uses
the mt_rand function of PHP.

The Zend\Math\Rand class offers the following methods to generate random values:

• getBytes($length, $strong = false) to generate a random set of $length bytes;

• getBoolean($strong = false) to generate a random boolean value (true or false);

• getInteger($min, $max, $strong = false) to generate a random integer between $min and
$max;

• getFloat($strong = false) to generate a random float number between 0 and 1;

• getString($length, $charlist = null, $strong = false) to generate a random string of
$length characters using the alphabet $chalist (if not provided the default alphabet is the Base64).

In all these methods the parameter $strong specify the usage of a strong random number generator. We suggest to
set the $strong to true if you need to generate random number for cryptographic and security implementation.

If $strong is set to true and you try to generate random values in a PHP environment without the OpenSSL and the
Mcrypt extensions the component will throw an Exception.

Below we reported an example on how to generate random data using Zend\Math\Rand.

459

http://php.net/manual/en/book.openssl.php
http://it.php.net/manual/en/book.mcrypt.php
http://it.php.net/manual/en/function.mt-rand.php
http://it.php.net/manual/en/function.openssl-random-pseudo-bytes.php
http://it.php.net/manual/en/function.mcrypt-create-iv.php
http://en.wikipedia.org/wiki/Base64

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Math\Rand;
2

3 $bytes = Rand::getBytes(32, true);
4 printf("Random bytes (in Base64): %s\n", base64_encode($bytes));
5

6 $boolean = Rand::getBoolean();
7 printf("Random boolean: %s\n", $boolean ? ’true’ : ’false’);
8

9 $integer = Rand::getInteger(0,1000);
10 printf("Random integer in [0-1000]: %d\n", $integer);
11

12 $float = Rand::getFloat();
13 printf("Random float in [0-1): %f\n", $float);
14

15 $string = Rand::getString(32, ’abcdefghijklmnopqrstuvwxyz’, true);
16 printf("Random string in latin alphabet: %s\n", $string);

108.2 Big integers

Zend\Math\BigInteger\BigInteger offers a class to manage arbitrary length integer. PHP supports integer
numbers with a maximum value of PHP_INT_MAX. If you need to manage integers bigger than PHP_INT_MAX you
have to use external libraries or PHP extensions like GMP or BC Math.

Zend\Math\BigInteger\BigInteger is able to manage big integers using the GMP or the BC Math exten-
sions as adapters.

The mathematical functions implemented in Zend\Math\BigInteger\BigInteger are:

• add($leftOperand, $rightOperand), add two big integers;

• sub($leftOperand, $rightOperand), subtract two big integers;

• mul($leftOperand, $rightOperand), multiply two big integers;

• div($leftOperand, $rightOperand), divide two big integers (this method returns only integer part
of result);

• pow($operand, $exp), raise a big integers to another;

• sqrt($operand), get the square root of a big integer;

• abs($operand), get the absolute value of a big integer;

• mod($leftOperand, $modulus), get modulus of a big integer;

• powmod($leftOperand, $rightOperand, $modulus), raise a big integer to another, reduced by a
specified modulus;

• comp($leftOperand, $rightOperand), compare two big integers, returns < 0 if leftOperand is less
than rightOperand; > 0 if leftOperand is greater than rightOperand, and 0 if they are equal;

• intToBin($int, $twoc = false), convert big integer into it’s binary number representation;

• binToInt($bytes, $twoc = false), convert binary number into big integer;

• baseConvert($operand, $fromBase, $toBase = 10), convert a number between arbitrary
bases;

Below is reported an example using the BC Math adapter to calculate the sum of two integer random numbers with
100 digits.

460 Chapter 108. Introduction

http://www.php.net/manual/en/book.gmp.php
http://www.php.net/manual/en/book.bc.php

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Math\BigInteger\BigInteger;
2 use Zend\Math\Rand;
3

4 $bigInt = BigInteger::factory(’bcmath’);
5

6 $x = Rand::getString(100,’0123456789’);
7 $y = Rand::getString(100,’0123456789’);
8

9 $sum = $bigInt->add($x, $y);
10 $len = strlen($sum);
11

12 printf("%{$len}s +\n%{$len}s =\n%s\n%s\n", $x, $y, str_repeat(’-’, $len), $sum);

As you can see in the code the big integers are managed using strings. Even the result of the sum is represented as a
string.

Below is reported another example using the BC Math adapter to generate the binary representation of a negative big
integer of 100 digits.

1 use Zend\Math\BigInteger\BigInteger;
2 use Zend\Math\Rand;
3

4 $bigInt = BigInteger::factory(’bcmath’);
5

6 $digit = 100;
7 $x = ’-’ . Rand::getString($digit,’0123456789’);
8

9 $byte = $bigInt->intToBin($x);
10

11 printf("The binary representation of the big integer with $digit digit:\n%s\nis (in Base64 format): %s\n",
12 $x, base64_encode($byte));
13 printf("Length in bytes: %d\n", strlen($byte));
14

15 $byte = $bigInt->intToBin($x, true);
16

17 printf("The two’s complement binary representation of the big integer with $digit digit:\n%s\nis (in Base64 format): %s\n",
18 $x, base64_encode($byte));
19 printf("Length in bytes: %d\n", strlen($byte));

We generated the binary representation of the big integer number using the default binary format and the two’s com-
plement representation (specified with the true parameter in the intToBin function).

108.2. Big integers 461

http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement

Zend Framework 2 Documentation, Release 2.0.0

462 Chapter 108. Introduction

CHAPTER

NINE

INTRODUCTION TO THE MODULE
SYSTEM

Zend Framework 2.0 introduces a new and powerful approach to modules. This new module system is designed with
flexibility, simplicity, and re-usability in mind. A module may contain just about anything: PHP code, including MVC
functionality; library code; view scripts; and/or public assets such as images, CSS, and JavaScript. The possibilities
are endless.

Note: The module system in ZF2 has been designed to be useful as a generic and powerful foundation from which
developers and other projects can build their own module or plugin systems.

For a better understanding of the event-driven concepts behind the ZF2 module system, it may be helpful to read the
EventManager documentation..

The module system is made up of the following:

• The Module Autoloader-Zend\Loader\ModuleAutoloader is a specialized autoloader that is respon-
sible for the locating and loading of modules’Module classes from a variety of sources.

• The Module Manager-Zend\ModuleManager\ModuleManager simply takes an array of module names
and fires a sequence of events for each one, allowing the behavior of the module system to be defined entirely
by the listeners which are attached to the module manager.

• ModuleManager Listeners- Event listeners can be attached to the module manager’s various events. These
listeners can do everything from resolving and loading modules to performing complex initialization tasks and
introspection into each returned module object.

Note: The name of a module in a typical Zend Framework 2 application is simply a PHP namespace and must follow
all of the same rules for naming.

The recommended structure of a typical MVC-oriented ZF2 module is as follows:

module_root/
Module.php
autoload_classmap.php
autoload_function.php
autoload_register.php
config/

module.config.php
public/

images/
css/

463

http://php.net/namespaces

Zend Framework 2 Documentation, Release 2.0.0

js/
src/

<module_namespace>/
<code files>

tests/
phpunit.xml
bootstrap.php
<module_namespace>/

<test code files>
views/

<dir-named-after-module-namespace>/
<dir-named-after-a-controller>/

<.phtml files>

109.1 The autoload_*.php Files

The three autoload_*.php files are not required, but recommended. They provide the following:

• autoload_classmap.php should return an array classmap of class name/filename pairs (with the filenames
resolved via the __DIR__ magic constant).

• autoload_function.php should return a PHP callback that can be passed to
spl_autoload_register(). Typically, this callback should utilize the map returned by
autoload_classmap.php.

• autoload_register.php should register a PHP callback (typically that returned by
autoload_function.php with spl_autoload_register().

The purpose of these three files is to provide reasonable default mechanisms for autoloading the classes contained in
the module, thus providing a trivial way to consume the module without requiring Zend\ModuleManager (e.g.,
for use outside a ZF2 application).

464 Chapter 109. Introduction to the Module System

CHAPTER

THE MODULE MANAGER

The module manager, Zend\ModuleManager\ModuleManager, is a very simple class which is responsible for
iterating over an array of module names and triggering a sequence of events for each. Instantiation of module classes,
initialization tasks, and configuration are all performed by attached event listeners.

110.1 Module Manager Events

Events triggered by Zend\ModuleManager\ModuleManager

loadModules This event is primarily used internally to help encapsulate the work of loading modules in event listen-
ers, and allow the loadModules.post event to be more user-friendly. Internal listeners will attach to this event
with a negative priority instead of loadModules.post so that users can safely assume things like config merging
have been done once loadModules.post is triggered, without having to worry about priorities at all.

loadModule.resolve Triggered for each module that is to be loaded. The listener(s) to this event are responsible for
taking a module name and resolving it to an instance of some class. The default module resolver shipped with
ZF2 simply looks for the class {modulename}\Module, instantiating and returning it if it exists.

The name of the module may be retrieved by listeners using the getModuleName() method of the Event
object; a listener should then take that name and resolve it to an object instance representing the given module.
Multiple listeners can be attached to this event, and the module manager will trigger them in order of their
priority until one returns an object. This allows you to attach additional listeners which have alternative methods
of resolving modules from a given module name.

loadModule Once a module resolver listener has resolved the module name to an object, the module manager then
triggers this event, passing the newly created object to all listeners.

loadModules.post This event is triggered by the module manager to allow any listeners to perform
work after every module has finished loading. For example, the default configuration listener,
Zend\ModuleManager\Listener\ConfigListener (covered later), attaches to this event to merge
additional user-supplied configuration which is meant to override the default supplied configurations of installed
modules.

110.2 Module Manager Listeners

By default, Zend Framework provides several useful module manager listeners.

465

Zend Framework 2 Documentation, Release 2.0.0

Provided Module Manager Listeners

ZendModuleManagerListenerDefaultListenerAggregate To help simplify the most common use case of the mod-
ule manager, ZF2 provides this default aggregate listener. In most cases, this will be the only listener you will
need to attach to use the module manager, as it will take care of properly attaching the requisite listeners (those
listed below) for the module system to function properly.

ZendModuleManagerListenerAutoloaderListener This listener checks each module to see if it has imple-
mented Zend\ModuleManager\Feature\AutoloaderProviderInterface or simply defined the
getAutoloaderConfig()method. If so, it calls the getAutoloaderConfig()method on the module
class and passes the returned array to Zend\Loader\AutoloaderFactory.

ZendModuleManagerListenerConfigListener If a module class has a getConfig() method, this listener will
call it and merge the returned array (or Traversable object) into the main application configuration.

ZendModuleManagerListenerInitTrigger If a module class either implements
Zend\ModuleManager\Feature\InitProviderInterface, or simply defines an init()method,
this listener will call init() and pass the current instance of Zend\ModuleManager\ModuleManager
as the sole parameter. The init() method is called for every module implementing this feature, on every
page request and should only be used for performing lightweight tasks such as registering event listeners.

ZendModuleManagerListenerLocatorRegistrationListener If a module class implements
Zend\ModuleManager\Feature\LocatorRegisteredInterface, this listener will inject
the module class instance into the ServiceManager using the module class name as the service name. This
allows you to later retrieve the module class from the ServiceManager.

ZendModuleManagerListenerModuleResolverListener This is the default module resolver. It attaches to the
“loadModule.resolve” event and simply returns an instance of {moduleName}\Module.

ZendModuleManagerListenerOnBootstrapListener If a module class implements
Zend\ModuleManager\Feature\BootstrapListenerInterface, or simply defines an
onBootstrap() method, this listener will register the onBootstrap() method with the
Zend\Mvc\Application bootstrap event. This method will then be triggered during the bootstrap
event (and passed an MvcEvent instance).

Like the InitTrigger, the onBootstrap() method is called for every module implementing this feature,
on every page request, and should only be used for performing lightweight tasks such as registering event
listeners.

ZendModuleManagerListenerServiceListener If a module class implements
Zend\ModuleManager\Feature\ServiceProviderInterface, or simply defines an
getServiceConfig() method, this listener will call that method and aggregate the return values for
use in configuring the ServiceManager.

The getServiceConfig() method may return either an array of configuration compatible with
Zend\ServiceManager\Config, an instance of that class, or the string name of a class that ex-
tends it. Values are merged and aggregated on completion, and then merged with any configuration
from the ConfigListener falling under the service_manager key. For more information, see the
ServiceManager documentation.

Unlike the other listeners, this listener is not managed by the DefaultListenerAggregate; instead, it is
created and instantiated within the Zend\Mvc\Service\ModuleManagerFactory, where it is injected
with the current ServiceManager instance before being registered with the ModuleManager events.

466 Chapter 110. The Module Manager

CHAPTER

ONE

THE MODULE CLASS

By default, ZF2 module system simply expects each module name to be able to be resolved to an object instance. The
default module resolver, Zend\ModuleManager\Listener\ModuleResolverListener, simply instanti-
ates an instance of {moduleName}\Module for each enabled module.

A Minimal Module

As an example, provided the module name “MyModule”, Zend\ModuleManager\Listener\ModuleResolverListener
will simply expect the class MyModule\Module to be available. It relies on a registered autoloader, (typically
Zend\Loader\ModuleAutoloader) to find and include the MyModule\Module class if it is not already
available.

A module named “MyModule” module might start out looking something like this:

MyModule/
Module.php

Within Module.php, you define your MyModule\Module class:

1 namespace MyModule;
2

3 class Module
4 {
5 }

Though it will not serve any purpose at this point, this “MyModule” module now has everything it needs to be consid-
ered a valid module and be loaded by the module system!

This Module class serves as the single entry point for module manager listeners to interact with a module. From
within this simple, yet powerful class, modules can override or provide additional application configuration, perform
initialization tasks such as registering autoloader(s) and event listeners, declaring dependencies, and much more.

A Typical Module Class

The following example shows a more typical usage of the Module class:

1 namespace MyModule;
2

3 class Module
4 {
5 public function getAutoloaderConfig()
6 {
7 return array(

467

Zend Framework 2 Documentation, Release 2.0.0

8 ’Zend\Loader\ClassMapAutoloader’ => array(
9 __DIR__ . ’/autoload_classmap.php’,

10),
11 ’Zend\Loader\StandardAutoloader’ => array(
12 ’namespaces’ => array(
13 __NAMESPACE__ => __DIR__ . ’/src/’ . __NAMESPACE__,
14),
15),
16);
17 }
18

19 public function getConfig()
20 {
21 return include __DIR__ . ’/config/module.config.php’;
22 }
23 }

For a list of the provided module manager listeners and the interfaces and methods that Module classes may imple-
ment in order to interact with the module manager and application, see the module manager listeners documentation
and the module mananger events documentation.

111.1 The “loadModules.post” Event

It is not safe for a module to assume that any other modules have already been loaded at the time init() method is
called. If your module needs to perform any actions after all other modules have been loaded, the module manager’s
“loadModules.post” event makes this easy.

Note: For more information on methods like init() and getConfig(), refer to the module manager listeners
documentation.

Sample Usage of “loadModules.post” Event

1 use Zend\EventManager\EventInterface as Event;
2 use Zend\ModuleManager\ModuleManager;
3

4 class Module
5 {
6 public function init(ModuleManager $moduleManger)
7 {
8 // Remember to keep the init() method as lightweight as possible
9 $events = $moduleManager->getEventManager();

10 $events->attach(’loadModules.post’, array($this, ’modulesLoaded’));
11 }
12

13 public function modulesLoaded(Event $e)
14 {
15 // This method is called once all modules are loaded.
16 $moduleManager = $e->getTarget();
17 $loadedModules = $moduleManager->getLoadedModules();
18 $config = $moduleManager->getConfig();
19 }
20 }

468 Chapter 111. The Module Class

Zend Framework 2 Documentation, Release 2.0.0

111.2 The MVC “bootstrap” Event

If you are writing an MVC-oriented module for ZF2, you may need access to additional parts of the application in
your Module class such as the instance of Zend\Mvc\Application or its registered service manager instance.
For this, you may utilize the MVC “bootstrap” event. The bootstrap event is triggered after the “loadModule.post”
event, once $application->bootstrap() is called.

Sample Usage of the MVC “bootstrap” Event

1 use Zend\EventManager\EventInterface as Event;
2

3 class Module
4 {
5 public function onBootstrap(Event $e)
6 {
7 // This method is called once the MVC bootstrapping is complete
8 $application = $e->getApplication();
9 $services = $application->getServiceManager();

10 }
11 }

111.2. The MVC “bootstrap” Event 469

Zend Framework 2 Documentation, Release 2.0.0

470 Chapter 111. The Module Class

CHAPTER

TWO

THE MODULE AUTOLOADER

Zend Framework 2 ships with a default module autoloader. Zend\Loader\ModuleAutoloader is a specialized
autoloader that is responsible for location of, and on-demand loading of, the Module classes from a variety of sources.

112.1 Module Autoloader Usage

If you are using the provided Zend\ModuleManager\Listener\DefaultListenerAggregate, then it is
very simple to set up the module autoloader. You simply need to provide an array of module paths, either absolute
or relative to the application’s root, for the module autoloader to check when loading modules. The default listener
aggregate will take care of instantiating and registering the module autoloader for you.

Keep in mind that in order for paths relative to your application directory to work, you must have the directive
chdir(dirname(__DIR__)); in your public/index.php.

Registering module paths with the default listener aggregate

The following example will search for modules in three different paths. Two are local directories for this application,
and the third is a system-wide shared directory.

1 // public/index.php
2 use Zend\ModuleManager\Listener;
3 use Zend\ModuleManager\ModuleManager;
4

5 chdir(dirname(__DIR__));
6

7 // Instantiate and configure the default listener aggregate
8 $listenerOptions = new Listener\ListenerOptions(array(
9 ’module_paths’ => array(

10 ’./module’,
11 ’./vendor’,
12 ’/usr/share/zfmodules’,
13)
14));
15 $defaultListeners = new Listener\DefaultListenerAggregate($listenerOptions);
16

17 // Instantiate the module manager
18 $moduleManager = new ModuleManager(array(
19 ’Application’,
20 ’FooModule’,
21 ’BarModule’,
22));

471

Zend Framework 2 Documentation, Release 2.0.0

23

24 // Attach the default listener aggregate and load the modules
25 $moduleManager->getEventManager()->attachAggregate($defaultListeners);
26 $moduleManager->loadModules();

Note: Module paths behave very similar to the PHP include path, and are searched in the order they are defined. If
you have modules with the same name in more than one registered module path, the module autoloader will return the
first one it finds.

112.2 Non-Standard / Explicit Module Paths

Sometimes you may want to specify exactly where a module is instead of having
Zend\Loader\ModuleAutoloader try to find it in the registered paths.

Registering a Non-Standard / Explicit Module Path

In this example, the autoloader will first check for MyModule\Module in
/path/to/mymoduledir-v1.2/Module.php. If it’s not found, then it will fall back to searching any
other registered module paths.

1 // ./public/index.php
2 use Zend\Loader\ModuleAutoloader;
3 use Zend\ModuleManager\Listener;
4 use Zend\ModuleManager\ModuleManager;
5

6 chdir(dirname(__DIR__));
7

8 // Instantiate and configure the default listener aggregate
9 $listenerOptions = new Listener\ListenerOptions(array(

10 ’module_paths’ => array(
11 ’./module’,
12 ’./vendor’,
13 ’/usr/share/zfmodules’,
14 ’MyModule’ => ’/path/to/mymoduledir-v1.2’,
15)
16));
17 $defaultListeners = new Listener\DefaultListenerAggregate($listenerOptions);
18

19 /**
20 * Without DefaultListenerAggregate:
21 *
22 * $moduleAutoloader = new ModuleAutoloader(array(
23 * ’./module’,
24 * ’./vendor’,
25 * ’/usr/share/zfmodules’,
26 * ’MyModule’ => ’/path/to/mymoduledir-v1.2’,
27 *));
28 * $moduleAutoloader->register();
29 *
30 */
31

32 // Instantiate the module manager
33 $moduleManager = new ModuleManager(array(

472 Chapter 112. The Module Autoloader

Zend Framework 2 Documentation, Release 2.0.0

34 ’MyModule’,
35 ’FooModule’,
36 ’BarModule’,
37));
38

39 // Attach the default listener aggregate and load the modules
40 $moduleManager->getEventManager()->attachAggregate($defaultListeners);
41 $moduleManager->loadModules();

This same method works if you provide the path to a phar archive.

112.3 Packaging Modules with Phar

If you prefer, you may easily package your module as a phar archive. The module autoloader is able to autoload
modules in the following archive formats: .phar, .phar.gz, .phar.bz2, .phar.tar, .phar.tar.gz, .phar.tar.bz2, .phar.zip, .tar,
.tar.gz, .tar.bz2, and .zip.

The easiest way to package your module is to simply tar the module directory. You can then replace the MyModule/
directory with MyModule.tar, and it should still be autoloaded without any additional changes!

Note: If possible, avoid using any type of compression (bz2, gz, zip) on your phar archives, as it introduces unneces-
sary CPU overhead to each request.

112.3. Packaging Modules with Phar 473

http://php.net/phar

Zend Framework 2 Documentation, Release 2.0.0

474 Chapter 112. The Module Autoloader

CHAPTER

THREE

BEST PRACTICES WHEN CREATING
MODULES

When creating a ZF2 module, there are some best practices you should keep in mind.

• Keep the init() method lightweight. Be conservative with the actions you perform in the init() and
onBootstrap() methods of your Module class. These methods are run for every page request, and should
not perform anything heavy. As a rule of thumb, registering event listeners is an appropriate task to perform in
these methods. Such lightweight tasks will generally not have a measurable impact on the performance of your
application, even with many modules enabled. It is considered bad practice to utilize these methods for setting
up or configuring instances of application resources such as a database connection, application logger, or mailer.
Tasks such as these are better served through the service manager capabilities of Zend Framework 2.

• Do not perform writes within a module. You should never code your module to perform or expect any writes
within the module’s directory. Once installed, the files within a module’s directory should always match the
distribution verbatim. Any user-provided configuration should be performed via overrides in the Application
module or via application-level configuration files. Any other required filesystem writes should be performed in
some writeable path that is outside of the module’s directory.

There are two primary advantages to following this rule. First, any modules which attempt to write within
themselves will not be compatible with phar packaging. Second, by keeping the module in sync with the
upstream distribution, updates via mechanisms such as Git will be simple and trouble-free. Of course, the
Application module is a special exception to this rule, as there is typically no upstream distribution for this
module, and it’s unlikely you would want to run this package from within a phar archive.

• Utilize a vendor prefix for module names. To avoid module naming conflicts, you are encouraged to pre-
fix your module namespace with a vendor prefix. As an example, the (incomplete) developer tools module
distributed by Zend is named “ZendDeveloperTools” instead of simply “DeveloperTools”.

475

Zend Framework 2 Documentation, Release 2.0.0

476 Chapter 113. Best Practices when Creating Modules

CHAPTER

FOUR

INTRODUCTION TO THE MVC LAYER

Zend\Mvc is a brand new MVC implementation designed from the ground up for Zend Framework 2.0, with a focus
on performance and flexibility.

The MVC layer is built on top of the following components:

• Zend\ServiceManager. Zend Framework provides a set of default service definitions set up at
Zend\Mvc\Service. The ServiceManager creates and configures your application instance and work-
flow.

• Zend\EventManager. The MVC is event driven, and this component is used everywhere from its initial
bootstrapping of the application, to returning response and request calls, to setting and retrieving routes and
matched routes, as well as view rendering.

• Zend\Http, specifically the request and response objects, used within:

• Zend\Stdlib\DispatchableInterface. All “controllers” are simply dispatchable objects.

Within the MVC layer, several sub-components are exposed:

• Zend\Mvc\Router contains classes pertaining to routing a request. In other words, it matches the request to
its respective controller (or dispatchable).

• Zend\Http\PhpEnvironment provides a set of decorators for the HTTP Request and Response ob-
jects that ensure the request is injected with the current environment (including query parameters, POST param-
eters, HTTP headers, etc.)

• Zend\Mvc\Controller, a set of abstract “controller” classes with basic responsibilities such as event
wiring, action dispatching, etc.

• Zend\Mvc\Service provides a set of ServiceManager factories and definitions for the default applica-
tion workflow.

• Zend\Mvc\View provides default wiring for renderer selection, view script resolution, helper registration,
and more; additionally, it provides a number of listeners that tie into the MVC workflow to provide features
such as automated template name resolution, automated view model creation and injection, and more.

The gateway to the MVC is the ‘Zend\Mvc\Application‘_ object (referred to as Application henceforth). Its
primary responsibilities are to bootstrap resources, route the request, and to retrieve and dispatch the controller
matched during routing. Once accomplished, it will render the view, and finish the request, returning and sending the
response.

114.1 Basic Application Structure

The basic application structure follows:

477

Zend Framework 2 Documentation, Release 2.0.0

application_root/
config/

application.php
autoload/

global.php
local.php
// etc.

data/
module/
vendor/
public/

.htaccess
index.php

The public/index.php marshalls all user requests to your website, retrieving an array of configuration located
in config/application.php. On return, it run()s the Application, processing the request and returning
a response to the user.

The config directory as described above contains configuration used by the Zend\Module\Manager to load
modules and merge configuration (e.g., database configuration and credentials); we will detail this more later.

The vendor sub-directory should contain any third-party modules or libraries on which your application depends.
This might include Zend Framework, custom libraries from your organization, or other third-party libraries from other
projects. Libraries and modules placed in the vendor sub-directory should not be modified from their original,
distributed state.

Finally, the module directory will contain one or more modules delivering your application’s functionality.

Let’s now turn to modules, as they are the basic units of a web application.

114.2 Basic Module Structure

A module may contain anything: PHP code, including MVC functionality; library code; view scripts; and/or or public
assets such as images, CSS, and JavaScript. The only requirement – and even this is optional – is that a module acts as
a PHP namespace and that it contains a Module.php class under that namespace. This class is eventually consumed
by Zend\Module\Manager to perform a number of tasks.

The recommended module structure follows:

module_root<named-after-module-namespace>/
Module.php
autoload_classmap.php
autoload_function.php
autoload_register.php
config/

module.config.php
public/

images/
css/
js/

src/
<module_namespace>/

<code files>
test/

phpunit.xml
bootstrap.php
<module_namespace>/

478 Chapter 114. Introduction to the MVC Layer

Zend Framework 2 Documentation, Release 2.0.0

<test code files>
view/

<dir-named-after-module-namespace>/
<dir-named-after-a-controller>/

<.phtml files>

Since a module acts as a namespace, the module root directory should be that namespace. This namespace could also
include a vendor prefix of sorts. As an example a module centered around “User” functionality delivered by Zend
might be named “ZendUser”, and this is also what the module root directory will be named.

The Module.php file directly under the module root directory will be in the module namespace shown below.

1 namespace ZendUser;
2

3 class Module
4 {
5 }

When an init() method is defined, this method will be triggered by a Zend\Module\Manager listener when it
loads the module class, and passed an instance of the manager by default. This allows you to perform tasks such as
setting up module-specific event listeners. But be cautious, the init() method is called for every module on every
page request and should only be used for performing lightweight tasks such as registering event listeners. Similarly,
an onBootstrap() method (which accepts an MvcEvent instance) may be defined; it is also triggered for every
page request, and should be used for lightweight tasks as well.

The three autoload_*.php files are not required, but recommended. They provide the following:

• autoload_classmap.php should return an array classmap of class name/filename pairs (with the filenames
resolved via the __DIR__ magic constant).

• autoload_function.php should return a PHP callback that can be passed to
spl_autoload_register(). Typically, this callback should utilize the map returned by
autoload_filemap.php.

• autoload_register.php should register a PHP callback (typically that returned by
autoload_function.php with spl_autoload_register().

The point of these three files is to provide reasonable default mechanisms for autoloading the classes contained in the
module, thus providing a trivial way to consume the module without requiring Zend\Module (e.g., for use outside
a ZF2 application).

The config directory should contain any module-specific configuration. These files may be in any format
Zend\Config supports. We recommend naming the main configuration “module.format”, and for PHP-based con-
figuration, “module.config.php”. Typically, you will create configuration for the router as well as for the dependency
injector.

The src directory should be a PSR-0 compliant directory structure with your module’s source code. Typically, you
should at least have one sub-directory named after your module namespace; however, you can ship code from multiple
namespaces if desired.

The test directory should contain your unit tests. Typically, these will be written using PHPUnit, and contain artifacts
related to its configuration (e.g., phpunit.xml, bootstrap.php).

The public directory can be used for assets that you may want to expose in your application’s document root. These
might include images, CSS files, JavaScript files, etc. How these are exposed is left to the developer.

The view directory contains view scripts related to your controllers.

114.2. Basic Module Structure 479

Zend Framework 2 Documentation, Release 2.0.0

114.3 Bootstrapping an Application

The Application has six basic dependencies.

• configuration, usually an array or object implementing ArrayAccess.

• ServiceManager instance.

• EventManager instance, which, by default, is pulled from the ServiceManager, by the service name
“EventManager”.

• ModuleManager instance, which, by default, is pulled from the ServiceManager, by the service name
“ModuleManager”.

• Request instance, which, by default, is pulled from the ServiceManager, by the service name “Request”.

• Response instance, which, by default, is pulled from the ServiceManager, by the service name “Response”.

These may be satisfied at instantiation:

1 use Zend\EventManager\EventManager;
2 use Zend\Http\PhpEnvironment;
3 use Zend\ModuleManager\ModuleManager;
4 use Zend\Mvc\Application;
5 use Zend\ServiceManager\ServiceManager;
6

7 $config = include ’config/application.php’;
8

9 $serviceManager = new ServiceManager();
10 $serviceManager->setService(’EventManager’, new EventManager());
11 $serviceManager->setService(’ModuleManager’, new ModuleManager());
12 $serviceManager->setService(’Request’, new PhpEnvironment\Request());
13 $serviceManager->setService(’Response’, new PhpEnvironment\Response());
14

15 $application = new Application($config, $serviceManager);

Once you’ve done this, there are two additional actions you can take. The first is to “bootstrap” the application. In the
default implementation, this does the following:

• Attaches the default route listener (Zend\Mvc\RouteListener).

• Attaches the default dispatch listener (Zend\Mvc\DispatchListener).

• Attaches the ViewManager listener (Zend\Mvc\View\ViewManager).

• Creates the MvcEvent, and injects it with the application, request, and response; it also retrieves the router
(Zend\Mvc\Router\Http\TreeRouteStack) at this time and attaches it to the event.

• Triggers the “bootstrap” event.

If you do not want these actions, or want to provide alternatives, you can do so by extending the Application class
and/or simply coding what actions you want to occur.

The second action you can take with the configured Application is to run() it. Calling this method simply
does the following: it triggers the “route” event, followed by the “dispatch” event, and, depending on execution, the
“render” event; when done, it triggers the “finish” event, and then returns the response instance. If an error occurs
during either the “route” or “dispatch” event, a “dispatch.error” event is triggered as well.

This is a lot to remember in order to bootstrap the application; in fact, we haven’t covered all the services available by
default yet. You can greatly simplify things by using the default ServiceManager configuration shipped with the
MVC.

480 Chapter 114. Introduction to the MVC Layer

Zend Framework 2 Documentation, Release 2.0.0

1 use Zend\Loader\AutoloaderFactory;
2 use Zend\Mvc\Service\ServiceManagerConfig;
3 use Zend\ServiceManager\ServiceManager;
4

5 // setup autoloader
6 AutoloaderFactory::factory();
7

8 // get application stack configuration
9 $configuration = include ’config/application.config.php’;

10

11 // setup service manager
12 $serviceManager = new ServiceManager(new ServiceManagerConfig());
13 $serviceManager->setService(’ApplicationConfig’, $configuration);
14

15 // load modules -- which will provide services, configuration, and more
16 $serviceManager->get(’ModuleManager’)->loadModules();
17

18 // bootstrap and run application
19 $application = $serviceManager->get(’Application’);
20 $application->bootstrap();
21 $response = $application->run();
22 $response->send();

You’ll note that you have a great amount of control over the workflow. Using the ServiceManager, you have
fine-grained control over what services are available, how they are instantiated, and what dependencies are injected
into them. Using the EventManager‘s priority system, you can intercept any of the application events (“bootstrap”,
“route”, “dispatch”, “dispatch.error”, “render”, and “finish”) anywhere during execution, allowing you to craft your
own application workflows as needed.

114.4 Bootstrapping a Modular Application

While the previous approach largely works, where does the configuration come from? When we create a modular
application, the assumption will be that it’s from the modules themselves. How do we get that information and
aggregate it, then?

The answer is via Zend\ModuleManager\ModuleManager. This component allows you to specify where mod-
ules exist, and it will then locate each module and initialize it. Module classes can tie into various listeners on the
ModuleManager in order to provide configuration, services, listeners, and more to the application. Sound compli-
cated? It’s not.

114.4.1 Configuring the Module Manager

The first step is configuring the module manager. Simply inform the module manager which modules to load, and
potentially provide configuration for the module listeners.

Remember the application.php from earlier? We’re going to provide some configuration.

1 <?php
2 // config/application.php
3 return array(
4 ’modules’ => array(
5 /* ... */
6),
7 ’module_listener_options’ => array(
8 ’module_paths’ => array(

114.4. Bootstrapping a Modular Application 481

Zend Framework 2 Documentation, Release 2.0.0

9 ’./module’,
10 ’./vendor’,
11),
12),
13);

As we add modules to the system, we’ll add items to the modules array.

Each Module class that has configuration it wants the Application to know about should define a getConfig()
method. That method should return an array or Traversable object such as Zend\Config\Config. As an
example:

1 namespace ZendUser;
2

3 class Module
4 {
5 public function getConfig()
6 {
7 return include __DIR__ . ’/config/module.config.php’
8 }
9 }

There are a number of other methods you can define for tasks ranging from providing autoloader configuration, to
providing services to the ServiceManager, to listening to the bootstrap event. The ModuleManager documentation
goes into more detail on these.

114.5 Conclusion

The ZF2 MVC layer is incredibly flexible, offering an opt-in, easy to create modular infrastructure, as well as the
ability to craft your own application workflows via the ServiceManager and EventManager. The module
manager is a lightweight and simple approach to enforcing a modular architecture that encourages clean separation of
concerns and code re-use.

.._‘ZendMvcApplication‘: https://github.com/zendframework/zf2/blob/master/library/Zend/Mvc/Application.php ..
PSR-0 compliant directory structure: https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md ..
PHPUnit: http://phpunit.de

482 Chapter 114. Introduction to the MVC Layer

https://github.com/zendframework/zf2/blob/master/library/Zend/Mvc/Application.php
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
http://phpunit.de

CHAPTER

FIVE

QUICK START

Now that you know the basics of how applications and modules are structured, we’ll show you the easy way to get
started.

115.1 Install the Zend Skeleton Application

The easiest way to get started is to grab the sample application and module repositories. This can be done in the
following ways.

115.1.1 Using Composer

Simply clone the ZendSkeletonApplication repository:

1 prompt> git clone git://github.com/zendframework/ZendSkeletonApplication.git my-application

Then run Composer‘s install command to install the ZF library and any other configured dependencies:

1 prompt> php ./composer.phar install

115.1.2 Using Git

Simply clone the ZendSkeletonApplication repository, using the --recursive option, which will also grab
ZF.

1 prompt> git clone --recursive git://github.com/zendframework/ZendSkeletonApplication.git my-application

115.1.3 Manual installation

• Download a tarball of the ZendSkeletonApplication repository:

– Zip: https://github.com/zendframework/ZendSkeletonApplication/zipball/master

– Tarball: https://github.com/zendframework/ZendSkeletonApplication/tarball/master

• Deflate the archive you selected and rename the parent directory according to your project needs; we use “my-
application” throughout this document.

• Install Zend Framework, and either have its library on your PHP include_path, symlink the library into
your project’s “library”, or install it directly into your application using Pyrus.

483

http://getcomposer.org/
https://github.com/zendframework/ZendSkeletonApplication/zipball/master
https://github.com/zendframework/ZendSkeletonApplication/tarball/master

Zend Framework 2 Documentation, Release 2.0.0

115.2 Create a new module

By default, one module is provided with the ZendSkeletonApplication, named “Application”. It provides
simply a controller to handle the “home” page of the application, the layout template, and templates for 404 and error
pages.

Typically, you will not need to touch this other than to provide an alternate entry page for your site and/or alternate
error page.

Additional functionality will be provided by creating new modules.

To get you started with modules, we recommend using the ZendSkeletonModule as a base. Download it from
here:

• Zip: https://github.com/zendframework/ZendSkeletonModule/zipball/master

• Tarball: https://github.com/zendframework/ZendSkeletonModule/tarball/master

Deflate the package, and rename the directory “ZendSkeletonModule” to reflect the name of the new module you want
to create; when done, move the module into your new project’s modules/ directory.

At this point, it’s time to create some functionality.

115.3 Update the Module class

Let’s update the module class. We’ll want to make sure the namespace is correct, configuration is enabled and returned,
and that we setup autoloading on initialization. Since we’re actively working on this module, the class list will be
in flux, we probably want to be pretty lenient in our autoloading approach, so let’s keep it flexible by using the
StandardAutoloader. Let’s begin.

First, let’s have autoload_classmap.php return an empty array:

1 <?php
2 // autoload_classmap.php
3 return array();

We’ll also edit our config/module.config.php file to read as follows:

1 return array(
2 ’view_manager’ => array(
3 ’template_path_stack’ => array(
4 ’<module-name>’ => __DIR__ . ’/../view’
5),
6),
7);

Fill in “module-name” with a lowercased, dash-separated version of your module name – e.g., “ZendUser” would
become “zend-user”.

Next, edit the Module.php file to read as follows:

1 namespace <your module name here>;
2

3 use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
4 use Zend\ModuleManager\Feature\ConfigProviderInterface;
5

6 class Module implements AutoloaderProviderInterface, ConfigProviderInterface
7 {
8 public function getAutoloaderConfig()

484 Chapter 115. Quick Start

https://github.com/zendframework/ZendSkeletonModule/zipball/master
https://github.com/zendframework/ZendSkeletonModule/tarball/master

Zend Framework 2 Documentation, Release 2.0.0

9 {
10 return array(
11 ’Zend\Loader\ClassMapAutoloader’ => array(
12 __DIR__ . ’/autoload_classmap.php’,
13),
14 ’Zend\Loader\StandardAutoloader’ => array(
15 ’namespaces’ => array(
16 __NAMESPACE__ => __DIR__ . ’/src/’ . __NAMESPACE__,
17),
18),
19);
20 }
21

22 public function getConfig()
23 {
24 return include __DIR__ . ’/config/module.config.php’;
25 }
26 }

At this point, you now have your module configured properly. Let’s create a controller!

115.4 Create a Controller

Controllers are simply objects that implement Zend\Stdlib\DispatchableInterface. This means they
simply need to implement a dispatch() method that takes minimally a Response object as an argument.

In practice, though, this would mean writing logic to branch based on matched routing within every controller. As
such, we’ve created two base controller classes for you to start with:

• Zend\Mvc\Controller\AbstractActionController allows routes to match an “action”. When
matched, a method named after the action will be called by the controller. As an example, if you had a route
that returned “foo” for the “action” key, the “fooAction” method would be invoked.

• Zend\Mvc\Controller\AbstractRestfulController introspects the Request to determine what
HTTP method was used, and calls a method based on that accordingly.

– GET will call either the getList() method, or, if an “id” was matched during routing, the get()
method (with that identifer value).

– POST will call the create() method, passing in the $_POST values.

– PUT expects an “id” to be matched during routing, and will call the update() method, passing in the
identifier, and any data found in the raw post body.

– DELETE expects an “id” to be matched during routing, and will call the delete() method.

To get started, we’ll simply create a “hello world” style controller, with a single action. First, create the directory
src/<module name>/Controller, and then create the file HelloController.php inside it. Edit it in
your favorite text editor or IDE, and insert the following contents:

1 <?php
2 namespace <module name>\Controller;
3

4 use Zend\Mvc\Controller\AbstractActionController;
5 use Zend\View\Model\ViewModel;
6

7 class HelloController extends AbstractActionController
8 {

115.4. Create a Controller 485

Zend Framework 2 Documentation, Release 2.0.0

9 public function worldAction()
10 {
11 $message = $this->params()->fromQuery(’message’, ’foo’);
12 return new ViewModel(array(’message’ => $message));
13 }
14 }

So, what are we doing here?

• We’re creating an action controller.

• We’re defining an action, “world”.

• We’re pulling a message from the query parameters (yes, this is a superbly bad idea in production! Always
sanitize your inputs!).

• We’re returning a ViewModel with an array of values that will get processed later.

We return a ViewModel. The view layer will use this when rendering the view, pulling variables and the template
name from it. By default, you can omit the template name, and it will resolve to “lowercase-controller-name/lowercase-
action-name”. However, you can override this to specify something different by calling setTemplate() on the
ViewModel instance. Typically, templates will resolve to files with a ”.phtml” suffix in your module’s view direc-
tory.

So, with that in mind, let’s create a view script.

115.5 Create a view script

Create the directory view/<module-name>hello. Inside that directory, create a file named world.phtml.
Inside that, paste in the following:

1 <h1>Greetings!</h1>
2

3 <p>You said "<?php echo $this->escapeHtml($message) ?>".</p>

That’s it. Save the file.

Note: What is the method escapeHtml()? It’s actually a view helper, and it’s designed to help mitigate XSS
attacks. Never trust user input; if you are at all uncertain about the source of a given variable in your view script,
escape it using one of the provided escape view helper depending on the type of data you have.

115.6 Create a route

Now that we have a controller and a view script, we need to create a route to it.

Note: ZendSkeletonApplication ships with a “default route” that will likely get you to this action. That
route basically expects “/{module}/{controller}/{action}”, which allows you to specify this: “/zend-user/hello/world”.
We’re going to create a route here mainly for illustration purposes, as creating explicit routes is a recommended
practice. The application will look for a Zend\Mvc\Router\RouteStack instance to setup routing. The default
generated router is a Zend\Mvc\Router\Http\TreeRouteStack.

To use the “default route” functionality, you will need to add the following route definition to your module. Replace

486 Chapter 115. Quick Start

Zend Framework 2 Documentation, Release 2.0.0

1 return array(
2 ’<module-name>’ => array(
3 ’type’ => ’Literal’,
4 ’options’ => array(
5 ’route’ => ’/<module-name>’,
6 ’defaults’ => array(
7 ’__NAMESPACE__’ => ’<module-namespace>\Controller’,
8 ’controller’ => ’<module-name>-Index’,
9 ’action’ => ’index’,

10),
11),
12 ’may_terminate’ => true,
13 ’child_routes’ => array(
14 ’default’ => array(
15 ’type’ => ’Segment’,
16 ’options’ => array(
17 ’route’ => ’/[:controller[/:action]]’,
18 ’constraints’ => array(
19 ’controller’ => ’[a-zA-Z][a-zA-Z0-9_-]*’,
20 ’action’ => ’[a-zA-Z][a-zA-Z0-9_-]*’,
21),
22 ’defaults’ => array(
23),
24),
25),
26),
27),
28 ’controller’ => array(
29 ’classes’ => array(
30 ’<module-name>-Index’ => ’<module-namespace>\Controller\IndexController’,
31 // Do similar for each other controller in your module
32),
33),
34 // ... other configuration ...
35);

Additionally, we need to tell the application we have a controller.

Note: We inform the application about controllers we expect to have in the application. This is to prevent somebody
requesting any service the ServiceManager knows about in an attempt to break the application. The dispatcher
uses a special, scoped container that will only pull controllers that are specifically registered with it, either as invokable
classes or via factories.

Open your config/module.config.php file, and modify it to add to the “routes” and “controller” parameters
so it reads as follows:

1 return array(
2 ’routes’ => array(
3 ’<module name>-hello-world’ => array(
4 ’type’ => ’Literal’,
5 ’options’ => array(
6 ’route’ => ’/hello/world’,
7 ’defaults’ => array(
8 ’controller’ => ’<module namespace>-Hello’,
9 ’action’ => ’world’,

10),

115.6. Create a route 487

Zend Framework 2 Documentation, Release 2.0.0

11),
12),
13),
14 ’controller’ => array(
15 ’classes’ => array(
16 ’<module namespace>-Hello’ => ’<module namespace>\Controller\HelloController’,
17),
18),
19 // ... other configuration ...
20);

115.7 Tell the application about our module

One problem: we haven’t told our application about our new module!

By default, modules are not parsed unless we tell the module manager about them. As such, we need to notify the
application about them.

Remember the config/application.php file? Let’s modify it to add our new module. Once done, it should
read as follows:

1 <?php
2 return array(
3 ’modules’ => array(
4 ’Application’,
5 ’<module namespace>’,
6),
7 ’module_listener_options’ => array(
8 ’module_paths’ => array(
9 ’./module’,

10 ’./vendor’,
11),
12),
13);

Replace <module namespace> with the namespace of your module.

115.8 Test it out!

Now we can test things out! Create a new vhost pointing its document root to the public directory of your applica-
tion, and fire it up in a browser. You should see the default homepage template of ZendSkeletonApplication.

Now alter the location in your URL to append the path “hello/world”, and load the page. You should now get the
following content:

1 <h1>Greetings!</h1>
2

3 <p>You said "foo".</p>

Now alter the location to append ”?message=bar” and load the page. You should now get:

1 <h1>Greetings!</h1>
2

3 <p>You said "bar".</p>

Congratulations! You’ve created your first ZF2 MVC module!

488 Chapter 115. Quick Start

CHAPTER

SIX

DEFAULT SERVICES

The default and recommended way to write Zend Framework applications uses a set of services defined in the
Zend\Mvc\Service namespace. This chapter details what each of those services are, the classes they represent,
and the configuration options available.

116.1 ServiceManager

This is the one service class referenced directly in the bootstrapping. It provides the following:

• Invokable services

– DispatchListener, mapping to Zend\Mvc\DispatchListener.

– Request, mapping to Zend\Http\PhpEnvironment\Request.

– Response, mapping to Zend\Http\PhpEnvironment\Response.

– RouteListener, mapping to Zend\Mvc\RouteListener.

– ViewManager, mapping to Zend\Mvc\View\ViewManager.

• Factories

– Application, mapping to Zend\Mvc\Service\ApplicationFactory.

– Configuration, mapping to Zend\Mvc\Service\ConfigFactory. Internally, this pulls the
ModuleManager service, and calls its loadModules() method, and retrieves the merged configura-
tion from the module event. As such, this service contains the entire, merged application configuration.

– ControllerLoader, mapping to Zend\Mvc\Service\ControllerLoaderFactory. Inter-
nally, this pulls the Configuration service, and, if it contains a controller key, inspects that for
classes and factories subkeys. These are used to configure a scoped service manager container,
from which controllers will be retrieved.

Additionally, the scoped container is configured to use the Di service as an abstract service factory –
effectively allowing you to fall back to DI in order to retrieve your controllers. If you want to use
Zend\Di to retrieve your controllers, you must white-list them in your DI configuration under the
allowed_controllers key (otherwise, they will just be ignored).

Finally, if the loaded controller is Pluggable, an initializer will inject it with the
ControllerPluginBroker service.

– ControllerPluginBroker, mapping to Zend\Mvc\Service\ControllerPluginBrokerFactory.
This instantiates the Zend\Mvc\Controller\PluginBroker instance, passing it the
ControllerPluginLoader service as well as the service manager instance.

489

Zend Framework 2 Documentation, Release 2.0.0

– ControllerPluginLoader, mapping to Zend\Mvc\Service\ControllerPluginLoaderFactory.
This grabs the Configuration service, and looks for a controller key with a map subkey. If found,
this value is passed to the constructor of Zend\Mvc\Controller\PluginLoader (otherwise, an
empty array is passed).

– DependencyInjector, mapping to Zend\Mvc\Service\DiFactory. This pulls the
Configuration service, and looks for a “di” key; if found, that value is used to con-
figure a new Zend\Di\Di instance. Additionally, the Di instance is used to seed a
Zend\ServiceManager\Di\DiAbstractServiceFactory instance which is then attached to
the service manager as an abstract factory – effectively enabling DI as a fallback for providing services.

– EventManager, mapping to Zend\Mvc\Service\EventManagerFactory. This factory com-
poses a static reference to a SharedEventManager, which is injected in a new EventManager in-
stance. This service is not shared by default, allowing the ability to have an EventManager per service,
with a shared SharedEventManager injected in each.

– ModuleManager, mapping to Zend\Mvc\Service\ModuleManagerFactory.

This is perhaps the most complex factory in the MVC stack. It expects that
an ApplicationConfiguration service has been injected, with keys for
module_listener_options and modules; see the quick start for samples.

It instantiates an instance of Zend\ModuleManager\Listener\DefaultListenerAggregate,
using the “module_listener_options” retrieved. It also instantiates an instance of
Zend\ModuleManager\Listener\ServiceListener, providing it the service manager.

Next, it retrieves the EventManager service, and attaches the above listeners.

It instantiates a Zend\ModuleManager\ModuleEvent instance, setting the “ServiceManager” pa-
rameter to the service manager object.

Finally, it instantiates a Zend\ModuleManager\ModuleManager instance, and injects the
EventManager and ModuleEvent.

– Router, mapping to Zend\Mvc\Service\RouterFactory. This grabs
the Configuration service, and pulls from the router key, passing it to
Zend\Mvc\Router\Http\TreeRouteStack::factory in order to get a configured router
instance.

– ViewFeedRenderer, mapping to Zend\Mvc\Service\ViewFeedRendererFactory, which
simply returns a Zend\View\Renderer\FeedRenderer instance.

– ViewFeedStrategy, mapping to Zend\Mvc\Service\ViewFeedStrategyFactory. This
instantiates a Zend\View\Strategy\FeedStrategy instance with the ViewFeedRenderer ser-
vice.

– ViewJsonRenderer, mapping to Zend\Mvc\Service\ViewJsonRendererFactory, which
simply returns a Zend\View\Renderer\JsonRenderer instance.

– ViewJsonStrategy, mapping to Zend\Mvc\Service\ViewJsonStrategyFactory. This
instantiates a Zend\View\Strategy\JsonStrategy instance with the ViewJsonRenderer ser-
vice.

• Aliases

– Config, mapping to the Configuration service.

– Di, mapping to the DependencyInjector service.

– Zend\EventManager\EventManagerInterface, mapping to the EventManager service.
This is mainly to ensure that when falling through to DI, classes are still injected via the
ServiceManager.

490 Chapter 116. Default Services

Zend Framework 2 Documentation, Release 2.0.0

– Zend\Mvc\Controller\PluginBroker, mapping to the ControllerPluginBroker ser-
vice. This is mainly to ensure that when falling through to DI, classes are still injected via the
ServiceManager.

– Zend\Mvc\Controller\PluginLoader, mapping to the ControllerPluginLoader ser-
vice. This is mainly to ensure that when falling through to DI, classes are still injected via the
ServiceManager.

Additionally, two initializers are registered. Initializers are run on created instances, and may be used to further
configure them. The two initializers the ServiceManagerConfig class creates and registers do the following:

• For objects that implement Zend\EventManager\EventManagerAwareInterface, the
EventManager service will be retrieved and injected. This service is not shared, though each instance it
creates is injected with a shared instance of SharedEventManager.

• For objects that implement Zend\ServiceManager\ServiceManagerAwareInterface, the
ServiceManager will inject itself into the object.

Finally, the ServiceManager registers itself as the ServiceManager service, and aliases
itself to the class names Zend\ServiceManager\ServiceManagerInterface and
Zend\ServiceManager\ServiceManager.

116.2 ViewManager

The View layer within Zend\Mvc consists of a large number of collaborators and event listeners. As such,
Zend\Mvc\View\ViewManager was created to handle creation of the various objects, as well as wiring them
together and establishing event listeners.

The ViewManager itself is an event listener on the bootstrap event. It retrieves the ServiceManager from
the Application object, as well as its composed EventManager.

Configuration for all members of the ViewManager fall under the view_manager configuration key, and expect
values as noted below. The following services are created and managed by the ViewManager:

• ViewHelperLoader, representing and aliased to Zend\View\HelperLoader. If a helper_map sub-
key is provided, its value will be used as a map to seed the helper loader.

• ViewHelperBroker, representing and aliased to Zend\View\HelperBroker. It is seeded with the
ViewHelperLoader service, as well as the ServiceManager itself.

The Router service is retrieved, and injected into the Url helper.

If the base_path key is present, it is used to inject the BasePath view helper; otherwise, the Request
service is retrieved, and the value of its getBasePath() method is used.

If the doctype key is present, it will be used to set the value of the Doctype view helper.

• ViewTemplateMapResolver, representing and aliased to Zend\View\Resolver\TemplateMapResolver.
If a template_map key is present, it will be used to seed the template map.

• ViewTemplatePathStack, representing and aliased to Zend\View\Resolver\TemplatePathStack.
If a template_path_stack key is prsent, it will be used to seed the stack.

• ViewResolver, representing and aliased to Zend\View\Resolver\AggregateResolver and
Zend\View\Resolver\ResolverInterface. It is seeded with the ViewTemplateMapResolver
and ViewTemplatePathStack services as resolvers.

• ViewRenderer, representing and aliased to Zend\View\Renderer\PhpRenderer and
Zend\View\Renderer\RendererInterface. It is seeded with the ViewResolver and

116.2. ViewManager 491

Zend Framework 2 Documentation, Release 2.0.0

ViewHelperBroker services. Additionally, the ViewModel helper gets seeded with the ViewModel as
its root (layout) model.

• ViewPhpRendererStrategy, representing and aliased to Zend\View\Strategy\PhpRendererStrategy.
It gets seeded with the ViewRenderer service.

• View, representing and aliased to Zend\View\View. It gets seeded with the EventManager service, and
attaches the ViewPhpRendererStrategy as an aggregate listener.

• DefaultRenderingStrategy, representing and aliased to Zend\Mvc\View\DefaultRenderingStrategy.
If the layout key is prsent, it is used to seed the strategy’s layout template. It is seeded with the View service.

• ExceptionStrategy, representing and aliased to Zend\Mvc\View\ExceptionStrategy. If the
dislay_exceptions or exception_template keys are present, they are usd to configure the strat-
egy.

• RouteNotFoundStrategy, representing and aliased to Zend\Mvc\View\RouteNotFoundStrategy
and 404Stategy. If the display_not_found_reason or not_found_template keys are present,
they are used to configure the strategy.

• ViewModel. In this case, no service is registered; the ViewModel is simply retrieved from the MvcEvent
and injected with the layout template name. template

The ViewManager also creates several other listeners, but does not expose them as services; these in-
clude Zend\Mvc\View\CreateViewModelListener, Zend\Mvc\View\InjectTemplateListener,
and Zend\Mvc\View\InjectViewModelListener. These, along with RouteNotFoundStrategy,
ExceptionStrategy, and DefaultRenderingStrategy are attached as listeners either to the application
EventManager instance or the SharedEventManager instance.

