Zend Framework 2 Documentation
Release 2.0.0

Zend Technologies Ltd.

March 19, 2013

CONTENTS

CHAPTER
ONE

OVERVIEW

Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented code and utilises most of the new features of PHP 5.3, namely namespaces,
late static binding, lambda functions and closures.

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million downloads.

Note: ZF2 is not backward compatible with ZFI, because of the new features in PHP 5.3+ implemented by the
framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few dependencies on
other components. ZF2 follows the SOLID object oriented design principle. This loosely coupled architecture allows
developers to use whichever components they want. We call this a “use-at-will” design. We support Pyrus and
Composer as installation and dependency tracking mechanisms for the framework as a whole and for each component,
further enhancing this design.

We use PHPUnit to test our code and Travis CI as a Continuous Integration service.

While they can be used separately, Zend Framework 2 components in the standard library form a powerful and exten-
sible web application framework when combined. Also, it offers a robust, high performance MVC implementation, a
database abstraction that is simple to use, and a forms component that implements HTML5 form rendering, validation,
and filtering so that developers can consolidate all of these operations using one easy-to-use, object oriented interface.
Other components, such as ZendAuthentication and ZendPermissionsAcl, provide user authentication
and authorization against all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most popular web
services available. Whatever your application needs are, you're likely to find a Zend Framework 2 component that can
be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies, but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and Strikelron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available to Zend
Framework 2 developers.

Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework
2 community. Community members, including contributors, make themselves available on mailing lists, IRC channels
and other forums. Whatever question you have about Zend Framework 2, the community is always available to address
it.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://php.net/manual/en/language.namespaces.php
http://it.php.net/lsb
http://it2.php.net/manual/en/functions.anonymous.php
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29
http://pear.php.net/manual/en/pyrus.php
http://getcomposer.org/
http://www.phpunit.de
http://travis-ci.org/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP
http://www.w3.org/TR/html5/forms.html#forms
http://www.zend.com
http://framework.zend.com/archives
http://www.zftalk.com

Zend Framework 2 Documentation, Release 2.0.0

2 Chapter 1. Overview

CHAPTER
TWO

INSTALLATION

¢ New to Zend Framework? Download the latest stable release. Available in .zip and .tar.gz formats.

* Brave, cutting edge? Download Zend Framework’s Git repository using a Git client. Zend Framework is open
source software, and the Git repository used for its development is publicly available on GitHub. Consider using
Git to get Zend Framework if you want to contribute back to the framework, or need to upgrade your framework
version more often than releases occur.

Once you have a copy of Zend Framework available, your application needs to be able to access the framework classes
found in the library folder. Though there are several ways to achieve this, your PHP include_path needs to contain the
path to Zend Framework’s library.

Rob Allen has kindly provided the community with an introduction to :user-guide:‘Getting Started with Zend
Framework 2 <overview>‘. Other Zend Framework community members are actively working on expanding the
tutorial.

http://packages.zendframework.com/
https://github.com/zendframework/zf2
http://git-scm.com/
http://github.com/
http://www.php.net/manual/en/configuration.changes.php
http://www.php.net/manual/en/ini.core.php#ini.include-path
http://akrabat.com/about
http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html
http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html

Zend Framework 2 Documentation, Release 2.0.0

4 Chapter 2. Installation

CHAPTER
THREE

GETTING STARTED WITH ZEND
FRAMEWORK 2

This tutorial is intended to give an introduction to using Zend Framework 2 by creating a simple database driven
application using the Model-View-Controller paradigm. By the end you will have a working ZF2 application and you
can then poke around the code to nd out more about how it all works and ts together.

3.1 Some assumptions

This tutorial assumes that you are running PHP 5.3.10 with the Apache web server and MySQL, accessible via the
PDO extension. Your Apache installation must have the mod_rewrite extension installed and congured.

You must also ensure that Apache is congured to support .htaccess les. This is usually done by changing the
setting:

AllowOverride None

to

AllowOverride All

in your httpd.conf le. Check with your distribution’s documentation for exact details. You will not be able to
navigate to any page other than the home page in this tutorial if you have not congured mod_rewrite and .htaccess
usage correctly

3.2 The tutorial application

The application that we are going to build is a simple inventory system to display which albums we own. The main
page will list our collection and allow us to add, edit and delete CDs. We are going to need four pages in our website:

Page Description

List of This will display the list of albums and provide links to edit and delete them. Also, a link to enable
albums adding new albums will be provided.

Add new This page will provide a form for adding a new album.

album

Edit album | This page will provide a form for editing an album.

Delete This page will confirm that we want to delete an album and then delete it.

album

We will also need to store our data into a database. We will only need one table with these elds in it:

Zend Framework 2 Documentation, Release 2.0.0

Field name Type Null? Notes
id integer No Primary key, auto-increment
artist varchar(100) | No
title varchar(100) | No

Chapter 3. Getting Started with Zend Framework 2

CHAPTER
FOUR

GETTING STARTED: A SKELETON
APPLICATION

In order to build our application, we will start with the ZendSkeletonApplication

available on github. Go to https://github.com/zendframework/ZendSkeletonApplication
and click the ‘“Zip” button. This will download a le with a name like
zendframework—-ZendSkeletonApplication-zfrelease-2.0.0betab-2-gc2c7315.zip or
similar.

Unzip this le into the directory where you keep all your vhosts and rename the resultant directory to zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to resolve its dependencies. In this case,
the dependency is Zend Framework 2 itself.

To install Zend Framework 2 into our application we simply type:

php composer.phar self-update
php composer.phar install

from the zf2-tutorial folder. This takes a while. You should see an output like:

Installing dependencies from lock file
- Installing zendframework/zendframework (dev-master)
Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

Generating autoload files

Note: If you see this message:

[RuntimeException]
The process timed out.

then your connection was too slow to download the entire package in time, and composer timed out. To avoid this,
instead of running:

php composer.phar install

run instead:

COMPOSER_PK(

SS_TIMEOUT=5000 php composer.phar install

We can now move on to the virtual host.

https://github.com/zendframework/ZendSkeletonApplication
https://github.com/
https://github.com/zendframework/ZendSkeletonApplication
http://getcomposer.org

Zend Framework 2 Documentation, Release 2.0.0

4.1 Virtual host

You now need to create an Apache virtual host for the application and edit your hosts le so that http://zf2-
tutorial.localhost will serve index . php from the zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd.conf or extra/httpd-vhosts.conf. (If you are
using httpd-vhosts.conf, ensure that this le is included by your main httpd. conf le.)

Ensure that NameVirtualHost is dened and set to “*:80” or similar, and then dene a virtual host along these lines:

<VirtualHost x:80>
ServerName zf2-tutorial.localhost
DocumentRoot /path/to/zf2-tutorial/public
SetEnv APPLICATION_ENV "development"
<Directory /path/to/zf2-tutorial/public>
DirectoryIndex index.php
AllowOverride All
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

Make sure that you update your /etc/hosts or c: \windows\system32\drivers\etc\hosts le so that
zf2-tutorial.localhost is mapped to 127.0.0.1. The website can then be accessed using http://zf2-
tutorial.localhost.

127.0.0.1 zf2-tutorial.localhost localhost

If you’ve done it right, you should see something like this:
To test that your . htaccess le is working, navigate to http://zf2-tutorial.localhost/1234 and you should see this:
If you see a standard Apache 404 error, then you need to X . htaccess usage before continuing.

You now have a working skeleton application and we can start adding the specics for our application.

8 Chapter 4. Getting started: A skeleton application

http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost
http://zf2-tutorial.localhost/1234

CHAPTER
FIVE

MODULES

Zend Framework 2 uses a module system and you organise your main application-specic code within each module.
The Application module provided by the skeleton is used to provide bootstrapping, error and routing conguration to the
whole application. It is usually used to provide application level controllers for, say, the home page of an application,
but we are not going to use the default one provided in this tutorial as we want our album list to be the home page,
which will live in our own module.

We are going to put all our code into the Album module which will contain our controllers, models, forms and views,
along with conguration. We’ll also tweak the Application module as required.

Let’s start with the directories required.

5.1 Setting up the Album module

Start by creating a directory called A1bum under with the following subdirectories to hold the module’s les:

zf2-tutorial/
/module
/Album
/config
/src
/Album
/Controller
/Form
/Model
/view
/album
/album

As you can see the A1bum module has separate directories for the different types of les we will have. The PHP les
that contain classes within the Album namespace live in the src/Album directory so that we can have multiple
namespaces within our module should we require it. The view directory also has a sub-folder called a1lbum for our
module’s view scripts.

In order to load and congure a module, Zend Framework 2 has a ModuleManager. This will look for Module.php
in the root of the module directory (module/Album) and expect to nd a class called Album\Module within it. That
is, the classes within a given module will have the namespace of the module’s name, which is the directory name of
the module.

Create Module.php in the Album module:

// module/Album/Module.php
namespace Album;

Zend Framework 2 Documentation, Release 2.0.0

class Module

{
public function getAutoloaderConfig()

{
return array (
" zend\Loader\ClassMapAutoloader’ => array (
__DIR__ . '"/autoload_classmap.php’,
)4
" zend\Loader\StandardAutoloader’ => array (
"namespaces’ => array (
_ NAMESPACE__ => _ DIR__ . ’/src/’ . __ NAMESPACE_ ,

public function getConfig()
{

return include _ DIR__ . ’/config/module.config.php’;

}

The ModuleManager will call getAutoloaderConfig () and getConfig () automatically for us.

5.1.1 Autoloading les

Our getAutoloaderConfig () method returns an array that is compatible with ZF2’s AutoloaderFactory.
We congure it so that we add a class map le to the ClassmapAutoloader and also add this module’s namespace
to the StandardAutoloader. The standard autoloader requires a namespace and the path where to nd the les for
that namespace. It is PSR-0 compliant and so classes map directly to les as per the PSR-0 rules.

As we are in development, we don’t need to load les via the classmap, so we provide an empty array for the classmap
autoloader. Create autoload_classmap.php with these contents:

// module/Album/autoload_classmap.php:
return array();

As this is an empty array, whenever the autoloader looks for a class within the A1bum namespace, it will fall back to
the to StandardAutoloader for us.

Note: Note that as we are using Composer, as an alternative, you could not implement getAutoloaderConfig ()
and instead add "Application": "module/Application/src" tothe psr—0keyincomposer. json.
If you go this way, then you need to run php composer.phar update to update the composer autoloading les.

5.2 Configuration

Having registered the autoloader, let’s have a quick look at the getConfig () method in Album\Module. This
method simply loads the config/module.config.php le.

Create the following conguration le for the A1bum module:

// module/Album/cong/module.config.php:
return array (

10 Chapter 5. Modules

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

Zend Framework 2 Documentation, Release 2.0.0

"controllers’ => array (
"invokables’ => array (
"Album\Controller\Album’ => ’Album\Controller\AlbumController’,
)I
)I

"view_manager’ => array (
"template_path_stack’ => array(
"album’ => _ DIR___ . '/../view’,

),
)
)i

The cong information is passed to the relevant components by the ServiceManager. We need two initial sections:
controller and view_manager. The controller section provides a list of all the controllers provided by the mod-
ule. We will need one controller, AlbumController, which we’ll reference as Album\Controller\Album.
The controller key must be unique across all modules, so we prex it with our module name.

Within the view_manager section, we add our view directory to the TemplatePathStack conguration. This
will allow it to nd the view scripts for the A1bum module that are stored in our views/ directory.

5.3 Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done in the application’s
config/application.config.php file which is provided by the skeleton application. Update this file so
that its modules section contains the A1bum module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

// cong/application.cong.php:
return array (

"modules’ => array (
"Application’,
"Album’, // <-— Add this line
),
"module_listener_options’ => array (
"config_glob_paths’ => array (

"config/autoload/{, .} {global, local}.php’,

)I

"module_paths’ => array (
" . /module’,
’./vendor’,

)I

),
)i

As you can see, we have added our A1bum module into the list of modules after the Application module.

We have now set up the module ready for putting our custom code into it.

5.3. Informing the application about our new module 11

Zend Framework 2 Documentation, Release 2.0.0

12 Chapter 5. Modules

CHAPTER
SIX

ROUTING AND CONTROLLERS

We will build a very simple inventory system to display our album collection. The home page will list our collection
and allow us to add, edit and delete albums. Hence the following pages are required:

Page Description

Home This will display the list of albums and provide links to edit and delete them. Also, a link to enable
adding new albums will be provided.

Add new This page will provide a form for adding a new album.

album

Edit album | This page will provide a form for editing an album.

Delete This page will confirm that we want to delete an album and then delete it.

album

Before we set up our les, it’s important to understand how the framework expects the pages to be organised. Each page
of the application is known as an action and actions are grouped into controllers within modules. Hence, you would
generally group related actions into a controller; for instance, a news controller might have actions of current,
archived and view.

As we have four pages that all apply to albums, we will group them in a single controller AlbumController within
our Album module as four actions. The four actions will be:

Page Controller Action
Home AlbumController | index
Add new album | AlbumController | add
Edit album AlbumController | edit
Delete album AlbumController | delete

The mapping of a URL to a particular action is done using routes that are dened in the module’s
module.config.php file. We will add a route for our album actions. This is the updated cong file with the
new code commented.

// module/Album/cong/module.cong.php:
return array (
"controllers’ => array(
"invokables’ => array (
"Album\Controller\Album’ => ’Album\Controller\AlbumController’,
) 4
)

// The following section is new and should be added to your file
"router’ => array (

"routes’ => array (
"album’ => array (
"type’ => ’"segment’,

"options’ => array (

13

Zend Framework 2 Documentation, Release 2.0.0

"route’ => ’/album[/:action] [/:id]’,
"constraints’ => array(
"action’ => ' [a-zA-7Z][a-zA-Z0-9_-1%',
rid’ => "[0-9]+",

)y

"defaults’ => array(
"controller’” => ’'Album\Controller\Album’,
"action’ => ’index’,

),

"view_manager’ => array (
"template_path_stack’ => array (
"album’ => _ DIR_ . ' /../view’,
)I
)I
)

The name of the route is ‘album’ and has a type of ‘segment’. The segment route allows us to specify placeholders
in the URL pattern (route) that will be mapped to named parameters in the matched route. In this case, the route is
¢‘/album[/:action][/:id]*‘ which will match any URL that starts with /album. The next segment will be an optional
action name, and then nally the next segment will be mapped to an optional id. The square brackets indicate that a
segment is optional. The constraints section allows us to ensure that the characters within a segment are as expected,
so we have limited actions to starting with a letter and then subsequent characters only being alphanumeric, underscore
or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

URL Page Action
/album Home (list of albums) index
/album/add Add new album add
/album/edit /2 Edit album with an id of 2 edit
/album/delete/4 | Delete album with anid of 4 | delete

6.1 Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller is a class that is generally called
{Controller name}Controller. Note that {Controller name} must start with a capital letter. This
class lives in a le called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is a public method within
the controller class that is named {action name}Action. In this case {action name} should start with a
lower case letter.

Note: This is by convention. Zend Framework 2 doesn’t provide many restrictions on controllers other
than that they must implement the Zend\Stdlib\Dispatchable interface. =~ The framework provides
two abstract classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be wusing the stan-
dard AbstractActionController, but if youre intending to write a RESTful web service,
AbstractRestfulController may be useful.

Let’s go ahead and create our controller class:

14 Chapter 6. Routing and controllers

Zend Framework 2 Documentation, Release 2.0.0

// module/Album/src/Album/Controller/AlbumController.php:
namespace Album\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class AlbumController extends AbstractActionController
{

public function indexAction()

{

}

public function addAction()
{
}

public function editAction()
{
}

public function deleteAction()
{
}

Note: We have already informed the module about our controller in the ‘controller’ section of
config/module.config.php.

‘We have now set up the four actions that we want to use. They won’t work yet until we set up the views. The URLs
for each action are:

URL Method called

http://zf2-tutorial.localhost/album Album\Controller\AlbumController: :indexAction
http://zf2-tutorial.localhost/album/add Album\Controller\AlbumController: :addAction
http://zf2-tutorial.localhost/album/edit Album\Controller\AlbumController: :editAction
http://zf2-tutorial.localhost/album/delete | Album\Controller\AlbumController: :deleteAction

We now have a working router and the actions are set up for each page of our application.

It’s time to build the view and the model layer.

6.1.1 Initialise the view scripts

To integrate the view into our application all we need to do is create some view script files. These les will be executed
by the DefaultViewStrategy and will be passed any variables or view models that are returned from the con-
troller action method. These view scripts are stored in our module’s views directory within a directory named after the
controller. Create these four empty files now:

* module/Album/view/album/album/index.phtml

* module/Album/view/album/album/add.phtml

e module/Album/view/album/album/edit.phtml

* module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

6.1. Create the controller 15

http://zf2-tutorial.localhost/album
http://zf2-tutorial.localhost/album/add
http://zf2-tutorial.localhost/album/edit
http://zf2-tutorial.localhost/album/delete

Zend Framework 2 Documentation, Release 2.0.0

16 Chapter 6. Routing and controllers

CHAPTER
SEVEN

DATABASE AND MODELS

7.1 The database

Now that we have the A1bum module set up with controller action methods and view scripts, it is time to look at the
model section of our application. Remember that the model is the part that deals with the application’s core purpose
(the so-called “business rules”) and, in our case, deals with the database. We will make use of the Zend Framework
class Zend\Db\TableGateway\TableGateway which is used to find, insert, update and delete rows from a
database table.

We are going to use MySQL, via PHP’s PDO driver, so create a database called zf2tutorial, and run these SQL
statements to create the album table with some data in it.

CREATE TABLE album (
id int (11) NOT NULL auto_increment,
artist varchar (100) NOT NULL,
title varchar (100) NOT NULL,
PRIMARY KEY (id)
)
INSERT INTO album (artist, title)
VALUES (" The Military Wives’, "In My Dreams’);
INSERT INTO album (artist, title)
VALUES (" Adele’, r217);
INSERT INTO album (artist, title)

VALUES ("Bruce Springsteen’, "Wrecking Ball (Deluxe)’);
INSERT INTO album (artist, title)
VALUES (" Lana Del Rey’, "Born To Die’);

INSERT INTO album (artist, title)
VALUES (’Gotye’, 'Making Mirrors’);

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of writing!)

We now have some data in a database and can write a very simple model for it.

7.2 The model files

Zend Framework does not provide a Zend\Model component as the model is your business logic and it’s up to you
to decide how you want it to work. There are many components that you can use for this depending on your needs.
One approach is to have model classes represent each entity in your application and then use mapper objects that load
and save entities to the database. Another is to use an ORM like Doctrine or Propel.

For this tutorial, we are going to create a very simple model by creating an AlbumTable class that extends
Zend\Db\TableGateway\TableGateway where each album object is an Album object (known as an en-

17

Zend Framework 2 Documentation, Release 2.0.0

tity). This is an implementation of the Table Data Gateway design pattern to allow for interfacing with data in
a database table. Be aware though that the Table Data Gateway pattern can become limiting in larger systems.
There is also a temptation to put database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!

Let’s start with our A1bum entity class within the Mode1 directory:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

class Album

{
public $id;
public Sartist;
public Stitle;

public function exchangeArray ($data)

Sthis->id = (isset (Sdata[’id’])) ? Sdatal[’id’] : null;
Sthis->artist = (isset(S$datal[’artist’])) ? Sdata[’artist’] : null;
Sthis->title = (isset ($datal[’title’])) ? Sdata[’title’] : null;

}

Our Album entity object is a simple PHP class. In order to work with Zend\Db’s AbstractTableGateway
class, we need to implement the exchangeArray () method. This method simply copies the data from the passed
in array to our entity’s properties. We will add an input filter for use with our form later.

Next, we extend Zend\Db\TableGateway\AbstractTableGateway and create our own AlbumTable
class in the module’s Model directory like this:

// module/Album/src/Album/Model/AlbumTable.php:
namespace Album\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\ResultSet\ResultSet;
use Zend\Db\TableGateway\AbstractTableGateway;

class AlbumTable extends AbstractTableGateway
{
protected Stable =’album’;

public function __ construct (Adapter Sadapter)

{
Sthis->adapter = Sadapter;
Sthis->resultSetPrototype = new ResultSet ();
Sthis->resultSetPrototype->setArrayObjectPrototype (new Album());
Sthis—->initialize();

public function fetchAll ()

{
SresultSet = S$this->select();
return SresultSet;

public function getAlbum($id)
{

Sid = (int) S$id;

18 Chapter 7. Database and models

Zend Framework 2 Documentation, Release 2.0.0

Srowset = Sthis->select (array(’id’ => $id));
Srow = Srowset->current ();
if (!Srow) {
throw new \Exception("Could not find row ")

}

return Srow;

public function saveAlbum (Album S$album)

{

Sdata = array(
"artist’ => Salbum->artist,
"title’ => Salbum->title,
)
Sid = (int) Salbum->id;
if (Sid == 0) {
Sthis->insert ($Sdata);
} else {
if (Sthis->getAlbum($id)) {
Sthis->update ($Sdata, array(’id’ => $id));
} else {

throw new \Exception(’Form id does not exist’);

public function deleteAlbum($id)
{

Sthis->delete (array (' id’ => $id));
}

There’s a lot going on here. Firstly, we set the protected property $table to the name of the database table, ‘album’
in this case. We then write a constructor that takes a database adapter as its only parameter and assigns it to the adapter
property of our class. We then need to tell the table gateway’s result set that whenever it creates a new row object, it
should use an A1bum object to do so. The TableGateway classes use the prototype pattern for creation of result
sets and entities. This means that instead of instantiating when required, the system clones a previously instantiated
object. See PHP Constructor Best Practices and the Prototype Pattern for more details.

We then create some helper methods that our application will use to interface with the database table. fetchall ()
retrieves all albums rows from the database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum () either creates a new row in the database or updates a row that already exists and
deleteAlbum () removes the row completely. The code for each of these methods is, hopefully, self-explanatory.

7.3 Using ServiceManager to configure the database credentials and
inject into the controller

In order to always use the same instance of our AlbumTable, we will use the ServiceManager to define how to
create one. This is most easily done in the Module class where we create a method called get ServiceConfig ()
which is automatically called by the ModuleManager and applied to the ServiceManager. We’ll then be able
to retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class to be instantiated or a factory
(closure or callback) that instantiates the object when the ServiceManager needs it. We start by implementing
getServiceConfig () to provide a factory that creates an AlbumTable. Add this method to the bottom of the

7.3. Using ServiceManager to configure the database credentials and inject into the controller 19

http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern

Zend Framework 2 Documentation, Release 2.0.0

Module class.

// module/Album/Module.php:
namespace Album;

// Add this import statement:
use Album\Model\AlbumTable;

class Module
{
// getAutoloaderConfig() and getConfig() methods here

// Add this method:
public function getServiceConfig()
{
return array (
"factories’ => array (
"Album\Model\AlbumTable’ => function($sm) {
SdbAdapter = $sm->get (' Zend\Db\Adapter\Adapter’);
Stable = new AlbumTable (SdbAdapter);
return Stable;

}

This method returns an array of factories that are all merged together by the ModuleManager
before passing to the ServiceManager. We also need to configure the ServiceManager so
that it knows how to get a Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the merged config system.
Zend Framework 2’s ModuleManager merges all the configuration from each module’s module.config.php
file and then merges in the files in config/autoload (x.global.php andthen «.local.php files). We’ll add
our database configuration information to global.php which you should commit to your version control system.
You can use local . php (outside of the VCS) to store the credentials for your database if you want to:

// config/autoload/global.php:
return array (
"db’” => array(

"driver’ => ’'pdo’,
"dsn’ => 'mysqgl:dbname=zf2tutorial;host=localhost’,
"driver_options’ => array (

PDO: :MYSQL_ATTR_INIT_COMMAND => ’SET NAMES \’UTF8\’’
) 14
) 4
" service_manager’ => array (
"factories’ => array (
" Zend\Db\Adapter\Adapter’
=> ’Zend\Db\Adapter\AdapterServiceFactory’,

)
)i

You should put your database credentials in config/autoload/local. php so that they are not in the git repos-
itory (as local .php is ignored):

// config/autoload/local.php:
return array (
"db’ => array (

20 Chapter 7. Database and models

Zend Framework 2 Documentation, Release 2.0.0

"username’ => ’'YOUR USERNAME HERE’,
"password’ => ’'YOUR PASSWORD HERE',
)I
)i

Now that the ServiceManager can create an AlbumTable instance for us, we can add a method to the controller
to retrieve it. Add getAlbumTable () to the AlbumController class:

// module/Album/src/Album/Controller/AlbumController.php:
public function getAlbumTable ()
{
if (!Sthis->albumTable) {
Ssm = Sthis->getServicelLocator();
Sthis->albumTable = $sm->get (' Album\Model\AlbumTable’) ;
}

return Sthis->albumTable;

}
You should also add:
protected SalbumTable;

to the top of the class.

We can now call getAlbumTable () from within our controller whenever we need to interact with our model. Let’s
start with a list of albums when the index action is called.

7.4 Listing albums

In order to list the albums, we need to retrieve them from the model and pass them to the view. To do this, we fill in
indexAction () within AlbumController. Update the AlbumController’s indexAction () like this:

// module/Album/src/Album/Controller/AlbumController.php:

// .
public function indexAction()
{
return new ViewModel (array (
"albums’ => $this->getAlbumTable () ->fetchAll(),
)) i
}
//

With Zend Framework 2, in order to set variables in the view, we return a ViewModel instance where the first
parameter of the constructor is an array from the action containing data we need. These are then automatically passed
to the view script. The ViewModel object also allows us to change the view script that is used, but the default is to
use {controller name}/{action name}. We can now fill in the index.phtml view script:

<?php
// module/Album/view/album/album/index.phtml:

Stitle = "My albums’;

Sthis—->headTitle (Stitle);

2>

<hl><?php echo Sthis->escapeHtml (Stitle); ?></hl>

<p><a href="<?php echo S$this->url (’album’, array(
"action’=>"add’)); ?>">Add new album</p>

7.4. Listing albums 21

Zend Framework 2 Documentation, Release 2.0.0

<table class="table">

<tr>
<th>Title</th>
<th>Artist</th>
<th> </th>
</tr>
<?php foreach(Salbums as Salbum) : ?>
<tr>
<td><?php echo Sthis->escapeHtml (Salbum->title); ?></td>
<td><?php echo S$this->escapeHtml (Salbum->artist); ?></td> <td>
<a href="<?php echo S$this->url(’album’,
array (' action’=>"edit’, ’id’ => Salbum->id)); ?>">Edit
<a href="<?php echo Sthis->url (’album’,
array (’action’=>"delete’, ’'id’ => Salbum->id)); ?>">Delete
</td>
</tr>
<?php endforeach; ?>
</table>

The first thing we do is to set the title for the page (used in the layout) and also set the title for the <head> section
using the headTitle () view helper which will display in the browser’s title bar. We then create a link to add a new
album.

The url () view helper is provided by Zend Framework 2 and is used to create the links we need. The first parameter
tourl () is the route name we wish to use for construction of the URL, and the the second parameter is an array of
all the variables to fit into the placeholders to use. In this case we use our ‘album’ route which is set up to accept two
placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The Zend Framework 2 view system
automatically ensures that these variables are extracted into the scope of the view script, so that we don’t have to
worry about prefixing them with $this—> as we used to have to do with Zend Framework 1; however you can do so
if you wish.

We then create a table to display each album’s title and artist, and provide links to allow for editing and deleting the
record. A standard foreach: loop is used to iterate over the list of albums, and we use the alternate form using a
colon and endforeach; as it is easier to scan than to try and match up braces. Again, the url () view helper is
used to create the edit and delete links.

Note: We always use the escapeHtml () view helper to help protect ourselves from XSS vulnerabilities.

If you open http://zf2-tutorial.localhost/album you should see this:

22 Chapter 7. Database and models

http://zf2-tutorial.localhost/album

CHAPTER
EIGHT

STYLING AND TRANSLATIONS

We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to change the title and and remove the
copyright message.

The ZendSkeletonApplication is set up to use Zend\I18n’s translation functionality for all the text. It uses .po
files that live in Application/language, and you need to use poedit to change the text. Start poedit and open
application/language/en_US.po. Click on “Skeleton Application” in the list of Original strings and
then type in “Tutorial” as the translation.

Press Save in the toolbar and poedit will create an en_US.mo file for us. If you find that no .mo file is gen-
erated, check Preferences —-> Editor —-> Behavior and see if the checkbox marked Automatically
compile .mo file on save is checked.

To remove the copyright message, we need to edit the Application module’s layout .phtml view script:

// module/Application/view/layout/layout.phtml:

// Remove this line:

<p>© 2005 - 2012 by Zend Technologies Ltd. <?php echo Sthis->translate(’All
rights reserved.’) ?></p>

The page now looks ever so slightly better now!

23

http://www.poedit.net/download.php/

Zend Framework 2 Documentation, Release 2.0.0

24 Chapter 8. Styling and Translations

CHAPTER
NINE

9.1 Adding new albums

We can now code up the functionality to add new albums. There are two bits to this part:

* Display a form for user to provide details

FORMS AND ACTIONS

¢ Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form and for validation, we add a
Zend\InputFilter to our Album entity. We start by creating a new class Album\Form\AlbumForm that
extends from Zend\Form\Form to define our form. The class is stored in the AlbumForm.php file within the

module/Album/src/Album/Form directory.

Create this file file now:

// module/Album/src/Album/Form/AlbumForm.php:
namespace Album\Form;

use Zend\Form\Form;

class AlbumForm extends Form

{

public function __construct ($name

{

= null)

// we want to ignore the name passed

parent::__ construct ("album’);
Sthis->setAttribute ('method’,

Sthis->add (array (
"name’ => ’id’,
"attributes’ => array(
"type’ => "hidden’,
)I
)) i
Sthis->add (array (
"name’ => ’artist’,
"attributes’ => array(
"type’ => ’"text’,
)I
"options’ => array (
"label’ => ’'Artist’,
) r
)) i
Sthis->add (array (
"name’ => ’'title’,

"post’);

25

Zend Framework 2 Documentation, Release 2.0.0

"attributes’ => array(
"type’ => "text’,
)I
"options’ => array (
"label’ => 'Title’,
)I
)) i
Sthis->add (array (
"name’ => ’submit’,
"attributes’ => array(
"type’ => ’submit’,
"value’ => ’'Go’,
rid’” => ’submitbutton’,
)I
)) i

Within the constructor of AlbumForm, we set the name when we call the parent’s constructor and then set the method

and then create four form elements for the id, artist, title, and submit button. For each item
and options, including the label to be displayed.

we set various attributes

We also need to set up validation for this form. In Zend Framework 2 is this done using an input filter which can either
be standalone or within any class that implements InputFilterAwareInterface, such as a model entity. We

are going to add the input filter to our Album entity:

// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

use Zend\InputFilter\Factory as InputFactory;
use Zend\InputFilter\InputFilter;

use Zend\InputFilter\InputFilterAwareInterface;
use Zend\InputFilter\InputFilterInterface;

class Album implements InputFilterAwarelInterface
{

public $id;

public Sartist;

public Stitle;

protected SinputFilter;

public function exchangeArray ($data)

{

Sthis->id = (isset (Sdata[’id’])) ? Sdata[’id’]
Sthis—->artist = (isset (Sdata[’artist’])) ? S$data[’artist’]
Sthis->title = (isset ($Sdatal[’title’])) ? Sdata[’title’]

public function setInputFilter (InputFilterInterface Sinputiilter)
{

throw new \Exception ("Not used");

public function getInputFilter ()
{
if (!Sthis->inputFilter) {
SinputFilter = new InputFilter();
Sfactory = new InputFactory();

null;
null;
null;

26 Chapter 9

. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

SinputFilter->add($factory—->createlnput (array (
"name’ => rid’,
"required’ => true,
"filters’ => array (
array ('name’ => ’"Int’),

)))

SinputFilter->add($factory—->createlnput (array (

"name’ => ’'artist’,
"required’ => true,
"filters’ => array (

array (' name’ => ’StripTags’),
array (' name’ => ’StringTrim’),
) 4
"validators’ => array (
array (
"name’ => '/ StringLength’,
"options’ => array (
"encoding’ => 'UTF-8’,
"min’ = 1,
"max’ => 100,

SinputFilter->add(Sfactory->createlnput (array (

"name’ => ’'title’,
"required’ => true,
"filters’ => array (

array (' name’ => ’StripTags’),
array (' name’ => ’/StringTrim’),
) ’
"validators’ => array(
array (
"name’ => ’StringLength’,
"options’ => array (
"encoding’ => 'UTF-8’,

"min’ =1,
"max’ => 100,
)’
)’
),
)))i
Sthis->inputFilter = S$inputFilter;

return Sthis->inputFilter;

The InputFilterAwareInterface defines two methods: set InputFilter () and getInputFilter ().
We only need to implement get InputFilter () so we simply throw an exception in set InputFilter ().

Within get InputFilter (), we instantiate an InputFilter and then add the inputs that we require. We add
one input for each property that we wish to filter or validate. For the id field we add an Int filter as we only need

9.1. Adding new albums 27

Zend Framework 2 Documentation, Release 2.0.0

integers. For the text elements, we add two filters, St ripTags and StringTrim to remove unwanted HTML and
unnecessary white space. We also set them to be required and add a St ringLength validator to ensure that the user
doesn’t enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This is done within the
AlbumController’s addAction ():

// module/Album/src/Album/Controller/AlbumController.php:
Y

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

use Album\Model\Album; // <-— Add this import
use Album\Form\AlbumForm; // <—— Add this import
Y

// Add content to this method:

public function addAction()

{

orm = new AlbumForm() ;

orm->get (/ submit’)->setValue (' Add’) ;

Srequest = S$this->getRequest () ;
if (6
Salbum = new Album();
Sform->setInputFilter (Salbum->getInputFilter());
Sform->setData (Srequest->getPost ());

>quest—->isPost ()) {

if (Sform—>isvValid()) {
Salbum->exchangeArray (Sform->getData());
Sthis—->getAlbumTable () —>saveAlbum (Salbum) ;

// Redirect to list of albums
return Sthis->redirect () —>toRoute (’album’) ;

}

return array ('’ form’ => S$form);
Y

After adding the AlbumForm to the use list, we implement addAction (). Let’s look at the addAction () code
in a little more detail:

Sform = new AlbumForm();

r
Sform->submit->setValue ('Add’) ;

‘We instantiate AlbumForm and set the label on the submit button to “Add”. We do this here as we’ll want to re-use the
form when editing an album and will use a different label.

Srequest = Sthis->getRequest ();

if (Srequest->isPost()) {
Salbum = new Album();
Sform->setInputFilter ($album->getInputFilter());
Sform->setData ($Srequest—->getPost ());

if (Sform->isvValid()) {

If the Request object’s isPost () method is true, then the form has been submitted and so we set the form’s
input filter from an album instance. We then set the posted data to the form and check to see if it is valid using the
isValid () member function of the form.

28 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

$album->exchangeArray ($Sform->getData());
Sthis->getAlbumTable () —>saveAlbum($album) ;

If the form is valid, then we grab the data from the form and store to the model using saveAlbum ().

// Redirect to list of albums
return Sthis->redirect () ->toRoute (’album’);

After we have saved the new album row, we redirect back to the list of albums using the Redirect controller plugin.

Iy

return array ('’ form’ => Sform);

=z

Finally, we return the variables that we want assigned to the view. In this case, just the form object. Note that Zend
Framework 2 also allows you to simply return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

<?php
// module/Album/view/album/album/add.phtml:

stitle = 'Add new album’;

Sthis—->headTitle (Stitle);

?>

<hl><?php echo Sthis->escapeHtml (S$title); ?></hl>

<?php

Sform = Sthis->form;

Sform->setAttribute (’action’, S$this->url(’album’, array(’action’ => ’add’)));

Sform->prepare();

echo $this—>form()->openTag ($form);

echo $this->formHidden ($form->get ('1id’));
echo $this->formRow (Sform->get ("title’));
echo $this->formRow (Sform->get ("artist’));
echo $this->formSubmit (Sform->get (’/ submit’));
echo $this->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework provides some view helpers to make
this a little easier. The form () view helper has an openTag () and closeTag () method which we use to open
and close the form. Then for each element with a label, we can use formRow (), but for the two elements that are
standalone, we use formHidden () and formSubmit ().

You should now be able to use the “Add new album” link on the home page of the application to add a new album
record.

9.2 Editing an album

Editing an album is almost identical to adding one, so the code is very similar. This time we use editAction () in
the AlbumController:

// module/Album/src/Album/AlbumController.php:
Y

// Add content to this method:
public function editAction()

{

$id = (int) S$this->params()->fromRoute (’id’, 0);

9.2. Editing an album 29

Zend Framework 2 Documentation, Release 2.0.0

if (!Sid) {
return Sthis->redirect () ->toRoute (’album’, array (
"action’ => ’add’
)) i
}
Salbum = S$this->getAlbumTable ()->getAlbum($id);
m = new AlbumForm() ;
m—>bind (Salbum) ;
Sform->get (' submit’)->setAttribute ('’ value’, ’'Edit’);

o

Srequest = $this->getRequest () ;

quest—->isPost ()) {

»rm—>setInputFilter (Salbum->getInputFilter());
Sform->setData (Srequest->getPost ());

if (Sform->isvValid()) {
Sthis—->getAlbumTable () —>saveAlbum (Salbum) ;

// Redirect to list of albums
return Sthis->redirect () —>toRoute (’album’) ;

return array
rid’ => $id,
"form’ =>

)i
Y/

This code should look comfortably familiar. Let’s look at the differences from adding an album. Firstly, we look for
the id that is in the matched route and use it to load the album to be edited:

$id = (int) S$this->params()->fromRoute (’id’, 0);
if (!5id) |
return S$this->redirect () ->toRoute (’album’, array(
"action’ => ’"add’
))i
}
Salbum = S$this->getAlbumTable () ->getAlbum($id);

params is a controller plugin that provides a convenient way to retrieve parameters from the matched route. We use
it to retrieve the id from the route we created in the modules’ module.config.php. If the id is zero, then we
redirect to the add action, otherwise, we continue by getting the album entity from the database.

Sform = new AlbumForm() ;
Sform->bind (Salbum) ;
Sform->get (/ submit’)->setAttribute (' value’, ’'Edit’);

The form’s bind () method attaches the model to the form. This is used in two ways:
When displaying the form, the initial values for each element are extracted from the model.
After successful validation in isValid(), the data from the form is put back into the model.