Finally, if you have a strategies key in your configuration, the ViewManager will loop over these and at-
tach them in order to the View service as listeners, at a priority of 100 (allowing them to execute before the
DefaultRenderingStrategy).

116.3 Application Configuration Options

The following options may be used to provide initial configuration for the ServiceManager, ModuleManager,
and Application instances, allowing them to then find and aggregate the configuration used for the
Configuration service, which is intended for configuring all other objects in the system.

1 <?php
2 return array(
3 // This should be an array of module namespaces used in the application.
4 ’modules’ => array(
5),
6

7 // These are various options for the listeners attached to the ModuleManager
8 ’module_listener_options’ => array(
9 // This should be an array of paths in which modules reside.

10 // If a string key is provided, the listener will consider that a module
11 // namespace, the value of that key the specific path to that module’s
12 // Module class.
13 ’module_paths’ => array(
14),
15

16 // An array of paths from which to glob configuration files after
17 // modules are loaded. These effectively overide configuration
18 // provided by modules themselves. Paths may use GLOB_BRACE notation.
19 ’config_glob_paths’ => array(

492 Chapter 116. Default Services

Zend Framework 2 Documentation, Release 2.0.0

20),
21

22 // Whether or not to enable a configuration cache.
23 // If enabled, the merged configuration will be cached and used in
24 // subsequent requests.
25 ’config_cache_enabled’ => $booleanValue,
26

27 // The key used to create the configuration cache file name.
28 ’config_cache_key’ => $stringKey,
29

30 // The path in which to cache merged configuration.
31 ’cache_dir’ => $stringPath,
32),
33

34 // Initial configuration with which to seed the ServiceManager.
35 // Should be compatible with Zend\ServiceManager\Config.
36 ’service_manager’ => array(
37),
38);

116.4 Default Configuration Options

The following options are available when using the default services configured by the ServiceManagerConfig
and ViewManager.

1 <?php
2 return array(
3 // The following are used to configure controller or controller plugin loading
4 ’controller’ => array(
5 // Map of controller "name" to class
6 // This should be used if you do not need to inject any dependencies
7 // in your controller
8 ’classes’ => array(
9),

10

11 // Map of controller "name" to factory for creating controller instance
12 // You may provide either the class name of a factory, or a PHP callback.
13 ’factories’ => array(
14),
15

16 // Map of controller plugin names to their classes
17 ’map’ => array(
18),
19),
20

21 // The following is used to configure a Zend\Di\Di instance.
22 // The array should be in a format that Zend\Di\Config can understand.
23 ’di’ => array(
24),
25

26 // Configuration for the Router service
27 // Can contain any router configuration, but typically will always define
28 // the routes for the application. See the router documentation for details
29 // on route configuration.
30 ’router’ => array(
31 ’routes’ => array(

116.4. Default Configuration Options 493

Zend Framework 2 Documentation, Release 2.0.0

32),
33),
34

35 // ViewManager configuration
36 ’view_manager’ => array(
37 // Defined helpers.
38 // Typically helper name/helper class pairs. Can contain values without keys
39 // that refer to either Traversable classes or Zend\Loader\PluginClassLoader
40 // instances as well.
41 ’helper_map’ => array(
42 ’foo’ => ’My\Helper\Foo’, // name/class pair
43 ’Zend\Form\View\HelperLoader’, // additional helper loader to seed
44),
45

46 // Base URL path to the application
47 ’base_path’ => $stringBasePath,
48

49 // Doctype with which to seed the Doctype helper
50 ’doctype’ => $doctypeHelperConstantString, // e.g. HTML5, XHTML1
51

52 // TemplateMapResolver configuration
53 // template/path pairs
54 ’template_map’ => array(
55),
56

57 // TemplatePathStack configuration
58 // module/view script path pairs
59 ’template_path_stack’ => array(
60),
61

62 // Layout template name
63 ’layout’ => $layoutTemplateName, // e.g., ’layout/layout’
64

65 // ExceptionStrategy configuration
66 ’display_exceptions’ => $bool, // display exceptions in template
67 ’exception_template’ => $stringTemplateName, // e.g. ’error’
68

69 // RouteNotFoundStrategy configuration
70 ’display_not_found_reason’ => $bool, // display 404 reason in template
71 ’not_found_template’ => $stringTemplateName, // e.g. ’404’
72

73 // Additional strategies to attach
74 // These should be class names or service names of View strategy classes
75 // that act as ListenerAggregates. They will be attached at priority 100,
76 // in the order registered.
77 ’strategies’ => array(
78 ’ViewJsonStrategy’, // register JSON renderer strategy
79 ’ViewFeedStrategy’, // register Feed renderer strategy
80),
81),
82);

494 Chapter 116. Default Services

CHAPTER

SEVEN

ROUTING

Routing is the act of matching a request to a given controller.

Typically, routing will examine the request URI, and attempt to match the URI path segment against provided con-
straints. If the constraints match, a set of “matches” are returned, one of which should be the controller name to
execute. Routing can utilize other portions of the request URI or environment as well – for example, the host or
scheme, query parametes, headers, request method, and more.

Routing has been written from the ground up for Zend Framework 2.0. Execution is quite similar, but the internal
workings are more consistent, performant, and often simpler.

The base unit of routing is a Route:

1 namespace Zend\Mvc\Router;
2

3 use zend\Stdlib\RequestInterface as Request;
4

5 interface Route
6 {
7 public static function factory(array $options = array());
8 public function match(Request $request);
9 public function assemble(array $params = array(), array $options = array());

10 }

A Route accepts a Request, and determines if it matches. If so, it returns a RouteMatch object:

1 namespace Zend\Mvc\Router;
2

3 class RouteMatch
4 {
5 public function __construct(array $params);
6 public function setParam($name, $value);
7 public function merge(RouteMatch $match);
8 public function getParam($name, $default = null);
9 public function getRoute();

10 }

Typically, when a Route matches, it will define one or more parameters. These are passed into the RouteMatch,
and objects may query the RouteMatch for their values.

1 $id = $routeMatch->getParam(’id’, false);
2 if (!$id) {
3 throw new Exception(’Required identifier is missing!’);
4 }
5 $entity = $resource->get($id);

495

Zend Framework 2 Documentation, Release 2.0.0

Usually you will have multiple routes you wish to test against. In order to facilitate this, you will use a route aggregate,
usually implementing RouteStack:

1 namespace Zend\Mvc\Router;
2

3 interface RouteStack extends Route
4 {
5 public function addRoute($name, $route, $priority = null);
6 public function addRoutes(array $routes);
7 public function removeRoute($name);
8 }

Typically, routes should be queried in a LIFO order, and hence the reason behind the name RouteStack. Zend
Framework provides two implementations of this interface, SimpleRouteStack and TreeRouteStack. In
each, you register routes either one at a time using addRoute(), or in bulk using addRoutes().

1 // One at a time:
2 $route = Literal::factory(array(
3 ’route’ => ’/foo’,
4 ’defaults’ => array(
5 ’controller’ => ’foo-index’,
6 ’action’ => ’index’,
7),
8));
9 $router->addRoute(’foo’, $route);

10

11 $router->addRoutes(array(
12 // using already instantiated routes:
13 ’foo’ => $route,
14

15 // providing configuration to allow lazy-loading routes:
16 ’bar’ => array(
17 ’type’ => ’literal’,
18 ’options’ => array(
19 ’route’ => ’/bar’,
20 ’defaults’ => array(
21 ’controller’ => ’bar-index’,
22 ’action’ => ’index’,
23),
24),
25),
26));

117.1 Router Types

Two routers are provided, the SimpleRouteStack and TreeRouteStack. Each works with the above interface,
but utilize slightly different options and execution paths.

117.1.1 SimpleRouteStack

This router simply takes individual routes that provide their full matching logic in one go, and loops through them
in LIFO order until a match is found. As such, routes that will match most often should be registered last, and least
common routes first. Additionally, you will need to ensure that routes that potentially overlap are registered such
that the most specific match will match first (i.e., register later). Alternatively, you can set priorities by giving the

496 Chapter 117. Routing

Zend Framework 2 Documentation, Release 2.0.0

priority as third parameter to the addRoute() method, specifying the priority in the route specifications or setting
the priority property within a route instance before adding it to the route stack.

117.1.2 TreeRouteStack

Zend\Mvc\Router\Http\TreeRouteStack provides the ability to register trees of routes, and will use a B-
tree algorithm to match routes. As such, you register a single route with many children.

A TreeRouteStack will consist of the following configuration:

• A base “route”, which describes the base match needed, the root of the tree.

• An optional “route_broker”, which is a configured Zend\Mvc\Router\RouteBroker that can lazy-load
routes.

• The option “may_terminate”, which hints to the router that no other segments will follow it.

• An optional “child_routes” array, which contains additional routes that stem from the base “route” (i.e., build
from it). Each child route can itself be a TreeRouteStack if desired; in fact, the Part route works exactly
this way.

When a route matches against a TreeRouteStack, the matched parameters from each segment of the tree will be
returned.

A TreeRouteStack can be your sole route for your application, or describe particular path segments of the appli-
cation.

An example of a TreeRouteStack is provided in the documentation of the Part route.

117.2 Route Types

Zend Framework 2.0 ships with the following route types.

117.2.1 Zend\Mvc\Router\Http\Hostname

The Hostname route attempts to match the hostname registered in the request against specific criteria. Typically, this
will be in one of the following forms:

• “subdomain.domain.tld”

• ”:subdomain.domain.tld”

In the above, the second route would return a “subdomain” key as part of the route match.

For any given hostname segment, you may also provide a constraint. As an example, if the “subdomain” segment
needed to match only if it started with “fw” and contained exactly 2 digits following, the following route would be
needed:

1 $route = Hostname::factory(array(
2 ’route’ => ’:subdomain.domain.tld’,
3 ’constraints’ => array(
4 ’subdomain’ => ’fw\d{2}’
5),
6));

In the above example, only a “subdomain” key will be returned in the RouteMatch. If you wanted to also provide
other information based on matching, or a default value to return for the subdomain, you need to also provide defaults.

117.2. Route Types 497

Zend Framework 2 Documentation, Release 2.0.0

1 $route = Hostname::factory(array(
2 ’route’ => ’:subdomain.domain.tld’,
3 ’constraints’ => array(
4 ’subdomain’ => ’fw\d{2}’
5),
6 ’defaults’ => array(
7 ’type’ => ’json’,
8),
9));

When matched, the above will return two keys in the RouteMatch, “subdomain” and “type”.

117.2.2 Zend\Mvc\Router\Http\Literal

The Literal route is for doing exact matching of the URI path. Configuration therefore is solely the path you want
to match, and the “defaults”, or parameters you want returned on a match.

1 $route = Literal::factory(array(
2 ’route’ => ’/foo’,
3 ’defaults’ => array(
4 ’controller’ => ’foo-index’,
5),
6));

The above route would match a path “/foo”, and return the key “controller” in the RouteMatch, with the value
“foo-index”.

117.2.3 Zend\Mvc\Router\Http\Method

The Method route is used to match the http method or ‘verb’ specified in the request (See RFC 2616 Sec. 5.1.1).
It can optionally be configured to match against multiple methods by providing a comma-separated list of method
tokens.

1 $route = Method::factory(array(
2 ’verb’ => ’post,put’,
3 ’defaults’ => array(
4 ’action’ => ’form-submit’
5),
6));

The above route would match an http “POST” or “PUT” request and return a RouteMatch object containing a key
“action” with a value of “form-submit”.

117.2.4 Zend\Mvc\Router\Http\Part

A Part route allows crafting a tree of possible routes based on segments of the URI path. It actually extends the
TreeRouteStack.

Part routes are difficult to describe, so we’ll simply provide a sample one here.

1 $route = Part::factory(array(
2 ’route’ => array(
3 ’type’ => ’literal’,
4 ’options’ => array(
5 ’route’ => ’/’,

498 Chapter 117. Routing

Zend Framework 2 Documentation, Release 2.0.0

6 ’defaults’ => array(
7 ’controller’ => ’ItsHomePage’,
8),
9)

10),
11 ’may_terminate’ => true,
12 ’route_broker’ => $routeBroker,
13 ’child_routes’ => array(
14 ’blog’ => array(
15 ’type’ => ’literal’,
16 ’options’ => array(
17 ’route’ => ’blog’,
18 ’defaults’ => array(
19 ’controller’ => ’ItsBlog’,
20),
21),
22 ’may_terminate’ => true,
23 ’child_routes’ => array(
24 ’rss’ => array(
25 ’type’ => ’literal’,
26 ’options’ => array(
27 ’route’ => ’/rss’,
28 ’defaults’ => array(
29 ’controller’ => ’ItsRssBlog’,
30),
31),
32 ’child_routes’ => array(
33 ’sub’ => array(
34 ’type’ => ’literal’,
35 ’options’ => array(
36 ’route’ => ’/sub’,
37 ’defaults’ => array(
38 ’action’ => ’ItsSubRss’,
39),
40)
41),
42),
43),
44),
45),
46 ’forum’ => array(
47 ’type’ => ’literal’,
48 ’options’ => array(
49 ’route’ => ’forum’,
50 ’defaults’ => array(
51 ’controller’ => ’ItsForum’,
52),
53),
54),
55),
56));

The above would match the following:

• “/” would load the “ItsHomePage” controller

• “/blog” would load the “ItsBlog” controller

• “/blog/rss” would load the “ItsRssBlog” controller

117.2. Route Types 499

Zend Framework 2 Documentation, Release 2.0.0

• “/blog/rss/sub” would load the “ItsSubRss” controller

• “/forum” would load the “ItsForum” controller

You may use any route type as a child route of a Part route.

117.2.5 Zend\Mvc\Router\Http\Regex

A Regex route utilizes a regular expression to match against the URI path. Any valid regular expession is allowed;
our recommendation is to use named captures for any values you want to return in the RouteMatch.

Since regular expression routes are often complex, you must specify a “spec” or specification to use when assembling
URLs from regex routes. The spec is simply a string; replacements are identified using “%keyname%” within the
string, with the keys coming from either the captured values or named parameters passed to the assemble()method.

Just like other routes, the Regex route can accept “defaults”, parameters to include in the RouteMatch when
succesfully matched.

1 $route = Regex::factory(array(
2 ’regex’ => ’/blog/(?<id>[a-zA-Z0-9_-]+)(\.(?<format>(json|html|xml|rss)))?’,
3 ’defaults’ => array(
4 ’controller’ => ’blog-entry’,
5 ’format’ => ’html’,
6),
7 ’spec’ => ’/blog/%id%.%format%’,
8));

The above would match “/blog/001-some-blog_slug-here.html”, and return three items in the RouteMatch, an “id”,
the “controller”, and the “format”. When assembling a URL from this route, the “id” and “format” values would be
used to fill the specification.

117.2.6 Zend\Mvc\Router\Http\Scheme

The Scheme route matches the URI scheme only, and must be an exact match. As such, this route, like the Literal
route, simply takes what you want to match and the “defaults”, parameters to return on a match.

1 $route = Scheme::factory(array(
2 ’scheme’ => ’https’,
3 ’defaults’ => array(
4 ’https’ => true,
5),
6));

The above route would match the “https” scheme, and return the key “https” in the RouteMatch with a boolean
true value.

117.2.7 Zend\Mvc\Router\Http\Segment

A Segment route allows matching any segment of a URI path. Segments are denoted using a colon, followed by
alphanumeric characters; if a segment is optional, it should be surrounded by brackets. As an example, “/:foo[/:bar]”
would match a “/” followed by text and assign it to the key “foo”; if any additional “/” characters are found, any text
following the last one will be assigned to the key “bar”.

The separation between literal and named segments can be anything. For example, the above could be done as “/:foo{-
}[-:bar] as well. The {-} after the :foo parameter indicates a set of one or more delimiters, after which matching of the
parameter itself ends.

500 Chapter 117. Routing

Zend Framework 2 Documentation, Release 2.0.0

Each segment may have constraints associated with it. Each constraint should simply be a regular expression express-
ing the conditions under which that segment should match.

Also, as you can in other routes, you may provide defaults to use; these are particularly useful when using optional
segments.

As a complex example:

1 $route = Segment::factory(array(
2 ’route’ => ’/:controller[/:action]’,
3 ’constraints’ => array(
4 ’controller’ => ’[a-zA-Z][a-zA-Z0-9_-]+’,
5 ’action’ => ’[a-zA-Z][a-zA-Z0-9_-]+’,
6),
7 ’defaults’ => array(
8 ’controller’ => ’application-index’,
9 ’action’ => ’index’,

10),
11));

117.2.8 Zend\Mvc\Router\Http\Query

The Query route part allows you to specify and capture query string parameters for a given route.

The intention of the Query part is that you do not instantiate it in its own right but to use it as a child of another route
part.

An example of its usage would be

1 $route = Part::factory(array(
2 ’home’ => array(
3 ’type’ => ’segment’,
4 ’options’ => array(
5 ’route’ => ’/page[/:name]’,
6 ’constraints’ => array(
7 ’name’ => ’[a-zA-Z][a-zA-Z0-9_-]*’,
8),
9 ’defaults’ => array(

10 ’name’ => ’home’,
11),
12)
13 ’may_terminate’ => true,
14 ’route_broker’ => $routeBroker,
15 ’child_routes’ => array(
16 ’query’ => array(
17 ’type’ => ’Query’,
18),
19),
20),
21));

As you can see, it’s pretty straight forward to specify the query part. This then allows you to create query strings using
the url view helper.

1 $this->url(
2 ’page/query’,
3 array(
4 ’name’=>’my-test-page’,
5 ’format’ => ’rss’,

117.2. Route Types 501

Zend Framework 2 Documentation, Release 2.0.0

6 ’limit’ => 10,
7)
8);

As you can see above, you must add “/query” to your route name in order to append a query string. If you do not
specify “/query” in the route name then no query string will be appended.

Our example “page” route has only one defined parameter of “name” (“/page[/:name]”), meaning that the remaining
parameters of “format” and “limit” will then be appended as a query string.

The output from our example should then be “/page/mys-test-page?format=rss&limit=10”

502 Chapter 117. Routing

CHAPTER

EIGHT

THE MVCEVENT

The ZF2 MVC layer incorporates and utilizes a custom Zend\EventManager\EventDescription
type, Zend\Mvc\MvcEvent. This event is created during Zend\Mvc\Application::run(), and is
passed directly to all events that method triggers. Additionally, if you mark your controllers with the
Zend\Mvc\InjectApplicationEvent interface, it will be injected into those controllers.

The MvcEvent adds accessors and mutators for the following:

• Application object

• Request object

• Response object

• Router object

• RouteMatch object

• “Result”, usually the result of dispatching a controller

• ViewModel object, typically representing the layout view model

The methods it defines are:

• setApplication($application)

• getApplication()

• setRequest($request)

• getRequest()

• setResponse($response)

• getResponse()

• setRouter($router)

• getRouter()

• setRouteMatch($routeMatch)

• getRouteMatch()

• setResult($result)

• getResult()

• setViewModel($viewModel)

• getViewModel()

503

Zend Framework 2 Documentation, Release 2.0.0

The Application, Request, Response, Router, and ViewModel are all injected during the bootstrap
event. Following the route event, it will be injected also with the RouteMatch object encapsulating the results of
routing.

Since this object is passed around throughout the MVC, it is a common location for retrieving the results of routing,
the router, and the request and response objects. Additionally, we encourage setting the results of execution in the
event, to allow event listeners to introspect them and utilize them within their execution. As an example, the results
could be passed into a view renderer.

504 Chapter 118. The MvcEvent

CHAPTER

NINE

AVAILABLE CONTROLLERS

Controllers in the MVC layer simply need to be objects implementing
Zend\Stdlib\DispatchableInterface. That interface describes a single method:

1 use Zend\Stdlib\DispatchableInterface;
2 use Zend\Stdlib\RequestInterface as Request;
3 use Zend\Stdlib\ResponseInterface as Response;
4

5 class Foo implements DispatchableInterface
6 {
7 public function dispatch(Request $request, Response $response = null)
8 {
9 // ... do something, and preferably return a Response ...

10 }
11 }

While this pattern is simple enough, chances are you don’t want to implement custom dispatch logic for every con-
troller (particularly as it’s not unusual or uncommon for a single controller to handle several related types of requests).

The MVC also defines several interfaces that, when implemented, can provide controllers with additional capabilities.

119.1 Common Interfaces Used With Controllers

119.1.1 InjectApplicationEvent

The Zend\Mvc\InjectApplicationEventInterface hints to the Application instance that it should
inject its MvcEvent into the controller itself. Why would this be useful?

Recall that the MvcEvent composes a number of objects: the Request and Response, naturally, but also the
router, the route matches (a RouteMatch instance), and potentially the “result” of dispatching.

A controller that has the MvcEvent injected, then, can retrieve or inject these. As an example:

1 $matches = $this->getEvent()->getRouteMatch();
2 $id = $matches->getParam(’id’, false);
3 if (!$id) {
4 $this->getResponse();
5 $response->setStatusCode(500);
6 $this->getEvent()->setResult(’Invalid identifier; cannot complete request’);
7 return;
8 }

The InjectApplicationEventInterface defines simply two methods:

505

Zend Framework 2 Documentation, Release 2.0.0

1 public function setEvent(Zend\EventManager\EventInterface $event);
2 public function getEvent();

119.1.2 ServiceManagerAware

In most cases, you should define your controllers such that dependencies are injected by the application’s
ServiceManager, via either constructor arguments or setter methods.

However, occasionally you may have objects you wish to use in your controller that are only valid for certain code
paths. Examples include forms, paginators, navigation, etc. In these cases, you may decide that it doesn’t make sense
to inject those objects every time the controller is used.

The ServiceManagerAwareInterface interface hints to the ServiceManager that it should inject itself
into the controller. It defines simply one method:

1 use Zend\ServiceManager\ServiceManager;
2 use Zend\ServiceManager\ServiceManagerAwareInterface;
3

4 public function setServiceManager(ServiceManager $serviceManager);

119.1.3 EventManagerAware

Typically, it’s nice to be able to tie into a controller’s workflow without needing to extend it or hardcode behavior into
it. The solution for this at the framework level is to use the EventManager.

You can hint to the ServiceManager that you want an EventManager injected by implementing
the interfaces EventManagerAwareInterface and EventsCapableInterface; the former tells the
ServiceManager to inject an EventManager, the latter to other objects that this class has an accessible
EventManager instance.

Combined, you define two methods. The first, a setter, should also set any EventManager identifiers you want to
listen on, and the second, a getter, should simply return the composed EventManager instance

1 use Zend\EventManager\EventManagerAwareInterface;
2 use Zend\EventManager\EventManagerInterface;
3 use Zend\EventManager\EventsCapableInterface;
4

5 public function setEventManager(EventManagerInterface $events);
6 public function getEventManager();

119.1.4 Pluggable

Code re-use is a common goal for developers. Another common goal is convenience. However, this is often difficult
to achieve cleanly in abstract, general systems.

Within your controllers, you’ll often find yourself repeating tasks from one controller to another. Some common
examples:

• Generating URLs

• Redirecting

• Setting and retrieving flash messages (self-expiring session messages)

• Invoking and dispatching additional controllers

506 Chapter 119. Available Controllers

Zend Framework 2 Documentation, Release 2.0.0

To facilitate these actions while also making them available to alternate controller implementations, we’ve cre-
ated a PluginBroker implementation for the controller layer, Zend\Mvc\Controller\PluginBroker,
building on the Zend\Loader\PluginBroker functionality. To utilize it, you simply need to implement the
Zend\Loader\Pluggable interface, and set up your code to use the controller-specific implementation by de-
fault:

1 use Zend\Loader\Broker;
2 use Zend\Mvc\Controller\PluginBroker;
3

4 public function setBroker(Broker $broker)
5 {
6 $this->broker = $broker;
7 return $this;
8 }
9

10 public function getBroker()
11 {
12 if (!$this->broker instanceof Broker) {
13 $this->setBroker(new PluginBroker);
14 }
15 return $this->broker;
16 }
17

18 public function plugin($plugin, array $options = null)
19 {
20 return $this->getBroker()->load($plugin, $options);
21 }

119.2 The AbstractActionController

Implementing each of the above interfaces is a lesson in redundancy; you won’t often want to do it. As such, we’ve
developed two abstract, base controllers you can extend to get started.

The first is Zend\Mvc\Controller\AbstractActionController. This controller implements each of the
above interfaces, and uses the following assumptions:

• An “action” parameter is expected in the RouteMatch object composed in the attached MvcEvent. If none
is found, a notFoundAction() is invoked.

• The “action” parameter is converted to a camelCased format and appended with the word “Action” to create a
method name. As examples: “foo” maps to “fooAction”, “foo-bar” or “foo.bar” or “foo_bar” to “fooBarAction”.
The controller then checks to see if that method exists. If not, the notFoundAction() method is invoked;
otherwise, the discovered method.

• The results of executing the given action method are injected into the MvcEvent‘s “result” property (via
setResult(), and accesible via getResult()).

Essentially, a route mapping to an AbstractActionController needs to return both “controller” and “action”
keys in its matches.

Creation of action controllers is then reasonably trivial:

1 namespace Foo\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4

5 class BarController extends AbstractActionController
6 {

119.2. The AbstractActionController 507

Zend Framework 2 Documentation, Release 2.0.0

7 public function bazAction()
8 {
9 return array(’title’ => __METHOD__);

10 }
11

12 public function batAction()
13 {
14 return array(’title’ => __METHOD__);
15 }
16 }

119.2.1 Interfaces and Collaborators

AbstractActionController implements each of the following interfaces:

• Zend\Stdlib\DispatchableInterface

• Zend\Loader\Pluggable

• Zend\Mvc\InjectApplicationEventInterface

• Zend\ServiceManager\ServiceManagerAwareInterface

• Zend\EventManager\EventManagerAwareInterface

• Zend\EventManager\EventsCapableInterface

The composed EventManager will be configured to listen on the following contexts:

• Zend\Stdlib\DispatchableInterface

• Zend\Mvc\Controller\AbstractActionController

Additionally, if you extend the class, it will listen on the extending class’s name.

119.3 The AbstractRestfulController

The second abstract controller ZF2 provides is Zend\Mvc\Controller\AbstractRestfulController.
This controller provides a naive RESTful implementation that simply maps HTTP request methods to controller meth-
ods, using the following matrix:

• GET maps to either get() or getList(), depending on whether or not an “id” parameter is found in the
route matches. If one is, it is passed as an argument to get(); if not, getList() is invoked. In the former
case, you should provide a representation of the given entity with that identification; in the latter, you should
provide a list of entities.

• POST maps to create(). That method expects a $data argument, usually the $_POST superglobal array.
The data should be used to create a new entitiy, and the response should typically be an HTTP 201 response
with the Location header indicating the URI of the newly created entity and the response body providing the
representation.

• PUT maps to update(), and requires that an “id” parameter exists in the route matches; that value is passed
as an argument to the method. It should attempt to update the given entity, and, if successful, return either a 200
or 202 response status, as well as the representation of the entity.

• DELETE maps to delete(), and requires that an “id” parameter exists in the route matches; that value is
passed as an argument to the method. It should attempt to delete the given entity, and, if successful, return either
a 200 or 204 response status.

508 Chapter 119. Available Controllers

Zend Framework 2 Documentation, Release 2.0.0

Additionally, you can map “action” methods to the AbstractRestfulController, just as you would in the
AbstractActionController; these methods will be suffixed with “Action”, differentiating them from the
RESTful methods listed above. This allows you to perform such actions as providing forms used to submit to the
various RESTful methods, or to add RPC methods to your RESTful API.

119.3.1 Interfaces and Collaborators

AbstractRestfulController implements each of the following interfaces:

• Zend\Stdlib\DispatchableInterface

• Zend\Loader\Pluggable

• Zend\Mvc\InjectApplicationEventInterface

• Zend\ServiceManager\ServiceManagerAwareInterface

• Zend\EventManager\EventManagerAwareInterface

• Zend\EventManager\EventsCapableInterface

The composed EventManager will be configured to listen on the following contexts:

• Zend\Stdlib\DispatchableInterface

• Zend\Mvc\Controller\AbstractActionController

Additionally, if you extend the class, it will listen on the extending class’s name.

119.3. The AbstractRestfulController 509

Zend Framework 2 Documentation, Release 2.0.0

510 Chapter 119. Available Controllers

CHAPTER

CONTROLLER PLUGINS

When using the AbstractActionController or AbstractRestfulController, or if you compose the
Zend\Mvc\Controller\PluginBroker in your custom controllers, you have access to a number of pre-
built plugins. Additionally, you can register your own custom plugins with the broker, just as you would with
Zend\Loader\PluginBroker.

The built-in plugins are:

• Zend\Mvc\Controller\Plugin\FlashMessenger

• Zend\Mvc\Controller\Plugin\Forward

• Zend\Mvc\Controller\Plugin\PostRedirectGet

• Zend\Mvc\Controller\Plugin\Redirect

• Zend\Mvc\Controller\Plugin\Url

If your controller implements the Zend\Loader\Pluggable interface, you can access these using their shortname
via the plugin() method:

1 $plugin = $this->plugin(’url’);

For an extra layer of convenience, both AbstractActionController and AbstractRestfulController
have __call() implementations that allow you to retrieve plugins via method calls:

1 $plugin = $this->url();

120.1 The FlashMessenger

The FlashMessenger is a plugin designed to create and retrieve self-expiring, session-based messages. It exposes
a number of methods:

• setSessionManager() allows you to specify an alternate session manager, if desired.

• getSessionManager() allows you to retrieve the session manager registered.

• getContainer() returns the Zend\Session\Container instance in which the flash messages are
stored.

• setNamespace() allows you to specify a specific namespace in the container in which to store or from which
to retrieve flash messages.

• getNamespace() retrieves the name of the flash message namespace.

• addMessage() allows you to add a message to the current namespace of the session container.

• hasMessages() lets you determine if there are any flash messages from the current namespace in the session
container.

511

Zend Framework 2 Documentation, Release 2.0.0

• getMessages() retrieves the flash messages from the current namespace of the session container.

• clearMessages() clears all flash messages in current namespace of the session container.

• hasCurrentMessages() indicates whether any messages were added during the current request.

• getCurrentMessages() retrieves any messages added during the current request.

• clearCurrentMessages() removes any messages added during the current request.

Additionally, the FlashMessenger implements both IteratorAggregate and Countable, allowing you to
iterate over and count the flash messages in the current namespace within the session container.

120.1.1 Examples

1 public function processAction()
2 {
3 // ... do some work ...
4 $this->flashMessenger()->addMessage(’You are now logged in.’);
5 return $this->redirect()->toRoute(’user-success’);
6 }
7

8 public function successAction()
9 {

10 $return = array(’success’ => true);
11 $flashMessenger = $this->flashMessenger();
12 if ($flashMessenger->hasMessages()) {
13 $return[’messages’] = $flashMessenger->getMessages();
14 }
15 return $return;
16 }

120.2 The Forward Plugin

Occasionally, you may want to dispatch additional controllers from within the matched controller – for instance, you
might use this approach to build up “widgetized” content. The Forward plugin helps enable this.

For the Forward plugin to work, the controller calling it must be ServiceManagerAware; otherwise, the plugin
will be unable to retrieve a configured and injected instance of the requested controller.

The plugin exposes a single method, dispatch(), which takes two arguments:

• $name, the name of the controller to invoke. This may be either the fully qualified class name, or an alias
defined and recognized by the ServiceManager instance attached to the invoking controller.

• $params is an optional array of parameters with which to see a RouteMatch object for purposes of this
specific request.

Forward returns the results of dispatching the requested controller; it is up to the developer to determine what, if
anything, to do with those results. One recommendation is to aggregate them in any return value from the invoking
controller.

As an example:

1 $foo = $this->forward()->dispatch(’foo’, array(’action’ => ’process’));
2 return array(
3 ’somekey’ => $somevalue,

512 Chapter 120. Controller Plugins

Zend Framework 2 Documentation, Release 2.0.0

4 ’foo’ => $foo,
5);

120.3 The Post/Redirect/Get Plugin

When a user sends a POST request (e.g. after submitting a form), their browser will try to protect them from sending
the POST again, breaking the back button, causing browser warnings and pop-ups, and sometimes reposting the form.
Instead, when receiving a POST, we should store the data in a session container and redirect the user to a GET request.

This plugin can be invoked with two arguments:

• $redirect, a string containing the redirect location which can either be a named route or a URL, based on
the contents of the second parameter.

• $redirectToUrl, a boolean that when set to TRUE, causes the first parameter to be treated as a URL instead
of a route name (this is required when redirecting to a URL instead of a route). This argument defaults to false.

1 // Pass in the route/url you want to redirect to after the POST
2 $prg = $this->prg(’/user/register’, true);
3

4 if ($prg instanceof \Zend\Http\PhpEnvironment\Response) {
5 // returned a response to redirect us
6 return $prg;
7 } elseif ($prg === false) {
8 // this wasn’t a POST request, but there were no params in the flash messenger
9 // probably this is the first time the form was loaded

10 return array(’form’ => $myForm);
11 }
12

13 // $prg is an array containing the POST params from the previous request
14 $form->setData($prg);
15

16 // ... your form processing code here

120.4 The Redirect Plugin

Redirections are quite common operations within applications. If done manually, you will need to do the following
steps:

• Assemble a url using the router

• Create and inject a “Location” header into the Response object, pointing to the assembled URL

• Set the status code of the Response object to one of the 3xx HTTP statuses.

The Redirect plugin does this work for you. It offers two methods:

• toRoute($route, array $params = array(), array $options = array()): Redirects
to a named route, using the provided $params and $options to assembled the URL.

• toUrl($url): Simply redirects to the given URL.

In each case, the Response object is returned. If you return this immediately, you can effectively short-circuit
execution of the request.

One note: this plugin requires that the controller invoking it implements InjectApplicationEvent, and thus
has an MvcEvent composed, as it retrieves the router from the event object.

120.3. The Post/Redirect/Get Plugin 513

Zend Framework 2 Documentation, Release 2.0.0

As an example:

1 return $this->redirect()->toRoute(’login-success’);

120.5 The Url Plugin

Often you may want to generate URLs from route definitions within your controllers – in order to seed the view, gen-
erate headers, etc. While the MvcEvent object composes the router, doing so manually would require this workflow:

1 $router = $this->getEvent()->getRouter();
2 $url = $router->assemble($params, array(’name’ => ’route-name’));

The Url helper makes this slightly more convenient:

1 $url = $this->url()->fromRoute(’route-name’, $params);

The fromRoute() method is the only public method defined, and has the following signature:

1 public function fromRoute($route, array $params = array(), array $options = array())

One note: this plugin requires that the controller invoking it implements InjectApplicationEvent, and thus
has an MvcEvent composed, as it retrieves the router from the event object.

514 Chapter 120. Controller Plugins

CHAPTER

ONE

EXAMPLES

121.1 Controllers

121.1.1 Accessing the Request and Response

When using AbstractActionController or AbstractRestfulController, the request and response
object are composed directly into the controller as soon as dispatch() is called. You may access them in the
following ways:

1 // Using explicit accessor methods
2 $request = $this->getRequest();
3 $response = $this->getResponse();
4

5 // Using direct property access
6 $request = $this->request;
7 $response = $this->response;

Additionally, if your controller implements InjectApplicationEventInterface (as both
AbstractActionController and AbstractRestfulController do), you can access these objects
from the attached MvcEvent:

1 $event = $this->getEvent();
2 $request = $event->getRequest();
3 $response = $event->getResponse();

The above can be useful when composing event listeners into your controller.

121.1.2 Accessing routing parameters

The parameters returned when routing completes are wrapped in a Zend\Mvc\Router\RouteMatch object. This
object is detailed in the section on routing.

Within your controller, if you implement InjectApplicationEventInterface (as both
AbstractActionController and AbstractRestfulController do), you can access this object
from the attached MvcEvent:

1 $event = $this->getEvent();
2 $matches = $event->getRouteMatch();

Once you have the RouteMatch object, you can pull parameters from it.

515

Zend Framework 2 Documentation, Release 2.0.0

121.1.3 Returning early

You can effectively short-circuit execution of the application at any point by returning a Response from your con-
troller or any event. When such a value is discovered, it halts further execution of the event manager, bubbling up to
the Application instance, where it is immediately returned.

As an example, the Redirect plugin returns a Response, which can be returned immediately so as to complete
the request as quickly as possible. Other use cases might be for returning JSON or XML results from web service
endpoints, returning “401 Forbidden” results, etc.

121.2 Bootstrapping

121.2.1 Registering module-specific listeners

Often you may want module-specific listeners. As an example, this would be a simple and effective way to introduce
authorization, logging, or caching into your application.

Each Module class can have an optional onBootstrap() method. Typically, you’ll do module-specific configura-
tion here, or setup event listeners for you module here. The onBootstrap() method is called for every module on
every page request and should only be used for performing lightweight tasks such as registering event listeners.

The base Application class shipped with the framework has an EventManager associated with it, and once the
modules are initialized, it triggers a “bootstrap” event, with a getApplication() method on the event.

So, one way to accomplish module-specific listeners is to listen to that event, and register listeners at that time. As an
example:

1 namespace SomeCustomModule;
2

3 class Module
4 {
5 public function onBootstrap($e)
6 {
7 $application = $e->getApplication();
8 $config = $application->getConfiguration();
9 $view = $application->getServiceManager()->get(’View’);

10 $view->headTitle($config[’view’][’base_title’]);
11

12 $listeners = new Listeners\ViewListener();
13 $listeners->setView($view);
14 $application->getEventManager()->attachAggregate($listeners);
15 }
16 }

The above demonstrates several things. First, it demonstrates a listener on the application’s “bootstrap” event (the
onBootstrap() method). Second, it demonstrates that listener, and how it can be used to register listeners with
the application. It grabs the Application instance; from the Application, it is able to grab the attached service
manager and configuration. These are then used to retrieve the view, configure some helpers, and then register a
listener aggregate with the application event manager.

516 Chapter 121. Examples

CHAPTER

TWO

INTRODUCTION

Zend\Paginator is a flexible component for paginating collections of data and presenting that data to users.

The primary design goals of Zend\Paginator are as follows:

• Paginate arbitrary data, not just relational databases

• Fetch only the results that need to be displayed

• Do not force users to adhere to only one way of displaying data or rendering pagination controls

• Loosely couple Zend\Paginator to other Zend Framework components so that users who wish to use it
independently of Zend\View, Zend\Db, etc. can do so

517

Zend Framework 2 Documentation, Release 2.0.0

518 Chapter 122. Introduction

CHAPTER

THREE

USAGE

123.1 Paginating data collections

In order to paginate items into pages, Zend\Paginator must have a generic way of accessing that data. For that
reason, all data access takes place through data source adapters. Several adapters ship with Zend Framework by
default:

Table 123.1: Adapters for Zend\Paginator

Adapter Description
Array Accepts a PHP array
DbSe-
lect

Accepts a Zend\Db\Sql\Select plus either a Zend\Db\Adapter\Adapter or Zend\Db\Sql\Sql to paginate
rows from a database

Iterator Accepts an Iterator instance
Null Does not use Zend\Paginator to manage data pagination. You can still take advantage of the pagination

control feature.

Note: Instead of selecting every matching row of a given query, the DbSelect adapter retrieves only the smallest
amount of data necessary for displaying the current page. Because of this, a second query is dynamically generated to
determine the total number of matching rows.

To create an instance of Zend\Paginator, you must supply an adapter to the constructor:

1 $paginator = new Zend\Paginator(new Zend\Paginator\Adapter\Array($array));
2

3 In the case of the ‘‘Null‘‘ adapter, in lieu of a data collection you must supply an item count to its
4 constructor.

Although the instance is technically usable in this state, in your controller action you’ll need to tell the paginator what
page number the user requested. This allows advancing through the paginated data.

1 $paginator->setCurrentPageNumber($page);

The simplest way to keep track of this value is through a URL parameter. The following is an example route you might
use in an Array configuration file:

1 return array(
2 ’routes’ => array(
3 ’paginator’ => array(
4 ’type’ => ’segment’,
5 ’options’ => array(
6 ’route’ => ’/list/[page/:page]’,
7 ’defaults’ => array(

519

Zend Framework 2 Documentation, Release 2.0.0

8 ’page’ => 1,
9),

10),
11),
12),
13);

With the above route (and using Zend Framework MVC components), you might set the current page number in your
controller action like so:

1 $paginator->setCurrentPageNumber($this->params()->fromRoute(’page’));

There are other options available; see Configuration for more on them.

Finally, you’ll need to assign the paginator instance to your view. If you’re using Zend Framework MVC component,
you can assign the paginator object to your view model:

1 $vm = new ViewModel();
2 $vm->setVariable(’paginator’, $paginator);
3 return $vm;

123.2 The DbSelect adapter

The usage of most adapters is pretty straight-forward. However, the database adapter requires a more detailed expla-
nation regarding the retrieval and count of the data from the database.

To use the DbSelect adapter you don’t have to retrieve the data upfront from the database. The adapter will do
the retrieval for you, as well as the counting of the total pages. If additional work has to be done on the database
results which cannot be expressed via the provided Zend\Db\Sql\Select object you must extend the adapter and
override the getItems() method.

Additionally this adapter does not fetch all records from the database in order to count them. Instead, the adapter
manipulates the original query to produce a corresponding COUNT query. Paginator then executes that COUNT
query to get the number of rows. This does require an extra round-trip to the database, but this is many times faster
than fetching an entire result set and using count(), especially with large collections of data.

The database adapter will try and build the most efficient query that will execute on pretty much any modern database.
However, depending on your database or even your own schema setup, there might be more efficient ways to get a
rowcount. For this scenario, you can extend the provided DbSelect adapter and implement a custom getRowCount
method. For example, if you keep track of the count of blog posts in a separate table, you could achieve a faster count
query with the following setup:

1 class MyDbSelect extends Zend\Paginator\Adapter\DbSelect
2 {
3 public function count()
4 {
5 $sql = new Zend\Db\Sql\Select();
6 $sql->from(’item_counts’)->columns(array(’c’=>’post_count’));
7

8 $statement = $this->sql->prepareStatementForSqlObject($select);
9 $result = $statement->execute();

10 $row = $result->current();
11 $this->rowCount = $row[’c’];
12

13 return $this->rowCount;
14 }
15 }

520 Chapter 123. Usage

Zend Framework 2 Documentation, Release 2.0.0

16

17 $adapter = new MyDbSelect($query, $adapter);
18 $paginator = new Zend\Paginator\Paginator($adapter);

This approach will probably not give you a huge performance gain on small collections and/or simple select queries.
However, with complex queries and large collections, a similar approach could give you a significant performance
boost.

The DbSelect adapter also supports returning of fetched records using the Zend\Db\ResultSet compo-
nent of Zend\Db. You can override the concrete RowSet implementation by passing an object implementing
Zend\Db\ResultSet\ResultSetInterface as the third constructor argument to the DbSelect adapter:

1 // $objectPrototype is an instance of our custom entity
2 // $hydrator is a custom hydrator for our entity (implementing Zend\Stdlib\Hydrator\HydratorInterface)
3 $resultSet = new Zend\Db\ResultSet\HydratingResultSet($hydrator, $objectPrototype);
4

5 $adapter = new Zend\Paginator\Adapter\DbSelect($query, $dbAdapter, $resultSet)
6 $paginator = new Zend\Paginator\Paginator($adapter);

Now when we iterate over $paginator we will get instances of our custom entity instead of key-value-pair arrays.

123.3 Rendering pages with view scripts

The view script is used to render the page items (if you’re using Zend\Paginator to do so) and display the
pagination control.

Because Zend\Paginator implements the SPL interface IteratorAggregate, looping over your items and displaying
them is simple.

1 <html>
2 <body>
3 <h1>Example</h1>
4 <?php if (count($this->paginator)): ?>
5
6 <?php foreach ($this->paginator as $item): ?>
7 <?php echo $item; ?>
8 <?php endforeach; ?>
9

10 <?php endif; ?>
11

12 <?php echo $this->paginationControl($this->paginator,
13 ’Sliding’,
14 ’my_pagination_control’); ?>
15 </body>
16 </html>

Notice the view helper call near the end. PaginationControl accepts up to four parameters: the paginator instance, a
scrolling style, a view script name, and an array of additional parameters.

The second and third parameters are very important. Whereas the view script name is used to determine how the
pagination control should look, the scrolling style is used to control how it should behave. Say the view script is in
the style of a search pagination control, like the one below:

What happens when the user clicks the “next” link a few times? Well, any number of things could happen. The current
page number could stay in the middle as you click through (as it does on Yahoo!), or it could advance to the end of

123.3. Rendering pages with view scripts 521

http://www.php.net/~helly/php/ext/spl/interfaceIteratorAggregate.html

Zend Framework 2 Documentation, Release 2.0.0

the page range and then appear again on the left when the user clicks “next” one more time. The page numbers might
even expand and contract as the user advances (or “scrolls”) through them (as they do on Google).

There are four scrolling styles packaged with Zend Framework:

Table 123.2: Scrolling styles for Zend\Paginator

Scrolling
style

Description

All Returns every page. This is useful for dropdown menu pagination controls with relatively few pages.
In these cases, you want all pages available to the user at once.

Elastic A Google-like scrolling style that expands and contracts as a user scrolls through the pages.
Jumping As users scroll through, the page number advances to the end of a given range, then starts again at

the beginning of the new range.
Sliding A Yahoo!-like scrolling style that positions the current page number in the center of the page range,

or as close as possible. This is the default style.

The fourth and final parameter is reserved for an optional associative array of additional variables that you want
available in your view (available via $this). For instance, these values could include extra URL parameters for
pagination links.

By setting the default view script name, default scrolling style, and view instance, you can eliminate the calls to
PaginationControl completely:

1 Zend\Paginator\Paginator::setDefaultScrollingStyle(’Sliding’);
2 Zend\View\Helper\PaginationControl::setDefaultViewPartial(
3 ’my_pagination_control’
4);

When all of these values are set, you can render the pagination control inside your view script with a simple echo
statement:

1 <?php echo $this->paginator; ?>

Note: Of course, it’s possible to use Zend\Paginator with other template engines. For example, with Smarty
you might do the following:

1 $smarty->assign(’pages’, $paginator->getPages());

You could then access paginator values from a template like so:

1 {$pages->pageCount}

123.3.1 Example pagination controls

The following example pagination controls will hopefully help you get started:

Search pagination:

1 <!--
2 See http://developer.yahoo.com/ypatterns/pattern.php?pattern=searchpagination
3 -->
4

5 <?php if ($this->pageCount): ?>
6 <div class="paginationControl">
7 <!-- Previous page link -->
8 <?php if (isset($this->previous)): ?>

522 Chapter 123. Usage

Zend Framework 2 Documentation, Release 2.0.0

9 <a href="<?php echo $this->url(array(’page’ => $this->previous)); ?>">
10 < Previous
11 |
12 <?php else: ?>
13 < Previous |
14 <?php endif; ?>
15

16 <!-- Numbered page links -->
17 <?php foreach ($this->pagesInRange as $page): ?>
18 <?php if ($page != $this->current): ?>
19 <a href="<?php echo $this->url(array(’page’ => $page)); ?>">
20 <?php echo $page; ?>
21 |
22 <?php else: ?>
23 <?php echo $page; ?> |
24 <?php endif; ?>
25 <?php endforeach; ?>
26

27 <!-- Next page link -->
28 <?php if (isset($this->next)): ?>
29 <a href="<?php echo $this->url(array(’page’ => $this->next)); ?>">
30 Next >
31
32 <?php else: ?>
33 Next >
34 <?php endif; ?>
35 </div>
36 <?php endif; ?>

Item pagination:

1 <!--
2 See http://developer.yahoo.com/ypatterns/pattern.php?pattern=itempagination
3 -->
4

5 <?php if ($this->pageCount): ?>
6 <div class="paginationControl">
7 <?php echo $this->firstItemNumber; ?> - <?php echo $this->lastItemNumber; ?>
8 of <?php echo $this->totalItemCount; ?>
9

10 <!-- First page link -->
11 <?php if (isset($this->previous)): ?>
12 <a href="<?php echo $this->url(array(’page’ => $this->first)); ?>">
13 First
14 |
15 <?php else: ?>
16 First |
17 <?php endif; ?>
18

19 <!-- Previous page link -->
20 <?php if (isset($this->previous)): ?>
21 <a href="<?php echo $this->url(array(’page’ => $this->previous)); ?>">
22 < Previous
23 |
24 <?php else: ?>
25 < Previous |
26 <?php endif; ?>
27

28 <!-- Next page link -->

123.3. Rendering pages with view scripts 523

Zend Framework 2 Documentation, Release 2.0.0

29 <?php if (isset($this->next)): ?>
30 <a href="<?php echo $this->url(array(’page’ => $this->next)); ?>">
31 Next >
32 |
33 <?php else: ?>
34 Next > |
35 <?php endif; ?>
36

37 <!-- Last page link -->
38 <?php if (isset($this->next)): ?>
39 <a href="<?php echo $this->url(array(’page’ => $this->last)); ?>">
40 Last
41
42 <?php else: ?>
43 Last
44 <?php endif; ?>
45

46 </div>
47 <?php endif; ?>

Dropdown pagination:

1 <?php if ($this->pageCount): ?>
2 <select id="paginationControl" size="1">
3 <?php foreach ($this->pagesInRange as $page): ?>
4 <?php $selected = ($page == $this->current) ? ’ selected="selected"’ : ’’; ?>
5 <option value="<?php
6 echo $this->url(array(’page’ => $page));?>"<?php echo $selected ?>>
7 <?php echo $page; ?>
8 </option>
9 <?php endforeach; ?>

10 </select>
11 <?php endif; ?>
12

13 <script type="text/javascript"
14 src="http://ajax.googleapis.com/ajax/libs/prototype/1.6.0.2/prototype.js">
15 </script>
16 <script type="text/javascript">
17 $(’paginationControl’).observe(’change’, function() {
18 window.location = this.options[this.selectedIndex].value;
19 })
20 </script>

123.3.2 Listing of properties

The following options are available to pagination control view scripts:

524 Chapter 123. Usage

Zend Framework 2 Documentation, Release 2.0.0

Table 123.3: Properties available to view partials

Property Type Description
first integer First page number (i.e., 1)
firstItemNumber integer Absolute number of the first item on this page
firstPageInRange integer First page in the range returned by the scrolling style
current integer Current page number
currentItemCount integer Number of items on this page
itemCountPerPage integer Maximum number of items available to each page
last integer Last page number
lastItemNumber integer Absolute number of the last item on this page
lastPageInRange integer Last page in the range returned by the scrolling style
next integer Next page number
pageCount integer Number of pages
pagesInRange array Array of pages returned by the scrolling style
previous integer Previous page number
totalItemCount integer Total number of items

123.3. Rendering pages with view scripts 525

Zend Framework 2 Documentation, Release 2.0.0

526 Chapter 123. Usage

CHAPTER

FOUR

CONFIGURATION

Zend\Paginator has several configuration methods that can be called:

Table 124.1: Configuration methods for Zend\Paginator\Paginator

Method Description
setCurrent-
PageNumber

Sets the current page number (default 1).

setItem-
CountPer-
Page

Sets the maximum number of items to display on a page (default 10).

set-
PageRange

Sets the number of items to display in the pagination control (default 10). Note: Most of the time
this number will be adhered to exactly, but scrolling styles do have the option of only using it as a
guideline or starting value (e.g., Elastic).

setView Sets the view instance, for rendering convenience.

527

Zend Framework 2 Documentation, Release 2.0.0

528 Chapter 124. Configuration

CHAPTER

FIVE

ADVANCED USAGE

125.1 Custom data source adapters

At some point you may run across a data type that is not covered by the packaged adapters. In this case, you will need
to write your own.

To do so, you must implement Zend\Paginator\Adapter\AdapterInterface. There are two methods
required to do this:

• count()

• getItems($offset, $itemCountPerPage)

Additionally, you’ll want to implement a constructor that takes your data source as a parameter and stores it as a
protected or private property. How you wish to go about doing this specifically is up to you.

If you’ve ever used the SPL interface Countable, you’re familiar with count(). As used with Zend\Paginator,
this is the total number of items in the data collection. Additionally, the Zend\Paginator\Paginator instance
provides a method countAllItems() that proxies to the adapter count() method.

The getItems() method is only slightly more complicated. For this, your adapter is supplied with an offset and the
number of items to display per page. You must return the appropriate slice of data. For an array, that would be:

1 return array_slice($this->_array, $offset, $itemCountPerPage);

Take a look at the packaged adapters (all of which implement the Zend\Paginator\Adapter\AdapterInterface)
for ideas of how you might go about implementing your own.

125.2 Custom scrolling styles

Creating your own scrolling style requires that you implement Zend\Paginator\ScrollingStyle\ScrollingStyleInterface,
which defines a single method, getPages(). Specifically,

1 public function getPages(Zend\Paginator\Paginator $paginator, $pageRange = null);

This method should calculate a lower and upper bound for page numbers within the range of so-called “local” pages
(that is, pages that are nearby the current page).

Unless it extends another scrolling style (see Zend\Paginator\ScrollingStyle\Elastic for an example),
your custom scrolling style will inevitably end with something similar to the following line of code:

1 return $paginator->getPagesInRange($lowerBound, $upperBound);

529

http://www.php.net/~helly/php/ext/spl/interfaceCountable.html

Zend Framework 2 Documentation, Release 2.0.0

There’s nothing special about this call; it’s merely a convenience method to check the validity of the lower and upper
bound and return an array of the range to the paginator.

When you’re ready to use your new scrolling style, you’ll need to tell Zend\Paginator\Paginator what direc-
tory to look in. To do that, do the following:

1 $manager = Zend\Paginator\Paginator::getScrollingStyleManager();
2 $manager->setInvokableClass(’my-style’, ’My\Paginator\ScrollingStyle’);

125.3 Caching features

Zend\Paginator\Paginator can be told to cache the data it has already passed on, preventing
the adapter from fetching them each time they are used. To tell paginator to automatically cache the
adapter’s data, just pass to its setCache() method a pre-configured cache object implementing the
Zend\Cache\Storage\StorageInterface interface.

1 $cache = StorageFactory::adapterFactory(’filesystem’, array(
2 ’cache_dir’ => ’/tmp’,
3 ’ttl’ => 3600,
4 ’plugins’ => array(’serializer’),
5));
6 Zend\Paginator\Paginator::setCache($cache);

As long as Zend\Paginator\Paginator has been seeded with a cache storage object the data it generates will
be cached. Sometimes you would like not to cache data even if you already passed a cache instance. You should then
use setCacheEnable() for that.

1 // $cache is a Zend\Cache\Storage\StorageInterface instance
2 Zend\Paginator\Paginator::setCache($cache);
3 // ... later on the script
4 $paginator->setCacheEnable(false);
5 // cache is now disabled

When a cache is set, data are automatically stored in it and pulled out from it. It then can be useful to empty the
cache manually. You can get this done by calling clearPageItemCache($pageNumber). If you don’t pass
any parameter, the whole cache will be empty. You can optionally pass a parameter representing the page number to
empty in the cache:

1 // $cache is a Zend\Cache\Storage\StorageInterface instance
2 Zend\Paginator\Paginator::setCache($cache);
3 // $paginator is a fully configured Zend\Paginator\Paginator instance
4 $items = $paginator->getCurrentItems();
5 // page 1 is now in cache
6 $page3Items = $paginator->getItemsByPage(3);
7 // page 3 is now in cache
8

9 // clear the cache of the results for page 3
10 $paginator->clearPageItemCache(3);
11

12 // clear all the cache data
13 $paginator->clearPageItemCache();

Changing the item count per page will empty the whole cache as it would have become invalid:

1 // $cache is a Zend\Cache\Storage\StorageInterface instance
2 Zend\Paginator\Paginator::setCache($cache);
3 // fetch some items

530 Chapter 125. Advanced usage

Zend Framework 2 Documentation, Release 2.0.0

4 // $paginator is a fully configured Zend\Paginator\Paginator instance
5 $items = $paginator->getCurrentItems();
6

7 // all the cache data will be flushed:
8 $paginator->setItemCountPerPage(2);

It is also possible to see the data in cache and ask for them directly. getPageItemCache() can be used for that:

1 // $cache is a Zend\Cache\Storage\StorageInterface instance
2 Zend\Paginator\Paginator::setCache($cache);
3 // $paginator is a fully configured Zend\Paginator\Paginator instance
4 $paginator->setItemCountPerPage(3);
5 // fetch some items
6 $items = $paginator->getCurrentItems();
7 $otherItems = $paginator->getItemsPerPage(4);
8

9 // see the cached items as a two-dimension array:
10 var_dump($paginator->getPageItemCache());

125.3. Caching features 531

Zend Framework 2 Documentation, Release 2.0.0

532 Chapter 125. Advanced usage

CHAPTER

SIX

INTRODUCTION

The Zend\Permissions\Acl component provides a lightweight and flexible access control list (ACL) imple-
mentation for privileges management. In general, an application may utilize such ACL‘s to control access to certain
protected objects by other requesting objects.

For the purposes of this documentation:

• a resource is an object to which access is controlled.

• a role is an object that may request access to a Resource.

Put simply, roles request access to resources. For example, if a parking attendant requests access to a car, then the
parking attendant is the requesting role, and the car is the resource, since access to the car may not be granted to
everyone.

Through the specification and use of an ACL, an application may control how roles are granted access to resources.

126.1 Resources

Creating a resource using Zend\Permissions\Acl\Acl is very simple. A resource interface
Zend\Permissions\Acl\Resource\ResourceInterface is provided to facilitate creating resources
in an application. A class need only implement this interface, which consists of a single method,
getResourceId(), for Zend\Permissions\Acl\Acl to recognize the object as a resource. Additionally,
Zend\Permissions\Acl\Resource\GenericResource is provided as a basic resource implementation
for developers to extend as needed.

Zend\Permissions\Acl\Acl provides a tree structure to which multiple resources can be added. Since re-
sources are stored in such a tree structure, they can be organized from the general (toward the tree root) to the
specific (toward the tree leaves). Queries on a specific resource will automatically search the resource’s hierarchy
for rules assigned to ancestor resources, allowing for simple inheritance of rules. For example, if a default rule is
to be applied to each building in a city, one would simply assign the rule to the city, instead of assigning the same
rule to each building. Some buildings may require exceptions to such a rule, however, and this can be achieved in
Zend\Permissions\Acl\Acl by assigning such exception rules to each building that requires such an excep-
tion. A resource may inherit from only one parent resource, though this parent resource can have its own parent
resource, etc.

Zend\Permissions\Acl\Acl also supports privileges on resources (e.g., “create”, “read”, “update”, “delete”),
so the developer can assign rules that affect all privileges or specific privileges on one or more resources.

533

Zend Framework 2 Documentation, Release 2.0.0

126.2 Roles

As with resources, creating a role is also very simple. All roles must implement
Zend\Permissions\Acl\Role\RoleInterface. This interface consists of a single method,
getRoleId(), Additionally, Zend\Permissions\Acl\Role\GenericRole is provided by the
Zend\Permissions\Acl component as a basic role implementation for developers to extend as needed.

In Zend\Permissions\Acl\Acl, a role may inherit from one or more roles. This is to support inheritance of
rules among roles. For example, a user role, such as “sally”, may belong to one or more parent roles, such as “editor”
and “administrator”. The developer can assign rules to “editor” and “administrator” separately, and “sally” would
inherit such rules from both, without having to assign rules directly to “sally”.

Though the ability to inherit from multiple roles is very useful, multiple inheritance also introduces some degree of
complexity. The following example illustrates the ambiguity condition and how Zend\Permissions\Acl\Acl
solves it.

Multiple Inheritance among Roles

The following code defines three base roles - “guest”, “member”, and “admin” - from which other roles may inherit.
Then, a role identified by “someUser” is established and inherits from the three other roles. The order in which these
roles appear in the $parents array is important. When necessary, Zend\Permissions\Acl\Acl searches for
access rules defined not only for the queried role (herein, “someUser”), but also upon the roles from which the queried
role inherits (herein, “guest”, “member”, and “admin”):

1 use Zend\Permissions\Acl\Acl;
2 use Zend\Permissions\Acl\Role\GenericRole as Role;
3 use Zend\Permissions\Acl\Resource\GenericResource as Resource;
4

5 $acl = new Acl();
6

7 $acl->addRole(new Role(’guest’))
8 ->addRole(new Role(’member’))
9 ->addRole(new Role(’admin’));

10

11 $parents = array(’guest’, ’member’, ’admin’);
12 $acl->addRole(new Role(’someUser’), $parents);
13

14 $acl->addResource(new Resource(’someResource’));
15

16 $acl->deny(’guest’, ’someResource’);
17 $acl->allow(’member’, ’someResource’);
18

19 echo $acl->isAllowed(’someUser’, ’someResource’) ? ’allowed’ : ’denied’;

Since there is no rule specifically defined for the “someUser” role and “someResource”,
Zend\Permissions\Acl\Acl must search for rules that may be defined for roles that “someUser” inher-
its. First, the “admin” role is visited, and there is no access rule defined for it. Next, the “member” role is visited,
and Zend\Permissions\Acl\Acl finds that there is a rule specifying that “member” is allowed access to
“someResource”.

If Zend\Permissions\Acl\Acl were to continue examining the rules defined for other parent roles, however,
it would find that “guest” is denied access to “someResource”. This fact introduces an ambiguity because now
“someUser” is both denied and allowed access to “someResource”, by reason of having inherited conflicting rules
from different parent roles.

Zend\Permissions\Acl\Acl resolves this ambiguity by completing a query when it finds the first rule that is

534 Chapter 126. Introduction

Zend Framework 2 Documentation, Release 2.0.0

directly applicable to the query. In this case, since the “member” role is examined before the “guest” role, the example
code would print “allowed”.

Note: When specifying multiple parents for a role, keep in mind that the last parent listed is the first one searched for
rules applicable to an authorization query.

126.3 Creating the Access Control List

An Access Control List (ACL) can represent any set of physical or virtual objects that you wish. For the purposes of
demonstration, however, we will create a basic Content Management System (CMS) ACL that maintains several tiers
of groups over a wide variety of areas. To create a new ACL object, we instantiate the ACL with no parameters:

1 use Zend\Permissions\Acl\Acl;
2 $acl = new Acl();

Note: Until a developer specifies an “allow” rule, Zend\Permissions\Acl\Acl denies access to every privilege
upon every resource by every role.

126.4 Registering Roles

CMS‘s will nearly always require a hierarchy of permissions to determine the authoring capabilities of its users. There
may be a ‘Guest’ group to allow limited access for demonstrations, a ‘Staff’ group for the majority of CMS users who
perform most of the day-to-day operations, an ‘Editor’ group for those responsible for publishing, reviewing, archiving
and deleting content, and finally an ‘Administrator’ group whose tasks may include all of those of the other groups as
well as maintenance of sensitive information, user management, back-end configuration data, backup and export. This
set of permissions can be represented in a role registry, allowing each group to inherit privileges from ‘parent’ groups,
as well as providing distinct privileges for their unique group only. The permissions may be expressed as follows:

Table 126.1: Access Controls for an Example CMS

Name Unique Permissions Inherit Permissions From
Guest View N/A
Staff Edit, Submit, Revise Guest
Editor Publish, Archive, Delete Staff
Administrator (Granted all access) N/A

For this example, Zend\Permissions\Acl\Role\GenericRole is used, but any object that implements
Zend\Permissions\Acl\Role\RoleInterface is acceptable. These groups can be added to the role reg-
istry as follows:

1 use Zend\Permissions\Acl\Acl;
2 use Zend\Permissions\Acl\Role\GenericRole as Role;
3

4 $acl = new Acl();
5

6 // Add groups to the Role registry using Zend\Permissions\Acl\Role\GenericRole
7 // Guest does not inherit access controls
8 $roleGuest = new Role(’guest’);
9 $acl->addRole($roleGuest);

10

126.3. Creating the Access Control List 535

Zend Framework 2 Documentation, Release 2.0.0

11 // Staff inherits from guest
12 $acl->addRole(new Role(’staff’), $roleGuest);
13

14 /*
15 Alternatively, the above could be written:
16 $acl->addRole(new Role(’staff’), ’guest’);
17 */
18

19 // Editor inherits from staff
20 $acl->addRole(new Role(’editor’), ’staff’);
21

22 // Administrator does not inherit access controls
23 $acl->addRole(new Role(’administrator’));

126.5 Defining Access Controls

Now that the ACL contains the relevant roles, rules can be established that define how resources may be accessed
by roles. You may have noticed that we have not defined any particular resources for this example, which is simpli-
fied to illustrate that the rules apply to all resources. Zend\Permissions\Acl\Acl provides an implementation
whereby rules need only be assigned from general to specific, minimizing the number of rules needed, because re-
sources and roles inherit rules that are defined upon their ancestors.

Note: In general, Zend\Permissions\Acl\Acl obeys a given rule if and only if a more specific rule does not
apply.

Consequently, we can define a reasonably complex set of rules with a minimum amount of code. To apply the base
permissions as defined above:

1 use Zend\Permissions\Acl\Acl;
2 use Zend\Permissions\Acl\Role\GenericRole as Role;
3

4 $acl = new Acl();
5

6 $roleGuest = new Role(’guest’);
7 $acl->addRole($roleGuest);
8 $acl->addRole(new Role(’staff’), $roleGuest);
9 $acl->addRole(new Role(’editor’), ’staff’);

10 $acl->addRole(new Role(’administrator’));
11

12 // Guest may only view content
13 $acl->allow($roleGuest, null, ’view’);
14

15 /*
16 Alternatively, the above could be written:
17 $acl->allow(’guest’, null, ’view’);
18 //*/
19

20 // Staff inherits view privilege from guest, but also needs additional
21 // privileges
22 $acl->allow(’staff’, null, array(’edit’, ’submit’, ’revise’));
23

24 // Editor inherits view, edit, submit, and revise privileges from
25 // staff, but also needs additional privileges
26 $acl->allow(’editor’, null, array(’publish’, ’archive’, ’delete’));

536 Chapter 126. Introduction

Zend Framework 2 Documentation, Release 2.0.0

27

28 // Administrator inherits nothing, but is allowed all privileges
29 $acl->allow(’administrator’);

The NULL values in the above allow() calls are used to indicate that the allow rules apply to all resources.

126.6 Querying an ACL

We now have a flexible ACL that can be used to determine whether requesters have permission to perform functions
throughout the web application. Performing queries is quite simple using the isAllowed() method:

1 echo $acl->isAllowed(’guest’, null, ’view’) ?
2 "allowed" : "denied";
3 // allowed
4

5 echo $acl->isAllowed(’staff’, null, ’publish’) ?
6 "allowed" : "denied";
7 // denied
8

9 echo $acl->isAllowed(’staff’, null, ’revise’) ?
10 "allowed" : "denied";
11 // allowed
12

13 echo $acl->isAllowed(’editor’, null, ’view’) ?
14 "allowed" : "denied";
15 // allowed because of inheritance from guest
16

17 echo $acl->isAllowed(’editor’, null, ’update’) ?
18 "allowed" : "denied";
19 // denied because no allow rule for ’update’
20

21 echo $acl->isAllowed(’administrator’, null, ’view’) ?
22 "allowed" : "denied";
23 // allowed because administrator is allowed all privileges
24

25 echo $acl->isAllowed(’administrator’) ?
26 "allowed" : "denied";
27 // allowed because administrator is allowed all privileges
28

29 echo $acl->isAllowed(’administrator’, null, ’update’) ?
30 "allowed" : "denied";
31 // allowed because administrator is allowed all privileges

126.6. Querying an ACL 537

Zend Framework 2 Documentation, Release 2.0.0

538 Chapter 126. Introduction

CHAPTER

SEVEN

REFINING ACCESS CONTROLS

127.1 Precise Access Controls

The basic ACL as defined in the previous section shows how various privileges may be allowed upon the entire ACL
(all resources). In practice, however, access controls tend to have exceptions and varying degrees of complexity.
Zend\Permissions\Acl\Acl allows to you accomplish these refinements in a straightforward and flexible man-
ner.

For the example CMS, it has been determined that whilst the ‘staff’ group covers the needs of the vast majority of
users, there is a need for a new ‘marketing’ group that requires access to the newsletter and latest news in the CMS.
The group is fairly self-sufficient and will have the ability to publish and archive both newsletters and the latest news.

In addition, it has also been requested that the ‘staff’ group be allowed to view news stories but not to revise the
latest news. Finally, it should be impossible for anyone (administrators included) to archive any ‘announcement’ news
stories since they only have a lifespan of 1-2 days.

First we revise the role registry to reflect these changes. We have determined that the ‘marketing’ group has the same
basic permissions as ‘staff’, so we define ‘marketing’ in such a way that it inherits permissions from ‘staff’:

1 // The new marketing group inherits permissions from staff
2 use Zend\Permissions\Acl\Acl;
3 use Zend\Permissions\Acl\Role\GenericRole as Role;
4 use Zend\Permissions\Acl\Resource\GenericResource as Resource;
5

6 $acl = new Acl();
7

8 $acl->addRole(new Role(’marketing’), ’staff’);

Next, note that the above access controls refer to specific resources (e.g., “newsletter”, “latest news”, “announcement
news”). Now we add these resources:

1 // Create Resources for the rules
2

3 // newsletter
4 $acl->addResource(new Resource(’newsletter’));
5

6 // news
7 $acl->addResource(new Resource(’news’));
8

9 // latest news
10 $acl->addResource(new Resource(’latest’), ’news’);
11

12 // announcement news
13 $acl->addResource(new Resource(’announcement’), ’news’);

539

Zend Framework 2 Documentation, Release 2.0.0

Then it is simply a matter of defining these more specific rules on the target areas of the ACL:

1 // Marketing must be able to publish and archive newsletters and the
2 // latest news
3 $acl->allow(’marketing’,
4 array(’newsletter’, ’latest’),
5 array(’publish’, ’archive’));
6

7 // Staff (and marketing, by inheritance), are denied permission to
8 // revise the latest news
9 $acl->deny(’staff’, ’latest’, ’revise’);

10

11 // Everyone (including administrators) are denied permission to
12 // archive news announcements
13 $acl->deny(null, ’announcement’, ’archive’);

We can now query the ACL with respect to the latest changes:

1 echo $acl->isAllowed(’staff’, ’newsletter’, ’publish’) ?
2 "allowed" : "denied";
3 // denied
4

5 echo $acl->isAllowed(’marketing’, ’newsletter’, ’publish’) ?
6 "allowed" : "denied";
7 // allowed
8

9 echo $acl->isAllowed(’staff’, ’latest’, ’publish’) ?
10 "allowed" : "denied";
11 // denied
12

13 echo $acl->isAllowed(’marketing’, ’latest’, ’publish’) ?
14 "allowed" : "denied";
15 // allowed
16

17 echo $acl->isAllowed(’marketing’, ’latest’, ’archive’) ?
18 "allowed" : "denied";
19 // allowed
20

21 echo $acl->isAllowed(’marketing’, ’latest’, ’revise’) ?
22 "allowed" : "denied";
23 // denied
24

25 echo $acl->isAllowed(’editor’, ’announcement’, ’archive’) ?
26 "allowed" : "denied";
27 // denied
28

29 echo $acl->isAllowed(’administrator’, ’announcement’, ’archive’) ?
30 "allowed" : "denied";
31 // denied

127.2 Removing Access Controls

To remove one or more access rules from the ACL, simply use the available removeAllow() or removeDeny()
methods. As with allow() and deny(), you may provide a NULL value to indicate application to all roles, re-
sources, and/or privileges:

540 Chapter 127. Refining Access Controls

Zend Framework 2 Documentation, Release 2.0.0

1 // Remove the denial of revising latest news to staff (and marketing,
2 // by inheritance)
3 $acl->removeDeny(’staff’, ’latest’, ’revise’);
4

5 echo $acl->isAllowed(’marketing’, ’latest’, ’revise’) ?
6 "allowed" : "denied";
7 // allowed
8

9 // Remove the allowance of publishing and archiving newsletters to
10 // marketing
11 $acl->removeAllow(’marketing’,
12 ’newsletter’,
13 array(’publish’, ’archive’));
14

15 echo $acl->isAllowed(’marketing’, ’newsletter’, ’publish’) ?
16 "allowed" : "denied";
17 // denied
18

19 echo $acl->isAllowed(’marketing’, ’newsletter’, ’archive’) ?
20 "allowed" : "denied";
21 // denied

Privileges may be modified incrementally as indicated above, but a NULL value for the privileges overrides such
incremental changes:

1 // Allow marketing all permissions upon the latest news
2 $acl->allow(’marketing’, ’latest’);
3

4 echo $acl->isAllowed(’marketing’, ’latest’, ’publish’) ?
5 "allowed" : "denied";
6 // allowed
7

8 echo $acl->isAllowed(’marketing’, ’latest’, ’archive’) ?
9 "allowed" : "denied";

10 // allowed
11

12 echo $acl->isAllowed(’marketing’, ’latest’, ’anything’) ?
13 "allowed" : "denied";
14 // allowed

127.2. Removing Access Controls 541

Zend Framework 2 Documentation, Release 2.0.0

542 Chapter 127. Refining Access Controls

CHAPTER

EIGHT

ADVANCED USAGE

128.1 Storing ACL Data for Persistence

The Zend\Permissions\Acl component was designed in such a way that it does not require any particu-
lar backend technology such as a database or cache server for storage of the ACL data. Its complete PHP im-
plementation enables customized administration tools to be built upon Zend\Permissions\Acl\Acl with
relative ease and flexibility. Many situations require some form of interactive maintenance of the ACL, and
Zend\Permissions\Acl\Acl provides methods for setting up, and querying against, the access controls of
an application.

Storage of ACL data is therefore left as a task for the developer, since use cases are expected to vary widely for various
situations. Because Zend\Permissions\Acl\Acl is serializable, ACL objects may be serialized with PHP‘s
serialize() function, and the results may be stored anywhere the developer should desire, such as a file, database, or
caching mechanism.

128.2 Writing Conditional ACL Rules with Assertions

Sometimes a rule for allowing or denying a role access to a resource should not be absolute but dependent upon
various criteria. For example, suppose that certain access should be allowed, but only between the hours of 8:00am
and 5:00pm. Another example would be denying access because a request comes from an IP address that has been
flagged as a source of abuse. Zend\Permissions\Acl\Acl has built-in support for implementing rules based
on whatever conditions the developer needs.

Zend\Permissions\Acl\Acl provides support for conditional rules with
Zend\Permissions\Acl\Assertion\AssertionInterface. In order to use the rule assertion in-
terface, a developer writes a class that implements the assert() method of the interface:

1 class CleanIPAssertion implements Zend\Permissions\Acl\Assertion\AssertionInterface
2 {
3 public function assert(Zend\Permissions\Acl $acl,
4 Zend\Permissions\Acl\Role\RoleInterface $role = null,
5 Zend\Permissions\Acl\Resource\ResourceInterface $resource = null,
6 $privilege = null)
7 {
8 return $this->_isCleanIP($_SERVER[’REMOTE_ADDR’]);
9 }

10

11 protected function _isCleanIP($ip)
12 {
13 // ...

543

http://php.net/serialize

Zend Framework 2 Documentation, Release 2.0.0

14 }
15 }

Once an assertion class is available, the developer must supply an instance of the assertion class when assigning
conditional rules. A rule that is created with an assertion only applies when the assertion method returns TRUE.

1 use Zend\Permissions\Acl\Acl;
2

3 $acl = new Acl();
4 $acl->allow(null, null, null, new CleanIPAssertion());

The above code creates a conditional allow rule that allows access to all privileges on everything by everyone, except
when the requesting IP is “blacklisted.” If a request comes in from an IP that is not considered “clean,” then the allow
rule does not apply. Since the rule applies to all roles, all resources, and all privileges, an “unclean” IP would result
in a denial of access. This is a special case, however, and it should be understood that in all other cases (i.e., where
a specific role, resource, or privilege is specified for the rule), a failed assertion results in the rule not applying, and
other rules would be used to determine whether access is allowed or denied.

The assert() method of an assertion object is passed the ACL, role, resource, and privilege to which the autho-
rization query (i.e., isAllowed()) applies, in order to provide a context for the assertion class to determine its
conditions where needed.

544 Chapter 128. Advanced Usage

CHAPTER

NINE

ZEND\SERVICEMANAGER

The Service Locator design pattern is implemented by the ServiceManager. The Service Locator is a ser-
vice/object locator, tasked with retrieving other objects. You may interact with the ServiceManger via the fol-
lowing methods

• has($name), tests whether the ServiceManager has a named service;

• get($name), retrieves a service by the given name.

In addition to above methods, the ServiceManger can be instantiated via the following features:

• Service registration. You can register an object under a given name ($services->setService(‘foo’, $object)).

• Lazy-loaded service objects. You can tell the manager what class to instantiate on first request ($services-
>setInvokableClass(‘foo’, ‘FullyQualifiedClassname’)).

• Service factories. Instead of an actual object instance or a class name, you can tell the manager to invoke
the provided factory in order to get the object instance. Factories may be either any PHP callable, an object
implementing Zend\ServiceManager\FactoryInterface, or the name of a class implementing that
interface.

• Service aliasing. You can tell the manager that when a particular name is requested, use the provided name
instead. You can alias to a known service, a lazy-loaded service, a factory, or even other aliases.

• Abstract factories. An abstract factory can be considered a “fallback” – if the service does not exist in the
manager, it will then pass it to any abstract factories attached to it until one of them is able to return an object.

• Initializers. You may want certain injection points always populated – as an example, any object you
load via the service manager that implements Zend\EventManager\EventManagerAware should
likely receive an EventManager instance. Initializers are PHP callbacks or classes implementing
Zend\ServiceManager\InitializerInterface; they receive the new instance, and can then ma-
nipulate it.

In addition to the above, the ServiceManager also provides optional ties to Zend\Di, allowing Di to act as an
initializer or an abstract factory for the manager.

545

http://en.wikipedia.org/wiki/Service_locator_pattern

Zend Framework 2 Documentation, Release 2.0.0

546 Chapter 129. Zend\ServiceManager

CHAPTER

ZEND\SERVICEMANAGER QUICK
START

By default, Zend Framework utilizes Zend\ServiceManagerwithin the MVC layer. As such, in most cases you’ll
be providing services, invokable classes, aliases, and factories either via configuration or via your module classes.

By default, the module manager listener Zend\ModuleManager\Listener\ServiceListener will do the
following:

• For modules implementing the Zend\ModuleManager\Feature\ServiceProvider interface, or the
getServiceConfig() method, it will call that method and merge the configuration.

• After all modules have been processed, it will grab the configuration from the registered
Zend\ModuleManager\Feature\ConfigListener, and merge any configuration under the
service_manager key.

• Finally, it will use the merged configuration to configure the ServiceManager.

In most cases, you won’t interact with the ServiceManager, other than to provide services to it; your ap-
plication will typically rely on good configuration in the ServiceManager to ensure that classes are config-
ured correctly with their dependencies. When creating factories, however, you may want to interact with the
ServiceManager to retrieve other services to inject as dependencies. Additionally, there are some cases where
you may want to receive the ServiceManager to lazy-retrieve dependencies; as such, you’ll want to implement
ServiceManagerAwareInterface, and learn the API of the ServiceManager.

130.1 Using Configuration

Configuration requires a service_manager key at the top level of your configuration, with one or more of the
following sub-keys:

• abstract_factories, which should be an array of abstract factory class names.

• aliases, which should be an associative array of alias name/target name pairs (where the target name may also
be an alias).

• factories, an array of service name/factory class name pairs. The factories should be either classes implementing
Zend\ServiceManager\FactoryInterface or invokable classes. If you are using PHP configuration
files, you may provide any PHP callable as the factory.

• invokables, an array of service name/class name pairs. The class name should be class that may be directly
instantiated without any constructor arguments.

• services, an array of service name/object pairs. Clearly, this will only work with PHP configuration.

547

Zend Framework 2 Documentation, Release 2.0.0

• shared, an array of service name/boolean pairs, indicating whether or not a service should be shared. By
default, the ServiceManager assumes all services are shared, but you may specify a boolean false value
here to indicate a new instance should be returned.

130.2 Modules as Service Providers

Modules may act as service configuration providers. To do so, the Module class must either
implement Zend\ModuleManager\Feature\ServiceProviderInterface or simply the method
getServiceConfig() (which is also defined in the interface). This method must return one of the following:

• An array (or Traversable object) of configuration compatible with Zend\ServiceManager\Config.
(Basically, it should have the keys for configuration as discussed in the previous section.

• A string providing the name of a class implementing Zend\ServiceManager\ConfigInterface.

• An instance of either Zend\ServiceManager\Config, or an object implementing
Zend\ServiceManager\ConfigInterface.

As noted previously, this configuration will be merged with the configuration returned from other modules as well
as configuration files, prior to being passed to the ServiceManager; this allows overriding configuration from
modules easily.

130.3 Examples

Sample configuration

The following is valid configuration for any configuration being merged in your application, and demonstrates each of
the possible configuration keys. Configuration is merged in the following order:

• Configuration returned from Module classes via the getServiceConfig() method, in the order in which
modules are processed.

• Module configuration under the service_manager key, in the order in which modules are processed.

• Application configuration under the config/autoload/ directory, in the order in which they are processed.

As such, you have a variety of ways to override service manager configuration settings.

1 <?php
2 // a module configuration, "module/SomeModule/config/module.config.php"
3 return array(
4 ’service_manager’ => array(
5 ’abstract_factories’ => array(
6 // Valid values include names of classes implementing
7 // AbstractFactoryInterface, instances of classes implementing
8 // AbstractFactoryInterface, or any PHP callbacks
9 ’SomeModule\Service\FallbackFactory’,

10),
11 ’aliases’ => array(
12 // Aliasing a FQCN to a service name
13 ’SomeModule\Model\User’ => ’User’,
14 // Aliasing a name to a known service name
15 ’AdminUser’ => ’User’,
16 // Aliasing to an alias
17 ’SuperUser’ => ’AdminUser’,
18),

548 Chapter 130. Zend\ServiceManager Quick Start

Zend Framework 2 Documentation, Release 2.0.0

19 ’factories’ => array(
20 // Keys are the service names.
21 // Valid values include names of classes implementing
22 // FactoryInterface, instances of classes implementing
23 // FactoryInterface, or any PHP callbacks
24 ’User’ => ’SomeModule\Service\UserFactory’,
25 ’UserForm’ => function ($serviceManager) {
26 $form = new SomeModule\Form\User();
27

28 // Retrieve a dependency from the service manager and inject it!
29 $form->setInputFilter($serviceManager->get(’UserInputFilter’));
30 return $form;
31 },
32),
33 ’invokables’ => array(
34 // Keys are the service names
35 // Values are valid class names to instantiate.
36 ’UserInputFiler’ => ’SomeModule\InputFilter\User’,
37),
38 ’services’ => array(
39 // Keys are the service names
40 // Values are objects
41 ’Auth’ => new SomeModule\Authentication\AuthenticationService(),
42),
43 ’shared’ => array(
44 // Usually, you’ll only indicate services that should _NOT_ be
45 // shared -- i.e., ones where you want a different instance
46 // every time.
47 ’UserForm’ => false,
48),
49),
50);

Note: Configuration and PHP

Typically, you should not have your configuration files create new instances of objects or even closures for factories;
at the time of configuration, not all autoloading may be in place, and if another configuration overwrites this one later,
you’re now spending CPU and memory performing work that is ultimately lost.

For instances that require factories, write a factory. If you’d like to inject specific, configured instances, use the Module
class to do so, or a listener.

Module returning an array

The following demonstrates returning an array of configuration from a module class. It is substantively the same as
the array configuration from the previous example.

1 namespace SomeModule;
2

3 class Module
4 {
5 public function getServiceConfig()
6 {
7 return array(
8 ’abstract_factories’ => array(
9 // Valid values include names of classes implementing

130.3. Examples 549

Zend Framework 2 Documentation, Release 2.0.0

10 // AbstractFactoryInterface, instances of classes implementing
11 // AbstractFactoryInterface, or any PHP callbacks
12 ’SomeModule\Service\FallbackFactory’,
13),
14 ’aliases’ => array(
15 // Aliasing a FQCN to a service name
16 ’SomeModule\Model\User’ => ’User’,
17 // Aliasing a name to a known service name
18 ’AdminUser’ => ’User’,
19 // Aliasing to an alias
20 ’SuperUser’ => ’AdminUser’,
21),
22 ’factories’ => array(
23 // Keys are the service names.
24 // Valid values include names of classes implementing
25 // FactoryInterface, instances of classes implementing
26 // FactoryInterface, or any PHP callbacks
27 ’User’ => ’SomeModule\Service\UserFactory’,
28 ’UserForm’ => function ($serviceManager) {
29 // Note: we’re already in the "SomeModule" namespace
30 $form = new Form\User();
31

32 // Retrieve a dependency from the service manager and inject it!
33 $form->setInputFilter($serviceManager->get(’UserInputFilter’),
34 return $form;
35 },
36),
37 ’invokables’ => array(
38 // Keys are the service names
39 // Values are valid class names to instantiate.
40 ’UserInputFiler’ => ’SomeModule\InputFilter\User’,
41),
42 ’services’ => array(
43 // Keys are the service names
44 // Values are objects
45 // Note: we’re already in the "SomeModule" namespace
46 ’Auth’ => new Authentication\AuthenticationService(),
47),
48 ’shared’ => array(
49 // Usually, you’ll only indicate services that should _NOT_ be
50 // shared -- i.e., ones where you want a different instance
51 // every time.
52 ’UserForm’ => false,
53),
54);
55 }
56 }

Returning a Configuration instance

First, let’s create a class that holds configuration.

1 namespace SomeModule\Service;
2

3 use SomeModule\Authentication;
4 use SomeModule\Form;
5 use Zend\ServiceManager\Config;

550 Chapter 130. Zend\ServiceManager Quick Start

Zend Framework 2 Documentation, Release 2.0.0

6 use Zend\ServiceManager\ServiceManager;
7

8 class ServiceConfiguration extends Configuration
9 {

10 /**
11 * This is hard-coded for brevity.
12 */
13 public function configureServiceManager(ServiceManager $serviceManager)
14 {
15 $serviceManager->setFactory(’User’, ’SomeModule\Service\UserFactory’);
16 $serviceManager->setFactory(’UserForm’, function ($serviceManager) {
17 $form = new Form\User();
18

19 // Retrieve a dependency from the service manager and inject it!
20 $form->setInputFilter($serviceManager->get(’UserInputFilter’),
21 return $form;
22 });
23 $serviceManager->setInvokableClass(’UserInputFilter’, ’SomeModule\InputFilter\User’);
24 $serviceManager->setService(’Auth’, new Authentication\AuthenticationService());
25 $serviceManager->setAlias(’SomeModule\Model\User’, ’User’);
26 $serviceManager->setAlias(’AdminUser’, ’User’);
27 $serviceManager->setAlias(’SuperUser’, ’AdminUser’);
28 $serviceManager->setShared(’UserForm’, false);
29 }
30 }

Now, we’ll consume it from our Module.

1 namespace SomeModule;
2

3 // We could implement Zend\ModuleManager\Feature\ServiceProviderInterface.
4 // However, the module manager will still find the method without doing so.
5 class Module
6 {
7 public function getServiceConfig()
8 {
9 return new Service\ServiceConfiguration();

10 // OR:
11 // return ’SomeModule\Service\ServiceConfiguration’;
12 }
13 }

Creating a ServiceManager-aware class

By default, the Zend Framework MVC registers an initializer that will inject the ServiceManager instance into any
class implementing Zend\ServiceManager\ServiceManagerAwareInterface. The default controller
implementations implement this interface, as do a small number of other objects. A simple implementation looks like
the following.

1 namespace SomeModule\Controller\BareController;
2

3 use Zend\ServiceManager\ServiceManager;
4 use Zend\ServiceManager\ServiceManagerAwareInterface;
5 use Zend\Stdlib\DispatchableInterface as Dispatchable;
6 use Zend\Stdlib\RequestInterface as Request;
7 use Zend\Stdlib\ResponseInterface as Response;
8

130.3. Examples 551

Zend Framework 2 Documentation, Release 2.0.0

9 class BareController implements
10 Dispatchable,
11 ServiceManagerAwareInterface
12 {
13 protected $services;
14

15 public function setServiceManager(ServiceManager $serviceManager)
16 {
17 $this->services = $serviceManager;
18 }
19

20 public function dispatch(Request $request, Response $response = null)
21 {
22 // ...
23

24 // Retrieve something from the service manager
25 $router = $this->services->get(’Router’);
26

27 // ...
28 }
29 }

552 Chapter 130. Zend\ServiceManager Quick Start

CHAPTER

ONE

ZEND\STDLIB\HYDRATOR

Hydration is the act of populating an object from a set of data.

The Hydrator is a simple component to provide mechanisms both for hydrating objects, as well as extracting data
sets from them.

The component consists of an interface, and several implementations for common use cases.

131.1 HydratorInterface

1 namespace Zend\Stdlib\Hydrator;
2

3 interface HydratorInterface
4 {
5 /**
6 * Extract values from an object
7 *
8 * @param object $object
9 * @return array

10 */
11 public function extract($object);
12

13 /**
14 * Hydrate $object with the provided $data.
15 *
16 * @param array $data
17 * @param object $object
18 * @return void
19 */
20 public function hydrate(array $data, $object);
21 }

131.2 Usage

Usage is quite simple: simply instantiate the hydrator, and then pass information to it.

1 use Zend\Stdlib\Hydrator;
2 $hydrator = new Hydrator\ArraySerializable();
3

4 $object = new ArrayObject(array());
5

553

Zend Framework 2 Documentation, Release 2.0.0

6 $hydrator->hydrate($someData, $object);
7

8 // or, if the object has data we want as an array:
9 $data = $hydrator->extract($object);

131.3 Available Implementations

• Zend\Stdlib\Hydrator\ArraySerializable

Follows the definition of ArrayObject. Objects must implement either the the exchangeArray() or
populate() methods to support hydration, and the getArrayCopy() method to support extraction.

• Zend\Stdlib\Hydrator\ClassMethods

Any data key matching a setter method will be called in order to hydrate; any method matching a getter method
will be called for extraction.

• Zend\Stdlib\Hydrator\ObjectProperty

Any data key matching a publically accessible property will be hydrated; any public properties will be used for
extration.

554 Chapter 131. Zend\Stdlib\Hydrator

CHAPTER

TWO

ZEND\URI

132.1 Overview

Zend\Uri is a component that aids in manipulating and validating Uniform Resource Identifiers (URIs) 1.
Zend\Uri exists primarily to service other components, such as Zend\Http\, but is also useful as a standalone
utility.

URIs always begin with a scheme, followed by a colon. The construction of the many different schemes varies
significantly. The Zend\Uri component provides the Zend\Uri\UriFactory that returns a class implementing
the Zend\Uri\UriInterface which specializes in the scheme if such a class is registered with the Factory.

132.2 Creating a New URI

Zend\Uri\UriFactory will build a new URI from scratch if only a scheme is passed to
Zend\Uri\UriFactory::factory().

Creating a New URI with ZendUriUriFactory::factory()

1 // To create a new URI from scratch, pass only the scheme
2 // followed by a colon.
3 $uri = Zend\Uri\UriFactory::factory(’http:’);
4

5 // $uri instanceof Zend\Uri\UriInterface

To create a new URI from scratch, pass only the scheme followed by a colon to
Zend\Uri\UriFactory::factory() 2. If an unsupported scheme is passed and no scheme-specific
class is specified, a Zend\Uri\Exception\InvalidArgumentException will be thrown.

If the scheme or URI passed is supported, Zend\Uri\UriFactory::factory() will return a class implement-
ing Zend\Uri\UriInterface that specializes in the scheme to be created.

132.2.1 Creating a New Custom-Class URI

You can specify a custom class to be used when using the Zend\Uri\UriFactory by registering your class with
the Factory using \Zend\Uri\UriFactory::registerScheme() which takes the scheme as first parameter.
This enables you to create your own URI-class and instantiate new URI objects based on your own custom classes.

1 See http://www.ietf.org/rfc/rfc3986.txt for more information on URIs
2 At the time of writing, Zend\Uri provides built-in support for the following schemes: HTTP, HTTPS, MAILTO and FILE

555

http://www.w3.org/Addressing/
http://www.ietf.org/rfc/rfc3986.txt

Zend Framework 2 Documentation, Release 2.0.0

The 2nd parameter passed to Zend\Uri\UriFactory::registerScheme() must be a string with the name
of a class implementing Zend\Uri\UriInterface. The class must either be alredy loaded, or be loadable by the
autoloader.

Creating a URI using a custom class

1 // Create a new ’ftp’ URI based on a custom class
2 use Zend\Uri\UriFactory
3

4 UriFactory::registerScheme(’ftp’, ’MyNamespace\MyClass’);
5

6 $ftpUri = UriFactory::factory(
7 ’ftp://user@ftp.example.com/path/file’
8);
9

10 // $ftpUri is an instance of MyLibrary\MyClass, which implements
11 // Zend\Uri\UriInterface

132.3 Manipulating an Existing URI

To manipulate an existing URI, pass the entire URI as string to Zend\Uri\UriFactory::factory().

Manipulating an Existing URI with Zend\Uri\UriFactory::factory()

1 // To manipulate an existing URI, pass it in.
2 $uri = Zend\Uri\UriFactory::factory(’http://www.zend.com’);
3

4 // $uri instanceof Zend\Uri\UriInterface

The URI will be parsed and validated. If it is found to be invalid, a
Zend\Uri\Exception\InvalidArgumentException will be thrown immediately. Otherwise,
Zend\Uri\UriFactory::factory() will return a class implementing Zend\Uri\UriInterface
that specializes in the scheme to be manipulated.

132.4 Common Instance Methods

The ZendUriUriInterface‘ defines several instance methods that are useful for working with any kind of URI.

132.4.1 Getting the Scheme of the URI

The scheme of the URI is the part of the URI that precedes the colon. For example, the scheme of
http://johndoe@example.com/my/path?query#token is ‘http’.

Getting the Scheme from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’mailto:john.doe@example.com’);
2

3 $scheme = $uri->getScheme(); // "mailto"

556 Chapter 132. Zend\Uri

Zend Framework 2 Documentation, Release 2.0.0

The getScheme() instance method returns only the scheme part of the URI object.

132.4.2 Getting the Userinfo of the URI

The userinfo of the URI is the optional part of the URI that follows the colon and comes before the host-part. For
example, the userinfo of http://johndoe@example.com/my/path?query#token is ‘johndoe’.

Getting the Username from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’mailto:john.doe@example.com’);
2

3 $scheme = $uri->getUserinfo(); // "john.doe"

The getUserinfo() method returns only the userinfo part of the URI object.

132.4.3 Getting the host of the URI

The host of the URI is the optional part of the URI that follows the user-part and comes before the path-part. For
example, the host of http://johndoe@example.com/my/path?query#token is ‘example.com’.

Getting the host from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’mailto:john.doe@example.com’);
2

3 $scheme = $uri->getHost(); // "example.com"

The getHost() method returns only the host part of the URI object.

132.4.4 Getting the port of the URI

The port of the URI is the optional part of the URI that follows the host-part and comes before the path-part. For
example, the host of http://johndoe@example.com:80/my/path?query#token is ‘80’. The URI-class
can define default-ports that can be returned when no port is given in the URI.

Getting the port from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com:8080’);
2

3 $scheme = $uri->getPort(); // "8080"

Getting a default port from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com’);
2

3 $scheme = $uri->getPort(); // "80"

The getHost() method returns only the port part of the URI object.

132.4. Common Instance Methods 557

Zend Framework 2 Documentation, Release 2.0.0

132.4.5 Getting the path of the URI

The path of the URI is the mandatory part of the URI that follows the port and comes before the query-part. For
example, the path of http://johndoe@example.com:80/my/path?query#token is ‘/my/path’.

Getting the path from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com:80/my/path?a=b&c=d#token’);
2

3 $scheme = $uri->getPath(); // "/my/path"

The getPath() method returns only the path of the URI object.

132.4.6 Getting the query-part of the URI

The query-part of the URI is the optional part of the URI that follows the path and comes before the fragment. For
example, the query of http://johndoe@example.com:80/my/path?query#token is ‘query’.

Getting the query from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com:80/my/path?a=b&c=d#token’);
2

3 $scheme = $uri->getQuery(); // "a=b&c=d"

The getQuery() method returns only the query-part of the URI object.

Getting the query as array from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com:80/my/path?a=b&c=d#token’);
2

3 $scheme = $uri->getQueryAsArray();
4 // array(
5 // ’a’ => ’b’,
6 // ’c’ => ’d’,
7 //)

The query-part often contains key=value pairs and therefore can be split into an associative array. This array can be
retrieved using getQueryAsArray()

132.4.7 Getting the fragment-part of the URI

The fragment-part of the URI is the optional part of the URI that follows the query. For example, the fragment of
http://johndoe@example.com:80/my/path?query#token is ‘token’.

Getting the fragment from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://example.com:80/my/path?a=b&c=d#token’);
2

3 $scheme = $uri->getFragment(); // "token"

558 Chapter 132. Zend\Uri

Zend Framework 2 Documentation, Release 2.0.0

The getFragment() method returns only the fragment-part of the URI object.

132.4.8 Getting the Entire URI

Getting the Entire URI from a Zend\Uri\UriInterface Object

1 $uri = Zend\Uri\UriFactory::factory(’http://www.zend.com’);
2

3 echo $uri->toString(); // "http://www.zend.com"
4

5 // Alternate method:
6 echo (string) $uri; // "http://www.zend.com"

The toString() method returns the string representation of the entire URI.

The Zend\Uri\UriInterface defines also a magic __toString() method that returns the string representa-
tion of the URI when the Object is cast to a string.

132.4.9 Validating the URI

When using Zend\Uri\UriFactory::factory() the given URI will always be validated and a
Zend\Uri\Exception\InvalidArgumentException will be thrown when the URI is invalid. However,
after the Zend\Uri\UriInterface is instantiated for a new URI or an existing valid one, it is possible that the
URI can later become invalid after it is manipulated.

Validating a Zend_Uri_* Object

1 $uri = Zend\Uri\UriFactory::factory(’http://www.zend.com’);
2

3 $isValid = $uri->isValid(); // TRUE

The isValid() instance method provides a means to check that the URI object is still valid.

132.4. Common Instance Methods 559

Zend Framework 2 Documentation, Release 2.0.0

560 Chapter 132. Zend\Uri

CHAPTER

THREE

INTRODUCTION

The Zend\Validator component provides a set of commonly needed validators. It also provides a simple validator
chaining mechanism by which multiple validators may be applied to a single datum in a user-defined order.

133.1 What is a validator?

A validator examines its input with respect to some requirements and produces a boolean result - whether the input suc-
cessfully validates against the requirements. If the input does not meet the requirements, a validator may additionally
provide information about which requirement(s) the input does not meet.

For example, a web application might require that a username be between six and twelve characters in length and may
only contain alphanumeric characters. A validator can be used for ensuring that usernames meet these requirements. If
a chosen username does not meet one or both of the requirements, it would be useful to know which of the requirements
the username fails to meet.

133.2 Basic usage of validators

Having defined validation in this way provides the foundation for Zend\Validator\ValidatorInterface,
which defines two methods, isValid() and getMessages(). The isValid() method performs validation
upon the provided value, returning TRUE if and only if the value passes against the validation criteria.

If isValid() returns FALSE, the getMessages() returns an array of messages explaining the reason(s) for
validation failure. The array keys are short strings that identify the reasons for validation failure, and the array values
are the corresponding human-readable string messages. The keys and values are class-dependent; each validation class
defines its own set of validation failure messages and the unique keys that identify them. Each class also has a const
definition that matches each identifier for a validation failure cause.

Note: The getMessages() methods return validation failure information only for the most recent isValid()
call. Each call to isValid() clears any messages and errors caused by a previous isValid() call, because it’s
likely that each call to isValid() is made for a different input value.

The following example illustrates validation of an e-mail address:

1 $validator = new Zend\Validator\EmailAddress();
2

3 if ($validator->isValid($email)) {
4 // email appears to be valid
5 } else {
6 // email is invalid; print the reasons

561

Zend Framework 2 Documentation, Release 2.0.0

7 foreach ($validator->getMessages() as $messageId => $message) {
8 echo "Validation failure ’$messageId’: $message\n";
9 }

10 }

133.3 Customizing messages

Validator classes provide a setMessage() method with which you can specify the format of a message returned
by getMessages() in case of validation failure. The first argument of this method is a string containing the error
message. You can include tokens in this string which will be substituted with data relevant to the validator. The token
%value% is supported by all validators; this is substituted with the value you passed to isValid(). Other tokens
may be supported on a case-by-case basis in each validation class. For example, %max% is a token supported by
Zend\Validator\LessThan. The getMessageVariables() method returns an array of variable tokens
supported by the validator.

The second optional argument is a string that identifies the validation failure message template to be set, which is useful
when a validation class defines more than one cause for failure. If you omit the second argument, setMessage()
assumes the message you specify should be used for the first message template declared in the validation class. Many
validation classes only have one error message template defined, so there is no need to specify which message template
you are changing.

1 $validator = new Zend\Validator\StringLength(8);
2

3 $validator->setMessage(
4 ’The string \’%value%\’ is too short; it must be at least %min% ’ .
5 ’characters’,
6 Zend\Validator\StringLength::TOO_SHORT);
7

8 if (!$validator->isValid(’word’)) {
9 $messages = $validator->getMessages();

10 echo current($messages);
11

12 // "The string ’word’ is too short; it must be at least 8 characters"
13 }

You can set multiple messages using the setMessages() method. Its argument is an array containing key/message
pairs.

1 $validator = new Zend\Validator\StringLength(array(’min’ => 8, ’max’ => 12));
2

3 $validator->setMessages(array(
4 Zend\Validator\StringLength::TOO_SHORT =>
5 ’The string \’%value%\’ is too short’,
6 Zend\Validator\StringLength::TOO_LONG =>
7 ’The string \’%value%\’ is too long’
8));

If your application requires even greater flexibility with which it reports validation failures, you can access properties
by the same name as the message tokens supported by a given validation class. The value property is always available
in a validator; it is the value you specified as the argument of isValid(). Other properties may be supported on a
case-by-case basis in each validation class.

1 $validator = new Zend\Validator\StringLength(array(’min’ => 8, ’max’ => 12));
2

3 if (!validator->isValid(’word’)) {
4 echo ’Word failed: ’

562 Chapter 133. Introduction

Zend Framework 2 Documentation, Release 2.0.0

5 . $validator->value
6 . ’; its length is not between ’
7 . $validator->min
8 . ’ and ’
9 . $validator->max

10 . "\n";
11 }

133.4 Translating messages

Validator classes provide a setTranslator() method with which you can specify a instance of
Zend\I18n\Translator\Translator which will translate the messages in case of a validation failure. The
getTranslator() method returns the set translator instance.

1 $validator = new Zend\Validator\StringLength(array(’min’ => 8, ’max’ => 12));
2 $translate = new Zend\I18n\Translator\Translator();
3 // configure the translator...
4

5 $validator->setTranslator($translate);

With the static setDefaultTranslator() method you can set a instance of
Zend\I18n\Translator\Translator which will be used for all validation classes, and can be retrieved with
getDefaultTranslator(). This prevents you from setting a translator manually for all validator classes, and
simplifies your code.

1 $translate = new Zend\I18n\Translator\Translator();
2 // configure the translator...
3

4 Zend\Validator\AbstractValidator::setDefaultTranslator($translate);

Note: When you have set an application wide locale within your registry, then this locale will be used as default
translator.

Sometimes it is necessary to disable the translator within a validator. To archive this you can use the
setDisableTranslator() method, which accepts a boolean parameter, and isTranslatorDisabled()
to get the set value.

1 $validator = new Zend\Validator\StringLength(array(’min’ => 8, ’max’ => 12));
2 if (!$validator->isTranslatorDisabled()) {
3 $validator->setDisableTranslator();
4 }

It is also possible to use a translator instead of setting own messages with setMessage(). But doing so, you should
keep in mind, that the translator works also on messages you set your own.

133.4. Translating messages 563

Zend Framework 2 Documentation, Release 2.0.0

564 Chapter 133. Introduction

CHAPTER

FOUR

STANDARD VALIDATION CLASSES

Zend Framework comes with a standard set of validation classes, which are ready for you to use.

565

Zend Framework 2 Documentation, Release 2.0.0

566 Chapter 134. Standard Validation Classes

CHAPTER

FIVE

ALNUM

Zend\Validator\Alnum allows you to validate if a given value contains only alphabetical characters and digits.
There is no length limitation for the input you want to validate.

135.1 Supported options for Zend\Validator\Alnum

The following options are supported for Zend\Validator\Alnum:

• allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE

135.2 Basic usage

A basic example is the following one:

1 $validator = new Zend\Validator\Alnum();
2 if ($validator->isValid(’Abcd12’)) {
3 // value contains only allowed chars
4 } else {
5 // false
6 }

135.3 Using whitespaces

Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept them
as input. This allows to validate complete sentences or phrases.

To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().

1 $validator = new Zend\Validator\Alnum(array(’allowWhiteSpace’ => true));
2 if ($validator->isValid(’Abcd and 12’)) {
3 // value contains only allowed chars
4 } else {
5 // false
6 }

567

Zend Framework 2 Documentation, Release 2.0.0

135.4 Using different languages

When using Zend\Validator\Alnum then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like ä, ö and
ü additionally to the characters from the english alphabet.

Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.

There are actually 3 languages which are not accepted in their own script. These languages are korean, japanese and
chinese because this languages are using an alphabet where a single character is build by using multiple characters.

In the case you are using these languages, the input will only be validated by using the english alphabet.

568 Chapter 135. Alnum

CHAPTER

SIX

ALPHA

Zend\Validator\Alpha allows you to validate if a given value contains only alphabetical characters. There is
no length limitation for the input you want to validate. This validator is related to the Zend\Validator\Alnum
validator with the exception that it does not accept digits.

136.1 Supported options for Zend\Validator\Alpha

The following options are supported for Zend\Validator\Alpha:

• allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE

136.2 Basic usage

A basic example is the following one:

1 $validator = new Zend\Validator\Alpha();
2 if ($validator->isValid(’Abcd’)) {
3 // value contains only allowed chars
4 } else {
5 // false
6 }

136.3 Using whitespaces

Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept them
as input. This allows to validate complete sentences or phrases.

To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().

1 $validator = new Zend\Validator\Alpha(array(’allowWhiteSpace’ => true));
2 if ($validator->isValid(’Abcd and efg’)) {
3 // value contains only allowed chars
4 } else {
5 // false
6 }

569

Zend Framework 2 Documentation, Release 2.0.0

136.4 Using different languages

When using Zend\Validator\Alpha then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like ä, ö and
ü additionally to the characters from the english alphabet.

Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.

There are actually 3 languages which are not accepted in their own script. These languages are korean, japanese and
chinese because this languages are using an alphabet where a single character is build by using multiple characters.

In the case you are using these languages, the input will only be validated by using the english alphabet.

570 Chapter 136. Alpha

CHAPTER

SEVEN

BARCODE

Zend\Validator\Barcode allows you to check if a given value can be represented as barcode.

Zend\Validator\Barcode supports multiple barcode standards and can be extended with proprietary barcode
implementations very easily. The following barcode standards are supported:

• CODABAR: Also known as Code-a-bar.

This barcode has no length limitation. It supports only digits, and 6 special chars. Codabar is a self-checking
barcode. This standard is very old. Common use cases are within airbills or photo labs where multi-part forms
are used with dot-matrix printers.

• CODE128: CODE128 is a high density barcode.

This barcode has no length limitation. It supports the first 128 ascii characters. When used with printing
characters it has an checksum which is calculated modulo 103. This standard is used worldwide as it supports
upper and lowercase characters.

• CODE25: Often called “two of five” or “Code25 Industrial”.

This barcode has no length limitation. It supports only digits, and the last digit can be an optional checksum
which is calculated with modulo 10. This standard is very old and nowadays not often used. Common use cases
are within the industry.

• CODE25INTERLEAVED: Often called “Code 2 of 5 Interleaved”.

This standard is a variant of CODE25. It has no length limitation, but it must contain an even amount of
characters. It supports only digits, and the last digit can be an optional checksum which is calculated with
modulo 10. It is used worldwide and common on the market.

• CODE39: CODE39 is one of the oldest available codes.

This barcode has a variable length. It supports digits, upper cased alphabetical characters and 7 special characters
like whitespace, point and dollar sign. It can have an optional checksum which is calculated with modulo 43.
This standard is used worldwide and common within the industry.

• CODE39EXT: CODE39EXT is an extension of CODE39.

This barcode has the same properties as CODE39. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.

• CODE93: CODE93 is the successor of CODE39.

This barcode has a variable length. It supports digits, alphabetical characters and 7 special characters. It has
an optional checksum which is calculated with modulo 47 and contains 2 characters. This standard produces a
denser code than CODE39 and is more secure.

• CODE93EXT: CODE93EXT is an extension of CODE93.

571

Zend Framework 2 Documentation, Release 2.0.0

This barcode has the same properties as CODE93. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.

• EAN2: EAN is the shortcut for “European Article Number”.

These barcode must have 2 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.

• EAN5: EAN is the shortcut for “European Article Number”.

These barcode must have 5 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.

• EAN8: EAN is the shortcut for “European Article Number”.