These operations are done using a hydrator object. There are a number of hydrators, but the default one
is Zend\Stdlib\Hydrator\ArraySerializable which expects to find two methods in the model:
getArrayCopy () and exchangeArray (). We have already written exchangeArray () inour Album entity,
so just need to write getArrayCopy ():

30 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

// module/Album/src/Album/Model/Album.php:

// .
public function exchangeArray ($data)
{
Sthis->id = (isset (Sdatal[’i1d’])) ? Sdatal[’id’] : null;
Sthis—->artist = (isset ($Sdata[’artist’])) ? Sdata[’artist’] : null;
Sthis->title = (isset ($Sdatal[’title’])) ? Sdatal[’title’] : null;

// Add the following method:
public function getArrayCopy ()
{

return get_object_vars (Sthis);
//

As a result of using bind () with its hydrator, we do not need to populate the form’s data back into the $album as
that’s already been done, so we can just call the mappers’ saveAlbum () to store the changes back to the database.

The view template, edit . phtml, looks very similar to the one for adding an album:

<?php
// module/Album/view/album/album/edit.phtml :

Stitle = "Edit album’;

Sthis—->headTitle (Stitle);

2>

<hl><?php echo S$this->escapeHtml (Stitle); ?></hl>

<?php
Sform = Sthis->form;
Sform->setAttribute (action’, S$this->url (
"album’,
array (
"action’ => ’edit’,
rid’ => S$this->id,

)) i

Sform->prepare () ;

echo $this—>form()->openTag ($form);

echo $this->formHidden ($form->get ('1id’));
echo $this->formRow (Sform->get ("title’));
echo $this->formRow ($Sform->get ("artist’));
echo $this->formSubmit (Sform->get (’/ submit’));
echo S$this->form()->closeTag();

The only changes are to use the ‘Edit Album’ title and set the form’s action to the ‘edit’ action too.

You should now be able to edit albums.

9.3 Deleting an album

To round out our application, we need to add deletion. We have a Delete link next to each album on our list page and
the naive approach would be to do a delete when it’s clicked. This would be wrong. Remembering our HTTP spec,
we recall that you shouldn’t do an irreversible action using GET and should use POST instead.

9.3. Deleting an album 31

Zend Framework 2 Documentation, Release 2.0.0

We shall show a confirmation form when the user clicks delete and if they then click “yes”, we will do the deletion.
As the form is trivial, we’ll code it directly into our view (Zend\Form is, after all, optional!).

Let’s start with the action code in AlbumController: :deleteAction():

// module/Album/src/Album/AlbumController.php:

Y
// Add content to the following method:
public function deleteAction()
{
Sid = (int) Sthis->params ()->fromRoute (’id’, 0);
if (!sid) |
return Sthis->redirect () ->toRoute (’album’);
}
Srequest = S$this->getRequest () ;
if (Srequest->isPost()) {
$del = Srequest->getPost (’del’, ’'No’);
if (Sdel == ’"Yes’) {
Sid = (int) Srequest->getPost(’id’);
Sthis->getAlbumTable () ->deleteAlbum($id) ;
}
// Redirect to list of albums
return Sthis->redirect () —>toRoute (’album’);
}
return array (
rid’ => $id,
"album’ => S$this->getAlbumTable () ->getAlbum($id)
)
}
Y

As before, we get the id from the matched route,and check the request object’s i sPost () to determine whether
to show the confirmation page or to delete the album. We use the table object to delete the row using the
deleteAlbum () method and then redirect back the list of albums. If the request is not a POST, then we retrieve the
correct database record and assign to the view, along with the id.

The view script is a simple form:

<?php
// module/Album/view/album/album/delete.phtml:

Stitle = ’'Delete album’;

Sthis->headTitle (Stitle);

2>

<hl><?php echo S$this->escapeHtml (Stitle); ?></hl>

<p>Are you sure that you want to delete
" <?php echo $this->escapeHtml (Salbum->title); ?>' by
" <?php echo S$this->escapeHtml ($album—>artist); ?>'?

</p>

<?php

Surl = Sthis->url (’album’, array(
"action’ => ’delete’,
rid’ => Sthis->id,

))i

?>

32 Chapter 9. Forms and actions

Zend Framework 2 Documentation, Release 2.0.0

<form action="<?php echo Surl; ?>" method="post">

<div>
<input type="hidden" name="id" value="<?php echo (int) Salbum->id; 2>" />
<input type="submit" name="del" value="Yes" />
<input type="submit" name="del" value="No" />

</div>

</form>

In this script, we display a confirmation message to the user and then a form with “Yes” and “No” buttons. In the

action, we checked specifically for the “Yes” value when doing the deletion.

9.4 Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/ doesn’t display the list of albums.

This is due to a route set up in the Application module’s module.config.php. To change it, open

module/Application/config/module.config.php and find the home route:

"home’ => array (
"type’ => ’Zend\Mvc\Router\Http\Literal’,
"options’ => array(
"route’ = /",
"defaults’ => array(
"controller’ => ’'Application\Controller\Index’,
"action’ => ’index’,
)I
)I
)I

Change the controller from Application\Controller\Index to Album\Controller\Album:

"home’ => array (
"type’ => ’Zend\Mvc\Router\Http\Literal’,
"options’ => array (
"route’ = /",
"defaults’ => array(
"controller’ => 'Album\Controller\Album’, // <-- change here

"action’ => ’index’,

)y
),

That’s it - you now have a fully working application!

9.4. Ensuring that the home page displays the list of albums

33

http://zf2-tutorial.localhost/

Zend Framework 2 Documentation, Release 2.0.0

34 Chapter 9. Forms and actions

CHAPTER
TEN

CONCLUSION

This concludes our brief look at building a simple, but fully functional, MVC application using Zend Framework 2.

35

Zend Framework 2 Documentation, Release 2.0.0

36 Chapter 10. Conclusion

CHAPTER
ELEVEN

LEARNING DEPENDENCY INJECTION

11.1 Very brief introduction to Di.

Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes of
this quickstart, we’ll explain the act of injecting dependencies simply with this below code:

Sb = new B(new A());

Above, A is a dependency of B, and A was injected into B. If you are not familar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy, Ralph Schindler’s Learning DI, or
Fabien Potencier’s Series on DI.

11.2 Very brief introduction to Di Container.

TBD.

11.3 Simplest usage case (2 classes, one consumes the other)

In the simplest use case, a developer might have one class (2) that is consumed by another class (B) through the
constructor. By having the dependency injected through the constructor, this requires an object of type A be instantiated
before an object of type B so that A can be injected into B.

namespace My {

class A
{

/* Some useful functionality =/

}

class B
{
protected $a = null;
public function __ _construct (A $a)
{
Sthis—->a = $Sa;

}

37

http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://fabien.potencier.org/article/11/what-is-dependency-injection

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

To create B by hand, a developer would follow this work flow, or a similar workflow to this:

Sb = new B(new A());

If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY up the code. While there are several ways to do this, using a dependency injection container is
one of these solutions. With Zend’s dependency injection container Zend\Di\DependencyInjector, the above
use case can be taken care of with no configuration (provided all of your autoloading is already configured properly)
with the following usage:

= new Zend\Di\DependencyInjector;
Sb = $di->get ('My\B’); // will produce a B object that is consuming an A object

Moreover, by using the DependencyInjector: :get () method, you are ensuring that the same exact object
is returned on subsequent calls. To force new objects to be created on each and every request, one would use the
DependencyInjector: :newInstance () method:

$b = $di->newInstance ('My\B’);

Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):

namespace My {

class A
{
protected Susername = null;
protected S$Spasswc = null;
public function __ construct (Susername, S$password)

{
Sthis->username =
$this->password = $p

class B
{
protected $a = null;
public function __ _construct (A Sa)

{

Sthis->a a;

class C

{
protected $b = null;
public function __construct (B $b)

{

Sthis->b = $b;

With the above, we need to ensure that our DependencyInjector is capable of seeing the A class with a few con-
figuration values (which are generally scalar in nature). To do this, we need to interact with the InstanceManager:

38 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

= new Zend\Di\DependencyInjector;
di->getInstanceManager () —->setProperty (’A’, ’'username’, ’'MyUsernameValue’);
$di->getInstanceManager () —>setProperty ('A’, ’'password’, ’'MyHardToGuessPassword$$#’);

Now that our container has values it can use when creating A, and our new goal is to have a C object that consumes B
and in turn consumes A, the usage scenario is still the same:

Sc = sdi->get ("My\C’);
// or

$c = $di->newlInstance ("'My\C’);

Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default
DependencyInjector object ($di = new Zend\Di\DependencyInjector () without any configura-
tion to the InstanceManager), we could do the following:

Sparameters = array (
"username’ => "MyUsernameValue’,
"password’ => ’'MyHardToGuessPassword%S$#’,

)i

Sc = $di->get ('My\C’, S$Sparameters);

// or

$c = $di->newlInstance ('My\C’, S$parameters);

Constructor injection is not the only supported type of injection. The other most popular method of injection is also
supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our previous
example with the exception, for example, of our B class now looking like this:

namespace My {
class B
{
protected Sa;
public function setA (A Sa)
{

$this->a = Sa;

}

Since the method is prefixed with set, and is followed by a capital letter, the DependencyInjector knows that
this method is used for setter injection, and again, the use case $c = $di->get (' C’), will once again know how
to fill the dependencies when needed to create an object of type C.

Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.

11.4 Simplest Usage Case Without Type-hints

If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does practice
dependency injection, you can still use the DependencyInjector, but you might find you need to describe your
dependencies explicitly. To do this, you will need to interact with one of the definitions that is capable of letting a devel-
oper describe, with objects, the map between classes. This particular definition is called the BuilderDefinition
and can work with, or in place of, the default Runt imeDefinition.

Definitions are a part of the DependencyInjector that attempt to describe the relationship between classes so
that DependencyInjector: :newInstance () and DependencyInjector: :get () can know what the
dependencies are that need to be filled for a particular class/object. With no configuration, DependencyInjector

11.4. Simplest Usage Case Without Type-hints 39

20

21

22

23

24

25

26

27

28

29

31

Zend Framework 2 Documentation, Release 2.0.0

will use the Runt imeDefinition which uses reflection and the type-hints in your code to determine the depen-
dency map. Without type-hints, it will assume that all dependencies are scalar or required configuration parameters.

The BuilderDefinition, which can be used in tandem with the Runt imeDefinition (technically, it can
be used in tandem with any definition by way of the AggregateDefinition), allows you to programmatically
describe the mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that
class B now looks like this:

namespace My {
class B
{
protected S$a;
public function setA(S5a)

You’ll notice the only change is that setA now does not include any type-hinting information.

use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

// Describe this class:

Sbuilder = new Definition\BuilderDefinition;
Shbuilder->addClass ((Sclass = new Builder\PhpClass));

Sclass—->setName (' My\B’) ;
—>addInjectableMethod (($im = new Builder\InjectibleMethod));

S~laac
sCclass

Sim—>setName (/ setA’);
$im->addParameter ('a’, 'My\A’);

// Use both our Builder Definition as well as the default
// RuntimeDefinition, builder first

SaDef = new Definition\AggregateDefinition;
SaDef->addDefinition (Sbuilder);

SaDef->addDefinition (new Definition\RuntimeDefinition);

// Now make sure the DependencylInjector understands it
Sdi = new DependencyInjector;

Sdi->setDefinition ($aDef);

// and finally, create C

Sparameters = array (
"username’ => "MyUsernameValue’,
"password’ => ’'MyHardToGuessPassword%S$#’,
)i
$c = $di->get ('My\C’, Sparameters);

This above usage scenario provides that whatever the code looks like, you can ensure that it works with the dependency
injection container. In an ideal world, all of your code would have the proper type hinting and/or would be using a
mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a full definition
that is capable of instantiating all of the objects you might require.

40 Chapter 11. Learning Dependency Injection

Zend Framework 2 Documentation, Release 2.0.0

11.5 Simplest usage case with Compiled Definition

Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box,
the DependencyInjector uses a RuntimeDefinition which does all class map resolution via PHP’s
Reflection extension. Couple that with the fact that PHP does not have a true application layer capable of storing
objects in-memory between requests, and you get a recipe that is less performant than similar solutions you’ll find in
Java and .Net (where there is an application layer with in-memory object storage.)

To mitigate this shortcoming, Zend\D1 has several features built in capable of pre-compiling the most expensive tasks
that surround dependency injection. It is worth noting that the Runt imeDefition, which is used by default, is the
only definition that does lookups on-demand. The rest of the Definition objects are capable of being aggregated
and stored to disk in a very performant way.

Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships and
parameter/property needs of each class that is to be instantiated. This Definition would have been built as part of
some deployment or packaging task by this 3rd party. When this is not the case, you can create these Definitions
via any of the Definition types provided with the exception of the Runt imeDefinition. Here is a breakdown
of the job of each definition type:

* AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it
looks it up in the order the definitions were provided to this aggregate.

e ArrayDefinition- This definition takes an array of information and exposes it via the interface provided by
Zend\Di\Definition suitable for usage by DependencyInjector or an AggregateDefinition

e BuilderDefinition- Creates a definition based on an object graph consisting of various
Builder\PhpClass objects and Builder\InectionMethod objects that describe the mapping needs
of the target codebase and ...

e Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).

The following is an example of producing a definition viaa DirectoryScanner:

Scompiler = new Zend\Di\Definition\Compiler ();
$compiler->addCodeScannerDirectory (

new Zend\Code\Scanner\ScannerDirectory ('path/to/library/My/")
)i

$definition = $compiler->compile();

This definition can then be directly used by the DependencyInjector (assuming the above A, B, C scenario
was actually a file per class on disk):

$di = new Zend\Di\DependencyInjector;
i->setDefinition($definition);
i->getInstanceManager () ->setProperty ('My\A’, ’username’, ’'foo’);
->getInstanceManager () —>setProperty (' My\A’, ’password’, ’'bar’);
$c = S$di->get ('My\C’);

One strategy for persisting these compiled definitions would be the following:

if (!file_exists(__DIR__ . ’/di-definition.php’) && S$isProduction) {
Scompiler = new Zend\Di\Definition\Compiler ();

Scompiler—->addCodeScannerDirectory (
new Zend\Code\Scanner\ScannerDirectory (’'path/to/library/My/")
)i
Sdefinition = $compiler->compile();
file_put_contents (
__DIR__ . ’"/di-definition.php’,

11.5. Simplest usage case with Compiled Definition 41

Zend Framework 2 Documentation, Release 2.0.0

' <?php return ’ . var_export ($definition->toArray(), true) . ’;’
)
} else {
Sdefinition = new Zend\Di\Definition\ArrayDefinition (
include _ DIR__ . ’/di-definition.php’

)i

// Sdefinition can now be used; in a production system it will be written
// to disk.

Since Zend\Code\Scanner does not include files, the classes contained within are not loaded into memory. In-
stead, Zend\Code\ Scanner uses tokenization to determine the structure of your files. This makes this suitable to
use this solution during development and within the same request as any one of your application’s dispatched actions.

11.6 Creating a precompiled definition for others to use

If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so that
others can utilize this Definition without having to Reflect it via the RuntimeDefintion, or create it via
the Compiler. To do this, use the same technique as above. Instead of writing the resulting array to disk, you would

write the information into a definition directly, by way of Zend\CodeGenerator:

// First, compile the information
Scompiler = new Zend\Di\Definition\Compiler ();

Scompiler->addCodeScannerDirectory (new Zend\Code\Scanner\DirectoryScanner (_ DIR_

Sdefinition = $compiler->compile();

// Now, create a Definition class for this information
ScodeGenerator = new Zend\CodeGenerator\Php\PhpFile();
ScodeGenerator->setClass ((Sclass = new Zend\CodeGenerator\Php\PhpClass()));
Sclass—>setNamespaceName (' My’) ;
Sclass—>setName ('DiDefinition’);
Sclass->setExtendedClass (' \Zend\Di\Definition\ArrayDefinition’);
Sclass—>setMethod (array (

"name’ => ’__ construct’,

"body’ => ’'parent::__construct (’ . var_export ($definition->toArray (), true)
V)i
file_put_contents(__DIR . ’/My/DiDefinition.php’, ScodeGenerator—->generate());

11.7 Using Multiple Definitions From Multiple Sources

/My /"))

I),.!

In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from

multiple places:

use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

$di = new DependencyInjector;
SdiDefAggregate = new Definition\Aggregate();

// first add in provided Definitions, for example

42 Chapter 11. Learning Dependency Injection

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Zend Framework 2 Documentation, Release 2.0.0

SdiDefAggregate->addDefinition (new ThirdParty\Dbal\DiDefinition());
SdiDefAggregate->addDefinition (new Zend\Controller\DiDefinition());

// for code that does not have TypeHints
Sbuilder = new Definition\BuilderDefinition();
Shbuilder—->addClass ((Sclass = Builder\PhpClass));
Sclass->addInjectionMethod (

($injectMethod = new Builder\InjectionMethod())
)i
SinjectMethod->setName (' injectImplementation’);
SinjectMethod->addParameter (
"implementation’, ’Class\For\Specific\Implementation’
)i

// now, your application code
Scompiler = new Definition\Compiler ()
Scompiler->addCodeScannerDirectory (

new Zend\Code\Scanner\DirectoryScanner (_ DIR . ' /Rpp/’)
)i
SappDefinition = S$compiler->compile();
$diDefAggregate->addDefinition ($SappbDefinition);

// now, pass 1in properties
$im = S$di->getInstanceManager () ;

// this could come from Zend\Config\Config::toArray
SpropertiesFromConfig = array (
"ThirdParty\Dbal\DbAdapter’ => array (
"username’ => ’'someUsername’,
"password’ => ’'somePassword’
)I
"Zend\Controller\Helper\ContentType’ => array (
"default’ => ’"xhtml5’
)I
)i

Sim->setProperties (SpropertiesFromConfig) ;

11.8 Generating Service Locators

In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?

The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance,
and generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.

The method getCodeGenerator () returns an instance of Zend\CodeGenerator\Php\PhpFile, from
which you can then write a class file with the new Service Locator. Methods on the Generator class allow you
to specify the namespace and class for the generated Service Locator.

As an example, consider the following:

use Zend\Di\ServiceLocator\Generator;

// 8di is a fully configured DI instance

11.8. Generating Service Locators 43

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

Zend Framework 2 Documentation, Release 2.0.0

Sgenerator = new Generator ($di);

Sgenerator->setNamespace (' Application’)
->setContainerClass (' Context’);

Sfile = S$generator->getCodeGenerator () ;

Sfile->setFilename(___DIR__ . ’/../Application/Context.php’);

Sfile->write();

The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:

<?php
namespace Application;
use Zend\Di\Servicelocator;

class Context extends ServiceLocator

{

public function get ($name, array Sparams = array())
{
switch (Sname) {
case ’composed’ :
case ’'My\ComposedClass’:
return S$this->getMyComposedClass();

case ’'struct’:
case 'My\Struct’:
return Sthis->getMyStruct();

default:
return parent::get (Sname, Sparams);

public function getComposedClass ()
{
if (isset (Sthis->services[’My\ComposedClass’])) {
return S$this->services[’My\ComposedClass’];

Sobject = new \My\ComposedClass();
Sthis->services[’My\ComposedClass’] = S$object;
return Sobject;

}

public function getMyStruct ()

{
if (isset($this->services[’My\Struct’])) {

return Sthis->services[’My\Struct’];

Sobject = new \My\Struct () ;
Sthis->services[’My\Struct’] = S$object;
return Sobject;

public function getComposed()

44 Chapter 11. Learning Dependency Injection

48

49

50

51

52

53

54

55

56

Zend Framework 2 Documentation, Release 2.0.0

return S$this->get ('My\ComposedClass’) ;

public function getStruct ()
{

return Sthis->get ('My\Struct’

}

)i

To use this class, you simply consume it as you would a DI container:

Scontainer = new Application\Context;

Sstruct = $container->get (’struct’);

// My\Struct instance

One note about this functionality in its current incarnation. Configuration is per-environment only at this time. This
means that you will need to generate a container per execution environment. Our recommendation is that you do so,
and then in your environment, specify the container class to use.

11.8. Generating Service Locators

45

Zend Framework 2 Documentation, Release 2.0.0

46 Chapter 11. Learning Dependency Injection

CHAPTER
TWELVE

INTRODUCTION

The Zend\Authentication component provides an API for authentication and includes concrete authentication
adapters for common use case scenarios.

Zend\Authentication is concerned only with authentication and not with authorization. Authentication is
loosely defined as determining whether an entity actually is what it purports to be (i.e., identification), based on some
set of credentials. Authorization, the process of deciding whether to allow an entity access to, or to perform operations
upon, other entities is outside the scope of Zend\Authent icat ion. For more information about authorization and
access control with Zend Framework, please see the Zend\Permissions\Acl component.

Note: There is no Zend\Authentication\Authentication class, instead the class
Zend\Authentication\AuthenticationService is provided. This class uses underlying authenti-
cation adapters and persistent storage backends.

12.1 Adapters

Zend\Authentication adapters are used to authenticate against a particular type of authentication service, such
as LDAP, RDBMS, or file-based storage. Different adapters are likely to have vastly different options and behaviors,
but some basic things are common among authentication adapters. For example, accepting authentication creden-
tials (including a purported identity), performing queries against the authentication service, and returning results are
common to Zend\Authentication adapters.

Each Zend\Authentication adapter class implements Zend\Authentication\Adapter\AdapterInterface.

This interface defines one method, authenticate (), that an adapter class must implement for performing an
authentication query. Each adapter class must be prepared prior to calling authenticate (). Such adapter
preparation includes setting up credentials (e.g., username and password) and defining values for adapter-specific
configuration options, such as database connection settings for a database table adapter.

The following is an example authentication adapter that requires a username and password to be set for authentication.
Other details, such as how the authentication service is queried, have been omitted for brevity:

use Zend\Authentication\Adapter\AdapterInterface;

class My\Auth\Adapter implements AdapterInterface
{
J ok k
* Sets username and password for authentication
*
* @return void
*/
public function __ construct ($Susername, S$password)

47

23

24

25

26

Zend Framework 2 Documentation, Release 2.0.0

/7

VAT
* Performs an authentication attempt
*
* @return \Zend\Authentication\Result
* @throws \Zend\Authentication\Adapter\Exception\ExceptionInterface
* If authentication cannot be performed
*/
public function authenticate()

{
/7

}

As indicated in its docblock, authenticate () must return an instance of Zend\Authentication\Result
(or of a class derived from Zend\Authentication\Result). If for some reason performing
an authentication query is impossible, authenticate () should throw an exception that derives from
Zend\Authentication\Adapter\Exception\ExceptionInterface.

12.2 Results

Zend\Authentication adapters return an instance of Zend\Authentication\Result with
authenticate () in order to represent the results of an authentication attempt. Adapters populate the
Zend\Authentication\Result object upon construction, so that the following four methods provide a basic
set of user-facing operations that are common to the results of Zend\Authentication adapters:

e isValid () - returns TRUE if and only if the result represents a successful authentication attempt

* getCode () - returns a Zend\Authentication\Result constant identifier for determining the type of
authentication failure or whether success has occurred. This may be used in situations where the developer
wishes to distinguish among several authentication result types. This allows developers to maintain detailed au-
thentication result statistics, for example. Another use of this feature is to provide specific, customized messages
to users for usability reasons, though developers are encouraged to consider the risks of providing such detailed
reasons to users, instead of a general authentication failure message. For more information, see the notes below.

* getIdentity () - returns the identity of the authentication attempt
* getMessages () - returns an array of messages regarding a failed authentication attempt

A developer may wish to branch based on the type of authentication result in order to perform more specific op-
erations. Some operations developers might find useful are locking accounts after too many unsuccessful password
attempts, flagging an IP address after too many nonexistent identities are attempted, and providing specific, customized
authentication result messages to the user. The following result codes are available:

use Zend\Authentication\Result;

Result: :SUCCESS

Result: :FAILURE

Result: :FAILURE_IDENTITY_NOT_FOUND
Result::FAILURE_IDENTITY_ AMBIGUOUS
Result: :FAILURE_CREDENTIAL_INVALID
Result: :FAILURE_UNCATEGORIZED

The following example illustrates how a developer may branch on the result code:

48 Chapter 12. Introduction

Zend Framework 2 Documentation, Release 2.0.0

// inside of AuthController / loginAction
Sresult = S$this->auth->authenticate (Sadapter);

switch (Sresult->getCode()) {

case Result::FAILURE_IDENTITY_NOT_FOUND:
/%% do stuff for nonexistent identity #*#*/
break;

case Result::FAILURE_CREDENTIAL_ INVALID:
/#** do stuff for invalid credential ##*/
break;

case Result::SUCCESS:
/*% do stuff for successful authentication xx/
break;

default:

/#*x do stuff for other failure *x*/
break;

12.3 Identity Persistence

Authenticating a request that includes authentication credentials is useful per se, but it is also important to support
maintaining the authenticated identity without having to present the authentication credentials with each request.

HTTP is a stateless protocol, however, and techniques such as cookies and sessions have been developed in order to
facilitate maintaining state across multiple requests in server-side web applications.

12.3.1 Default Persistence in the PHP Session

By default, Zend\Authentication provides persistent storage of the identity from a suc-

cessful authentication attempt using the PHP session. Upon a successful authentication at-
tempt, Zzend\Authentication\AuthenticationService: :authenticate () stores
the identity from the authentication result into persistent storage. Unless specified other-
wise, Zend\Authentication\AuthenticationService uses a storage class named

Zend\Authentication\Storage\Session, which, in turn, uses Zend\Session. A custom class may instead
be used by providing an object that implements Zend\Authentication\Storage\StorageInterface to
Zend\Authentication\AuthenticationService: :setStorage ().

Note: If automatic persistent storage of the identity is not appropriate for a particular use case, then developers
may forego using the Zend\Authentication\AuthenticationService class altogether, instead using an
adapter class directly.

Modifying the Session Namespace

Zend\Authentication\Storage\Session uses a session namespace of ‘Zend_Auth‘.
This namespace may be overridden by passing a different value to the constructor of
Zend\Authentication\Storage\Session, and this value is internally passed along to the
constructor of Zend\Session\Container. This should occur before authentication is attempted, since

12.3. Identity Persistence 49

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.0.0

Zend\Authentication\AuthenticationService::authenticate() performs the automatic
storage of the identity.

use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Storage\Session as SessionStorage;

Sauth = new AuthenticationService();

// Use ’someNamespace’ instead of ’Zend Auth’

Sauth->setStorage (new SessionStorage (’ someNamespace’));
VEE:

* @todo Set up the auth adapter, SauthAdapter

*/

// Authenticate, saving the result, and persisting the identity on

// success
Sresult = Sauth->authenticate ($SauthAdapter);

12.3.2 Implementing Customized Storage

Sometimes developers may need to use a different identity storage mechanism than that provided
by Zend\Authentication\Storage\Session. For such cases developers may simply imple-
ment Zend\Authentication\Storage\StorageInterface and supply an instance of the class to
Zend\Authentication\AuthenticationService: :setStorage ().

Using a Custom Storage Class

In order to use an identity persistence storage class other than Zend\Authentication\Storage\Session,a
developer implements Zend\Authentication\Storage\StorageInterface:

use Zend\Authentication\Storage\StorageInterface;

class My\Storage implements Storagelnterface
{
J ok k
* Returns true if and only if storage is empty
*
* @throws \Zend\Authentication\Exception\ExceptionInterface
* If it is impossible to
* determine whether storage 1is empty
* @return boolean
*/
public function isEmpty ()
{
J hk
* @todo implementation

*/

J ok k
* Returns the contents of storage
*
* Behavior 1s undefined when storage 1s empty.
*

* @throws \Zend\Authentication\Exception\ExceptionInterface

50 Chapter 12. Introduction

26

27

28

29

31

32

34

35

37

38

40

41

42

43

44

45

46

4

48

49

50

51

52

53

54

55

56

57

58

59

60

62

63

64

65

66

67

Zend Framework 2 Documentation, Release 2.0.0

* If reading contents from storage 1s impossible
* @return mixed

*/

public function read()
{
VA
* @todo implementation

*/

J %k
* Writes Scontents to storage
*
* @param mixed Scontents
* @throws \Zend\Authentication\Exception\ExceptionInterface
* If writing Scontents to storage is impossible
* @return void

*/

public function write (Scontents)
{
J *k
* @todo implementation

*/

J ok k
* Clears contents from storage
*
* @throws \Zend\Authentication\Exception\ExceptionInterface

* If clearing contents from storage 1is impossible

* @return void

*/

public function clear ()
{
J *k
* @todo implementation

*/

In order to use this custom storage class, Zend\Authentication\AuthenticationService: :setStorage ()

is invoked before an authentication query is attempted:

use Zend\Authentication\AuthenticationService;

// Instruct AuthenticationService to use the custom storage class
Sauth = new AuthenticationService();

Sauth—->setStorage (new My\Storage());
VEz:
* @todo Set up the auth adapter, SauthAdapter

*/

// Authenticate, saving the result, and persisting the identity on

12.3. ldentity Persistence

51

Zend Framework 2 Documentation, Release 2.0.0

// success
Sresult = Sauth->authenticate ($SauthAdapter);

12.4 Usage

There are two provided ways to use Zend\Authentication adapters:
. indirectly, through Zend\Authentication\AuthenticationService: :authenticate ()
. directly, through the adapter’s authenticate () method

The following example illustrates how to use a Zend\Authentication adapter indirectly, through the use of the
Zend\Authentication\AuthenticationService class:

use Zend\Authentication\AuthenticationService;

// instantiate the authentication service
Sauth = new AuthenticationService();

// Set up the authentication adapter
SauthAdapter = new My\Auth\Adapter (Susername, S$Spassword);

// Attempt authentication, saving the result

Sresult = $Sauth->authenticate ($SauthAdapter);
if (!Sresult—->isValid()) {
// Authentication failed; print the reasons why
foreach (Sresult->getMessages () as Smessage) {
echo "Smessage\n";

}
} else {
// Authentication succeeded; the identity (Susername) 1is stored
// in the session
// Sresult->getIdentity () === Sauth->getIdentity()
== $

)
// Sresult->getIdentity() = username

Once authentication has been attempted in a request, as in the above example, it is a simple matter to check whether a
successfully authenticated identity exists:

use Zend\Authentication\AuthenticationService;

Sauth = new AuthenticationService();

J ko
* @todo Set up the auth adapter, SauthAdapter
*/

if (Sauth->hasIdentity()) {
// Identity exists; get it
Sidentity = Sauth->getIdentity();

To remove an identity from persistent storage, simply use the clearIdentity () method. This typically would be
used for implementing an application “logout” operation:

52 Chapter 12. Introduction

Zend Framework 2 Documentation, Release 2.0.0

Sauth->clearIdentity () ;

When the automatic use of persistent storage is inappropriate for a particular use case, a developer may simply
bypass the use of the Zend\Authentication\AuthenticationService class, using an adapter class di-
rectly. Direct use of an adapter class involves configuring and preparing an adapter object and then calling its
authenticate () method. Adapter-specific details are discussed in the documentation for each adapter. The

following example directly utilizes My \Auth\Adapter:

// Set up the authentication adapter

SauthAdapter = new My\Auth\Adapter (Susername, Spassword);

// Attempt authentication, saving the result
Sresult = SauthAdapter—->authenticate();

if (!Sresult—->isValid()) {
// Authentication failed; print the reasons why
foreach ($result->getMessages () as Smessage) {
echo " \n";

}
} else {
// Authentication succeeded
// Sresult->getIdentity () === Susername

12.4. Usage

53

Zend Framework 2 Documentation, Release 2.0.0

54 Chapter 12. Introduction

CHAPTER
THIRTEEN

DATABASE TABLE AUTHENTICATION

13.1 Introduction

Zend\Authentication\Adapter\DbTable provides the ability to authenticate against credentials stored
in a database table. Because Zend\Authentication\Adapter\DbTable requires an instance of
Zend\Db\Adapter\Adapter to be passed to its constructor, each instance is bound to a particular database
connection. Other configuration options may be set through the constructor and through instance methods, one for
each option.

The available configuration options include:

 tableName: This is the name of the database table that contains the authentication credentials, and against
which the database authentication query is performed.

¢ identityColumn: This is the name of the database table column used to represent the identity. The identity
column must contain unique values, such as a username or e-mail address.

¢ credential Column: This is the name of the database table column used to represent the credential. Under a
simple identity and password authentication scheme, the credential value corresponds to the password. See also
the credentialTreatment option.

¢ credentialTreatment: In many cases, passwords and other sensitive data are encrypted, hashed, encoded, ob-
scured, salted or otherwise treated through some function or algorithm. By specifying a parameterized treatment
string with this method, such as ‘MD5 (?) ‘ or ‘PASSWORD (?) , a developer may apply such arbitrary SOL upon
input credential data. Since these functions are specific to the underlying RDBMS, check the database manual
for the availability of such functions for your database system.

Basic Usage

As explained in the introduction, the Zend\Authentication\Adapter\DbTable constructor requires an in-
stance of Zend\Db\Adapter\Adapter that serves as the database connection to which the authentication adapter
instance is bound. First, the database connection should be created.

The following code creates an adapter for an in-memory database, creates a simple table schema, and inserts a row
against which we can perform an authentication query later. This example requires the PDO SQLite extension to be
available:

use Zend\Db\Adapter\Adapter as DbAdapter;

// Create a SQLite database connection

SdbAdapter = new DbAdapter (array (
"driver’ => ’'Pdo_Sqglite’,
"database’ => ’'path/to/sglite.db’

55

20
21
22
23

24

Zend Framework 2 Documentation, Release 2.0.0

)) i

// Build a simple table creation query
SsglCreate = ’'CREATE TABLE [users] (’
" [id] INTEGER NOT NULL PRIMARY KEY, '
" [username] VARCHAR(50) UNIQUE NOT NULL, '
" [password] VARCHAR(32) NULL, '
" [real_name] VARCHAR (150) NULL)’;

// Create the authentication credentials table
$dbAdapter->query ($SsglCreate) ;

// Build a query to insert a row for which authentication may succeed
$sglInsert = "INSERT INTO users (username, password, real_name)
"VALUES (’'my_username’, ’'my_password’, ’'My Real Name’)";

"

// Insert the data
SdbAdapter—->query (S$Ssgllnsert);

With the database connection and table data available, an instance of
Zend\Authentication\Adapter\DbTable may be created. Configuration option values may be passed to
the constructor or deferred as parameters to setter methods after instantiation:

use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// Configure the instance with constructor parameters...
SauthAdapter = new AuthAdapter (SdbAdapter,

"users’,

"username’,

"password’

)i

// ...or configure the instance with setter methods
SauthAdapter = new AuthAdapter (SdbAdapter);

$SauthAdapter
->setTableName (' users’)
—>setIdentityColumn (’ username’)
—->setCredentialColumn (' password’)

At this point, the authentication adapter instance is ready to accept authentication queries. In order to formulate an
authentication query, the input credential values are passed to the adapter prior to calling the authenticate ()
method:

// Set the input credential values (e.g., from a login form)
SauthAdapter

—->setIdentity ('my_username’)

—->setCredential ('my_password’)

// Perform the authentication query, saving the result

In addition to the availability of the getIdentity () method upon the authentication result object,
Zend\Authentication\Adapter\DbTable also supports retrieving the table row upon authentication suc-
cess:

56 Chapter 13. Database Table Authentication

23

24

25

26

Zend Framework 2 Documentation, Release 2.0.0

// Print the identity
echo Sresult->getIdentity() . "\n\n";

// Print the result row
print_r (SauthAdapter—->getResultRowObject ()) ;

/% Output:
my_username

Array

(
[id] => 1
[username] => my_username
[password] => my_password
[real_name] => My Real Name

)

Since the table row contains the credential value, it is important to secure the values against unintended access.

13.2 Advanced Usage: Persisting a DbTable Result Object

By default, Zend\Authentication\Adapter\DbTable returns the identity supplied back to the auth object
upon successful authentication. Another use case scenario, where developers want to store to the persistent storage
mechanism of Zend\Authentication an identity object containing other useful information, is solved by using
the getResultRowObject () method to return a stdClass object. The following code snippet illustrates its use:

// authenticate with Zend\Authentication\Adapter\DbTable
Sresult = $this->_auth->authenticate (Sadapter);

if (Sresult->isvalid()) {
// store the identity as an object where only the username and
// real_name have been returned
Sstorage = S$this->_auth->getStorage();
Sstorage->write ($adapter—->getResultRowObject (array (
"username’,
"real_name’,

)))i

// store the identity as an object where the password column has
// been omitted
Sstorage->write ($Sadapter—->getResultRowObject (

null,
"password’
))i
VA Y4
} else {
VA

13.2. Advanced Usage: Persisting a DbTable Result Object 57

Zend Framework 2 Documentation, Release 2.0.0

13.3 Advanced Usage By Example

While the primary purpose of the Zend\Authentication component (and consequently
Zend\Authentication\Adapter\DbTable) is primarily authentication and not authorization, there
are a few instances and problems that toe the line between which domain they fit within. Depending on how you’ve
decided to explain your problem, it sometimes makes sense to solve what could look like an authorization problem
within the authentication adapter.

With that disclaimer out of the way, Zend\Authentication\Adapter\DbTable has some built in mecha-
nisms that can be leveraged for additional checks at authentication time to solve some common user problems.

use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// The status field value of an account 1s not equal to "compromised"
Sadapter = new AuthAdapter (Sdb,

"users’,

"username’,

"password’,
"MD5 (?) AND status != "compromised"’

)i

// The active field value of an account is equal to "TRUE"
Sadapter = new AuthAdapter (Sdb,

"users’,

"username’,

"password’,
"MD5 (?) AND active = "TRUE"'

)i

Another scenario can be the implementation of a salting mechanism. Salting is a term referring to a technique which
can highly improve your application’s security. It’s based on the idea that concatenating a random string to every
password makes it impossible to accomplish a successful brute force attack on the database using pre-computed hash
values from a dictionary.

Therefore, we need to modify our table to store our salt string:

$SsglAlter = "ALTER TABLE [users] "
"ADD COLUMN [password_salt] "
"AFTER [password]";

Here’s a simple way to generate a salt string for every user at registration:

= 0; S1 < 50; Si++) {
alt .= chr(rand (33, 126));

And now let’s build the adapter:

Sadapter = new AuthAdapter (Sdb,
"users’,
"username’,
"password’,
"MD5 (CONCAT (" staticSalt’, ?, password_salt))"

)i

Note: You can improve security even more by using a static salt value hard coded into your application. In the case
that your database is compromised (e. g. by an SQL injection attack) but your web server is intact your data is still
unusable for the attacker.

58 Chapter 13. Database Table Authentication

Zend Framework 2 Documentation, Release 2.0.0

Another alternative is to use the getDbSelect () method of the Zend\Authentication\Adapter\DbTable
after the adapter has been constructed. This method will return the Zend\Db\ Sgl\Select object instance it will
use to complete the authenticate () routine. It is important to note that this method will always return the same
object regardless if authenticate () has been called or not. This object will not have any of the identity or
credential information in it as those values are placed into the select object at authenticate () time.