These barcode can have 7 or 8 characters. It supports only digits. When it has a length of 8 characters it includes
a checksum. This standard is used worldwide but has a very limited range. It can be found on small articles
where a longer barcode could not be printed.

• EAN12: EAN is the shortcut for “European Article Number”.

This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a checksum
which is calculated with modulo 10. This standard is used within the USA and common on the market. It has
been superseded by EAN13.

• EAN13: EAN is the shortcut for “European Article Number”.

This barcode must have a length of 13 characters. It supports only digits, and the last digit is always a checksum
which is calculated with modulo 10. This standard is used worldwide and common on the market.

• EAN14: EAN is the shortcut for “European Article Number”.

This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a checksum
which is calculated with modulo 10. This standard is used worldwide and common on the market. It is the
successor for EAN13.

• EAN18: EAN is the shortcut for “European Article Number”.

This barcode must have a length of 18 characters. It support only digits. The last digit is always a checksum
digit which is calculated with modulo 10. This code is often used for the identification of shipping containers.

• GTIN12: GTIN is the shortcut for “Global Trade Item Number”.

This barcode uses the same standard as EAN12 and is its successor. It’s commonly used within the USA.

• GTIN13: GTIN is the shortcut for “Global Trade Item Number”.

This barcode uses the same standard as EAN13 and is its successor. It is used worldwide by industry.

• GTIN14: GTIN is the shortcut for “Global Trade Item Number”.

This barcode uses the same standard as EAN14 and is its successor. It is used worldwide and common on the
market.

• IDENTCODE: Identcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.

This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a checksum
which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.

• INTELLIGENTMAIL: Intelligent Mail is a postal barcode.

This barcode can have a length of 20, 25, 29 or 31 characters. It supports only digits, and contains no checksum.
This standard is the successor of PLANET and POSTNET. It is mainly used by the United States Postal Services.

• ISSN: ISSN is the abbreviation for International Standard Serial Number.

572 Chapter 137. Barcode

Zend Framework 2 Documentation, Release 2.0.0

This barcode can have a length of 8 or 13 characters. It supports only digits, and the last digit must be a
checksum digit which is calculated with modulo 11. It is used worldwide for printed publications.

• ITF14: ITF14 is the GS1 implementation of an Interleaved Two of Five bar code.

This barcode is a special variant of Interleaved 2 of 5. It must have a length of 14 characters and is based on
GTIN14. It supports only digits, and the last digit must be a checksum digit which is calculated with modulo
10. It is used worldwide and common within the market.

• LEITCODE: Leitcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.

This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a checksum
which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.

• PLANET: Planet is the abbreviation for Postal Alpha Numeric Encoding Technique.

This barcode can have a length of 12 or 14 characters. It supports only digits, and the last digit is always a
checksum. This standard is mainly used by the United States Postal Services.

• POSTNET: Postnet is used by the US Postal Service.

This barcode can have a length of 6, 7, 10 or 12 characters. It supports only digits, and the last digit is always a
checksum. This standard is mainly used by the United States Postal Services.

• ROYALMAIL: Royalmail is used by Royal Mail.

This barcode has no defined length. It supports digits, uppercase letters, and the last digit is always a checksum.
This standard is mainly used by Royal Mail for their Cleanmail Service. It is also called RM4SCC.

• SSCC: SSCC is the shortcut for “Serial Shipping Container Code”.

This barcode is a variant of EAN barcode. It must have a length of 18 characters and supports only digits. The
last digit must be a checksum digit which is calculated with modulo 10. It is commonly used by the transport
industry.

• UPCA: UPC is the shortcut for “Universal Product Code”.

This barcode preceded EAN13. It must have a length of 12 characters and supports only digits. The last digit
must be a checksum digit which is calculated with modulo 10. It is commonly used within the USA.

• UPCE: UPCE is the short variant from UPCA.

This barcode is a smaller variant of UPCA. It can have a length of 6, 7 or 8 characters and supports only digits.
When the barcode is 8 chars long it includes a checksum which is calculated with modulo 10. It is commonly
used with small products where a UPCA barcode would not fit.

137.1 Supported options for Zend\Validator\Barcode

The following options are supported for Zend\Validator\Barcode:

• adapter: Sets the barcode adapter which will be used. Supported are all above noted adapters. When using a
self defined adapter, then you have to set the complete class name.

• checksum: TRUE when the barcode should contain a checksum. The default value depends on the used adapter.
Note that some adapters don’t allow to set this option.

• options: Defines optional options for a self written adapters.

137.1. Supported options for Zend\Validator\Barcode 573

Zend Framework 2 Documentation, Release 2.0.0

137.2 Basic usage

To validate if a given string is a barcode you just need to know its type. See the following example for an EAN13
barcode:

1 $valid = new Zend\Validator\Barcode(’EAN13’);
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

137.3 Optional checksum

Some barcodes can be provided with an optional checksum. These barcodes would be valid even without checksum.
Still, when you provide a checksum, then you should also validate it. By default, these barcode types perform no
checksum validation. By using the checksum option you can define if the checksum will be validated or ignored.

1 $valid = new Zend\Validator\Barcode(array(
2 ’adapter’ => ’EAN13’,
3 ’checksum’ => false,
4));
5 if ($valid->isValid($input)) {
6 // input appears to be valid
7 } else {
8 // input is invalid
9 }

Note: Reduced security by disabling checksum validation

By switching off checksum validation you will also reduce the security of the used barcodes. Additionally you should
note that you can also turn off the checksum validation for those barcode types which must contain a checksum value.
Barcodes which would not be valid could then be returned as valid even if they are not.

137.4 Writing custom adapters

You may write custom barcode validators for usage with Zend\Validator\Barcode; this is often necessary when
dealing with proprietary barcode types. To write your own barcode validator, you need the following information.

• Length: The length your barcode must have. It can have one of the following values:

– Integer: A value greater 0, which means that the barcode must have this length.

– -1: There is no limitation for the length of this barcode.

– “even”: The length of this barcode must have a even amount of digits.

– “odd”: The length of this barcode must have a odd amount of digits.

– array: An array of integer values. The length of this barcode must have one of the set array values.

• Characters: A string which contains all allowed characters for this barcode. Also the integer value 128 is
allowed, which means the first 128 characters of the ASCII table.

• Checksum: A string which will be used as callback for a method which does the checksum validation.

574 Chapter 137. Barcode

Zend Framework 2 Documentation, Release 2.0.0

Your custom barcode validator must extend Zend\Validator\Barcode\AbstractAdapter or implement
Zend\Validator\Barcode\AdapterInterface.

As an example, let’s create a validator that expects an even number of characters that include all digits and the letters
‘ABCDE’, and which requires a checksum.

1 class My\Barcode\MyBar extends Zend\Validator\Barcode\AbstractAdapter
2 {
3 protected $length = ’even’;
4 protected $characters = ’0123456789ABCDE’;
5 protected $checksum = ’mod66’;
6

7 protected function mod66($barcode)
8 {
9 // do some validations and return a boolean

10 }
11 }
12

13 $valid = new Zend\Validator\Barcode(’My\Barcode\MyBar’);
14 if ($valid->isValid($input)) {
15 // input appears to be valid
16 } else {
17 // input is invalid
18 }

137.4. Writing custom adapters 575

Zend Framework 2 Documentation, Release 2.0.0

576 Chapter 137. Barcode

CHAPTER

EIGHT

BETWEEN

Zend\Validator\Between allows you to validate if a given value is between two other values.

Note: ZendValidatorBetween supports only number validation

It should be noted that Zend\Validator\Between supports only the validation of numbers. Strings or dates can
not be validated with this validator.

138.1 Supported options for Zend\Validator\Between

The following options are supported for Zend\Validator\Between:

• inclusive: Defines if the validation is inclusive the minimum and maximum border values or exclusive. It
defaults to TRUE.

• max: Sets the maximum border for the validation.

• min: Sets the minimum border for the validation.

138.2 Default behaviour for Zend\Validator\Between

Per default this validator checks if a value is between min and max where both border values are allowed as value.

1 $valid = new Zend\Validator\Between(array(’min’ => 0, ’max’ => 10));
2 $value = 10;
3 $result = $valid->isValid($value);
4 // returns true

In the above example the result is TRUE due to the reason that per default the search is inclusively the border values.
This means in our case that any value from ‘0’ to ‘10’ is allowed. And values like ‘-1’ and ‘11’ will return FALSE.

138.3 Validation exclusive the border values

Sometimes it is useful to validate a value by excluding the border values. See the following example:

577

Zend Framework 2 Documentation, Release 2.0.0

1 $valid = new Zend\Validator\Between(
2 array(
3 ’min’ => 0,
4 ’max’ => 10,
5 ’inclusive’ => false
6)
7);
8 $value = 10;
9 $result = $valid->isValid($value);

10 // returns false

The example is almost equal to our first example but we excluded the border value. Now the values ‘0’ and ‘10’ are
no longer allowed and will return FALSE.

578 Chapter 138. Between

CHAPTER

NINE

CALLBACK

Zend\Validator\Callback allows you to provide a callback with which to validate a given value.

139.1 Supported options for Zend\Validator\Callback

The following options are supported for Zend\Validator\Callback:

• callback: Sets the callback which will be called for the validation.

• options: Sets the additional options which will be given to the callback.

139.2 Basic usage

The simplest usecase is to have a single function and use it as a callback. Let’s expect we have the following function.

1 function myMethod($value)
2 {
3 // some validation
4 return true;
5 }

To use it within Zend\Validator\Callback you just have to call it this way:

1 $valid = new Zend\Validator\Callback(’myMethod’);
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

139.3 Usage with closures

PHP 5.3 introduces closures, which are basically self-contained or anonymous functions. PHP considers closures
another form of callback, and, as such, may be used with Zend\Validator\Callback. As an example:

1 $valid = new Zend\Validator\Callback(function($value){
2 // some validation
3 return true;
4 });

579

http://php.net/functions.anonymous

Zend Framework 2 Documentation, Release 2.0.0

5

6 if ($valid->isValid($input)) {
7 // input appears to be valid
8 } else {
9 // input is invalid

10 }

139.4 Usage with class-based callbacks

Of course it’s also possible to use a class method as callback. Let’s expect we have the following class method:

1 class MyClass
2 {
3 public function myMethod($value)
4 {
5 // some validation
6 return true;
7 }
8 }

The definition of the callback is in this case almost the same. You have just to create an instance of the class before
the method and create an array describing the callback:

1 $object = new MyClass;
2 $valid = new Zend\Validator\Callback(array($object, ’myMethod’));
3 if ($valid->isValid($input)) {
4 // input appears to be valid
5 } else {
6 // input is invalid
7 }

You may also define a static method as a callback. Consider the following class definition and validator usage:

1 class MyClass
2 {
3 public static function test($value)
4 {
5 // some validation
6 return true;
7 }
8 }
9

10 $valid = new Zend\Validator\Callback(array(’MyClass’, ’test’));
11 if ($valid->isValid($input)) {
12 // input appears to be valid
13 } else {
14 // input is invalid
15 }

Finally, if you are using PHP 5.3, you may define the magic method __invoke() in your class. If you do so, simply
providing an instance of the class as the callback will also work:

1 class MyClass
2 {
3 public function __invoke($value)
4 {
5 // some validation

580 Chapter 139. Callback

Zend Framework 2 Documentation, Release 2.0.0

6 return true;
7 }
8 }
9

10 $object = new MyClass();
11 $valid = new Zend\Validator\Callback($object);
12 if ($valid->isValid($input)) {
13 // input appears to be valid
14 } else {
15 // input is invalid
16 }

139.5 Adding options

Zend\Validator\Callback also allows the usage of options which are provided as additional arguments to the
callback.

Consider the following class and method definition:

1 class MyClass
2 {
3 function myMethod($value, $option)
4 {
5 // some validation
6 return true;
7 }
8 }

There are two ways to inform the validator of additional options: pass them in the constructor, or pass them to the
setOptions() method.

To pass them to the constructor, you would need to pass an array containing two keys, “callback” and “options”:

1 $valid = new Zend\Validator\Callback(array(
2 ’callback’ => array(’MyClass’, ’myMethod’),
3 ’options’ => $option,
4));
5

6 if ($valid->isValid($input)) {
7 // input appears to be valid
8 } else {
9 // input is invalid

10 }

Otherwise, you may pass them to the validator after instantiation:

1 $valid = new Zend\Validator\Callback(array(’MyClass’, ’myMethod’));
2 $valid->setOptions($option);
3

4 if ($valid->isValid($input)) {
5 // input appears to be valid
6 } else {
7 // input is invalid
8 }

When there are additional values given to isValid() then these values will be added immediately after $value.

139.5. Adding options 581

Zend Framework 2 Documentation, Release 2.0.0

1 $valid = new Zend\Validator\Callback(array(’MyClass’, ’myMethod’));
2 $valid->setOptions($option);
3

4 if ($valid->isValid($input, $additional)) {
5 // input appears to be valid
6 } else {
7 // input is invalid
8 }

When making the call to the callback, the value to be validated will always be passed as the first argument to the
callback followed by all other values given to isValid(); all other options will follow it. The amount and type of
options which can be used is not limited.

582 Chapter 139. Callback

CHAPTER

CREDITCARD

Zend\Validator\CreditCard allows you to validate if a given value could be a credit card number.

A credit card contains several items of metadata, including a hologram, account number, logo, expiration date, security
code and the card holder name. The algorithms for verifying the combination of metadata are only known to the issuing
company, and should be verified with them for purposes of payment. However, it’s often useful to know whether or
not a given number actually falls within the ranges of possible numbers prior to performing such verification, and, as
such, Zend\Validator\CreditCard simply verifies that the credit card number provided is well-formed.

For those cases where you have a service that can perform comprehensive verification,
Zend\Validator\CreditCard also provides the ability to attach a service callback to trigger once the
credit card number has been deemed valid; this callback will then be triggered, and its return value will determine
overall validity.

The following issuing institutes are accepted:

• American Express

China UnionPay

Diners Club Card Blanche

Diners Club International

Diners Club US & Canada

Discover Card

JCB

Laser

Maestro

MasterCard

Solo

Visa

Visa Electron

Note: Invalid institutes

The institutes Bankcard and Diners Club enRoute do not exist anymore. Therefore they are treated as invalid.

Switch has been rebranded to Visa and is therefore also treated as invalid.

583

Zend Framework 2 Documentation, Release 2.0.0

140.1 Supported options for Zend\Validator\CreditCard

The following options are supported for Zend\Validator\CreditCard:

• service: A callback to an online service which will additionally be used for the validation.

• type: The type of credit card which will be validated. See the below list of institutes for details.

140.2 Basic usage

There are several credit card institutes which can be validated by Zend\Validator\CreditCard. Per default,
all known institutes will be accepted. See the following example:

1 $valid = new Zend\Validator\CreditCard();
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

The above example would validate against all known credit card institutes.

140.3 Accepting defined credit cards

Sometimes it is necessary to accept only defined credit card institutes instead of all; e.g., when you have a webshop
which accepts only Visa and American Express cards. Zend\Validator\CreditCard allows you to do exactly
this by limiting it to exactly these institutes.

To use a limitation you can either provide specific institutes at initiation, or afterwards by using setType(). Each
can take several arguments.

You can provide a single institute:

1 $valid = new Zend\Validator\CreditCard(
2 Zend\Validator\CreditCard::AMERICAN_EXPRESS
3);

When you want to allow multiple institutes, then you can provide them as array:

1 $valid = new Zend\Validator\CreditCard(array(
2 Zend\Validator\CreditCard::AMERICAN_EXPRESS,
3 Zend\Validator\CreditCard::VISA
4));

And as with all validators, you can also pass an associative array of options or an instance of Traversable. In this
case you have to provide the institutes with the type array key as simulated here:

1 $valid = new Zend\Validator\CreditCard(array(
2 ’type’ => array(Zend\Validator\CreditCard::AMERICAN_EXPRESS)
3));

584 Chapter 140. CreditCard

Zend Framework 2 Documentation, Release 2.0.0

Table 140.1: Constants for credit card institutes

Institute Constant
American Express AMERICAN_EXPRESS
China UnionPay UNIONPAY
Diners Club Card Blanche DINERS_CLUB
Diners Club International DINERS_CLUB
Diners Club US & Canada DINERS_CLUB_US
Discover Card DISCOVER
JCB JCB
Laser LASER
Maestro MAESTRO
MasterCard MASTERCARD
Solo SOLO
Visa VISA
Visa Electron VISA

You can also set or add institutes afterward instantiation by using the methods setType(), addType() and
getType().

1 $valid = new Zend\Validator\CreditCard();
2 $valid->setType(array(
3 Zend\Validator\CreditCard::AMERICAN_EXPRESS,
4 Zend\Validator\CreditCard::VISA
5));

Note: Default institute

When no institute is given at initiation then ALL will be used, which sets all institutes at once.

In this case the usage of addType() is useless because all institutes are already added.

140.4 Validation by using foreign APIs

As said before Zend\Validator\CreditCard will only validate the credit card number. Fortunately, some
institutes provide online APIs which can validate a credit card number by using algorithms which are not available to
the public. Most of these services are paid services. Therefore, this check is deactivated per default.

When you have access to such an API, then you can use it as an add on for Zend\Validator\CreditCard and
increase the security of the validation.

To do so, you simply need to give a callback which will be called when the generic validation has passed. This prevents
the API from being called for invalid numbers, which increases the performance of the application.

setService() sets a new service, and getService() returns the set service. As a configuration option, you can
give the array key ‘service‘ at initiation. For details about possible options take a look into Callback.

1 // Your service class
2 class CcService
3 {
4 public function checkOnline($cardnumber, $types)
5 {
6 // some online validation
7 }
8 }

140.4. Validation by using foreign APIs 585

Zend Framework 2 Documentation, Release 2.0.0

9

10 // The validation
11 $service = new CcService();
12 $valid = new Zend\Validator\CreditCard(Zend\Validator\CreditCard::VISA);
13 $valid->setService(array($service, ’checkOnline’));

As you can see the callback method will be called with the credit card number as the first parameter, and the accepted
types as the second parameter.

140.5 Ccnum

Note: The Ccnum validator has been deprecated in favor of the CreditCard validator. For security reasons you
should use CreditCard instead of Ccnum.

586 Chapter 140. CreditCard

CHAPTER

ONE

DATE

Zend\Validator\Date allows you to validate if a given value contains a date. This validator validates also
localized input.

141.1 Supported options for Zend\Validator\Date

The following options are supported for Zend\Validator\Date:

• format: Sets the format which is used to write the date.

• locale: Sets the locale which will be used to validate date values.

141.2 Default date validation

The easiest way to validate a date is by using the default date format. It is used when no locale and no format has been
given.

1 $validator = new Zend\Validator\Date();
2

3 $validator->isValid(’2000-10-10’); // returns true
4 $validator->isValid(’10.10.2000’); // returns false

The default date format for Zend\Validator\Date is ‘yyyy-MM-dd’.

141.3 Localized date validation

Zend\Validator\Date validates also dates which are given in a localized format. By using the locale option
you can define the locale which the date format should use for validation.

1 $validator = new Zend\Validator\Date(array(’locale’ => ’de’));
2

3 $validator->isValid(’10.Feb.2010’); // returns true
4 $validator->isValid(’10.May.2010’); // returns false

The locale option sets the default date format. In the above example this is ‘dd.MM.yyyy’ which is defined as
default date format for ‘de’.

587

Zend Framework 2 Documentation, Release 2.0.0

141.4 Self defined date validation

Zend\Validator\Date supports also self defined date formats. When you want to validate such a date you can
use the format option.

1 $validator = new Zend\Validator\Date(array(’format’ => ’yyyy’));
2

3 $validator->isValid(’2010’); // returns true
4 $validator->isValid(’May’); // returns false

Of course you can combine format and locale. In this case you can also use localized month or day names.

1 $validator = new Zend\Validator\Date(array(’format’ => ’yyyy MMMM’, ’locale’ => ’de));
2

3 $validator->isValid(’2010 Dezember’); // returns true
4 $validator->isValid(’2010 June’); // returns false

588 Chapter 141. Date

CHAPTER

TWO

DB\RECORDEXISTS AND
DB\NORECORDEXISTS

Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists provide a means to
test whether a record exists in a given table of a database, with a given value.

142.1 Supported options for Zend\Validator\Db_*

The following options are supported for Zend\Validator\Db\NoRecordExists and
Zend\Validator\Db\RecordExists:

• adapter: The database adapter which will be used for the search.

• exclude: Sets records which will be excluded from the search.

• field: The database field within this table which will be searched for the record.

• schema: Sets the schema which will be used for the search.

• table: The table which will be searched for the record.

142.2 Basic usage

An example of basic usage of the validators:

1 //Check that the email address exists in the database
2 $validator = new Zend\Validator\Db\RecordExists(
3 array(
4 ’table’ => ’users’,
5 ’field’ => ’emailaddress’
6)
7);
8

9 if ($validator->isValid($emailaddress)) {
10 // email address appears to be valid
11 } else {
12 // email address is invalid; print the reasons
13 foreach ($validator->getMessages() as $message) {
14 echo "$message\n";
15 }
16 }

589

Zend Framework 2 Documentation, Release 2.0.0

The above will test that a given email address is in the database table. If no record is found containing the value of
$emailaddress in the specified column, then an error message is displayed.

1 //Check that the username is not present in the database
2 $validator = new Zend\Validator\Db\NoRecordExists(
3 array(
4 ’table’ => ’users’,
5 ’field’ => ’username’
6)
7);
8 if ($validator->isValid($username)) {
9 // username appears to be valid

10 } else {
11 // username is invalid; print the reason
12 $messages = $validator->getMessages();
13 foreach ($messages as $message) {
14 echo "$message\n";
15 }
16 }

The above will test that a given username is not in the database table. If a record is found containing the value of
$username in the specified column, then an error message is displayed.

142.3 Excluding records

Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists also provide a
means to test the database, excluding a part of the table, either by providing a where clause as a string, or an ar-
ray with the keys “field” and “value”.

When providing an array for the exclude clause, the != operator is used, so you can check the rest of a table for a value
before altering a record (for example on a user profile form)

1 //Check no other users have the username
2 $user_id = $user->getId();
3 $validator = new Zend\Validator\Db\NoRecordExists(
4 array(
5 ’table’ => ’users’,
6 ’field’ => ’username’,
7 ’exclude’ => array(
8 ’field’ => ’id’,
9 ’value’ => $user_id

10)
11)
12);
13

14 if ($validator->isValid($username)) {
15 // username appears to be valid
16 } else {
17 // username is invalid; print the reason
18 $messages = $validator->getMessages();
19 foreach ($messages as $message) {
20 echo "$message\n";
21 }
22 }

The above example will check the table to ensure no records other than the one where id = $user_id contains the
value $username.

590 Chapter 142. Db\RecordExists and Db\NoRecordExists

Zend Framework 2 Documentation, Release 2.0.0

You can also provide a string to the exclude clause so you can use an operator other than !=. This can be useful for
testing against composite keys.

1 $email = ’user@example.com’;
2 $clause = $db->quoteInto(’email = ?’, $email);
3 $validator = new Zend\Validator\Db\RecordExists(
4 array(
5 ’table’ => ’users’,
6 ’field’ => ’username’,
7 ’exclude’ => $clause
8)
9);

10

11 if ($validator->isValid($username)) {
12 // username appears to be valid
13 } else {
14 // username is invalid; print the reason
15 $messages = $validator->getMessages();
16 foreach ($messages as $message) {
17 echo "$message\n";
18 }
19 }

The above example will check the ‘users’ table to ensure that only a record with both the username $username and
with the email $email is valid.

142.4 Database Adapters

You can also specify an adapter. This will allow you to work with applications using multiple database adapters, or
where you have not set a default adapter. As in the example below:

1 $validator = new Zend\Validator\Db\RecordExists(
2 array(
3 ’table’ => ’users’,
4 ’field’ => ’id’,
5 ’adapter’ => $dbAdapter
6)
7);

142.5 Database Schemas

You can specify a schema within your database for adapters such as PostgreSQL and DB/2 by simply supplying an
array with table and schema keys. As in the example below:

1 $validator = new Zend\Validator\Db\RecordExists(
2 array(
3 ’table’ => ’users’,
4 ’schema’ => ’my’,
5 ’field’ => ’id’
6)
7);

142.4. Database Adapters 591

Zend Framework 2 Documentation, Release 2.0.0

592 Chapter 142. Db\RecordExists and Db\NoRecordExists

CHAPTER

THREE

DIGITS

Zend\Validator\Digits validates if a given value contains only digits.

143.1 Supported options for Zend\Validator\Digits

There are no additional options for Zend\Validator\Digits:

143.2 Validating digits

To validate if a given value contains only digits and no other characters, simply call the validator like shown in this
example:

1 $validator = new Zend\Validator\Digits();
2

3 $validator->isValid("1234567890"); // returns true
4 $validator->isValid(1234); // returns true
5 $validator->isValid(’1a234’); // returns false

Note: Validating numbers

When you want to validate numbers or numeric values, be aware that this validator only validates digits. This means
that any other sign like a thousand separator or a comma will not pass this validator. In this case you should use
Zend\Validator\Int or Zend\Validator\Float.

593

Zend Framework 2 Documentation, Release 2.0.0

594 Chapter 143. Digits

CHAPTER

FOUR

EMAILADDRESS

Zend\Validator\EmailAddress allows you to validate an email address. The validator first splits the email
address on local-part @ hostname and attempts to match these against known specifications for email addresses and
hostnames.

144.1 Basic usage

A basic example of usage is below:

1 $validator = new Zend\Validator\EmailAddress();
2 if ($validator->isValid($email)) {
3 // email appears to be valid
4 } else {
5 // email is invalid; print the reasons
6 foreach ($validator->getMessages() as $message) {
7 echo "$message\n";
8 }
9 }

This will match the email address $email and on failure populate getMessages() with useful error messages.

144.2 Options for validating Email Addresses

Zend\Validator\EmailAddress supports several options which can either be set at initiation, by giving an
array with the related options, or afterwards, by using setOptions(). The following options are supported:

• allow: Defines which type of domain names are accepted. This option is used in conjunction with the hostname
option to set the hostname validator. For more information about possible values of this option, look at Hostname
and possible ALLOW* constants. This option defaults to ALLOW_DNS.

• deep: Defines if the servers MX records should be verified by a deep check. When this option is set to TRUE
then additionally to MX records also the A, A6 and AAAA records are used to verify if the server accepts emails.
This option defaults to FALSE.

• domain: Defines if the domain part should be checked. When this option is set to FALSE, then only the local
part of the email address will be checked. In this case the hostname validator will not be called. This option
defaults to TRUE.

• hostname: Sets the hostname validator with which the domain part of the email address will be validated.

• mx: Defines if the MX records from the server should be detected. If this option is defined to TRUE then the
MX records are used to verify if the server accepts emails. This option defaults to FALSE.

595

Zend Framework 2 Documentation, Release 2.0.0

1 $validator = new Zend\Validator\EmailAddress();
2 $validator->setOptions(array(’domain’ => false));

144.3 Complex local parts

Zend\Validator\EmailAddress will match any valid email address according to RFC2822. For exam-
ple, valid emails include bob@domain.com, bob+jones@domain.us, “bob@jones”@domain.com and “bob
jones”@domain.com

Some obsolete email formats will not currently validate (e.g. carriage returns or a “\” character in an email address).

144.4 Validating only the local part

If you need Zend\Validator\EmailAddress to check only the local part of an email address, and
want to disable validation of the hostname, you can set the domain option to FALSE. This forces
Zend\Validator\EmailAddress not to validate the hostname part of the email address.

1 $validator = new Zend\Validator\EmailAddress();
2 $validator->setOptions(array(’domain’ => FALSE));

144.5 Validating different types of hostnames

The hostname part of an email address is validated against Zend\Validator\Hostname. By default only DNS hostnames
of the form domain.com are accepted, though if you wish you can accept IP addresses and Local hostnames too.

To do this you need to instantiate Zend\Validator\EmailAddress passing a parameter to indicate the type of
hostnames you want to accept. More details are included in Zend\Validator\Hostname, though an example of
how to accept both DNS and Local hostnames appears below:

1 $validator = new Zend\Validator\EmailAddress(
2 Zend\Validator\Hostname::ALLOW_DNS |
3 Zend\Validator\Hostname::ALLOW_LOCAL);
4 if ($validator->isValid($email)) {
5 // email appears to be valid
6 } else {
7 // email is invalid; print the reasons
8 foreach ($validator->getMessages() as $message) {
9 echo "$message\n";

10 }
11 }

144.6 Checking if the hostname actually accepts email

Just because an email address is in the correct format, it doesn’t necessarily mean that email address actually exists.
To help solve this problem, you can use MX validation to check whether an MX (email) entry exists in the DNS record
for the email’s hostname. This tells you that the hostname accepts email, but doesn’t tell you the exact email address
itself is valid.

596 Chapter 144. EmailAddress

Zend Framework 2 Documentation, Release 2.0.0

MX checking is not enabled by default. To enable MX checking you can pass a second parameter to the
Zend\Validator\EmailAddress constructor.

1 $validator = new Zend\Validator\EmailAddress(
2 array(
3 ’allow’ => Zend\Validator\Hostname::ALLOW_DNS,
4 ’mx’ => true
5)
6);

Note: MX Check under Windows

Within Windows environments MX checking is only available when PHP 5.3 or above is used. Below PHP 5.3 MX
checking will not be used even if it’s activated within the options.

Alternatively you can either pass TRUE or FALSE to setValidateMx() to enable or disable MX validation.

By enabling this setting network functions will be used to check for the presence of an MX record on the hostname of
the email address you wish to validate. Please be aware this will likely slow your script down.

Sometimes validation for MX records returns FALSE, even if emails are accepted. The reason behind this behaviour
is, that servers can accept emails even if they do not provide a MX record. In this case they can provide A, A6 or
AAAA records. To allow Zend\Validator\EmailAddress to check also for these other records, you need to set
deep MX validation. This can be done at initiation by setting the deep option or by using setOptions().

1 $validator = new Zend\Validator\EmailAddress(
2 array(
3 ’allow’ => Zend\Validator\Hostname::ALLOW_DNS,
4 ’mx’ => true,
5 ’deep’ => true
6)
7);

Sometimes it can be useful to get the server’s MX information which have been used to do further processing. Simply
use getMXRecord() after validation. This method returns the received MX record including weight and sorted by
it.

Warning: Performance warning
You should be aware that enabling MX check will slow down you script because of the used network functions.
Enabling deep check will slow down your script even more as it searches the given server for 3 additional types.

Note: Disallowed IP addresses

You should note that MX validation is only accepted for external servers. When deep MX validation is enabled, then
local IP addresses like 192.168.* or 169.254.* are not accepted.

144.7 Validating International Domains Names

Zend\Validator\EmailAddress will also match international characters that exist in some domains. This
is known as International Domain Name (IDN) support. This is enabled by default, though you can dis-
able this by changing the setting via the internal Zend\Validator\Hostname object that exists within
Zend\Validator\EmailAddress.

144.7. Validating International Domains Names 597

Zend Framework 2 Documentation, Release 2.0.0

1 $validator->getHostnameValidator()->setValidateIdn(false);

More information on the usage of setValidateIdn() appears in the Zend\Validator\Hostname documen-
tation.

Please note IDNs are only validated if you allow DNS hostnames to be validated.

144.8 Validating Top Level Domains

By default a hostname will be checked against a list of known TLDs. This is enabled by default, though you
can disable this by changing the setting via the internal Zend\Validator\Hostname object that exists within
Zend\Validator\EmailAddress.

1 $validator->getHostnameValidator()->setValidateTld(false);

More information on the usage of setValidateTld() appears in the Zend\Validator\Hostname documen-
tation.

Please note TLDs are only validated if you allow DNS hostnames to be validated.

144.9 Setting messages

Zend\Validator\EmailAddress makes also use of Zend\Validator\Hostname to check the host-
name part of a given email address. As with Zend Framework 1.10 you can simply set messages for
Zend\Validator\Hostname from within Zend\Validator\EmailAddress.

1 $validator = new Zend\Validator\EmailAddress();
2 $validator->setMessages(
3 array(
4 Zend\Validator\Hostname::UNKNOWN_TLD => ’I don’t know the TLD you gave’
5)
6);

Before Zend Framework 1.10 you had to attach the messages to your own Zend\Validator\Hostname, and then
set this validator within Zend\Validator\EmailAddress to get your own messages returned.

598 Chapter 144. EmailAddress

CHAPTER

FIVE

FLOAT

Zend\Validator\Float allows you to validate if a given value contains a floating-point value. This validator
validates also localized input.

145.1 Supported options for Zend\Validator\Float

The following options are supported for Zend\Validator\Float:

• locale: Sets the locale which will be used to validate localized float values.

145.2 Simple float validation

The simplest way to validate a float is by using the system settings. When no option is used, the environment locale is
used for validation:

1 $validator = new Zend\Validator\Float();
2

3 $validator->isValid(1234.5); // returns true
4 $validator->isValid(’10a01’); // returns false
5 $validator->isValid(’1,234.5’); // returns true

In the above example we expected that our environment is set to “en” as locale.

145.3 Localized float validation

Often it’s useful to be able to validate also localized values. Float values are often written different in other countries.
For example using english you will write “1.5”. In german you may write “1,5” and in other languages you may use
grouping.

Zend\Validator\Float is able to validate such notations. But it is limited to the locale you set. See the following
code:

1 $validator = new Zend\Validator\Float(array(’locale’ => ’de’));
2

3 $validator->isValid(1234.5); // returns true
4 $validator->isValid("1 234,5"); // returns false
5 $validator->isValid("1.234"); // returns true

599

Zend Framework 2 Documentation, Release 2.0.0

As you can see, by using a locale, your input is validated localized. Using a different notation you get a FALSE when
the locale forces a different notation.

The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().

600 Chapter 145. Float

CHAPTER

SIX

GREATERTHAN

Zend\Validator\GreaterThan allows you to validate if a given value is greater than a minimum border value.

Note: ZendValidatorGreaterThan supports only number validation

It should be noted that Zend\Validator\GreaterThan supports only the validation of numbers. Strings or
dates can not be validated with this validator.

146.1 Supported options for Zend\Validator\GreaterThan

The following options are supported for Zend\Validator\GreaterThan:

• inclusive: Defines if the validation is inclusive the minimum border value or exclusive. It defaults to FALSE.

• min: Sets the minimum allowed value.

146.2 Basic usage

To validate if a given value is greater than a defined border simply use the following example.

1 $valid = new Zend\Validator\GreaterThan(array(’min’ => 10));
2 $value = 8;
3 $return = $valid->isValid($value);
4 // returns false

The above example returns TRUE for all values which are greater than 10.

146.3 Validation inclusive the border value

Sometimes it is useful to validate a value by including the border value. See the following example:

1 $valid = new Zend\Validator\GreaterThan(
2 array(
3 ’min’ => 10,
4 ’inclusive’ => true
5)
6);
7 $value = 10;

601

Zend Framework 2 Documentation, Release 2.0.0

8 $result = $valid->isValid($value);
9 // returns true

The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed and
will return TRUE.

602 Chapter 146. GreaterThan

CHAPTER

SEVEN

HEX

Zend\Validator\Hex allows you to validate if a given value contains only hexadecimal characters. These are all
characters from 0 to 9 and A to F case insensitive. There is no length limitation for the input you want to validate.

1 $validator = new Zend\Validator\Hex();
2 if ($validator->isValid(’123ABC’)) {
3 // value contains only hex chars
4 } else {
5 // false
6 }

Note: Invalid characters

All other characters will return false, including whitespace and decimal point. Also unicode zeros and numbers from
other scripts than latin will not be treated as valid.

147.1 Supported options for Zend\Validator\Hex

There are no additional options for Zend\Validator\Hex:

603

Zend Framework 2 Documentation, Release 2.0.0

604 Chapter 147. Hex

CHAPTER

EIGHT

HOSTNAME

Zend\Validator\Hostname allows you to validate a hostname against a set of known specifications. It is pos-
sible to check for three different types of hostnames: a DNS Hostname (i.e. domain.com), IP address (i.e. 1.2.3.4),
and Local hostnames (i.e. localhost). By default only DNS hostnames are matched.

148.1 Supported options for Zend\Validator\Hostname

The following options are supported for Zend\Validator\Hostname:

• allow: Defines the sort of hostname which is allowed to be used. See Hostname types for details.

• idn: Defines if IDN domains are allowed or not. This option defaults to TRUE.

• ip: Allows to define a own IP validator. This option defaults to a new instance of Zend\Validator\Ip.

• tld: Defines if TLDs are validated. This option defaults to TRUE.

148.2 Basic usage

A basic example of usage is below:

1 $validator = new Zend\Validator\Hostname();
2 if ($validator->isValid($hostname)) {
3 // hostname appears to be valid
4 } else {
5 // hostname is invalid; print the reasons
6 foreach ($validator->getMessages() as $message) {
7 echo "$message\n";
8 }
9 }

This will match the hostname $hostname and on failure populate getMessages() with useful error messages.

148.3 Validating different types of hostnames

You may find you also want to match IP addresses, Local hostnames, or a combination of all allowed types. This
can be done by passing a parameter to Zend\Validator\Hostname when you instantiate it. The parame-
ter should be an integer which determines what types of hostnames are allowed. You are encouraged to use the
Zend\Validator\Hostname constants to do this.

605

Zend Framework 2 Documentation, Release 2.0.0

The Zend\Validator\Hostname constants are: ALLOW_DNS to allow only DNS hostnames, ALLOW_IP to
allow IP addresses, ALLOW_LOCAL to allow local network names, ALLOW_URI to allow RFC3986-compliant ad-
dresses, and ALLOW_ALL to allow all four above types.

Note: Additional Information on ALLOW_URI

ALLOW_URI allows to check hostnames according to RFC3986. These are registered names which are used by WINS,
NetInfo and also local hostnames like those defined within your .hosts file.

To just check for IP addresses you can use the example below:

1 $validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_IP);
2 if ($validator->isValid($hostname)) {
3 // hostname appears to be valid
4 } else {
5 // hostname is invalid; print the reasons
6 foreach ($validator->getMessages() as $message) {
7 echo "$message\n";
8 }
9 }

As well as using ALLOW_ALL to accept all common hostnames types you can combine these types to allow for
combinations. For example, to accept DNS and Local hostnames instantiate your Zend\Validator\Hostname
object as so:

1 $validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_DNS |
2 Zend\Validator\Hostname::ALLOW_IP);

148.4 Validating International Domains Names

Some Country Code Top Level Domains (ccTLDs), such as ‘de’ (Germany), support international characters in
domain names. These are known as International Domain Names (IDN). These domains can be matched by
Zend\Validator\Hostname via extended characters that are used in the validation process.

Note: IDN domains

Until now more than 50 ccTLDs support IDN domains.

To match an IDN domain it’s as simple as just using the standard Hostname validator since IDN matching is en-
abled by default. If you wish to disable IDN validation this can be done by either passing a parameter to the
Zend\Validator\Hostname constructor or via the setValidateIdn() method.

You can disable IDN validation by passing a second parameter to the Zend\Validator\Hostname constructor
in the following way.

1 $validator =
2 new Zend\Validator\Hostname(
3 array(
4 ’allow’ => Zend\Validator\Hostname::ALLOW_DNS,
5 ’idn’ => false
6)
7);

Alternatively you can either pass TRUE or FALSE to setValidateIdn() to enable or disable IDN validation. If
you are trying to match an IDN hostname which isn’t currently supported it is likely it will fail validation if it has any

606 Chapter 148. Hostname

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Zend Framework 2 Documentation, Release 2.0.0

international characters in it. Where a ccTLD file doesn’t exist in Zend/Validator/Hostname specifying the
additional characters a normal hostname validation is performed.

Note: IDN validation

Please note that IDNs are only validated if you allow DNS hostnames to be validated.

148.5 Validating Top Level Domains

By default a hostname will be checked against a list of known TLDs. If this functionality is not required it can be
disabled in much the same way as disabling IDN support. You can disable TLD validation by passing a third parameter
to the Zend\Validator\Hostname constructor. In the example below we are supporting IDN validation via the
second parameter.

1 $validator =
2 new Zend\Validator\Hostname(
3 array(
4 ’allow’ => Zend\Validator\Hostname::ALLOW_DNS,
5 ’idn’ => true,
6 ’tld’ => false
7)
8);

Alternatively you can either pass TRUE or FALSE to setValidateTld() to enable or disable TLD validation.

Note: TLD validation

Please note TLDs are only validated if you allow DNS hostnames to be validated.

148.5. Validating Top Level Domains 607

Zend Framework 2 Documentation, Release 2.0.0

608 Chapter 148. Hostname

CHAPTER

NINE

IBAN

Zend\Validator\Iban validates if a given value could be a IBAN number. IBAN is the abbreviation for “Inter-
national Bank Account Number”.

149.1 Supported options for Zend\Validator\Iban

The following options are supported for Zend\Validator\Iban:

• locale: Sets the locale which is used to get the IBAN format for validation.

149.2 IBAN validation

IBAN numbers are always related to a country. This means that different countries use different formats for their IBAN
numbers. This is the reason why IBAN numbers always need a locale. By knowing this we already know how to use
Zend\Validator\Iban.

149.2.1 Application wide locale

We could use the application wide locale. This means that when no option is given at initiation,
Zend\Validator\Iban searches for the application wide locale. See the following code snippet:

1 // within bootstrap
2 Locale::setDefault(’de_AT’);
3

4 // within the module
5 $validator = new Zend\Validator\Iban();
6

7 if ($validator->isValid(’AT611904300234573201’)) {
8 // IBAN appears to be valid
9 } else {

10 // IBAN is not valid
11 }

Note: Application wide locale

Of course this works only when an application wide locale was set within the registry previously. Otherwise Locale
will try to use the locale which the client sends or, when non has been send, it uses the environment locale. Be aware
that this can lead to unwanted behaviour within the validation.

609

Zend Framework 2 Documentation, Release 2.0.0

149.2.2 Ungreedy IBAN validation

Sometime it is useful, just to validate if the given value is a IBAN number or not. This means that you don’t want to
validate it against a defined country. This can be done by using a FALSE as locale.

1 $validator = new Zend\Validator\Iban(array(’locale’ => false));
2 // Note: you can also set a FALSE as single parameter
3

4 if ($validator->isValid(’AT611904300234573201’)) {
5 // IBAN appears to be valid
6 } else {
7 // IBAN is not valid
8 }

So any IBAN number will be valid. Note that this should not be done when you accept only accounts from a single
country.

149.2.3 Region aware IBAN validation

To validate against a defined country, you just need to give the wished locale. You can do this by the option locale
and also afterwards by using setLocale().

1 $validator = new Zend\Validator\Iban(array(’locale’ => ’de_AT’));
2

3 if ($validator->isValid(’AT611904300234573201’)) {
4 // IBAN appears to be valid
5 } else {
6 // IBAN is not valid
7 }

Note: Use full qualified locales

You must give a full qualified locale, otherwise the country could not be detected correct because languages are spoken
in multiple countries.

610 Chapter 149. Iban

CHAPTER

IDENTICAL

Zend\Validator\Identical allows you to validate if a given value is identical with an set haystack.

150.1 Supported options for Zend\Validator\Identical

The following options are supported for Zend\Validator\Identical:

• strict: Defines if the validation should be done strict. The default value is TRUE.

• token: Sets the token with which the input will be validated against.

150.2 Basic usage

To validate if two values are identical you need to set the origin value as haystack. See the following example which
validates two strings.

1 $valid = new Zend\Validator\Identical(’origin’);
2 if ($valid->isValid($value) {
3 return true;
4 }

The validation will only then return TRUE when both values are 100% identical. In our example, when $value is
‘origin’.

You can set the wished token also afterwards by using the method setToken() and getToken() to get the actual
set token.

150.3 Identical objects

Of course Zend\Validator\Identical can not only validate strings, but also any other variable type like
Boolean, Integer, Float, Array or even Objects. As already noted Haystack and Value must be identical.

1 $valid = new Zend\Validator\Identical(123);
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

Note: Type comparison

611

Zend Framework 2 Documentation, Release 2.0.0

You should be aware that also the type of a variable is used for validation. This means that the string ‘3’ is not identical
with the integer 3. When you want such a non strict validation you must set the strict option.

150.4 Form elements

Zend\Validator\Identical supports also the comparison of form elements. This can be done by using the
element’s name as token. See the following example:

1 $form->addElement(’password’, ’elementOne’);
2 $form->addElement(’password’, ’elementTwo’, array(
3 ’validators’ => array(
4 array(’identical’, false, array(’token’ => ’elementOne’))
5)
6));

By using the elements name from the first element as token for the second element, the validator validates if the
second element is equal with the first element. In the case your user does not enter two identical values, you will get
an validation error.

150.5 Strict validation

As mentioned before Zend\Validator\Identical validates tokens strict. You can change this behaviour by
using the strict option. The default value for this property is TRUE.

1 $valid = new Zend\Validator\Identical(array(’token’ => 123, ’strict’ => FALSE));
2 $input = ’123’;
3 if ($valid->isValid($input)) {
4 // input appears to be valid
5 } else {
6 // input is invalid
7 }

The difference to the previous example is that the validation returns in this case TRUE, even if you compare a integer
with string value as long as the content is identical but not the type.

For convenience you can also use setStrict() and getStrict().

150.6 Configuration

As all other validators also Zend\Validator\Identical supports the usage of configuration settings as input
parameter. This means that you can configure this validator with an Traversable instance.

But this adds one case which you have to be aware. When you are using an array as haystack then you should wrap it
within an ‘token‘ key when it could contain only one element.

1 $valid = new Zend\Validator\Identical(array(’token’ => 123));
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

612 Chapter 150. Identical

Zend Framework 2 Documentation, Release 2.0.0

The above example validates the integer 123. The reason for this special case is, that you can configure the token
which has to be used by giving the ‘token‘ key.

So, when your haystack contains one element and this element is named ‘token‘ then you have to wrap it like shown
in the example below.

1 $valid = new Zend\Validator\Identical(array(’token’ => array(’token’ => 123)));
2 if ($valid->isValid($input)) {
3 // input appears to be valid
4 } else {
5 // input is invalid
6 }

150.6. Configuration 613

Zend Framework 2 Documentation, Release 2.0.0

614 Chapter 150. Identical

CHAPTER

ONE

INARRAY

Zend\Validator\InArray allows you to validate if a given value is contained within an array. It is also able to
validate multidimensional arrays.

151.1 Supported options for Zend\Validator\InArray

The following options are supported for Zend\Validator\InArray:

• haystack: Sets the haystack for the validation.

• recursive: Defines if the validation should be done recursive. This option defaults to FALSE.

• strict: Three modes of comparison are offered owing to an often overlooked, and potentially dangerous security
issue when validating string input from user input.

– InArray::COMPARE_STRICT

This is a normal in_array strict comparison that checks value and type.

– InArray::COMPARE_NOT_STRICT

This is a normal in_array non-strict comparison that checks value only.

Warning: This mode may give false positives when strings are compared against ints or floats owing to in_array’s
behaviour of converting strings to int in such cases. Therefore, “foo” would become 0, “43foo” would become
43, while “foo43” would also become 0.

• InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY

To remedy the above warning, this mode offers a middle-ground which allows string representations
of numbers to be successfully matched against either their string or int counterpart and vice versa.
For example: “0” will successfully match against 0, but “foo” would not match against 0 as would
be true in the *COMPARE_NOT_STRICT* mode. This is the safest option to use when validating
web input, and is the default.

Defines if the validation should be done strict. This option defaults to FALSE.

151.2 Simple array validation

The simplest way, is just to give the array which should be searched against at initiation:

615

Zend Framework 2 Documentation, Release 2.0.0

1 $validator = new Zend\Validator\InArray(array(’value1’, ’value2’,...’valueN’));
2 if ($validator->isValid(’value’)) {
3 // value found
4 } else {
5 // no value found
6 }

This will behave exactly like PHP‘s in_array() method.

Note: Per default this validation is not strict nor can it validate multidimensional arrays.

Alternatively, you can define the array to validate against after object construction by using the setHaystack()
method. getHaystack() returns the actual set haystack array.

1 $validator = new Zend\Validator\InArray();
2 $validator->setHaystack(array(’value1’, ’value2’,...’valueN’));
3

4 if ($validator->isValid(’value’)) {
5 // value found
6 } else {
7 // no value found
8 }

151.3 Array validation modes

As previously mentioned, there are possible security issues when using the default non-strict comparison mode, so
rather than restricting the developer, we’ve chosen to offer both strict and non-strict comparisons and adding a safer
middle-ground.

It’s possible to set the strict mode at initialisation and afterwards with the
setStrict method. InArray::COMPARE_STRICT equates to true and
InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY equates to false.

1 // defaults to InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY
2 $validator = new Zend\Validator\InArray(
3 array(
4 ’haystack’ => array(’value1’, ’value2’,...’valueN’),
5)
6);
7

8 // set strict mode
9 $validator = new Zend\Validator\InArray(

10 array(
11 ’haystack’ => array(’value1’, ’value2’,...’valueN’),
12 ’strict’ => InArray::COMPARE_STRICT // equates to ‘‘true‘‘
13)
14);
15

16 // set non-strict mode
17 $validator = new Zend\Validator\InArray(
18 array(
19 ’haystack’ => array(’value1’, ’value2’,...’valueN’),
20 ’strict’ => InArray:COMPARE_NOT_STRICT // equates to ‘‘false‘‘
21)
22);

616 Chapter 151. InArray

Zend Framework 2 Documentation, Release 2.0.0

23

24 // or
25

26 $validator->setStrict(InArray::COMPARE_STRICT);
27 $validator->setStrict(InArray::COMPARE_NOT_STRICT);
28 $validator->setStrict(InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY);

Note: Note that the strict setting is per default FALSE.

151.4 Recursive array validation

In addition to PHP‘s in_array() method this validator can also be used to validate multidimensional arrays.

To validate multidimensional arrays you have to set the recursive option.

1 $validator = new Zend\Validator\InArray(
2 array(
3 ’haystack’ => array(
4 ’firstDimension’ => array(’value1’, ’value2’,...’valueN’),
5 ’secondDimension’ => array(’foo1’, ’foo2’,...’fooN’)),
6 ’recursive’ => true
7)
8);
9

10 if ($validator->isValid(’value’)) {
11 // value found
12 } else {
13 // no value found
14 }

Your array will then be validated recursively to see if the given value is contained. Additionally you could use
setRecursive() to set this option afterwards and getRecursive() to retrieve it.

1 $validator = new Zend\Validator\InArray(
2 array(
3 ’firstDimension’ => array(’value1’, ’value2’,...’valueN’),
4 ’secondDimension’ => array(’foo1’, ’foo2’,...’fooN’)
5)
6);
7

8 $validator->setRecursive(true);
9

10 if ($validator->isValid(’value’)) {
11 // value found
12 } else {
13 // no value found
14 }

Note: Default setting for recursion

Per default the recursive validation is turned off.

Note: Option keys within the haystack

151.4. Recursive array validation 617

Zend Framework 2 Documentation, Release 2.0.0

When you are using the keys ‘haystack‘, ‘strict‘ or ‘recursive‘ within your haystack, then you must wrap
the haystack key.

618 Chapter 151. InArray

CHAPTER

TWO

INT

Zend\Validator\Int validates if a given value is an integer. Also localized integer values are recognised and
can be validated.

152.1 Supported options for Zend\Validator\Int

The following options are supported for Zend\Validator\Int:

• locale: Sets the locale which will be used to validate localized integers.

152.2 Simple integer validation

The simplest way to validate an integer is by using the system settings. When no option is used, the environment
locale is used for validation:

1 $validator = new Zend\Validator\Int();
2

3 $validator->isValid(1234); // returns true
4 $validator->isValid(1234.5); // returns false
5 $validator->isValid(’1,234’); // returns true

In the above example we expected that our environment is set to “en” as locale. As you can see in the third example
also grouping is recognised.

152.3 Localized integer validation

Often it’s useful to be able to validate also localized values. Integer values are often written different in other countries.
For example using english you can write “1234” or “1,234”. Both are integer values but the grouping is optional. In
german for example you may write “1.234” and in french “1 234”.

Zend\Validator\Int is able to validate such notations. But it is limited to the locale you set. This means that it
not simply strips off the separator, it validates if the correct separator is used. See the following code:

1 $validator = new Zend\Validator\Int(array(’locale’ => ’de’));
2

3 $validator->isValid(1234); // returns true
4 $validator->isValid("1,234"); // returns false
5 $validator->isValid("1.234"); // returns true

619

Zend Framework 2 Documentation, Release 2.0.0

As you can see, by using a locale, your input is validated localized. Using the english notation you get a FALSE when
the locale forces a different notation.

The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().

620 Chapter 152. Int

CHAPTER

THREE

IP

Zend\Validator\Ip allows you to validate if a given value is an IP address. It supports the IPv4, IPv6 and
IPvFeature definitions.

153.1 Supported options for Zend\Validator\Ip

The following options are supported for Zend\Validator\Ip:

• allowipv4: Defines if the validator allows IPv4 addresses. This option defaults to TRUE.

• allowipv6: Defines if the validator allows IPv6 addresses. This option defaults to TRUE.

• allowipvfuture: Defines if the validator allows IPvFuture addresses. This option defaults to false.

• allowliteral: Defines if the validator allows IPv6 or IPvFuture with URI literal style (the IP surrounded by
brackets). This option defaults to true.

153.2 Basic usage

A basic example of usage is below:

1 $validator = new Zend\Validator\Ip();
2 if ($validator->isValid($ip)) {
3 // ip appears to be valid
4 } else {
5 // ip is invalid; print the reasons
6 }

Note: Invalid IP addresses

Keep in mind that Zend\Validator\Ip only validates IP addresses. Addresses like ‘mydomain.com‘ or
‘192.168.50.1/index.html‘ are no valid IP addresses. They are either hostnames or valid URLs but not IP
addresses.

Note: IPv6/IPvFuture validation

Zend\Validator\Ip validates IPv6/IPvFuture addresses with regex. The reason is that the filters and methods
from PHP itself don’t follow the RFC. Many other available classes also don’t follow it.

621

Zend Framework 2 Documentation, Release 2.0.0

153.3 Validate IPv4 or IPV6 alone

Sometimes it’s useful to validate only one of the supported formats. For example when your network only supports
IPv4. In this case it would be useless to allow IPv6 within this validator.

To limit Zend\Validator\Ip to one protocol you can set the options allowipv4 or allowipv6 to FALSE.
You can do this either by giving the option to the constructor or by using setOptions() afterwards.

1 $validator = new Zend\Validator\Ip(array(’allowipv6’ => false));
2 if ($validator->isValid($ip)) {
3 // ip appears to be valid ipv4 address
4 } else {
5 // ip is no ipv4 address
6 }

Note: Default behaviour

The default behaviour which Zend\Validator\Ip follows is to allow both standards.