An example of a situation where one might want to use the getDbSelect () method would check the status of a
user, in other words to see if that user’s account is enabled.

// Continuing with the example from above
Sadapter = new AuthAdapter (5db,
"users’,
"username’,
"password’,
"MD5 (?)”
)i

// get select object (by reference)
$select = $Sadapter->getDbSelect();
ect->where (’active = "TRUE"');

// authenticate, this ensures that users.active = TRUE
Sadapter->authenticate () ;

13.3. Advanced Usage By Example 59

Zend Framework 2 Documentation, Release 2.0.0

60 Chapter 13. Database Table Authentication

1

2

3

CHAPTER
FOURTEEN

DIGEST AUTHENTICATION

14.1 Introduction

Digest authentication is a method of HTTP authentication that improves upon Basic authentication by providing a way
to authenticate without having to transmit the password in clear text across the network.

This adapter allows authentication against text files containing lines having the basic elements of Digest authentication:
* username, such as “joe.user
¢ realm, such as “Administrative Area“
* MD?5 hash of the username, realm, and password, separated by colons

The above elements are separated by colons, as in the following example (in which the password is “somePassword”):

someUser:Some Realm:fdel7b91c3a510ecbaf7dbd37£59d4£8

14.2 Specifics

The digest authentication adapter, Zend\Authentication\Adapter\Digest, requires several input parame-
ters:

* filename - Filename against which authentication queries are performed
* realm - Digest authentication realm

 username - Digest authentication user

* password - Password for the user of the realm

These parameters must be set prior to calling authenticate ().

14.3 Ildentity

The digest authentication adapter returns a Zend\Authentication\Result object, which has been populated
with the identity as an array having keys of realm and username. The respective array values associated with these
keys correspond to the values set before authenticate () is called.

use Zend\Authentication\Adapter\Digest as AuthAdapter;

Sadapter = new AuthAdapter ($filename,

61

http://en.wikipedia.org/wiki/Digest_access_authentication
http://en.wikipedia.org/wiki/Basic_authentication_scheme

Zend Framework 2 Documentation, Release 2.0.0

result = Sadapter->authenticate();
Sidentity = S$result->getIdentity();

print_r(Sidentity);

/ *
Array
(
[realm] => Some Realm
[username] => someUser
)
*/

62

Chapter 14. Digest Authentication

CHAPTER
FIFTEEN

HTTP AUTHENTICATION ADAPTER

15.1 Introduction

Zend\Authentication\Adapter\Http provides a mostly-compliant implementation of RFC-2617, Basic and
Digest HTTP Authentication. Digest authentication is a method of HTTP authentication that improves upon Basic
authentication by providing a way to authenticate without having to transmit the password in clear text across the
network.

Major Features:
 Supports both Basic and Digest authentication.
* Issues challenges in all supported schemes, so client can respond with any scheme it supports.
* Supports proxy authentication.

* Includes support for authenticating against text files and provides an interface for authenticating against other
sources, such as databases.

There are a few notable features of RFC-2617 that are not implemented yet:
* Nonce tracking, which would allow for “stale” support, and increased replay attack protection.
* Authentication with integrity checking, or “auth-int”.

¢ Authentication-Info HTTP header.

15.2 Design Overview

This adapter consists of two sub-components, the HTTP authentication class itself, and the so-called “Resolvers.”
The HTTP authentication class encapsulates the logic for carrying out both Basic and Digest authentication. It uses
a Resolver to look up a client’s identity in some data store (text file by default), and retrieve the credentials from the
data store. The “resolved” credentials are then compared to the values submitted by the client to determine whether
authentication is successful.

15.3 Configuration Options

The Zend\Authentication\Adapter\Http class requires a configuration array passed to its constructor.
There are several configuration options available, and some are required:

63

http://tools.ietf.org/html/rfc2617
http://en.wikipedia.org/wiki/Basic_authentication_scheme
http://en.wikipedia.org/wiki/Digest_access_authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 15.1: Configuration Options

Option | Required Description

Name

ac- Yes Determines which authentication schemes the adapter will accept from the

cept_schemes client. Must be a space=separated list containing ‘basic’ and/or ‘digest’.

realm Yes Sets the authentication realm; usernames should be unique within a given
realm.

di- Yes, when Space-separated list of URIs for which the same authentication information

gest_domainscept_schemes is valid. The URIs need not all point to the same server.

contains digest

nonce_tin

1edes, when

Sets the number of seconds for which the nonce is valid. See notes below.

accept_schemes
contains digest
use_opaqueNo

algo- No

rithm
proxy_authNo

Specifies whether to send the opaque value in the header. True by default.
Specified the algorithm. Defaults to MDS5, the only supported option (for
now).

Disabled by default. Enable to perform Proxy authentication, instead of
normal origin server authentication.

Note: The current implementation of the nonce_timeout has some interesting side effects. This setting is sup-
posed to determine the valid lifetime of a given nonce, or effectively how long a client’s authentication information
is accepted. Currently, if it’s set to 3600 (for example), it will cause the adapter to prompt the client for new cre-
dentials every hour, on the hour. This will be resolved in a future release, once nonce tracking and stale support are
implemented.

15.4 Resolvers

The resolver’s job is to take a username and realm, and return some kind of credential value. Basic authentication
expects to receive the Base64 encoded version of the user’s password. Digest authentication expects to receive a hash
of the user’s username, the realm, and their password (each separated by colons). Currently, the only supported hash
algorithm is MD5.

Zend\Authentication\Adapter\Http relies on objects implementing
Zend\Authentication\Adapter\Http\ResolverInterface. A text file resolver class is included with
this adapter, but any other kind of resolver can be created simply by implementing the resolver interface.

15.4.1 File Resolver

The file resolver is a very simple class. It has a single property specifying a filename, which can also be passed to the
constructor. Its resolve () method walks through the text file, searching for a line with a matching username and
realm. The text file format similar to Apache htpasswd files:

<username>:<realm>:<credentials>\n

Each line consists of three fields - username, realm, and credentials - each separated by a colon. The credentials field
is opaque to the file resolver; it simply returns that value as-is to the caller. Therefore, this same file format serves both
Basic and Digest authentication. In Basic authentication, the credentials field should be written in clear text. In Digest
authentication, it should be the MDJ5 hash described above.

There are two equally easy ways to create a File resolver:

64 Chapter 15. HTTP Authentication Adapter

Zend Framework 2 Documentation, Release 2.0.0

use Zend\Authentication\Adapter\Http\FileResolver;

Spath = 'files/passwd.txt’;
Sresolver = new FileResolver (Spath);
or

$path = ’files/passwd.txt’;

= new FileResolver();
Sresolver—->setFile ($Spath);

If the given path is empty or not readable, an exception is thrown.

15.5 Basic Usage

First, set up an array with the required configuration values:

Sconfig = array(
"accept_schemes’ => ’'basic digest’,
"realm’ => 'My Web Site’,
"digest_domains’ => ' /members_only /my_account’,
"nonce_timeout’ => 3600,

)i

This array will cause the adapter to accept either Basic or Digest authentication, and will require authenticated access
to all the areas of the site under /members_only and /my_account. The realm value is usually displayed by the
browser in the password dialog box. The nonce_t imeout, of course, behaves as described above.

Next, create the Zend\Authentication\Adapter\Http object:

Sadapter = new Zend\Authentication\Adapter\Http (Sconfiqg);

Since we’re supporting both Basic and Digest authentication, we need two different resolver objects. Note that this
could just as easily be two different classes:

use Zend\Authentication\Adapter\Http\FileResolver;

ShasicResolver = new FileResolver();
SbasicResolver—->setFile (' files/basicPasswd.txt’);

SdigestResolver = new FileResolver();
SdigestResolver->setFile (' files/digestPasswd.txt’);

adapter—->setBasicResolver (SbasicResolver);
adapter->setDigestResolver ($digestResolver) ;

v Ay

Finally, we perform the authentication. The adapter needs a reference to both the Request and Response objects in
order to do its job:

assert (Srequest instanceof Zend\Http\Request);
assert (Sresponse instanceof Zend\Http\Response);

Sadapter—->setRequest ($request) ;
Sadapter—->setResponse (Sresponse) ;

Sresult = Sadapter->authenticate();
if (!Sresult->isvalid()) {
// Bad userame/password, or canceled password prompt

15.5. Basic Usage 65

Zend Framework 2 Documentation, Release 2.0.0

66 Chapter 15. HTTP Authentication Adapter

CHAPTER
SIXTEEN

LDAP AUTHENTICATION

16.1 Introduction

Zend\Authentication\Adapter\Ldap supports web application authentication with LDAP services. Its fea-
tures include username and domain name canonicalization, multi-domain authentication, and failover capabilities. It
has been tested to work with Microsoft Active Directory and OpenLDAP, but it should also work with other LDAP

service providers.

This documentation includes a guide on using Zend\Authentication\Adapter\Ldap, an exploration of its
API, an outline of the various available options, diagnostic information for troubleshooting authentication problems,

and example options for both Active Directory and OpenLDAP servers.

16.2 Usage

To incorporate Zend\Authentication\Adapter\Ldap authentication into your application quickly, even if

you’re not using Zend\Mvc, the meat of your code should look something like the following:

use Zend\Authentication\AuthenticationService;

use Zend\Authentication\Adapter\Ldap as AuthAdapter;
use Zend\Config\Reader\Ini as ConfigReader;

use Zend\Log\Logger;

use Zend\Log\Writer\Stream as LogWriter;

use Zend\Log\Filter\Priority as LogFilter;

Susername = $this->_request->getParam(’username’) ;

Spassword = $this->_request->getParam(’password’);

Sauth = new AuthenticationService();

Sconfig = new ConfigReader (’./ldap-config.ini’,’production’);

nfig->ldap->log_path;
nfig->ldap->toArray();
"log_path’]);

Sadapter = new AuthAdapter (Soptions,
Susername

Sresult = $Sauth->authenticate ($adapter);

67

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/
http://www.openldap.org/

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

Zend Framework 2 Documentation, Release 2.0.0

if (Slog_path) {

Smessages = Sresult->getMessages();

Slogger = new Logger;

Swriter = new LogWriter ($log_path);

Slogger—->addWriter (Swriter);

Sfilter = new LogFilter (Logger: :DEBUG);

Slogger—->addFilter (Sfilter);

foreach (Smessages as $1 => Smessage) {

if ($i-- > 1) { // Smessages[2] and up are log messages

Smessage = str_replace("\n", "\n ", Smessage);
Slogger->log("Ldap: $i: Smessage", Logger::DEBUG) ;

Of course, the logging code is optional, but it is highly recommended that you use a logger.
Zend\Authentication\Adapter\Ldap will record just about every bit of information anyone could want
in $messages (more below), which is a nice feature in itself for something that has a history of being notoriously
difficult to debug.

The Zend\Config\Reader\Ini code isused above to load the adapter options. Itis also optional. A regular array
would work equally well. The following is an example 1dap—-config.ini file that has options for two separate
servers. With multiple sets of server options the adapter will try each, in order, until the credentials are successfully
authenticated. The names of the servers (e.g., ‘serverl’ and ‘server2’) are largely arbitrary. For details regarding the
options array, see the Server Options section below. Note that Zend\Config\Reader\Ini requires that any
values with “equals” characters (=) will need to be quoted (like the DNs shown below).

[production]
ldap.log_path = /tmp/ldap.log

; Typical options for OpenLDAP

ldap.serverl.host = s0.foo.net
ldap.serverl.accountDomainName = foo.net
ldap.serverl.accountDomainNameShort = FOO
ldap.serverl.accountCanonicalForm = 3
ldap.serverl.username = "CN=userl,DC=foo,DC=net"
ldap.serverl.password = passl
ldap.serverl.baseDn = "OU=Sales,DC=foo,DC=net"

ldap.serverl.bindRequiresDn = true

; Typical options for Active Directory

ldap.server2.host = dcl.w.net
ldap.server2.useStartTls = true
ldap.server2.accountDomainName = w.net
ldap.server2.accountDomainNameShort = W
ldap.server2.accountCanonicalForm = 3
ldap.server2.baseDn = "CN=Users,DC=w,DC=net"

The above configuration will instruct Zend\Authentication\Adapter\Ldap to attempt to authenticate users
with the OpenLDAP server sO . foo.net first. If the authentication fails for any reason, the AD server dc1.w.net
will be tried.

With servers in different domains, this configuration illustrates multi-domain authentication. You can also have multi-

68 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

ple servers in the same domain to provide redundancy.

Note that in this case, even though OpenLDAP has no need for the short NetBIOS style domain name used by Win-
dows, we provide it here for name canonicalization purposes (described in the Username Canonicalization section
below).

16.3 The API

The Zend\Authentication\Adapter\Ldap constructor accepts three parameters.

The $options parameter is required and must be an array containing one or more sets of options. Note that it is an
array of arrays of Zend\Ldap\Ldap options. Even if you will be using only one LDAP server, the options must still
be within another array.

Below is print_r() output of an example options parameter containing two sets of server options for LDAP servers
s0.foo.net and dcl.w.net (the same options as the above INI representation):

Array
(
[server2] => Array
(
[host] => dcl.w.net
[useStartTls] => 1
[accountDomainName] => w.net
[accountDomainNameShort] => W
[accountCanonicalForm] => 3
[baseDn] => CN=Users,DC=w,DC=net
)
[serverl] => Array

(
[host] => s0.foo.net
[accountDomainName] => foo.net
[accountDomainNameShort] => FOO
[accountCanonicalForm] => 3
[username] => CN=userl,DC=foo,DC=net
[password] => passl
[baseDn] => OU=Sales,DC=foo,DC=net
[bindRequiresDn] => 1

)

The information provided in each set of options above is different mainly because AD does not require a username be
in DN form when binding (see the bindRequiresDn option in the Server Options section below), which means
we can omit a number of options associated with retrieving the DN for a username being authenticated.

Note: What is a Distinguished Name?

A DN or “distinguished name” is a string that represents the path to an object within the LDAP directory. Each
comma-separated component is an attribute and value representing a node. The components are evaluated in re-
verse. For example, the user account CN=Bob Carter,CN=Users,DC=w,DC=net is located directly within the
CN=Users,DC=w,DC=net container. This structure is best explored with an LDAP browser like the ADSI Edit
MMC snap-in for Active Directory or phpLDAPadmin.

16.3. The API 69

http://php.net/print_r

Zend Framework 2 Documentation, Release 2.0.0

The names of servers (e.g. ‘serverl’ and ‘server2’ shown above) are largely arbitrary, but for the sake of using
Zend\Config\Reader\Ini, the identifiers should be present (as opposed to being numeric indexes) and should
not contain any special characters used by the associated file formats (e.g. the ‘.‘INI property separator, ‘&* for XML
entity references, etc).

With multiple sets of server options, the adapter can authenticate users in multiple domains and provide failover so
that if one server is not available, another will be queried.

Note: The Gory Details: What Happens in the Authenticate Method?

When the authenticate () method is called, the adapter iterates over each set of server options, sets them on
the internal Zend\Ldap\Ldap instance, and calls the Zend\Ldap\Ldap: :bind () method with the username
and password being authenticated. The Zend\Ldap\Ldap class checks to see if the username is qualified with a
domain (e.g., has a domain component like alice@foo.net or FOO\alice). If a domain is present, but does
not match either of the server’s domain names (foo.net or FOO), a special exception is thrown and caught by
Zend\Authentication\Adapter\Ldap that causes that server to be ignored and the next set of server op-
tions is selected. If a domain does match, or if the user did not supply a qualified username, Zend\Ldap\Ldap
proceeds to try to bind with the supplied credentials. if the bind is not successful, Zend\Ldap\Ldap throws a
Zend\Ldap\Exception\LdapException which is caught by Zend\Authentication\Adapter\Ldap
and the next set of server options is tried. If the bind is successful, the iteration stops, and the adapter’s
authenticate () method returns a successful result. If all server options have been tried without success, the
authentication fails, and authenticate () returns a failure result with error messages from the last iteration.

The username and password parameters of the Zend\Authentication\Adapter\Ldap constructor represent
the credentials being authenticated (i.e., the credentials supplied by the user through your HTML login form). Alter-
natively, they may also be set with the setUsername () and setPassword () methods.

16.4 Server Options

Each set of server options in the context of ZendAuthenticationAdapterLdap consists of the following options,
which are passed, largely unmodified, to Zend\Ldap\Ldap: : setOptions ():

70 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 16.1: Server Options

Name

Description

host

The hostname of LDAP server that these options represent. This option is required.

port

The port on which the LDAP server is listening. If useSsl is TRUE, the default port value is
636. If useSsl is FALSE, the default port value is 389.

useStartTls

Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of
TRUE is strongly favored in production environments to prevent passwords from be transmitted
in clear text. The default value is FALSE, as servers frequently require that a certificate be
installed separately after installation. The useSsl and useStartTls options are mutually
exclusive. The useStartTls option should be favored over useSsl but not all servers support this
newer mechanism.

useSsl

Whether or not the LDAP client should use SSL encrypted transport. The useSsl and
useStartTls options are mutually exclusive, but useStartTls should be favored if the server and
LDAP client library support it. This value also changes the default port value (see port
description above).

username

The DN of the account used to perform account DN lookups. LDAP servers that require the
username to be in DN form when performing the “bind” require this option. Meaning, if
bindRequiresDn is TRUE, this option is required. This account does not need to be a privileged
account; an account with read-only access to objects under the baseDn is all that is necessary
(and preferred based on the Principle of Least Privilege).

password

The password of the account used to perform account DN lookups. If this option is not supplied,
the LDAP client will attempt an “anonymous bind”” when performing account DN lookups.

bindRequiresDn

Some LDAP servers require that the username used to bind be in DN form like CN=Alice
Baker,0OU=Sales,DC=foo,DC=net (basically all servers except AD). If this option is TRUE, this
instructs Zend\Ldap\Ldap to automatically retrieve the DN corresponding to the username
being authenticated, if it is not already in DN form, and then re-bind with the proper DN. The
default value is FALSE. Currently only Microsoft Active Directory Server (ADS) is known not
to require usernames to be in DN form when binding, and therefore this option may be FALSE
with AD (and it should be, as retrieving the DN requires an extra round trip to the server).
Otherwise, this option must be set to TRUE (e.g. for OpenLLDAP). This option also controls the
default acountFilterFormat used when searching for accounts. See the accountFilterFormat
option.

baseDn

The DN under which all accounts being authenticated are located. This option is required. if
you are uncertain about the correct baseDn value, it should be sufficient to derive it from the
user’s DNS domain using DC= components. For example, if the user’s principal name is
alice@foo.net, a baseDn of DC=foo,DC=net should work. A more precise location (e.g.,
OU=Sales,DC=foo,DC=net) will be more efficient, however.

accountCanon-
icalForm

A value of 2, 3 or 4 indicating the form to which account names should be canonicalized after
successful authentication. Values are as follows: 2 for traditional username style names (e.g.,
alice), 3 for backslash-style names (e.g., FOO\alice) or 4 for principal style usernames (e.g.,
alice@foo.net). The default value is 4 (e.g., alice@foo.net). For example, with a value of 3, the
identity returned by Zend\Authentication\Result::getldentity() (and
Zend\Authentication\AuthenticationService::getldentity(), if
Zend\Authentication\AuthenticationService was used) will always be FOO\alice, regardless of
what form Alice supplied, whether it be alice, alice @foo.net, FOO\alice, FoO\aLicE,
foo.net\alice, etc. See the Account Name Canonicalization section in the Zend\Ldap\Ldap
documentation for details. Note that when using multiple sets of server options it is
recommended, but not required, that the same accountCanonicalForm be used with all server
options so that the resulting usernames are always canonicalized to the same form (e.g., if you
canonicalize to EXAMPLE\username with an AD server but to username @example.com with
an OpenLDAP server, that may be awkward for the application’s high-level logic).

accountDo-
mainName

The FQDN domain name for which the target LDAP server is an authority (e.g., example.com).
This option is used to canonicalize names so that the username supplied by the user can be
converted as necessary for binding. It is also used to determine if the server is an authority for

16.4. Server Op

Dtlb

18% supplied username (e.g., if accountDomainName 18 foo.net and the user supplies 71
ob% bar.net, the server will not be queried, and a failure will result). This option is not
required, but if it is not supplied, usernames in principal name form (e.g., alice @foo.net) are

not supported. It is strongly recommended that you supply this option, as there are many

use-cases that reaquire eeneratine the nrincinal name form.

mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:alice@foo.net
mailto:username@example.com
mailto:bob@bar.net
mailto:alice@foo.net

Zend Framework 2 Documentation, Release 2.0.0

Note: If you enable useStartTls = TRUE or useSsl = TRUE you may find that the LDAP client generates an
error claiming that it cannot validate the server’s certificate. Assuming the PHP LDAP extension is ultimately linked
to the OpenLDAP client libraries, to resolve this issue you can set “TLS_REQCERT never” in the OpenLDAP
client 1dap.conf (and restart the web server) to indicate to the OpenLDAP client library that you trust the server.
Alternatively, if you are concerned that the server could be spoofed, you can export the LDAP server’s root certificate
and put it on the web server so that the OpenLDAP client can validate the server’s identity.

16.5 Collecting Debugging Messages

Zend\Authentication\Adapter\Ldap collects debugging information within its authenticate ()
method. This information is stored in the Zend\Authentication\Result object as messages. The array re-
turned by Zend\Authentication\Result: :getMessages () is described as follows

Table 16.2: Debugging Messages

Messages Description

Array Index

Index 0 A generic, user=friendly message that is suitable for displaying to users (e.g., “Invalid
credentials”). If the authentication is successful, this string is empty.

Index 1 A more detailed error message that is not suitable to be displayed to users but should be logged

for the benefit of server operators. If the authentication is successful, this string is empty.
Indexes 2 and | All log messages in order starting at index 2.
higher

In practice, index O should be displayed to the user (e.g., using the FlashMessenger helper), index 1 should be logged
and, if debugging information is being collected, indexes 2 and higher could be logged as well (although the final
message always includes the string from index 1).

16.6 Common Options for Specific Servers

16.6.1 Options for Active Directory

For ADS, the following options are noteworthy:

72 Chapter 16. LDAP Authentication

Zend Framework 2 Documentation, Release 2.0.0

Table 16.3: Options for Active Directory

Name Additional Notes

host As with all servers, this option is required.

useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.

useSsl Possibly used as an alternative to useStartTls (see above).

baseDn As with all servers, this option is required. By default AD places all user accounts under the
Users container (e.g., CN=Users,DC=foo,DC=net), but the default is not common in larger
organizations. Ask your AD administrator what the best DN for accounts for your application
would be.

accountCanon- | You almost certainly want this to be 3 for backslash style names (e.g., FOO\alice), which are

icalForm most familiar to Windows users. You should not use the unqualified form 2 (e.g., alice), as this
may grant access to your application to users with the same username in other trusted domains
(e.g., BAR\alice and FOO\alice will be treated as the same user). (See also note below.)

accountDo- This is required with AD unless accountCanonicalForm 2 is used, which, again, is discouraged.

mainName

accountDo- The NetBIOS name of the domain that users are in and for which the AD server is an authority.

main- This is required if the backslash style accountCanonicalForm is used.

NameShort

Note: Technically there should be no danger of accidental cross-domain authentication with the current

Zend\Authentication\Adapter\Ldap implementation, since server domains are explicitly checked, but this
may not be true of a future implementation that discovers the domain at runtime, or if an alternative adapter is used
(e.g., Kerberos). In general, account name ambiguity is known to be the source of security issues, so always try to use

qualified account names.

16.6.2 Options for OpenLDAP

For OpenLDAP or a generic LDAP server using a typical posixAccount style schema, the following options are note-

worthy:

16.6. Common Options for Specific Servers

73

Zend Framework 2 Documentation, Release 2.0.0

Table 16.4: Options for OpenLDAP

Name Additional Notes

host As with all servers, this option is required.

useStartTls For the sake of security, this should be TRUE if the server has the necessary certificate installed.

useSsl Possibly used as an alternative to useStartTls (see above).

username Required and must be a DN, as OpenLDAP requires that usernames be in DN form when
performing a bind. Try to use an unprivileged account.

password The password corresponding to the username above, but this may be omitted if the LDAP
server permits an anonymous binding to query user accounts.

bindRequiresDn| Required and must be TRUE, as OpenLDAP requires that usernames be in DN form when
performing a bind.

baseDn As with all servers, this option is required and indicates the DN under which all accounts being
authenticated are located.

accountCanon- | Optional, but the default value is 4 (principal style names like alice @foo.net), which may not

icalForm be ideal if your users are used to backslash style names (e.g., FOO\alice). For backslash style
names use value 3.

accountDo- Required unless you’re using accountCanonicalForm 2, which is not recommended.

mainName

accountDo- If AD is not also being used, this value is not required. Otherwise, if accountCanonicalForm 3

main- is used, this option is required and should be a short name that corresponds adequately to the

NameShort accountDomainName (e.g., if your accountDomainName is foo.net, a good
accountDomainNameShort value might be FOO).

74 Chapter 16. LDAP Authentication

mailto:alice@foo.net

CHAPTER
SEVENTEEN

INTRODUCTION

Zend\Barcode\Barcode provides a generic way to generate barcodes. The Zend\Barcode component is
divided into two subcomponents: barcode objects and renderers. Objects allow you to create barcodes independently
of the renderer. Renderer allow you to draw barcodes based on the support required.

75

Zend Framework 2 Documentation, Release 2.0.0

76 Chapter 17. Introduction

R - NV R S OO O

CHAPTER
EIGHTEEN

BARCODE CREATION USING
ZEND\BARCODE\BARCODE CLASS

18.1 Using Zend\Barcode\Barcode::factory

Zend_Barcode uses a factory method to create an instance of a renderer that extends
Zend\Barcode\Renderer\AbstractRenderer. The factory method accepts five arguments.

. The name of the barcode format (e.g., “code39”) or a Traversable object (required)
. The name of the renderer (e.g., “image”) (required)

. Options to pass to the barcode object (an array or a Traversable object) (optional)

. Options to pass to the renderer object (an array or a Traversable object) (optional)

. Boolean to indicate whether or not to automatically render errors. If an exception occurs, the provided barcode
object will be replaced with an Error representation (optional default TRUE)

Getting a Renderer with Zend\Barcode\Barcode::factory()

Zend\Barcode\Barcode: : factory () instantiates barcode objects and renderers and ties them together. In
this first example, we will use the Code39 barcode type together with the Image renderer.

use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array(’text’ => ’ZEND-FRAMEWORK') ;

// No required options
$rendererOptions = array/();
Srenderer = Barcode::factory(
"code39’, ’'image’, S$barcodeOptions, S$rendererOptions

)

Using Zend\Barcode\Barcode::factory() with Zend\Config\Config objects

You may pass a Zend\Config\Config object to the factory in order to create the necessary objects. The following
example is functionally equivalent to the previous.

77

Zend Framework 2 Documentation, Release 2.0.0

use Zend\Config;
use Zend\Barcode;

// Using only one Zend\Config\Config object
Sconfig = new Config(array (

"barcode’
"barcodeParams’
"renderer’
"rendererParams’

)) i

Srenderer = Barcode: :

=>
=>
=>
=>

"code39’,

array (' text’ => ’ZEND-FRAMEWORK’),
"image’,

array (' imageType’ => ’'gif’),

factory (Sconfig);

18.2 Drawing a barcode

When you draw the barcode, you retrieve the resource in which the barcode is drawn. To draw a barcode, you can call
the draw () of the renderer, or simply use the proxy method provided by Zend\Barcode\Barcode.

Drawing a barcode with the renderer object

use Zend\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’'text’ => ’/ZEND-FRAMEWORK') ;

// No required options
SrendererOptions = array();

// Draw the barcode in a new image,
SimageResource = Barcode::factory (

"code39’, ’'image’
) —>draw () ;

’

SbarcodeOptions, S$rendererOptions

Drawing a barcode with Zend\Barcode\Barcode::draw()

use Zend\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’'text’ => ’/ZEND-FRAMEWORK') ;

// No required options
SrendererOptions = array();

// Draw the barcode in a new image,
SimageResource = Barcode: :draw (

"code39’, ’'image’

)i

’

SbarcodeOptions, S$rendererOptions

78

Chapter 18. Barcode creation using Zend\Barcode\Barcode class

Zend Framework 2 Documentation, Release 2.0.0

18.3 Renderering a barcode

When you render a barcode, you draw the barcode, you send the headers and you send the resource (e.g. to a browser).
To render a barcode, you can call the render () method of the renderer or simply use the proxy method provided by

Zend\Barcode\Barcode.

Renderering a barcode with the renderer object

use Zend\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
// send the headers and the image
Barcode::factory (
"code39’, ’image’, S$barcodeOptions, S$rendererOptions
) —>render () ;

This will generate this barcode:

Renderering a barcode with Zend\Barcode\Barcode::render()

use Zend\Barcode;

// Only the text to draw is required
SbarcodeOptions = array(’text’ => ’'ZEND-FRAMEWORK’) ;

// No required options
SrendererOptions = array/();

// Draw the barcode in a new image,
// send the headers and the image
Barcode: :render (
"code39’, ’'image’, SbarcodeOptions, S$rendererOptions

)i

This will generate the same barcode as the previous example.

18.3. Renderering a barcode

79

Zend Framework 2 Documentation, Release 2.0.0

80 Chapter 18. Barcode creation using Zend\Barcode\Barcode class

CHAPTER
NINETEEN

ZEND\BARCODE\BARCODE OBJECTS

Barcode objects allow you to generate barcodes independently of the rendering support. After generation, you can
retrieve the barcode as an array of drawing instructions that you can provide to a renderer.

Objects have a large number of options. Most of them are common to all objects. These options can be set in three
ways:

* As an array or a Traversable object) object passed to the constructor.
* As an array passed to the setOptions () method.

* Via individual setters for each configuration type.

Different ways to parameterize a barcode object

use Zend\Barcode;
Soptions = array(’text’ => ’ZEND-FRAMEWORK’, ’barHeight’ => 40);

// Case 1: constructor
Shbarcode = new Object\Code39 (Soptions);

// Case 2: setOptions/()
S - = new Object\Code39 () ;
e->setOptions ($options);

// Case 3: individual setters
sarcode = new Object\Code39 () ;

>—>setText (! ZEND-FRAMEWORK')

—->setBarHeight (40);

A X C

19.1 Common Options

In the following list, the values have no units; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit”. The real units depend on the rendering support (see the renderers documentation for more
information). Setters are each named by uppercasing the initial letter of the option and prefixing the name with
“set” (e.g. “barHeight” becomes “setBarHeight”). All options have a corresponding getter prefixed with “get” (e.g.
“getBarHeight”). Available options are:

81

Zend Framework 2 Documentation, Release 2.0.0

Table 19.1: Common Options

Option Data Default Description
Type Value
barcode- String Zend\Barcode\ONjaetespace of the barcode; for example, if you need to extend the
Namespace embedding objects
barHeight Integer 50 Height of the bars
barThick- Integer 3 Width of the thick bar
Width
barThin- Integer 1 Width of the thin bar
Width
factor Integer 1 Factor by which to multiply bar widths and font sizes (barHeight,
barThinWidth, barThickWidth and fontSize)
foreColor Integer 0x000000 Color of the bar and the text. Could be provided as an integer or as a
(black) HTML value (e.g. “#333333”)
background- | Integer or | OxFFFFFF Color of the background. Could be provided as an integer or as a
Color String (white) HTML value (e.g. “#333333”)
orientation Float 0 Orientation of the barcode
font String or NULL Font path to a TTF font or a number between 1 and 5 if using image
Integer generation with GD (internal fonts)
fontSize Float 10 Size of the font (not applicable with numeric fonts)
withBorder Boolean FALSE Draw a border around the barcode and the quiet zones
withQuiet- Boolean TRUE Leave a quiet zone before and after the barcode
Zones
drawText Boolean TRUE Set if the text is displayed below the barcode
stretchText Boolean FALSE Specify if the text is stretched all along the barcode
withCheck- Boolean FALSE Indicate whether or not the checksum is automatically added to the
sum barcode
withCheck- Boolean FALSE Indicate whether or not the checksum is displayed in the textual
sumInText representation
text String NULL The text to represent as a barcode

19.1.1 Particular case of static setBarcodeFont()

You can

set

a commont
Zend\Barcode\Barcode: :setBarcodeFont ().

font

for all your objects by using the static method

This value can be always be overridden for individ-

ual objects by using the setFont () method.

use Zend\Barcode;

// In your bootstrap:

Barcode: :setBarcodeFont (‘my_font.ttf’);

// Later in your code:

Barcode: :render (

"code39’,

"pdf’,

array (' text’ => ’ZEND-FRAMEWORK’)

Y; // will

// or:

use

Barcode: :render (

"code39’,

" image’,

‘my_font.ttf’

82

Chapter 19. Zend\Barcode\Barcode Objects

Zend Framework 2 Documentation, Release 2.0.0

array (
"text’
"font’ => 3
)

y; // will use the

3rd

=> '/ ZEND-FRAMEWORK' ,

GD internal font

19.2 Common Additional Getters

Table 19.2: Common Getters

Getter Data Description
Type
getType() String Return the name of the barcode class without the namespace (e.g.
Zend\Barcode\Object\Code39 returns simply “code39)
getRawText() String Return the original text provided to the object
getTextToDisplay() String Return the text to display, including, if activated, the checksum value
getQuietZone() Integer | Return the size of the space needed before and after the barcode without any
drawing
getInstructions() Array Return drawing instructions as an array.
getH- Integer | Return the height of the barcode calculated after possible rotation
eight($recalculate =
false)
getWidth($recalculate | Integer | Return the width of the barcode calculated after possible rotation
= false)
getOffset- Integer | Return the position of the top of the barcode calculated after possible rotation
Top($recalculate =
false)
getOff- Integer | Return the position of the left of the barcode calculated after possible rotation
setLeft($recalculate =
false)

19.2. Common Additional Getters

83

Zend Framework 2 Documentation, Release 2.0.0

84 Chapter 19. Zend\Barcode\Barcode Objects

CHAPTER
TWENTY

DESCRIPTION OF SHIPPED
BARCODES

You will find below detailed information about all barcode types shipped by default with Zend Framework.

20.1 Zend\Barcode\Object\Error

This barcode is a special case. It is internally used to automatically render an exception caught by the Zend\Barcode
component.

20.2 Zend\Barcode\Object\Code128

e Name: Code 128

* Allowed characters: the complete ASCII-character set
¢ Checksum: optional (modulo 103)

¢ Length: variable

There are no particular options for this barcode.

20.3 Zend\Barcode\Object\Codabar

e Name: Codabar (or Code 2 of 7)

* Allowed characters:‘0123456789-$:/.+* with ‘ABCD’ as start and stop characters
e Checksum: none

* Length: variable

There are no particular options for this barcode.

85

Zend Framework 2 Documentation, Release 2.0.0

20.4 Zend\Barcode\Object\Code25

¢ Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)
* Allowed characters: ‘0123456789’

¢ Checksum: optional (modulo 10)

* Length: variable

There are no particular options for this barcode.

20.5 Zend\Barcode\Object\Code25interleaved

This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options,
and adds the following:

* Name: Code 2 of 5 Interleaved

* Allowed characters: ‘0123456789’

¢ Checksum: optional (modulo 10)

* Length: variable (always even number of characters)

Auvailable options include:

Table 20.1: Zend\Barcode\Object\Code25interleaved Options

Option Data Type | Default Value | Description
withBearerBars | Boolean FALSE Draw a thick bar at the top and the bottom of the barcode.

Note: If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automati-
cally prepend the missing zero to the barcode text.

20.6 Zend\Barcode\Object\Ean2

This barcode extends Zend\Barcode\Object \Ean5 (EAN 5), and has the same particulars and options, and adds
the following:

* Name: EAN-2

* Allowed characters: ‘0123456789’

e Checksum: only use internally but not displayed
* Length: 2 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 2, Zend\Barcode\Object \Ean2 will automatically prepend the
missing zero to the barcode text.

86 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

20.7 Zend\Barcode\Object\Ean5

This barcode extends Zend\Barcode\Object\Eanl3 (EAN 13), and has the same particulars and options, and
adds the following:

e Name: FAN-5

» Allowed characters: ‘0123456789’

* Checksum: only use internally but not displayed
e Length: 5 characters

There are no particular options for this barcode.

Note: If the number of characters is lower than 5, Zend\Barcode\Object \Ean5 will automatically prepend the
missing zero to the barcode text.

20.8 Zend\Barcode\Object\Ean8

This barcode extends Zend\Barcode\Object\Eanl3 (FAN 13), and has the same particulars and options, and
adds the following:

* Name: FAN-8

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 8 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Ob ject \Ean8 will automatically prepend the
missing zero to the barcode text.

20.9 Zend\Barcode\Object\Ean13

e Name: EAN-13
Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

Length: 13 characters (including checksum)

20.7. Zend\Barcode\Object\Ean5 87

Zend Framework 2 Documentation, Release 2.0.0

There are no particular options for this barcode.

Note: If the number of characters is lower than 13, Zend\Barcode\Object \Eanl3 will automatically prepend
the missing zero to the barcode text.

The option withQuietZones has no effect with this barcode.

20.10 Zend\Barcode\Object\Code39

e Name: Code 39
Allowed characters: ‘0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’

¢ Checksum: optional (modulo 43)

* Length: variable

Note: Zend\Barcode\Object\Code39 will automatically add the start and stop characters (‘*’) for you.

There are no particular options for this barcode.

20.11 Zend\Barcode\Object\ldentcode

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

e Name: Identcode (Deutsche Post Identcode)

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10 different from Code25)
* Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically
prepend missing zeros to the barcode text.

20.12 Zend\Barcode\Object\itf14

This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits
some of its capabilities; it also has a few particulars of its own.

e Name: [TF-14
¢ Allowed characters: ‘0123456789’

88 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

¢ Checksum: mandatory (modulo 10)
* Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Itf£14 will automatically prepend
missing zeros to the barcode text.

20.13 Zend\Barcode\Object\Leitcode

This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.

¢ Name: Leitcode (Deutsche Post Leitcode)

» Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10 different from Code25)
* Length: 14 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically
prepend missing zeros to the barcode text.

20.14 Zend\Barcode\Object\Planet

e Name: Planet (Postal. Alpha Numeric Encoding Technique)
» Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 12 or 14 characters (including checksum)

There are no particular options for this barcode.

20.15 Zend\Barcode\Object\Postnet

e Name: Postnet (POSTal Numeric Encoding Technique)
* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 6, 7, 10 or 12 characters (including checksum)

There are no particular options for this barcode.

20.13. Zend\Barcode\Object\Leitcode 89

Zend Framework 2 Documentation, Release 2.0.0

20.16 Zend\Barcode\Object\Royalmail

* Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)

¢ Allowed characters: ‘0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ’
* Checksum: mandatory

* Length: variable

There are no particular options for this barcode.