622 Chapter 153. Ip

CHAPTER

FOUR

ISBN

Zend\Validator\Isbn allows you to validate an ISBN-10 or ISBN-13 value.

154.1 Supported options for Zend\Validator\Isbn

The following options are supported for Zend\Validator\Isbn:

• separator: Defines the allowed separator for the ISBN number. It defaults to an empty string.

• type: Defines the allowed type of ISBN numbers. It defaults to Zend\Validator\Isbn::AUTO. For details
take a look at this section.

154.2 Basic usage

A basic example of usage is below:

1 $validator = new Zend\Validator\Isbn();
2 if ($validator->isValid($isbn)) {
3 // isbn is valid
4 } else {
5 // isbn is not valid
6 }

This will validate any ISBN-10 and ISBN-13 without separator.

154.3 Setting an explicit ISBN validation type

An example of an ISBN type restriction is below:

1 $validator = new Zend\Validator\Isbn();
2 $validator->setType(Zend\Validator\Isbn::ISBN13);
3 // OR
4 $validator = new Zend\Validator\Isbn(array(
5 ’type’ => Zend\Validator\Isbn::ISBN13,
6));
7

8 if ($validator->isValid($isbn)) {
9 // this is a valid ISBN-13 value

10 } else {

623

Zend Framework 2 Documentation, Release 2.0.0

11 // this is an invalid ISBN-13 value
12 }

The above will validate only ISBN-13 values.

Valid types include:

• Zend\Validator\Isbn::AUTO (default)

• Zend\Validator\Isbn::ISBN10

• Zend\Validator\Isbn::ISBN13

154.4 Specifying a separator restriction

An example of separator restriction is below:

1 $validator = new Zend\Validator\Isbn();
2 $validator->setSeparator(’-’);
3 // OR
4 $validator = new Zend\Validator\Isbn(array(
5 ’separator’ => ’-’,
6));
7

8 if ($validator->isValid($isbn)) {
9 // this is a valid ISBN with separator

10 } else {
11 // this is an invalid ISBN with separator
12 }

Note: Values without separator

This will return FALSE if $isbn doesn’t contain a separator or if it’s an invalid ISBN value.

Valid separators include:

• “” (empty) (default)

• “-” (hyphen)

• ” ” (space)

624 Chapter 154. Isbn

CHAPTER

FIVE

LESSTHAN

Zend\Validator\LessThan allows you to validate if a given value is less than a maximum border value.

Note: ZendValidatorLessThan supports only number validation

It should be noted that Zend\Validator\LessThan supports only the validation of numbers. Strings or dates
can not be validated with this validator.

155.1 Supported options for Zend\Validator\LessThan

The following options are supported for Zend\Validator\LessThan:

• inclusive: Defines if the validation is inclusive the maximum border value or exclusive. It defaults to FALSE.

• max: Sets the maximum allowed value.

155.2 Basic usage

To validate if a given value is less than a defined border simply use the following example.

1 $valid = new Zend\Validator\LessThan(array(’max’ => 10));
2 $value = 12;
3 $return = $valid->isValid($value);
4 // returns false

The above example returns TRUE for all values which are lower than 10.

155.3 Validation inclusive the border value

Sometimes it is useful to validate a value by including the border value. See the following example:

1 $valid = new Zend\Validator\LessThan(
2 array(
3 ’max’ => 10,
4 ’inclusive’ => true
5)
6);
7 $value = 10;

625

Zend Framework 2 Documentation, Release 2.0.0

8 $result = $valid->isValid($value);
9 // returns true

The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed and
will return TRUE.

626 Chapter 155. LessThan

CHAPTER

SIX

NOTEMPTY

This validator allows you to validate if a given value is not empty. This is often useful when working with form
elements or other user input, where you can use it to ensure required elements have values associated with them.

156.1 Supported options for Zend\Validator\NotEmpty

The following options are supported for Zend\Validator\NotEmpty:

• type: Sets the type of validation which will be processed. For details take a look into this section.

156.2 Default behaviour for Zend\Validator\NotEmpty

By default, this validator works differently than you would expect when you’ve worked with PHP‘s empty() func-
tion. In particular, this validator will evaluate both the integer 0 and string ‘0‘ as empty.

1 $valid = new Zend\Validator\NotEmpty();
2 $value = ’’;
3 $result = $valid->isValid($value);
4 // returns false

Note: Default behaviour differs from PHP

Without providing configuration, Zend\Validator\NotEmpty‘s behaviour differs from PHP.

156.3 Changing behaviour for Zend\Validator\NotEmpty

Some projects have differing opinions of what is considered an “empty” value: a string with only whitespace might be
considered empty, or 0 may be considered non-empty (particularly for boolean sequences). To accommodate differing
needs, Zend\Validator\NotEmpty allows you to configure which types should be validated as empty and which
not.

The following types can be handled:

• boolean: Returns FALSE when the boolean value is FALSE.

• integer: Returns FALSE when an integer 0 value is given. Per default this validation is not activated and returns
TRUE on any integer values.

627

Zend Framework 2 Documentation, Release 2.0.0

• float: Returns FALSE when an float 0.0 value is given. Per default this validation is not activated and returns
TRUE on any float values.

• string: Returns FALSE when an empty string ‘’ is given.

• zero: Returns FALSE when the single character zero (‘0’) is given.

• empty_array: Returns FALSE when an empty array is given.

• null: Returns FALSE when an NULL value is given.

• php: Returns FALSE on the same reasons where PHP method empty() would return TRUE.

• space: Returns FALSE when an string is given which contains only whitespaces.

• object: Returns TRUE. FALSE will be returned when object is not allowed but an object is given.

• object_string: Returns FALSE when an object is given and it’s __toString() method returns an empty
string.

• object_count: Returns FALSE when an object is given, it has an Countable interface and it’s count is 0.

• all: Returns FALSE on all above types.

All other given values will return TRUE per default.

There are several ways to select which of the above types are validated. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:

1 // Returns false on 0
2 $validator = new Zend\Validator\NotEmpty(Zend\Validator\NotEmpty::INTEGER);
3

4 // Returns false on 0 or ’0’
5 $validator = new Zend\Validator\NotEmpty(
6 Zend\Validator\NotEmpty::INTEGER + Zend\Validator\NotEmpty::ZERO
7);
8

9 // Returns false on 0 or ’0’
10 $validator = new Zend\Validator\NotEmpty(array(
11 Zend\Validator\NotEmpty::INTEGER,
12 Zend\Validator\NotEmpty::ZERO
13));
14

15 // Returns false on 0 or ’0’
16 $validator = new Zend\Validator\NotEmpty(array(
17 ’integer’,
18 ’zero’,
19));

You can also provide an instance of Traversable to set the desired types. To set types after instantiation, use the
setType() method.

628 Chapter 156. NotEmpty

CHAPTER

SEVEN

POSTCODE

Zend\Validator\PostCode allows you to determine if a given value is a valid postal code. Postal codes are
specific to cities, and in some locales termed ZIP codes.

Zend\Validator\PostCode knows more than 160 different postal code formats. To select the correct format
there are 2 ways. You can either use a fully qualified locale or you can set your own format manually.

Using a locale is more convenient as Zend Framework already knows the appropriate postal code format for each
locale; however, you need to use the fully qualified locale (one containing a region specifier) to do so. For instance,
the locale “de” is a locale but could not be used with Zend\Validator\PostCode as it does not include the
region; “de_AT”, however, would be a valid locale, as it specifies the region code (“AT”, for Austria).

1 $validator = new Zend\Validator\PostCode(’de_AT’);

When you don’t set a locale yourself, then Zend\Validator\PostCode will use the application wide set locale,
or, when there is none, the locale returned by Locale.

1 // application wide locale within your bootstrap
2 Locale::setDefault(’de_AT’);
3

4 $validator = new Zend\Validator\PostCode();

You can also change the locale afterwards by calling setLocale(). And of course you can get the actual used
locale by calling getLocale().

1 $validator = new Zend\Validator\PostCode(’de_AT’);
2 $validator->setLocale(’en_GB’);

Postal code formats are simply regular expression strings. When the international postal code format, which is used
by setting the locale, does not fit your needs, then you can also manually set a format by calling setFormat().

1 $validator = new Zend\Validator\PostCode(’de_AT’);
2 $validator->setFormat(’AT-\d{5}’);

Note: Conventions for self defined formats

When using self defined formats you should omit the starting (’/^’) and ending tags (’$/’). They are attached
automatically.

You should also be aware that postcode values are always be validated in a strict way. This means that they have to be
written standalone without additional characters when they are not covered by the format.

629

Zend Framework 2 Documentation, Release 2.0.0

157.1 Constructor options

At it’s most basic, you may pass a string representing a fully qualified locale to the constructor of
Zend\Validator\PostCode.

1 $validator = new Zend\Validator\PostCode(’de_AT’);
2 $validator = new Zend\Validator\PostCode($locale);

Additionally, you may pass either an array or a Traversable instance to the constructor. When you do so, you must
include either the key “locale” or “format”; these will be used to set the appropriate values in the validator object.

1 $validator = new Zend\Validator\PostCode(array(
2 ’locale’ => ’de_AT’,
3 ’format’ => ’AT_\d+’
4));

157.2 Supported options for Zend\Validator\PostCode

The following options are supported for Zend\Validator\PostCode:

• format: Sets a postcode format which will be used for validation of the input.

• locale: Sets a locale from which the postcode will be taken from.

630 Chapter 157. PostCode

CHAPTER

EIGHT

REGEX

This validator allows you to validate if a given string conforms a defined regular expression.

158.1 Supported options for Zend\Validator\Regex

The following options are supported for Zend\Validator\Regex:

• pattern: Sets the regular expression pattern for this validator.

158.2 Validation with Zend\Validator\Regex

Validation with regular expressions allows to have complicated validations being done without writing a own validator.
The usage of regular expression is quite common and simple. Let’s look at some examples:

1 $validator = new Zend\Validator\Regex(array(’pattern’ => ’/^Test/’);
2

3 $validator->isValid("Test"); // returns true
4 $validator->isValid("Testing"); // returns true
5 $validator->isValid("Pest"); // returns false

As you can see, the pattern has to be given using the same syntax as for preg_match(). For details about regular
expressions take a look into PHP’s manual about PCRE pattern syntax.

158.3 Pattern handling

It is also possible to set a different pattern afterwards by using setPattern() and to get the actual set pattern with
getPattern().

1 $validator = new Zend\Validator\Regex(array(’pattern’ => ’/^Test/’);
2 $validator->setPattern(’ing$/’);
3

4 $validator->isValid("Test"); // returns false
5 $validator->isValid("Testing"); // returns true
6 $validator->isValid("Pest"); // returns false

631

http://php.net/manual/en/reference.pcre.pattern.syntax.php

Zend Framework 2 Documentation, Release 2.0.0

632 Chapter 158. Regex

CHAPTER

NINE

SITEMAP VALIDATORS

The following validators conform to the Sitemap XML protocol.

159.1 Sitemap\Changefreq

Validates whether a string is valid for using as a ‘changefreq’ element in a Sitemap XML document. Valid values are:
‘always’, ‘hourly’, ‘daily’, ‘weekly’, ‘monthly’, ‘yearly’, or ‘never’.

Returns TRUE if and only if the value is a string and is equal to one of the frequencies specified above.

159.2 Sitemap\Lastmod

Validates whether a string is valid for using as a ‘lastmod’ element in a Sitemap XML document. The lastmod element
should contain a W3C date string, optionally discarding information about time.

Returns TRUE if and only if the given value is a string and is valid according to the protocol.

Sitemap Lastmod Validator

1 $validator = new Zend\Validator\Sitemap\Lastmod();
2

3 $validator->isValid(’1999-11-11T22:23:52-02:00’); // true
4 $validator->isValid(’2008-05-12T00:42:52+02:00’); // true
5 $validator->isValid(’1999-11-11’); // true
6 $validator->isValid(’2008-05-12’); // true
7

8 $validator->isValid(’1999-11-11t22:23:52-02:00’); // false
9 $validator->isValid(’2008-05-12T00:42:60+02:00’); // false

10 $validator->isValid(’1999-13-11’); // false
11 $validator->isValid(’2008-05-32’); // false
12 $validator->isValid(’yesterday’); // false

159.3 Sitemap\Loc

Validates whether a string is valid for using as a ‘loc’ element in a Sitemap XML document. This uses
Zend\Uri\Uri::isValid() internally. Read more at URI Validation.

633

http://www.sitemaps.org/protocol.php

Zend Framework 2 Documentation, Release 2.0.0

159.4 Sitemap\Priority

Validates whether a value is valid for using as a ‘priority’ element in a Sitemap XML document. The value should be
a decimal between 0.0 and 1.0. This validator accepts both numeric values and string values.

Sitemap Priority Validator

1 $validator = new Zend\Validator\Sitemap\Priority();
2

3 $validator->isValid(’0.1’); // true
4 $validator->isValid(’0.789’); // true
5 $validator->isValid(0.8); // true
6 $validator->isValid(1.0); // true
7

8 $validator->isValid(’1.1’); // false
9 $validator->isValid(’-0.4’); // false

10 $validator->isValid(1.00001); // false
11 $validator->isValid(0xFF); // false
12 $validator->isValid(’foo’); // false

159.5 Supported options for Zend\Validator\Sitemap_*

There are no supported options for any of the Sitemap validators.

634 Chapter 159. Sitemap Validators

CHAPTER

STEP

Zend\Validator\Step allows you to validate if a given value is a valid step value. This validator requires the
value to be a numeric value (either string, int or float).

160.1 Supported options for Zend\Validator\Step

The following options are supported for Zend\Validator\Step:

• baseValue: This is the base value from which the step should be computed. This option defaults to 0

• step: This is the step value. This option defaults to 1

160.2 Basic usage

A basic example is the following one:

1 $validator = new Zend\Validator\Step();
2 if ($validator->isValid(1)) {
3 // value is a valid step value
4 } else {
5 // false
6 }

160.3 Using floating-point values

This validator also supports floating-point base value and step value. Here is a basic example of this feature:

1 $validator = new Zend\Validator\Step(array(
2 ’baseValue’ => 1.1,
3 ’step’ => 2.2
4));
5

6 echo $validator->isValid(1.1); // prints true
7 echo $validator->isValid(3.3); // prints true
8 echo $validator->isValid(3.35); // prints false
9 echo $validator->isValid(2.2); // prints false

635

Zend Framework 2 Documentation, Release 2.0.0

636 Chapter 160. Step

CHAPTER

ONE

STRINGLENGTH

This validator allows you to validate if a given string is between a defined length.

Note: ZendValidatorStringLength supports only string validation

It should be noted that Zend\Validator\StringLength supports only the validation of strings. Integers, floats,
dates or objects can not be validated with this validator.

161.1 Supported options for Zend\Validator\StringLength

The following options are supported for Zend\Validator\StringLength:

• encoding: Sets the ICONV encoding which has to be used for this string.

• min: Sets the minimum allowed length for a string.

• max: Sets the maximum allowed length for a string.

161.2 Default behaviour for Zend\Validator\StringLength

Per default this validator checks if a value is between min and max. But for min the default value is 0 and for max it
is NULL which means unlimited.

So per default, without giving any options, this validator only checks if the input is a string.

161.3 Limiting the maximum allowed length of a string

To limit the maximum allowed length of a string you need to set the max property. It accepts an integer value as input.

1 $validator = new Zend\Validator\StringLength(array(’max’ => 6));
2

3 $validator->isValid("Test"); // returns true
4 $validator->isValid("Testing"); // returns false

You can set the maximum allowed length also afterwards by using the setMax() method. And getMax() to
retrieve the actual maximum border.

637

Zend Framework 2 Documentation, Release 2.0.0

1 $validator = new Zend\Validator\StringLength();
2 $validator->setMax(6);
3

4 $validator->isValid("Test"); // returns true
5 $validator->isValid("Testing"); // returns false

161.4 Limiting the minimal required length of a string

To limit the minimal required length of a string you need to set the min property. It accepts also an integer value as
input.

1 $validator = new Zend\Validator\StringLength(array(’min’ => 5));
2

3 $validator->isValid("Test"); // returns false
4 $validator->isValid("Testing"); // returns true

You can set the minimal requested length also afterwards by using the setMin() method. And getMin() to
retrieve the actual minimum border.

1 $validator = new Zend\Validator\StringLength();
2 $validator->setMin(5);
3

4 $validator->isValid("Test"); // returns false
5 $validator->isValid("Testing"); // returns true

161.5 Limiting a string on both sides

Sometimes it is required to get a string which has a maximal defined length but which is also minimal chars long. For
example when you have a textbox where a user can enter his name, then you may want to limit the name to maximum
30 chars but want to get sure that he entered his name. So you limit the minimum required length to 3 chars. See the
following example:

1 $validator = new Zend\Validator\StringLength(array(’min’ => 3, ’max’ => 30));
2

3 $validator->isValid("."); // returns false
4 $validator->isValid("Test"); // returns true
5 $validator->isValid("Testing"); // returns true

Note: Setting a lower maximum border than the minimum border

When you try to set a lower maximum value as the actual minimum value, or a higher minimum value as the actual
maximum value, then an exception will be raised.

161.6 Encoding of values

Strings are always using a encoding. Even when you don’t set the encoding explicit, PHP uses one. When your
application is using a different encoding than PHP itself then you should set an encoding yourself.

638 Chapter 161. StringLength

Zend Framework 2 Documentation, Release 2.0.0

You can set your own encoding at initiation with the encoding option, or by using the setEncoding() method.
We assume that your installation uses ISO and your application it set to ISO. In this case you will see the below
behaviour.

1 $validator = new Zend\Validator\StringLength(
2 array(’min’ => 6)
3);
4 $validator->isValid("Ärger"); // returns false
5

6 $validator->setEncoding("UTF-8");
7 $validator->isValid("Ärger"); // returns true
8

9 $validator2 = new Zend\Validator\StringLength(
10 array(’min’ => 6, ’encoding’ => ’UTF-8’)
11);
12 $validator2->isValid("Ärger"); // returns true

So when your installation and your application are using different encodings, then you should always set an encoding
yourself.

161.6. Encoding of values 639

Zend Framework 2 Documentation, Release 2.0.0

640 Chapter 161. StringLength

CHAPTER

TWO

VALIDATOR CHAINS

Often multiple validations should be applied to some value in a particular order. The following code demonstrates a
way to solve the example from the introduction, where a username must be between 6 and 12 alphanumeric characters:

1 // Create a validator chain and add validators to it
2 $validatorChain = new Zend\Validator\ValidatorChain();
3 $validatorChain->addValidator(
4 new Zend\Validator\StringLength(array(’min’ => 6,
5 ’max’ => 12)))
6 ->addValidator(new Zend\Validator\Alnum());
7

8 // Validate the username
9 if ($validatorChain->isValid($username)) {

10 // username passed validation
11 } else {
12 // username failed validation; print reasons
13 foreach ($validatorChain->getMessages() as $message) {
14 echo "$message\n";
15 }
16 }

Validators are run in the order they were added to Zend\Validator\ValidatorChain. In the above example,
the username is first checked to ensure that its length is between 6 and 12 characters, and then it is checked to
ensure that it contains only alphanumeric characters. The second validation, for alphanumeric characters, is performed
regardless of whether the first validation, for length between 6 and 12 characters, succeeds. This means that if both
validations fail, getMessages() will return failure messages from both validators.

In some cases it makes sense to have a validator break the chain if its validation process fails.
Zend\Validator\ValidatorChain supports such use cases with the second parameter to the
addValidator() method. By setting $breakChainOnFailure to TRUE, the added validator will break the
chain execution upon failure, which avoids running any other validations that are determined to be unnecessary or
inappropriate for the situation. If the above example were written as follows, then the alphanumeric validation would
not occur if the string length validation fails:

1 $validatorChain->addValidator(
2 new Zend\Validator\StringLength(array(’min’ => 6,
3 ’max’ => 12)),
4 true)
5 ->addValidator(new Zend\Validator\Alnum());

Any object that implements Zend\Validator\ValidatorInterface may be used in a validator chain.

641

Zend Framework 2 Documentation, Release 2.0.0

642 Chapter 162. Validator Chains

CHAPTER

THREE

WRITING VALIDATORS

Zend\Validator\AbstractValidator supplies a set of commonly needed validators, but inevitably, devel-
opers will wish to write custom validators for their particular needs. The task of writing a custom validator is described
in this section.

Zend\Validator\ValidatorInterface defines two methods, isValid() and getMessages(),
that may be implemented by user classes in order to create custom validation objects. An object
that implements Zend\Validator\AbstractValidator interface may be added to a validator chain
with Zend\Validator\ValidatorChain::addValidator(). Such objects may also be used with
Zend\Filter\Input.

As you may already have inferred from the above description of Zend\Validator\ValidatorInterface,
validation classes provided with Zend Framework return a boolean value for whether or not a value validates success-
fully. They also provide information about why a value failed validation. The availability of the reasons for validation
failures may be valuable to an application for various purposes, such as providing statistics for usability analysis.

Basic validation failure message functionality is implemented in Zend\Validator\AbstractValidator.
To include this functionality when creating a validation class, simply extend
Zend\Validator\AbstractValidator. In the extending class you would implement the isValid()
method logic and define the message variables and message templates that correspond to the types of validation
failures that can occur. If a value fails your validation tests, then isValid() should return FALSE. If the value
passes your validation tests, then isValid() should return TRUE.

In general, the isValid() method should not throw any exceptions, except where it is impossible to determine
whether or not the input value is valid. A few examples of reasonable cases for throwing an exception might be if a
file cannot be opened, an LDAP server could not be contacted, or a database connection is unavailable, where such a
thing may be required for validation success or failure to be determined.

Creating a Simple Validation Class

The following example demonstrates how a very simple custom validator might be written. In this case the validation
rules are simply that the input value must be a floating point value.

1 class MyValid\Float extends Zend\Validator\AbstractValidator
2 {
3 const FLOAT = ’float’;
4

5 protected $messageTemplates = array(
6 self::FLOAT => "’%value%’ is not a floating point value"
7);
8

9 public function isValid($value)
10 {

643

Zend Framework 2 Documentation, Release 2.0.0

11 $this->setValue($value);
12

13 if (!is_float($value)) {
14 $this->error(self::FLOAT);
15 return false;
16 }
17

18 return true;
19 }
20 }

The class defines a template for its single validation failure message, which includes the built-in magic parameter,
%value%. The call to setValue() prepares the object to insert the tested value into the failure message automati-
cally, should the value fail validation. The call to error() tracks a reason for validation failure. Since this class only
defines one failure message, it is not necessary to provide error() with the name of the failure message template.

Writing a Validation Class having Dependent Conditions

The following example demonstrates a more complex set of validation rules, where it is required that the input value
be numeric and within the range of minimum and maximum boundary values. An input value would fail validation
for exactly one of the following reasons:

• The input value is not numeric.

• The input value is less than the minimum allowed value.

• The input value is more than the maximum allowed value.

These validation failure reasons are then translated to definitions in the class:

1 class MyValid\NumericBetween extends Zend\Validator\AbstractValidator
2 {
3 const MSG_NUMERIC = ’msgNumeric’;
4 const MSG_MINIMUM = ’msgMinimum’;
5 const MSG_MAXIMUM = ’msgMaximum’;
6

7 public $minimum = 0;
8 public $maximum = 100;
9

10 protected $messageVariables = array(
11 ’min’ => ’minimum’,
12 ’max’ => ’maximum’
13);
14

15 protected $messageTemplates = array(
16 self::MSG_NUMERIC => "’%value%’ is not numeric",
17 self::MSG_MINIMUM => "’%value%’ must be at least ’%min%’",
18 self::MSG_MAXIMUM => "’%value%’ must be no more than ’%max%’"
19);
20

21 public function isValid($value)
22 {
23 $this->setValue($value);
24

25 if (!is_numeric($value)) {
26 $this->error(self::MSG_NUMERIC);
27 return false;
28 }

644 Chapter 163. Writing Validators

Zend Framework 2 Documentation, Release 2.0.0

29

30 if ($value < $this->minimum) {
31 $this->error(self::MSG_MINIMUM);
32 return false;
33 }
34

35 if ($value > $this->maximum) {
36 $this->error(self::MSG_MAXIMUM);
37 return false;
38 }
39

40 return true;
41 }
42 }

The public properties $minimum and $maximum have been established to provide the minimum and maximum
boundaries, respectively, for a value to successfully validate. The class also defines two message variables that corre-
spond to the public properties and allow min and max to be used in message templates as magic parameters, just as
with value.

Note that if any one of the validation checks in isValid() fails, an appropriate failure message is prepared, and the
method immediately returns FALSE. These validation rules are therefore sequentially dependent. That is, if one test
should fail, there is no need to test any subsequent validation rules. This need not be the case, however. The following
example illustrates how to write a class having independent validation rules, where the validation object may return
multiple reasons why a particular validation attempt failed.

Validation with Independent Conditions, Multiple Reasons for Failure

Consider writing a validation class for password strength enforcement - when a user is required to choose a password
that meets certain criteria for helping secure user accounts. Let us assume that the password security criteria enforce
that the password:

• is at least 8 characters in length,

• contains at least one uppercase letter,

• contains at least one lowercase letter,

• and contains at least one digit character.

The following class implements these validation criteria:

1 class MyValid\PasswordStrength extends Zend\Validator\AbstractValidator
2 {
3 const LENGTH = ’length’;
4 const UPPER = ’upper’;
5 const LOWER = ’lower’;
6 const DIGIT = ’digit’;
7

8 protected $messageTemplates = array(
9 self::LENGTH => "’%value%’ must be at least 8 characters in length",

10 self::UPPER => "’%value%’ must contain at least one uppercase letter",
11 self::LOWER => "’%value%’ must contain at least one lowercase letter",
12 self::DIGIT => "’%value%’ must contain at least one digit character"
13);
14

15 public function isValid($value)
16 {
17 $this->setValue($value);

645

Zend Framework 2 Documentation, Release 2.0.0

18

19 $isValid = true;
20

21 if (strlen($value) < 8) {
22 $this->error(self::LENGTH);
23 $isValid = false;
24 }
25

26 if (!preg_match(’/[A-Z]/’, $value)) {
27 $this->error(self::UPPER);
28 $isValid = false;
29 }
30

31 if (!preg_match(’/[a-z]/’, $value)) {
32 $this->error(self::LOWER);
33 $isValid = false;
34 }
35

36 if (!preg_match(’/\d/’, $value)) {
37 $this->error(self::DIGIT);
38 $isValid = false;
39 }
40

41 return $isValid;
42 }
43 }

Note that the four criteria tests in isValid() do not immediately return FALSE. This allows the validation class to
provide all of the reasons that the input password failed to meet the validation requirements. if, for example, a user
were to input the string “#$%” as a password, isValid() would cause all four validation failure messages to be
returned by a subsequent call to getMessages().

646 Chapter 163. Writing Validators

CHAPTER

FOUR

VALIDATION MESSAGES

Each validator which is based on Zend\Validator\ValidatorInterface provides one or multiple messages
in the case of a failed validation. You can use this information to set your own messages, or to translate existing
messages which a validator could return to something different.

These validation messages are constants which can be found at top of each validator class. Let’s look into
Zend\Validator\GreaterThan for an descriptive example:

1 protected $messageTemplates = array(
2 self::NOT_GREATER => "’%value%’ is not greater than ’%min%’",
3);

As you can see the constant self::NOT_GREATER refers to the failure and is used as key, and the message itself is
used as value of the message array.

You can retrieve all message templates from a validator by using the getMessageTemplates()method. It returns
you the above array which contains all messages a validator could return in the case of a failed validation.

1 $validator = new Zend\Validator\GreaterThan();
2 $messages = $validator->getMessageTemplates();

Using the setMessage() method you can set another message to be returned in case of the specified failure.

1 $validator = new Zend\Validator\GreaterThan();
2 $validator->setMessage(
3 ’Please enter a lower value’,
4 Zend\Validator\GreaterThan::NOT_GREATER
5);

The second parameter defines the failure which will be overridden. When you omit this parameter, then the given
message will be set for all possible failures of this validator.

164.1 Using pre-translated validation messages

Zend Framework is shipped with more than 45 different validators with more than 200 failure messages. It can be
a tedious task to translate all of these messages. But for your convenience Zend Framework comes with already
pre-translated validation messages. You can find them within the path /resources/languages in your Zend
Framework installation.

Note: Used path

The resource files are outside of the library path because all of your translations should also be outside of this path.

647

Zend Framework 2 Documentation, Release 2.0.0

So to translate all validation messages to German for example, all you have to do is to attach a translator to
Zend\Validator\AbstractValidator using these resource files.

1 $translator = new Zend\I18n\Translator\Translator();
2 $translator->addTranslationFile(
3 ’phpArray’
4 ’resources/languages/en.php’,
5 ’default’,
6 ’en_US
7);
8 Zend\Validator\AbstractValidator::setDefaultTranslator($translator);

Note: Supported languages

This feature is very young, so the amount of supported languages may not be complete. New languages will be added
with each release. Additionally feel free to use the existing resource files to make your own translations.

You could also use these resource files to rewrite existing translations. So you are not in need to create these files
manually yourself.

164.2 Limit the size of a validation message

Sometimes it is necessary to limit the maximum size a validation message can have. For example when
your view allows a maximum size of 100 chars to be rendered on one line. To simplify the usage,
Zend\Validator\AbstractValidator is able to automatically limit the maximum returned size of a vali-
dation message.

To get the actual set size use Zend\Validator\AbstractValidator::getMessageLength(). If it is -1,
then the returned message will not be truncated. This is default behaviour.

To limit the returned message size use Zend\Validator\AbstractValidator::setMessageLength().
Set it to any integer size you need. When the returned message exceeds the set size, then the message will be truncated
and the string ‘...‘ will be added instead of the rest of the message.

1 Zend\Validator\AbstractValidator::setMessageLength(100);

Note: Where is this parameter used?

The set message length is used for all validators, even for self defined ones, as long as they extend
Zend\Validator\AbstractValidator.

648 Chapter 164. Validation Messages

CHAPTER

FIVE

ZEND\VIEW QUICK START

165.1 Overview

Zend\View provides the “View” layer of Zend Framework’s MVC system. It is a multi-tiered system allowing a
variety of mechanisms for extension, substitution, and more.

The components of the view layer are as follows:

• Variables containers, which hold variables and callbacks that you wish to represent in the view. Often-times, a
Variables container will also provide mechanisms for context-specific escaping of variables and more.

• View Models, which hold Variables containers, specify the template to use, if any, and optionally provide
rendering options (more on that below). View Models may be nested in order to represent complex structures.

• Renderers, which take View Models and provide a representation of them to return. Zend Framework ships
three renderers by default: a “PHP” renderer which utilizes PHP templates in order to generate markup; a JSON
renderer; and a Feed renderer, capable of generating RSS and Atom feeds.

• Resolvers, which resolve a template name to a resource a Renderer may consume. As an example, a resolver
may take the name “blog/entry” and resolve it to a PHP view script.

• The View, which consists of strategies that map the current Request to a Renderer, and strategies for injecting
the Response with the result of rendering.

• Renderer and Response Strategies. Renderer Strategies listen to the “renderer” event of the View, and decide
which Renderer should be selected, based on the Request or other criteria. Response strategies are used to
inject the Response object with the results of rendering – which may also include taking actions such as setting
Content-Type headers.

Additionally, Zend Framework provides integration with the MVC via a number of event listeners in the
Zend\Mvc\View namespace.

165.2 Usage

This manual section is designed to show you typical usage patterns of the view layer when using it within the Zend
Framework MVC. The assumptions are that you are using Dependency Injection, and that you are using the default
MVC view strategies.

Configuration

The default configuration for the framework will typically work out-of-the-box. However, you will still need to select
resolver strategies and configure them, as well as potentially indicate alternate template names for things like the site

649

Zend Framework 2 Documentation, Release 2.0.0

layout, 404 (not found) pages, and error pages. The code snippets below can be added to your configuration to accom-
plish this. We recommend adding it to a site-specific module, such as the “Application” module from the framework’s
“ZendSkeletonApplication”, or to one of your autoloaded configurations within the config/autoload/ directory.

1 return array(
2 ’di’ => array(
3 ’instance’ => array(
4 // The above lines will likely already be present; it’s the following
5 // definitions that you will want to ensure are present within the DI
6 // instance configuration.
7

8 // Setup the View layer
9 // This sets up an "AggregateResolver", which allows you to have

10 // multiple template resolution strategies. We recommend using the
11 // TemplateMapResolver as the primary solution, with the
12 // TemplatePathStack as a backup.
13 ’Zend\View\Resolver\AggregateResolver’ => array(
14 ’injections’ => array(
15 ’Zend\View\Resolver\TemplateMapResolver’,
16 ’Zend\View\Resolver\TemplatePathStack’,
17),
18),
19

20 // The TemplateMapResolver allows you to directly map template names
21 // to specific templates. The following map would provide locations
22 // for a "home" template, as well as for the "site/layout",
23 // "site/error", and "site/404" templates, resolving them to view
24 // scripts in this module.
25 ’Zend\View\Resolver\TemplateMapResolver’ => array(
26 ’parameters’ => array(
27 ’map’ => array(
28 ’home’ => __DIR__ . ’/../view/home.phtml’,
29 ’site/layout’ => __DIR__ . ’/../view/site/layout.phtml’,
30 ’site/error’ => __DIR__ . ’/../view/site/error.phtml’,
31 ’site/404’ => __DIR__ . ’/../view/site/404.phtml’,
32),
33),
34),
35

36 // The TemplatePathStack takes an array of directories. Directories
37 // are then searched in LIFO order (it’s a stack) for the requested
38 // view script. This is a nice solution for rapid application
39 // development, but potentially introduces performance expense in
40 // production due to the number of stat calls necessary.
41 //
42 // The following maps adds an entry pointing to the view directory
43 // of the current module. Make sure your keys differ between modules
44 // to ensure that they are not overwritten!
45 ’Zend\View\Resolver\TemplatePathStack’ => array(
46 ’parameters’ => array(
47 ’paths’ => array(
48 ’application’ => __DIR__ . ’/../view’,
49),
50),
51),
52

53 // We’ll now define the PhpRenderer, and inject it with the
54 // AggregateResolver we defined earlier. By default, the MVC layer
55 // registers a rendering strategy that uses the PhpRenderer.

650 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

56 ’Zend\View\Renderer\PhpRenderer’ => array(
57 ’parameters’ => array(
58 ’resolver’ => ’Zend\View\Resolver\AggregateResolver’,
59),
60),
61

62 // By default, the MVC’s default rendering strategy uses the
63 // template name "layout" for the site layout. Let’s tell it to use
64 // "site/layout" (which we mapped via the TemplateMapResolver,
65 // above).
66 ’Zend\Mvc\View\DefaultRenderingStrategy’ => array(
67 ’parameters’ => array(
68 ’layoutTemplate’ => ’site/layout’,
69),
70),
71

72 // By default, the MVC registers an "exception strategy", which is
73 // triggered when a requested action raises an exception; it creates
74 // a custom view model that wraps the exception, and selects a
75 // template. This template is "error" by default; let’s change it to
76 // "site/error" (which we mapped via the TemplateMapResolver,
77 // above).
78 //
79 // Additionally, we’ll tell it that we want to display an exception
80 // stack trace; you’ll likely want to disable this by default.
81 ’Zend\Mvc\View\ExceptionStrategy’ => array(
82 ’parameters’ => array(
83 ’displayExceptions’ => true,
84 ’exceptionTemplate’ => ’site/error’,
85),
86),
87

88 // Another strategy the MVC registers by default is a "route not
89 // found" strategy. Basically, this gets triggered if (a) no route
90 // matches the current request, (b) the controller specified in the
91 // route match cannot be found in the locator, (c) the controller
92 // specified in the route match does not implement the DispatchableInterface
93 // interface, or (d) if a response from a controller sets the
94 // response status to 404.
95 //
96 // The default template used in such situations is "error", just
97 // like the exception strategy. Let’s tell it to use the "site/404"
98 // template, (which we mapped via the TemplateMapResolver, above).
99 //

100 // You can opt in to inject the reason for a 404 situation; see the
101 // various Application::ERROR_* constants for a list of values.
102 // Additionally, a number of 404 situations derive from exceptions
103 // raised during routing or dispatching. You can opt-in to display
104 // these.
105 ’Zend\Mvc\View\RouteNotFoundStrategy’ => array(
106 ’parameters’ => array(
107 ’displayExceptions’ => true,
108 ’displayNotFoundReason’ => true,
109 ’notFoundTemplate’ => ’site/404’,
110),
111),
112),
113),

165.2. Usage 651

Zend Framework 2 Documentation, Release 2.0.0

114);

Controllers and View Models

Zend\View\View consumes ViewModels, passing them to the selected renderer. Where do you create these,
though?

The most explicit way is to create them in your controllers and return them.

1 namespace Foo\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class BarController extends AbstractActionController
7 {
8 public function doSomethingAction()
9 {

10 $view = new ViewModel(array(
11 ’message’ => ’Hello world’,
12));
13 $view->setTemplate(’bar/do-something’);
14 return $view;
15 }
16 }

This sets a “message” variable in the view model, and sets the template name “bar/do-something”. The view model is
then returned.

Considering that in most cases, you’ll likely have a template name based on the controller and action, and simply be
passing some variables, could this be made simpler? Definitely.

The MVC registers a couple of listeners for controllers to automate this. The first will look to see if you returned an
associative array from your controller; if so, it will create a view model and inject this associative array as the view
variables container; this view model then replaces the MVC event’s result. It will also look to see if you returned
nothing or null; if so, it will create a view model without any variables attached; this view model also replaces the
MVC event’s result.

The second listener checks to see if the MVC event result is a view model, and, if so, if it has a template associated
with it. If not, it will inspect the controller matched during routing, and, if available, it’s “action” parameter in order
to create a template name. This will be “controller/action”, with the controller and action normalized to lowercase,
dash-separated words.

As an example, the controller Bar\Controller\BazBatController, with action “doSomethingCrazy”, would
be mapped to the template baz-bat/do-something-crazy.

In practice, that means our previous example could be re-written as follows:

1 namespace Foo\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4

5 class BarController extends AbstractActionController
6 {
7 public function doSomethingCrazyAction()
8 {
9 return array(

10 ’message’ => ’Hello world’,

652 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

11);
12 }
13 }

The above method will likely work for a majority of use cases. When you need to specify a different template,
explicitly create and return a view model, and specify the template manually.

The other use case you may have for explicit view models is if you wish to nest view models. Use cases include if you
want to render templates to include within the main view you return.

As an example, you may want the view from the action to be one primary section that includes both an “article” and a
couple of sidebars; one of the sidebars may include content from multiple views as well.

1 namespace Content\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class ArticleController extends AbstractActionController
7 {
8 public function viewAction()
9 {

10 // get the article from the persistence layer, etc...
11

12 $view = new ViewModel();
13

14 $articleView = new ViewModel(array(’article’ => $article));
15 $articleView->setTemplate(’content/article’);
16

17 $primarySidebarView = new ViewModel();
18 $primarySidebarView->setTemplate(’content/main-sidebar’);
19

20 $secondarySidebarView = new ViewModel();
21 $secondarySidebarView->setTemplate(’content/secondary-sidebar’);
22

23 $sidebarBlockView = new ViewModel();
24 $sidebarBlockView->setTemplate(’content/block’);
25

26 $secondarySidebarView->addChild($sidebarBlockView, ’block’);
27

28 $view->addChild($articleView, ’article’)
29 ->addChild($primarySidebarView, ’sidebar_primary’)
30 ->addChild($secondarySidebarView, ’sidebar_secondary’);
31

32 return $view;
33 }
34 }

The above will create and return a view model specifying the template “content/article”. When the
view is rendered, it will render three child views, the $articleView, $primarySidebarView, and
$secondarySidebarView; these will be captured to the $view‘s “article”, “sidebar_primary”, and “side-
bar_secondary” variables, respectively, so that when it renders, you may include that content. Additionally, the
$secondarySidebarView will include an additional view model, $sidebarBlockView, which will be cap-
tured to its “block” view variable.

To better visualize this, let’s look at what the final content might look like, with comments detailing where each nested
view model is injected.

Here are the templates:

165.2. Usage 653

Zend Framework 2 Documentation, Release 2.0.0

1 <?php // "article/view" template ?>
2 <div class="sixteen columns content">
3 <?php echo $this->article ?>
4

5 <?php echo $this->sidebar_primary ?>
6

7 <?php echo $this->sidebar_secondary ?>
8 </div>
9

10 <?php // "content/article" template ?>
11 <!-- This is from the $articleView view model, and the "content/article"
12 template -->
13 <article class="twelve columns">
14 <?php echo $this->escapeHtml(’article’) ?>
15 </article>
16

17 <?php // "content/main-sidebar template ?>
18 <!-- This is from the $primarySidebarView view model, and the
19 "content/main-sidebar template -->
20 <div class="two columns sidebar">
21 sidebar content...
22 </div>
23

24 <?php // "content/secondary-sidebar template ?>
25 <!-- This is from the $secondarySidebarView view model, and the
26 "content/secondary-sidebar template -->
27 <div class="two columns sidebar">
28 <?php echo $this->block ?>
29 </div>
30

31 <?php // "content/block template ?>
32 <!-- This is from the $sidebarBlockView view model, and the
33 "content/block template -->
34 <div class="block">
35 block content...
36 </div>

And here is the aggregate, generated content:

1 <!-- This is from the $view view model, and the "article/view" template -->
2 <div class="sixteen columns content">
3 <!-- This is from the $articleView view model, and the "content/article"
4 template -->
5 <article class="twelve columns">
6 Lorem ipsum
7 </article>
8

9 <!-- This is from the $primarySidebarView view model, and the
10 "content/main-sidebar template -->
11 <div class="two columns sidebar">
12 sidebar content...
13 </div>
14

15 <!-- This is from the $secondarySidebarView view model, and the
16 "content/secondary-sidebar template -->
17 <div class="two columns sidebar">
18 <!-- This is from the $sidebarBlockView view model, and the
19 "content/block template -->
20 <div class="block">

654 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

21 block content...
22 </div>
23 </div>
24 </div>

As you can see, you can achieve very complex markup using nested views, while simultaneously keeping the details
of rendering isolated from the request/reponse lifecycle of the controller.

Dealing with Layouts

Most sites enforce a cohesive look-and-feel, which we typically call the site “layout”. The site layout includes the
default stylesheets and JavaScript necessary, if any, as well as the basic markup structure into which all site content
will be injected.

Within Zend Framework, layouts are handled via nesting of view models (see the previous example for examples of
view model nesting). The MVC event composes a View Model which acts as the “root” for nested view models, as
such, it should contain the skeleton, or layout, template for the site (configuration refers to this as the “layoutTem-
plate”). All other content is then rendered and captured to view variables of this root view model.

The default rendering strategy sets the layout template as “layout”. To change this, you can add some configuration
for the Dependency Injector.

1 return array(
2 ’di’ => array(
3 ’instance’ => array(
4 // The above lines will likely already be present; it’s the following
5 // definitions that you will want to ensure are present within the DI
6 // instance configuration.
7

8 // By default, the MVC’s default rendering strategy uses the
9 // template name "layout" for the site layout. Let’s tell it to use

10 // "site/layout" (which we mapped via the TemplateMapResolver,
11 // above).
12 ’Zend\Mvc\View\DefaultRenderingStrategy’ => array(
13 ’parameters’ => array(
14 ’baseTemplate’ => ’site/layout’,
15),
16),
17),
18),
19);

A listener on the controllers, Zend\Mvc\View\InjectViewModelListener, will take a view model returned
from a controller and inject it as a child of the root (layout) view model. By default, view models will capture to the
“content” variable of the root view model. This means you can do the following in your layout view script:

1 <html>
2 <head>
3 <title><?php echo $this->headTitle() ?></title>
4 </head>
5 <body>
6 <?php echo $this->content; ?>
7 </body>
8 </html>

If you want to specify a different view variable for which to capture, explicitly create a view model in your controller,
and set its “capture to” value:

165.2. Usage 655

Zend Framework 2 Documentation, Release 2.0.0

1 namespace Foo\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class BarController extends AbstractActionController
7 {
8 public function doSomethingAction()
9 {

10 $view = new ViewModel(array(
11 ’message’ => ’Hello world’,
12));
13

14 // Capture to the layout view’s "article" variable
15 $view->setCaptureTo(’article’);
16

17 return $view;
18 }
19 }

There will be times you don’t want to render a layout. For example, you might be answering an API call which expects
JSON or an XML payload, or you might be answering an XHR request that expects a partial HTML payload. The
simplest way to do this is to explicitly create and return a view model from your controller, and mark it as “terminal”,
which will hint to the MVC listener that normally injects the returned view model into the layout view model to instead
replace the layout view model.

1 namespace Foo\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class BarController extends AbstractActionController
7 {
8 public function doSomethingAction()
9 {

10 $view = new ViewModel(array(
11 ’message’ => ’Hello world’,
12));
13

14 // Disable layouts; use this view model in the MVC event instead
15 $view->setTerminal(true);
16

17 return $view;
18 }
19 }

When discussing controllers and view models, we detailed a nested view model which contained an article and sidebars.
Sometimes, you may want to provide additional view models to the layout, instead of nesting in the returned layout.
This may be done by using the “layout” controller plugin, which returns the root view model; you can then call the
same addChild() method on it as we did in that previous example.

1 namespace Content\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class ArticleController extends AbstractActionController
7 {

656 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

8 public function viewAction()
9 {

10 // get the article from the persistence layer, etc...
11

12 // Get the "layout" view model and inject a sidebar
13 $layout = $this->layout();
14 $sidebarView = new ViewModel();
15 $sidebarView->setTemplate(’content/sidebar’);
16 $layout->addChild($sidebarView, ’sidebar’);
17

18 // Create and return a view model for the retrieved article
19 $view = new ViewModel(array(’article’ => $article));
20 $view->setTemplate(’content/article’);
21 return $view;
22 }
23 }

You could also use this technique to select a different layout, by simply calling the setTemplate() method of the
layout view model.

1 namespace Content\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4 use Zend\View\Model\ViewModel;
5

6 class ArticleController extends AbstractActionController
7 {
8 public function viewAction()
9 {

10 // get the article from the persistence layer, etc...
11

12 // Get the "layout" view model and set an alternate template
13 $layout = $this->layout();
14 $layout->setTemplate(’article/layout’);
15

16 // Create and return a view model for the retrieved article
17 $view = new ViewModel(array(’article’ => $article));
18 $view->setTemplate(’content/article’);
19 return $view;
20 }
21 }

Sometimes, you may want to access the layout from within your actual view scripts when using the PhpRenderer.
Reasons might include wanting to change the layout template, or wanting to access or inject layout view variables.
Similar to controllers, you can use the “layout” view plugin/helper. If you provide a string argument to it, you will
change the template; if you provide no arguments the root layout view model is returned.

1 // Change the layout:
2 $this->layout(’alternate/layout’); // OR
3 $this->layout()->setTemplate(’alternate/layout’);
4

5 // Access a layout variable.
6 // Since access to the base view model is relatively easy, it becomes a
7 // reasonable place to store things such as API keys, which other view scripts
8 // may need.
9 $layout = $this->layout();

10 $disqusApiKey = false;
11 if (isset($layout->disqusApiKey)) {
12 $disqusApiKey = $layout->disqusApiKey;

165.2. Usage 657

Zend Framework 2 Documentation, Release 2.0.0

13 }
14

15 // Set a layout variable
16 $this->layout()->footer = $this->render(’article/footer’);

Commonly, you may want to alter the layout based on the module currently selected.

Another frequently requested feature is the ability to change a layout based on the current module. This requires (a)
detecting if the controller matched in routing belongs to this module, and then (b) changing the template of the view
model.

The place to do these actions is in a listener. It should listen either to the “route” event at low (negative) priority, or on
the “dispatch” event, at any priority. Typically, you will register this during the bootstrap event.

1 namespace Content;
2

3 class Module
4 {
5 public function onBootstrap($e)
6 {
7 // Register a dispatch event
8 $app = $e->getParam(’application’);
9 $app->getEventManager()->attach(’dispatch’, array($this, ’setLayout’), -100);

10 }
11

12 public function setLayout($e)
13 {
14 $matches = $e->getRouteMatch();
15 $controller = $matches->getParam(’controller’);
16 if (0 !== strpos($controller, __NAMESPACE__, 0)) {
17 // not a controller from this module
18 return;
19 }
20

21 // Set the layout template
22 $viewModel = $e->getViewModel();
23 $viewModel->setTemplate(’content/layout’);
24 }
25 }

Creating and Registering Alternate Rendering and Response Strategies

Zend\View\View does very little. Its workflow is essentially to martial a ViewEvent, and then trig-
ger two events, “renderer” and “response”. You can attach “strategies” to these events, using the methods
addRendererStrategy() and addResponseStrategy(), respectively. A “renderer strategy” investigates
the Request object (or any other criteria) in order to select a renderer (or fail to select one). A “response strategy”
determines how to populate the Response based on the result of rendering.

Zend Framework ships with three rendering/response strategies that you can use within your application.

• Zend\View\Strategy\PhpRendererStrategy. This strategy is a “catch-all” in that it will always
return the Zend\View\Renderer\PhpRenderer, and populate the Response body with the results of
rendering.

• Zend\View\Strategy\JsonStrategy. This strategy inspects the Accept HTTP header, if present,
and determines if the client has indicated it accepts an “application/json” response. If so, it will return the
Zend\View\Renderer\JsonRenderer, and populate the Response body with the JSON value returned,
as well as set a Content-Type header with a value of “application/json”.

658 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

• Zend\View\Strategy\FeedStrategy. This strategy inspects the Accept HTTP header, if present, and
determines if the client has indicated it accepts either an “application/rss+xml” or “application/atom+xml” re-
sponse. If so, it will return the Zend\View\Renderer\FeedRenderer, setting the feed type to either
“rss” or “atom”, based on what was matched. Its Response strategy will populate the Response body with the
generated feed, as well as set a Content-Type header with the appropriate value based on feed type.

By default, only the PhpRendererStrategy is registered, meaning you will need to register the other strategies
yourself if you want to use them. Additionally, it means that you will likely want to register these at higher priority to
ensure they match before the PhpRendererStrategy. As an example, let’s register the JsonStrategy.

1 namespace Application;
2

3 class Module
4 {
5 public function onBootstrap($e)
6 {
7 // Register a "render" event, at high priority (so it executes prior
8 // to the view attempting to render)
9 $app = $e->getParam(’application’);

10 $app->getEventManager()->attach(’render’, array($this, ’registerJsonStrategy’), 100);
11 }
12

13 public function registerJsonStrategy($e)
14 {
15 $app = $e->getTarget();
16 $locator = $app->getServiceManager();
17 $view = $locator->get(’Zend\View\View’);
18 $jsonStrategy = $locator->get(’Zend\View\Strategy\JsonStrategy’);
19

20 // Attach strategy, which is a listener aggregate, at high priority
21 $view->getEventManager()->attach($jsonStrategy, 100);
22 }
23 }

The above will register the JsonStrategy with the “render” event, such that it executes prior to the
PhpRendererStrategy, and thus ensure that a JSON payload is created when requested.

What if you want this to happen only in specific modules, or specific controllers? One way is similar to the last
example in the previous section on layouts, where we detailed changing the layout for a specific module.

1 namespace Content;
2

3 class Module
4 {
5 public function onBootstrap($e)
6 {
7 // Register a render event
8 $app = $e->getParam(’application’);
9 $app->getEventManager()->attach(’render’, array($this, ’registerJsonStrategy’), 100);

10 }
11

12 public function registerJsonStrategy($e)
13 {
14 $matches = $e->getRouteMatch();
15 $controller = $matches->getParam(’controller’);
16 if (0 !== strpos($controller, __NAMESPACE__, 0)) {
17 // not a controller from this module
18 return;
19 }

165.2. Usage 659

Zend Framework 2 Documentation, Release 2.0.0

20

21 // Potentially, you could be even more selective at this point, and test
22 // for specific controller classes, and even specific actions or request
23 // methods.
24

25 // Set the JSON strategy when controllers from this module are selected
26 $app = $e->getTarget();
27 $locator = $app->getServiceManager();
28 $view = $locator->get(’Zend\View\View’);
29 $jsonStrategy = $locator->get(’Zend\View\Strategy\JsonStrategy’);
30

31 // Attach strategy, which is a listener aggregate, at high priority
32 $view->getEventManager()->attach($jsonStrategy, 100);
33 }
34 }

While the above examples detail using the JSON strategy, the same could be done for the FeedStrategy.

What if you want to use a custom renderer? or if your app might allow a combination of JSON, Atom feeds, and
HTML? At this point, you’ll need to create your own custom strategies. Below is an example that more appropriately
loops through the HTTP Accept header, and selects the appropriate renderer based on what is matched first.

1 namespace Content\View;
2

3 use Zend\EventManager\EventCollection;
4 use Zend\EventManager\ListenerAggregate;
5 use Zend\Feed\Writer\Feed;
6 use Zend\View\Renderer\FeedRenderer;
7 use Zend\View\Renderer\JsonRenderer;
8 use Zend\View\Renderer\PhpRenderer;
9

10 class AcceptStrategy implements ListenerAggregate
11 {
12 protected $feedRenderer;
13 protected $jsonRenderer;
14 protected $listeners = array();
15 protected $phpRenderer;
16

17 public function __construct(
18 PhpRenderer $phpRenderer,
19 JsonRenderer $jsonRenderer,
20 FeedRenderer $feedRenderer
21) {
22 $this->phpRenderer = $phpRenderer;
23 $this->jsonRenderer = $jsonRenderer;
24 $this->feedRenderer = $feedRenderer;
25 }
26

27 public function attach(EventCollection $events, $priority = null)
28 {
29 if (null === $priority) {
30 $this->listeners[] = $events->attach(’renderer’, array($this, ’selectRenderer’));
31 $this->listeners[] = $events->attach(’response’, array($this, ’injectResponse’));
32 } else {
33 $this->listeners[] = $events->attach(’renderer’, array($this, ’selectRenderer’), $priority);
34 $this->listeners[] = $events->attach(’response’, array($this, ’injectResponse’), $priority);
35 }
36 }
37

660 Chapter 165. Zend\View Quick Start

Zend Framework 2 Documentation, Release 2.0.0

38 public function detach(EventCollection $events)
39 {
40 foreach ($this->listeners as $index => $listener) {
41 if ($events->detach($listener)) {
42 unset($this->listeners[$index]);
43 }
44 }
45 }
46

47 public function selectRenderer($e)
48 {
49 $request = $e->getRequest();
50 $headers = $request->getHeaders();
51

52 // No Accept header? return PhpRenderer
53 if (!$headers->has(’accept’)) {
54 return $this->phpRenderer;
55 }
56

57 $accept = $headers->get(’accept’);
58 foreach ($accept->getPrioritized() as $mediaType) {
59 if (0 === strpos($mediaType, ’application/json’)) {
60 return $this->jsonRenderer;
61 }
62 if (0 === strpos($mediaType, ’application/rss+xml’)) {
63 $this->feedRenderer->setFeedType(’rss’);
64 return $this->feedRenderer;
65 }
66 if (0 === strpos($mediaType, ’application/atom+xml’)) {
67 $this->feedRenderer->setFeedType(’atom’);
68 return $this->feedRenderer;
69 }
70 }
71

72 // Nothing matched; return PhpRenderer. Technically, we should probably
73 // return an HTTP 415 Unsupported response.
74 return $this->phpRenderer;
75 }
76

77 public function injectResponse($e)
78 {
79 $renderer = $e->getRenderer();
80 $response = $e->getResponse();
81 $result = $e->getResult();
82

83 if ($renderer === $this->jsonRenderer) {
84 // JSON Renderer; set content-type header
85 $headers = $response->getHeaders();
86 $headers->addHeaderLine(’content-type’, ’application/json’);
87 } elseif ($renderer === $this->feedRenderer) {
88 // Feed Renderer; set content-type header, and export the feed if
89 // necessary
90 $feedType = $this->feedRenderer->getFeedType();
91 $headers = $response->getHeaders();
92 $mediatype = ’application/’
93 . ((’rss’ == $feedType) ? ’rss’ : ’atom’)
94 . ’+xml’;
95 $headers->addHeaderLine(’content-type’, $mediatype);

165.2. Usage 661

Zend Framework 2 Documentation, Release 2.0.0

96

97 // If the $result is a feed, export it
98 if ($result instanceof Feed) {
99 $result = $result->export($feedType);

100 }
101 } elseif ($renderer !== $this->phpRenderer) {
102 // Not a renderer we support, therefor not our strategy. Return
103 return;
104 }
105

106 // Inject the content
107 $response->setContent($result);
108 }
109 }

This strategy would be registered just as we demonstrated registering the JsonStrategy earlier. You would also
need to define DI configuration to ensure the various renderers are injected when you retrieve the strategy from the
application’s locator instance.