20.17 Zend\Barcode\Object\Upca

This barcode extends Zend\Barcode\Object\Eanl3 (EAN-13), and inherits some of its capabilities; it also has
a few particulars of its own.

e Name: UPC-A (Universal Product Code)

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 12 characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 12, Zend\Barcode\Object \Upca will automatically prepend
missing zeros to the barcode text.

The option withQuietZones has no effect with this barcode.

20.18 Zend\Barcode\Object\Upce

This barcode extends Zend\Barcode\Object \Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).

e Name: UPC-E (Universal Product Code)

* Allowed characters: ‘0123456789’

¢ Checksum: mandatory (modulo 10)

* Length: 8§ characters (including checksum)

There are no particular options for this barcode.

Note: If the number of characters is lower than 8, Zend\Barcode\Object \Upce will automatically prepend
missing zeros to the barcode text.

920 Chapter 20. Description of shipped barcodes

Zend Framework 2 Documentation, Release 2.0.0

Note: If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object\Upce will automatically
replace it by 0.

The option withQuietZones has no effect with this barcode.

20.18. Zend\Barcode\Object\Upce 91

Zend Framework 2 Documentation, Release 2.0.0

92 Chapter 20. Description of shipped barcodes

CHAPTER
TWENTYONE

ZEND\BARCODE RENDERERS

Renderers have some common options. These options can be set in three ways:
* As an array or a Traversable object passed to the constructor.
* As an array passed to the setOptions () method.

* As discrete values passed to individual setters.

Different ways to parameterize a renderer object

use Zend\Barcode;

Soptions = array(’topOffset’ => 10);
Srenderer = new Renderer\Pdf (Soptions);

~r = new Renderer\Pdf ();
r->setOptions (Soptions);

= new Renderer\Pdf ();
er—->setTopOffset (10);

21.1 Common Options

In the following list, the values have no unit; we will use the term “unit.” For example, the default value of the “thin
bar” is “1 unit.” The real units depend on the rendering support. The individual setters are obtained by uppercasing the
initial letter of the option and prefixing the name with “set” (e.g. “barHeight” => “setBarHeight). All options have a
correspondant getter prefixed with “get” (e.g. “getBarHeight”). Available options are:

93

Zend Framework 2 Documentation, Release 2.0.0

Table 21.1: Common Options

Option Data Default Description
Type Value

render- String Zend\Barcodd\enekprace of the renderer; for example, if you need to extend the

erNames- renderers

pace

horizon- String “left” Can be “left”, “center” or “right”. Can be useful with PDF or if the

talPosi- setWidth() method is used with an image renderer.

tion

vertical- String “top” Can be “top”, “middle” or “bottom”. Can be useful with PDF or if the

Position setHeight() method is used with an image renderer.

leftOffset | Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “horizontalPosition” option.

topOffset | Integer 0 Top position of the barcode inside the renderer. If used, this value will
override the “verticalPosition” option.

automati- | Boolean | FALSE Whether or not to automatically render errors. If an exception occurs, the

cRender- provided barcode object will be replaced with an Error representation.

Error Note that some errors (or exceptions) can not be rendered.

module- Float 1 Size of a rendering module in the support.

Size

barcode Zend\BarcodNDbject The barcode object to render.

An additional getter exists: getType (). It returns the name of the renderer class without the namespace (e.g.
Zend\Barcode\Renderer\ Image returns “image”).

21.2 Zend\Barcode\Renderer\Image

The Image renderer will draw the instruction list of the barcode object in an image resource. The component requires
the GD extension. The default width of a module is 1 pixel.

Auvailable options are:

Table 21.2: Zend\Barcode\Renderer\Image Options

Op- Data Default Description

tion Type Value

height Integer 0 Allow you to specify the height of the result image. If “0”, the height will be
calculated by the barcode object.

width Integer 0 Allow you to specify the width of the result image. If “0”, the width will be
calculated by the barcode object.

im- String “png” Specify the image format. Can be “png”, “jpeg”, “jpg” or “gif”.

ageType

21.3 Zend\Barcode\Renderer\Pdf

The PDF renderer will draw the instruction list of the barcode object in a PDF document. The default width of a
module is 0.5 point.

There are no particular options for this renderer.

94 Chapter 21. Zend\Barcode Renderers

CHAPTER
TWENTYTWO

ZEND\CACHE\STORAGE\ADAPTER

22.1 Overview

Storage adapters are wrappers for real storage resources such as memory and the filesystem, using the well known
adapter pattern.

They comes with tons of methods to read, write and modify stored items and to get information about stored items and
the storage.

All adapters implements the interface Zend\Cache\Storage\StorageInterface and most extend
Zend\Cache\Storage\Adapter\AbstractAdapter, which comes with basic logic.

Configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or an adapter-
specific options class if it exists. You may pass the options instance to the class at instantiation or via the
setOptions () method, or alternately pass an associative array of options in either place (internally, these are
then passed to an options class instance). Alternately, you can pass either the options instance or associative array to
the Zend\Cache\StorageFactory: : factory method.

Note: Many methods throw exceptions

Because many caching methods can throw exceptions, you need to catch them manually or you can use the plug-
in Zend\Cache\Storage\Plugin\ExceptionHandler to automatically catch them and redirect exceptions
into a log file using the option “exception_callback”.

22.2 Quick Start

Caching adapters can either be created from the provided Zend\Cache\StorageFactory factory, or by simply
instantiating one of the Zend\Cache\Storage\Adapter\ xclasses.

To make life easier, the Zend\Cache\StorageFactory comes with a factory method to create an adapter
and create/add all requested plugins at once.

use Zend\Cache\StorageFactory;

// Via factory:
Scache = StorageFactory::factory (array (
"adapter’ => ’'apc’,
"plugins’ => array (
"exception_handler’ => array(’'throw_exceptions’ => false),
) 4
)) i

95

Zend Framework 2 Documentation, Release 2.0.0

// Alternately:

Scache = StorageFactory::adapterFactory(’apc’);

Splugin = StorageFactory::pluginFactory (’exception_handler’, array (
"throw_exceptions’ => false,

)) i

Scache->addPlugin (Splugin);

// Or manually:

Scache = new Zend\Cache\Storage\Adapter\Apc () ;
Splugin = new Zend\Cache\Storage\Plugin\ExceptionHandler (array (
"throw_exceptions’ => false,

)) i
$cache->addPlugin ($plugin);

22.3 Basic configuration Options

key_pattern Pattern against which to validate cache keys.
e setKeyPattern(null|string $pattern) Implements a fluent interface.
* getKeyPattern () Returns string
namespace The “namespace” in which cache items will live.
* setNamespace (string $namespace) Implements a fluent interface.
* getNamespace () Returns string
readable Enable/Disable reading data from cache.
* setReadable (boolean $flag) Implements a fluent interface.
e getReadable () Returns boolean
ttl Set time to live.
e setTtl (int|float $ttl) Implements a fluent interface.
e getTtl () Returns float
writable Enable/Disable writing data to cache.
* setWritable (boolean $flag) Implements a fluent interface.

e getWritable () Returns boolean

22.4 Available Methods defined by Zend\Cache\Storage\StorageInterface

setOptions setOptions (array|Traversable|Zend\Cache\Storage\Adapter\AdapterOptions

Soptions)

Set options.

Implements a fluent interface.
getOptions getOptions ()

Get options

Returns Zend\Cache\Storage\Adapter\AdapterOptions

96 Chapter 22. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.0.0

getltem getItem(string Skey, boolean & $success = null, mixed & S$casToken

null)

Load an item with the given $key, set parameter $success to TRUE and set parameter $casToken.

If item can’t load this method returns NULL and set parameter $success to FALSE.
getltems getItems (array $keys)
Load all items given by $keys.
Returns an array of key-value pairs of available items.
hasltem hasItem(string S$key)
Test if an item exists.
Returns boolean
hasltems hasItems (array Skeys)
Test multiple items.
Returns array
getMetadata getMetadata (string S$key)
Get metadata of an item.
Returns arraylboolean
getMetadatas getMetadatas (array S$keys)
Get multiple metadata
Returns array
setltem setItem(string S$key, mixed $value)
Store an item.
Returns boolean
setltems setItems (array $keyValuePairs)
Store multiple items.
Returns boolean
addItem addItem(string S$key, mixed $value)
Add an item.
Returns boolean
addItems addItems (array $keyValuePairs)
Add multiple items.
Returns boolean
replaceltem replaceItem(string $key, mixed $value)
Replace an item.
Returns boolean
replaceltems replaceIltems (array S$keyValuePairs)

Replace multiple items.

22.4. Available Methods defined by Zend\Cache\Storage\StorageInterface

97

Zend Framework 2 Documentation, Release 2.0.0

Returns boolean
checkAndSetltem checkAndSetItem (mixed S$token, string S$key, mixed $value)
Set item only if token matches
It uses the token from received from get Item () to check if the item has changed before overwriting it.
Returns boolean
touchltem touchItem(string S$key)
Reset lifetime of an item
Returns boolean
touchltems touchItems (array S$keys)
Reset lifetime of multiple items.
Returns boolean
removeltem removeItem(string S$key)
Remove an item.
Returns boolean
removeltems removelItems (array S$Skeys)
Remove multiple items.
Returns boolean
incrementltem incrementItem(string $key, int $value)
Increment an item.
Returns intlboolean
incrementltems incrementItems (array S$keyValuePairs)
Increment multiple items.
Returns boolean
decrementltem decrementItem(string S$key, int S$value)
Decrement an item.
Returns intlboolean
decrementltems decrementItems (array $keyValuePairs)
Decrement multiple items.
Returns boolean
getCapabilities getCapabilities ()
Capabilities of this storage

Returns Zend\Cache\Storage\Capabilities

98 Chapter 22. Zend\Cache\Storage\Adapter

Zend Framework 2 Documentation, Release 2.0.0

22.5 Available Methods defined by Zzend\Cache\Storage\AvailableSpaceCa]

getAvailableSpace getAvailableSpace ()
Get available space in bytes

Returns intlfloat

22.6 Available Methods defined by zend\Cache\Storage\TotalSpaceCapable

getTotalSpace getTotalSpace ()
Get total space in bytes

Returns intlfloat

22.7 Available Methods defined by zend\Cache\Storage\ClearByNamespace:

clearByNamespace clearByNamespace (string $namespace)
Remove items of given namespace

Returns boolean

22.8 Available Methods defined by zend\Cache\Storage\ClearByPrefixInt

clearByPrefix clearByPrefix (string S$prefix)
Remove items matching given prefix

Returns boolean

22.9 Available Methods defined by Zzend\Cache\Storage\ClearExpiredInte:

clearExpired clearExpired/()
Remove expired items

Returns boolean

22.10 Available Methods defined by Zend\Cache\Storage\FlushableInterf:

flush flush ()
Flush the whole storage

Returns boolean

22.5. Available Methods defined by Zend\Cache\Storage\AvailableSpaceCapableInterfac89

Zend Framework 2 Documentation, Release 2.0.0

22.11 Available Methods defined by Zend\Cache\Storage\IterableInterfac
(extends IteratorAggregate)

getlterator getIterator ()
Get an Iterator

Returns Zend\Cache\Storage\IteratorInterface

22.12 Available Methods defined by Zend\Cache\Storage\OptimizablelInte:

optimize optimize ()
Optimize the storage

Returns boolean

22.13 Available Methods defined by Zend\Cache\Storage\TaggableInterfac

setTags setTags (string $key, string[] $tags)
Set tags to an item by given key. An empty array will remove all tags.
Returns boolean
getTags getTags (string S$key)
Get tags of an item by given key
Returns string[]IFALSE
clearByTags clearByTags (string[] $tags, boolean $disjunction = false)
Remove items matching given tags.
If $disjunction only one of the given tags must match else all given tags must match.

Returns boolean

22.14 TODO: Examples

100 Chapter 22. Zend\Cache\Storage\Adapter

CHAPTER
TWENTYTHREE

ZEND\CACHE\STORAGE\CAPABILITIES

23.1 Overview

Storage capabilities describes how a storage adapter works and which features it supports.

To get capabilities of a storage adapter, you can use the method getCapabilities () of the storage adapter but

only the storage adapter and its plugins have permissions to change them.

Because capabilities are mutable, for example, by changing some options, you can subscribe to the “change” event to

get notifications; see the examples for details.

If you are writing your own plugin or adapter, you can also change capabilities because you have access to the marker
object and can create your own marker to instantiate a new object of Zend\Cache\Storage\Capabilities.

23.2 Available Methods

_ construct ___construct (stdClass Smarker, array S$capabilities = array
(), null|Zend\Cache\Storage\Capabilities S$baseCapabilities)
__construct (Zend\Cache\Storage\StorageInterface S$storage, stdClass
Smarker, array S$capabilities = array (), Capabilities $baseCapabilities
= null)

Constructor
getSupportedDatatypes getSupportedDatatypes ()
Get supported datatypes.
Returns array.
setSupportedDatatypes setSupportedDatatypes (stdClass Smarker, array S$datatypes)
Set supported datatypes.
Implements a fluent interface.
getSupportedMetadata getSupportedMetadata ()
Get supported metadata.
Returns array.
setSupportedMetadata setSupportedMetadata (stdClass S$marker, string Smetadata)

Set supported metadata

101

Zend Framework 2 Documentation, Release 2.0.0

Implements a fluent interface.
getMinTtl getMinTt1 ()
Get minimum supported time-to-live
Returns int (0 means items never expire)
setMinTtl setMinTtl (stdClass Smarker, int SminTtl)
Set minimum supported time-to-live
Implements a fluent interface.
getMaxTtl getMaxTt1 ()
Get maximum supported time-to-live
Returns int
setMaxTtl setMaxTtl (stdClass S$marker, int $maxTtl)
Set maximum supported time-to-live
Implements a fluent interface.
getStaticTtl getStaticTtl ()
Is the time-to-live handled static (on write), or dynamic (on read).
Returns boolean
setStaticTtl setStaticTtl (stdClass S$marker, boolean $flag)
Set if the time-to-live is handled statically (on write) or dynamically (on read)
Implements a fluent interface.
getTtlPrecision getTt1Precision ()
Get time-to-live precision.
Returns float.
setTtlPrecision setTt1lPrecision(stdClass S$marker, float S$ttlPrecision)
Set time-to-live precision.
Implements a fluent interface.
getUseRequestTime getUseRequestTime ()
Get the “use request time” flag status
Returns boolean
setUseRequestTime setUseRequestTime (stdClass S$Smarker, boolean $flag)
Set the “use request time” flag.
Implements a fluent interface.
getExpiredRead getExpiredRead ()
Get flag indicating if expired items are readable.

Returns boolean

102 Chapter 23. Zend\Cache\Storage\Capabilities

Zend Framework 2 Documentation, Release 2

.0.0

setExpiredRead setExpiredRead (stdClass Smarker, boolean $flag)
Set if expired items are readable.
Implements a fluent interface.
getMaxKeyLength getMaxKeyLength ()
Get maximum key lenth.
Returns int
setMaxKeyLength setMaxKeyLength (stdClass S$marker, int $maxKeyLength)
Set maximum key lenth.
Implements a fluent interface.
getNamespacelsPrefix getNamespaceIsPrefix ()
Get if namespace support is implemented as a key prefix.
Returns boolean
setNamespacelsPrefix setNamespaceIsPrefix (stdClass S$marker, boolean $flag)
Set if namespace support is implemented as a key prefix.
Implements a fluent interface.
getNamespaceSeparator getNamespaceSeparator ()
Get namespace separator if namespace is implemented as a key prefix.
Returns string
setNamespaceSeparator setNamespaceSeparator (stdClass S$marker, string S$separator)
Set the namespace separator if namespace is implemented as a key prefix.

Implements a fluent interface.

23.3 Examples

Get storage capabilities and do specific stuff in base of it

use Zend\Cache\StorageFactory;

// now you can run specific stuff in base of supported feature
if (S 5[object’]) {

Scache->set (Skey, Sob
} else {
S che->set (Skey, serialize(Sobject));

upportedDataty

ject);

23.3. Examples

103

Zend Framework 2 Documentation, Release 2.0.0

Listen to change event

use Zend\Cache\StorageFactory;

Scache = StorageFactory::adapterFactory (' filesystem’, array (

"no_atime’ => false,

)) i

// Catching capability changes
Scache->getEventManager () ->attach (' capability’,

function (Sevent) {

echo count (Sevent->getParams()) . ' capabilities changed’;

)i

// change option which changes capabilities
Scache->getOptions () —>setNoATime (true) ;

104

Chapter 23. Zend\Cache\Storage\Capabilities

CHAPTER
TWENTYFOUR

ZEND\CACHE\STORAGE\PLUGIN

24.1 Overview

Cache storage plugins are objects to add missing functionality or to influence behavior of a storage adapter.

The plugins listen to events the adapter triggers and can change called method arguments (*.post
- events), skipping and directly return a result (using stopPropagation), changing the re-
sult (with setResult of Zend\Cache\Storage\PostEvent) and catching exceptions (with
Zend\Cache\Storage\ExceptionEvent).

24.2 Quick Start

Storage plugins can either be created from Zend\Cache\StorageFactory with the pluginFactory, or by
simply instantiating one of the Zend\Cache\Storage\Plugin\ xclasses.

To make life easier, the Zend\Cache\StorageFactory comes with the method factory to create an adapter
and all given plugins at once.

use Zend\Cache\StorageFactory;

// Via factory:

Scache = StorageFactory::factory (array (
"adapter’ => ’'filesystem’,
"plugins’ => array(’serializer’),

)) i

// Alternately:
$cache = StorageFactory::adapterFactory(’filesystem’);
ugin = StorageFactory::pluginFactory (’serializer’);

Scache->addPlugin (Splugin);

// Or manually:

Scache = new Zend\Cache\Storage\Adapter\Filesystem() ;
ylugin = new Zend\Cache\Storage\Plugin\Serializer();
che->addPlugin ($plugin);

24.3 Configuration Options

clearing factor Set the automatic clearing factor. Used by the ClearByFactor plugin.

105

Zend Framework 2 Documentation, Release 2.0.0

e setClearingFactor (int $clearingFactor) Implements a fluent interface.
e getClearingFactor () Returns int
clear_by_namespace Flag indicating whether or not to clear by namespace. Used by the ClearByFactor plugin.
* setClearByNamespace (bool $clearByNamespace) Implements a fluent interface.
e getClearByNamespace () Returns bool
exception_callback Set callback to call on intercepted exception. Used by the ExceptionHandler plugin.
* setExceptionCallback (callable S$exceptionCallback) Implements a fluent interface.
¢ getExceptionCallback () Returns nulllcallable
optimizing_factor Set automatic optimizing factor. Used by the OptimizeByFactor plugin.
* setOptimizingFactor (int $SoptimizingFactor) Implements a fluent interface.
e getOptimizingFactor () Returns int
serializer Set serializer adapter to use. Used by Serializer plugin.

* setSerializer (string|Zend\Serializer\Adapter $serializer) Implements a fluent
interface.

* getSerializer () Returns Zend\Serializer\Adapter
serializer_options Set configuration options for instantiating a serializer adapter. Used by the Serializer plugin.
* setSerializerOptions (array $serializerOptions) Implements a fluent interface.
* getSerializerOptions () Returns array
throw_exceptions Set flag indicating we should re-throw exceptions. Used by the Except ionHandler plugin.
* setThrowExceptions (bool $throwExceptions) Implements a fluent interface.

* getThrowExceptions () Returns bool

24.4 Available Methods

setOptions setOptions (Zend\Cache\Storage\Plugin\PluginOptions S$options)
Set options
Implements a fluent interface.
getOptions getOptions ()
Get options
Returns PluginOptions
attach attach (EventCollection S$Sevents)
Defined by Zend\EventManager\ListenerAggregate, attach one or more listeners.
Returns void
detach detach (EventCollection $events)
Defined by Zend\EventManager\ListenerAggregate, detach all previously attached listeners.

Returns void

106 Chapter 24. Zend\Cache\Storage\Plugin

Zend Framework 2 Documentation, Release 2.0.0

24.5 TODO: Examples

24.5. TODO: Examples 107

Zend Framework 2 Documentation, Release 2.0.0

108 Chapter 24. Zend\Cache\Storage\Plugin

CHAPTER
TWENTYFIVE

ZEND\CACHE\PATTERN

25.1 Overview

Cache patterns are configurable objects to solve known performance bottlenecks. Each should be used only in the spe-
cific situations they are designed to address. For example you can use one of the CallbackCache, ObjectCache
or ClassCache patterns to cache method and function calls; to cache output generation, the Out put Cache pattern
could assist.

All cache patterns implements the same interface, Zend\Cache\Pattern, and most extend the abstract class
Zend\Cache\Pattern\AbstractPattern to implement basic logic.

Configuration is provided via the Zend\Cache\Pattern\PatternOptions class, which can simply be instan-
tiated with an associative array of options passed to the constructor. To configure a pattern object, you can set an
instance of Zend\Cache\Pattern\PatternOptions with setOptions, or provide your options (either as
an associative array or PatternOpt ions instance) as the second argument to the factory.

It’s also possible to use a single instance of Zend\Cache\Pattern\PatternOptions and pass it to multiple
pattern objects.

25.2 Quick Start

Pattern objects can either be created from the provided Zend\Cache\PatternFactory factory, or, by simply
instantiating one of the Zend\Cache\Pattern* classes.

use Zend\Cache\PatternFactory;
use Zend\Cache\Pattern\PatternOptions;

// Via the factory:

ScallbackCache = PatternFactory::factory(’callback’, array(
"storage’ => "apc’,
"cache_output’ => true,

)) i

// OR, the equivalent manual instantiation:

ScallbackCache = new \Zend\Cache\Pattern\CallbackCache () ;
scallbackCache->setOptions (new PatternOptions (array (
"storage’ => "apc’,

"cache_output’ => true,

))) i

109

Zend Framework 2 Documentation, Release 2.0.0

25.3 Configuration Options

cache_by_default Flag indicating whether or not to cache by default. Used by the ClassCache and
ObjectCache patterns.

* setCacheByDefault (bool $cacheByDefault) Implements a fluent interface.
e getCacheByDefault () Returns boolean.

cache_output Used by the CallbackCache,ClassCache, and ObjectCache patterns. Flag used to determine
whether or not to cache output.

* setCacheOutput (bool $cacheOutput) Implements a fluent interface.
e getCacheOutput () Returns boolean
class Set the name of the class to cache. Used by the ClassCache pattern.
e setclass (string $class) Implements a fluent interface.
* getClass () Returns nulllstring
class_cache_methods Set list of method return values to cache. Used by ClassCache Pattern.
* setClassCacheMethods (array $classCacheMethods) Implements a fluent interface.
* getClassCacheMethods () Returns array

class_non_cache_methods Set list of method return values that should not be cached. Used by the ClassCache
pattern.

* setClassNonCacheMethods (array $classNonCacheMethods) Implements a fluent inter-
face.

* getClassNonCacheMethods () Returns array

dir_perm Set directory permissions; proxies to “dir_umask” property, setting the inverse of the provided value. Used
by the CaptureCache pattern.

e setDirPerm(string|int $dirPerm) Implements a fluent interface.
e getDirPerm () Returns int
dir_umask Set the directory umask value. Used by the CaptureCache pattern.
* setDirUmask (int $dirUmask) Implements a fluent interface.
* getDirUmask () Returns int
file_locking Set whether or not file locking should be used. Used by the CaptureCache pattern.
* setFileLocking (bool $fileLocking) Implements a fluent interface.
* getFileLocking () Returns bool

file_perm Set file permissions; proxies to the “file_umask” property, setting the inverse of the value provided. Used
by the CaptureCache pattern.

* setFilePerm(int|string $filePerm) Implements a fluent interface.
e getFilePerm () Returns int

file_umask Set file umask; used by the CaptureCache pattern.
* setFileUmask (int $fileUmask) Implements a fluent interface.

e getFileUmask () Returns int

110 Chapter 25. Zend\Cache\Pattern

Zend Framework 2 Documentation, Release 2.0.0

index_filename Set value for index filename. Used by the CaptureCache pattern.
e setIndexFilename (string $indexFilename) Implements a fluent interface.
* getIndexFilename () Returns string
object Set object to cache; used by the Ob jectCache pattern.
* setObject (object $object) Implements a fluent interface.
* getObject () Returns nulllobject.

object_cache_magic_properties Set flag indicating whether or not to cache magic properties. Used by the
ObjectCache pattern.

* setObjectCacheMagicProperties (bool S$objectCacheMagicProperties) Imple-
ments a fluent interface.

* getObjectCacheMagicProperties () Returns bool

object_cache_methods Set list of object methods for which to cache return values. Used by Ob jectCache pattern.
* setObjectCacheMethods (array $objectCacheMethods) Implements a fluent interface.
* getObjectCacheMethods () Returns array

object_key Set the object key part; used to generate a callback key in order to speed up key generation. Used by the
ObjectCache pattern.

* setObjectKey (null|string S$objectKey) Implements a fluent interface.
* getObjectKey () Returns nulllstring

object_non_cache_methods Set list of object methods for which not to cache return values. Used by the
ObjectCache pattern.

* setObjectNonCacheMethods (array $objectNonCacheMethods) Implements a fluent in-
terface.

* getObjectNonCacheMethods () Returns array

public_dir Set location of public directory; used by the CaptureCache pattern.
* setPublicDir () Implements a fluent interface.
e getPublicDir () Returns nulllstring

storage Set the storage adapter. Required for the following Pattern classes: CallbackCache, ClassCache,
ObjectCache, OutputCache.

* setStorage (stringlarray|Zend\Cache\Storage\Adapter $storage) Implements a
fluent interface.

* getStorage () Returns nulllZend\Cache\Storage\Adapter
tag_key Set the prefix used for tag keys. Used by the CaptureCache pattern.
* setTagKey (string $tagKey) Implements a fluent interface.
* getTagKey () Returns string
tags Set list of tags to use for captured content. Used by the CaptureCache pattern.
* setTags (array $tags) Implements a fluent interface.
* getTags () Returns array

Set storage adapter to use for tags. Used by the CaptureCache pattern.

25.3. Configuration Options 111

Zend Framework 2 Documentation, Release 2.0.0

* setTagStorage (string|array|Zend\Cache\Storage\Adapter S$tagStorage)
Implements a fluent interface.

* getTagStorage () Returns nullliZend\Cache\Storage\Adapter

25.4 Available Methods

setOptions setOptions (Zend\Cache\Pattern\PatternOptions S$options)
Set pattern options
Returns Zend\Cache\Pattern

getOptions getOptions ()
Get all pattern options

Returns PatternOptions instance.

25.5 Examples

Using the callback cache pattern

use Zend\Cache\PatternFactory;

ScallbackCache = PatternFactory::factory(’callback’, array(
"storage’ => ’apc’

)) i

// Calls and caches the function doResourcelntensiceStuff with three arguments
// and returns result
Sresult = $callbackCache->call ('doResourcelntensiveStuff’, array(

"argumentl’,

"argument2’,

"argumentN’,

)) i

Using the object cache pattern

use Zend\Cache\PatternFactory;

Sobject = new MyObject ();
SobjectProxy = PatternFactory::factory(’object’, array(
"object’ => S$Sobiject,

"storage’ => ’'apc’,

)) i

// Calls and caches Sobject->doResourcelntensiveStuff with three arguments
// and returns result
Sresult = SobjectProxy->doResourcelntensiveStuff (’argumentl’, ’'argument2’, ’argumentN’);

112 Chapter 25. Zend\Cache\Pattern

Zend Framework 2 Documentation, Release 2.0.0

Using the class cache pattern

use Zend\Cache\PatternFactory;

SclassProxy = PatternFactory::factory(’class
"class’ => ’"MyClass’,
"storage’ => ’'apc’,

)) i

// Calls and caches MyClass::doResourceInten
// and returns result
Sresult = S$classProxy->doResourcelntensiveSt

Using the output cache pattern

use Zend\Cache\PatternFactory;

SoutputCache =
"storage’ => ’filesystem’,

)) i

PatternFactory::factory (' output’,

", array (

siveStuff with three arguments

uff ("argumentl’, ’argument2’, ’argumentN’);

array (

// Start capturing all output (excluding headers) and write it to storage.
// If there is already a cached item with the same key it will be

// output and return true, else false.
if (SoutputCache->start ('MyUniqueKey’)
echo ’'cache output since: ’ . date(’H:i:

// end capturing output,
// captured content
SoutputCache->end() ;

echo 'This output is never cached.’;

Using the capture cache pattern

false) {

s’) "
\n";

write content to cache storage and display

You need to configure your HTTP server to redirect missing content to run your script generating it.

This example uses Apache with the following .htaccess:

ErrorDocument 404 /index.php

Within your index.php you can add the following content:

use Zend\Cache\PatternFactory;

PatternFactory::factory (' capture’
=> _ DIR__,

Scapture =
"public_dir’
V)i

// Start capturing all output excl. headers.

, array (

and write to public directory

// If the request was already written the file will be overwritten.

Scapture->start ();

// do stuff to dynamically generate output

25.5. Examples

113

Zend Framework 2 Documentation, Release 2.0.0

114 Chapter 25. Zend\Cache\Pattern

CHAPTER
TWENTYSIX

INTRODUCTION

CAPTCHA stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”; it is used as
a challenge-response to ensure that the individual submitting information is a human and not an automated process.
Typically, a captcha is used with form submissions where authenticated users are not necessary, but you want to prevent
spam submissions.

Captchas can take a variety of forms, including asking logic questions, presenting skewed fonts, and presenting multi-
ple images and asking how they relate. The Zend\Captcha component aims to provide a variety of back ends that
may be utilized either standalone or in conjunction with the Zend\Form component.

115

http://en.wikipedia.org/wiki/Captcha

Zend Framework 2 Documentation, Release 2.0.0

116 Chapter 26. Introduction

CHAPTER
TWENTYSEVEN

CAPTCHA OPERATION

All CAPTCHA adapter implement Zend\Captcha\AdapterInterface, which looks like the following:

namespace Zend\Captcha;
use Zend\Validator\ValidatorInterface;
interface AdapterInterface extends ValidatorInterface
{
public function generate();

public function setName ($name);

public function getName () ;

// Get helper name used for rendering this captcha type

public function getHelperName () ;

The name setter and getter are used to specify and retrieve the CAPTCHA identifier. The most interesting methods are
generate () and render (). generate () is used to create the CAPTCHA token. This process typically will
store the token in the session so that you may compare against it in subsequent requests. render () is used to render
the information that represents the CAPTCHA, be it an image, a figlet, a logic problem, or some other CAPTCHA.

A simple use case might look like the following:

// Originating request:

Scaptcha = new Zend\Captchal\Figlet (array (
"name’ => ' foo’,
"wordLen’ => 6,
"timeout’ => 300,

)) i
$id = Scaptcha->generate();
//this will output a Figlet string

echo S$Scaptcha->getFiglet () ->render (Scaptcha->getWord()) ;

// On a subsequent request:

// Assume a captcha setup as before, with corresponding form fields, the value of §_POST[’foo’]
// would be key/value array: id => captcha ID, input => captcha value

if (Scaptcha->isValid($_POST[’foo’], $_POST)) {

// Validated!

117

Zend Framework 2 Documentation, Release 2.0.0

Note: Under most circumstances, you probably prefer the use of Zend\Captcha functionality combined with the
power of the Zend\Form component. For an example on how to use Zend\Form\Element\Captcha, have a
look at the Zend\Form Quick Start.

118 Chapter 27. Captcha Operation

CHAPTER
TWENTYEIGHT

CAPTCHA ADAPTERS

The following adapters are shipped with Zend Framework by default.

28.1 Zend\Captcha\Word

Zend\Captcha\Word is an abstract adapter that serves as the base class for most other CAPTCHA
adapters. It provides mutators for specifying word length, session 77L and the session container object to use.
Zend\Captcha\Word also encapsulates validation logic.

By default, the word length is 8 characters, the session timeout is 5 minutes, and Zend\Session\Container is
used for persistence (using the namespace “Zend_Form_Captcha_<captcha ID>").

In addition to the methods required by the Zend\Captcha\AdapterInterface interface,
Zend\Captcha\Word exposes the following methods:

* setWordLen ($length) and getWordLen () allow you to specify the length of the generated “word” in
characters, and to retrieve the current value.

e setTimeout ($ttl) and getTimeout () allow you to specify the time-to-live of the session token, and to
retrieve the current value. $tt1 should be specified in seconds.

* setUseNumbers ($numbers) and getUseNumbers () allow you to specify if numbers will be consid-
ered as possible characters for the random work or only letters would be used.

* setSessionClass ($class) and getSessionClass () allow you to specify an alternate
Zend\Session\Container implementation to use to persist the CAPTCHA token and to retrieve
the current value.

* getId() allows you to retrieve the current token identifier.

e getWord () allows you to retrieve the generated word to use with the CAPTCHA. It will generate the word for
you if none has been generated yet.

* setSession(Zend\Session\Container $session) allows you to specify a session object to use
for persisting the CAPTCHA token. get Session () allows you to retrieve the current session object.

All word CAPTCHAs allow you to pass an array of options or Traversable object to the constructor, or, alternately,
pass them to setOptions (). By default, the wordLen, timeout, and sessionClass keys may all be used. Each
concrete implementation may define additional keys or utilize the options in other ways.

Note: Zend\Captcha\Word is an abstract class and may not be instantiated directly.

119

Zend Framework 2 Documentation, Release 2.0.0

28.2 Zend\Captcha\Dumb

The Zend\Captcha\Dumb adapter is mostly self-descriptive. It provides a random string that must be typed in
reverse to validate. As such, it’s not a good CAPTCHA solution and should only be used for testing. It extends
Zend\Captcha\Word.

28.3 Zend\Captcha\Figlet

The Zend\Captcha\Figlet adapter utilizes Zend\Tex!\Figlet to present a figlet to the user.

Options passed to the constructor will also be passed to the Zend\Texi\Figlet object. See the Zend\Text\Figlet docu-
mentation for details on what configuration options are available.

28.4 Zend\Captcha\lmage

The Zend\Captcha\Image adapter takes the generated word and renders it as an image, performing various skew-
ing permutations to make it difficult to automatically decipher. It requires the GD extension compiled with TrueType
or Freetype support. Currently, the Zend\Captcha\Image adapter can only generate PNG images.

Zend\Captcha\Image extends Zend\Captcha\Word, and additionally exposes the following methods:

* setExpiration ($expiration) and getExpiration () allow you to specify a maximum lifetime the
CAPTCHA image may reside on the filesystem. This is typically a longer than the session lifetime. Garbage
collection is run periodically each time the CAPTCHA object is invoked, deleting all images that have expired.
Expiration values should be specified in seconds.

* setGcFreqg($gcFreq) and getGeFreg () allow you to specify how frequently garbage collection should
run. Garbage collection will run every 1/$gcFreq calls. The default is 100.

e setFont ($font) and getFont () allow you to specify the font you will use. $font should be a fully
qualified path to the font file. This value is required; the CAPTCHA will throw an exception during generation
if the font file has not been specified.

* setFontSize ($fsize) and getFontSize () allow you to specify the font size in pixels for generating
the CAPTCHA. The default is 24px.

* setHeight ($height) and getHeight () allow you to specify the height in pixels of the generated
CAPTCHA image. The default is 50px.

* setWidth ($width) and getWidth () allow you to specify the width in pixels of the generated CAPTCHA
image. The default is 200px.

* setImgDir ($imgDir) and getImgDir () allow you to specify the directory for storing CAPTCHA im-
ages. The defaultis “. /images/captcha/”, relative to the bootstrap script.

* setImgUrl ($imgUrl) and get ImgUrl () allow you to specify the relative path to a CAPTCHA image to
use for HTML markup. The default is “/images/captcha/”.

e setSuffix ($suffix) and getSuffix () allow you to specify the filename suffix for the CAPTCHA
image. The default is “. png”. Note: changing this value will not change the type of the generated image.

* setDotNoiseLevel ($level) and getDotNoiseLevel (), along with
setLineNoiseLevel ($level) and getLineNoiseLevel (), allow you to control how much
“noise” in the form of random dots and lines the image would contain. Each unit of $1evel produces one
random dot or line. The default is 100 dots and 5 lines. The noise is added twice - before and after the image
distortion transformation.

120 Chapter 28. CAPTCHA Adapters

http://php.net/gd

Zend Framework 2 Documentation, Release 2.0.0

All of the above options may be passed to the constructor by simply removing the ‘set” method prefix and casting the
initial letter to lowercase: “suffix”, “height”, “imgUrl”, etc.

28.5 Zend\Captcha\ReCaptcha

The Zend\Captcha\ReCaptcha adapter uses Zend\Service\ReCaptcha\ReCaptcha to generate and validate
CAPTCHAEs. It exposes the following methods:

* setPrivKey ($key) and getPrivKey () allow you to specify the private key to use for the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

* setPubKey ($key) and getPubKey () allow you to specify the public key to use with the ReCaptcha
service. This must be specified during construction, although it may be overridden at any point.

* setService (Zend\Service\ReCaptcha\ReCaptcha $service) and getService () allow
you to set and get the ReCaptcha service object.

28.5. Zend\Captcha\ReCaptcha 121

Zend Framework 2 Documentation, Release 2.0.0

122 Chapter 28. CAPTCHA Adapters

1

CHAPTER
TWENTYNINE

INTRODUCTION

Zend\Config is designed to simplify access to configuration data within applications. It provides a nested object
property-based user interface for accessing this configuration data within application code. The configuration data
may come from a variety of media supporting hierarchical data storage. Currently, Zend\Config provides adapters
that read and write configuration data stored in .ini, JSON, YAML and XML files.

29.1 Using Zend\Config\Config with a Reader Class

Normally, it is expected that users would use one of the reader classes to read a configuration file, but if configuration
data are available in a PHP array, one may simply pass the data to Zend\Config\Config‘s constructor in order
to utilize a simple object-oriented interface:

// An array of configuration data is given
SconfigArray = array (
"webhost’ => 'www.example.com’,
"database’ => array (
"adapter’ => ’'pdo_mysql’,
"params’ => array (
"host’ => "db.example.com’,
"username’ => ’dbuser’,
'password’ => ’'secret’,
" dbname’ => 'mydatabase’

)i

// Create the object-oriented wrapper using the configuration data
Sconfig = new Zend\Config\Config(SconfigArray);

// Print a configuration datum (results in ’‘www.example.com’)
echo $Sconfig->webhost;

As illustrated in the example above, Zend\Config\Config provides nested object property syntax to access con-
figuration data passed to its constructor.

Along with the object oriented access to the data values, Zend\Config\Config also has get () method that
returns the supplied value if the data element doesn’t exist in the configuration array. For example:

Shost = Sconfig->database->get ("host’, ’localhost’);

123

Zend Framework 2 Documentation, Release 2.0.0

29.2 Using Zend\Config\Config with a PHP Configuration File

It is often desirable to use a purely PHP-based configuration file. The following code illustrates how easily this can be

accomplished:

// config.php
return array (
"webhost’ => "www.example.com’,
"database’ => array (
"adapter’ => ’'pdo_mysqgl’,
"params’ => array (
"host’ => "db.example.com’,
"username’ => ’dbuser’,
"password’ => ’secret’,
" dbname’ => 'mydatabase’

)i

// Consumes the configuration array
Sconfig = new Zend\Config\Config(include ’'config.php’);

// Print a configuration datum (results in ’'www.example.com’)

echo $Sconfig->webhost;

124

Chapter 29. Introduction

CHAPTER
THIRTY

THEORY OF OPERATION

Configuration data are made accessible to Zend\Config\Config"s constructor with an associative array, which
may be multi-dimensional, so data can be organized from general to specific. Concrete adapter classes adapt configu-
ration data from storage to produce the associative array for Zend\Config\Config‘s constructor. If needed, user
scripts may provide such arrays directly to Zend\Config\Config‘s constructor, without using a reader class.

Each value in the configuration data array becomes a property of the Zend\Config\Config object. The key
is used as the property name. If a value is itself an array, then the resulting object property is created as a new
Zend\Config\Config object, loaded with the array data. This occurs recursively, such that a hierarchy of config-
uration data may be created with any number of levels.

Zend\Config\Config implements the Countable and Iterator interfaces in order to facilitate simple access to
configuration data. Thus, Zend\Config\Config objects support the count() function and PHP constructs such as
foreach.

By default, configuration data made available through Zend\Config\Config are read-only, and an assignment
(e.g. Sconfig->database->host = ’example.com’ ;) results in a thrown exception. This default behav-
ior may be overridden through the constructor, allowing modification of data values. Also, when modifications are
allowed, Zend\Config\Config supports unsetting of values (i.e. unset ($config->database->host)).
The isReadOnly () method can be used to determine if modifications to a given Zend\Config\Config
object are allowed and the setReadOnly () method can be used to stop any further modifications to a
Zend\Config\Config object that was created allowing modifications.

Note: Modifying Config does not save changes

It is important not to confuse such in-memory modifications with saving configuration data out to specific storage
media. Tools for creating and modifying configuration data for various storage media are out of scope with respect
to Zend\Config\Config. Third-party open source solutions are readily available for the purpose of creating and
modifying configuration data for various storage media.

If you have two Zend\Config\Config objects, you can merge them into a single object using the merge () func-
tion. For example, given Sconfigand $1localConfig, you can merge data from $localConfigto $config
using $config->merge ($localConfig) ;. The items in $localConfig will override any items with the
same name in $config.

Note: The Zend\Config\Config object that is performing the merge must have been constructed to allow
modifications, by passing TRUE as the second parameter of the constructor. The setReadOnly () method can then
be used to prevent any further modifications after the merge is complete.

125

http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.iterator.php
http://php.net/count
http://php.net/foreach

Zend Framework 2 Documentation, Release 2.0.0

126 Chapter 30. Theory of Operation

CHAPTER
THIRTYONE

ZEND\CONFIG\READER

Zend\Config\Reader gives you the ability to read a config file. It works with concrete implementations for
different file format. The Zend\Config\Reader is only an interface, that define the two methods fromFile ()
and fromString (). The concrete implementations of this interface are:

e Zend\Config\Reader\Ini
* Zend\Config\Reader\Xml
e Zend\Config\Reader\Json
e Zend\Config\Reader\Yaml

The fromFile () and fromString () return a PHP array contains the data of the configuration file.

Note: Differences from ZF1
The Zend\Config\Reader component no longer supports the following features:
* Inheritance of sections.

* Reading of specific sections.

31.1 Zend\Config\Readenr\Ini

Zend\Config\Reader\Ini enables developers to store configuration data in a familiar /NI format and read them
in the application by using an array syntax.

Zend\Config\Reader\Ini utilizes the parse_ini_file() PHP function. Please review this documentation to be
aware of its specific behaviors, which propagate to Zend\Config\Reader\Ini, such as how the special values
of “TRUE”, “FALSE”, “yes”, “no”, and “NULL” are handled.

Note: Key Separator

By default, the key separator character is the period character (“.”). This can be changed, however, using the
setNestSeparator () method. For example:

ader = new Zend\Config\Reader\Ini();
ader—>setNestSeparator ('-'");

The following example illustrates a basic use of Zend\Config\Reader\Ini for loading configuration data from
an INI file. In this example there are configuration data for both a production system and for a staging system. Suppose
we have the following INI configuration file:

127

http://php.net/parse_ini_file

Zend Framework 2 Documentation, Release 2.0.0

webhost = 'www.example.com’
database.adapter = ’'pdo_mysqgl’
database.params.host = 'db.example.com’
database.params.username = ’dbuser’
database.params.password = ’secret’
database.params.dbname = ’"dbproduction’

We can use the Zend\Config\Reader\Ini to read this INI file:

Sreader = new Zend\Config\Reader\Ini();
Sdata = Sreader->fromFile (' /path/to/config.ini’);
echo $data[’webhost’] // prints "www.example.com"

echo $data[’database’] [’'params’] [’ dbname’]; // prints "dbproduction"

The Zend\Config\Reader\Ini supports a feature to include the content of a INI file in a specific section of
another INI file. For instance, suppose we have an INI file with the database configuration:

database.adapter "pdo_mysqgl’

database.params.host = 'db.example.com’
database.params.username = ’'dbuser’
database.params.password = ’secret’
database.params.dbname = ’"dbproduction’

We can include this configuration in another INI file, for instance:

webhost = "www.example.com’
@include = ’"database.ini’

If we read this file using the component Zend\Config\Reader\Ini we will obtain the same configuration data
structure of the previous example.

The @include = ’'file-to-include.ini’ can be used also in a subelement of a value. For instance we can
have an INI file like that:

adapter = 'pdo_mysqgl’
params.host = "db.example.com’
params.username = ’dbuser’
params.password = ’secret’

params.dbname "dbproduction’

And assign the @include as sublement of the database value:

webhost = "www.example.com’
database.@include = ’database.ini’

31.2 Zend\Config\Reader\Xml

Zend\Config\Reader\Xml enables developers to read configuration data in a familiar XML format and read
them in the application by using an array syntax. The root element of the XML file or string is irrelevant and may be
named arbitrarily.

The following example illustrates a basic use of Zend\Config\Reader\Xml for loading configuration data from
an XML file. Suppose we have the following XML configuration file:

<?xml version="1.0" encoding="utf-8"?>?>
<config>
<webhost>www.example.com</webhost>

128 Chapter 31. Zend\Config\Reader

Zend Framework 2 Documentation, Release 2.0.0

<database>
<adapter value="pdo_mysqgl"/>
<params>
<host value="db.example.com"/>
<username value="dbuser"/>
<password value="secret"/>
<dbname value="dbproduction"/>
</params>
</database>
</config>

We can use the Zend\Config\Reader\Xml to read this XML file:

Sreader = new Zend\Config\Reader\Xml () ;

sdata = Sreader->fromFile ('’ /path/to/config.xml’);

echo Sdata[’webhost’] // prints "www.example.com"

echo S$data[’database’] [’params’] [’ dbname’]; // prints "dbproduction"

Zend\Config\Reader\Xml utilizes the XMLReader PHP class. Please review this documentation to be aware
of its specific behaviors, which propagate to Zend\Config\Reader\Xml.

Using Zend\Config\Reader\Xml we can include the content of XML files in a specific XML element. This
is provided using the standard function XInclude of XML. To use this function you have to add the namespace
xmlns:xi="http://www.w3.0rg/2001/XInclude" to the XML file. Suppose we have an XML files that
contains only the database configuration:

<?xml version="1.0" encoding="utf-8"?>
<config>
<database>
<adapter>pdo_mysqgl</adapter>
<params>
<host>db.example.com</host>
<username>dbuser</username>
<password>secret</password>
<dbname>dbproduction</dbname>
</params>
</database>
</config>

We can include this configuration in another XML file, for instance:

<?xml version="1.0" encoding="utf-8"?>

<config xmlns:xi="http://www.w3.0rg/2001/XInclude">
<webhost>www.example.com</webhost>
<xi:include href="database.xml"/>

</config>

The syntax to include an XML file in a specific element is <xi:include href="file-to-include.xml"/>

31.3 Zend\Config\Reader\Json

Zend\Config\Reader\Json enables developers to read configuration data in a JSON format and read them in
the application by using an array syntax.

The following example illustrates a basic use of Zend\Config\Reader\Json for loading configuration data from
a JSON file. Suppose we have the following JSON configuration file:

31.3. Zend\Config\Reader\Json 129

http://php.net/xmlreader
http://www.w3.org/TR/xinclude/

S

Zend Framework 2 Documentation, Release 2.0.0

"webhost" : "www.example.com",
"database" : {
"adapter" : "pdo_mysqgl",
"params" : {
"host" : "db.example.com",
"username" : "dbuser",
"password" : "secret",
"dbname" : "dbproduction"

}

We can use the Zend\Config\Reader\>Json to read this JSON file:

- = new Zend\Config\Reader\Json() ;
= Sreader->fromFile (’ /path/to/config. json’);

echo $data[’webhost’] // prints "www.example.com"
echo $data[’database’] [’'params’] [’ dbname’]; // prints

Zend\Config\Reader\Json utilizes the Zend\Json\Json class.

"dbproduction"

Using Zend\Config\Reader\Json we can include the content of a JSON file in a specific JSON section or
element. This is provided using the special syntax @include. Suppose we have a JSON file that contains only the

database configuration:

{

"database" : {
"adapter" : "pdo_mysgl",
"params" : |
"host" : "db.example.com",
"username" : "dbuser",
"password" : "secret",
"dbname" : "dbproduction"

}

We can include this configuration in another JSON file, for instance:

{
"webhost" : "www.example.com",
"Q@include" : "database.json"

31.4 Zend\Config\Reader\Yaml

Zend\Config\Reader\Yaml enables developers to read configuration data in a YAML format and read them in
the application by using an array syntax. In order to use the YAML reader we need to pass a callback to an external

PHP library or use the Yaml PECL extension.

The following example illustrates a basic use of Zend\Config\Reader\Yaml that use the Yaml PECL extension.

Suppose we have the following YAML configuration file:

webhost: www.example.com
database:

130

Chapter 31. Zend\Config\Reader

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.0.0

adapter: pdo_mysqgl

params:
host: db.example.com
username: dbuser
password: secret
dbname: dbproduction

We can use the Zend\Config\Reader\Yaml to read this YAML file:

eader new Zend\Config\Reader\Yaml () ;

r

Sdata = Sreader->fromFile (' /path/to/config.yaml’);
echo $datal[’webhost’] // prints "www.example.com"
echo $data[’database’] [’'params’] [’ dbname’]; // prints "dbproduction"

If you want to use an external YAML reader you have to pass the callback function in the constructor of the class. For
instance, if you want to use the Spyc library:

// include the Spyc library
require_once (’'path/to/spyc.php’);

Sreader = new Zend\Config\Reader\Yaml (array (' Spyc’,’ YAMLLoadString’));
Sdata = Sreader->fromFile(’ /path/to/config.yaml’);

echo $data[’webhost’] // prints "www.example.com"

echo $data[’database’] [’'params’] [’dbname’]; // prints "dbproduction"

You can also instantiate the Zend\Config\Reader\Yaml without any parameter and specify the YAML reader
in a second moment using the setYamlDecoder () method.

Using Zend\Config\ReaderYaml we can include the content of a YAML file in a specific YAML section or
element. This is provided using the special syntax @include. Suppose we have a YAML file that contains only the
database configuration:

database:
adapter: pdo_mysqgl
params:
host: db.example.com

username: dbuser
password: secret
dbname: dbproduction

We can include this configuration in another YAML file, for instance:

webhost: www.example.com
@include: database.yaml

31.4. Zend\Config\Reader\Yaml| 131

http://code.google.com/p/spyc/

Zend Framework 2 Documentation, Release 2.0.0

132 Chapter 31. Zend\Config\Reader

CHAPTER
THIRTYTWO

ZEND\CONFIG\WRITER

Zend\Config\Writer gives you the ability to write config files out of array, Zend\Config\Config and
any Traversable object. The Zend\Config\Writer is an interface that defines two methods: toFile () and
toString (). We have five specific writers that implement this interface:

* Zend\Config\Writer\Ini

e Zend\Config\Writer\Xml

e Zend\Config\Writer\PhpArray
e Zend\Config\Writer\Json

* Zend\Config\Writer\Yaml

32.1 Zend\Config\Writer\Ini

The INI writer has two modes for rendering with regard to sections. By default the top-level configuration is always
written into section names. By calling $writer->setRenderWithoutSectionsFlags (true) ; all options
are written into the global namespace of the INI file and no sections are applied.

As an addition Zend\Config\Writer\Ini has an additional option parameter nestSeparator, which de-
fines with which character the single nodes are separated. The default is a single dot, like it is accepted by
Zend\Config\Reader\Ini by default.

When modifying or creating a Zend\Config\Config object, there are some things to know. To create or modify
a value, you simply say set the parameter of the Conf ig object via the parameter accessor (->). To create a section in
the root or to create a branch, you just create a new array (“Sconfig->branch = array();”).

Using Zend\Config\Writer\Ini

This example illustrates the basic use of Zend\Config\Writer\Ini to create a new config file:

// Create the config object

nfig = new Zend\Config\Config(array (), true);
onfig—>production = array();
onfig->production->webhost = ’'www.example.com’;
$config->production->database = array();
nfig->production->database->params = array();
onfig->production->database->params->host = ’"localhost’;
Sconfig->production->database->params—->username = ’'production’;
Sconfig->production->database->params—->password = ’'secret’;

133

Zend Framework 2 Documentation, Release 2.0.0

Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Ini();
echo Swriter—->toString(Sconfiqg);

The result of this code is an INI string contains the following values:

[production]

webhost = "www.example.com"
database.params.host = "localhost"
database.params.username = "production"
database.params.password = "secret"
database.params.dbname = "dbproduction"

You can use the method toFile () to store the INI data in a file.

32.2 Zend\Config\Writer\Xml

The Zend\Config\Writer\Xmlcan be used to generate an XML string or file starting from a

Zend\Config\Config object.

Using Zend\Config\Writer\Ini

This example illustrates the basic use of Zend\Config\Writer\Xml to create a new config file:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);
Sconfig->production = array();

Sconfig->production->webhost = 'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params->host = ’localhost’;
Sconfig->production->database->params—->username = ’production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Xml ();
echo Swriter—->toString($Sconfiqg);

The result of this code is an XML string contains the following data:

<?xml version="1.0" encoding="UTF-8"?>
<zend-config>
<production>
<webhost>www.example.com</webhost>
<database>
<params>
<host>localhost</host>
<username>production</username>
<password>secret</password>
<dbname>dbproduct ion</dbname>
</params>
</database>
</production>
</zend-config>

134 Chapter 32.

Zend\Config\Writer

Zend Framework 2 Documentation, Release 2.0.0

You can use the method toFile () to store the XML data in a file.

32.3 Zend\Config\Writer\PhpArray

The Zend\Config\Writer\PhpArraycan be used to generate a PHP code that returns an array representation
of an Zend\Config\Config object.

Using Zend\Config\Writer\PhpArray

This example illustrates the basic use of Zend\Config\Writer\PhpArray to create a new config file:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);

Sconfig->production = array();

Sconfig->production->webhost = 'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params->host = ’localhost’;
Sconfig->production->database->params—->username = ’production’;
Sconfig->production->database->params->password = ’secret’;
Sconfig->production->database->params->dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\PhpArray () ;
echo Swriter—->toString($Sconfiqg);

The result of this code is a PHP script that returns an array as follow:

<?php
return array (
"production’ =>
array (
"webhost’ => ’'www.example.com’,
"database’ =>
array (
"params’ =>
array (
"host’” => ’'localhost’,
"username’ => ’production’,
"password’ => ’secret’,
"dbname’ => ’dbproduction’,
)I
)I
)I
)i

You can use the method toFile () to store the PHP script in a file.

32.4 Zend\Config\Writer\dson

The Zend\Config\Writer\Jsoncan be used to generate a PHP code that returns the JSON representation of a
Zend\Config\Config object.

32.3. Zend\Config\Writer\PhpArray 135

Zend Framework 2 Documentation, Release 2.0.0

Using Zend\Config\Writer\dson

This example illustrates the basic use of Zend\Config\Writer\Json to create a new config file:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);
Sconfig->production = array/();

Sconfig->production->webhost = 'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();
Sconfig->production->database->params—->host = ’localhost’;
Sconfig->production->database->params->username = ’production’;
Sconfig->production->database->params->password = ’secret’;

Sconfig->production->database->params—>dbname = ’dbproduction’;

Swriter = new Zend\Config\Writer\Json();
echo Swriter—->toString($confiqg);

The result of this code is a JSON string contains the following values:

{ "webhost" : "www.example.con",
"database" : {
"params" : {
"host" : "localhost",
"username" : "production",
"password" : "secret",
"dbname" : "dbproduction"

You can use the method toFile () to store the JSON data in a file.

The Zend\Config\Writer\Json class uses the Zend\Json\Json component to convert the data in a JSON
format.

32.5 Zend\Config\Writer\Yaml

The Zend\Config\Writer\Yamlcan be used to generate a PHP code that returns the YAML representation of
a Zend\Config\Config object. In order to use the YAML writer we need to pass a callback to an external PHP
library or use the Yaml PECL extension.

Using Zend\Config\Writer\Yaml
This example illustrates the basic use of Zend\Config\Writer\Yaml to create a new config file using the Yaml

PECL extension:

// Create the config object
Sconfig = new Zend\Config\Config(array (), true);

Sconfig->production = array/();
Sconfig->production->webhost = ’'www.example.com’;
Sconfig->production->database = array();
Sconfig->production->database->params = array();

136 Chapter 32. Zend\Config\Writer

http://www.php.net/manual/en/book.yaml.php

Zend Framework 2 Documentation, Release 2.0.0

config->production—->database->params—->host = ’localhost’;

Sconfig->production->database->params->username
Sconfig->production->database->params—->password
Sconfig->production->database->params->dbname =
Swriter = new Zend\Config\Writer\Yaml ();

echo Swriter—->toString(Sconfiqg);

= ’"production’;
= ’"secret’;
"dbproduction’;

The result of this code is a YAML string contains the following values:

webhost: www.example.com
database:
params:
host: localhost
username: production
password: secret
dbname: dbproduction

You can use the method toFile () to store the YAML data in a file.

If you want to use an external YAML writer library you have to pass the callback function in the constructor of the

class. For instance, if you want to use the Spyc library:

// include the Spyc library
require_once (’'path/to/spyc.php’);

Swriter = new Zend\Config\Writer\Yaml (array (' Spyc’,’ YAMLDump’)) ;

echo Swriter—->toString(Sconfiqg);

32.5. Zend\Config\Writer\Yaml|

137

http://code.google.com/p/spyc/

Zend Framework 2 Documentation, Release 2.0.0

138 Chapter 32. Zend\Config\Writer

[R N N SV C R

CHAPTER
THIRTYTHREE

ZEND\CONFIG\PROCESSOR

Zend\Config\Processor gives you the ability to perform some operations on a Zend\Config\Config
object. The Zend\Config\Processor is an interface that defines two methods: process () and
processValue (). These operations are provided by the following concrete implementations:

* Zend\Config\Processor\Constant: manage PHP constant values;

* Zend\Config\Processor\Filter: filter the configuration data using Zend\Filter;

* Zend\Config\Processor\Queue: manage a queue of operations to apply to configuration data;
e Zend\Config\Processor\Token: find and replace specific tokens;

* Zend\Config\Processor\Translator: translate configuration values in other languages using
Zend\I1l8n\Translator;

Below we reported some examples for each type of processor.

33.1 Zend\Config\Processor\Constant

Using Zend\Config\Processor\Constant

This example illustrates the basic use of Zend\Config\Processor\Constant:

define (/' TEST_CONST’, ’'bar’);
// set true to Zend\Config\Config to allow modifications
fig = new Zend\Config\Config(array ('’ foo’ => 'TEST_CONST’), true);

= new Zend\Config\Processor\Constant () ;
onfig->foo . 7,’;

yr—>process ($confiqg);

onfig->foo;

echo
Sproc

echo $

This example returns the output: TEST_CONST, bar..

33.2 Zend\Config\Processor\Filter

Using Zend\Config\Processor\Filter

This example illustrates the basic use of Zend\Config\Processor\Filter:

139

Zend Framework 2 Documentation, Release 2.0.0

use Zend\Filter\StringToUpper;
use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Config;

Sconfig = new Config(array (’foo’ => ’'bar’), true);
Supper = new StringToUpper();

SupperProcessor = new FilterProcessor (Supper);

echo Sconfig->foo . ’,’;
SupperProcessor->process (Sconfiqg);
echo Sconfig->foo;

This example returns the output: bar, BAR.

33.3 Zend\Config\Processor\Queue

Using Zend\Config\Processor\Queue

This example illustrates the basic use of Zend\Config\Processor\Queue:

use Zend\Filter\StringToLower;

use Zend\Filter\StringToUpper;

use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Processor\Queue;

use Zend\Config\Config;

Sconfig = new Config(array (’foo’ => ’'bar’), true);
Supper = new StringToUpper () ;
Slower = new StringToLower () ;

$lowerProcessor
SupperProcessor

new F
new F

ilterProcessor (Slower);
ilterProcessor (Supper);

Squeue = new Queue () ;
Squeue->insert (SupperProcessor) ;
Squeue->insert (SlowerProcessor) ;
Squeue->process ($confiqg);

echo Sconfig->foo;

This example returns the output: bar. The filters in the queue are applied with a FIFO logic (First In, First Out).

33.4 Zend\Config\Processor\Token

Using Zend\Config\Processor\Token

This example illustrates the basic use of Zend\Config\Processor\Token:

// set the Config to true to allow modifications
Sconfig = new Config(array(’ foo’ => ’'Value is TOKEN’), true);
Sprocessor = new TokenProcessor();

140 Chapter 33. Zend\Config\Processor

Zend Framework 2 Documentation, Release 2.0.0

Sprocessor—->addToken (' TOKEN’, ’'bar’);

echo $Sconfig->foo . ’,’;

Sprocessor->process ($config);
echo Sconfig->foo;

This example returns the output: Value is TOKEN,Value is bar.

33.5 Zend\Config\Processor\Translator

Using Zend\Config\Processor\Translator

This example illustrates the basic use of Zend\Config\Processor\Translator:

use Zend\Config\Config;
use Zend\Config\Processor\Translator as TranslatorProcessor;
use Zend\Il8n\Translator\Translator;

Sconfig = new Config(array(’animal’ => ’"dog’), true);

* The following mapping would exist for the translation
* loader you provide to the translator instance

* Sitalian = array/(
* ’dog’ => ’cane’
*)7
*/
Stranslator = new Translator();
// ... configure the translator
Sprocessor = new TranslatorProcessor (Stranslator);
echo "English: {$config->animal}, ";

Sprocessor->process ($confiqg);
echo "Italian: {$config->animal}";

This example returns the output: English: dog, Italian: cane.

33.5. Zend\Config\Processor\Translator

14

Zend Framework 2 Documentation, Release 2.0.0

142 Chapter 33. Zend\Config\Processor

CHAPTER
THIRTYFOUR

INTRODUCTION

Zend\Crypt provides support of some cryptographic tools. The available features are:

encrypt-then-authenticate using symmetric ciphers (the authentication step is provided using HMAC);
encrypt/decrypt using symmetric and public key algorithm (e.g. RSA algorithm);

generate digital sign using public key algorithm (e.g. RSA algorithm);

key exchange using the Diffie-Hellman method;

Key derivation function (e.g. using PBKDF?2 algorithm);

Secure password hash (e.g. using Berypt algorithm);

generate Hash values;

generate HMAC values;

The main scope of this component is to offer an easy and secure way to protect and authenticate sensitive data in PHP.
Because the use of cryptography is not so easy we recommend to use the Zend\Crypt component only if you have
a minimum background on this topic. For an introduction to cryptography we suggest the following references:

Dan Boneh “Cryptography course” Stanford University, Coursera - free online course
N.Ferguson, B.Schneier, and T.Kohno, “Cryptography Engineering”, John Wiley & Sons (2010)
B.Schneier “Applied Cryptography”, John Wiley & Sons (1996)

Note:

PHP-CryptLib

Most of the ideas behind the Zend\Crypt component have been inspired by the PHP-CryptLib project of Anthony
Ferrara. PHP-CryptLib is an all-inclusive pure PHP cryptographic library for all cryptographic needs. It is meant to
be easy to install and use, yet extensible and powerful enough for even the most experienced developer.

143

https://www.coursera.org/course/crypto
http://www.schneier.com/book-ce.html
http://www.schneier.com/book-applied.html
https://github.com/ircmaxell/PHP-CryptLib
http://blog.ircmaxell.com/
http://blog.ircmaxell.com/

Zend Framework 2 Documentation, Release 2.0.0

144 Chapter 34. Introduction

CHAPTER
THIRTYFIVE

ENCRYPT/DECRYPT USING BLOCK
CIPHERS

Zend\Crypt\BlockCipher implements the encrypt-then-authenticate mode using HMAC to provide authentica-
tion.

The symmetric cipher can be <choose with a specific adapter that implements the
Zend\Crypt\Symmetric\SymmetricInterface. We support the standard algorithms of the Mcrypt
extension. The adapter that implements the Mcrypt is Zend\Crypt \Symmetric\Mcrypt.

In the following code we reported an example on how to use the BlockCipher class to encrypt-then-authenticate a string
using the AES block cipher (with a key of 256 bit) and the HMAC algorithm (using the SHA-256 hash function).

use Zend\Crypt\BlockCipher;

r = BlockCipher::factory ('mcrypt’, array(’'algo’ => "aes’));
>setKey (' encryption key’);

echo "Encrypted text: \n";

The BlockCipher is initialized using a factory method with the name of the cipher adapter to use (mcrypt) and the
parameters to pass to the adapter (the AES algorithm). In order to encrypt a string we need to specify an encryption
key and we used the setKey () method for that scope. The encryption is provided by the encrypt () method.

The output of the encryption is a string, encoded in Base64 (default), that contains the HMAC value, the IV vector, and
the encrypted text. The encryption mode used is the CBC (with a random IV by default) and SHA256 as default hash
algorithm of the HMAC. The Mcrypt adapter encrypts using the PKCS#7 padding mechanism by default. You can
specify a different padding method using a special adapter for that (Zend\Crypt\Symmetric\Padding). The encryption
and authentication keys used by the BlockCipher are generated with the PBKDF?2 algorithm, used as key derivation
function from the user’s key specified using the setKey () method.

Note: Key size

BlockCipher try to use always the longest size of the key for the specified cipher. For instance, for the AES algorithm
it uses 256 bits and for the Blowfish algorithm it uses 448 bits.

You can change all the default settings passing the values to the factory parameters. For instance, if you want to use
the Blowfish algorithm, with the CFB mode and the SHA512 hash function for HMAC you have to initialize the class
as follow:

use Zend\Crypt\BlockCipher;

sblockCipher = BlockCipher::factory (/mcrypt’, array(

145

http://en.wikipedia.org/wiki/HMAC
http://php.net/manual/en/book.mcrypt.php
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Padding_%28cryptography%29
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Blowfish_%28cipher%29

Zend Framework 2 Documentation, Release 2.0.0

"algo’ => ’'blowfish’,
"mode’ => 'cfb’,
"hash’ => ’'shabl2’

Note: Recommendation

If you are not familiar with symmetric encryption techniques we strongly suggest to use the default values of the
BlockCipher class. The default values are: AES algorithm, CBC mode, HMAC with SHA256, PKCS#7 padding.

To decrypt a string we can use the decrypt () method. In order to successfully decrypt a string we have to configure
the BlockCipher with the same parameters of the encryption.

We can also initialize the BlockCipher manually without use the factory method. We can inject the symmetric cipher
adapter directly to the constructor of the BlockCipher class. For instance, we can rewrite the previous example as
follow:

use Zend\Crypt\BlockCipher;
use Zend\Crypt\Symmetric\Mcrypt;

~kCiy

>her = new BlockCipher (new Mcrypt (array(’algo’ => ’aes’));
Cipher—->setKey ('encryption key’);

~esult = SblockCipher->encrypt ('this is a secret message’);
echo "Encrypted text: \n";

146 Chapter 35. Encrypt/decrypt using block ciphers

R T = Y S

CHAPTER
THIRTYSIX

KEY DERIVATION FUNCTION

In cryptography, a key derivation function (or KDF) derives one or more secret keys from a secret value such as
a master key or other known information such as a password or passphrase using a pseudo-random function. For
instance, a KDF function can be used to generate encryption or authentication keys from a user password. The
Zend\Crypt\Key\Derivation implements a key derivation function using specific adapters.

User passwords are not really suitable to be used as keys in cryptographic algorithms, since users normally choose
keys they can write on keyboard. These passwords use only 6 to 7 bits per character (or less). It is highly recommended
to use always a KDF function of transformation a user’s password to a cryptography key.

36.1 Pbkdf2 adapter

Pbkdf2 is a KDF that applies a pseudorandom function, such as a cryptographic hash, to the input password or
passphrase along with a salt value and repeats the process many times to produce a derived key, which can then
be used as a cryptographic key in subsequent operations. The added computational work makes password cracking
much more difficult, and is known as key stretching.

In the example below we show a typical usage of the Pbkdf2 adapter.

use Zend\Crypt\Key\Derivation\Pbkdf2;
use Zend\Math\Rand;

ss = ’'password’;

S t = Rand::getBytes(strlen($pass), true);

Skey = Pbkdf2::calc(’sha256’, S$pass, $salt, 10000, strlen($pass)*2);
echo "Original password: \n";

echo "Key derivation : \n";

The Pbkdf2 adapter takes the password (Spass) and generate a binary key with a size double of the password. The
syntaxis calc ($Shash, $pass, $salt, $iterations, $length) where $hash isthe name of the hash
function to use, $pass is the password, $salt is a pseudo random value, $iterations is the number of iterations
of the algorithm and $1ength is the size of the key to be generated. We used the Rand: : getBytes function of
the Zend\Math\Rand class to generate a random bytes using a strong generators (the t rue value means the usage
of strong generators).

The number of iterations is a very important parameter for the security of the algorithm. Big values means more
security. There is not a fixed value for that because the number of iterations depends on the CPU power. You should
always choose a number of iteration that prevent brute force attacks. For instance, a value of 1°‘000°000 iterations, that
is equal to 1 sec of elaboration for the PBKDF2 algorithm, is enough secure using an Intel Core i5-2500 CPU at 3.3
Ghz.

147

http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Key_stretching

Zend Framework 2 Documentation, Release 2.0.0

36.2 SaltedS2k adapter

The SaltedS2k algorithm uses an hash function and a salt to generate a key based on a user’s password. This algorithm
doesn’t use a parameter that specify the number of iterations and for that reason it’s considered less secure compared
with Pbkdf2. We suggest to use the SaltedS2k algorithm only if you really need it.

Below is reported a usage example of the SaltedS2k adapter.

use Zend\Crypt\Key\Derivation\SaltedS2k;
use Zend\Math\Rand;

= ’'password’;
= Rand::getBytes (strlen(Spass), true);
= SaltedS2k::calc(’sha256’, S$Spass, S$salt, strlen(Spass)*2);

echo "Original password: \n";
echo "Key derivation : \n";

148 Chapter 36. Key derivation function

http://www.faqs.org/rfcs/rfc2440.html

SO S

CHAPTER
THIRTYSEVEN

SECURE PASSWORD STORING

Zend\Crypt \Password stores a user’s password in a secure way using dedicated adapters like the berypt algo-
rithm.

The example below shows how to use the berypt algorithm to store a user’s password:

use Zend\Crypt\Password\Bcrypt;

Sbecrypt = new Bcrypt ()

SsecurePass = Sbcrypt—->create(’user password’);

The output of the create () method is the encrypted password. This value can then be stored in a repository like a
database. Classic hashing mechanisms like MD5 or SHA are not considered secure anymore (read this post to know
why).

To verify if a given password is valid against a berypt value you can use the verify () method. Example time:

use Zend\Crypt\Password\Bcrypt;

rypt = new Bcrypt ();
urePass = 'the stored bcrypt value’;
vord = ’"the password to check’;

if (Sbcrypt->verify($password, S$bcrypt)) {
echo "The password is correct! \n";

} else {
echo "The password is NOT correct.\n";

}

By default, the Zend\Crypt\Password\Bcrypt class uses a value of 14 for berypts cost parameter. The cost
parameter is an integer between 4 to 31. A greater value means longer execution time for berypt, thus more secure
against brute force or dictionary attacks.

If you want to change the cost parameter of the berypt algorithm you can use the setCost () method.

Note: Bcerypt with non-ASCII passwords (8-bit characters)

The berypt implementation used by PHP < 5.3.7 can contains a security flaw if the password uses 8-bit characters
(here’s the security report). The impact of this bug was that most (but not all) passwords containing non-ASCII char-
acters with the 8th bit set were hashed incorrectly, resulting in password hashes incompatible with those of OpenBSD’s
original implementation of berypt. This security flaw has been fixed starting from PHP 5.3.7 and the prefix used in the
output was changed to ‘$2y$’ in order to put evidence on the correctness of the hash value. If you are using PHP <
5.3.7 with 8-bit passwords, the Zend\Crypt\Password\Bcrypt throws an exception suggesting to upgrade to
PHP 5.3.7+ or use only 7-bit passwords.

149

http://en.wikipedia.org/wiki/Bcrypt
http://codahale.com/how-to-safely-store-a-password/
http://codahale.com/how-to-safely-store-a-password/
http://php.net/security/crypt_blowfish.php

Zend Framework 2 Documentation, Release 2.0.0

150 Chapter 37. Secure Password Storing

CHAPTER
THIRTYEIGHT

PUBLIC KEY CRYPTOGRAPHY

Public-key cryptography refers to a cryptographic system requiring two separate keys, one of which is secret and one
of which is public. Although different, the two parts of the key pair are mathematically linked. One key locks or
encrypts the plaintext, and the other unlocks or decrypts the cyphertext. Neither key can perform both functions. One
of these keys is published or public, while the other is kept private.

In Zend Framework we implemented two public key algorithms: Diffie-Hellman key exchange and RSA.

38.1 Diffie-Hellman

The Diffie-Hellman algorithm is a specific method of exchanging cryptographic keys. It is one of the earliest practical
examples of key exchange implemented within the field of cryptography. The Diffie-Hellman key exchange method
allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure
communications channel. This key can then be used to encrypt subsequent communications using a symmetric key
cipher.

The diagram of operation of the Diffie-Hellman algorithm can be defined by the following picture (taken by the Diffie-
Hellman Wikipedia page):

The schema’s colors represent the parameters of the algorithm. Here is reported an example of usage using the
Zend\Crypt\PublicKey\DiffieHellman class:

use Zend\Crypt\PublicKey\DiffieHellman;

SaliceOptions = array(

"prime’ => 7155172898181473697471232257763715539915724801966915404479707795314057629378541917
7423698188993727816152646631438561595825688188889951272158842675419950341258706556!
7104870537681476726513255747040765857479291291572334510643245094715007229621094194:
"984760375594985848253359305585439638443",

"generator’=> '2’",

"private’ => 7992093140665725952364085695919679885571412495614942674862518080355353963322786201+
78131271289167262307263099518032438884168149185774551569678909112740951500925035896!
"4634204983817852137913215334813990801681919621944831010707263251574933905579812253
704828702523796951800575031871051678091"

)i

$bobOptions = array (
"prime’ => S$aliceOptions[’prime’],
"generator’=> '2’",
"private’ => 7334117357926395586257336357178925636125481806504021611510774783148414637079488997
"123256347304105519467727528801778689728169635518217403867000760342134081539246925

151

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

"634647331566005454845108330724270034742070646507148310833044977371603820970833568"

131616972608703322302585471319261275664"
)i

Salice = new DiffieHellman($SaliceOptions[’prime’], S$SaliceOptions|[’generator’],

-
Sbob

Salice->generateKeys () ;
Sbob->generateKeys () ;

SaliceSecretKey = $Salice->computeSecretKey ($bob->getPublicKey (DiffieHellman: :FORMAT_BINARY),

DiffieHellman: :FORMAT BINARY,
DiffieHellman: :FORMAT_BINARY) ;

SbobSecretKey = S$bob->computeSecretKey (
DiffieHellman: :FORMAT_RINARY,
DiffieHellman: :FORMAT_BINARY) ;

if (SaliceSecretKey !== SbobSecretKey) {
echo "ERROR!\n";
} else {
printf ("The secret key is: %s\n", base64_encode ($aliceSecretKey));

}

The parameters of the Diffie-Hellman class are: a prime number (p), a generator (g) that is a primitive root mod p
and a private integer number. The security of the Diffie-Hellman exchange algorithm is related to the choice of these
parameters. To know how to choose secure numbers you can read the RFC 3526 document.

Note: The Zend\Crypt\PublicKey\DiffieHellman class use by default the OpenSSL extension of
PHP to generate the parameters. If you want don’t want to use the OpenSSL library you have to set the
useOpensslExtension static method to false.

38.2 RSA

RSA is an algorithm for public-key cryptography that is based on the presumed difficulty of factoring large integers,
the factoring problem. A user of RSA creates and then publishes the product of two large prime numbers, along with
an auxiliary value, as their public key. The prime factors must be kept secret. Anyone can use the public key to encrypt
a message, but with currently published methods, if the public key is large enough, only someone with knowledge of
the prime factors can feasibly decode the message. Whether breaking RSA encryption is as hard as factoring is an
open question known as the RSA problem.

The RSA algorithm can be used to encrypt/decrypt message and also to provide authenticity and integrity generating
a digital signature of a message. Suppose that Alice wants to send an encrypted message to Bob. Alice must use
the public key of Bob to encrypt the message. Bob can decrypt the message using his private key. Because Bob he
is the only one that can access to his private key, he is the only one that can decrypt the message. If Alice wants to
provide authenticity and integrity of a message to Bob she can use her private key to sign the message. Bob can check
the correctness of the digital signature using the public key of Alice. Alice can provide encryption, authenticity and
integrity of a message to Bob using the previous schemas in sequence, applying the encryption first and the digital
signature after.