662 Chapter 165. Zend\View Quick Start

CHAPTER

SIX

THE PHPRENDERER

Zend\View\Renderer\PhpRenderer“renders” view scripts written in PHP, capturing and returning the output.
It composes Variable containers and/or View Models, a plugin broker for helpers, and optional filtering of the captured
output.

The PhpRenderer is template system agnostic; you may use PHP as your template language, or create instances of
other template systems and manipulate them within your view script. Anything you can do with PHP is available to
you.

166.1 Usage

Basic usage consists of instantiating or otherwise obtaining an instance of the PhpRenderer, providing it with a
resolver which will resolve templates to PHP view scripts, and then calling its render() method.

Instantiating a renderer is trivial:

1 use Zend\View\Renderer\PhpRenderer;
2

3 $renderer = new PhpRenderer();

Zend Framework ships with several types of “resolvers”, which are used to resolve a template name to a resource a
renderer can consume. The ones we will usually use with the PhpRenderer are:

• Zend\View\Resolver\TemplateMapResolver, which simply maps template names directly to view
scripts.

• Zend\View\Resolver\TemplatePathStack, which creates a LIFO stack of script directories in which
to search for a view script. By default, it appends the suffix ”.phtml” to the requested template name, and then
loops through the script directories; if it finds a file matching the requested template, it returns the full file path.

• Zend\View\Resolver\AggregateResolver, which allows attaching a FIFO queue of resolvers to con-
sult.

We suggest using the AggregateResolver, as it allows you to create a multi-tiered strategy for resolving template
names.

Programmatically, you would then do something like this:

1 use Zend\View\Renderer\PhpRenderer;
2 use Zend\View\Resolver;
3

4 $renderer = new PhpRenderer();
5

6 $resolver = new Resolver\AggregateResolver();

663

Zend Framework 2 Documentation, Release 2.0.0

7

8 $map = new Resolver\TemplateMapResolver(array(
9 ’layout’ => __DIR__ . ’/view/layout.phtml’,

10 ’index/index’ => __DIR__ . ’/view/index/index.phtml’,
11));
12 $stack = new Resolver\TemplatePathStack(array(
13 __DIR__ . ’/view’,
14 $someOtherPath,
15));
16

17 $resolver->attach($map) // this will be consulted first
18 ->attach($stack);

You can also specify a specific priority value when registering resolvers, with high, positive integers getting higher
priority, and low, negative integers getting low priority, when resolving.

In an MVC application, you can configure this via DI quite easily:

1 return array(
2 ’di’ => array(
3 ’instance’ => array(
4 ’Zend\View\Resolver\AggregateResolver’ => array(
5 ’injections’ => array(
6 ’Zend\View\Resolver\TemplateMapResolver’,
7 ’Zend\View\Resolver\TemplatePathStack’,
8),
9),

10

11 ’Zend\View\Resolver\TemplateMapResolver’ => array(
12 ’parameters’ => array(
13 ’map’ => array(
14 ’layout’ => __DIR__ . ’/view/layout.phtml’,
15 ’index/index’ => __DIR__ . ’/view/index/index.phtml’,
16),
17),
18),
19 ’Zend\View\Resolver\TemplatePathStack’ => array(
20 ’parameters’ => array(
21 ’paths’ => array(
22 ’application’ => __DIR__ . ’/view’,
23 ’elsewhere’ => $someOtherPath,
24),
25),
26),
27 ’Zend\View\Renderer\PhpRenderer’ => array(
28 ’parameters’ => array(
29 ’resolver’ => ’Zend\View\Resolver\AggregateResolver’,
30),
31),
32),
33),
34);

Now that we have our PhpRenderer instance, and it can find templates, let’s inject some variables. This can be
done in 4 different ways.

• Pass an associative array (or ArrayAccess instance, or Zend\View\Variables instance) of items as the
second argument to render(): $renderer->render($templateName, array(‘foo’ => ‘bar))

• Assign a Zend\View\Variables instance, associative array, or ArrayAccess instance to the

664 Chapter 166. The PhpRenderer

Zend Framework 2 Documentation, Release 2.0.0

setVars() method.

• Assign variables as instance properties of the renderer: $renderer->foo = ‘bar’. This essentially proxies to an
instance of Variables composed internally in the renderer by default.

• Create a ViewModel instance, assign variables to that, and pass the ViewModel to the render() method:

1 use Zend\View\Model\ViewModel;
2 use Zend\View\Renderer\PhpRenderer;
3

4 $renderer = new PhpRenderer();
5

6 $model = new ViewModel();
7 $model->setVariable(’foo’, ’bar’);
8 // or
9 $model = new ViewModel(array(’foo’ => ’bar’));

10

11 $model->setTemplate($templateName);
12 $renderer->render($model);

Now, let’s render something. As a simple example, let us say you have a list of book data.

1 // use a model to get the data for book authors and titles.
2 $data = array(
3 array(
4 ’author’ => ’Hernando de Soto’,
5 ’title’ => ’The Mystery of Capitalism’
6),
7 array(
8 ’author’ => ’Henry Hazlitt’,
9 ’title’ => ’Economics in One Lesson’

10),
11 array(
12 ’author’ => ’Milton Friedman’,
13 ’title’ => ’Free to Choose’
14)
15);
16

17 // now assign the book data to a renderer instance
18 $renderer->books = $data;
19

20 // and render the template "booklist"
21 echo $renderer->render(’booklist’);

More often than not, you’ll likely be using the MVC layer. As such, you should be thinking in terms of view models.
Let’s consider the following code from within an action method of a controller.

1 namespace Bookstore\Controller;
2

3 use Zend\Mvc\Controller\AbstractActionController;
4

5 class BookController extends AbstractActionController
6 {
7 public function listAction()
8 {
9 // do some work...

10

11 // Assume $data is the list of books from the previous example
12 $model = new ViewModel(array(’books’ => $data));
13

166.1. Usage 665

Zend Framework 2 Documentation, Release 2.0.0

14 // Optionally specify a template; if we don’t, by default it will be
15 // auto-determined based on the controller name and this action. In
16 // this example, the template would resolve to "book/list", and thus
17 // the file "book/list.phtml"; the following overrides that to set
18 // the template to "booklist", and thus the file "booklist.phtml"
19 // (note the lack of directory preceding the filename).
20 $model->setTemplate(’booklist’);
21

22 return $model
23 }
24 }

This will then be rendered as if the following were executed:

1 $renderer->render($model);

Now we need the associated view script. At this point, we’ll assume that the template “booklist” resolves to the file
booklist.phtml. This is a PHP script like any other, with one exception: it executes inside the scope of the
PhpRenderer instance, which means that references to $this point to the PhpRenderer instance properties and
methods. Thus, a very basic view script could look like this:

1 <?php if ($this->books): ?>
2

3 <!-- A table of some books. -->
4 <table>
5 <tr>
6 <th>Author</th>
7 <th>Title</th>
8 </tr>
9

10 <?php foreach ($this->books as $key => $val): ?>
11 <tr>
12 <td><?php echo $this->escapeHtml($val[’author’]) ?></td>
13 <td><?php echo $this->escapeHtml($val[’title’]) ?></td>
14 </tr>
15 <?php endforeach; ?>
16

17 </table>
18

19 <?php else: ?>
20

21 <p>There are no books to display.</p>
22

23 <?php endif;?>

Note: Escape Output

The security mantra is “Filter input, escape output.” If you are unsure of the source of a given variable – which is
likely most of the time – you should escape it based on which HTML context it is being injected into. The primary
contexts to be aware of are HTML Body, HTML Attribute, Javascript, CSS and URI. Each context has a dedicated
helper available to apply the escaping strategy most appropriate to each context. You should be aware that escaping
does vary significantly between contexts - there is no one single escaping strategy that can be globally applied.

In the example above, there are calls to an escapeHtml() method. The method is actually a helper, a plugin
available via method overloading. Additional escape helpers provide the escapeHtmlAttr(), escapeJs(),
escapeCss(), and escapeUrl() methods for each of the HTML contexts you are most likely to encounter.

By using the provided helpers and being aware of your variables’ contexts, you will prevent your templates from

666 Chapter 166. The PhpRenderer

Zend Framework 2 Documentation, Release 2.0.0

running afoul of Cross-Site Scripting (XSS) vulnerabilities.

We’ve now toured the basic usage of the PhpRenderer. By now you should know how to instantiate the renderer,
provide it with a resolver, assign variables and/or create view models, create view scripts, and render view scripts.

166.2 Options and Configuration

Zend\View\Renderer\PhpRenderer utilizes several collaborators in order to do its work. use the following
methods to configure the renderer.

broker setBroker(Zend\View\HelperBroker $broker)

Set the broker instance used to load, register, and retrieve helpers.

resolver setResolver(Zend\View\Resolver $resolver)

Set the resolver instance.

filters setFilterChain(Zend\Filter\FilterChain $filters)

Set a filter chain to use as an output filter on rendered content.

vars setVars(array|ArrayAccess|Zend\View\Variables $variables)

Set the variables to use when rendering a view script/template.

canRenderTrees setCanRenderTrees(bool $canRenderTrees)

Set flag indicating whether or not we should render trees of view models. If set to true, the Zend\View\View
instance will not attempt to render children separately, but instead pass the root view model directly to the
PhpRenderer. It is then up to the developer to render the children from within the view script. This is
typically done using the RenderChildModel helper: $this->renderChildModel(‘child_name’).

166.3 Additional Methods

Typically, you’ll only ever access variables and helpers within your view scripts or when interacting with the
PhpRenderer. However, there are a few additional methods you may be interested in.

render render(string|Zend\View\Model $nameOrModel, $values = null)

Render a template/view model.

If $nameOrModel is a string, it is assumed to be a template name. That template will be resolved using the
current resolver, and then rendered. If $values is non-null, those values, and those values only, will be used
during rendering, and will replace whatever variable container previously was in the renderer; however, the
previous variable container will be reset when done. If $values is empty, the current variables container (see
setVars()) will be injected when rendering.

If $nameOrModel is a Model instance, the template name will be retrieved from it and used. Additionally, if
the model contains any variables, these will be used when rendering; otherwise, the variables container already
present, if any, will be used.

resolver resolver()

Retrieves the Resolver instance.

vars vars(string $key = null)

Retrieve the variables container, or a single variable from the container..

166.2. Options and Configuration 667

Zend Framework 2 Documentation, Release 2.0.0

plugin plugin(string $name, array $options = null)

Get a plugin/helper instance. Proxies to the broker’s load() method; as such, any $options you pass will
be passed to the plugin’s constructor if this is the first time the plugin has been retrieved. See the section on
helpers for more information.

addTemplate addTemplate(string $template)

Add a template to the stack. When used, the next call to render() will loop through all template added using
this method, rendering them one by one; the output of the last will be returned.

668 Chapter 166. The PhpRenderer

CHAPTER

SEVEN

PHPRENDERER VIEW SCRIPTS

Once you call render(), Zend\View\Renderer\PhpRenderer then include()s the requested view script
and executes it “inside” the scope of the PhpRenderer instance. Therefore, in your view scripts, references to
$this actually point to the PhpRenderer instance itself.

Variables assigned to the view – either via a View Model, Variables container, or simply by passing an array of variables
to render()– may be retrieved in three ways:

• Explicitly, by retrieving them from the Variables container composed in the PhpRenderer: $this->vars()-
>varname.

• As instance properties of the PhpRenderer instance: $this->varname. (In this situation, instance property
access is simply proxying to the composed Variables instance.)

• As local PHP variables: $varname. The PhpRenderer extracts the members of the Variables container
locally.

We generally recommend using the second notation, as it’s less verbose than the first, but differentiates between
variables in the view script scope and those assigned to the renderer from elsewhere.

By way of reminder, here is the example view script from the PhpRenderer introduction.

1 <?php if ($this->books): ?>
2

3 <!-- A table of some books. -->
4 <table>
5 <tr>
6 <th>Author</th>
7 <th>Title</th>
8 </tr>
9

10 <?php foreach ($this->books as $key => $val): ?>
11 <tr>
12 <td><?php echo $this->escapeHtml($val[’author’]) ?></td>
13 <td><?php echo $this->escapeHtml($val[’title’]) ?></td>
14 </tr>
15 <?php endforeach; ?>
16

17 </table>
18

19 <?php else: ?>
20

21 <p>There are no books to display.</p>
22

23 <?php endif;?>

669

Zend Framework 2 Documentation, Release 2.0.0

167.1 Escaping Output

One of the most important tasks to perform in a view script is to make sure that output is escaped properly; among
other things, this helps to avoid cross-site scripting attacks. Unless you are using a function, method, or helper that
does escaping on its own, you should always escape variables when you output them and pay careful attention to
applying the correct escaping strategy to each HTML context you use.

The PhpRenderer includes a selection of helpers you can use for this purpose: EscapeHtml, EscapeHtmlAttr
EscapeJs, EscapeCss, and EscapeUrl. Matching the correct helper (or combination of helpers) to the context
into which you are injecting untrusted variables will ensure that you are protected against Cross-Site Scripting (XSS)
vulnerabilities.

1 // bad view-script practice:
2 echo $this->variable;
3

4 // good view-script practice:
5 echo $this->escapeHtml($this->variable);
6

7 // and remember context is always relevant!
8 <script type="text/javascript">
9 var foo = "<?php echo $this->escapeJs($variable) ?>";

10 </script>

670 Chapter 167. PhpRenderer View Scripts

CHAPTER

EIGHT

VIEW HELPERS

In your view scripts, often it is necessary to perform certain complex functions over and over: e.g., formatting a date,
generating form elements, or displaying action links. You can use helper, or plugin, classes to perform these behaviors
for you.

A helper is simply a class that implements the interface Zend\View\Helper. Helper simply defines two meth-
ods, setView(), which accepts a Zend\View\Renderer instance/implementation, and getView(), used to
retrieve that instance. Zend\View\PhpRenderer composes a plugin broker, allowing you to retrieve helpers, and
also provides some method overloading capabilities that allow proxying method calls to helpers.

As an example, let’s say we have a helper class named My\Helper\LowerCase, which we map in our plugin
broker to the name “lowercase”. We can retrieve or invoke it in one of the following ways:

1 // $view is a PhpRenderer instance
2

3 // Via the plugin broker:
4 $broker = $view->getBroker();
5 $helper = $broker->load(’lowercase’);
6

7 // Retrieve the helper instance, via the method "plugin",
8 // which proxies to the plugin broker:
9 $helper = $view->plugin(’lowercase’);

10

11 // If the helper does not define __invoke(), the following also retrieves it:
12 $helper = $view->lowercase();
13

14 // If the helper DOES define __invoke, you can call the helper
15 // as if it is a method:
16 $filtered = $view->lowercase(’some value’);

The last two examples demonstrate how the PhpRenderer uses method overloading to retrieve and/or invoke helpers
directly, offering a convenience API for end users.

A large number of helpers are provided in the standard distribution of Zend Framework. You can also register helpers
by adding them to the plugin broker, or the plugin locator the broker composes. Please refer to the plugin broker
documentation for details.

168.1 Included Helpers

Zend Framework comes with an initial set of helper classes. In particular, there are helpers for creating route-based
URLs and HTML lists, as well as declaring variables. Additionally, there are a rich set of helpers for providing values
for, and rendering, the various HTML <head> tags, such as HeadTitle, HeadLink, and HeadScript. The
currently shipped helpers include:

671

Zend Framework 2 Documentation, Release 2.0.0

• url($name, $urlParams, $routeOptions, $reuseMatchedParams): Creates a URL string
based on a named route. $urlParams should be an associative array of key/value pairs used by the particular
route.

• htmlList($items, $ordered, $attribs, $escape): generates unordered and ordered lists
based on the $items passed to it. If $items is a multidimensional array, a nested list will be built. If the
$escape flag is TRUE (default), individual items will be escaped using the view objects registered escaping
mechanisms; pass a FALSE value if you want to allow markup in your lists.

672 Chapter 168. View Helpers

CHAPTER

NINE

BASEURL HELPER

While most URLs generated by the framework have the base URL prepended automatically, developers will need to
prepend the base URL to their own URLs in order for paths to resources to be correct.

Usage of the BaseUrl helper is very straightforward:

1 /*
2 * The following assume that the base URL of the page/application is "/mypage".
3 */
4

5 /*
6 * Prints:
7 * <base href="/mypage/" />
8 */
9 <base href="<?php echo $this->baseUrl(); ?>" />

10

11 /*
12 * Prints:
13 * <link rel="stylesheet" type="text/css" href="/mypage/css/base.css" />
14 */
15 <link rel="stylesheet" type="text/css"
16 href="<?php echo $this->baseUrl(’css/base.css’); ?>" />

Note: For simplicity’s sake, we strip out the entry PHP file (e.g., “index.php”) from the base URL that was
contained in Zend_Controller. However, in some situations this may cause a problem. If one occurs, use
$this->getHelper(’BaseUrl’)->setBaseUrl() to set your own BaseUrl.

673

Zend Framework 2 Documentation, Release 2.0.0

674 Chapter 169. BaseUrl Helper

CHAPTER

CYCLE HELPER

The Cycle helper is used to alternate a set of values.

Cycle Helper Basic Usage

To add elements to cycle just specify them in constructor or use assign(array $data) function

1 <?php foreach ($this->books as $book):?>
2 <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
3 "#FFFFFF"))
4 ->next()?>">
5 <td><?php echo $this->escapeHtml($book[’author’]) ?></td>
6 </tr>
7 <?php endforeach;?>
8

9 // Moving in backwards order and assign function
10 $this->cycle()->assign(array("#F0F0F0","#FFFFFF"));
11 $this->cycle()->prev();
12 ?>

The output

1 <tr style="background-color:’#F0F0F0’">
2 <td>First</td>
3 </tr>
4 <tr style="background-color:’#FFFFFF’">
5 <td>Second</td>
6 </tr>

Working with two or more cycles

To use two cycles you have to specify the names of cycles. Just set second parameter in cycle method.
$this->cycle(array("#F0F0F0","#FFFFFF"),’cycle2’). You can also use setName($name) func-
tion.

1 <?php foreach ($this->books as $book):?>
2 <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
3 "#FFFFFF"))
4 ->next()?>">
5 <td><?php echo $this->cycle(array(1,2,3),’number’)->next()?></td>
6 <td><?php echo $this->escapeHtml($book[’author’])?></td>
7 </tr>
8 <?php endforeach;?>

675

Zend Framework 2 Documentation, Release 2.0.0

676 Chapter 170. Cycle Helper

CHAPTER

ONE

PARTIAL HELPER

The Partial view helper is used to render a specified template within its own variable scope. The primary use is
for reusable template fragments with which you do not need to worry about variable name clashes. Additionally, they
allow you to specify partial view scripts from specific modules.

A sibling to the Partial, the PartialLoop view helper allows you to pass iterable data, and render a partial for
each item.

Note: PartialLoop Counter

The PartialLoop view helper assigns a variable to the view named partialCounter which passes the current
position of the array to the view script. This provides an easy way to have alternating colors on table rows for example.

Basic Usage of Partials

Basic usage of partials is to render a template fragment in its own view scope. Consider the following partial script:

1 <?php // partial.phtml ?>
2
3 From: <?php echo $this->escapeHtml($this->from) ?>
4 Subject: <?php echo $this->escapeHtml($this->subject) ?>
5

You would then call it from your view script using the following:

1 <?php echo $this->partial(’partial.phtml’, array(
2 ’from’ => ’Team Framework’,
3 ’subject’ => ’view partials’)); ?>

Which would then render:

1
2 From: Team Framework
3 Subject: view partials
4

Note: What is a model?

A model used with the Partial view helper can be one of the following:

• Array. If an array is passed, it should be associative, as its key/value pairs are assigned to the view with keys as
view variables.

677

Zend Framework 2 Documentation, Release 2.0.0

• Object implementing toArray() method. If an object is passed an has a toArray() method, the results of
toArray() will be assigned to the view object as view variables.

• Standard object. Any other object will assign the results of object_get_vars() (essentially all public
properties of the object) to the view object.

If your model is an object, you may want to have it passed as an object to the partial script, instead of serializing it to
an array of variables. You can do this by setting the ‘objectKey’ property of the appropriate helper:

1 // Tell partial to pass objects as ’model’ variable
2 $view->partial()->setObjectKey(’model’);
3

4 // Tell partial to pass objects from partialLoop as ’model’ variable
5 // in final partial view script:
6 $view->partialLoop()->setObjectKey(’model’);

This technique is particularly useful when passing Zend_Db_Table_Rowsets to partialLoop(), as you then
have full access to your row objects within the view scripts, allowing you to call methods on them (such as retrieving
values from parent or dependent rows).

Using PartialLoop to Render Iterable Models

Typically, you’ll want to use partials in a loop, to render the same content fragment many times; this way you can
put large blocks of repeated content or complex display logic into a single location. However this has a performance
impact, as the partial helper needs to be invoked once for each iteration.

The PartialLoop view helper helps solve this issue. It allows you to pass an iterable item (array or object imple-
menting Iterator) as the model. It then iterates over this, passing, the items to the partial script as the model. Items in
the iterator may be any model the Partial view helper allows.

Let’s assume the following partial view script:

1 <?php // partialLoop.phtml ?>
2 <dt><?php echo $this->key ?></dt>
3 <dd><?php echo $this->value ?></dd>

And the following “model”:

1 $model = array(
2 array(’key’ => ’Mammal’, ’value’ => ’Camel’),
3 array(’key’ => ’Bird’, ’value’ => ’Penguin’),
4 array(’key’ => ’Reptile’, ’value’ => ’Asp’),
5 array(’key’ => ’Fish’, ’value’ => ’Flounder’),
6);

In your view script, you could then invoke the PartialLoop helper:

1 <dl>
2 <?php echo $this->partialLoop(’partialLoop.phtml’, $model) ?>
3 </dl>

1 <dl>
2 <dt>Mammal</dt>
3 <dd>Camel</dd>
4

5 <dt>Bird</dt>
6 <dd>Penguin</dd>
7

678 Chapter 171. Partial Helper

Zend Framework 2 Documentation, Release 2.0.0

8 <dt>Reptile</dt>
9 <dd>Asp</dd>

10

11 <dt>Fish</dt>
12 <dd>Flounder</dd>
13 </dl>

Rendering Partials in Other Modules

Sometime a partial will exist in a different module. If you know the name of the module, you can pass it as the second
argument to either partial() or partialLoop(), moving the $model argument to third position.

For instance, if there’s a pager partial you wish to use that’s in the ‘list’ module, you could grab it as follows:

1 <?php echo $this->partial(’pager.phtml’, ’list’, $pagerData) ?>

In this way, you can re-use partials created specifically for other modules. That said, it’s likely a better practice to put
re-usable partials in shared view script paths.

679

Zend Framework 2 Documentation, Release 2.0.0

680 Chapter 171. Partial Helper

CHAPTER

TWO

PLACEHOLDER HELPER

The Placeholder view helper is used to persist content between view scripts and view instances. It also offers
some useful features such as aggregating content, capturing view script content for later use, and adding pre- and
post-text to content (and custom separators for aggregated content).

Basic Usage of Placeholders

Basic usage of placeholders is to persist view data. Each invocation of the Placeholder helper expects a place-
holder name; the helper then returns a placeholder container object that you can either manipulate or simply echo
out.

1 <?php $this->placeholder(’foo’)->set("Some text for later") ?>
2

3 <?php
4 echo $this->placeholder(’foo’);
5 // outputs "Some text for later"
6 ?>

Using Placeholders to Aggregate Content

Aggregating content via placeholders can be useful at times as well. For instance, your view script may have a variable
array from which you wish to retrieve messages to display later; a later view script can then determine how those will
be rendered.

The Placeholder view helper uses containers that extend ArrayObject, providing a rich featureset for manip-
ulating arrays. In addition, it offers a variety of methods for formatting the content stored in the container:

• setPrefix($prefix) sets text with which to prefix the content. Use getPrefix() at any time to deter-
mine what the current setting is.

• setPostfix($prefix) sets text with which to append the content. Use getPostfix() at any time to
determine what the current setting is.

• setSeparator($prefix) sets text with which to separate aggregated content. Use getSeparator()
at any time to determine what the current setting is.

• setIndent($prefix) can be used to set an indentation value for content. If an integer is passed, that
number of spaces will be used; if a string is passed, the string will be used. Use getIndent() at any time to
determine what the current setting is.

1 <!-- first view script -->
2 <?php $this->placeholder(’foo’)->exchangeArray($this->data) ?>

681

Zend Framework 2 Documentation, Release 2.0.0

1 <!-- later view script -->
2 <?php
3 $this->placeholder(’foo’)->setPrefix("\n ")
4 ->setSeparator("\n")
5 ->setIndent(4)
6 ->setPostfix("\n");
7 ?>
8

9 <?php
10 echo $this->placeholder(’foo’);
11 // outputs as unordered list with pretty indentation
12 ?>

Because the Placeholder container objects extend ArrayObject, you can also assign content to a specific key
in the container easily, instead of simply pushing it into the container. Keys may be accessed either as object properties
or as array keys.

1 <?php $this->placeholder(’foo’)->bar = $this->data ?>
2 <?php echo $this->placeholder(’foo’)->bar ?>
3

4 <?php
5 $foo = $this->placeholder(’foo’);
6 echo $foo[’bar’];
7 ?>

Using Placeholders to Capture Content

Occasionally you may have content for a placeholder in a view script that is easiest to template; the Placeholder
view helper allows you to capture arbitrary content for later rendering using the following API.

• captureStart($type, $key) begins capturing content.

$type should be one of the Placeholder constants APPEND or SET. If APPEND, captured content is
appended to the list of current content in the placeholder; if SET, captured content is used as the sole value of
the placeholder (potentially replacing any previous content). By default, $type is APPEND.

$key can be used to specify a specific key in the placeholder container to which you want content captured.

captureStart() locks capturing until captureEnd() is called; you cannot nest capturing with the same
placeholder container. Doing so will raise an exception.

• captureEnd() stops capturing content, and places it in the container object according to how
captureStart() was called.

1 <!-- Default capture: append -->
2 <?php $this->placeholder(’foo’)->captureStart();
3 foreach ($this->data as $datum): ?>
4 <div class="foo">
5 <h2><?php echo $datum->title ?></h2>
6 <p><?php echo $datum->content ?></p>
7 </div>
8 <?php endforeach; ?>
9 <?php $this->placeholder(’foo’)->captureEnd() ?>

10

11 <?php echo $this->placeholder(’foo’) ?>

1 <!-- Capture to key -->
2 <?php $this->placeholder(’foo’)->captureStart(’SET’, ’data’);

682 Chapter 172. Placeholder Helper

Zend Framework 2 Documentation, Release 2.0.0

3 foreach ($this->data as $datum): ?>
4 <div class="foo">
5 <h2><?php echo $datum->title ?></h2>
6 <p><?php echo $datum->content ?></p>
7 </div>
8 <?php endforeach; ?>
9 <?php $this->placeholder(’foo’)->captureEnd() ?>

10

11 <?php echo $this->placeholder(’foo’)->data ?>

172.1 Concrete Placeholder Implementations

Zend Framework ships with a number of “concrete” placeholder implementations. These are for commonly used
placeholders: doctype, page title, and various <head> elements. In all cases, calling the placeholder with no arguments
returns the element itself.

Documentation for each element is covered separately, as linked below:

• Doctype

• HeadLink

• HeadMeta

• HeadScript

• HeadStyle

• HeadTitle

• InlineScript

172.1. Concrete Placeholder Implementations 683

Zend Framework 2 Documentation, Release 2.0.0

684 Chapter 172. Placeholder Helper

CHAPTER

THREE

DOCTYPE HELPER

Valid HTML and XHTML documents should include a DOCTYPE declaration. Besides being difficult to remember,
these can also affect how certain elements in your document should be rendered (for instance, CDATA escaping in
<script> and <style> elements.

The Doctype helper allows you to specify one of the following types:

• XHTML11

• XHTML1_STRICT

• XHTML1_TRANSITIONAL

• XHTML1_FRAMESET

• XHTML1_RDFA

• XHTML_BASIC1

• HTML4_STRICT

• HTML4_LOOSE

• HTML4_FRAMESET

• HTML5

You can also specify a custom doctype as long as it is well-formed.

The Doctype helper is a concrete implementation of the Placeholder helper.

Doctype Helper Basic Usage

You may specify the doctype at any time. However, helpers that depend on the doctype for their output will recognize
it only after you have set it, so the easiest approach is to specify it in your bootstrap:

1 $doctypeHelper = new Zend_View_Helper_Doctype();
2 $doctypeHelper->doctype(’XHTML1_STRICT’);

And then print it out on top of your layout script:

1 <?php echo $this->doctype() ?>

685

Zend Framework 2 Documentation, Release 2.0.0

Retrieving the Doctype

If you need to know the doctype, you can do so by calling getDoctype() on the object, which is returned by
invoking the helper.

1 $doctype = $view->doctype()->getDoctype();

Typically, you’ll simply want to know if the doctype is XHTML or not; for this, the isXhtml() method will suffice:

1 if ($view->doctype()->isXhtml()) {
2 // do something differently
3 }

You can also check if the doctype represents an HTML5 document.

1 if ($view->doctype()->isHtml5()) {
2 // do something differently
3 }

Choosing a Doctype to Use with the Open Graph Protocol

To implement the Open Graph Protocol, you may specify the XHTML1_RDFA doctype. This doctype allows a
developer to use the Resource Description Framework within an XHTML document.

1 $doctypeHelper = new Zend_View_Helper_Doctype();
2 $doctypeHelper->doctype(’XHTML1_RDFA’);

The RDFa doctype allows XHTML to validate when the ‘property’ meta tag attribute is used per the Open Graph
Protocol spec. Example within a view script:

1 <?php echo $this->doctype(’XHTML1_RDFA’); ?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:og="http://opengraphprotocol.org/schema/">
4 <head>
5 <meta property="og:type" content="musician" />

In the previous example, we set the property to og:type. The og references the Open Graph namespace we specified in
the html tag. The content identifies the page as being about a musician. See the Open Graph Protocol documentation
for supported properties. The HeadMeta helper may be used to programmatically set these Open Graph Protocol meta
tags.

Here is how you check if the doctype is set to XHTML1_RDFA:

1 <?php echo $this->doctype() ?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 <?php if ($view->doctype()->isRdfa()): ?>
4 xmlns:og="http://opengraphprotocol.org/schema/"
5 xmlns:fb="http://www.facebook.com/2008/fbml"
6 <?php endif; ?>
7 >

686 Chapter 173. Doctype Helper

http://opengraphprotocol.org/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://opengraphprotocol.org/

CHAPTER

FOUR

HEADLINK HELPER

The HTML <link> element is increasingly used for linking a variety of resources for your site: stylesheets, feeds,
favicons, trackbacks, and more. The HeadLink helper provides a simple interface for creating and aggregating these
elements for later retrieval and output in your layout script.

The HeadLink helper has special methods for adding stylesheet links to its stack:

• appendStylesheet($href, $media, $conditionalStylesheet, $extras)

• offsetSetStylesheet($index, $href, $media, $conditionalStylesheet,
$extras)

• prependStylesheet($href, $media, $conditionalStylesheet, $extras)

• setStylesheet($href, $media, $conditionalStylesheet, $extras)

The $media value defaults to ‘screen’, but may be any valid media value. $conditionalStylesheet is a string
or boolean FALSE, and will be used at rendering time to determine if special comments should be included to prevent
loading of the stylesheet on certain platforms. $extras is an array of any extra values that you want to be added to
the tag.

Additionally, the HeadLink helper has special methods for adding ‘alternate’ links to its stack:

• appendAlternate($href, $type, $title, $extras)

• offsetSetAlternate($index, $href, $type, $title, $extras)

• prependAlternate($href, $type, $title, $extras)

• setAlternate($href, $type, $title, $extras)

The headLink() helper method allows specifying all attributes necessary for a <link> element, and allows you to
also specify placement – whether the new element replaces all others, prepends (top of stack), or appends (end of
stack).

The HeadLink helper is a concrete implementation of the Placeholder helper.

HeadLink Helper Basic Usage

You may specify a headLink at any time. Typically, you will specify global links in your layout script, and application
specific links in your application view scripts. In your layout script, in the <head> section, you will then echo the helper
to output it.

1 <?php // setting links in a view script:
2 $this->headLink()->appendStylesheet(’/styles/basic.css’)
3 ->headLink(array(’rel’ => ’icon’,
4 ’href’ => ’/img/favicon.ico’),

687

Zend Framework 2 Documentation, Release 2.0.0

5 ’PREPEND’)
6 ->prependStylesheet(’/styles/moz.css’,
7 ’screen’,
8 true,
9 array(’id’ => ’my_stylesheet’));

10 ?>
11 <?php // rendering the links: ?>
12 <?php echo $this->headLink() ?>

688 Chapter 174. HeadLink Helper

CHAPTER

FIVE

HEADMETA HELPER

The HTML <meta> element is used to provide meta information about your HTML document – typically keywords,
document character set, caching pragmas, etc. Meta tags may be either of the ‘http-equiv’ or ‘name’ types, must
contain a ‘content’ attribute, and can also have either of the ‘lang’ or ‘scheme’ modifier attributes.

The HeadMeta helper supports the following methods for setting and adding meta tags:

• appendName($keyValue, $content, $conditionalName)

• offsetSetName($index, $keyValue, $content, $conditionalName)

• prependName($keyValue, $content, $conditionalName)

• setName($keyValue, $content, $modifiers)

• appendHttpEquiv($keyValue, $content, $conditionalHttpEquiv)

• offsetSetHttpEquiv($index, $keyValue, $content, $conditionalHttpEquiv)

• prependHttpEquiv($keyValue, $content, $conditionalHttpEquiv)

• setHttpEquiv($keyValue, $content, $modifiers)

• setCharset($charset)

The following methods are also supported with XHTML1_RDFA doctype set with the Doctype helper:

• appendProperty($property, $content, $modifiers)

• offsetSetProperty($index, $property, $content, $modifiers)

• prependProperty($property, $content, $modifiers)

• setProperty($property, $content, $modifiers)

The $keyValue item is used to define a value for the ‘name’ or ‘http-equiv’ key; $content is the value for the
‘content’ key, and $modifiers is an optional associative array that can contain keys for ‘lang’ and/or ‘scheme’.

You may also set meta tags using the headMeta() helper method, which has the following signa-
ture: headMeta($content, $keyValue, $keyType = ’name’, $modifiers = array(),
$placement = ’APPEND’). $keyValue is the content for the key specified in $keyType, which should
be either ‘name’ or ‘http-equiv’. $keyType may also be specified as ‘property’ if the doctype has been set to
XHTML1_RDFA. $placement can be ‘SET’ (overwrites all previously stored values), ‘APPEND’ (added to end
of stack), or ‘PREPEND’ (added to top of stack).

HeadMeta overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the special
methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes using the
itemToString() method. This allows you to perform checks on the items in the stack, and optionally modify
these items by simply modifying the object returned.

689

Zend Framework 2 Documentation, Release 2.0.0

The HeadMeta helper is a concrete implementation of the Placeholder helper.

HeadMeta Helper Basic Usage

You may specify a new meta tag at any time. Typically, you will specify client-side caching rules or SEO keywords.

For instance, if you wish to specify SEO keywords, you’d be creating a meta name tag with the name ‘keywords’ and
the content the keywords you wish to associate with your page:

1 // setting meta keywords
2 $this->headMeta()->appendName(’keywords’, ’framework, PHP, productivity’);

If you wished to set some client-side caching rules, you’d set http-equiv tags with the rules you wish to enforce:

1 // disabling client-side cache
2 $this->headMeta()->appendHttpEquiv(’expires’,
3 ’Wed, 26 Feb 1997 08:21:57 GMT’)
4 ->appendHttpEquiv(’pragma’, ’no-cache’)
5 ->appendHttpEquiv(’Cache-Control’, ’no-cache’);

Another popular use for meta tags is setting the content type, character set, and language:

1 // setting content type and character set
2 $this->headMeta()->appendHttpEquiv(’Content-Type’,
3 ’text/html; charset=UTF-8’)
4 ->appendHttpEquiv(’Content-Language’, ’en-US’);

If you are serving an HTML5 document, you should provide the character set like this:

1 // setting character set in HTML5
2 $this->headMeta()->setCharset(’UTF-8’); // Will look like <meta charset="UTF-8">

As a final example, an easy way to display a transitional message before a redirect is using a “meta refresh”:

1 // setting a meta refresh for 3 seconds to a new url:
2 $this->headMeta()->appendHttpEquiv(’Refresh’,
3 ’3;URL=http://www.some.org/some.html’);

When you’re ready to place your meta tags in the layout, simply echo the helper:

1 <?php echo $this->headMeta() ?>

HeadMeta Usage with XHTML1_RDFA doctype

Enabling the RDFa doctype with the Doctype helper enables the use of the ‘property’ attribute (in addition to the
standard ‘name’ and ‘http-equiv’) with HeadMeta. This is commonly used with the Facebook Open Graph Protocol.

For instance, you may specify an open graph page title and type as follows:

1 $this->doctype(Zend_View_Helper_Doctype::XHTML_RDFA);
2 $this->headMeta()->setProperty(’og:title’, ’my article title’);
3 $this->headMeta()->setProperty(’og:type’, ’article’);
4 echo $this->headMeta();
5

6 // output is:
7 // <meta property="og:title" content="my article title" />
8 // <meta property="og:type" content="article" />

690 Chapter 175. HeadMeta Helper

http://opengraphprotocol.org/

CHAPTER

SIX

HEADSCRIPT HELPER

The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote resource
containing client-side scripting code. The HeadScript helper allows you to manage both.

The HeadScript helper supports the following methods for setting and adding scripts:

• appendFile($src, $type = ’text/javascript’, $attrs = array())

• offsetSetFile($index, $src, $type = ’text/javascript’, $attrs = array())

• prependFile($src, $type = ’text/javascript’, $attrs = array())

• setFile($src, $type = ’text/javascript’, $attrs = array())

• appendScript($script, $type = ’text/javascript’, $attrs = array())

• offsetSetScript($index, $script, $type = ’text/javascript’, $attrs =
array())

• prependScript($script, $type = ’text/javascript’, $attrs = array())

• setScript($script, $type = ’text/javascript’, $attrs = array())

In the case of the * File() methods, $src is the remote location of the script to load; this is usually in the form of a
URL or a path. For the * Script() methods, $script is the client-side scripting directives you wish to use in the
element.

Note: Setting Conditional Comments

HeadScript allows you to wrap the script tag in conditional comments, which allows you to hide it from specific
browsers. To add the conditional tags, pass the conditional value as part of the $attrs parameter in the method calls.

Headscript With Conditional Comments

1 // adding scripts
2 $this->headScript()->appendFile(
3 ’/js/prototype.js’,
4 ’text/javascript’,
5 array(’conditional’ => ’lt IE 7’)
6);

Note: Preventing HTML style comments or CDATA wrapping of scripts

691

Zend Framework 2 Documentation, Release 2.0.0

By default HeadScript will wrap scripts with HTML comments or it wraps scripts with XHTML cdata. This
behavior can be problematic when you intend to use the script tag in an alternative way by setting the type to something
other then ‘text/javascript’. To prevent such escaping, pass an noescape with a value of true as part of the $attrs
parameter in the method calls.

Create an jQuery template with the headScript

1 // jquery template
2 $template = ’<div class="book">{{:title}}</div>’;
3 $this->headScript()->appendScript(
4 $template,
5 ’text/x-jquery-tmpl’,
6 array(’id=’tmpl-book’, ’noescape’ => true)
7);

HeadScript also allows capturing scripts; this can be useful if you want to create the client-side script programmat-
ically, and then place it elsewhere. The usage for this will be showed in an example below.

Finally, you can also use the headScript() method to quickly add script elements; the signature for this is
headScript($mode = ’FILE’, $spec, $placement = ’APPEND’). The $mode is either ‘FILE’ or
‘SCRIPT’, depending on if you’re linking a script or defining one. $spec is either the script file to link or the script
source itself. $placement should be either ‘APPEND’, ‘PREPEND’, or ‘SET’.

HeadScript overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes using
the itemToString() method. This allows you to perform checks on the items in the stack, and optionally modify
these items by simply modifying the object returned.

The HeadScript helper is a concrete implementation of the Placeholder helper.

Note: Use InlineScript for HTML Body Scripts

HeadScript‘s sibling helper, InlineScript, should be used when you wish to include scripts inline in the HTML
body. Placing scripts at the end of your document is a good practice for speeding up delivery of your page, particularly
when using 3rd party analytics scripts.

Note: Arbitrary Attributes are Disabled by Default

By default, HeadScript only will render <script> attributes that are blessed by the W3C. These include
‘type’, ‘charset’, ‘defer’, ‘language’, and ‘src’. However, some javascript frameworks, notably Dojo, uti-
lize custom attributes in order to modify behavior. To allow such attributes, you can enable them via the
setAllowArbitraryAttributes() method:

1 $this->headScript()->setAllowArbitraryAttributes(true);

HeadScript Helper Basic Usage

You may specify a new script tag at any time. As noted above, these may be links to outside resource files or scripts
themselves.

1 // adding scripts
2 $this->headScript()->appendFile(’/js/prototype.js’)
3 ->appendScript($onloadScript);

692 Chapter 176. HeadScript Helper

http://www.dojotoolkit.org/

Zend Framework 2 Documentation, Release 2.0.0

Order is often important with client-side scripting; you may need to ensure that libraries are loaded in a specific order
due to dependencies each have; use the various append, prepend, and offsetSet directives to aid in this task:

1 // Putting scripts in order
2

3 // place at a particular offset to ensure loaded last
4 $this->headScript()->offsetSetFile(100, ’/js/myfuncs.js’);
5

6 // use scriptaculous effects (append uses next index, 101)
7 $this->headScript()->appendFile(’/js/scriptaculous.js’);
8

9 // but always have base prototype script load first:
10 $this->headScript()->prependFile(’/js/prototype.js’);

When you’re finally ready to output all scripts in your layout script, simply echo the helper:

1 <?php echo $this->headScript() ?>

Capturing Scripts Using the HeadScript Helper

Sometimes you need to generate client-side scripts programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the script and sprinkling in PHP tags. HeadScript
lets you do just that, capturing it to the stack:

1 <?php $this->headScript()->captureStart() ?>
2 var action = ’<?php echo $this->baseUrl ?>’;
3 $(’foo_form’).action = action;
4 <?php $this->headScript()->captureEnd() ?>

The following assumptions are made:

• The script will be appended to the stack. If you wish for it to replace the stack or be added to the top, you will
need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().

• The script MIME type is assumed to be ‘text/javascript’; if you wish to specify a different type, you will need to
pass it as the second argument to captureStart().

• If you wish to specify any additional attributes for the <script> tag, pass them in an array as the third argument
to captureStart().

693

Zend Framework 2 Documentation, Release 2.0.0

694 Chapter 176. HeadScript Helper

CHAPTER

SEVEN

HEADSTYLE HELPER

The HTML <style> element is used to include CSS stylesheets inline in the HTML <head> element.

Note: Use HeadLink to link CSS files

HeadLink should be used to create <link> elements for including external stylesheets. HeadStyle is used when you
wish to define your stylesheets inline.

The HeadStyle helper supports the following methods for setting and adding stylesheet declarations:

• appendStyle($content, $attributes = array())

• offsetSetStyle($index, $content, $attributes = array())

• prependStyle($content, $attributes = array())

• setStyle($content, $attributes = array())

In all cases, $content is the actual CSS declarations. $attributes are any additional attributes you wish to
provide to the style tag: lang, title, media, or dir are all permissible.

Note: Setting Conditional Comments

HeadStyle allows you to wrap the style tag in conditional comments, which allows you to hide it from specific
browsers. To add the conditional tags, pass the conditional value as part of the $attributes parameter in the
method calls.

Headstyle With Conditional Comments

1 // adding scripts
2 $this->headStyle()->appendStyle($styles, array(’conditional’ => ’lt IE 7’));

HeadStyle also allows capturing style declarations; this can be useful if you want to create the declarations pro-
grammatically, and then place them elsewhere. The usage for this will be showed in an example below.

Finally, you can also use the headStyle() method to quickly add declarations elements; the signature for
this is headStyle($content$placement = ’APPEND’, $attributes = array()). $placement
should be either ‘APPEND’, ‘PREPEND’, or ‘SET’.

HeadStyle overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes using
the itemToString() method. This allows you to perform checks on the items in the stack, and optionally modify
these items by simply modifying the object returned.

695

Zend Framework 2 Documentation, Release 2.0.0

The HeadStyle helper is a concrete implementation of the Placeholder helper.

Note: UTF-8 encoding used by default

By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does as
well. Character encoding can be set differently on the view object itself using the setEncoding() method (or the
the encoding instantiation parameter). However, since Zend_View_Interface does not define accessors for
encoding, it’s possible that if you are using a custom view implementation with this view helper, you will not have a
getEncoding() method, which is what the view helper uses internally for determining the character set in which
to encode.

If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method in
your custom view implementation.

HeadStyle Helper Basic Usage

You may specify a new style tag at any time:

1 // adding styles
2 $this->headStyle()->appendStyle($styles);

Order is very important with CSS; you may need to ensure that declarations are loaded in a specific order due to the
order of the cascade; use the various append, prepend, and offsetSet directives to aid in this task:

1 // Putting styles in order
2

3 // place at a particular offset:
4 $this->headStyle()->offsetSetStyle(100, $customStyles);
5

6 // place at end:
7 $this->headStyle()->appendStyle($finalStyles);
8

9 // place at beginning
10 $this->headStyle()->prependStyle($firstStyles);

When you’re finally ready to output all style declarations in your layout script, simply echo the helper:

1 <?php echo $this->headStyle() ?>

Capturing Style Declarations Using the HeadStyle Helper

Sometimes you need to generate CSS style declarations programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the styles and sprinkling in PHP tags. HeadStyle
lets you do just that, capturing it to the stack:

1 <?php $this->headStyle()->captureStart() ?>
2 body {
3 background-color: <?php echo $this->bgColor ?>;
4 }
5 <?php $this->headStyle()->captureEnd() ?>

The following assumptions are made:

• The style declarations will be appended to the stack. If you wish for them to replace the stack or be added to the
top, you will need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().

696 Chapter 177. HeadStyle Helper

Zend Framework 2 Documentation, Release 2.0.0

• If you wish to specify any additional attributes for the <style> tag, pass them in an array as the second argument
to captureStart().

697

Zend Framework 2 Documentation, Release 2.0.0

698 Chapter 177. HeadStyle Helper

CHAPTER

EIGHT

HEADTITLE HELPER

The HTML <title> element is used to provide a title for an HTML document. The HeadTitle helper allows you to
programmatically create and store the title for later retrieval and output.

The HeadTitle helper is a concrete implementation of the Placeholder helper. It overrides the toString()
method to enforce generating a <title> element, and adds a headTitle() method for quick and easy setting and
aggregation of title elements. The signature for that method is headTitle($title, $setType = null); by
default, the value is appended to the stack (aggregating title segments) if left at null, but you may also specify either
‘PREPEND’ (place at top of stack) or ‘SET’ (overwrite stack).

Since setting the aggregating (attach) order on each call to headTitle can be cumbersome, you can set a default
attach order by calling setDefaultAttachOrder() which is applied to all headTitle() calls unless you
explicitly pass a different attach order as the second parameter.

HeadTitle Helper Basic Usage

You may specify a title tag at any time. A typical usage would have you setting title segments for each level of depth
in your application: site, controller, action, and potentially resource.

1 // setting the controller and action name as title segments:
2 $request = Zend_Controller_Front::getInstance()->getRequest();
3 $this->headTitle($request->getActionName())
4 ->headTitle($request->getControllerName());
5

6 // setting the site in the title; possibly in the layout script:
7 $this->headTitle(’Zend Framework’);
8

9 // setting a separator string for segments:
10 $this->headTitle()->setSeparator(’ / ’);

When you’re finally ready to render the title in your layout script, simply echo the helper:

1 <!-- renders <action> / <controller> / Zend Framework -->
2 <?php echo $this->headTitle() ?>

699

Zend Framework 2 Documentation, Release 2.0.0

700 Chapter 178. HeadTitle Helper

CHAPTER

NINE

HTML OBJECT HELPERS

The HTML <object> element is used for embedding media like Flash or QuickTime in web pages. The object view
helpers take care of embedding media with minimum effort.

There are four initial Object helpers:

• htmlFlash() Generates markup for embedding Flash files.

• htmlObject() Generates markup for embedding a custom Object.

• htmlPage() Generates markup for embedding other (X)HTML pages.

• htmlQuicktime() Generates markup for embedding QuickTime files.

All of these helpers share a similar interface. For this reason, this documentation will only contain examples of two of
these helpers.

Flash helper

Embedding Flash in your page using the helper is pretty straight-forward. The only required argument is the resource
URI.

1 <?php echo $this->htmlFlash(’/path/to/flash.swf’); ?>

This outputs the following HTML:

1 <object data="/path/to/flash.swf"
2 type="application/x-shockwave-flash"
3 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
4 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">
5 </object>

Additionally you can specify attributes, parameters and content that can be rendered along with the <object>. This
will be demonstrated using the htmlObject() helper.

Customizing the object by passing additional arguments

The first argument in the object helpers is always required. It is the URI to the resource you want to embed. The
second argument is only required in the htmlObject() helper. The other helpers already contain the correct value
for this argument. The third argument is used for passing along attributes to the object element. It only accepts an
array with key-value pairs. classid and codebase are examples of such attributes. The fourth argument also only
takes a key-value array and uses them to create <param> elements. You will see an example of this shortly. Lastly,
there is the option of providing additional content to the object. Now for an example which utilizes all arguments.

701

Zend Framework 2 Documentation, Release 2.0.0

1 echo $this->htmlObject(
2 ’/path/to/file.ext’,
3 ’mime/type’,
4 array(
5 ’attr1’ => ’aval1’,
6 ’attr2’ => ’aval2’
7),
8 array(
9 ’param1’ => ’pval1’,

10 ’param2’ => ’pval2’
11),
12 ’some content’
13);
14

15 /*
16 This would output:
17

18 <object data="/path/to/file.ext" type="mime/type"
19 attr1="aval1" attr2="aval2">
20 <param name="param1" value="pval1" />
21 <param name="param2" value="pval2" />
22 some content
23 </object>
24 */

702 Chapter 179. HTML Object Helpers

CHAPTER

INLINESCRIPT HELPER

The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote resource
containing client-side scripting code. The InlineScript helper allows you to manage both. It is derived from
HeadScript, and any method of that helper is available; however, use the inlineScript() method in place of
headScript().

Note: Use InlineScript for HTML Body Scripts

InlineScript, should be used when you wish to include scripts inline in the HTML body. Placing scripts at the
end of your document is a good practice for speeding up delivery of your page, particularly when using 3rd party
analytics scripts.

Some JS libraries need to be included in the HTML head; use HeadScript for those scripts.

703

Zend Framework 2 Documentation, Release 2.0.0

704 Chapter 180. InlineScript Helper

CHAPTER

ONE

JSON HELPER

When creating views that return JSON, it’s important to also set the appropriate response header. The JSON view
helper does exactly that. In addition, by default, it disables layouts (if currently enabled), as layouts generally aren’t
used with JSON responses.

The JSON helper sets the following header:

1 Content-Type: application/json

Most AJAX libraries look for this header when parsing responses to determine how to handle the content.

Usage of the JSON helper is very straightforward:

1 <?php echo $this->json($this->data) ?>

Note: Keeping layouts and enabling encoding using Zend_Json_Expr

Each method in the JSON helper accepts a second, optional argument. This second argument can be a boolean flag to
enable or disable layouts, or an array of options that will be passed to Zend_Json::encode() and used internally
to encode data.

To keep layouts, the second parameter needs to be boolean TRUE. When the second parameter is an array, keeping
layouts can be achieved by including a keepLayouts key with a value of a boolean TRUE.

1 // Boolean true as second argument enables layouts:
2 echo $this->json($this->data, true);
3

4 // Or boolean true as "keepLayouts" key:
5 echo $this->json($this->data, array(’keepLayouts’ => true));

Zend_Json::encode allows the encoding of native JSON expressions using Zend_Json_Expr objects. This
option is disabled by default. To enable this option, pass a boolean TRUE to the enableJsonExprFinder key of
the options array:

1 <?php echo $this->json($this->data, array(
2 ’enableJsonExprFinder’ => true,
3 ’keepLayouts’ => true,
4)) ?>

705

Zend Framework 2 Documentation, Release 2.0.0

706 Chapter 181. JSON Helper

CHAPTER

TWO

NAVIGATION HELPERS

The navigation helpers are used for rendering navigational elements from Zend_Navigation_Container instances.

There are 5 built-in helpers:

• Breadcrumbs, used for rendering the path to the currently active page.

• Links, used for rendering navigational head links (e.g. <link rel="next" href="..." />)

• Menu, used for rendering menus.