Below we reported some examples of usage of the Zend\Crypt\PublicKey\Rsa class in order to:
 generate a public key and a private key;

* encrypt/decrypt a string;

152 Chapter 38. Public key cryptography

SaliceOptions|[’private
new DiffieHellman (SbobOptions[’prime’], S$bobOptions[’generator’], SbobOptions|[’private’]);

Salice->getPublicKey (DiffieHellman: :FORMAT_BINARY),

http://tools.ietf.org/html/rfc3526
http://php.net/manual/en/book.openssl.php
http://en.wikipedia.org/wiki/Factoring_problem

Zend Framework 2 Documentation, Release 2.0.0

* generate a digital signature of a file.

38.2.1 Generate a public key and a private key

In order to generate a public and private key you can use the following code:

use Zend\Crypt\PublicKey\RsaOptions;

SrsaOptions = new RsaOptions (array (
"pass_phrase’ => ’'test’

)) i

SrsaOptions—>generateKeys (array (
"private_key_bits’ => 2048,
)) i

file_put_contents (’'private_key.pem’, S$rsaOptions->getPrivateKey());
file_put_contents ('public_key.pub’, S$rsaOptions->getPublicKey());

This example generates a public and privat key of 2048 bit storing the keys in two separate files, the
private_key.pem for the private key and the public_key.pub for the public key. You can also generate
the public and private key using OpenSSL from the command line (Unix style syntax):

ssh-keygen -t rsa

38.2.2 Encrypt and decrypt a string

Below is reported an example on how to encrypt and decrypt a string using the RSA algorithm. You can encrypt only
small strings. The maximum size of encryption is given by the length of the public/private key - 88 bits. For instance,
if we use a size of 2048 bit you can encrypt string with a maximum size of 1960 bit (245 characters). This limitation
is related to the OpenSSL implementation for a security reason related to the nature of the RSA algorithm.

The normal application of a public key encryption algorithm is to store a key or a hash of the data you want to
respectively encrypt or sign. A hash is typically 128-256 bits (the PHP shal() function returns a 160 bit hash). An
AES encryption key is 128 to 256 bits. So either of those will comfortably fit inside a single RSA encryption.

use Zend\Crypt\PublicKey\Rsa;

&

Srsa = Rsa::factory (array (

"public_key’ => ’'public_key.pub’,
"private_key’ => ’'private_key.pem’,
"pass_phrase’ => "test’,
"binary_output’ => false

)) i

Stext = 'This is the message to encrypt’;

Sencrypt = S$rsa->encrypt (Stext);

printf ("Encrypted message:\n%s\n", Sencrypt);

$decrypt = S$rsa->decrypt ($encrypt);

if (Stext !== S$Sdecrypt) {
echo "ERROR\n'";

} else {

38.2. RSA 153

20

21

Zend Framework 2 Documentation, Release 2.0.0

echo "Encryption and decryption performed successfully!\n";

38.2.3 Generate a digital signature of a file

Below is reported an example of how to generate a digital signature of a file.

use Zend\Crypt\PublicKey\Rsa;

Srsa = Rsa::factory(array (
"private_key’ => ’'path/to/private_key’,
"pass_phrase’ => ’'passphrase of the private key’,

"binary_output’ => false
)) i

$file = file_get_contents(’path/file/to/sign’);

$signature = $rsa->sign($file, S$rsa->getOptions()->getPrivateKey());
Sverify = S$rsa->verify($file, $signature, S$rsa->getOptions|()->getPublicKey());

if (sverify) |
echo "The signature is OK\n";
file_put_contents ($filename
echo "Signature save in Sfilename.sig\n";
} else {
echo "The signature is not valid!\n";

' .sig’, $signature);

In this example we used the Base64 format to encode the digital signature of the file (binary_output is false).

Note: The implementation of Zend\Crypt \PublicKey\Rsa algorithm uses the OpenSSL extension of PHP.

154 Chapter 38. Public key cryptography

[Y S

CHAPTER
THIRTYNINE

ZEND\DB\ADAPTER

The Adapter object is the most important sub-component of Zend\Db. It is responsible for adapting any code written
in or for Zend\Db to the targeted php extensions and vendor databases. In doing this, it creates an abstraction layer
for the PHP extensions, which is called the “Driver” portion of the Zend\Db adapter. It also creates a lightweight
abstraction layer for the various idiosyncrasies that each vendor specific platform might have in it’s SQL/RDBMS
implementation which is called the “Platform” portion of the adapter.

39.1 Creating an Adapter (Quickstart)

Creating an adapter can simply be done by instantiating the Zend\Db\Adapter\Adapter class. The most com-
mon use case, while not the most explicit, is to pass an array of information to the Adapter.

sadapter = new Zend\Db\Adapter\Adapter (SdriverArray);

This driver array is an abstraction for the extension level required parameters. Here is a table for the

Table 39.1: Connection Array Keys

Name Required Notes

driver required Mysqli, Sqlsrv, Pdo_Sqlite, Pdo_Mysql, Pdo=OtherPdoDriver
database generally required the name of the database (schema)

username generally required the connection username

password generally required the connection password

hostname not generally required | the IP address or hostname to connect to

port not generally required | the port to connect to (if applicable)

characterset | not generally required | the character set to use

* other names will work as well. Effectively, if the PHP manual uses a particular naming, this naming will be supported
by our Driver. For example, dbname in most cases will also work for ‘database’. Another example is that in the case
of Sqlsrv, UID will work in place of username. Which format you chose is up to you, but the above table represents
the official abstraction names.

So, for example, a MySQL connection using ext/mysqli:

Sadapter = new Zend\Db\Adapter\Adapter (array (
"driver’ => ’'Mysqgli’,
"database’ => ’'zend_db_example’,
"username’ => ’developer’,
"password’ => ’developer-password’

)) i

Another example, of a Sqlite connection via PDO:

155

T

[Y S

Zend Framework 2 Documentation, Release 2.0.0

Sadapter = new Zend\Db\Adapter\Adapter (array (
"driver’ => ’'Pdo_Sqglite’,
"database’ => ’'path/to/sglite.db’

)) i

It is important to know that by using this style of adapter creation, the Adapter will attempt to create any dependencies
that were not explicitly provided. A Driver object will be created from the contents of the $driver array provided in
the constructor. A Platform object will be created based off the type of Driver object that was instantiated. And lastly,
a default ResultSet object is created and utilized. Any of these objects can be injected, to do this, see the next section.

The list of officially supported drivers:
e Mysqgli: The ext/mysqli driver
* Pgsqgl: The ext/pgsql driver
e Sglsrv: The ext/sqlsrv driver (from Microsoft)
* Pdo_Mysqgl: MySQL through the PDO extension
* Pdo_Sglite: SQLite though the PDO extension

e Pdo_Pgsqgl: PostgreSQL through the PDO extension

39.2 Creating an Adapter (By Injecting Dependencies)

The more expressive and explicit way of creating an adapter is by injecting all your dependencies up front.
Zend\Db\Adapter\Adapter uses constructor injection, and all required dependencies are injected through the
constructor, which has the following signature (in pseudo-code):

use Zend\Db\Adapter\Platform\PlatformInterface;
use Zend\Db\ResultSet\ResultSet;

class Zend\Db\Adapter\Adapter {

public function __construct ($driver, PlatformInterface S$platform = null, ResultSet
}
What can be injected:

e $driver - an array of connection parameters (see above) or an instance of
Zend\Db\Adapter\Driver\DriverInterface

* $platform - (optional) an instance of Zend\Db\Plat form\PlatformInterface, the default will be cre-
ated based off the driver implementation

* $queryResultSetPrototype - (optional) an instance of Zend\Db\ResultSet\ResultSet, to understand
this object’s role, see the section below on querying through the adapter

39.3 Query Preparation Through Zend\Db\Adapter\Adapter::query()

By default, query() prefers that you use “preparation” as a means for processing SQL statements. This generally means
that you will supply a SQL statement with the values substituted by placeholders, and then the parameters for those
placeholders are supplied separately. An example of this workflow with Zend\Db\Adapter\Adapter is:

Sadapter->query (' SELECT %= FROM ‘artist‘ WHERE ‘id‘ = ?’, array(5));

The above example will go through the following steps:

156 Chapter 39. Zend\Db\Adapter

<&~ - RA + Q
SqueryResult S¢

Zend Framework 2 Documentation, Release 2.0.0

* create a new Statement object

* prepare an array into a ParameterContainer if necessary

* inject the ParameterContainer into the Statement object

* execute the Statement object, producing a Result object

* check the Result object to check if the supplied sql was a “query”, or a result set producing statement
« if it is a result set producing query, clone the ResultSet prototype, inject Result as datasource, return it

e else, return the Result

39.4 Query Execution Through Zend\Db\Adapter\Adapter::query()

In some cases, you have to execute statements directly. The primary purpose for needing to execute sql instead of
prepare and execute a sql statement, might be because you are attempting to execute a DDL statement (which in most
extensions and vendor platforms), are un-preparable. An example of executing:

Sadapter—->query (' ALTER TABLE ADD INDEX (‘foo_index‘) ON (‘foo_column‘))’, Adapter::QUERY_MODE_EXECUTE]

The primary difference to notice is that you must provide the Adapter::QUERY_MODE_EXECUTE (execute) as the
second parameter.

39.5 Creating Statements

While query() is highly useful for one-off and quick querying of a database through Adapter, it generally makes more
sense to create a statement and interact with it directly, so that you have greater control over the prepare-then-execute
workflow. To do this, Adapter gives you a routine called createStatement() that allows you to create a Driver specific
Statement to use so you can manage your own prepare-then-execute workflow.

// with optional parameters to bind up-front
S¢ = Sadapter—->createStatement ($Ssgl, SoptionalParameters);

sult = Sstatement->execute();

39.6 Using the Driver Object

The Driver object is the primary place where Zend\Db\Adapter\Adapter implements the connection level ab-
straction making it possible to use all of ZendDb’s interfaces via the various ext/mysqli, ext/sqlsrv, PDO, and other
PHP level drivers. To make this possible, each driver is composed of 3 objects:

¢ A connection: Zend\Db\Adapter\Driver\ConnectionInterface
¢ A statement: Zend\Db\Adapter\Driver\StatementInterface
e Aresult: Zend\Db\Adapter\Driver\ResultInterface

Each of the built-in drivers practices “prytotyping” as a means of creating objects when new instances are requested.
The workflow looks like this:

* An adapter is created with a set of connection parameters
» The adapter chooses the proper driver to instantiate, for example Zend\Db\Adapter\Driver\Mysqgli

 That driver object is instantiated

39.4. Query Execution Through Zend\Db\Adapter\Adapter::query() 157

Zend Framework 2 Documentation, Release 2.0.0

* If no connection, statement or result objects are injected, defaults are instantiated

This driver is now ready to be called on when particular workflows are requested. Here is what the Driver API looks

like:

interface DriverInterface

{

const
const
const
const
public
public
public
public
public
public
public
public

function
function
function
function
function
function
function
function

= ’'positional’;
= ’"named’;
= ’'camelCase’;
= ’"natural’;
getDatabasePlat formName ($SnameFormat = self::NAME_FORMAT_CAMELCASE) ;
checkEnvironment () ;
getConnection();

createStatement ($SsglOrResource = null);
createResult (Sresource) ;
getPrepareType () ;
formatParameterName ($name, Stype = null);
getLastGeneratedValue () ;

From this Driverlnterface, you can

* Determine the name of the platform this driver supports (useful for choosing the proper platform object)

* Check that the environment can support this driver

¢ Return the Connnection object

* Create a Statement object which is optionally seeded by an SQL statement (this will generally be a clone of a
prototypical statement object)

* Create a Result object which is optionally seeded by a statement resource (this will generally be a clone of a
prototypical result object)

» Format parameter names, important to distinguish the difference between the various ways parameters are named

between

extensions

» Retrieve the overall last generated value (such as an auto-increment value)

Statement objects generally look like this:

interface StatementInterface extends StatementContainerInterface

{
public
public
public
public

function
function
function
function

getResource () ;

prepare ($sql null) ;
isPrepared();
execute (Sparameters = null);

/*+ Inherited from StatementContainerInterface #*/

public
public
public
public

function
function
function
function

setSqgl (Ssgl);

getsSql ();

setParameterContainer (ParameterContainer SparameterContainer);
getParameterContainer () ;

Result objects generally look like this:

interface ResultInterface extends \Countable, \Iterator

{

public function buffer();
public function isQueryResult () ;

158

Chapter 39. Zend\Db\Adapter

Zend Framework 2 Documentation, Release 2.0.0

5 public function getAffectedRows();

6 public function getGeneratedValue();
7 public function getResource();

8 public function getFieldCount () ;

39.7 Using The Platform Object

The Platform object provides an API to assist in crafting queries in a way that is specific to the SQL implementation
of a particular vendor. Nuances such as how identifiers or values are quoted, or what the identifier separator character
is are handled by this object. To get an idea of the capabilities, the interface for a platform object looks like this:

1 interface Zend\Db\Adapter\Platform\PlatformInterface
> |

3 public function getName () ;

4 public function getQuoteldentifierSymbol();

5 public function quoteldentifier ($identifier);

6 public function quoteldentifierChain ($identiferChain)

7 public function getQuoteValueSymbol () ;

8 public function quoteValue ($value);

9 public function quoteValuelist ($valuelist);

10 public function getIdentifierSeparator();

1 public function quotelIdentifierInFragment (Sidentifier, array SadditionalSafeWords = array());

While one can instantiate your own Plaform object, generally speaking, it is easier to get the proper Platform instance
from the configured adapter (by default the Platform type will match the underlying driver implementation):

1 Splatform = $adapter->getPlatform();
2 // or
3 Splatform = S$adapter->platform; // magic property access

The following is a couple of example of Platform usage:

1 /#*+ @var Sadapter Zend\Db\Adapter\Adapter */
:» /#x @var Splatform Zend\Db\Adapter\Platform\Sqgl92 x*/
3 S$platform = Sadapter->getPlatform();

s // "first_name"
¢ echo Splatform->quoteldentifier(’/first_name’);

s // "
9 echo Splatform->getQuoteldentifierSymbol () ;

n // "schema"."mytable"
12 echo Splatform->quoteldentifierChain (array(’schema’, ' mytable’)));

w /)7
15 echo $platform->getQuotevValueSymbol () ;

n // "myvalue’
18 echo $platform->quoteValue ('myvalue’);

» // ’value’, ’Foo O\\’Bar’
21 echo Splatform->quoteValuelist (array(’value’,"Foo O’Bar")));

39.7. Using The Platform Object 159

23

24

25

26

27

28

29

31

Zend Framework 2 Documentation, Release 2.0.0

//
echo $platform->getIdentifierSeparator();

// "foo" as "bar"

echo $platform->quoteldentifierInFragment (' foo as bar’);

// additionally, with some safe words:
// ("fooﬂ"Vbar" = I'booﬂ'"bazﬂ)
echo Splatform->quoteldentifierInFragment (’ (foo.bar = boo.baz)’, array(' (', ")’', '="));

39.8 Using The Parameter Container

The ParameterContainer object is a container for the various parameters that need to be passed into a Statement object
to fulfill all the various parameterized parts of the SQL statement. This object implements the ArrayAccess interface.
Below is the ParameterContainer API:

class ParameterContainer implements \Iterator, \ArrayAccess, \Countable {
public function __ construct (array Sdata = array())

/*+ methods to interact with values #*/

public function offsetExists ($name)

public function offsetGet ($name)

public function offsetSetReference (Sname, Sfrom)

public function offsetSet ($Sname, S$value, Serrata = null)
public function offsetUnset (Sname)

/#** set values from array (will reset first) =/
public function setFromArray (Array Sdata)

/*+ methods to interact with value errata */
public function offsetSetErrata($name, Serrata)
public function offsetGetErrata ($name)

public function offsetHasErrata (Sname)

public function offsetUnsetErrata (Sname)

/#*# errata only iterator =/
public function getErratalterator()

/*+ get array with named keys =/
public function getNamedArray ()

/** get array with int keys, ordered by position #*/
public function getPositionalArray ()

/*+ iterator: */

public function count ()
public function current ()
public function next ()
public function key ()
public function valid()
public function rewind()

/#*+ merge existing array of parameters with existing parameters */
public function merge (Sparameters)

160 Chapter 39. Zend\Db\Adapter

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

In addition to handling parameter names and values, the container will assist in tracking parameter types for PHP type
to SQL type handling. For example, it might be important that:

Scontainer->offsetSet (/ 1limit’, 5);

be bound as an integer. To achieve this, pass in the ParameterContainer::TYPE_INTEGER constant as the 3rd param-
eter:

Scontainer->offsetSet (' 1imit’, 5, S$container::TYPE_INTEGER) ;

This will ensure that if the underlying driver supports typing of bound parameters, that this translated information will
also be passed along to the actual php database driver.

39.9 Examples

Creating a Driver and Vendor portable Query, Preparing and Iterating Result

Sadapter = new Zend\Db\Adapter\Adapter (SdriverConfig);

Sgi = function (Sname) use (Sadapter) { return Sadapter->platform->quoteldentifier ($name); };
Sfp = function(Sname) use (Sadapter) { return Sadapter->driver->formatParameterName (Sname); };
Ssgl = 'UPDATE ’ . S$qgi("artist’)

" SET ' . $gi('name’) . ' ="' Sfp (' name’)

' WHERE ' Sgi(ridr)y .1 o= Sfp(rid’);

/*+ @var Sstatement Zend\Db\Adapter\Driver\StatementInterface */

$statement = Sadapter->query ($sql);
Sparameters = array (
"name’ => ’'Updated Artist’,
rid’ => 1

)i
Sstatement->execute ($parameters);
// DATA INSERTED, NOW CHECK
/* @var Sstatement Zend\Db\Adapter\DriverStatementInterface */
Sstatement = $adapter->query (' SELECT % FROM '/
Sqgi(fartist’)

’ WHERE id = ' . S$fp('id’));

/% @var Sresults Zend\Db\ResultSet\ResultSet */

Sresults = Sstatement->execute (array(’id’ => 1));
Srow = Sresults—->current ();
Sname = Srow[’name’];

39.9. Examples 161

Zend Framework 2 Documentation, Release 2.0.0

162 Chapter 39. Zend\Db\Adapter

CHAPTER
FORTY

ZEND\DB\RESULTSET

Zend\Db\ResultSet is a sub-component of Zend\Db for abstracting the iteration of rowset
producing queries. While data sources for this can be anything that is iterable, generally a
Zend\Db\Adpater\Driver\ResultInterface based object is the primary source for retrieving data.

Zend\Db\ResultSet‘s must implement the Zend\Db\ResultSet\ResultSetInterface and all sub-
components of Zend\Db that return a ResultSet as part of their API will assume an instance of a
ResultSetInterface should be returned. In most casts, the Prototype pattern will be used by consuming object
to clone a prototype of a ResultSet and return a specialized ResultSet with a specific data source injected. The interface
of ResultSetInterface looks like this:

interface ResultSetInterface extends \Traversable, \Countable

{

public function initialize (Sdat
public function getFieldCount () ;

40.1 Quickstart

Zend\Db\ResultSet\ResultSet is the most basic form of a ResultSet object that will expose each row
as either an ArrayObject-like object or an array of row data. By default, Zend\Db\Adapter\Adapter
will use a prototypical Zend\Db\ResultSet\ResultSet object for iterating when using the
Zend\Db\Adapter\Adapter: :query () method.

The following is an example workflow similar to what one might find inside
Zend\Db\Adapter\Adapter: :query ():

use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\ResultSet;

= Sdriver—>createStatement (' SELECT * FROM users’);

t->prepare ($Sparameters) ;
sult = S$stmt->execute();
if (sult instanceof ResultInterface && Sresult->isQueryResult ()) |
S sultSet = new ResultSet;
SresultSet->initialize (Sresult);

ultSet as Srow) {
—>my_column . PHP_EOL;

foreach (S
echo $

163

Zend Framework 2 Documentation, Release 2.0.0

40.2 Zend\Db\ResultSet\ResultSet and Zend\Db\ResultSet\AbstractResultSet

For most purposes, either a instance of Zend\Db\ResultSet\ResultSet or a derivative of
Zend\Db\ResultSet\AbstractResultSet will be being used. The implementation of the
AbstractResultSet offers the following core functionality:

abstract class AbstractResultSet implements Iterator, ResultSetInterface
{

public function initialize($SdataSource)

public function getDataSource ()

public function getFieldCount ()

/*x Iterator =/

public function next ()
public function key ()
public function current ()
public function valid()
public function rewind()

/%% countable x/
public function count ()

/*% get rows as array #*/
public function toArray ()

40.3 Zend\Db\ResultSet\HydratingResultSet

Zend\Db\ResultSet\HydratingResultSet is a more flexible ResultSet object that allows the devel-
oper to choose an appropriate “hydration strategy” for getting row data into a target object. While iterating,
HydratingResultSet will take a prototype of a target object and clone it for each successive new row it iter-
ates. With this newly cloned row, Hydrat ingResultSet will hydrate the target object with the row data.

In the example below, rows from the database will be iterated, and during iteration, Hydrat ingRowSet will use the
Reflection based hydrator to inject the row data directly into the protected members of the cloned UserEntity object:

use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Stdlib\Hydrator\Reflection as ReflectionHydrator;

class UserEntity {
protected $first_name;
protected S$last_name;
public function getFirstName () { return Sthis->first_name; }
public function getLastName () { return S$this->last_name; }

Sstmt = $driver->createStatement ($sqgl);
Sstmt->prepare ($Sparameters) ;
&

= Sstmt->execute () ;
if (Sresult instanceof ResultInterface && Sresult->isQueryResult ()) |
SresultSet = new HydratingResultSet (new ReflectionHydrator, new UserEntity);

SresultSet->initialize ($Sresult);

foreach (SresultSet as Suser) {

164 Chapter 40. Zend\Db\ResultSet

Zend Framework 2 Documentation, Release 2.0.0

21 echo Suser->getFirstName() . ' ' . Suser—->getLastName() . PHP_EOL;
2 }

23 }

For more information, see the Zend\Stdlib\Hydrator documentation to get a better sense of the different strate-
gies that can be employed in order to populate a target object.

40.3. Zend\Db\ResultSet\HydratingResultSet 165

Zend Framework 2 Documentation, Release 2.0.0

166 Chapter 40. Zend\Db\ResultSet

CHAPTER
FORTYONE

ZEND\DB\SQL

Zend\Db\Sqgl is a SQL abstraction layer for building platform specific SQL queries via a object-oriented API. The
end result of an Zend\Db\Sqgl object will be to either produce a Statement and Parameter container that repre-
sents the target query, or a full string that can be directly executed against the database platform. To achieve this,
Zend\Db\ Sql objects require a Zend\Db\Adapter\Adapter object in order to produce the desired results.

41.1 Zend\Db\Sql\Sql (Quickstart)

As there are for primary tasks associated with interacting with a database (from the DML, or Data Manipulation
Language): selecting, inserting, updating and deleting. As such, there are four primary objects that developers can
interact or building queries, Zend\Db\Sgl\Select, Insert, Update and Delete.

Since these four tasks are so closely related, and generally used together within the same application,
Zend\Db\Sgl\Sqgl objects help you create them and produce the result you are attempting to achieve.

use Zend\Db\Sgl\Sqgl;
$sql = new Sqgl (Sadapter

r

)

); // @return Zend\Db\Sqgl\Select
)i // @return Zend\Db\Sgl\Insert
)

)

l->select

1->update
l->delete

(
l->insert (

(); // @return Zend\Db\Sql\Update

(); // @return Zend\Db\Sqgl\Delete
As a developer, you can now interact with these objects, as described in the sections below, to specialize each query.
Once they have been populated with values, they are ready to either be prepared or executed.

To prepare (using a Select object):

use Zend\Db\Sgl\Sql;

$sql = new Sqgl (Sadapter);

ect = S$sgl->select();
ect—>from(’ foo’);

ect->where (array (' id" => 2));

$sgl->prepareStatementForSglObject ($select);
= S$statement->execute();

To execute (using a Select object)

use Zend\Db\Sqgl\Sql;

$sgl = new Sqgl (Sadapter);

2lect = S$sgl->select();
t—>from(’ foo’);

ct—>where (array (' id’ => 2));

167

Zend Framework 2 Documentation, Release 2.0.0

String = $sgl->getSglStringForSglObject (Sselect);
lts = $adapter->query (S$SselectString, S$adapter::QUERY_MODE_EXECUTE) ;

Uy

Zend\Db\SqI\Sql objects can also be bound to a particular table so that in getting a select, insert, update, or delete
object, they are all primarily seeded with the same table when produced.

use Zend\Db\Sgl\Sqgl;

$sgl = new Sqgl (Sadapter, ’foo’);

Sselect = $sgl->select();

$select->where (array (' id’ => 2)); // Sselect already has the from(’foo’) applied

41.2 Zend\Db\Sqgl’s Select, Insert, Update and Delete

Each of these objects implement the following (2) interfaces:

interface PreparableSglInterface {
public function prepareStatement (Adapter Sadapter, StatementInterface S$statement);

}
interface SgllInterface {
public function getSglString(PlatformInterface SadapterPlatform = null);

These are the functions you can call to either produce (a) a prepared statement, or (b) a string to be executed.

41.3 Zend\Db\Sql\Select

Zend\Db\Sgl\Select isan object who’s primary function is to present a unified API for building platform specific
SQL SELECT queries. The object can be instantiated and consumed without Zend\Db\Sgl\Sqgl:

use Zend\Db\Sgl\Select;

Sselect = new Select ();
// or, to produce a S$select bound to a specific table
Sselect = new Select (’foo’);

If a table is provided to the Select object, then from() cannot be called later to change the name of the table.
Once you have a valid Select object, the following API can be used to further specify various select statement parts:

class Select extends AbstractSgl implements SgllInterface, PreparableSglInterface
{

const JOIN_INNER = ’inner’;
const JOIN_OUTER = ’outer’;
const JOIN_LEFT = "left’;

const JOIN_RIGHT = ’'right’;
const SQL_STAR = "«';

const ORDER_ASCENDING = ’'ASC’;
const ORDER_DESENDING = ’'DESC’;

public Swhere; // @param Where Swhere

public function __ construct (Stable = null);

public function from(Stable);

public function columns (array Scolumns, SprefixColumnsWithTable = true);

public function join($name, Son, S$columns = self::SQL_STAR, Stype = self::JOIN_INNER);

168 Chapter 41. Zend\Db\Sq|

20

21

22

23

Zend Framework 2 Documentation, Release 2.0.0

public function where (Spredicate, Scombination = Predicate\PredicateSet::0P_AND) ;
public function group ($group);

public function having(Spredicate, Scombination = Predicate\PredicateSet::0P_AND);
public function order (Sorder);

public function limit($limit);

public function offset (Soffset);

41.3.1 from():

// as a string:
Sselect—>from(’ foo’);

// as an array to specify an alias:
// produces SELECT "t".+ FROM "table" AS "t"

Sselect->from(array ('t’ => ’‘table’));

// using a Sql\TableIdentifier:
// same output as above

Sselect->from(new TableIdentifier (array('t’ => ’'table’)));

41.3.2 columns():

// as array of names
Sselect->columns (array (' foo’, ’'bar’));

// as an associative array with aliases as the keys:
// produces ’bar’ AS ’‘foo’, ’‘bax’ AS ’baz’

Sselect->columns (array (' foo’ => ’'bar’, ’'baz’ => ’'bax’));

41.3.3 join():

Sselect->join(
" foo’ // table name,
"id = bar.id’, // expression to join on (will be quoted by platform object before insertion),
array (’'bar’, ’'baz’), // (optional) list of columns, same requiremetns as columns () above
Sselect::JOIN_OUTER // (optional), one of inner, outer, left, right also represtned by constant.
)i

Sselect->from(array (' £’ => ’'foo’)) // base table
->join(array('b’ => ’'bar’), // join table with alias
"f.foo_id = b.foo_1id’); // join expression

41.3.4 where(), having():

The Zzend\Db\Sgl\Select object provides bit of flexibility as it regards to what kind of parameters are acceptable
when calling where() or having(). The method signature is listed as:

41.3. Zend\Db\Sql\Select 169

Zend Framework 2 Documentation, Release 2.0.0

J ok k
* Create where clause

* @param Where|\Closure|string|array Spredicate
* @param string Scombination One of the OP_#* constants from Predicate\PredicateSet
* @return Select
*/
public function where ($Spredicate, Scombination = Predicate\PredicateSet::0P_AND);

As you can see, there are a number of different ways to pass criteria to both having() and where().

If you provide a Zend\Db\Sgl\Where object to where() or a Zend\Db\Sqgl \Having object to having(), the
internal objects for Select will be replaced completely. When the where/having() is processed, this object will be
iterated to produce the WHERE or HAVING section of the SELECT statement.

If you provide a Closure to where() or having(), this function will be called with the Select’s Where object as the
only parameter. So the following is possible:

function (Where Swhere) {
here->1like ('username’, ’'ralph%’);

select—->where (Sspec

)

If you provide a string, this string will be used to instantiate a Zend\Db\Sgl\Predicate\Expression object
so that it’s contents will be applied as is. This means that there will be no quoting in the fragment provided.

Consider the following code:
// SELECT "foo".* FROM "foo" WHERE x = 5

Sselect—->from(’ foo’)->where('x = 5');

If you provide an array who’s values are keyed by an integer, the value can either be a string that will be then used to
build a Predicate\Expression or any object that implements Predicate\PredicateInterface. These
objects are pushed onto the Where stack with the $combination provided.

Consider the following code:

// SELECT "foo".* FROM "foo" WHERE x = 5 AND y = z

Sselect—>from(’ foo’)->where (array('x = 5', 'yv = z2"));

If you provide an array who’s values are keyed with a string, these values will be handled in the following:
* PHP value nulls will be made into a Predicate\IsNull object
* PHP value array()s will be made into a Predicate\ In object

* PHP value strings will be made into a Predicate\Operator object such that the string key will be identifier,
and the value will target value.

Consider the following code:

// SELECT "foo".* FROM "foo" WHERE "cl" IS NULL AND "c2" IN (?, ?, ?) AND "c3" IS NOT NULL

Sselect—>from(’ foo’)->where (array (
"cl’” => null,
"c2’ => array(l, 2, 3),
new \Zend\Db\Sgl\Predicate\IsNotNull (’'c3")

170 Chapter 41. Zend\Db\Sql

Zend Framework 2 Documentation, Release 2.0.0

41.3.5 order():

Sselect = new Select;
Sselect->order (’id DESC’); // produces ’id’ DESC

Sselect = new Select;
Sselect—->order (' 1id DESC’)
->order (' name ASC, age DESC’); // produces ’id’ DESC, ’name’ ASC,

Sselect = new Select;
Sselect->order (array (' name ASC’, ’"age DESC’)); // produces ’name’ ASC,

41.3.6 limit() and offset():

Sselect = new Select;
Sselect->1imit (5); // always takes an integer/numeric
Sselect->offset (10); // similarly takes an integer/numeric

41.4 Zend\Db\Sqgl\Insert

The Insert API:

class Insert implements SqgllInterface, PreparableSglInterface
{
const VALU

ES_MERGE = "merge’;
const VALUES

_SET = ’"set’;

public function __ construct ($table = null);

public function into($table);

public function columns (array Scolumns);

public function values (array Svalues, S$flag = self::VALUES_SET);

Similarly to Select objects, the table can be set at construction time or via into().

41.4.1 columns():

Sinsert->columns (array (' foo’, ’'bar’)); // set the valid columns

41.4.2 values():

// default behavior of values is to set the values
// succesive calls will not preserve values from previous calls
Sinsert->values (array (

"col_ 1’ => ’'valuel’,

rcol 2" => ’'value2’

)) i

// merging values with previous calls
Sinsert->values (array(’col_2’ => ’value2’), Sinsert::VALUES);

/age/

/age/

DESC

DESC

41.4. Zend\Db\Sql\Insert

171

e T N o

Zend Framework 2 Documentation, Release 2.0.0

41.5 Zend\Db\Sql\Update

class Update
{

const = "merge’;
const = "set’;

public Swhere; // @param Where S$Swhere

public function __construct ($table = null);

public function table(Stable);

public function set (array Svalues, S$Sflag = self::VALUES_SET);

public function where (Spredicate, Scombination = Predicate\PredicateSet::0P_AND) ;

41.5.1 set():

Supdate->set (array (' foo’ => ’'bar’, ’'baz’ => ’'bax’));

41.5.2 where():

See where section below.

41.6 Zend\Db\Sql\Delete

class Delete

{
public Swhere; // @param Where $where
public function __ construct (Stable = null);
public function from(Stable);
public function where (Spredicate, Scombination = Predicate\PredicateSet::0P_AND) ;

41.6.1 where():

See where section below.

41.7 Zend\Db\Sql\Where & Zend\Db\Sql\Having

In the following, we will talk about Where, Having is implies as being the same API.

Effectively, Where and Having extend from the same base object, a Predicate (and PredicateSet). All of the parts that
make up a where or having that are and’ed or or’d together are called predicates. The full set of predicates is called
a PredicateSet. This object set generally contains the values (and identifiers) separate from the fragment they belong
to until the last possible moment when the statement is either used to be prepared (parameteritized), or executed. In
parameterization, the parameters will be replaced with their proper placeholder (a named or positional parameter),
and the values stored inside a Adapter\ParameterContainer. When executed, the values will be interpolated into the

fragments they belong to and properly quoted.

172 Chapter 41. Zend\Db\Sql

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Zend Framework 2 Documentation, Release 2.0.0

It is important to know that in this API, a distinction is made between what elements are considered identifiers
(TYPE_IDENTIFIER) and which of those is a value (TYPE_VALUE). There is also a special use case type for literal
values (TYPE_LITERAL). These are all exposed via the Zend\Db\Sgl\ExpressionInterface interface.

The Zend\Db\Sql\Where (Predicate/PredicateSet) API:

// Where & Having:
class Predicate extends PredicateSet
{

public Sand;

public Sor;

public S$AND;

public SOR;

public SNEST;

public SUNNSET;

public function nest ();
public function setUnnest (Predicate Spredicate);
public function unnest () ;

public function equalTo($left, S$Sright, S$leftType = self::TYPE_IDENTIFIER, S$rightType = self::TYI
public function lessThan($left, S$Sright, S$leftType = self::TYPE_IDENTIFIER, SrightType = self::T

public function greaterThan($left, S$right, $leftType = self::TYPE_IDENTIFIER, SrightType

public function lessThanOrEqualTo ($left, Sright, S$leftType = self::TYPE_IDENTIFIER, SrightType -
public function greaterThanOrEqualTo ($Sleft, Sright, S$leftType = self::TYPE_IDENTIFIER, S$rightTy;

public function like($identifier, S$like);

public function literal(Sliteral, Sparameter);

public function isNull (Sidentifier);

public function isNotNull ($identifier);

public function in($identifier, array S$SvalueSet = array());
public function between ($identifier, SminValue, SmaxValue);

// Inherited From PredicateSet

public function addPredicate (PredicateInterface S$predicate, S$Scombination = null);
public function getPredicates();

public function orPredicate (PredicatelInterface Spredicate);

public function andPredicate (PredicateInterface Spredicate);

public function getExpressionData () ;

public function count();

Each method in the Where API will produce a corresponding Predicate object of a similarly named type, described
below, with the full API of the object:

41.7.1 equalTo(), lessThan(), greaterThan(), lessThanOrEqualTo(), greaterThanOrE-
qualTo():

Swhere->equalTo (' id’, 5);

// same as the following workflow
Swhere->addPredicate (

new Predicate\Operator ($left, Operator::0OPERATOR_EQUAL_TO, Sright, SleftType, SrightType)
)i

class Operator implements Predicatelnterface

{

41.7. Zend\Db\Sql\Where & Zend\Db\Sql\Having 173

20

21

22

23

24

25

26

27

28

29

31

32

34

35

Zend Framework 2 Documentation, Release 2.0.0

const OPERATOR_EQUAL_TO ==,
const OP_FEOQO = =r;
const OPERATOR_NOT_EQUAL_TO = 7'l=/;
const OP_NE = l=r;
const OPERATOR_LESS_THAN =<5,
const OP_LT =<5
const OPERATOR_LESS_THAN_OR_EQUAL_TO = I'<=’;
const OP_ ITHE = I'<=";
const OPERATOR_GREATER_THAN = >,
const OP_GT = >,
const OPERATOR_GREATER_THAN_OR_EQUAL_TO = '>=';

const OP_ GTE = I>=7 .

public function __construct ($left = null, Soperator

public function setLeft (Sleft);
public function getLeft();

public function setlLeftType (Stype);
public function getLeftType();
public function setOperator (Soperator);
public function getOperator();
public function setRight (Svalue);
public function getRight ();

public function setRightType (Stype);
public function getRightType () ;
public function getExpressionData();

41.7.2 like($identifier, $like):

Swhere—->1like (Sidentifier, $like):

// same as
Swhere->addPredicate (

new Predicate\Like (Sidentifier, $like)
)i

// full API

class Like implements PredicateInterface

{
public function __construct ($identifier = null,
public function setIdentifier(Sidentifier);
public function getIdentifier();
public function setLike($Slike);
public function getLike();

41.7.3 literal($literal, $parameter);

Swhere->literal ($literal, Sparameter);

// same as
Swhere->addPredicate (
new Predicate\Expression($literal, Sparameter)

)i

self::0OPERATOR_EQUAL_TO,

174

Chapter 41. Zend\Db\Sq|

Zend Framework 2 Documentation, Release 2.0.0

// full API

class Expression implements ExpressionlInterface,

{

const PLACEHOLDER = ’'?27';
public function __ construct ($expression =

public
public
public
public
public
public

function
function
function
function
function
function

setExpression (Sexpression);
getExpression () ;
setParameters (Sparameters) ;
getParameters () ;

setTypes (array Stypes);
getTypes();

41.7.4 isNull($identifier);

Swhere—->1isNull ($identifier);

// same as

Swhere->addPredicate (
new Predicate\IsNull (Sidentifier)

)i

// full API
class IsNull implements PredicatelInterface

{

null,

PredicatelInterface

SvalueParameter

public function __construct ($identifier = null);

public function setIdentifier(Sidentifier);

public function getIdentifier();

41.7.5 isNotNull($identifier);

Swhere->isNotNull (Sidentifier);

// same as

Swhere—->addPredicate (
new Predicate\IsNotNull ($Sidentifier)

)i

// full API
class IsNotNull implements PredicatelInterface

{

public function __ _construct ($identifier = null);

public function setIdentifier($identifier);

public function getIdentifier();

41.7.6 in($identifier, array $valueSet = array());

Swhere->in($identifier,

// same as

array SvalueSet = array());

41.7. Zend\Db\Sql\Where & Zend\Db\Sql\Having

SvalueParameter,

Zend Framework 2 Documentation, Release 2.0.0

Swhere->addPredicate (
new Predicatel\In(Sidentifier, S$SvalueSet)

)i

// full API
class In implements PredicatelInterface
{
public function __construct ($Sidentifier = null, array SvalueSet = array());
public function setIdentifier(S$identifier);
public function getIdentifier();
public function setValueSet (array SvalueSet);
public function getValueSet ();

41.7.7 between($identifier, $minValue, $maxValue);

Swhere->between ($identifier, S$SminValue, S$maxValue);

// same as
Swhere—->addPredicate (
new Predicate\Between ($identifier, S$minValue, SmaxValue)

)i

// full APT
class Between implements PredicateInterface
{
public function __ construct (Sidentifier = null, SminValue = null, SmaxValue = null);
public function setIdentifier(Sidentifier);
public function getIdentifier();
public function setMinValue (SminValue);
public function getMinValue () ;
public function setMaxValue (SmaxValue);
public function getMaxValue () ;
public function setSpecification($specification);

176 Chapter 41. Zend\Db\Sql

CHAPTER
FORTYTWO

ZEND\DB\TABLEGATEWAY

The Table Gateway object is intended to provide an object that represents a table in a database, and the methods of
this object mirror the most common operations on a database table. In code, the interface for such an object looks like
this:

interface Zend\Db\TableGateway\TableGatewayInterface
{
public function getTable();
public function select (Swhere = null);
public function insert ($set);
public function update(
public function delete(

Swhere) ;

}

There are two primary implementations of the TableGatewayInterface that are of the most useful:
AbstractTableGateway and TableGateway. The AbstractTableGateway is an abstract basic imple-
mentation that provides functionality for select (), insert (), update (), delete (), as well as an addi-
tional API for doing these same kinds of tasks with explicit SQL objects. These methods are selectWith (),
insertWith (), updateWith () and deleteWith (). In addition, AbstractTableGateway also implements a
“Feature” API, that allows for expanding the behaviors of the base TableGateway implementation without having
to extend the class with this new functionality. The TableGateway concrete implementation simply adds a sensible
constructor to the AbstractTableGateway class so that out-of-the-box, TableGateway does not need to be
extended in order to be consumed and utilized to its fullest.