• Sitemap, used for rendering sitemaps conforming to the Sitemaps XML format.

• Navigation, used for proxying calls to other navigational helpers.

All built-in helpers extend Zend_View_Helper_Navigation_HelperAbstract, which
adds integration with ACL and translation. The abstract class implements the interface
Zend_View_Helper_Navigation_Helper, which defines the following methods:

• getContainer() and setContainer() gets and sets the navigation container the helper should operate
on by default, and hasContainer() checks if the helper has container registered.

• getTranslator() and setTranslator() gets and sets the translator used for translating labels and
titles. getUseTranslator() and setUseTranslator() controls whether the translator should be en-
abled. The method hasTranslator() checks if the helper has a translator registered.

• getAcl(), setAcl(), getRole() and setRole(), gets and sets ACL (Zend\Permissions\Acl)
instance and role (String or Zend\Permissions\Acl\Role\RoleInterface) used for filtering out
pages when rendering. getUseAcl() and setUseAcl() controls whether ACL should be enabled. The
methods hasAcl() and hasRole() checks if the helper has an ACL instance or a role registered.

• __toString(), magic method to ensure that helpers can be rendered by echoing the helper instance directly.

• render(), must be implemented by concrete helpers to do the actual rendering.

In addition to the method stubs from the interface, the abstract class also implements the following methods:

• getIndent() and setIndent() gets and sets indentation. The setter accepts a String or an
Integer. In the case of an Integer, the helper will use the given number of spaces for indentation. I.e.,
setIndent(4) means 4 initial spaces of indentation. Indentation can be specified for all helpers except the
Sitemap helper.

• getMinDepth() and setMinDepth() gets and sets the minimum depth a page must have to be included
by the helper. Setting NULL means no minimum depth.

• getMaxDepth() and setMaxDepth() gets and sets the maximum depth a page can have to be included by
the helper. Setting NULL means no maximum depth.

707

http://www.sitemaps.org/protocol.php

Zend Framework 2 Documentation, Release 2.0.0

• getRenderInvisible() and setRenderInvisible() gets and sets whether to render items that have
been marked as invisible or not.

• __call() is used for proxying calls to the container registered in the helper, which means you can call methods
on a helper as if it was a container. See example below.

• findActive($container, $minDepth, $maxDepth) is used for finding the deepest active page in
the given container. If depths are not given, the method will use the values retrieved from getMinDepth()
and getMaxDepth(). The deepest active page must be between $minDepth and $maxDepth inclusively.
Returns an array containing a reference to the found page instance and the depth at which the page was found.

• htmlify() renders an ‘a’ HTML element from a Zend_Navigation_Page instance.

• accept() is used for determining if a page should be accepted when iterating containers. This method checks
for page visibility and verifies that the helper’s role is allowed access to the page’s resource and privilege.

• The static method setDefaultAcl() is used for setting a default ACL object that will be used by helpers.

• The static method setDefaultRole() is used for setting a default ACL that will be used by helpers

If a navigation container is not explicitly set in a helper using $helper->setContainer($nav), the helper
will look for a container instance with the key Zend_Navigation in the registry. If a container is not ex-
plicitly set or found in the registry, the helper will create an empty Zend_Navigation container when calling
$helper->getContainer().

Proxying calls to the navigation container

Navigation view helpers use the magic method __call() to proxy method calls to the navigation container that is
registered in the view helper.

1 $this->navigation()->addPage(array(
2 ’type’ => ’uri’,
3 ’label’ => ’New page’));

The call above will add a page to the container in the Navigation helper.

182.1 Translation of labels and titles

The navigation helpers support translation of page labels and titles. You can set a translator of type
Zend\I18n\Translator in the helper using $helper->setTranslator($translator).

If you want to disable translation, use $helper->setUseTranslator(false).

The proxy helper will inject its own translator to the helper it proxies to if the proxied helper doesn’t already have a
translator.

Note: There is no translation in the sitemap helper, since there are no page labels or titles involved in an XML sitemap.

182.2 Integration with ACL

All navigational view helpers support ACL inherently from the class Zend_View_Helper_Navigation_HelperAbstract.
A Zend\Permissions\Acl object can be assigned to a helper instance with $helper->setAcl($acl), and role with
$helper->setRole(‘member’) or $helper->setRole(new ZendPermissionsAclRoleGenericRole(‘member’)). If ACL is

708 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

used in the helper, the role in the helper must be allowed by the ACL to access a page’s resource and/or have the
page’s privilege for the page to be included when rendering.

If a page is not accepted by ACL, any descendant page will also be excluded from rendering.

The proxy helper will inject its own ACL and role to the helper it proxies to if the proxied helper doesn’t already have
any.

The examples below all show how ACL affects rendering.

182.3 Navigation setup used in examples

This example shows the setup of a navigation container for a fictional software company.

Notes on the setup:

• The domain for the site is www.example.com.

• Interesting page properties are marked with a comment.

• Unless otherwise is stated in other examples, the user is requesting the URL
http://www.example.com/products/server/faq/, which translates to the page labeled FAQ under Foo Server.

• The assumed ACL and router setup is shown below the container setup.

1 /*
2 * Navigation container (config/array)
3

4 * Each element in the array will be passed to
5 * Zend_Navigation_Page::factory() when constructing
6 * the navigation container below.
7 */
8 $pages = array(
9 array(

10 ’label’ => ’Home’,
11 ’title’ => ’Go Home’,
12 ’module’ => ’default’,
13 ’controller’ => ’index’,
14 ’action’ => ’index’,
15 ’order’ => -100 // make sure home is the first page
16),
17 array(
18 ’label’ => ’Special offer this week only!’,
19 ’module’ => ’store’,
20 ’controller’ => ’offer’,
21 ’action’ => ’amazing’,
22 ’visible’ => false // not visible
23),
24 array(
25 ’label’ => ’Products’,
26 ’module’ => ’products’,
27 ’controller’ => ’index’,
28 ’action’ => ’index’,
29 ’pages’ => array(
30 array(
31 ’label’ => ’Foo Server’,
32 ’module’ => ’products’,
33 ’controller’ => ’server’,
34 ’action’ => ’index’,

182.3. Navigation setup used in examples 709

Zend Framework 2 Documentation, Release 2.0.0

35 ’pages’ => array(
36 array(
37 ’label’ => ’FAQ’,
38 ’module’ => ’products’,
39 ’controller’ => ’server’,
40 ’action’ => ’faq’,
41 ’rel’ => array(
42 ’canonical’ => ’http://www.example.com/?page=faq’,
43 ’alternate’ => array(
44 ’module’ => ’products’,
45 ’controller’ => ’server’,
46 ’action’ => ’faq’,
47 ’params’ => array(’format’ => ’xml’)
48)
49)
50),
51 array(
52 ’label’ => ’Editions’,
53 ’module’ => ’products’,
54 ’controller’ => ’server’,
55 ’action’ => ’editions’
56),
57 array(
58 ’label’ => ’System Requirements’,
59 ’module’ => ’products’,
60 ’controller’ => ’server’,
61 ’action’ => ’requirements’
62)
63)
64),
65 array(
66 ’label’ => ’Foo Studio’,
67 ’module’ => ’products’,
68 ’controller’ => ’studio’,
69 ’action’ => ’index’,
70 ’pages’ => array(
71 array(
72 ’label’ => ’Customer Stories’,
73 ’module’ => ’products’,
74 ’controller’ => ’studio’,
75 ’action’ => ’customers’
76),
77 array(
78 ’label’ => ’Support’,
79 ’module’ => ’prodcts’,
80 ’controller’ => ’studio’,
81 ’action’ => ’support’
82)
83)
84)
85)
86),
87 array(
88 ’label’ => ’Company’,
89 ’title’ => ’About us’,
90 ’module’ => ’company’,
91 ’controller’ => ’about’,
92 ’action’ => ’index’,

710 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

93 ’pages’ => array(
94 array(
95 ’label’ => ’Investor Relations’,
96 ’module’ => ’company’,
97 ’controller’ => ’about’,
98 ’action’ => ’investors’
99),

100 array(
101 ’label’ => ’News’,
102 ’class’ => ’rss’, // class
103 ’module’ => ’company’,
104 ’controller’ => ’news’,
105 ’action’ => ’index’,
106 ’pages’ => array(
107 array(
108 ’label’ => ’Press Releases’,
109 ’module’ => ’company’,
110 ’controller’ => ’news’,
111 ’action’ => ’press’
112),
113 array(
114 ’label’ => ’Archive’,
115 ’route’ => ’archive’, // route
116 ’module’ => ’company’,
117 ’controller’ => ’news’,
118 ’action’ => ’archive’
119)
120)
121)
122)
123),
124 array(
125 ’label’ => ’Community’,
126 ’module’ => ’community’,
127 ’controller’ => ’index’,
128 ’action’ => ’index’,
129 ’pages’ => array(
130 array(
131 ’label’ => ’My Account’,
132 ’module’ => ’community’,
133 ’controller’ => ’account’,
134 ’action’ => ’index’,
135 ’resource’ => ’mvc:community.account’ // resource
136),
137 array(
138 ’label’ => ’Forums’,
139 ’uri’ => ’http://forums.example.com/’,
140 ’class’ => ’external’ // class
141)
142)
143),
144 array(
145 ’label’ => ’Administration’,
146 ’module’ => ’admin’,
147 ’controller’ => ’index’,
148 ’action’ => ’index’,
149 ’resource’ => ’mvc:admin’, // resource
150 ’pages’ => array(

182.3. Navigation setup used in examples 711

Zend Framework 2 Documentation, Release 2.0.0

151 array(
152 ’label’ => ’Write new article’,
153 ’module’ => ’admin’,
154 ’controller’ => ’post’,
155 ’aciton’ => ’write’
156)
157)
158)
159);
160

161 // Create container from array
162 $container = new Zend_Navigation($pages);
163

164 // Store the container in the proxy helper:
165 $view->getHelper(’navigation’)->setContainer($container);
166

167 // ...or simply:
168 $view->navigation($container);
169

170 // ...or store it in the reigstry:
171 Zend_Registry::set(’Zend_Navigation’, $container);

In addition to the container above, the following setup is assumed:

1 // Setup router (default routes and ’archive’ route):
2 $front = Zend_Controller_Front::getInstance();
3 $router = $front->getRouter();
4 $router->addDefaultRoutes();
5 $router->addRoute(
6 ’archive’,
7 new Zend_Controller_Router_Route(
8 ’/archive/:year’,
9 array(

10 ’module’ => ’company’,
11 ’controller’ => ’news’,
12 ’action’ => ’archive’,
13 ’year’ => (int) date(’Y’) - 1
14),
15 array(’year’ => ’\d+’)
16)
17);
18

19 // Setup ACL:
20 $acl = new Zend\Permissions\Acl\Acl();
21 $acl->addRole(new Zend\Permissions\Acl\Role\GenericRole(’member’));
22 $acl->addRole(new Zend\Permissions\Acl\Role\GenericRole(’admin’));
23 $acl->add(new Zend\Permissions\Acl\Resource\GenericResource(’mvc:admin’));
24 $acl->add(new Zend\Permissions\Acl\Resource\GenericResource(’mvc:community.account’));
25 $acl->allow(’member’, ’mvc:community.account’);
26 $acl->allow(’admin’, null);
27

28 // Store ACL and role in the proxy helper:
29 $view->navigation()->setAcl($acl)->setRole(’member’);
30

31 // ...or set default ACL and role statically:
32 Zend_View_Helper_Navigation_HelperAbstract::setDefaultAcl($acl);
33 Zend_View_Helper_Navigation_HelperAbstract::setDefaultRole(’member’);

712 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

182.4 Breadcrumbs Helper

Breadcrumbs are used for indicating where in a sitemap a user is currently browsing, and are typically rendered like
this: “You are here: Home > Products > FantasticProduct 1.0”. The breadcrumbs helper follows the guidelines from
Breadcrumbs Pattern - Yahoo! Design Pattern Library, and allows simple customization (minimum/maximum depth,
indentation, separator, and whether the last element should be linked), or rendering using a partial view script.

The Breadcrumbs helper works like this; it finds the deepest active page in a navigation container, and renders an
upwards path to the root. For MVC pages, the “activeness” of a page is determined by inspecting the request object,
as stated in the section on Zend_Navigation_Page_Mvc.

The helper sets the minDepth property to 1 by default, meaning breadcrumbs will not be rendered if the deepest active
page is a root page. If maxDepth is specified, the helper will stop rendering when at the specified depth (e.g. stop at
level 2 even if the deepest active page is on level 3).

Methods in the breadcrumbs helper:

• {get|set}Separator() gets/sets separator string that is used between breadcrumbs. Defualt is ‘ > ‘.

• {get|set}LinkLast() gets/sets whether the last breadcrumb should be rendered as an anchor or not. Default is
FALSE.

• {get|set}Partial() gets/sets a partial view script that should be used for rendering breadcrumbs. If a partial view
script is set, the helper’s render() method will use the renderPartial() method. If no partial is set,
the renderStraight() method is used. The helper expects the partial to be a String or an Array with
two elements. If the partial is a String, it denotes the name of the partial script to use. If it is an Array, the
first element will be used as the name of the partial view script, and the second element is the module where the
script is found.

• renderStraight() is the default render method.

• renderPartial() is used for rendering using a partial view script.

Rendering breadcrumbs

This example shows how to render breadcrumbs with default settings.

1 In a view script or layout:
2 <?php echo $this->navigation()->breadcrumbs(); ?>
3

4 The two calls above take advantage of the magic __toString() method,
5 and are equivalent to:
6 <?php echo $this->navigation()->breadcrumbs()->render(); ?>
7

8 Output:
9 Products > Foo Server > FAQ

Specifying indentation

This example shows how to render breadcrumbs with initial indentation.

1 Rendering with 8 spaces indentation:
2 <?php echo $this->navigation()->breadcrumbs()->setIndent(8);?>
3

4 Output:
5 Products > Foo Server > FAQ

182.4. Breadcrumbs Helper 713

http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs

Zend Framework 2 Documentation, Release 2.0.0

Customize breadcrumbs output

This example shows how to customze breadcrumbs output by specifying various options.

1 In a view script or layout:
2

3 <?php
4 echo $this->navigation()
5 ->breadcrumbs()
6 ->setLinkLast(true) // link last page
7 ->setMaxDepth(1) // stop at level 1
8 ->setSeparator(’ ’ . PHP_EOL); // cool separator with newline
9 ?>

10

11 Output:
12 Products
13 Foo Server
14

15 ///
16

17 Setting minimum depth required to render breadcrumbs:
18

19 <?php
20 $this->navigation()->breadcrumbs()->setMinDepth(10);
21 echo $this->navigation()->breadcrumbs();
22 ?>
23

24 Output:
25 Nothing, because the deepest active page is not at level 10 or deeper.

Rendering breadcrumbs using a partial view script

This example shows how to render customized breadcrumbs using a partial vew script. By calling setPartial(),
you can specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will find the deepest active page and pass an array of pages
that leads to the active page to the partial view script.

In a layout:

1 $partial = ;
2 echo $this->navigation()->breadcrumbs()
3 ->setPartial(array(’breadcrumbs.phtml’, ’default’));

Contents of application/modules/default/views/breadcrumbs.phtml:

1 echo implode(’, ’, array_map(
2 create_function(’$a’, ’return $a->getLabel();’),
3 $this->pages));

Output:

1 Products, Foo Server, FAQ

714 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

182.5 Links Helper

The links helper is used for rendering HTML LINK elements. Links are used for describing document relationships
of the currently active page. Read more about links and link types at Document relationships: the LINK element
(HTML4 W3C Rec.) and Link types (HTML4 W3C Rec.) in the HTML4 W3C Recommendation.

There are two types of relations; forward and reverse, indicated by the keyords ‘rel’ and ‘rev’. Most methods in the
helper will take a $rel param, which must be either ‘rel’ or ‘rev’. Most methods also take a $type param, which is
used for specifying the link type (e.g. alternate, start, next, prev, chapter, etc).

Relationships can be added to page objects manually, or found by traversing the container registered in the helper.
The method findRelation($page, $rel, $type) will first try to find the given $rel of $type from the
$page by calling $page->findRel($type) or $page->findRel($type). If the $page has a relation that can be converted
to a page instance, that relation will be used. If the $page instance doesn’t have the specified $type, the helper will
look for a method in the helper named searchreltype (e.g. searchRelNext() or searchRevAlternate()).
If such a method exists, it will be used for determining the $page‘s relation by traversing the container.

Not all relations can be determined by traversing the container. These are the relations that will be found by searching:

• searchRelStart(), forward ‘start’ relation: the first page in the container.

• searchRelNext(), forward ‘next’ relation; finds the next page in the container, i.e. the page after the active
page.

• searchRelPrev(), forward ‘prev’ relation; finds the previous page, i.e. the page before the active page.

• searchRelChapter(), forward ‘chapter’ relations; finds all pages on level 0 except the ‘start’ relation or
the active page if it’s on level 0.

• searchRelSection(), forward ‘section’ relations; finds all child pages of the active page if the active page
is on level 0 (a ‘chapter’).

• searchRelSubsection(), forward ‘subsection’ relations; finds all child pages of the active page if the
active pages is on level 1 (a ‘section’).

• searchRevSection(), reverse ‘section’ relation; finds the parent of the active page if the active page is on
level 1 (a ‘section’).

• searchRevSubsection(), reverse ‘subsection’ relation; finds the parent of the active page if the active
page is on level 2 (a ‘subsection’).

Note: When looking for relations in the page instance ($page->getRel($type) or $page->getRev($type)), the helper
accepts the values of type String, Array, Zend_Config, or Zend_Navigation_Page. If a string is found, it
will be converted to a Zend_Navigation_Page_Uri. If an array or a config is found, it will be converted to one
or several page instances. If the first key of the array/config is numeric, it will be considered to contain several pages,
and each element will be passed to the page factory. If the first key is not numeric, the array/config will be passed to
the page factory directly, and a single page will be returned.

The helper also supports magic methods for finding relations. E.g. to find forward alternate relations, call $helper-
>findRelAlternate($page), and to find reverse section relations, call $helper->findRevSection($page). Those calls
correspond to $helper->findRelation($page, ‘rel’, ‘alternate’); and $helper->findRelation($page, ‘rev’, ‘section’);
respectively.

To customize which relations should be rendered, the helper uses a render flag. The render flag is an integer value,
and will be used in a bitwse and (&) operation against the helper’s render constants to determine if the relation that
belongs to the render constant should be rendered.

See the example below for more information.

• Zend_View_Helper_Navigation_Link::RENDER_ALTERNATE

182.5. Links Helper 715

http://www.w3.org/TR/html4/struct/links.html#h-12.3
http://www.w3.org/TR/html4/struct/links.html#h-12.3
http://www.w3.org/TR/html4/types.html#h-6.12
http://php.net/manual/en/language.operators.bitwise.php

Zend Framework 2 Documentation, Release 2.0.0

• Zend_View_Helper_Navigation_Link::RENDER_STYLESHEET

• Zend_View_Helper_Navigation_Link::RENDER_START

• Zend_View_Helper_Navigation_Link::RENDER_NEXT

• Zend_View_Helper_Navigation_Link::RENDER_PREV

• Zend_View_Helper_Navigation_Link::RENDER_CONTENTS

• Zend_View_Helper_Navigation_Link::RENDER_INDEX

• Zend_View_Helper_Navigation_Link::RENDER_GLOSSARY

• Zend_View_Helper_Navigation_Link::RENDER_COPYRIGHT

• Zend_View_Helper_Navigation_Link::RENDER_CHAPTER

• Zend_View_Helper_Navigation_Link::RENDER_SECTION

• Zend_View_Helper_Navigation_Link::RENDER_SUBSECTION

• Zend_View_Helper_Navigation_Link::RENDER_APPENDIX

• Zend_View_Helper_Navigation_Link::RENDER_HELP

• Zend_View_Helper_Navigation_Link::RENDER_BOOKMARK

• Zend_View_Helper_Navigation_Link::RENDER_CUSTOM

• Zend_View_Helper_Navigation_Link::RENDER_ALL

The constants from RENDER_ALTERNATE to RENDER_BOOKMARK denote standard HTML link types.
RENDER_CUSTOM denotes non-standard relations that specified in pages. RENDER_ALL denotes standard and non-
standard relations.

Methods in the links helper:

• {get|set}RenderFlag() gets/sets the render flag. Default is RENDER_ALL. See examples below on how to set
the render flag.

• findAllRelations() finds all relations of all types for a given page.

• findRelation() finds all relations of a given type from a given page.

• searchRel{Start|Next|Prev|Chapter|Section|Subsection}() traverses a container to find forward relations to the
start page, the next page, the previous page, chapters, sections, and subsections.

• searchRev{Section|Subsection}() traverses a container to find reverse relations to sections or subsections.

• renderLink() renders a single link element.

Specify relations in pages

This example shows how to specify relations in pages.

1 $container = new Zend_Navigation(array(
2 array(
3 ’label’ => ’Relations using strings’,
4 ’rel’ => array(
5 ’alternate’ => ’http://www.example.org/’
6),
7 ’rev’ => array(
8 ’alternate’ => ’http://www.example.net/’
9)

716 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

10),
11 array(
12 ’label’ => ’Relations using arrays’,
13 ’rel’ => array(
14 ’alternate’ => array(
15 ’label’ => ’Example.org’,
16 ’uri’ => ’http://www.example.org/’
17)
18)
19),
20 array(
21 ’label’ => ’Relations using configs’,
22 ’rel’ => array(
23 ’alternate’ => new Zend_Config(array(
24 ’label’ => ’Example.org’,
25 ’uri’ => ’http://www.example.org/’
26))
27)
28),
29 array(
30 ’label’ => ’Relations using pages instance’,
31 ’rel’ => array(
32 ’alternate’ => Zend_Navigation_Page::factory(array(
33 ’label’ => ’Example.org’,
34 ’uri’ => ’http://www.example.org/’
35))
36)
37)
38));

Default rendering of links

This example shows how to render a menu from a container registered/found in the view helper.

1 In a view script or layout:
2 <?php echo $this->view->navigation()->links(); ?>
3

4 Output:
5 <link rel="alternate" href="/products/server/faq/format/xml">
6 <link rel="start" href="/" title="Home">
7 <link rel="next" href="/products/server/editions" title="Editions">
8 <link rel="prev" href="/products/server" title="Foo Server">
9 <link rel="chapter" href="/products" title="Products">

10 <link rel="chapter" href="/company/about" title="Company">
11 <link rel="chapter" href="/community" title="Community">
12 <link rel="canonical" href="http://www.example.com/?page=server-faq">
13 <link rev="subsection" href="/products/server" title="Foo Server">

Specify which relations to render

This example shows how to specify which relations to find and render.

1 Render only start, next, and prev:
2 $helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_START |
3 Zend_View_Helper_Navigation_Links::RENDER_NEXT |

182.5. Links Helper 717

Zend Framework 2 Documentation, Release 2.0.0

4 Zend_View_Helper_Navigation_Links::RENDER_PREV);
5

6 Output:
7 <link rel="start" href="/" title="Home">
8 <link rel="next" href="/products/server/editions" title="Editions">
9 <link rel="prev" href="/products/server" title="Foo Server">

1 Render only native link types:
2 $helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
3 Zend_View_Helper_Navigation_Links::RENDER_CUSTOM);
4

5 Output:
6 <link rel="alternate" href="/products/server/faq/format/xml">
7 <link rel="start" href="/" title="Home">
8 <link rel="next" href="/products/server/editions" title="Editions">
9 <link rel="prev" href="/products/server" title="Foo Server">

10 <link rel="chapter" href="/products" title="Products">
11 <link rel="chapter" href="/company/about" title="Company">
12 <link rel="chapter" href="/community" title="Community">
13 <link rev="subsection" href="/products/server" title="Foo Server">

1 Render all but chapter:
2 $helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
3 Zend_View_Helper_Navigation_Links::RENDER_CHAPTER);
4

5 Output:
6 <link rel="alternate" href="/products/server/faq/format/xml">
7 <link rel="start" href="/" title="Home">
8 <link rel="next" href="/products/server/editions" title="Editions">
9 <link rel="prev" href="/products/server" title="Foo Server">

10 <link rel="canonical" href="http://www.example.com/?page=server-faq">
11 <link rev="subsection" href="/products/server" title="Foo Server">

182.6 Menu Helper

The Menu helper is used for rendering menus from navigation containers. By default, the menu will be rendered using
HTML UL and LI tags, but the helper also allows using a partial view script.

Methods in the Menu helper:

• {get|set}UlClass() gets/sets the CSS class used in renderMenu().

• {get|set}OnlyActiveBranch() gets/sets a flag specifying whether only the active branch of a container should be
rendered.

• {get|set}RenderParents() gets/sets a flag specifying whether parents should be rendered when only rendering
active branch of a container. If set to FALSE, only the deepest active menu will be rendered.

• {get|set}Partial() gets/sets a partial view script that should be used for rendering menu. If a partial view script
is set, the helper’s render() method will use the renderPartial() method. If no partial is set, the
renderMenu() method is used. The helper expects the partial to be a String or an Array with two
elements. If the partial is a String, it denotes the name of the partial script to use. If it is an Array, the first
element will be used as the name of the partial view script, and the second element is the module where the
script is found.

• htmlify() overrides the method from the abstract class to return span elements if the page has no href.

718 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

• renderMenu($container = null, $options = array()) is the default render method, and will
render a container as a HTML UL list.

If $container is not given, the container registered in the helper will be rendered.

$options is used for overriding options specified temporarily without rsetting the values in the helper instance.
It is an associative array where each key corresponds to an option in the helper.

Recognized options:

– indent; indentation. Expects a String or an int value.

– minDepth; minimum depth. Expcects an int or NULL (no minimum depth).

– maxDepth; maximum depth. Expcects an int or NULL (no maximum depth).

– ulClass; CSS class for ul element. Expects a String.

– onlyActiveBranch; whether only active branch should be rendered. Expects a Boolean value.

– renderParents; whether parents should be rendered if only rendering active branch. Expects a Boolean
value.

If an option is not given, the value set in the helper will be used.

• renderPartial() is used for rendering the menu using a partial view script.

• renderSubMenu() renders the deepest menu level of a container’s active branch.

Rendering a menu

This example shows how to render a menu from a container registered/found in the view helper. Notice how pages are
filtered out based on visibility and ACL.

1 In a view script or layout:
2 <?php echo $this->navigation()->menu()->render() ?>
3

4 Or simply:
5 <?php echo $this->navigation()->menu() ?>
6

7 Output:
8 <ul class="navigation">
9

10 Home
11
12 <li class="active">
13 Products
14
15 <li class="active">
16 Foo Server
17
18 <li class="active">
19 FAQ
20
21
22 Editions
23
24
25 System Requirements
26
27

182.6. Menu Helper 719

Zend Framework 2 Documentation, Release 2.0.0

28
29
30 Foo Studio
31
32
33 Customer Stories
34
35
36 Support
37
38
39
40
41
42
43 Company
44
45
46 Investor Relations
47
48
49 News
50
51
52 Press Releases
53
54
55 Archive
56
57
58
59
60
61
62 Community
63
64
65 My Account
66
67
68 Forums
69
70
71
72

Calling renderMenu() directly

This example shows how to render a menu that is not registered in the view helper by calling the renderMenu()
directly and specifying a few options.

1 <?php
2 // render only the ’Community’ menu
3 $community = $this->navigation()->findOneByLabel(’Community’);
4 $options = array(
5 ’indent’ => 16,
6 ’ulClass’ => ’community’

720 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

7);
8 echo $this->navigation()
9 ->menu()

10 ->renderMenu($community, $options);
11 ?>
12 Output:
13 <ul class="community">
14
15 My Account
16
17
18 Forums
19
20

Rendering the deepest active menu

This example shows how the renderSubMenu() will render the deepest sub menu of the active branch.

Calling renderSubMenu($container, $ulClass, $indent) is equivalent to calling
renderMenu($container, $options) with the following options:

1 array(
2 ’ulClass’ => $ulClass,
3 ’indent’ => $indent,
4 ’minDepth’ => null,
5 ’maxDepth’ => null,
6 ’onlyActiveBranch’ => true,
7 ’renderParents’ => false
8);

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->renderSubMenu(null, ’sidebar’, 4);
5 ?>
6

7 The output will be the same if ’FAQ’ or ’Foo Server’ is active:
8 <ul class="sidebar">
9 <li class="active">

10 FAQ
11
12
13 Editions
14
15
16 System Requirements
17
18

Rendering a menu with maximum depth

1 <?php
2 echo $this->navigation()
3 ->menu()

182.6. Menu Helper 721

Zend Framework 2 Documentation, Release 2.0.0

4 ->setMaxDepth(1);
5 ?>
6

7 Output:
8 <ul class="navigation">
9

10 Home
11
12 <li class="active">
13 Products
14
15 <li class="active">
16 Foo Server
17
18
19 Foo Studio
20
21
22
23
24 Company
25
26
27 Investor Relations
28
29
30 News
31
32
33
34
35 Community
36
37
38 My Account
39
40
41 Forums
42
43
44
45

Rendering a menu with minimum depth

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->setMinDepth(1);
5 ?>
6

7 Output:
8 <ul class="navigation">
9 <li class="active">

10 Foo Server
11
12 <li class="active">

722 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

13 FAQ
14
15
16 Editions
17
18
19 System Requirements
20
21
22
23
24 Foo Studio
25
26
27 Customer Stories
28
29
30 Support
31
32
33
34
35 Investor Relations
36
37
38 News
39
40
41 Press Releases
42
43
44 Archive
45
46
47
48
49 My Account
50
51
52 Forums
53
54

Rendering only the active branch of a menu

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->setOnlyActiveBranch(true);
5 ?>
6

7 Output:
8 <ul class="navigation">
9 <li class="active">

10 Products
11
12 <li class="active">

182.6. Menu Helper 723

Zend Framework 2 Documentation, Release 2.0.0

13 Foo Server
14
15 <li class="active">
16 FAQ
17
18
19 Editions
20
21
22 System Requirements
23
24
25
26
27
28

Rendering only the active branch of a menu with minimum depth

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->setOnlyActiveBranch(true)
5 ->setMinDepth(1);
6 ?>
7

8 Output:
9 <ul class="navigation">

10 <li class="active">
11 Foo Server
12
13 <li class="active">
14 FAQ
15
16
17 Editions
18
19
20 System Requirements
21
22
23
24

Rendering only the active branch of a menu with maximum depth

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->setOnlyActiveBranch(true)
5 ->setMaxDepth(1);
6 ?>
7

8 Output:
9 <ul class="navigation">

724 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

10 <li class="active">
11 Products
12
13 <li class="active">
14 Foo Server
15
16
17 Foo Studio
18
19
20
21

Rendering only the active branch of a menu with maximum depth and no parents

1 <?php
2 echo $this->navigation()
3 ->menu()
4 ->setOnlyActiveBranch(true)
5 ->setRenderParents(false)
6 ->setMaxDepth(1);
7 ?>
8

9 Output:
10 <ul class="navigation">
11 <li class="active">
12 Foo Server
13
14
15 Foo Studio
16
17

Rendering a custom menu using a partial view script

This example shows how to render a custom menu using a partial vew script. By calling setPartial(), you
can specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will assign the container to the view with the key con-
tainer.

In a layout:

1 $partial = array(’menu.phtml’, ’default’);
2 $this->navigation()->menu()->setPartial($partial);
3 echo $this->navigation()->menu()->render();

In application/modules/default/views/menu.phtml:

1 foreach ($this->container as $page) {
2 echo $this->navigation()->menu()->htmlify($page), PHP_EOL;
3 }

Output:

1 Home
2 Products

182.6. Menu Helper 725

Zend Framework 2 Documentation, Release 2.0.0

3 Company
4 Community

182.7 Sitemap Helper

The Sitemap helper is used for generating XML sitemaps, as defined by the Sitemaps XML format. Read more about
Sitemaps on Wikpedia.

By default, the sitemap helper uses sitemap validators to validate each element that is rendered. This can be disabled
by calling $helper->setUseSitemapValidators(false).

Note: If you disable sitemap validators, the custom properties (see table) are not validated at all.

The sitemap helper also supports Sitemap XSD Schema validation of the generated sitemap. This is disabled by de-
fault, since it will require a request to the Schema file. It can be enabled with $helper->setUseSchemaValidation(true).

Table 182.1: Sitemap XML elements

Ele-
ment

Description

loc Absolute URL to page. An absolute URL will be generated by the helper.
last-
mod

The date of last modification of the file, in W3C Datetime format. This time portion can be omitted if
desired, and only use YYYY-MM-DD. The helper will try to retrieve the lastmod value from the page’s
custom property lastmod if it is set in the page. If the value is not a valid date, it is ignored.

change-
freq

How frequently the page is likely to change. This value provides general information to search engines
and may not correlate exactly to how often they crawl the page. Valid values are:
alwayshourlydailyweeklymonthlyyearlynever The helper will try to retrieve the changefreq value from
the page’s custom property changefreq if it is set in the page. If the value is not valid, it is ignored.

prior-
ity

The priority of this URL relative to other URLs on your site. Valid values range from 0.0 to 1.0. The
helper will try to retrieve the priority value from the page’s custom property priority if it is set in the
page. If the value is not valid, it is ignored.

Methods in the sitemap helper:

• {get|set}FormatOutput() gets/sets a flag indicating whether XML output should be formatted. This corresponds
to the formatOutput property of the native DOMDocument class. Read more at PHP: DOMDocument - Manual.
Default is FALSE.

• {get|set}UseXmlDeclaration() gets/sets a flag indicating whether the XML declaration should be included when
rendering. Default is TRUE.

• {get|set}UseSitemapValidators() gets/sets a flag indicating whether sitemap validators should be used when
generating the DOM sitemap. Default is TRUE.

• {get|set}UseSchemaValidation() gets/sets a flag indicating whether the helper should use XML Schema valida-
tion when generating the DOM sitemap. Default is FALSE. If TRUE.

• {get|set}ServerUrl() gets/sets server URL that will be prepended to non-absolute URLs in the url() method.
If no server URL is specified, it will be determined by the helper.

• url() is used to generate absolute URLs to pages.

• getDomSitemap() generates a DOMDocument from a given container.

726 Chapter 182. Navigation Helpers

http://www.sitemaps.org/protocol.php
http://en.wikipedia.org/wiki/Sitemaps
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
http://php.net/domdocument

Zend Framework 2 Documentation, Release 2.0.0

Rendering an XML sitemap

This example shows how to render an XML sitemap based on the setup we did further up.

1 // In a view script or layout:
2

3 // format output
4 $this->navigation()
5 ->sitemap()
6 ->setFormatOutput(true); // default is false
7

8 // other possible methods:
9 // ->setUseXmlDeclaration(false); // default is true

10 // ->setServerUrl(’http://my.otherhost.com’);
11 // default is to detect automatically
12

13 // print sitemap
14 echo $this->navigation()->sitemap();

Notice how pages that are invisible or pages with ACL roles incompatible with the view helper are filtered out:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
3 <url>
4 <loc>http://www.example.com/</loc>
5 </url>
6 <url>
7 <loc>http://www.example.com/products</loc>
8 </url>
9 <url>

10 <loc>http://www.example.com/products/server</loc>
11 </url>
12 <url>
13 <loc>http://www.example.com/products/server/faq</loc>
14 </url>
15 <url>
16 <loc>http://www.example.com/products/server/editions</loc>
17 </url>
18 <url>
19 <loc>http://www.example.com/products/server/requirements</loc>
20 </url>
21 <url>
22 <loc>http://www.example.com/products/studio</loc>
23 </url>
24 <url>
25 <loc>http://www.example.com/products/studio/customers</loc>
26 </url>
27 <url>
28 <loc>http://www.example.com/prodcts/studio/support</loc>
29 </url>
30 <url>
31 <loc>http://www.example.com/company/about</loc>
32 </url>
33 <url>
34 <loc>http://www.example.com/company/about/investors</loc>
35 </url>
36 <url>
37 <loc>http://www.example.com/company/news</loc>
38 </url>

182.7. Sitemap Helper 727

Zend Framework 2 Documentation, Release 2.0.0

39 <url>
40 <loc>http://www.example.com/company/news/press</loc>
41 </url>
42 <url>
43 <loc>http://www.example.com/archive</loc>
44 </url>
45 <url>
46 <loc>http://www.example.com/community</loc>
47 </url>
48 <url>
49 <loc>http://www.example.com/community/account</loc>
50 </url>
51 <url>
52 <loc>http://forums.example.com/</loc>
53 </url>
54 </urlset>

Render the sitemap using no ACL role (should filter out /community/account):

1 echo $this->navigation()
2 ->sitemap()
3 ->setFormatOutput(true)
4 ->setRole();

1 <?xml version="1.0" encoding="UTF-8"?>
2 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
3 <url>
4 <loc>http://www.example.com/</loc>
5 </url>
6 <url>
7 <loc>http://www.example.com/products</loc>
8 </url>
9 <url>

10 <loc>http://www.example.com/products/server</loc>
11 </url>
12 <url>
13 <loc>http://www.example.com/products/server/faq</loc>
14 </url>
15 <url>
16 <loc>http://www.example.com/products/server/editions</loc>
17 </url>
18 <url>
19 <loc>http://www.example.com/products/server/requirements</loc>
20 </url>
21 <url>
22 <loc>http://www.example.com/products/studio</loc>
23 </url>
24 <url>
25 <loc>http://www.example.com/products/studio/customers</loc>
26 </url>
27 <url>
28 <loc>http://www.example.com/prodcts/studio/support</loc>
29 </url>
30 <url>
31 <loc>http://www.example.com/company/about</loc>
32 </url>
33 <url>
34 <loc>http://www.example.com/company/about/investors</loc>
35 </url>

728 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

36 <url>
37 <loc>http://www.example.com/company/news</loc>
38 </url>
39 <url>
40 <loc>http://www.example.com/company/news/press</loc>
41 </url>
42 <url>
43 <loc>http://www.example.com/archive</loc>
44 </url>
45 <url>
46 <loc>http://www.example.com/community</loc>
47 </url>
48 <url>
49 <loc>http://forums.example.com/</loc>
50 </url>
51 </urlset>

Render the sitemap using a maximum depth of 1.

1 echo $this->navigation()
2 ->sitemap()
3 ->setFormatOutput(true)
4 ->setMaxDepth(1);

1 <?xml version="1.0" encoding="UTF-8"?>
2 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
3 <url>
4 <loc>http://www.example.com/</loc>
5 </url>
6 <url>
7 <loc>http://www.example.com/products</loc>
8 </url>
9 <url>

10 <loc>http://www.example.com/products/server</loc>
11 </url>
12 <url>
13 <loc>http://www.example.com/products/studio</loc>
14 </url>
15 <url>
16 <loc>http://www.example.com/company/about</loc>
17 </url>
18 <url>
19 <loc>http://www.example.com/company/about/investors</loc>
20 </url>
21 <url>
22 <loc>http://www.example.com/company/news</loc>
23 </url>
24 <url>
25 <loc>http://www.example.com/community</loc>
26 </url>
27 <url>
28 <loc>http://www.example.com/community/account</loc>
29 </url>
30 <url>
31 <loc>http://forums.example.com/</loc>
32 </url>
33 </urlset>

182.7. Sitemap Helper 729

Zend Framework 2 Documentation, Release 2.0.0

Note: UTF-8 encoding used by default

By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does as
well. Character encoding can be set differently on the view object itself using the setEncoding() method (or the
the encoding instantiation parameter). However, since Zend_View_Interface does not define accessors for
encoding, it’s possible that if you are using a custom view implementation with the Dojo view helper, you will not
have a getEncoding() method, which is what the view helper uses internally for determining the character set in
which to encode.

If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method in
your custom view implementation.

182.8 Navigation Helper

The Navigation helper is a proxy helper that relays calls to other navigational helpers. It can be considered an
entry point to all navigation-related view tasks. The aforementioned navigational helpers are in the namespace
Zend_View_Helper_Navigation, and would thus require the path Zend/View/Helper/Navigation to be added
as a helper path to the view. With the proxy helper residing in the Zend_View_Helper namespace, it will always
be available, without the need to add any helper paths to the view.

The Navigation helper finds other helpers that implement the Zend_View_Helper_Navigation_Helper in-
terface, which means custom view helpers can also be proxied. This would, however, require that the custom helper
path is added to the view.

When proxying to other helpers, the Navigation helper can inject its container, ACL/role, and translator. This
means that you won’t have to explicitly set all three in all navigational helpers, nor resort to injecting by means
of Zend_Registry or static methods.

• findHelper() finds the given helper, verifies that it is a navigational helper, and injects container, ACL/role
and translator.

• {get|set}InjectContainer() gets/sets a flag indicating whether the container should be injected to proxied helpers.
Default is TRUE.

• {get|set}InjectAcl() gets/sets a flag indicating whether the ACL/role should be injected to proxied helpers. De-
fault is TRUE.

• {get|set}InjectTranslator() gets/sets a flag indicating whether the translator should be injected to proxied helpers.
Default is TRUE.

• {get|set}DefaultProxy() gets/sets the default proxy. Default is ‘menu’.

• render() proxies to the render method of the default proxy.

182.9 Registering Helpers

Zend\View\Renderer\PhpRenderer composes a plugin broker for managing helpers, specifically an in-
stance of Zend\View\HelperBroker, which extends the base plugin broker in order to ensure we have valid
helpers available. The HelperBroker by default uses Zend\View\HelperLoader as its helper locator. The
HelperLoader is a map-based loader, which means that you will simply map the helper/plugin name by which you
wish to refer to it to the actual class name of the helper/plugin.

Programmatically, this is done as follows:

730 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

1 // $view is an instance of PhpRenderer
2 $broker = $view->getBroker();
3 $loader = $broker->getClassLoader();
4

5 // Register singly:
6 $loader->registerPlugin(’lowercase’, ’My\Helper\LowerCase’);
7

8 // Register several:
9 $loader->registerPlugins(array(

10 ’lowercase’ => ’My\Helper\LowerCase’,
11 ’uppercase’ => ’My\Helper\UpperCase’,
12));

Within an MVC application, you will typically simply pass a map of plugins to the class via your configuration.

1 // From within a configuration file
2 return array(
3 ’di’ => array(’instance’ => array(
4 ’Zend\View\HelperLoader’ => array(’parameters’ => array(
5 ’map’ => array(
6 ’lowercase’ => ’My\Helper\LowerCase’,
7 ’uppercase’ => ’My\Helper\UpperCase’,
8),
9)),

10)),
11);

The above can be done in each module that needs to register helpers with the PhpRenderer; however, be aware
that another module can register helpers with the same name, so order of modules can impact which helper class will
actually be registered!

182.10 Writing Custom Helpers

Writing custom helpers is easy. We recommend extending Zend\View\Helper\AbstractHelper, but at the
minimum, you need only implement the Zend\View\Helper interface:

1 namespace Zend\View;
2

3 interface Helper
4 {
5 /**
6 * Set the View object
7 *
8 * @param Renderer $view
9 * @return Helper

10 */
11 public function setView(Renderer $view);
12

13 /**
14 * Get the View object
15 *
16 * @return Renderer
17 */
18 public function getView();
19 }

182.10. Writing Custom Helpers 731

Zend Framework 2 Documentation, Release 2.0.0

If you want your helper to be capable of being invoked as if it were a method call of the PhpRenderer, you should
also implement an __invoke() method within your helper.

As previously noted, we recommend extending Zend\View\Helper\AbstractHelper, as it implements the
methods defined in Helper, giving you a headstart in your development.

Once you have defined your helper class, make sure you can autoload it, and then register it with the plugin broker.

Here is an example helper, which we’re titling “SpecialPurpose”

1 namespace My\View\Helper;
2

3 use Zend\View\Helper\AbstractHelper;
4

5 class SpecialPurpose extends AbstractHelper
6 {
7 protected $count = 0;
8

9 public function __invoke()
10 {
11 $this->count++;
12 $output = sprintf("I have seen ’The Jerk’ %d time(s).", $this->count);
13 return htmlspecialchars($output, ENT_QUOTES, ’UTF-8’);
14 }
15 }

Then assume that when we register it with the plugin broker, we map it to the string “specialpurpose”.

Within a view script, you can call the SpecialPurpose helper as many times as you like; it will be instantiated
once, and then it persists for the life of that PhpRenderer instance.

1 // remember, in a view script, $this refers to the Zend_View instance.
2 echo $this->specialPurpose();
3 echo $this->specialPurpose();
4 echo $this->specialPurpose();

The output would look something like this:

1 I have seen ’The Jerk’ 1 time(s).
2 I have seen ’The Jerk’ 2 time(s).
3 I have seen ’The Jerk’ 3 time(s).

Sometimes you will need access to the calling PhpRenderer object – for instance, if you need to use the registered
encoding, or want to render another view script as part of your helper. This is why we define the setView() and
getView() methods. As an example, we could rewrite the SpecialPurpose helper as follows to take advantage
of the EscapeHtml helper:

1 namespace My\View\Helper;
2

3 use Zend\View\Helper\AbstractHelper;
4

5 class SpecialPurpose extends AbstractHelper
6 {
7 protected $count = 0;
8

9 public function __invoke()
10 {
11 $this->count++;
12 $output = sprintf("I have seen ’The Jerk’ %d time(s).", $this->count);
13 $escaper = $this->getView()->plugin(’escapehtml’);
14 return $escaper($output);

732 Chapter 182. Navigation Helpers

Zend Framework 2 Documentation, Release 2.0.0

15 }
16 }

182.11 Registering Concrete Helpers

Sometimes it is convenient to instantiate a view helper, and then register it with the renderer. This can be done by
injecting it directly into the plugin broker.

1 // $view is a PhpRenderer instance
2

3 $helper = new My_Helper_Foo();
4 // ...do some configuration or dependency injection...
5

6 $view->getBroker()->register(’foo’, $helper);

When registered, the plugin broker will inject the PhpRenderer instance into the helper.

182.11. Registering Concrete Helpers 733

Zend Framework 2 Documentation, Release 2.0.0

734 Chapter 182. Navigation Helpers

CHAPTER

THREE

INTRODUCTION

From its home page, XML-RPC is described as a ”...remote procedure calling using HTTP as the transport and XML
as the encoding. XML-RPC is designed to be as simple as possible, while allowing complex data structures to be
transmitted, processed and returned.”

Zend Framework provides support for both consuming remote XML-RPC services and building new XML-RPC
servers.

735

http://www.xmlrpc.com/

Zend Framework 2 Documentation, Release 2.0.0

736 Chapter 183. Introduction

CHAPTER

FOUR

ZEND\XMLRPC\CLIENT

184.1 Introduction

Zend Framework provides support for consuming remote XML-RPC services as a client in the
Zend\XmlRpc\Client package. Its major features include automatic type conversion between PHP and
XML-RPC, a server proxy object, and access to server introspection capabilities.

184.2 Method Calls

The constructor of Zend\XmlRpc\Client receives the URL of the remote XML-RPC server endpoint as its first
parameter. The new instance returned may be used to call any number of remote methods at that endpoint.

To call a remote method with the XML-RPC client, instantiate it and use the call() instance method. The code
sample below uses a demonstration XML-RPC server on the Zend Framework website. You can use it for testing or
exploring the Zend\XmlRpc components.

XML-RPC Method Call

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 echo $client->call(’test.sayHello’);
4

5 // hello

The XML-RPC value returned from the remote method call will be automatically unmarshaled and cast to the equiva-
lent PHP native type. In the example above, a PHP String is returned and is immediately ready to be used.

The first parameter of the call() method receives the name of the remote method to call. If the remote method
requires any parameters, these can be sent by supplying a second, optional parameter to call() with an Array of
values to pass to the remote method:

XML-RPC Method Call with Parameters

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 $arg1 = 1.1;
4 $arg2 = ’foo’;
5

737

Zend Framework 2 Documentation, Release 2.0.0

6 $result = $client->call(’test.sayHello’, array($arg1, $arg2));
7

8 // $result is a native PHP type

If the remote method doesn’t require parameters, this optional parameter may either be left out or an empty array()
passed to it. The array of parameters for the remote method can contain native PHP types, Zend\XmlRpc\Value
objects, or a mix of each.

The call() method will automatically convert the XML-RPC response and return its equivalent PHP native type. A
Zend\XmlRpc\Response object for the return value will also be available by calling the getLastResponse()
method after the call.

184.3 Types and Conversions

Some remote method calls require parameters. These are given to the call() method of Zend\XmlRpc\Client
as an array in the second parameter. Each parameter may be given as either a native PHP type which will be au-
tomatically converted, or as an object representing a specific XML-RPC type (one of the Zend\XmlRpc\Value
objects).

184.3.1 PHP Native Types as Parameters

Parameters may be passed to call() as native PHP variables, meaning as a String, Integer, Float, Boolean,
Array, or an Object. In this case, each PHP native type will be auto-detected and converted into one of the XML-
RPC types according to this table:

Table 184.1: PHP and XML-RPC Type Conversions

PHP Native Type XML-RPC Type
integer int
Zend\Math\BigInteger\BigInteger i8
double double
boolean boolean
string string
null nil
array array
associative array struct
object array
DateTime dateTime.iso8601
DateTime dateTime.iso8601

Note: What type do empty arrays get cast to?

Passing an empty array to an XML-RPC method is problematic, as it could represent either an ar-
ray or a struct. Zend\XmlRpc\Client detects such conditions and makes a request to the server’s
system.methodSignature method to determine the appropriate XML-RPC type to cast to.

However, this in itself can lead to issues. First off, servers that do not support system.methodSignature will
log failed requests, and Zend\XmlRpc\Client will resort to casting the value to an XML-RPC array type. Addi-
tionally, this means that any call with array arguments will result in an additional call to the remote server.

To disable the lookup entirely, you can call the setSkipSystemLookup()method prior to making your XML-RPC
call:

738 Chapter 184. Zend\XmlRpc\Client

Zend Framework 2 Documentation, Release 2.0.0

1 $client->setSkipSystemLookup(true);
2 $result = $client->call(’foo.bar’, array(array()));

184.3.2 Zend\XmlRpc\Value Objects as Parameters

Parameters may also be created as Zend\XmlRpc\Value instances to specify an exact XML-RPC type. The primary
reasons for doing this are:

• When you want to make sure the correct parameter type is passed to the procedure (i.e. the procedure requires
an integer and you may get it from a database as a string)

• When the procedure requires base64 or dateTime.iso8601 type (which doesn’t exists as a PHP native
type)

• When auto-conversion may fail (i.e. you want to pass an empty XML-RPC struct as a parameter. Empty structs
are represented as empty arrays in PHP but, if you give an empty array as a parameter it will be auto-converted
to an XML-RPC array since it’s not an associative array)

There are two ways to create a Zend\XmlRpc\Value object: instantiate one of the Zend\XmlRpc\Value sub-
classes directly, or use the static factory method Zend\XmlRpc\Value::getXmlRpcValue().

Table 184.2: Zend\XmlRpc\Value Objects for XML-RPC Types

XML-RPC Type Zend\XmlRpc\Value Constant Zend\XmlRpc\Value Object
int Zend\XmlRpc\Value::XMLRPC_TYPE_INTEGER Zend\XmlRpc\Value\Integer
i8 Zend\XmlRpc\Value::XMLRPC_TYPE_I8 Zend\XmlRpc\Value\BigInteger
ex:i8 Zend\XmlRpc\Value::XMLRPC_TYPE_APACHEI8 Zend\XmlRpc\Value\BigInteger
double Zend\XmlRpc\Value::XMLRPC_TYPE_DOUBLE Zend\XmlRpc\Value_Double
boolean Zend\XmlRpc\Value::XMLRPC_TYPE_BOOLEAN Zend\XmlRpc\Value\Boolean
string Zend\XmlRpc\Value::XMLRPC_TYPE_STRING Zend\XmlRpc\Value\String
nil Zend\XmlRpc\Value::XMLRPC_TYPE_NIL Zend\XmlRpc\Value\Nil
ex:nil Zend\XmlRpc\Value::XMLRPC_TYPE_APACHENIL Zend\XmlRpc\Value\Nil
base64 Zend\XmlRpc\Value::XMLRPC_TYPE_BASE64 Zend\XmlRpc\Value\Base64
dateTime.iso8601 Zend\XmlRpc\Value::XMLRPC_TYPE_DATETIME Zend\XmlRpc\Value\DateTime
array Zend\XmlRpc\Value::XMLRPC_TYPE_ARRAY Zend\XmlRpc\Value\Array
struct Zend\XmlRpc\Value::XMLRPC_TYPE_STRUCT Zend\XmlRpc\Value\Struct

Note: Automatic Conversion

When building a new Zend\XmlRpc\Value object, its value is set by a PHP type. The PHP type will
be converted to the specified type using PHP casting. For example, if a string is given as a value to the
Zend\XmlRpc\Value\Integer object, it will be converted using (int)$value.

184.4 Server Proxy Object

Another way to call remote methods with the XML-RPC client is to use the server proxy. This is a PHP object that
proxies a remote XML-RPC namespace, making it work as close to a native PHP object as possible.

To instantiate a server proxy, call the getProxy() instance method of Zend\XmlRpc\Client. This will re-
turn an instance of Zend\XmlRpc\Client\ServerProxy. Any method call on the server proxy object will be
forwarded to the remote, and parameters may be passed like any other PHP method.

184.4. Server Proxy Object 739

Zend Framework 2 Documentation, Release 2.0.0

Proxy the Default Namespace

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 $service = $client->getProxy(); // Proxy the default namespace
4

5 $hello = $service->test->sayHello(1, 2); // test.Hello(1, 2) returns "hello"

The getProxy() method receives an optional argument specifying which namespace of the remote server to proxy.
If it does not receive a namespace, the default namespace will be proxied. In the next example, the ‘test’ namespace
will be proxied:

Proxy Any Namespace

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 $test = $client->getProxy(’test’); // Proxy the "test" namespace
4

5 $hello = $test->sayHello(1, 2); // test.Hello(1,2) returns "hello"

If the remote server supports nested namespaces of any depth, these can also be used through the server proxy.
For example, if the server in the example above had a method test.foo.bar(), it could be called as
$test->foo->bar().

184.5 Error Handling

Two kinds of errors can occur during an XML-RPC method call: HTTP errors and XML-RPC faults. The
Zend\XmlRpc\Client recognizes each and provides the ability to detect and trap them independently.

184.5.1 HTTP Errors

If any HTTP error occurs, such as the remote HTTP server returns a 404 Not Found, a
Zend\XmlRpc\Client\Exception\HttpException will be thrown.

Handling HTTP Errors

1 $client = new Zend\XmlRpc\Client(’http://foo/404’);
2

3 try {
4

5 $client->call(’bar’, array($arg1, $arg2));
6

7 } catch (Zend\XmlRpc\Client\Exception\HttpException $e) {
8

9 // $e->getCode() returns 404
10 // $e->getMessage() returns "Not Found"
11

12 }

Regardless of how the XML-RPC client is used, the Zend\XmlRpc\Client\Exception\HttpException
will be thrown whenever an HTTP error occurs.

740 Chapter 184. Zend\XmlRpc\Client

Zend Framework 2 Documentation, Release 2.0.0

184.5.2 XML-RPC Faults

An XML-RPC fault is analogous to a PHP exception. It is a special type returned from an XML-RPC method call that
has both an error code and an error message. XML-RPC faults are handled differently depending on the context of
how the Zend\XmlRpc\Client is used.

When the call() method or the server proxy object is used, an XML-RPC fault will result in a
Zend\XmlRpc\Client\Exception\FaultException being thrown. The code and message of the excep-
tion will map directly to their respective values in the original XML-RPC fault response.

Handling XML-RPC Faults

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 try {
4

5 $client->call(’badMethod’);
6

7 } catch (Zend\XmlRpc\Client\Exception\FaultException $e) {
8

9 // $e->getCode() returns 1
10 // $e->getMessage() returns "Unknown method"
11

12 }

When the call()method is used to make the request, the Zend\XmlRpc\Client\Exception\FaultException
will be thrown on fault. A Zend\XmlRpc\Response object containing the fault will also be available by calling
getLastResponse().

When the doRequest() method is used to make the request, it will not throw the exception. Instead, it will return
a Zend\XmlRpc\Response object returned will containing the fault. This can be checked with isFault()
instance method of Zend\XmlRpc\Response.

184.6 Server Introspection

Some XML-RPC servers support the de facto introspection methods under the XML-RPC system. namespace.
Zend\XmlRpc\Client provides special support for servers with these capabilities.

A Zend\XmlRpc\Client\ServerIntrospection instance may be retrieved by calling the
getIntrospector() method of Zend\XmlRpc\Client. It can then be used to perform introspection
operations on the server.

184.7 From Request to Response

Under the hood, the call() instance method of Zend\XmlRpc\Client builds a request object
(Zend\XmlRpc\Request) and sends it to another method, doRequest(), that returns a response object
(Zend\XmlRpc\Response).

The doRequest() method is also available for use directly:

184.6. Server Introspection 741

Zend Framework 2 Documentation, Release 2.0.0

Processing Request to Response

1 $client = new Zend\XmlRpc\Client(’http://framework.zend.com/xmlrpc’);
2

3 $request = new Zend\XmlRpc\Request();
4 $request->setMethod(’test.sayHello’);
5 $request->setParams(array(’foo’, ’bar’));
6

7 $client->doRequest($request);
8

9 // $client->getLastRequest() returns instanceof Zend_XmlRpc_Request
10 // $client->getLastResponse() returns instanceof Zend_XmlRpc_Response

Whenever an XML-RPC method call is made by the client through any means, either the call() method,
doRequest() method, or server proxy, the last request object and its resultant response object will always be
available through the methods getLastRequest() and getLastResponse() respectively.

184.8 HTTP Client and Testing

In all of the prior examples, an HTTP client was never specified. When this is the case, a new instance of
Zend\Http\Client will be created with its default options and used by Zend\XmlRpc\Client automatically.

The HTTP client can be retrieved at any time with the getHttpClient()method. For most cases, the default HTTP
client will be sufficient. However, the setHttpClient() method allows for a different HTTP client instance to be
injected.

The setHttpClient() is particularly useful for unit testing. When combined with the
Zend\Http\Client\Adapter\Test, remote services can be mocked out for testing. See the unit tests
for Zend\XmlRpc\Client for examples of how to do this.

742 Chapter 184. Zend\XmlRpc\Client

CHAPTER

FIVE

ZEND\XMLRPC\SERVER

185.1 Introduction

Zend\XmlRpc\Server is intended as a fully-featured XML-RPC server, following the specifications outlined at
www.xmlrpc.com. Additionally, it implements the system.multicall() method, allowing boxcarring of re-
quests.

185.2 Basic Usage

An example of the most basic use case:

1 $server = new Zend\XmlRpc\Server();
2 $server->setClass(’My\Service\Class’);
3 echo $server->handle();

185.3 Server Structure

Zend\XmlRpc\Server is composed of a variety of components, ranging from the server itself to request, response,
and fault objects.

To bootstrap Zend\XmlRpc\Server, the developer must attach one or more classes or functions to the server, via
the setClass() and addFunction() methods.

Once done, you may either pass a Zend\XmlRpc\Request object to Zend\XmlRpc\Server::handle(),
or it will instantiate a Zend\XmlRpc\Request\Http object if none is provided – thus grabbing the request from
php://input.

Zend\XmlRpc\Server::handle() then attempts to dispatch to the appropriate handler based
on the method requested. It then returns either a Zend\XmlRpc\Response-based object or a
Zend\XmlRpc\Server\Faultobject. These objects both have __toString() methods that create valid
XML-RPC XML responses, allowing them to be directly echoed.

743

http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

Zend Framework 2 Documentation, Release 2.0.0

185.4 Anatomy of a webservice

185.4.1 General considerations

For maximum performance it is recommended to use a simple bootstrap file for the server component. Using
Zend\XmlRpc\Server inside a Zend\Controller is strongly discouraged to avoid the overhead.

Services change over time and while webservices are generally less change intense as code-native APIs, it is recom-
mended to version your service. Do so to lay grounds to provide compatibility for clients using older versions of your
service and manage your service lifecycle including deprecation timeframes.To do so just include a version number
into your URI. It is also recommended to include the remote protocol name in the URI to allow easy integration of
upcoming remoting technologies. http://myservice.ws/1.0/XMLRPC/.

185.4.2 What to expose?

Most of the time it is not sensible to expose business objects directly. Business objects are usually small and under
heavy change, because change is cheap in this layer of your application. Once deployed and adopted, web services
are hard to change. Another concern is I/O and latency: the best webservice calls are those not happening. Therefore
service calls need to be more coarse-grained than usual business logic is. Often an additional layer in front of your
business objects makes sense. This layer is sometimes referred to as Remote Facade. Such a service layer adds a
coarse grained interface on top of your business logic and groups verbose operations into smaller ones.

185.5 Conventions

Zend\XmlRpc\Server allows the developer to attach functions and class method calls as dispatchable XML-RPC
methods. Via Zend\Server\Reflection, it does introspection on all attached methods, using the function and
method docblocks to determine the method help text and method signatures.

XML-RPC types do not necessarily map one-to-one to PHP types. However, the code will do its best to guess the
appropriate type based on the values listed in @param and @return lines. Some XML-RPC types have no immediate
PHP equivalent, however, and should be hinted using the XML-RPC type in the PHPDoc. These include:

• dateTime.iso8601, a string formatted as ‘YYYYMMDDTHH:mm:ss‘

• base64, base64 encoded data

• struct, any associative array

An example of how to hint follows:

1 /**
2 * This is a sample function
3 *
4 * @param base64 $val1 Base64-encoded data
5 * @param dateTime.iso8601 $val2 An ISO date
6 * @param struct $val3 An associative array
7 * @return struct
8 */
9 function myFunc($val1, $val2, $val3)

10 {
11 }

PhpDocumentor does no validation of the types specified for params or return values, so this will have no impact on
your API documentation. Providing the hinting is necessary, however, when the server is validating the parameters
provided to the method call.

744 Chapter 185. Zend\XmlRpc\Server

http://myservice.ws/
http://martinfowler.com/eaaCatalog/remoteFacade.html

Zend Framework 2 Documentation, Release 2.0.0

It is perfectly valid to specify multiple types for both params and return values; the XML-RPC specification even
suggests that system.methodSignature should return an array of all possible method signatures (i.e., all possible com-
binations of param and return values). You may do so just as you normally would with PhpDocumentor, using the ‘|’
operator:

1 /**
2 * This is a sample function
3 *
4 * @param string|base64 $val1 String or base64-encoded data
5 * @param string|dateTime.iso8601 $val2 String or an ISO date
6 * @param array|struct $val3 Normal indexed array or an associative array
7 * @return boolean|struct
8 */
9 function myFunc($val1, $val2, $val3)

10 {
11 }

Note: Allowing multiple signatures can lead to confusion for developers using the services; to keep things simple, a
XML-RPC service method should only have a single signature.

185.6 Utilizing Namespaces

XML-RPC has a concept of namespacing; basically, it allows grouping XML-RPC methods by dot-delimited names-
paces. This helps prevent naming collisions between methods served by different classes. As an example, the XML-
RPC server is expected to server several methods in the ‘system’ namespace:

• system.listMethods

• system.methodHelp

• system.methodSignature

Internally, these map to the methods of the same name in Zend\XmlRpc\Server.

If you want to add namespaces to the methods you serve, simply provide a namespace to the appropriate method when
attaching a function or class:

1 // All public methods in My_Service_Class will be accessible as
2 // myservice.METHODNAME
3 $server->setClass(’My\Service\Class’, ’myservice’);
4

5 // Function ’somefunc’ will be accessible as funcs.somefunc
6 $server->addFunction(’somefunc’, ’funcs’);

185.7 Custom Request Objects

Most of the time, you’ll simply use the default request type included with Zend\XmlRpc\Server,
Zend\XmlRpc\Request\Http. However, there may be times when you need XML-RPC to be available via the
CLI, a GUI, or other environment, or want to log incoming requests. To do so, you may create a custom request object
that extends Zend\XmlRpc\Request. The most important thing to remember is to ensure that the getMethod()
and getParams() methods are implemented so that the XML-RPC server can retrieve that information in order to
dispatch the request.

185.6. Utilizing Namespaces 745

Zend Framework 2 Documentation, Release 2.0.0

185.8 Custom Responses

Similar to request objects, Zend\XmlRpc\Server can return custom response objects; by default, a
Zend_XmlRpc_Response_Http object is returned, which sends an appropriate Content-Type HTTP header for
use with XML-RPC. Possible uses of a custom object would be to log responses, or to send responses back to STDOUT.

To use a custom response class, use Zend\XmlRpc\Server::setResponseClass() prior to calling
handle().

185.9 Handling Exceptions via Faults

Zend_XmlRpc_Server catches Exceptions generated by a dispatched method, and generates an XML-RPC fault
response when such an exception is caught. By default, however, the exception messages and codes are not used in a
fault response. This is an intentional decision to protect your code; many exceptions expose more information about
the code or environment than a developer would necessarily intend (a prime example includes database abstraction or
access layer exceptions).

Exception classes can be whitelisted to be used as fault responses, however. To do so, simply utilize
Zend\XmlRpc\Server\Fault::attachFaultException() to pass an exception class to whitelist:

1 Zend\XmlRpc\Server\Fault::attachFaultException(’My\Project\Exception’);

If you utilize an exception class that your other project exceptions inherit, you can then whitelist a whole family of
exceptions at a time. Zend\XmlRpc\Server\Exceptions are always whitelisted, to allow reporting specific
internal errors (undefined methods, etc.).

Any exception not specifically whitelisted will generate a fault response with a code of ‘404’ and a message of ‘Un-
known error’.

185.10 Caching Server Definitions Between Requests

Attaching many classes to an XML-RPC server instance can utilize a lot of resources; each class must introspect
using the Reflection API (via Zend_Server_Reflection), which in turn generates a list of all possible method
signatures to provide to the server class.

To reduce this performance hit somewhat, Zend\XmlRpc\Server\Cache can be used to cache the server defini-
tion between requests. When combined with __autoload(), this can greatly increase performance.

An sample usage follows:

1 use Zend\XmlRpc\Server as XmlRpcServer;
2

3 // Register the "My\Services" namespace
4 $loader = new Zend\Loader\StandardAutoloader();
5 $loader->registerNamespace(’My\Services’, ’path to My/Services’);
6 $loader->register();
7

8 $cacheFile = dirname(__FILE__) . ’/xmlrpc.cache’;
9 $server = new XmlRpcServer();

10

11 if (!XmlRpcServer\Cache::get($cacheFile, $server)) {
12

13 $server->setClass(’My\Services\Glue’, ’glue’); // glue. namespace
14 $server->setClass(’My\Services\Paste’, ’paste’); // paste. namespace

746 Chapter 185. Zend\XmlRpc\Server

Zend Framework 2 Documentation, Release 2.0.0

15 $server->setClass(’My\Services\Tape’, ’tape’); // tape. namespace
16

17 XmlRpcServer\Cache::save($cacheFile, $server);
18 }
19

20 echo $server->handle();

The above example attempts to retrieve a server definition from xmlrpc.cache in the same directory as the script.
If unsuccessful, it loads the service classes it needs, attaches them to the server instance, and then attempts to create a
new cache file with the server definition.

185.11 Usage Examples

Below are several usage examples, showing the full spectrum of options available to developers. Usage examples will
each build on the previous example provided.

Basic Usage

The example below attaches a function as a dispatchable XML-RPC method and handles incoming calls.

1 /**
2 * Return the MD5 sum of a value
3 *
4 * @param string $value Value to md5sum
5 * @return string MD5 sum of value
6 */
7 function md5Value($value)
8 {
9 return md5($value);

10 }
11

12 $server = new Zend\XmlRpc\Server();
13 $server->addFunction(’md5Value’);
14 echo $server->handle();

Attaching a class

The example below illustrates attaching a class’ public methods as dispatchable XML-RPC methods.

1 require_once ’Services/Comb.php’;
2

3 $server = new Zend\XmlRpc\Server();
4 $server->setClass(’Services\Comb’);
5 echo $server->handle();

Attaching a class with arguments

The following example illustrates how to attach a class’ public methods and passing arguments to its methods. This
can be used to specify certain defaults when registering service classes.

185.11. Usage Examples 747

Zend Framework 2 Documentation, Release 2.0.0

1 class Services_PricingService
2 {
3 /**
4 * Calculate current price of product with $productId
5 *
6 * @param ProductRepository $productRepository
7 * @param PurchaseRepository $purchaseRepository
8 * @param integer $productId
9 */

10 public function calculate(ProductRepository $productRepository,
11 PurchaseRepository $purchaseRepository,
12 $productId)
13 {
14 ...
15 }
16 }
17

18 $server = new Zend\XmlRpc\Server();
19 $server->setClass(’Services\PricingService’,
20 ’pricing’,
21 new ProductRepository(),
22 new PurchaseRepository());

The arguments passed at setClass() at server construction time are injected into the method call
pricing.calculate() on remote invokation. In the example above, only the argument $purchaseId is ex-
pected from the client.

Passing arguments only to constructor

Zend\XmlRpc\Server allows to restrict argument passing to constructors only. This can be used for constructor
dependency injection. To limit injection to constructors, call sendArgumentsToAllMethods and pass FALSE as
an argument. This disables the default behavior of all arguments being injected into the remote method. In the example
below the instance of ProductRepository and PurchaseRepository is only injected into the constructor of
Services_PricingService2.

1 class Services\PricingService2
2 {
3 /**
4 * @param ProductRepository $productRepository
5 * @param PurchaseRepository $purchaseRepository
6 */
7 public function __construct(ProductRepository $productRepository,
8 PurchaseRepository $purchaseRepository)
9 {

10 ...
11 }
12

13 /**
14 * Calculate current price of product with $productId
15 *
16 * @param integer $productId
17 * @return double
18 */
19 public function calculate($productId)
20 {
21 ...
22 }

748 Chapter 185. Zend\XmlRpc\Server

Zend Framework 2 Documentation, Release 2.0.0

23 }
24

25 $server = new Zend\XmlRpc\Server();
26 $server->sendArgumentsToAllMethods(false);
27 $server->setClass(’Services\PricingService2’,
28 ’pricing’,
29 new ProductRepository(),
30 new PurchaseRepository());

Attaching a class instance

setClass() allows to register a previously instantiated object at the server. Just pass an instance instead of the class
name. Obviously passing arguments to the constructor is not possible with pre-instantiated objects.

Attaching several classes using namespaces

The example below illustrates attaching several classes, each with their own namespace.

1 require_once ’Services/Comb.php’;
2 require_once ’Services/Brush.php’;
3 require_once ’Services/Pick.php’;
4

5 $server = new Zend\XmlRpc\Server();
6 $server->setClass(’Services\Comb’, ’comb’); // methods called as comb.*
7 $server->setClass(’Services\Brush’, ’brush’); // methods called as brush.*
8 $server->setClass(’Services\Pick’, ’pick’); // methods called as pick.*
9 echo $server->handle();

Specifying exceptions to use as valid fault responses

The example below allows any Services\Exception-derived class to report its code and message in the fault
response.

1 require_once ’Services/Exception.php’;
2 require_once ’Services/Comb.php’;
3 require_once ’Services/Brush.php’;
4 require_once ’Services/Pick.php’;
5

6 // Allow Services_Exceptions to report as fault responses
7 Zend\XmlRpc\Server\Fault::attachFaultException(’Services\Exception’);
8

9 $server = new Zend\XmlRpc\Server();
10 $server->setClass(’Services\Comb’, ’comb’); // methods called as comb.*
11 $server->setClass(’Services\Brush’, ’brush’); // methods called as brush.*
12 $server->setClass(’Services\Pick’, ’pick’); // methods called as pick.*
13 echo $server->handle();

Utilizing custom request and response objects

Some use cases require to utilize a custom request object. For example, XML/RPC is not bound to HTTP as a transfer
protocol. It is possible to use other transfer protocols like SSH or telnet to send the request and response data over the

185.11. Usage Examples 749

Zend Framework 2 Documentation, Release 2.0.0

wire. Another use case is authentication and authorization. In case of a different transfer protocol, one need to change
the implementation to read request data.

The example below instantiates a custom request object and passes it to the server to handle.

1 require_once ’Services/Request.php’;
2 require_once ’Services/Exception.php’;
3 require_once ’Services/Comb.php’;
4 require_once ’Services/Brush.php’;
5 require_once ’Services/Pick.php’;
6

7 // Allow Services_Exceptions to report as fault responses
8 Zend\XmlRpc\Server\Fault::attachFaultException(’Services\Exception’);
9

10 $server = new Zend\XmlRpc\Server();
11 $server->setClass(’Services\Comb’, ’comb’); // methods called as comb.*
12 $server->setClass(’Services\Brush’, ’brush’); // methods called as brush.*
13 $server->setClass(’Services\Pick’, ’pick’); // methods called as pick.*
14

15 // Create a request object
16 $request = new Services\Request();
17

18 echo $server->handle($request);

Specifying a custom response class

The example below illustrates specifying a custom response class for the returned response.

1 require_once ’Services/Request.php’;
2 require_once ’Services/Response.php’;
3 require_once ’Services/Exception.php’;
4 require_once ’Services/Comb.php’;
5 require_once ’Services/Brush.php’;
6 require_once ’Services/Pick.php’;
7

8 // Allow Services_Exceptions to report as fault responses
9 Zend\XmlRpc\Server\Fault::attachFaultException(’Services\Exception’);

10

11 $server = new Zend\XmlRpc\Server();
12 $server->setClass(’Services\Comb’, ’comb’); // methods called as comb.*
13 $server->setClass(’Services\Brush’, ’brush’); // methods called as brush.*
14 $server->setClass(’Services\Pick’, ’pick’); // methods called as pick.*
15

16 // Create a request object
17 $request = new Services\Request();
18

19 // Utilize a custom response
20 $server->setResponseClass(’Services\Response’);
21

22 echo $server->handle($request);

750 Chapter 185. Zend\XmlRpc\Server

Zend Framework 2 Documentation, Release 2.0.0

185.12 Performance optimization

Cache server definitions between requests

The example below illustrates caching server definitions between requests.

1 use Zend\XmlRpc\Server as XmlRpcServer;
2

3 // Register the "Services" namespace
4 $loader = new Zend\Loader\StandardAutoloader();
5 $loader->registerNamespace(’Services’, ’path to Services’);
6 $loader->register();
7

8 // Specify a cache file
9 $cacheFile = dirname(__FILE__) . ’/xmlrpc.cache’;

10

11 // Allow Services\Exceptions to report as fault responses
12 XmlRpcServer\Fault::attachFaultException(’Services\Exception’);
13

14 $server = new XmlRpcServer();
15

16 // Attempt to retrieve server definition from cache
17 if (!XmlRpcServer\Cache::get($cacheFile, $server)) {
18 $server->setClass(’Services\Comb’, ’comb’); // methods called as comb.*
19 $server->setClass(’Services\Brush’, ’brush’); // methods called as brush.*
20 $server->setClass(’Services\Pick’, ’pick’); // methods called as pick.*
21

22 // Save cache
23 XmlRpcServer\Cache::save($cacheFile, $server);
24 }
25

26 // Create a request object
27 $request = new Services\Request();
28

29 // Utilize a custom response
30 $server->setResponseClass(’Services\Response’);
31

32 echo $server->handle($request);

Note: The server cache file should be located outside the document root.

Optimizing XML generation

Zend\XmlRpc\Server uses DOMDocument of PHP extension ext/dom to generate it’s XML output. While
ext/dom is available on a lot of hosts it is not exactly the fastest. Benchmarks have shown, that XmlWriter from
ext/xmlwriter performs better.

If ext/xmlwriter is available on your host, you can select a the XmlWriter-based generator to leaverage the perfor-
mance differences.

1 use Zend\XmlRpc;
2

3 XmlRpc\Value::setGenerator(new XmlRpc\Generator\XmlWriter());
4

185.12. Performance optimization 751

Zend Framework 2 Documentation, Release 2.0.0

5 $server = new XmlRpc\Server();
6 ...

Note: Benchmark your application

Performance is determined by a lot of parameters and benchmarks only apply for the specific test case. Differences
come from PHP version, installed extensions, webserver and operating system just to name a few. Please make sure
to benchmark your application on your own and decide which generator to use based on your numbers.

Note: Benchmark your client

This optimization makes sense for the client side too. Just select the alternate XML generator before doing any work
with Zend\XmlRpc\Client.

752 Chapter 185. Zend\XmlRpc\Server

CHAPTER

SIX

ZENDSERVICE\LIVEDOCX

186.1 Introduction to LiveDocx

LiveDocx is a SOAP service that allows developers to generate word processing documents by combining structured
textual or image data from PHP with a template, created in a word processor. The resulting document can be saved as
a PDF, DOCX, DOC, HTML or RTF file. LiveDocx implements mail-merge in PHP.

The family of ZendService\LiveDocx components provides a clean and simple interface to LiveDocx Free, Live-
Docx Premium and LiveDocx Fully Licensed, authored by Text Control GmbH, and additionally offers functionality to
improve network performance.

ZendService\LiveDocx is part of the official Zend Framework family, but has to be downloaded and installed in
addition to the core components of the Zend Framework, as do all other service components. Please refer to GitHub
(ZendServiceLiveDocx) for download and installation instructions.

In addition to this section of the manual, to learn more about ZendService\LiveDocx and the backend SOAP
service LiveDocx, please take a look at the following resources:

• Shipped demonstration applications. There is a large number of demonstration applications in the directory
/demos. They illustrate all functionality offered by LiveDocx. Where appropriate this part of the user manual
references the demonstration applications at the end of each section. It is highly recommended to read all the
code in the /demos directory. It is well commented and explains all you need to know about LiveDocx and
ZendService\LiveDocx.

• LiveDocx in PHP.

• LiveDocx SOAP API documentation.

• LiveDocx WSDL.

• LiveDocx blog and web site.

186.1.1 Sign Up for an Account

Before you can start using LiveDocx, you must first sign up for an account. The account is completely free of charge
and you only need to specify a username, password and e-mail address. Your login credentials will be dispatched
to the e-mail address you supply, so please type carefully. If, or when, your application gets really popular and you
require high performance, or additional features only supplied in the premium service, you can upgrade from the
LiveDocx Free to LiveDocx Premium for a minimal monthly charge. For details of the various services, please refer to
LiveDocx pricing.

753

http://en.wikipedia.org/wiki/Mail_merge
https://github.com/zendframework/ZendServiceLiveDocx
https://github.com/zendframework/ZendServiceLiveDocx
http://www.phplivedocx.org/
http://www.livedocx.com/pub/documentation/api.aspx
https://api.livedocx.com/2.1/mailmerge.asmx?wsdl
https://www.livedocx.com/
https://www.livedocx.com/user/account_registration.aspx
http://www.livedocx.com/pub/pricing

Zend Framework 2 Documentation, Release 2.0.0

186.1.2 Templates and Documents

LiveDocx differentiates between the following terms: 1) template and 2) document. In order to fully understand the
documentation and indeed LiveDocx itself, it is important that any programmer deploying LiveDocx understands the
difference.

The term template is used to refer to the input file, created in a word processor, containing formatting and text fields.
You can download an example template, stored as a DOCX file. The term document is used to refer to the output
file that contains the template file, populated with data - i.e. the finished document. You can download an example
document, stored as a PDF file.

186.1.3 Supported File Formats

LiveDocx supports the following file formats:

186.1.4 Template File Formats (input)

Templates can be saved in any of the following file formats:

• DOCX- Office Open XML format

• DOC- Microsoft Word DOC format

• RTF- Rich text file format

• TXD- TX Text Control format

186.1.5 Document File Formats (output):

The resulting document can be saved in any of the following file formats:

• DOCX- Office Open XML format

• DOC- Microsoft Word DOC format

• HTML-XHTML 1.0 transitional format

• RTF- Rich text file format

• PDF- Acrobat Portable Document Format

• PDF/A- Acrobat Portable Document Format (ISO-standardized version)

• TXD- TX Text Control format

• TXT-ANSI plain text

186.1.6 Image File Formats (output):

The resulting document can be saved in any of the following graphical file formats:

• BMP- Bitmap image format

• GIF- Graphics Interchange Format

• JPG- Joint Photographic Experts Group format

• PNG- Portable Network Graphics format

754 Chapter 186. ZendService\LiveDocx

http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-template.docx
http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-document.pdf
http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-document.pdf
http://en.wikipedia.org/wiki/Office_Open_XML
http://en.wikipedia.org/wiki/DOC_(computing)
http://en.wikipedia.org/wiki/Rich_Text_Format
http://www.textcontrol.com/
http://en.wikipedia.org/wiki/Office_Open_XML
http://en.wikipedia.org/wiki/DOC_(computing)
http://en.wikipedia.org/wiki/Xhtml
http://en.wikipedia.org/wiki/Rich_Text_Format
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/PDF/A
http://www.textcontrol.com/
http://en.wikipedia.org/wiki/Text_file
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/Jpg
http://en.wikipedia.org/wiki/Portable_Network_Graphics

Zend Framework 2 Documentation, Release 2.0.0

• TIFF- Tagged Image File Format

• WMF- Windows Meta File format

186.2 ZendService\LiveDocx\MailMerge

MailMerge is the mail-merge object in the ZendService\LiveDocx family.

186.2.1 Document Generation Process

The document generation process can be simplified with the following equation:

Template + Data = Document

Or expressed by the following diagram:

Data is inserted into template to create a document.

A template, created in a word processing application, such as Microsoft Word, is loaded into LiveDocx. Data is then
inserted into the template and the resulting document is saved to any supported format.

186.2.2 Creating Templates in Microsoft Word 2007

Start off by launching Microsoft Word and creating a new document. Next, open up the Field dialog box. This looks
as follows:

Microsoft Word 2007 Field dialog box.

Using this dialog, you can insert the required merge fields into your document. Below is a screenshot of a license
agreement in Microsoft Word 2007. The merge fields are marked as { MERGEFIELD FieldName }:

Template in Microsoft Word 2007.

Now, save the template as template.docx.

In the next step, we are going to populate the merge fields with textual data from PHP.

Cropped template in Microsoft Word 2007.

To populate the merge fields in the above cropped screenshot of the template in Microsoft Word, all we have to code
is as follows:

1 use ZendService\LiveDocx\MailMerge;
2

3 $locale = Locale::getDefault();
4 $timestamp = time();
5

6 $intlTimeFormatter = new IntlDateFormatter($locale,
7 IntlDateFormatter::NONE, IntlDateFormatter::SHORT);
8

9 $intlDateFormatter = new IntlDateFormatter($locale,
10 IntlDateFormatter::LONG, IntlDateFormatter::NONE);
11

12 $mailMerge = new MailMerge();
13

14 $mailMerge->setUsername(’myUsername’)
15 ->setPassword(’myPassword’)
16 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

186.2. ZendService\LiveDocx\MailMerge 755

http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://en.wikipedia.org/wiki/Windows_Metafile
http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-template.docx

Zend Framework 2 Documentation, Release 2.0.0

17

18 $mailMerge->setLocalTemplate(’license-agreement-template.docx’);
19

20 $mailMerge->assign(’software’, ’Magic Graphical Compression Suite v1.9’)
21 ->assign(’licensee’, ’Henry Döner-Meyer’)
22 ->assign(’company’, ’Co-Operation’)
23 ->assign(’date’, $intlDateFormatter->format($timestamp))
24 ->assign(’time’, $intlTimeFormatter->format($timestamp))
25 ->assign(’city’, ’Lyon’)
26 ->assign(’country’, ’France’);
27

28 $mailMerge->createDocument();
29

30 $document = $mailMerge->retrieveDocument(’pdf’);
31

32 file_put_contents(’license-agreement-document.pdf’, $document);
33

34 unset($mailMerge);

The resulting document is written to disk in the file license-agreement-document.pdf. This file can now be post-
processed, sent via e-mail or simply displayed, as is illustrated below in Document Viewer 2.26.1 on Ubuntu 9.04:

Resulting document as PDF in Document Viewer 2.26.1. For executable demo applications, which illustrate the
above, please take a look at /demos/ZendService/LiveDocx/MailMerge/license-agreement.

186.2.3 Advanced Mail-Merge

ZendService\LiveDocx\MailMerge allows designers to insert any number of text fields into a template.
These text fields are populated with data when createDocument() is called.

In addition to text fields, it is also possible specify regions of a document, which should be repeated.

For example, in a telephone bill it is necessary to print out a list of all connections, including the destination number,
duration and cost of each call. This repeating row functionality can be achieved with so called blocks.

Blocks are simply regions of a document, which are repeated when createDocument() is called. In a block any
number of block fields can be specified.

Blocks consist of two consecutive document targets with a unique name. The following screenshot illustrates these
targets and their names in red:

The format of a block is as follows:

blockStart_ + unique name
blockEnd_ + unique name

For example:

blockStart_block1
blockEnd_block1

The content of a block is repeated, until all data assigned in the block fields has been injected into the template. The
data for block fields is specified in PHP as a multi-assoc array.

The following screenshot of a template in Microsoft Word 2007 shows how block fields are used:

Template, illustrating blocks in Microsoft Word 2007.

The following code populates the above template with data.

756 Chapter 186. ZendService\LiveDocx

Zend Framework 2 Documentation, Release 2.0.0

1 use ZendService\LiveDocx\MailMerge;
2

3 $locale = Locale::getDefault();
4 $timestamp = time();
5

6 $intlDateFormatter1 = new IntlDateFormatter($locale,
7 IntlDateFormatter::LONG, IntlDateFormatter::NONE);
8

9 $intlDateFormatter2 = new IntlDateFormatter($locale,
10 null, null, null, null, ’LLLL yyyy’);
11

12 $mailMerge = new MailMerge();
13

14 $mailMerge->setUsername(’myUsername’)
15 ->setPassword(’myPassword’)
16 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
17

18 $mailMerge->setLocalTemplate(’telephone-bill-template.doc’);
19

20 $mailMerge->assign(’customer_number’, sprintf("#%’10s", rand(0,1000000000)))
21 ->assign(’invoice_number’, sprintf("#%’10s", rand(0,1000000000)))
22 ->assign(’account_number’, sprintf("#%’10s", rand(0,1000000000)));
23

24 $billData = array (
25 ’phone’ => ’+22 (0)333 444 555’,
26 ’date’ => $intlDateFormatter1->format($timestamp),
27 ’name’ => ’James Henry Brown’,
28 ’service_phone’ => ’+22 (0)333 444 559’,
29 ’service_fax’ => ’+22 (0)333 444 558’,
30 ’month’ => $intlDateFormatter2->format($timestamp),
31 ’monthly_fee’ => ’15.00’,
32 ’total_net’ => ’19.60’,
33 ’tax’ => ’19.00’,
34 ’tax_value’ => ’3.72’,
35 ’total’ => ’23.32’
36);
37

38 $mailMerge->assign($billData);
39

40 $billConnections = array(
41 array(
42 ’connection_number’ => ’+11 (0)222 333 441’,
43 ’connection_duration’ => ’00:01:01’,
44 ’fee’ => ’1.15’
45),
46 array(
47 ’connection_number’ => ’+11 (0)222 333 442’,
48 ’connection_duration’ => ’00:01:02’,
49 ’fee’ => ’1.15’
50),
51 array(
52 ’connection_number’ => ’+11 (0)222 333 443’,
53 ’connection_duration’ => ’00:01:03’,
54 ’fee’ => ’1.15’
55),
56 array(
57 ’connection_number’ => ’+11 (0)222 333 444’,
58 ’connection_duration’ => ’00:01:04’,

186.2. ZendService\LiveDocx\MailMerge 757

Zend Framework 2 Documentation, Release 2.0.0

59 ’fee’ => ’1.15’
60)
61);
62

63 $mailMerge->assign(’connection’, $billConnections);
64

65 $mailMerge->createDocument();
66

67 $document = $mailMerge->retrieveDocument(’pdf’);
68

69 file_put_contents(’telephone-bill-document.pdf’, $document);
70

71 unset($mailMerge);

The data, which is specified in the array $billConnections is repeated in the template in the block connection.
The keys of the array (connection_number, connection_duration and fee) are the block field names -
their data is inserted, one row per iteration.

The resulting document is written to disk in the file telephone-bill-document.pdf. This file can now be post-processed,
sent via e-mail or simply displayed, as is illustrated below in Document Viewer 2.26.1 on Ubuntu 9.04:

Resulting document as PDF in Document Viewer 2.26.1.

You can download the DOC template file and the resulting PDF document.

NOTE: blocks may not be nested.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/telephone-bill.

186.2.4 Merging Image Data into a Template

In addition to assigning textual data, it is also possible to merge image data into a template. The following code
populates a conference badge template with the photo dailemaitre.jpg, in addition to some textual data.

The first step is to upload the image to the backend service. Once you have done this, you can assign the filename of
the image to the template just as you would any other textual data. Note the syntax of the field name containing an
image - it must start with image:

1 use ZendService\LiveDocx\MailMerge;
2

3 $locale = Locale::getDefault();
4 $timestamp = time();
5

6 $intlDateFormatter = new IntlDateFormatter($locale,
7 IntlDateFormatter::LONG, IntlDateFormatter::NONE);
8

9 $mailMerge = new MailMerge();
10

11 $mailMerge->setUsername(’myUsername’)
12 ->setPassword(’myPassword’)
13 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
14

15 $photoFilename = __DIR__ . ’/dailemaitre.jpg’;
16 $photoFile = basename($photoFilename);
17

18 if (!$mailMerge->imageExists($photoFile)) { // pass image file *without* path
19 $mailMerge->uploadImage($photoFilename); // pass image file *with* path
20 }

758 Chapter 186. ZendService\LiveDocx

http://www.phplivedocx.org/wp-content/uploads/2009/01/telephone-bill-template.doc
http://www.phplivedocx.org/wp-content/uploads/2009/01/telephone-bill-document.pdf

Zend Framework 2 Documentation, Release 2.0.0

21

22 $mailMerge->setLocalTemplate(’conference-pass-template.docx’);
23

24 $mailMerge->assign(’name’, ’Daï Lemaitre’)
25 ->assign(’company’, ’Megasoft Co-operation’)
26 ->assign(’date’, $intlDateFormatter->format($timestamp))
27 ->assign(’image:photo’, $photoFile); // pass image file *without* path
28

29 $mailMerge->createDocument();
30

31 $document = $mailMerge->retrieveDocument(’pdf’);
32

33 file_put_contents(’conference-pass-document.pdf’, $document);
34

35 $mailMerge->deleteImage($photoFilename);
36

37 unset($mailMerge);

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/conference-pass.

186.2.5 Generating Bitmaps Image Files

In addition to document file formats, MailMerge also allows documents to be saved to a number of image file
formats (BMP, GIF, JPG, PNG and TIFF). Each page of the document is saved to one file.

The following sample illustrates the use of getBitmaps($fromPage, $toPage, $zoomFactor,
$format) and getAllBitmaps($zoomFactor, $format).

$fromPage is the lower-bound page number of the page range that should be returned as an image and $toPage
the upper-bound page number. $zoomFactor is the size of the images, as a percent, relative to the original page
size. The range of this parameter is 10 to 400. $format is the format of the images returned by this method. The
supported formats can be obtained by calling getImageExportFormats().

1 use ZendService\LiveDocx\MailMerge;
2

3 $locale = Locale::getDefault();
4 $timestamp = time();
5

6 $intlTimeFormatter = new IntlDateFormatter($locale,
7 IntlDateFormatter::NONE, IntlDateFormatter::SHORT);
8

9 $intlDateFormatter = new IntlDateFormatter($locale,
10 IntlDateFormatter::LONG, IntlDateFormatter::NONE);
11

12 $mailMerge = new MailMerge();
13

14 $mailMerge->setUsername(’myUsername’)
15 ->setPassword(’myPassword’)
16 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
17

18 $mailMerge->setLocalTemplate(’license-agreement-template.docx’);
19

20 $mailMerge->assign(’software’, ’Magic Graphical Compression Suite v1.9’)
21 ->assign(’licensee’, ’Henry Döner-Meyer’)
22 ->assign(’company’, ’Co-Operation’)
23 ->assign(’date’, $intlDateFormatter->format($timestamp))
24 ->assign(’time’, $intlTimeFormatter->format($timestamp))

186.2. ZendService\LiveDocx\MailMerge 759

Zend Framework 2 Documentation, Release 2.0.0

25 ->assign(’city’, ’Lyon’)
26 ->assign(’country’, ’France’);
27

28 $mailMerge->createDocument();
29

30 // Get all bitmaps
31 // (zoomFactor, format)
32 $bitmaps = $mailMerge->getAllBitmaps(100, ’png’);
33

34 // Get just bitmaps in specified range
35 // (fromPage, toPage, zoomFactor, format)
36 //$bitmaps = $mailMerge->getBitmaps(2, 2, 100, ’png’);
37

38 foreach ($bitmaps as $pageNumber => $bitmapData) {
39 $filename = sprintf(’license-agreement-page-%d.png’, $pageNumber);
40 file_put_contents($filename, $bitmapData);
41 }
42

43 unset($mailMerge);

This produces two files (license-agreement-page-1.png and license-agreement-page-2.png)
and writes them to disk in the same directory as the executable PHP file.

license-agreement-page-1.png.

license-agreement-page-2.png. For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/bitmaps.

186.2.6 Local vs. Remote Templates

Templates can be stored locally, on the client machine, or remotely, by LiveDocx. There are advantages and disad-
vantages to each approach.

In the case that a template is stored locally, it must be transfered from the client to LiveDocx on every request. If
the content of the template rarely changes, this approach is inefficient. Similarly, if the template is several megabytes
in size, it may take considerable time to transfer it to LiveDocx. Local template are useful in situations in which the
content of the template is constantly changing.

The following code illustrates how to use a local template.

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge();
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
8

9 $mailMerge->setLocalTemplate(’template.docx’);
10

11 // assign data and create document
12

13 unset($mailMerge);

In the case that a template is stored remotely, it is uploaded once to LiveDocx and then simply referenced on all
subsequent requests. Obviously, this is much quicker than using a local template, as the template does not have to be
transfered on every request. For speed critical applications, it is recommended to use the remote template method.

The following code illustrates how to upload a template to the server:

760 Chapter 186. ZendService\LiveDocx

Zend Framework 2 Documentation, Release 2.0.0

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge();
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
8

9 $mailMerge->uploadTemplate(’template.docx’);
10

11 unset($mailMerge);

The following code illustrates how to reference the remotely stored template on all subsequent requests:

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge();
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
8

9 $mailMerge->setRemoteTemplate(’template.docx’);
10

11 // assign data and create document
12

13 unset($mailMerge);

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/templates.

186.2.7 Getting Information

ZendService\LiveDocx\MailMerge provides a number of methods to get information on field names, avail-
able fonts and supported formats.

Get Array of Field Names in Template

The following code returns and displays an array of all field names in the specified template. This functionality is
useful, in the case that you create an application, in which an end-user can update a template.

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge();
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
8

9 $templateName = ’template-1-text-field.docx’;
10 $mailMerge->setLocalTemplate($templateName);
11

12 $fieldNames = $mailMerge->getFieldNames();
13 foreach ($fieldNames as $fieldName) {
14 printf(’- %s%s’, $fieldName, PHP_EOL);
15 }

186.2. ZendService\LiveDocx\MailMerge 761

Zend Framework 2 Documentation, Release 2.0.0

16

17 unset($mailMerge);

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/template-info.

Get Array of Block Field Names in Template

The following code returns and displays an array of all block field names in the specified template. This functionality
is useful, in the case that you create an application, in which an end-user can update a template. Before such templates
can be populated, it is necessary to find out the names of the contained block fields.

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge();
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
8

9 $templateName = ’template-block-fields.doc’;
10 $mailMerge->setLocalTemplate($templateName);
11

12 $blockNames = $mailMerge->getBlockNames();
13 foreach ($blockNames as $blockName) {
14 $blockFieldNames = $mailMerge->getBlockFieldNames($blockName);
15 foreach ($blockFieldNames as $blockFieldName) {
16 printf(’- %s::%s%s’, $blockName, $blockFieldName, PHP_EOL);
17 }
18 }
19

20 unset($mailMerge);

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/template-info.

Get Array of Fonts Installed on Server

The following code returns and displays an array of all fonts installed on the server. You can use this method to present
a list of fonts which may be used in a template. It is important to inform the end-user about the fonts installed on the
server, as only these fonts may be used in a template. In the case that a template contains fonts, which are not available
on the server, font-substitution will take place. This may lead to undesirable results.

1 use ZendService\LiveDocx\MailMerge;
2 use Zend\Debug\Debug;
3

4 $mailMerge = new MailMerge();
5

6 $mailMerge->setUsername(’myUsername’)
7 ->setPassword(’myPassword’)
8 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
9

10 Debug::dump($mailMerge->getFontNames());
11

12 unset($mailMerge);

762 Chapter 186. ZendService\LiveDocx

Zend Framework 2 Documentation, Release 2.0.0

NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache, such
as Zend\Cache\Cache- this will considerably speed up your application.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-fonts.

Get Array of Supported Template File Formats

The following code returns and displays an array of all supported template file formats. This method is particularly
useful in the case that a combo list should be displayed that allows the end-user to select the input format of the
documentation generation process.

1 use ZendService\LiveDocx\MailMerge;
2 use Zend\Debug\Debug;
3

4 $mailMerge = new MailMerge()
5

6 $mailMerge->setUsername(’myUsername’)
7 ->setPassword(’myPassword’)
8 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
9

10 Debug::dump($mailMerge->getTemplateFormats());
11

12 unset($mailMerge);

NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache, such
as Zend\Cache\Cache- this will considerably speed up your application.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.

Get Array of Supported Document File Formats

The following code returns and displays an array of all supported document file formats. This method is particularly
useful in the case that a combo list should be displayed that allows the end-user to select the output format of the
documentation generation process.

1 use ZendService\LiveDocx\MailMerge;
2 use Zend\Debug\Debug;
3

4 $mailMerge = new MailMerge();
5

6 $mailMerge->setUsername(’myUsername’)
7 ->setPassword(’myPassword’)
8 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
9

10 Debug::dump($mailMerge->getDocumentFormats());
11

12 unset($mailMerge);

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.

186.2. ZendService\LiveDocx\MailMerge 763

Zend Framework 2 Documentation, Release 2.0.0

Get Array of Supported Image File Formats

The following code returns and displays an array of all supported image file formats. This method is particularly
useful in the case that a combo list should be displayed that allows the end-user to select the output format of the
documentation generation process.

1 use ZendService\LiveDocx\MailMerge;
2 use Zend\Debug\Debug;
3

4 $mailMerge = new MailMerge();
5

6 $mailMerge->setUsername(’myUsername’)
7 ->setPassword(’myPassword’)
8 ->setService (MailMerge::SERVICE_FREE); // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM
9

10 Debug::dump($mailMerge->getImageExportFormats());
11

12 unset($mailMerge);

NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache, such
as Zend\Cache\Cache- this will considerably speed up your application.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.

186.2.8 Upgrading From LiveDocx Free to LiveDocx Premium

LiveDocx Free is provided by Text Control GmbH completely free for charge. It is free for all to use in an unlimited
number of applications. However, there are times when you may like to update to LiveDocx Premium. For example,
you need to generate a very large number of documents concurrently, or your application requires documents to be
created faster than LiveDocx Free permits. For such scenarios, Text Control GmbH offers LiveDocx Premium, a paid
service with a number of benefits. For an overview of the benefits, please take a look at LiveDocx pricing.

This section of the manual offers a technical overview of how to upgrade from LiveDocx Free to LiveDocx Premium.

All you have to do, is make a very small change to the code that runs with LiveDocx Free. Your instantiation and
initialization of LiveDocx Free probably looks as follows:

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge()
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE);
8

9 // rest of your application here
10

11 unset($mailMerge);

To use LiveDocx Premium, you simply need to change the service value from MailMerge::SERVICE_FREE to
MailMerge::SERVICE_PREMIUM, and set the username and password assigned to you for Livedocx Premium.
This may, or may not be the same as the credentials for LiveDocx Free. For example:

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge()
4

764 Chapter 186. ZendService\LiveDocx

http://www.livedocx.com/pub/pricing

Zend Framework 2 Documentation, Release 2.0.0

5 $mailMerge->setUsername(’myPremiumUsername’)
6 ->setPassword(’myPremiumPassword’)
7 ->setService (MailMerge::SERVICE_PREMIUM);
8

9 // rest of your application here
10

11 unset($mailMerge);

And that is all there is to it. The assignment of the premium WSDL to the component is handled internally and
automatically. You are now using LiveDocx Premium.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/instantiation.

186.2.9 Upgrading From LiveDocx Free or LiveDocx Premium to LiveDocx Fully
Licensed

LiveDocx Free and Livedocx Premium are provided by Text Control GmbH as a service. They are addressed over
the Internet. However, for certain applications, for example, ones that process very sensitive data (banking, health
or financial), you may not want to send your data across the Internet to a third party service, regardless of the SSL
encryption that both LiveDocx Free and Livedocx Premium offer as standard. For such scenarios, you can license
LiveDocx and install an entire LiveDocx server in your own network. As such, you completely control the flow of
data between your application and the backend LiveDocx server. For an overview of the benefits of LiveDocx Fully
Licensed, please take a look at LiveDocx pricing.

This section of the manual offers a technical overview of how to upgrade from LiveDocx Free or LiveDocx Premium
to LiveDocx Fully Licensed.

All you have to do, is make a very small change to the code that runs with LiveDocx Free or LiveDocx Premium. Your
instantiation and initialization of LiveDocx Free or LiveDocx Premium probably looks as follows:

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge()
4

5 $mailMerge->setUsername(’myUsername’)
6 ->setPassword(’myPassword’)
7 ->setService (MailMerge::SERVICE_FREE);
8 // or
9 // ->setService (MailMerge::SERVICE_PREMIUM);

10

11 // rest of your application here
12

13 unset($mailMerge);

To use LiveDocx Fully Licensed, you simply need to set the WSDL of the backend LiveDocx server in your own
network. You can do this as follows:

1 use ZendService\LiveDocx\MailMerge;
2

3 $mailMerge = new MailMerge()
4

5 $mailMerge->setUsername(’myFullyLicensedUsername’)
6 ->setPassword(’myFullyLicensedPassword’)
7 ->setWsdl (’http://api.example.com/2.1/mailmerge.asmx?wsdl’);
8

9 // rest of your application here

186.2. ZendService\LiveDocx\MailMerge 765

http://www.livedocx.com/pub/pricing

Zend Framework 2 Documentation, Release 2.0.0

10

11 unset($mailMerge);

And that is all there is to it. You are now using LiveDocx Fully Licensed.

For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/instantiation.

766 Chapter 186. ZendService\LiveDocx

CHAPTER

SEVEN

COPYRIGHT INFORMATION

The following copyrights are applicable to portions of Zend Framework.

Copyright © 2005-Zend Technologies Inc. (http://www.zend.com)

767

http://www.zend.com

Zend Framework 2 Documentation, Release 2.0.0

768 Chapter 187. Copyright Information

CHAPTER

EIGHT

INTRODUCTION TO ZEND
FRAMEWORK 2

• Overview

• Installation

769

Zend Framework 2 Documentation, Release 2.0.0

770 Chapter 188. Introduction to Zend Framework 2

CHAPTER

NINE

USER GUIDE

The user guide is provided to take you through a non-trivial example, showing you various techniques and features of
the framework in order to build an application.

• Getting Started with Zend Framework 2

• Getting started: A skeleton application

• Modules

• Routing and controllers

• Database and models

• Styling and Translations

• Forms and actions

• Conclusion

771

Zend Framework 2 Documentation, Release 2.0.0

772 Chapter 189. User Guide

CHAPTER

LEARNING ZEND FRAMEWORK 2

• Learning Dependency Injection

773

Zend Framework 2 Documentation, Release 2.0.0

774 Chapter 190. Learning Zend Framework 2

CHAPTER

ONE

ZEND FRAMEWORK 2 REFERENCE

191.1 Zend\Authentication

• Introduction

• Database Table Authentication

• Digest Authentication

• HTTP Authentication Adapter

• LDAP Authentication

191.2 Zend\Barcode

• Introduction

• Barcode creation using Zend\Barcode\Barcode class

• Zend\Barcode\Barcode Objects

• Zend\Barcode Renderers

191.3 Zend\Cache

• Zend\Cache\Storage\Adapter

• Zend\Cache\Storage\Capabilities

• Zend\Cache\Storage\Plugin

• Zend\Cache\Pattern

191.4 Zend\Captcha

• Introduction

• Captcha Operation

• CAPTCHA Adapters

775

Zend Framework 2 Documentation, Release 2.0.0

191.5 Zend\Console

• modules/zend.console.introduction

• modules/zend.console.routes

• modules/zend.console.modules

• modules/zend.console.controllers

• modules/zend.console.adapter

• modules/zend.console.prompts

191.6 Zend\Config

• Introduction

• Theory of Operation

• Zend\Config\Reader

• Zend\Config\Writer

• Zend\Config\Processor

191.7 Zend\Crypt

• Introduction

• Encrypt/decrypt using block ciphers

• Key derivation function

• Secure Password Storing

• Public key cryptography

191.8 Zend\Db

• Zend\Db\Adapter

• Zend\Db\ResultSet

• Zend\Db\Sql

• Zend\Db\TableGateway

• Zend\Db\RowGateway

• Zend\Db\Metadata

776 Chapter 191. Zend Framework 2 Reference

Zend Framework 2 Documentation, Release 2.0.0

191.9 Zend\Di

• Introduction to Zend\Di

• Zend\Di Quickstart

• Zend\Di Definition

• Zend\Di InstanceManager

• Zend\Di Configuration

• Zend\Di Debugging & Complex Use Cases

191.10 Zend\Dom

• Introduction

• Zend\Dom\Query

191.11 Zend\EventManager

• The EventManager

191.12 Zend\Form

• Introduction to Zend\Form

• Form Quick Start

• Form Collections

• Form Elements

• Form View Helpers

191.13 Zend\Http

• Zend\Http

• Zend\Http\Request

• Zend\Http\Response

• Zend\Http\Headers And The Various Header Classes

• Zend_Http_Cookie and Zend_Http_CookieJar

• Zend\Http\Client

• Zend_Http_Client - Connection Adapters

• Zend_Http_Client - Advanced Usage

191.9. Zend\Di 777

Zend Framework 2 Documentation, Release 2.0.0

191.14 Zend\I18n

• Translating

• I18n View Helpers

• I18n Filters

191.15 Zend\InputFilter

• Introduction

191.16 Zend\Ldap

• Introduction

• API overview

• Usage Scenarios

• Tools

• Object oriented access to the LDAP tree using Zend\Ldap\Node

• Getting information from the LDAP server

• Serializing LDAP data to and from LDIF

191.17 Zend\Loader

• The AutoloaderFactory

• The PluginClassLoader

• The ShortNameLocator Interface

• The PluginClassLocator interface

• The SplAutoloader Interface

• The ClassMapAutoloader

• The StandardAutoloader

• The Class Map Generator utility: bin/classmap_generator.php

• The PrefixPathLoader

• The PrefixPathMapper Interface

191.18 Zend\Log

• Overview

• Writers

778 Chapter 191. Zend Framework 2 Reference

Zend Framework 2 Documentation, Release 2.0.0

• Filters

• Formatters

191.19 Zend\Mail

• Zend\Mail\Message

• Zend\Mail\Transport

• Zend\Mail\Transport\SmtpOptions

• Zend\Mail\Transport\FileOptions

191.20 Zend\Math

• Introduction

191.21 Zend\ModuleManager

• Introduction to the Module System

• The Module Manager

• The Module Class

• The Module Autoloader

• Best Practices when Creating Modules

191.22 Zend\Mvc

• Introduction to the MVC Layer

• Quick Start

• Default Services

• Routing

• The MvcEvent

• Available Controllers

• Controller Plugins

• Examples

191.23 Zend\Paginator

• Introduction

• Usage

191.19. Zend\Mail 779

Zend Framework 2 Documentation, Release 2.0.0

• Configuration

• Advanced usage

191.24 Zend\Permissions\Acl

• Introduction

• Refining Access Controls

• Advanced Usage

191.25 Zend\ServiceManager

• Zend\ServiceManager

• Zend\ServiceManager Quick Start

191.26 Zend\Stdlib

• Zend\Stdlib\Hydrator

191.27 Zend\Uri

• Zend\Uri

191.28 Zend\Validator

• Introduction

• Standard Validation Classes

• Validator Chains

• Writing Validators

• Validation Messages

191.29 Zend\View

• Zend\View Quick Start

• The PhpRenderer

• PhpRenderer View Scripts

• View Helpers

780 Chapter 191. Zend Framework 2 Reference

Zend Framework 2 Documentation, Release 2.0.0

191.30 Zend\XmlRpc

• Introduction

• Zend\XmlRpc\Client

• Zend\XmlRpc\Server

191.30. Zend\XmlRpc 781

Zend Framework 2 Documentation, Release 2.0.0

782 Chapter 191. Zend Framework 2 Reference

CHAPTER

TWO

SERVICES FOR ZEND FRAMEWORK 2
REFERENCE

192.1 ZendService\LiveDocx

• ZendService\LiveDocx

783

Zend Framework 2 Documentation, Release 2.0.0

784 Chapter 192. Services for Zend Framework 2 Reference

CHAPTER

THREE

COPYRIGHT

• Copyright Information

785

Zend Framework 2 Documentation, Release 2.0.0

786 Chapter 193. Copyright

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

787