42.1 Basic Usage

The quickest way to get up and running with Zend\Db\TableGateway is to configure and utilize the concrete imple-
mentation of the TableGateway. The API of the concrete TableGateway is:

class TableGateway extends AbstractTableGateway
{
public ¢
public $
public

public function __construct ($table, Adapter Sadapter, S$features = null, ResultSet
/++ Inherited from AbstractTableGateway =/
public function isInitialized();

public function initialize();
public function getTable();

177

SresultSetProt

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

public function getAdapter();

public function getColumns () ;

public function getFeatureSet();

public function getResultSetPrototype();
public function getSqgl();

public function select (Swhere = null);
public function selectWith (Select S$select);
public function insert ($set);

public function insertWith (Insert Sinsert);
public function update (set, Swhere = null);
public function updateWith (Update Supdate);
public function delete (Swhere);

public function deleteWith (Delete Sdelete);
public function getlLastInsertValue();

The concrete TableGateway object practices constructor injection for getting dependencies and options into the
instance. The table name and an instance of an Adapter are all that is needed to setup a working TableGateway
object.

Out of the box, this implementation makes no assumptions about table structure or metadata, and when select ()
is executed, a simple ResultSet object with the populated Adapter’s Result (the datasource) will be returned and ready
for iteration.

use Zend\Db\TableGateway\TableGateway;
SprojectTable = new TableGateway ('project’, Sadapter);
Srowset = SprojectTable->select (array(’'type’ => 'PHP'));

echo 'Projects of type PHP: ’;

foreach (Srowset as SprojectRow) {
echo SprojectRow[’name’] . PHP_EOL;

// or, when expecting a single row:

SartistTable = new TableGateway (’artist’, Sadapter);
Srowset = SartistTable->select (array(’id’ => 2));
SartistRow = $rowset—->current ();

var_dump (SartistRow) ;

The select () method takes the same arguments as Zend\Db\Sqgl\Select: :where () with the addition of
also being able to accept a closure, which in turn, will be passed the current Select object that is being used to build
the SELECT query. The following usage is possible:

use Zend\Db\TableGateway\TableGateway;
use Zend\Db\Sgl\Select;
SartistTable = new TableGateway (’artist’, Sadapter);

// search for at most 2 artists who’s name starts with Brit, ascending
Srowset = SartistTable->select (function (Select S$select) {
Sselect->where->1like ('name’, ’"Brit%’);
Sselect—>order ("name ASC’)->1limit (2);

)i

178 Chapter 42. Zend\Db\TableGateway

Zend Framework 2 Documentation, Release 2.0.0

42.2 TableGateway Features

The Features API allows for extending the functionality of the base TableGateway object without having to poly-
morphically extend the base class. This allows for a wider array of possible mixing and matching of features to
achieve a particular behiavior that needs to be attained to make the base implementation of TableGateway useful
for a particular problem.

With the TableGateway object, features should be injected though the constructor. The constructor can take Fea-
tures in 3 different forms: as a single feature object, as a FeatureSet object, or as an array of Feature objects.

There are a number of features built-in and shipped with Zend\Db:

* GlobalAdapterFeature: the ability to use a global/static adapter without needing to inject it into a
TableGateway instance. This is more useful when you are extending the AbstractTableGateway im-
plementation:

1 class MyTableGateway extends <classname>AbstractTableGateway</classname>
2

3 public function __construct ()

4 {

5 Sthis->table = 'my_table’;

6 Sthis—->featureSet = new Feature\FeatureSet ();

7 Sthis—>featureSet->addFeature (new Feature\GlobalAdapterFeature());
8 Sthis—->initialize();

2 // elsewhere in code, 1in a bootstrap
13 Zend\Db\TableGateway\Feature\GlobalAdapterFeature: :setStaticAdapter (Sadapter);

15 // in a controller, or model somewhere
16 Stable = new MyTableGateway (); // adapter is statially loaded

MasterSlaveFeature: the ability to use a master adapter for insert(), update(), and delete() while using a slave
adapter for all select() operations.

1 Stable = new TableGateway (’artist’, Sadapter, new Feature\MasterSlaveFeature (SslavelAdapter));

MetadataFeature: the ability populate TableGateway with column information from a Metadata object. It
will also store the primary key information in case RowGatewayFeature needs to consume this information.

1 Stable = new TableGateway (’artist’, Sadapter, new Feature\MeatadataFeature());

EventFeature: the ability utilize a TableGateway object with Zend\EventManager and to be able to subscribe
to various events in a TableGateway lifecycle.

1 Stable = new TableGateway (’artist’, Sadapter, new Feature\EventFeature (SeventManagerInstance));

RowGatewayFeature: the ability for select () to return a ResultSet object that upon iteration will

new TableGateway ('artist’, Sadapter, new Feature\RowGatewayFeature (’id’));
; = Stable->select (array (/id’ => 2));

4 SartistRow = S$Sresults—->current ();

5 SartistRow->name = ’New Name’;

6 Sartistr ->save () ;

42.2. TableGateway Features 179

Zend Framework 2 Documentation, Release 2.0.0

180 Chapter 42. Zend\Db\TableGateway

CHAPTER
FORTYTHREE

ZEND\DB\ROWGATEWAY

Zend\Db\RowGateway is a sub-component of Zend\Db that implements the Row Gateway pattern from PoOEAA.
This effectively means that Row Gateway objects primarily model a row in a database, and have methods such as
save() and delete() that will help persist this row-as-an-object in the database itself. Likewise, after a row from the
database is retrieved, it can then be manipulated and save()’d back to the database in the same position (row), or it can
be delete()’d from the table.

The interface for a Row Gateway object simply adds save() and delete() and this is the interface that should be assumed
when a component has a dependency that is expected to be an instance of a RowGateway object:

interface RowGatewayInterface

{
public function save();
public function delete();

43.1 Quickstart

While most of the time, RowGateway will be used in conjucntion with other Zend\Db\ResultSet producing objects, it
is possible to use it standalone. To use it standalone, you simply need an Adapter and a set of data to work with. The
following use case demonstrates Zend\Db\RowGateway\RowGateway usage in its simplest form:

use Zend\Db\RowGateway\RowGateway;

// query the database
SresultSet = S$adapter->query (' SELECT % FROM ‘user‘ WHERE ‘id‘ = ?’, array(2));

// get array of data
SrowData = S$resultSet->current () ->getArrayCopy () ;

// or delete this row:

wGateway—>delete () ;

The workflow described above is greatly simplified when RowGateway is used in conjunction with the TableGateway
feature. What this achieves is a Table Gateway object that when select()’ing from a table, will produce a ResultSet

181

Zend Framework 2 Documentation, Release 2.0.0

that is then capable of producing valid Row Gateway objects. Its usage looks like this:

use Zend\Db\TableGateway\Feature\RowGatewayFeature;
use Zend\Db\TableGateway\TableGateway;

e = new TableGateway (’artist’, Sadapter, new RowGatewayFeature (’id’));
sults = Stable->select (array(’id’ => 2));

Sartis v = Sresults—->current ();

"New Name’;

182 Chapter 43. Zend\Db\RowGateway

20
21
22
23

24

1

2

CHAPTER
FORTYFOUR

ZEND\DB\METADATA

Zend\Db\Metadata is as sub-component of Zend\Db that makes it possible to get metadata information about
tables, columns, constraints, triggers, and other information from a database in a standardized way. The primary
interface for the Metadata objects is:

interface Metadatalnterface

{
public function getSchemas();
public function getTableNames (Sschema = null, S$includeViews = false);
public function getTables ($schema = null, SincludeV s = false);
public function getTable (StableName, S$schema = null);
public function getViewNames ($schema = null);
public function getViews ($Sschema = null);
public function getView ($viewName, S$schema = null);
public function getColumnNames (Stable, S$schema = null);
public function getColumns (Stable, S$schema = null);
public function getColumn (S$columnName, Stable, S$schema = null);
public function getConstraints($table, S$schema = null);
public function getConstraint (SconstraintName, S$table, S$schema = null);
public function getConstraintKeys (Sconstraint, S$table, S$schema = null);
public function getTriggerNames ($schema = null);
public function getTriggers ($Sschema = null);
public function getTrigger (StriggerName, Sschema = null);
}

44.1 Basic Usage

Usage of Zend\Db\Metadata is very straight forward. The top level class Zend\Db\Metadata\Metadata will, given
an adapter, choose the best strategy (based on the database platform being used) for retrieving metadata. In most
cases, information will come from querying the INFORMATION_SCHEMA tables generally accessible to all database
connections about the currently accessible schema.

Metadata::get*Names() methods will return an array of strings, while the other methods will return specific value
objects with the containing information. This is best demonstrated by the script below.

Smetadata = new Zend\Db\Metadata\Metadata (Sadapter);

183

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Zend Framework 2 Documentation, Release 2.0.0

// get the table names
StableNames

= S$metadata->getTableNames () ;

foreach (StableNames as StableName) ({

echo 'In Table ' StableName . PHP_EOL;
Stable = Smetadata->getTable (StableName) ;
echo ' With columns: 7 . PHP_EOL;
foreach (S$table->getColumns () as Scolumn) {
echo ' . $column->getName ()
ro=> Scolumn->getDataType ()
PHP_EOL;
}
echo PHP_EOL;
echo ' With constraints: ’ . PHP_EOL;
foreach ($metadata->getConstraints($StableName) as Sconstraint) {
/*+ @var Sconstraint Zend\Db\Metadata\Object\ConstraintObject =/
echo ' ' . Sconstraint->getName ()
o> Sconstraint->getType ()
PHP_EOL;
if (!Sconstraint->hasColumns()) {
continue;
}
echo ’ column: ' . implode(’, ', Sconstraint->getColumns());
if (Sconstraint->isForeignKey()) {
SfkCols = array();
foreach ($Sconstraint->getReferencedColumns () as SrefColumn) {
$fkCols[] = Sconstraint->getReferencedTableName() . ’'.’ . SrefColumn;

}

}

echo ' => ' . implode(’, ', S$fkCols);

echo PHP_EOL;

echo ' -

--=" . PHP_EOL;

Metadata returns value objects that provide an interface to help developers better explore the metadata. Below is the
API for the various value objects:

The TableObject:

class Zend\Db\Metadata\Object\TableObject

{

public
public
public
public
public
public
public

function
function
function
function
function
function
function

The ColumnObject:

__construct ($Sname) ;
setColumns (array S$Scolumns);
getColumns () ;

setConstraints ($Sconstraints);
getConstraints();

setName (Sname) ;

getName () ;

184

Chapter 44. Zend\Db\Metadata

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

20

21

22

Zend Framework 2 Documentation, Release 2.0.0

class Zend\Db\Metadata\Object\ColumnObject {

public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function

The ConstraintObject:

__construct ($Sname, StableName, S$schemaName = null);
setName ($name) ;

getName () ;

getTableName () ;

setTableName (StableName) ;

setSchemaName ($schemaName) ;
getSchemaName () ;

getOrdinalPosition();
setOrdinalPosition (SordinalPosition);
getColumnDefault () ;

setColumnDefault (ScolumnbDefault) ;
getIsNullable();

setIsNullable ($SisNullable);
isNullable () ;

getDataType () ;

setDataType (SdataType);
getCharacterMaximumLength () ;
setCharacterMaximumLength (ScharacterMaximumlLength) ;
getCharacterOctetLength () ;
setCharacterOctetLength ($characterOctetLength);
getNumericPrecision();
setNumericPrecision (SnumericPrecision);
getNumericScale () ;

setNumericScale (SnumericScale);
getNumericUnsigned() ;
setNumericUnsigned ($SnumericUnsigned) ;
isNumericUnsigned() ;

getErratas();

setErratas (array Serratas);

getErrata (SerrataName) ;

setErrata (SerrataName, SerrataValue);

class Zend\Db\Metadata\Object\ConstraintObject

{
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function
public function

__construct (Sname, StableName, S$schemaName = null);
setName (Sname) ;

getName () ;

setSchemaName ($schemaName) ;

getSchemaName () ;

getTableName () ;

setTableName (StableName) ;

setType (Stype) ;

getType () ;

hasColumns () ;

getColumnns () ;

setColumns (array S$columns);
getReferencedTableSchema () ;
setReferencedTableSchema (SreferencedTableSchema) ;
getReferencedTableName () ;

setReferencedTableName (SreferencedTableName) ;
getReferencedColumns () ;
setReferencedColumns (array SreferencedColumns);
getMatchOption () ;

setMatchOption ($matchOption);

44.1. Basic Usage

185

23

24

25

26

27

28

29

31

32

34

1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Zend Framework 2 Documentation, Release 2.0.0

public
public
public
public
public
public
public
public
public
public

function
function
function
function
function
function
function
function
function
function

The TriggerObject:

’

updateRule) ;

getUpdateRule
setUpdateRule
getDeleteRule
setDeleteRule

(

(

O

(SdeleteRule);
getCheckClause ()

e

)

)
$
)
$
()
setCheckClause (
isPrimaryKey (
isUnique () ;
isForeignKey () ;

isCheck () ;

ScheckClause) ;

’

class Zend\Db\Metadata\Object\TriggerObject

{

public function getName () ;
public function setName (Sname);
public function getEventManipulation();
public function setEventManipulation (SeventManipulation);
public function getEventObjectCatalog();
public function setEventObjectCatalog(SeventObjectCatalog);
public function getEventObjectSchema () ;
public function setEventObjectSchema (SeventObjectSchema) ;
public function getEventObjectTable ();
public function setEventObjectTable (SeventObjectTable);
public function getActionOrder();
public function setActionOrder (SactionOrder);
public function getActionCondition();
public function setActionCondition(SactionCondition);
public function getActionStatement () ;
public function setActionStatement (SactionStatement);
public function getActionOrientation();
public function setActionOrientation(SactionOrientation);
public function getActionTiming();
public function setActionTiming(SactionTiming);
public function getActionReferenceOldTable () ;
public function setActionReferenceOldTable (SactionReferenceOldTable);
public function getActionReferenceNewTable () ;
public function setActionReferenceNewTable (SactionReferenceNewTable);
public function getActionReferenceOldRow () ;
public function setActionReferenceOldRow (SactionReferenceOldRow) ;
public function getActionReferenceNewRow () ;
public function setActionReferenceNewRow ($SactionReferenceNewRow) ;
public function getCreated();
public function setCreated(Screated);
}
186 Chapter 44. Zend\Db\Metadata

CHAPTER
FORTYFIVE

INTRODUCTION TO ZEND\DI

45.1 Dependency Injection

Dependency Injection (here-in called DI) is a concept that has been talked about in numerous places over the web.
Simply put, we’ll explain the act of injecting dependencies simply with this below code:

Sh = new MovieLister (new MovieFinder));

Above, MovieFinder is a dependency of MovieLister, and MovieFinder was injected into MovieLister. If you are
not familiar with the concept of DI, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy, Ralph
Schindler’s Learning DI, or Fabien Potencier’s Series on DI.

45.2 Dependency Injection Containers

When your code is written in such a way that all your dependencies are injected into consuming objects, you might
find that the simple act of wiring an object has gotten more complex. When this becomes the case, and you find that
this wiring is creating more boilerplate code, this makes for an excellent opportunity to utilize a Dependency Injection
Container.

In it’s simplest form, a Dependency Injection Container (here-in called a DiC for brevity), is an object that is capable of
creating objects on request and managing the “wiring”, or the injection of required dependencies, for those requested
objects. Since the patterns that developers employ in writing DI capable code vary, DiC’s are generally either in the
form of smallish objects that suit a very specific pattern, or larger DiC frameworks.

Zend\Di is a DiC framework. While for the simplest code there is no configuration needed, and the use cases are quite
simple; for more complex code, Zend\Di is capable of being configured to wire these complex use cases

187

http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://fabien.potencier.org/article/11/what-is-dependency-injection

Zend Framework 2 Documentation, Release 2.0.0

188 Chapter 45. Introduction to Zend\Di

20

21

22

23

24

25

26

27

28

29

CHAPTER
FORTYSIX

ZEND\DI QUICKSTART

This QuickStart is intended to get developers familiar with the concepts of the Zend\Di DiC. Generally speaking, code
is never as simple as it is inside this example, so working knowledge of the other sections of the manual is suggested.

Assume for a moment, you have the following code as part of your application that you feel is a good candidate for
being managed by a DiC, after all, you are already injecting all your dependencies:

namespace MyLibrary

{
class DbAdapter
{
protected $ null;
protected Spassword = null;
public function __ construct (Susername, S$password)
{
Sthis->username =
$this—->password =
}
}
}
namespace MyMovieApp
{
class MovieFinder
{
protected SdbAdapter = null;
public function __construct (\MyLibrary\DbAdapter $ apter)
{
$this->dbAdapter = $dbAdapter;
}
}
class Movielister
{
protected SmovieFinder = null;
public function __ construct (MovieFinder SmovieFinder)
{
$this->movieFinder = SmovieFinder;
}
}
}

With the above code, you find yourself writing the following to wire and utilize this code:

189

Zend Framework 2 Documentation, Release 2.0.0

// Sconfig object is assumed

$dbAdapter = new MyLibrary\DbAdapter (Sconfig->username, Sconfig->password);
SmovieFinder = new MyMovieApp\MovieFinder (SdbAdapter);

SmovielLister = new MyMovieApp\MovieLister (SmovieFinder);

foreach (SmovielLister as Smovie) {

// iterate and display Smovie

If you are doing this above wiring in each controller or view that wants to list movies, not only can this become
repetitive and boring to write, but also unmaintainable if for example you want to swap out one of these dependencies
on a wholesale scale.

Since this example of code already practices good dependency injection, with constructor injection, it is a great candi-
date for using Zend\Di. The usage is as simple as:

// inside a bootstrap somewhere
Sdi = new Zend\Di\Di () ;
$di->instanceManager () —>setParameters (' MyLibrary\DbAdapter’, array (
"username’ => Sconfig->username,
"password’ => Sconfig->password

)) i

// inside each controller
SmovieLister = $di->get ('MyMovieApp\MovieLister’);
foreach (SmovielLister as Smovie) {

// iterate and display Smovie

In the above example, we are obtaining a default instance of Zend\Di\Di. By ‘default’, we mean that Zend\Di\Di is
constructed with a DefinitionList seeded with a RuntimeDefinition (uses Reflection) and an empty instance manager
and no configuration. Here is the Zend\Di\Di constructor:

public function __ construct (DefinitionList S$definitions = null, InstanceManager S$instanceManager

{

Sthis—->definitions = (Sdefinitions) ?: new DefinitionList (new Definition\RuntimeDefinition ()

Sthis->instanceManager = ($SinstanceManager) ?: new InstanceManager ();

if (Sconfig) {
Sthis->configure (Sconfig);

This means that when $di->get() is called, it will be consulting the RuntimeDefinition, which uses reflection to un-
derstand the structure of the code. Once it knows the structure of the code, it can then know how the dependencies
fit together and how to go about wiring your objects for you. Zend\Di\Definition\RuntimeDefinition will utilize the
names of the parameters in the methods as the class parameter names. This is how both username and password key
are mapped to the first and second parameter, respectively, of the constructor consuming these named parameters.

If you were to want to pass in the username and password at call time, this is achieved by passing them as the second
argument of get():

// inside each controller

Sdi = new Zend\Di\Di();

SmovielLister = $di->get ('MyMovieApp\MovieLister’, array (
"username’ => Sconfig->username,
"password’ => Sconfig->password

)) i

foreach (SmovielLister as Smovie) {

190 Chapter 46. Zend\Di Quickstart

Zend Framework 2 Documentation, Release 2.0.0

// iterate and display Smovie

}

It is important to note that when using call time parameters, these parameter names will be applied to any class that
accepts a parameter of such name.

By calling $di->get(), this instance of MovieLister will be automatically shared. This means subsequent calls to get()
will return the same instance as previous calls. If you wish to have completely new instances of MovieLister, you can
utilize $di->newlInstance().

191

Zend Framework 2 Documentation, Release 2.0.0

192 Chapter 46. Zend\Di Quickstart

e T N o

CHAPTER
FORTYSEVEN

ZEND\DI DEFINITION

Definitions are the place where Zend\Di attempts to understand the structure of the code it is attempting to wire. This
means that if you’ve written non-ambiguous, clear and concise code; Zend\Di has a very good chance of understanding
how to wire things up without much added complexity.

47.1 DefinitionList

Definitions are introduced to the Zend\Di\Di object through a definition list implemented as Zend\Di\DefinitionList
(SplDoublyLinkedList). Order is important. Definitions in the front of the list will be consulted on a class before
definitions at the end of the list.

Note: Regardless of what kind of Definition strategy you decide to use, it is important that your autoloaders are already
setup and ready to use.

47.2 RuntimeDefinition

The default DefinitionList instantiated by Zend\Di\Di, when no other DefinitionList is provided, has as Defini-
tion\RuntimeDefinition baked-in. The RuntimeDefinition will respond to query’s about classes by using Reflection.
This Runtime definitions uses any available information inside methods: their signature, the names of parameters, the
type-hints of the parameters, and the default values to determine if something is optional or required when making a
call to that method. The more explicit you can be in your method naming and method signatures, the easier of a time
Zend\Di\Definition\RuntimeDefinition will have determining the structure of your code.

This is what the constructor of a RuntimeDefinition looks like:

public function __construct (IntrospectionStrategy S$introspectionStrategy = null, array Sec
{
Sthis->introspectionStrategy = (S$introspectionStrategy) 7?: new IntrospectionStrategy();
if ($explicitClasses) {
Sthis—->setExplicitClasses ($explicitClasses);

}

The IntrospectionStrategy object is an object that determines the rules, or guidelines, for how the RuntimeDefinition
will introspect information about your classes. Here are the things it knows how to do:

* Whether or not to use Annotations (Annotations are expensive and off by default, read more about these in the
Annotations section)

¢ Which method names to include in the introspection, by default, the pattern /*set[A-Z]{1}\w*/ is registered by
default, this is a list of patterns.

193

Zend Framework 2 Documentation, Release 2.0.0

* Which interface names represent the interface injection pattern. By default, the pattern Aw*Aware\w*/ is regis-

tered, this is a list of patterns.
The constructor for the IntrospectionStrategy looks like this:

public function __construct (AnnotationManager
{
Sthis->annotationManager = ($SannotationManager) ?:

}

SannotationManager = null)

Sthis—->createDefaultAnnotationManager () ;

This goes to say that an AnnotationManager is not required, but if you wish to create a special AnnotationManager
with your own annotations, and also wish to extend the RuntimeDefinition to look for these special Annotations, this

is the place to do it.

The RuntimeDefinition also can be used to look up either all classes (implicitly, which is default), or explicitly look up
for particular pre-defined classes. This is useful when your strategy for inspecting one set of classes might differ from
those of another strategy for another set of classes. This can be achieved by using the setExplictClasses() method or
by passing a list of classes as a second argument to the constructor of the RuntimeDefinition.

47.3 CompilerDefinition

The CompilerDefinition is very much similar in nature to the RuntimeDefinition with the exception that it can be
seeded with more information for the purposes of “compiling” a definition. This is useful when you do not want to be
making all those (sometimes expensive) calls to reflection and the annotation scanning system during the request of
your application. By using the compiler, a definition can be created and written to disk to be used during a request, as

opposed to the task of scanning the actual code.

For example, let’s assume we want to create a script that will create definitions for some of our library code:

// in
Scomponents = array (
"My_MovieApp’,

"My_OtherClasses’,

"package name" format

)i

foreach (Scomponents as Scomponent) {
SdiCompiler = new Zend\Di\Definition\CompilerDefinition;
SdiCompiler—>addDirectory (’/ /path/to/classes/’ str_replace(’'_', /", Scomponent));
SdiCompiler—>compile();
file_put_contents (
DIR__ . ' /../data/di/’ Scomponent "—definition.php’,
"<?php return '’ var_export ($diCompiler—->toArrayDefinition () ->toArray (), true) . ’;’

)i
}

This will create a couple of files that will return an array of the definition for that class. To utilize this in an application,

the following code will suffice:

protected function setupDi (Application Sapp)
{
SdefinitionList = new DefinitionList (array (
new Definition\ArrayDefinition (include __ DIR___
new Definition\ArrayDefinition (include __DIR___
Sruntime = new Definition\RuntimeDefinition(),
Sdi = new Di (Sdef

initionList,

null,

" /path/to/data/di/My_MovieRApp-definition.phj
" /path/to/data/di/My_OtherClasses-definition

new Configuration($Sthis->config->di));

194

Chapter 47. Zend\Di Definition

Zend Framework 2 Documentation, Release 2.0.0

Sdi->instanceManager () —>addTypePreference (' Zend\Di\LocatorInterface’, $di);
Sapp—->setLocator ($di);

The above code would more than likely go inside your application’s or module’s bootstrap file. This represents the
simplest and most performant way of configuring your DiC for usage.

47.4 ClassDefinition

The idea behind using a ClassDefinition is two-fold. First, you may want to override some information inside of a
RuntimeDefinition. Secondly, you might want to simply define your complete class’s definition with an xml, ini, or
php file describing the structure. This class definition can be fed in via Configuration or by directly instantiating and
registering the Definition with the DefinitionList.

Todo - example

47.4. ClassDefinition 195

Zend Framework 2 Documentation, Release 2.0.0

196 Chapter 47. Zend\Di Definition

20

21

22

23

24

25

26

27

28

CHAPTER
FORTYEIGHT

ZEND\DI INSTANCEMANAGER

The InstanceManage is responsible for any runtime information associated with the Zend\Di\Di DiC. This means that
the information that goes into the instance manager is specific to both how the particular consuming Application’s
needs and even more specifically to the environment in which the application is running.

48.1 Parameters

Parameters are simply entry points for either dependencies or instance configuration values. A class consist of a set of
parameters, each uniquely named. When writing your classes, you should attempt to not use the same parameter name
twice in the same class when you expect that that parameters is used for either instance configuration or an object
dependency. This leads to an ambiguous parameter, and is a situation best avoided.

Our movie finder example can be further used to explain these concepts:

namespace MyLibrary

{
class DbAdapter

{

protected Susername = null;
protected $ rd = null;
public function __construct (Susername, rd)

{

Sthis->username =

Sthis—->password = ¢

namespace MyMovieApp
{

class MovieFinder

{

protected S$dbAdapter = null;
public function __construct (\MyLibrary\DbAdapter SdbAdapter)
{

Sthis->dbAdapter = S$dbAdapter;

class Movielister

{
protected SmovieFinder = null;

197

Zend Framework 2 Documentation, Release 2.0.0

public function __ construct (MovieFinder SmovieFinder)

{

Sthis->movieFinder = $movieFinder;

In the above example, the class DbAdapter has 2 parameters: username and password; MovieFinder has one parameter:
dbAdapter, and MovieLister has one parameter: movieFinder. Any of these can be utilized for injection of either
dependencies or scalar values during instance configuration or during call time.

When looking at the above code, since the dbAdapter parameter and the movieFinder parameter are both type-hinted
with concrete types, the DiC can assume that it can fulfill these object tendencies by itself. On the other hand, username
and password do not have type-hints and are, more than likely, scalar in nature. Since the DiC cannot reasonably know
this information, it must be provided to the instance manager in the form of parameters. Not doing so will force
$di->get(‘MyMovieApp\MovieLister’) to throw an exception.

The following ways of using parameters are available:

// setting instance configuration into the instance manager
Sdi->instanceManager () —>setParameters (' MyLibrary\DbAdapter’, array (
"username’ => 'myusername’,
"password’ => ’'mypassword’

)) i

// forcing a particular dependency to be used by the instance manager
$di->instanceManager () —>setParameters (' MyMovieApp\MovieFinder’, array (

"dbAdapter’ => new MyLibrary\DbAdaper ('myusername’, ’'mypassword’)
)) i

// passing instance parameters at call time

SmovieLister = $Sdi->get ('MyMovieApp\MovielLister’, array (
"username’ => Sconfig->username,
"password’ => Sconfig->password

)) i

// passing a specific instance at call time
SmovieLister = $di->get ('MyMovieApp\MovieLister’, array(

"dbAdapter’ => new MyLibrary\DbAdaper ('myusername’, ’'mypassword’)
)) i

48.2 Preferences

In some cases, you might be using interfaces as type hints as opposed to concrete types. Lets assume the movie
example was modified in the following way:

namespace MyMovieApp

{

interface MovieFinderInterface

{
// methods required for this type

class GenericMovieFinder implements MovieFinderInterface

{

protected $dbAdapter = null;

198 Chapter 48. Zend\Di InstanceManager

20

21

22

23

24

25

Zend Framework 2 Documentation, Release 2.0.0

public function __ construct (\MyLibrary\DbAdapter SdbAdapter)

{
$this->dbAdapter = $dbAdapter;

class Movielister

{
protected SmovieFinder = null;
public function __construct (MovieFinderInterface SmoviebFinder)

{

Sthis->movieFinder = $movieFinder;

What you’ll notice above is that now the MovieLister type minimally expects that the dependency injected implements
the MovieFinderInterface. This allows multiple implementations of this base interface to be used as a dependency,
if that is what the consumer decides they want to do. As you can imagine, Zend\Di, by itself would not be able to
determine what kind of concrete object to use fulfill this dependency, so this type of ‘preference’ needs to be made
known to the instance manager.

To give this information to the instance manager, see the following code example:

Sdi->instanceManager () —>addTypePreference (' MyMovieApp\MovieFinderInterface’, ’'MyMovieApp\GenericMovic
// assuming all instance config for username, password 1s setup
$di->get (' MyMovieApp\MovielLister’);

48.3 Aliases

In some situations, you’ll find that you need to alias an instance. There are two main reasons to do this. First, it creates
a simpler, alternative name to use when using the DiC, as opposed to using the full class name. Second, you might
find that you need to have the same object type in two separate contexts. This means that when you alias a particular
class, you can then attach a specific instance configuration to that alias; as opposed to attaching that configuration to
the class name.

To demonstrate both of these points, we’ll look at a use case where we’ll have two separate DbAdapters, one will be
for read-only operations, the other will be for read-write operations:

Note: Aliases can also have parameters registered at alias time

// assume the MovieLister example of code from the QuickStart
$im = $di->instanceManager () ;

// add alias for short naming
$im->addAlias (‘movielister’, ’'MyMovieApp\MovielLister’);

// add aliases for specific instances

$im->addAlias (’ dbadapter-readonly’, ’'MyLibrary\DbAdapter’, array (
"username’ => Sconfig->db->readAdapter->username,
"password’ => Sconfig->db->readAdapter->password,

)) i

Sim->addAlias (' dbadapter-readwrite’, ’'MyLibrary\DbAdapter’, array (
"username’ => Sconfig->db->readWriteAdapter>username,
"password’ => Sconfig->db->readWriteAdapter>password,

48.3. Aliases 199

Zend Framework 2 Documentation, Release 2.0.0

)) i

// set a default type to use, pointing to an alias
Sim->addTypePreference (' MyLibrary\DbAdapter’, ’dbadapter-readonly’);

sterRead = $di->get (' MyMovieApp\MovielLister’);
crReadWWrite = $di->get (' MyMovieApp\Movielister’, array (’dbAdapter’

Smovieli

Smoviel

=>

"dbadapter-readwrite

200 Chapter 48. Zend\Di InstanceManager

CHAPTER
FORTYNINE

ZEND\DI CONFIGURATION

Most of the configuration for both the setup of Definitions as well as the setup of the Instance Manager can be attained
by a configuration file. This file will produce an array (typically) and have a particular iterable structure.

The top two keys are ‘definition’ and ‘instance’, each specifying values for respectively, definition setup and instance
manager setup.

The definition section expects the following information expressed as a PHP array:

sconfig = array (

"definition’ => array(
"compiler’ => array(/+ @todo compiler information */),
"runtime’ => array(/x @todo runtime information */),
"class’ => array(
"instantiator’ => '’, // the name of the instantiator, by default this is ___construct
" supertypes’ => array (), // an array of supertypes the class implements
"methods’ => array (

"setSomeParameter’ => array(// a method name
"parameterName’ => array (
'name’, // string parameter name
"type’, // type or null
"is-required’ // bool

201

Zend Framework 2 Documentation, Release 2.0.0

202 Chapter 49. Zend\Di Configuration

CHAPTER
FIFTY

ZEND\DI DEBUGGING & COMPLEX
USE CASES

50.1 Debugging a DiC

It is possible to dump the information contained within both the Definition and InstanceManager for a Di instance.
The easiest way is to do the following:

Zend\Di\Display\Console: :export ($di);

If you are using a RuntimeDefinition where upon you expect a particular definition to be resolve at the first-call, you
can see that information to the console display to force it to read that class:

Zend\Di\Display\Console: :export ($di, array(’A\ClassIWantTo\GetTheDefinitionFor’));

50.2 Complex Use Cases

50.2.1 Interface Injection

namespace Foo\Bar {
class Baz implements BamAwareInterface {

public Sbam;
public function setBam(Bam S$bam) {
Sthis->bam = S$bam;

}
}
class Bam {
}
interface BamAwarelInterface
{
public function setBam(Bam S$bam);
}
}

namespace {
include ’'zf2bootstrap.php’;
di = new Zend\Di\Di;
az = S$di->get ('Foo\Bar\Baz’);

203

20

21

22

23

24

20

21

22

23

24

25

26

27

28

Zend Framework 2 Documentation, Release 2.0.0

50.2.2 Setter Injection with Class Definition

namespace Foo\Bar {

class Baz {

public Sbam;
public function setBam(Bam S$bam) {
Sthis->bam = S$bam;

}
class Bam {

}

namespace {

Sdi = new Zend\Di\Di;
Sdi->configure (new Zend\Di\Config (array (
"definition’ => array(
"class’ => array (
"Foo\Bar\Baz’ => array (

"setBam’ =>

array (' required’ => true)

7
Sbaz = $di->get ('Foo\Bar\Baz’);

50.2.3 Multiple Injections To A Single Injection Point

namespace Application {

class Page {

public S$blocks;
public function addBlock (Block S$block) {
Sthis->blocks[] = Sblock;

}

interface Block {

}

namespace MyModule {
class BlockOne implements \Application\Block {}
class BlockTwo implements \Application\Block {}

namespace {

include ’'zf2bootstrap.php’;
$di = new Zend\Di\Di;
Sdi->configure (new Zend\Di\Config (array (
"definition’ => array(
"class’ => array (
"Application\Page’ => array (

"addBlock’
"block’

=> array (
=> array (’'type’ => ’'Application\Block’, ’required’ => true)

204

Chapter 50. Zend\Di Debugging & Complex Use Cases

Zend Framework 2 Documentation, Release 2.0.0

)I
"instance’ => array (
"Application\Page’ => array (
"injections’ => array (
"MyModule\BlockOne’,
"MyModule\BlockTwo’

Spage = S$di->get (’'Application\Page’);

50.2. Complex Use Cases

205

Zend Framework 2 Documentation, Release 2.0.0

206 Chapter 50. Zend\Di Debugging & Complex Use Cases

CHAPTER
FIFTYONE

INTRODUCTION

The Zend\Dom component provides tools for working with DOM documents and structures. Currently, we offer
Zend\Dom\Query, which provides a unified interface for querying DOM documents utilizing both XPath and CSS
selectors.

207

Zend Framework 2 Documentation, Release 2.0.0

208 Chapter 51. Introduction

CHAPTER
FIFTYTWO

ZEND\DOM\QUERY

Zend\Dom\Query provides mechanisms for querying XML and (X) HTML documents utilizing either XPath or
CSS selectors. It was developed to aid with functional testing of MVC applications, but could also be used for rapid
development of screen scrapers.

CSS selector notation is provided as a simpler and more familiar notation for web developers to utilize when querying
documents with XML structures. The notation should be familiar to anybody who has developed Cascading Style
Sheets or who utilizes Javascript toolkits that provide functionality for selecting nodes utilizing CSS selectors (Proto-
type’s $$() and Dojo’s dojo.query were both inspirations for the component).

52.1 Theory of Operation

To use Zend\Dom\Query, you instantiate a Zend\Dom\Query object, optionally passing a document to query (a
string). Once you have a document, you can use either the query () or queryXpath () methods; each method will
return a Zend\Dom\NodeList object with any matching nodes.

The primary difference between Zend\Dom\Query and using DOMDocument + DOMXPath is the ability to select
against CSS selectors. You can utilize any of the following, in any combination:

* element types: provide an element type to match: ‘div’, ‘a’, ‘span’, ‘h2’, etc.

« style attributes: CSS style attributes to match: ‘.error‘, ‘div.error, ‘label.required’, etc. If an
element defines more than one style, this will match as long as the named style is present anywhere in the style
declaration.

* id attributes: element ID attributes to match: ‘“#content’, ‘div#nav’, etc.
« arbitrary attributes: arbitrary element attributes to match. Three different types of matching are provided:

— exact match: the attribute exactly matches the string: ‘div[bar="baz”’]” would match a div element with a
“bar” attribute that exactly matches the value “baz”.

— word match: the attribute contains a word matching the string: ‘div[bar~="baz”’]’ would match a div

element with a “bar” attribute that contains the word “baz”. ‘<div bar="foo baz”’>" would match, but ‘<div
bar="foo bazbat”>" would not.

— substring match: the attribute contains the string: ‘div[bar*="baz”’]’ would match a div element with a
“bar” attribute that contains the string “baz” anywhere within it.

¢ direct descendents: utilize ‘>’ between selectors to denote direct descendents. ‘div > span’ would select only
‘span’ elements that are direct descendents of a ‘div’. Can also be used with any of the selectors above.

* descendents: string together multiple selectors to indicate a hierarchy along which to search. ‘div .foo
span #one‘ would select an element of id ‘one’ that is a descendent of arbitrary depth beneath a ‘span’
element, which is in turn a descendent of arbitrary depth beneath an element with a class of ‘foo’, that is an

209

http://prototypejs.org/api/utility/dollar-dollar
http://prototypejs.org/api/utility/dollar-dollar
http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query
http://php.net/domdocument
http://php.net/domxpath

Zend Framework 2 Documentation, Release 2.0.0

descendent of arbitrary depth beneath a ‘div’ element. For example, it would match the link to the word ‘One’
in the listing below:

1 <div>

> <table>

3 <tr>

4 <td class="foo">

5 <div>

6 Lorem ipsum

7 One

8 Two

9 Three
10 Four
1

12 </div>

13 </td>

14 </tr>

15 </table>
16 </div>

Once you’ve performed your query, you can then work with the result object to determine information about the nodes,
as well as to pull them and/or their content directly for examination and manipulation. Zend\Dom\NodeList
implements Countable and Iterator, and stores the results internally as a DOMDocument and DOMNodelList.
As an example, consider the following call, that selects against the HTML above:

use Zend\Dom\Query;

Sdom = new Query (Shtml);
sresults = $dom->query ('’ .foo .bar a’);

Scount = count (Sresults); // get number of matches: 4
foreach (Sresults as Sresult)

// Sresult 1s a DOMElement
}

Zend\Dom\Query also allows straight XPath queries utilizing the queryXpath () method; you can pass any valid
XPath query to this method, and it will return a Zend\Dom\NodeList object.

52.2 Methods Available

The Zend\Dom\Query family of classes have the following methods available.

52.2.1 Zend\Dom\Query

The following methods are available to Zend\Dom\Query:
e setDocumentXml ($document, S$encoding = null): specify an XML string to query against.
* setDocumentXhtml ($document, S$encoding = null): specify an XHTML string to query against.
e setDocumentHtml ($document, S$encoding = null): specify an HTML string to query against.

e setDocument ($document, $encoding = null): specify a string to query against;
Zend\Dom\Query will then attempt to autodetect the document type.

* setEncoding ($encoding) : specify an encoding string to use. This encoding will be passed to DOMDoc-
ument’s constructor if specified.

210 Chapter 52. Zend\Dom\Query

http://php.net/domdocument
http://php.net/domnodelist
http://php.net/domdocument.construct
http://php.net/domdocument.construct

Zend Framework 2 Documentation, Release 2.0.0

e getDocument () : retrieve the original document string provided to the object.

* getDocumentType () : retrieve the document type of the document provided to the object; will be one of the
DOC_ XML, DOC_XHTML, or DOC_HTML class constants.

* getEncoding () : retrieves the specified encoding.
* execute ($query): query the document using CSS selector notation.

* queryXpath ($xPathQuery): query the document using XPath notation.

52.2.2 Zend\Dom\NodeList

As mentioned previously, Zend\Dom\NodeList implements both Iterator and Countable, and as such can
beusedina foreach () loop as well as with the count () function. Additionally, it exposes the following methods:

* getCssQuery (): return the CSS selector query used to produce the result (if any).

* getXpathQuery (): return the XPath query used to produce the result. Internally, Zend\Dom\Query
converts CSS selector queries to XPath, so this value will always be populated.

e getDocument () : retrieve the DOMDocument the selection was made against.

52.2. Methods Available 211

Zend Framework 2 Documentation, Release 2.0.0

212 Chapter 52. Zend\Dom\Query

CHAPTER
FIFTYTHREE

THE EVENTMANAGER

53.1 Overview

The EventManager is a component designed for the following use cases:
* Implementing simple subject/observer patterns.
¢ Implementing Aspect-Oriented designs.
* Implementing event-driven architectures.

The basic architecture allows you to attach and detach listeners to named events, both on a per-instance basis as well
as via shared collections; trigger events; and interrupt execution of listeners.

53.2 Quick Start

Typically, you will compose an EventManager instance in a class.

use Zend\EventManager\EventCollection;
use Zend\EventManager\EventManager;
use Zend\EventManager\EventManagerAware;

class Foo implements EventManagerAware

{
protected Sevents;

public function setEventManager (EventCollection Sevents)

{

¢

Sevents—>setIdentifiers (array (
__CLASS__,
get_called_class(),

)) i

Sthis->events = S$Sevents;

return S$this;

public function getEventManager ()
{
if (null === Sthis->events) {
Sthis->setEventManager (new EventManager());

}

return Sthis->events;

213

25

26

Zend Framework 2 Documentation, Release 2.0.0

}

The above allows users to access the EventManager instance, or reset it with a new instance; if one does not exist,
it will be lazily instantiated on-demand.

An EventManager is really only interesting if it triggers some events. Basic triggering takes three arguments: the
event name, which is usually the current function/method name; the “context”, which is usually the current object
instance; and the arguments, which are usually the arguments provided to the current function/method.

class Foo

{
// ... assume events definition from above

public function bar (baz, Sbat = null)

5 = compact ("baz’, ’'bat’);
Sthis->getEventManager () ->trigger (__FUNCTION__ , Sthis, S$params);

}

In turn, triggering events is only interesting if something is listening for the event. Listeners attach to the
EventManager, specifying a named event and the callback to notify. The callback receives an Event object,
which has accessors for retrieving the event name, context, and parameters. Let’s add a listener, and trigger the event.

use Zend\Log\Factory as LogFactory;

$log = LogFactory ($someConfiqg);
Sfoo = new Foo();
Sfoo->getEventManager () —>attach ('bar’, function (Se) use (5log) {
= Se—>getName () ;
~ct = get_class ($e->getTarget ());
Sparams = json_encode ($Se->getParams());
Slog—>info (sprintf (
"$s called on %s, using params %s’,

rent,

// Results in log message:
Sfoo->bar ("baz’, ’'bat’);
// reading: bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"

Note that the second argument to attach () is any valid callback; an anonymous function is shown in the example
in order to keep the example self-contained. However, you could also utilize a valid function name, a functor, a string
referencing a static method, or an array callback with a named static method or instance method. Again, any PHP
callback is valid.

Sometimes you may want to specify listeners without yet having an object instance of the class composing an
EventManager. Zend Framework enables this through the concept of a SharedEventCollection. Simply
put, you can inject individual EventManager instances with a well-known SharedEventCollection, and the
EventManager instance will query it for additional listeners. Listeners attach to a SharedEventCollection
in roughly the same way the do normal event managers; the call to attach is identical to the EventManager,
but expects an additional parameter at the beginning: a named instance. Remember the example of composing an
EventManager, how we passed it ___CLASS__? That value, or any strings you provide in an array to the con-
structor, may be used to identify an instance when using a SharedEventCollection. As an example, assuming

214 Chapter 53. The EventManager

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.0.0

we have a SharedEventManager instance that we know has been injected in our EventManager instances (for
instance, via dependency injection), we could change the above example to attach via the shared collection:

use Zend\Log\Factory as LogFactory;
// Assume Sevents is a Zend\EventManager\SharedEventManager instance

$log = LogFactory ($someConfiqg);
Sevents->attach(’Foo’, ’'bar’, function (Se) use ($log) {

Sevent = Se->getName () ;

irget = get_class ($Se->getTarget ());
Sparams = json_encode (Se—->getParams());
Slog->info (sprintf (

"$s called on %s, using params %s’,

¢

Lparams
)) i
)i

// Later, 1instantiate Foo:
Sfoo = new Foo();
$foo->getEventManager () —>setSharedEventCollection (Sevents) ;

// And we can still trigger the above event:

Sfoo->bar ("baz’, ’'bat’);

// results in log message:

// bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"

Note: StaticEventManager

As of 2.0.0beta3, you can use the StaticEventManager singleton as a SharedEventCollection. As such,
you do not need to worry about where and how to get access to the SharedEventCollection; it’s globally
available by simply calling StaticEventManager::getlnstance().

Be aware, however, that its usage is deprecated within the framework, and starting with 2.0.0beta4, you will
instead configure a SharedEventManager instance that will be injected by the framework into individual
EventManager instances.

The EventManager also provides the ability to detach listeners, short-circuit execution of an event either from
within a listener or by testing return values of listeners, test and loop through the results returned by listeners, prioritize
listeners, and more. Many of these features are detailed in the examples.

53.2.1 Wildcard Listeners

Sometimes you’ll want to attach the same listener to many events or to all events of a given instance — or potentially,
with a shared event collection, many contexts, and many events. The EventManager component allows for this.

Attaching to many events at once

&

Sevents = new EventManager ();
Sevents—>attach (array (' these’, ’'are’, 'event’, ’'names’), Scallback);

Note that if you specify a priority, that priority will be used for all events specified.

53.2. Quick Start 215

Zend Framework 2 Documentation, Release 2.0.0

Attaching using the wildcard

Sevents = new EventManager ();
Sevents—>attach (’«’, S$callback);

Note that if you specify a priority, that priority will be used for this listener for any event triggered.

What the above specifies is that any event triggered will result in notification of this particular listener.

Attaching to many events at once via a SharedEventManager

Sevents = new SharedEventManager () ;
// Attach to many events on the context "foo"
Sevents—>attach(’ foo’, array(’these’, ’'are’, ’'event’, ’'names’), S$Scallback);

// Attach to many events on the contexts "foo" and "bar"
Sevents—>attach (array(’ foo’, ’bar’), array(’these’, ’'are’, ’'event’, ’'names’),

Note that if you specify a priority, that priority will be used for all events specified.

Attaching to many events at once via a SharedEventManager

Sevents = new SharedEventManager () ;
// Attach to all events on the context "foo"
Sevents—->attach ('’ foo’, ’'*’, S$callback);

// Attach to all events on the contexts "foo" and "bar"
Sevents—>attach (array(’ foo’, ’'bar’), ’'=x’, Scallback);

Note that if you specify a priority, that priority will be used for all events specified.

Scallback);

The above is specifying that for the contexts “foo” and “bar”, the specified listener should be notified for any event

they trigger.

53.3 Configuration Options

EventManager Options

identifier A string or array of strings to which the given EventManager instance can answer when accessed via a

SharedEventManager.

event_class The name of an alternate Event class to use for representing events passed to listeners.

shared_collections An instance of a SharedEventCollection instance to use when triggering events.

53.4 Available Methods

__construct __construct (null|string|int $identifier)

Constructs a new EventManager instance, using the given identifier, if provided, for purposes of shared

collections.

216 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

setEventClass setEventClass (string S$class)
Provide the name of an alternate Event class to use when creating events to pass to triggered listeners.

setSharedCollections set SharedCollections (SharedEventCollection S$collections =
null)

An instance of a SharedEventCollection instance to use when triggering events.
getSharedCollections get SharedCollections ()

Returns the currently attached SharedEventCollection instance. Returns either a null if no collection
is attached, or a SharedEventCollection instance otherwise.

trigger trigger (string $event, mixed S$target, mixed S$Sargv, callback $callback)

Triggers all listeners to a named event. The recommendation is to use the current function/method name for

9 9

Sevent, appending it with values such as ”.pre”, ”.post”, etc. as needed. $context should be the cur-
rent object instance, or the name of the function if not triggering within an object. $params should typically
be an associative array or ArrayAccess instance; we recommend using the parameters passed to the func-
tion/method (compact () is often useful here). This method can also take a callback and behave in the same
way as triggerUntil ().

The method returns an instance of ResponseCollection, which may be used to introspect return values of
the various listeners, test for short-circuiting, and more.

triggerUntil triggerUntil (string $event, mixed $context, mixed $argv, callback
Scallback)

Triggers all listeners to a named event, just like 7rigger(), with the addition that it passes the return value
from each listener to Scallback; if Scallback returns a boolean t rue value, execution of the listeners is
interrupted. You can test for this using $result->stopped|).

attach attach (string S$event, callback S$callback, int S$priority)

Attaches Scallback to the EventManager instance, listening for the event Sevent. If a Spriority is
provided, the listener will be inserted into the internal listener stack using that priority; higher values execute
earliest. (Default priority is “1”, and negative priorities are allowed.)

The method returns an instance of Zend\Stdlib\CallbackHandler; this value can later be passed to
detach () if desired.

attachAggregate attachAggregate (string|ListenerAggregate S$Saggregate)

If a string is passed for Saggregate, instantiates that class. The Saggregate is then passed the
EventManager instance to its at tach () method so that it may register listeners.

The ListenerAggregate instance is returned.
detach detach(CallbackHandler $listener)

Scans all listeners, and detaches any that match $1istener so that they will no longer be triggered.

Returns a boolean t rue if any listeners have been identified and unsubscribed, and a boolean false otherwise.
detachAggregate detachAggregate (ListenerAggregate S$Saggregate)

Loops through all listeners of all events to identify listeners that are represented by the aggregate; for all matches,
the listeners will be removed.

Returns a boolean t rue if any listeners have been identified and unsubscribed, and a boolean false otherwise.
getEvents getEvents ()

Returns an array of all event names that have listeners attached.

53.4. Available Methods 217

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

getListeners getListeners (string $event)

Returns a Zend\Stdlib\PriorityQueue instance of all listeners attached to $event.
clearListeners clearListeners (string S$event)

Removes all listeners attached to $event.
prepareArgs preparelArgs (array $args)

Creates an ArrayObject from the provided $args. This can be useful if you want yours listeners to be able
to modify arguments such that later listeners or the triggering method can see the changes.

53.5 Examples
Modifying Arguments

Occasionally it can be useful to allow listeners to modify the arguments they receive so that later listeners or the calling
method will receive those changed values.

As an example, you might want to pre-filter a date that you know will arrive as a string and convert it to a DateTime
argument.

To do this, you can pass your arguments to prepareArgs (), and pass this new object when triggering an event.
You will then pull that value back into your method.

class ValueObject
{

// assume a composed event manager

function inject (array Svalues)
{
Sargv = compact ('values’);
Sargv = $this->getEventManager () —>preparelArgs (Sargv) ;
Sthis->getEventManager () ->trigger (_ _FUNCTION__, S$this, S$argv);
Sdate = isset (Sargv([’/values’][’'date’]) ? Sargv[’values’][’date’] : new DateTime (' now’);
//
}
}
Sv = new ValueObject ();
Sv->getEventManager () —>attach (' inject’, function($e) {
Svalues = Se—->getParam(’values’);
if (!Svalues) {
return;
}
if (!isset (Svalues[’date’])) {
Svalues[’date’] = new DateTime ('now’);
return;
}
Svalues[’date’] = new Datetime (Svalues[’date’]);

)i

Sv—>inject (array (
"date’ => ’2011-08-10 15:30:29',
)) i

218 Chapter 53. The EventManager

Zend Framework 2 Documentation, Release 2.0.0

Short Circuiting

One common use case for events is to trigger listeners until either one indicates no further processing should be done,
or until a return value meets specific criteria. As examples, if an event creates a Response object, it may want execution
to stop.

Slistener = function(Se) {
// do some work

// Stop propagation and return a response
Se->stopPropagation (true) ;
return Sresponse;

i
Alternately, we could do the check from the method triggering the event.

class Foo implements DispatchableInterface

{

// assume composed event manager

public function dispatch (Request S$Srequest, Response Sresponse = null)
{
Sargv = compact (' request’, ’response’);
Sresults = S$this->getEventManager () ->triggerUntil (__FUNCTION__, S$this, S$argv, function ($v)
return (Sv instanceof Response);
1) i

Typically, you may want to return a value that stopped execution, or use it some way. Both trigger () and
triggerUntil () return a ResponseCollection instance; call its stopped () method to test if execution
was stopped, and 1ast () method to retrieve the return value from the last executed listener:

class Foo implements DispatchableInterface

{

// assume composed event manager

public function dispatch (Request S$Srequest, Response Sresponse = null)
{
Sargv = compact (' request’, ’response’);
Sresults = $this->getEventManager () ->triggerUntil (__FUNCTION__, S$this, S$argv, function ($v)
return (Sv instanceof Response);

1)

// Test 1f execution was halted, and return last result:
if (Sresults->stopped()) {
return Sresults->last();

// continue...

Assigning Priority to Listeners

One use case for the EventManager is for implementing caching systems. As such, you often want to check the
cache early, and save to it late.

53.5. Examples 219

{

{

Zend Framework 2 Documentation, Release 2.0.0

The third argument to attach () is a priority value. The higher this number, the earlier that listener will execute; the
lower it is, the later it executes. The value defaults to 1, and values will trigger in the order registered within a given
priority.

So, to implement a caching system, our method will need to trigger an event at method start as well as at method end.

20

21

22

23

24

25

26

27

28

At method start, we want an event that will trigger early; at method end, an event should trigger late.
Here is the class in which we want caching:

class SomeValueObject

{

// assume it composes an event manager

public function get (5id)
{
Sparams = compact (’id’);
Sresults = Sthis->getEventManager ()->trigger (’'get.pre’, S$this, S$params);

// If an event stopped propagation, return the value
if (Sresults->stopped()) {
return Sresults->last();

// do some work...

Sparams[’/__RESULT_ '] = S$someComputedContent;
Sthis->getEventManager () ->trigger (' get.post’, $this, S$params);

Now, let’s create a ListenerAggregateInterface that can handle caching for us:

use Zend\Cache\Cache;

use Zend\EventManager\EventCollection;

use Zend\EventManager\ListenerAggregateInterface;
use Zend\EventManager\EventInterface;

class Cachelistener implements ListenerAggregatelInterface

{

protected Scache;
protected Slisteners = array();
public function __ construct (Cache Scache)

{

Sthis—>cache = S$cache;

public function attach (EventCollection S$Sevents)

{

Sthis->listeners[] = $events->attach(’get.pre’, array(sthis, ’load’), 100);
Sthis->listeners[] = Sevents->attach(’get.post’, array(Sthis, ’save’), -100);

public function detach (EventManagerInterface Sevents)
{
foreach (Sthis—->listeners as S$index => S$listener) {
if (Sevents—->detach($listener)) {
unset ($this->listeners[$Sindex]);

220 Chapter 53. The EventManager

42

43

44

45

46

4

48

49

50

Zend Framework 2 Documentation, Release 2.0.0

public function load(EventInterface Se)

$id = get_class (Se->getTarget()) . ’'-’ . Json_encode ($e->getParams());
if (false !== (Scontent = S$this->cache->load($id))) {
Se->stopPropagation (true);
return Scontent;

public function save (EventInterface Se)
{

Sparams = Se->getParams();

Scontent = Sparams[’__RESULT_ ’1;

unset (Sparams[’___RESULT__"1);
$id = get_class ($e->getTarget()) . -’ . Json_encode (Sparams) ;
Sthis->cache->save (Scontent, $id);

We can then attach the aggregate to an instance.

&

Svalue = new SomeValueObject () ;

&

ScachelListener = new CachelListener (Scache);

&

Svalue->getEventManager () ->attachAggregate ($cachelistener);

Now, as we call get (), if we have a cached entry, it will be returned immediately; if not, a computed entry will be
cached when we complete the method.

53.5. Examples 221

Zend Framework 2 Documentation, Release 2.0.0

222 Chapter 53. The EventManager

CHAPTER
FIFTYFOUR

INTRODUCTION TO ZEND\FORM

Zend\Form is intended primarily as a bridge between your domain models and the View Layer. It composes a thin
layer of objects representing form elements, an /nputFilter, and a small number of methods for binding data to and
from the form and attached objects.

The component consists of:
* Elements, which simply consist of a name and attributes.
* Fieldsets, which extend from Element s, but allow composing other fieldsets and elements.

* Forms, which extend from Fieldsets (and thus Elements), provide data and object binding, and compose
InputFilters. Data binding is done via Zend\Stdlib\Hydrator.

To facilitate usage with the view layer, the Zend\Form component also aggregates a number of form-specific view
helpers. These accept elements, fieldsets, and/or forms, and use the attributes they compose to render markup.

A small number of specialized elements are provided for accomplishing application-centric tasks. These include the
Csrf element, used to prevent Cross Site Request Forgery attacks, and the Captcha element, used to display and
validate CAPTCHAs.

A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. The default
Form implementation is backed by a factory to facilitate extension and ease the process of form creation.

The code related to forms can often spread between a variety of concerns: a form definition, an input filter def-
inition, a domain model class, and one or more hydrator implementations. As such, finding the various bits of
code and how they relate can become tedious. To simplify the situation, you can also annotate your domain
model class, detailing the various input filter definitions, attributes, and hydrators that should all be used together.
Zend\Form\Annotation\AnnotationBuilder can then be used to build the various objects you need.

223

Zend Framework 2 Documentation, Release 2.0.0

224 Chapter 54. Introduction to Zend\Form

20

21

22

23

24

25

26

27

28

29

CHAPTER
FIFTYFIVE

FORM QUICK START

Forms are relatively easy to create. At the bare minimum, each element or fieldset requires a name; typically, you’ll
also provide some attributes to hint to the view layer how it might render the item. The form itself will also typically
compose an InputFilter— which you can also conveniently create directly in the form via a factory. Individual

elements can hint as to what defaults to use when generating a related input for the input filter.

Form validation is as easy as providing an array of data to the setData () method. If you want to simplify your
work even more, you can bind an object to the form; on successful validation, it will be populated from the validated

values.

Programmatic Form Creation

If nothing else, you can simply start creating elements, fieldsets, and forms and wiring them together.

use Zend\Captcha;

use Zend\Form\Element;

use Zend\Form\Fieldset;

use Zend\Form\Form;

use Zend\InputFilter\Input;

use Zend\InputFilter\InputFilter;

Sname = new Element ('name’);

Sname->setLabel (' Your name’);

Sname->setAttributes (array (
"type’ => "text’

)) i

S 111 = new Element (‘email’);

Semail->setAttributes (array (
"type’ => 'email’

bject = new Element (’ subject’);

—->setLabel (' Subject’);

Ssubject—->setAttributes (array (
"type’ => "text’

> = new Element ('message’);
ac >setLabel (' Message’) ;
sage—>setAttributes (array (
"type’ => 'textarea’

Semail—->setLabel (' Your email address’);

225

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Zend Framework 2 Documentation, Release 2.0.0

)) i

Scaptcha = new Element\Captcha (' captcha’);
Scaptcha->setCaptcha (new Captcha\Dumb ());
Scaptcha->setLabel ('Please verify you are human’);
Scsrf = new Element\Csrf (’'security’);

Ssubmit = new Element (’ send’);

Ssubmit->setLabel (" Send’) ;

Ssubmit->setAttributes (array (
"type’ => ’submit’

V)i

Sform = new Form(’contact’);
Sform->add (Sname) ;
Sform->add ($Semail) ;
Sform->add (Ssubject) ;
Sform->add ($message) ;
Sform->add (Sc ﬂptphi),
Sform->add (S$c
(S

Sform->add

csri);

sord)

SnamelInput = new Input ('name’);

// configure input... and all others
SinputFilter = new InputFilter();

// attach all inputs

Sform->setInputFilter ($inputFilter);

As a demonstration of fieldsets, let’s alter the above slightly. We’ll create two fieldsets, one for the sender information,
and another for the message details.

Ssender = new Fieldset (' sender’);
Ssender—->add ($name) ;
Ssender—->add (Semail) ;

Sdetails = new Fieldset ('details’);
Sdetails—>add ($subject);
Sdetails—->add (Smessage) ;

Sform = new Form(’contact’);
Sform->add ($sender) ;
Sform->add (Sdetails);
Sform->add ($captcha) ;
Sform->add (Sc SLL);
Sform->add ($ d);

Regardles of approach, as you can see, this can be tedious.

Creation via Factory

You can create the entire form, and input filter, using the Factory. This is particularly nice if you want to store your
forms as pure configuration; you can simply pass the configuration to the factory and be done.

226 Chapter 55. Form Quick Start

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Zend Framework 2 Documentation, Release 2.0.0

use Zend\Form\Factory;
Sfactory = new Factory();
Sform = Sfactory->createForm(array (

"hydrator’ => ’Zend\Stdlib\Hydrator\ArraySerializable’

"elements’ => array (

array (
"name’

=> ’'name’,

"options’ => array(
"label’” => ’Your name’,

)y

"attributes’ => array(
"type’ => "text’

),

)

array (
"name’

=> ’"email’,

"options’ => array(
"label’” => ’Your email address’,

)y

"attributes’ => array(
"type’ => 'email’,

)y

)

array (
"name’

=> ’subject’,

"options’ => array(
"label’ => ’Subject’,

)y

"attributes’ => array(
"type’ => 'text’,

)y
)y

array (
"name’ => ’'message’,
"options’ => array(

"label’” => ’'Message’,

)y

"attributes’ => array(
"type’ => 'textarea’,

)I

)

array (
14 typel
"name’

=> ’Zend\Form\Element\Captcha’,
=> 'captcha’,

"options’ => array (
"label’” => ’'Please verify you are human’,

)y

"attributes’ => array(
"captcha’ => array(

)I
)I
)I
array (
"type’
"name’
)I
array (

"class’ => ’'Dumb’,

=> ’Zend\Form\Element\Csrf’,
=> ’security’,

227

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

81

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Zend Framework 2 Documentation, Release 2.0.0

"name’ => ’send’,

"options’ => array (
"label’ => ’Send’,

)I

"attributes’ => array(
"type’ => ’'submit’,

)I

)I

/+ If we had fieldsets, they’d go here; fieldsets contain
* "elements" and "fieldsets" keys, and potentially a "type
* key indicating the specific FieldsetInterface

"

* Implementation to use.
’fieldsets’ => array/(
)/

*/

// Configuration to pass on to
// Zend\InputFilter\Factory::createlnputFilter ()
"input_filter’ => array(
Jr e xS/
) r
V)i

If we wanted to use fieldsets, as we demonstrated in the previous example, we could do the following:

use Zend\Form\Factory;

Sfactory = new Factory();

Sform = Sfactory->createForm(array (
"hydrator’ => ’Zend\Stdlib\Hydrator\ArraySerializable’
"fieldsets’ => array(

array (
"name’ => ’sender’,
"elements’ => array (
array (
"name’ => ’'name’,
"options’ => array(
"label’ => ’Your name’,
)I
"attributes’ => array (
"type’ => "text’
),
)I
array (
"name’ => ’'email’,
"options’ => array (
"label’ => ’"Your email address’,
)
"attributes’ => array(
"type’ => 'email’,

array (
"name’ => ’'details’,
"elements’ => array (
array (
"name’ => ’subject’,

228 Chapter 55. Form Quick Start

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

86

Zend Framework 2 Documentation, Release 2.0.0

"options’ => array (
"label’ => ’Subject’,
)I
"attributes’ => array(
"type’ => "text’,
)I
)I
array (
"name’ => ’'message’,
"options’ => array(
'label’ => ’"Message’,
)I
"attributes’ => array(
"type’ => "textarea’,

)I
"elements’ => array (
array (
"type’ => ’Zend\Form\Element\Captcha’,
"name’ => ’captcha’,
"options’ => array (
"label’ => ’'Please verify you are human’,
)I
"attributes’ => array(
"captcha’ => array (
"class’ => ’'Dumb’,
)I
)I
)!
array (
"type’ => ’Zend\Form\Element\Csrf’,
"name’ => ’security’,

),

array (
"name’ => ’send’,
"options’ => array (

"label’ => ’Send’,
)y
"attributes’ => array(
"type’ => ’submit’,
)y
)I
)I

// Configuration to pass on to
// Zend\InputFilter\Factory::createlnputFilter ()
"input_filter’ => array(
V2 V4
)I
)) i

Note that the chief difference is nesting; otherwise, the information is basically the same.

The chief benefits to using the Factory are allowing you to store definitions in configuration, and usage of significant

whitespace.

229

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

Zend Framework 2 Documentation, Release 2.0.0

Factory-backed Form Extension

The default Form implementation is backed by the Factory. This allows you to extend it, and define your form
internally. This has the benefit of allowing a mixture of programmatic and factory-backed creation, as well as defining
a form for re-use in your application.

namespace Contact;

use Zend\Captcha\AdapterInterface as CaptchaAdapter;

use Zend\Form\Element;
use Zend\Form\Form;

class ContactForm extends Form

{

protected Scaptcha;

public function setCaptcha (CaptchaAdapter Scaptcha)

{

Sthis->captcha =

public function prep

{

Scaptcha;

areElements ()

// add() can take either an Element/Fieldset instance,

// or a specification,

// will be built

Sthis->add (array (

"name’ => 'n

"options’ =>
"label’

)I

"attributes’
Itypel

)I

))

ame’ ,
array (
=> ’'Your name’,

=> array (
=> 'text’,

Sthis->add (array (

"name’ => 'e

"options’ =>
"label’

)I

"attributes’
Itypel

)I

)) i

mail’,
array (
=> ’'Your email address’,

=> array (
=> ’'email’,

Sthis->add (array (

"name’ => 's

ubject’,

"options’ => array(

"label’
)I
"attributes’
Itypel
)I
)) i

=> ’Subject’,

=> array (
=> 'text’,

Sthis->add (array (
"name’ => ’'message’,
"options’ => array (

"label’

=> ’Message’,

from which the appropriate object

230

Chapter 55. Form Quick Start

53

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Zend Framework 2 Documentation, Release 2.0.0

)I
"attributes’ => array(
"type’ => ’'textarea’,
)I
)) i
Sthis->add (array (
"type’ => ’Zend\Form\Element\Captcha’,
"name’ => ’captcha’,
"options’ => array (
"label’” => ’'Please verify you are human’,
)I
"attributes’ => array (
"captcha’ => $this->captcha,

)y

)) .
Sthis->add (new Element\Csrf (' security’));
Sthis->add (array (
"name’ => ’send’,
"options’ => array (
"label’” => ’Send’,
)I
"attributes’ => array(
"type’ => ’submit’,
)I
)) i

// We could also define the input filter here, or
// lazy-create it in the getInputFilter () method.

)) i

You’ll note that this example introduces a method, prepareElements (). This is done to allow altering and/or
configuring either the form or input filter factory instances, which could then have bearing on how elements, inputs,
etc. are created. In this case, it also allows injection of the CAPTCHA adapter, allowing us to configure it elsewhere
in our application and inject it into the form.

Validating Forms

Validating forms requires three steps. First, the form must have an input filter attached. Second, you must inject the
data to validate into the form. Third, you validate the form. If invalid, you can retrieve the error messages, if any.

Sform = new Contact\ContactForm() ;

// If the form doesn’t define an input filter by default, inject one.
Sform->setInputFilter (new Contact\ContactFilter());

// Get the data. In an MVC application, you might try:
Sdata = Srequest->post(); // for POST data
Sdata = Srequest->query(); // for GET (or query string) data

Sform—->setData (Sdata) ;

// Validate the form
if (Sform->isvValid() {

SvalidatedData = S$form—>getData () ;
} else {
Smessages = Sform->getMessages();

231

23

24

25

26

Zend Framework 2 Documentation, Release 2.0.0

}
You can get the raw data if you want, by accessing the composed input filter.
Sfilter = $form->getInputFilter();

= S$filter—->getRawValues();
ue = S$filter->getRawValue (' name’);

Hinting to the Input Filter

Often, you’ll create elements that you expect to behave in the same way on each usage, and for which you’ll want
specific filters or validation as well. Since the input filter is a separate object, how can you achieve these latter points?

Because the default form implementation composes a factory, and the default factory composes an input filter factory,
you can have your elements and/or fieldsets hint to the input filter. If no input or input filter is provided in the input
filter for that element, these hints will be retrieved and used to create them.

To do so, one of the following must occur. For elements, they must implement
Zend\InputFilter\InputProviderInterface, which defines a getInputSpecification ()
method; for fieldsets, they must implement Zend\InputFilter\InputFilterProviderInterface,
which defines a get InputFilterSpecification () method.

In the case of an element, the get InputSpecification () method should return data to be used by the input
filter factory to create an input.

namespace Contact\Form;

use Zend\Form\Element;
use Zend\InputFilter\InputProviderInterface;
use Zend\Validator;

class EmailElement extends Element implements InputProviderInterface
{

protected Sattributes = array (
"type’ => 'email’,

)i

public function getInputSpecification()
{

return array (

"name’ => Sthis->getName (),
"required’ => true,
"filters’ => array(
array (' name’ => ’Zend\Filter\StringTrim’),

)
"validators’ => array(
new Validator\Email (),

)y

}

The above would hint to the input filter to create and attach an input named after the element, marking it as required,
and giving ita StringTrim filter and an Email validator. Note that you can either rely on the input filter to create
filters and validators, or directly instantiate them.

232 Chapter 55. Form Quick Start

20

21

22

23

24

25

26

27

28

2

Zend Framework 2 Documentation, Release 2.0.0

For fieldsets, you do very similarly; the difference is that get InputFilterSpecification () must return
configuration for an input filter.

namespace Contact\Form;

use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;

class SenderFieldset extends Fieldset implements InputFilterProviderInterface

{
public function getInputFilterSpecification()

{
return array (
"name’ => array (
"required’ => true,
"filters’ => array(
array (' name’ => ’'Zend\Filter\StringTrim’),

)I
)I
"email’ => array(
"required’ => true,
"filters’ => array(
array (' name’ => ’'Zend\Filter\StringTrim’),

) s
"validators’ => array(
new Validator\Email (),

)y

}

Specifications are a great way to make forms, fieldsets, and elements re-usable trivially in your applications. In fact,
the Captcha and Csrf elements define specifications in order to ensure they can work without additional user
configuration!

Binding an object

As noted in the intro, forms in Zend Framework bridge the domain model and the view layer. Let’s see that in action.
When you bind () an object to the form, the following happens:

* The composed Hydrator calls extract () on the object, and uses the values returned, if any, to populate
the value attributes of all elements.

e When isvalid() is called, if setData () has not been previously set, the form uses the composed
Hydrator to extract values from the object, and uses those during validation.

e If isvalid () is successful (and the bindOnvValidate flag is enabled, which is true by default), then the
Hydrator will be passed the validated values to use to hydrate the bound object. (If you do not want this
behavior, call setBindOnValidate (FormInterface: :BIND_MANUAL)).

« If the object implements Zend\InputFilter\InputFilterAwareInterface, the input filter it com-
poses will be used instead of the one composed on the form.

This is easier to understand in practice.

contact = new ArrayObject;
Scontact [’subject’] = ’ [Contact Form] ’;

233

20

21

22

23

24

25

26

Zend Framework 2 Documentation, Release 2.0.0

Scontact['message’] = ’'Type your message here’;
Sform = new Contact\ContactForm;
Sform->bind($Scontact); // form now has default values for

// ’subject’ and ’‘message’

Sdata = array(
"name’ => ’John Doe’,
"email’ => ’j.doel@example.tld’,

"subject’ => ' [Contact Form] \’sup?’,
)

Sform—->setData ($Sdata) ;

if (Sform—->isValid()) {
// Scontact now looks like:

// array (

// ’name’ => ’John Doe’,

// ‘email’ => ’j.doel@example.tld’,

// ’subject’ => ' [Contact Form] \’sup?’/,
// ‘message’ => ’Type your message here’,
/)

// only as an ArrayObject
}

When an object is bound to the form, calling getData () will return that object by default. If you want to return an
associative array instead, you can pass the FormInterface: : VALUES_AS_ARRAY flag to the method.

use Zend\Form\FormInterface;
Sdata = Sform->getData (FormInterface::VALUES_AS_ARRAY);

Zend Framework ships several standard hydrators, and implementation is as simple as implementing
Zend\Stdlib\Hydrator\HydratorInterface, which looks like this:

namespace Zend\Stdlib\Hydrator;

interface Hydrator
{
/#*% @return array =/
public function extract (Sobject);
public function hydrate (array S$data, Sobject);

Rendering

As noted previously, forms are meant to bridge the domain model and view layer. We’ve discussed the domain model
binding, but what about the view?

The form component ships a set of form-specific view helpers. These accept the various form objects, and introspect
them in order to generate markup. Typically, they will inspect the attributes, but in special cases, they may look at
other properties and composed objects.

When preparing to render, you will likely want to call prepare (). This method ensures that certain injections are
done, and will likely in the future munge names to allow for scoped[array] [notation].

The simplest view helpers available are Form, FormElement, FormLabel, and FormElementErrors. Let’s
use them to display the contact form.

234 Chapter 55. Form Quick Start

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Zend Framework 2 Documentation, Release 2.0.0

<?php
// within a view script
Sform = $this->form;

Sform->prepare () ;

// Assuming the "contact/process" route exists...
Sform->setAttribute (action’, S$this->url (’contact/process’));

// Set the method attribute for the form
Sform->setAttribute ('method’, ’post’);

// Get the form label plugin
SformLabel = S$this->plugin(’ formLabel’);

// Render the opening tag
echo Sthis->form()—->openTag($form);

?>
<div class="form_element">
<?php
Sname = S$form->get (' name’);
echo $formLabel->openTag() . Sname->getAttribute (’label’);
echo $this->formInput (Sname);
echo $this->formElementErrors ($name);
echo S$formLabel->closeTag();
°></div>

<div class="form_element">
<?php
Ssubject = Sform->get (' subject’);

echo $formLabel->openTag() . $subject->getAttribute(’label’);

echo $this->formInput ($Ssubject);
echo $this->formElementErrors ($subject);
echo S$formLabel->closeTag();

°></div>

<div class="form_element">
<?php
Smessage = S$Sform->get ('message’);

echo $formLabel->openTag() . Smessage->getAttribute(’label’);

echo $this->formInput (S$Smessage);
echo $this->formElementErrors ($Smessage);
echo $formLabel->closeTag();

?></div>

<div class="form_element">
<?php
Scaptcha = S$form->get (' captcha’);

echo $formLabel->openTag() . Scaptcha->getAttribute(’label’);

echo $this->formInput ($Scaptcha);
echo $this->formElementErrors ($Scaptcha);
echo $formLabel->closeTag();

?></div>

<?php echo Sthis->formElement ($form->get (’ security’) 2>
<?php echo S$this->formElement (Sform->get (/' send’) ?>

<?php echo Sthis->form()->closeTag() ?>

235

20

21

22

23

24

25

26

27

28

29

30

Zend Framework 2 Documentation, Release 2.0.0

There are a few things to note about this. First, to prevent confusion in IDEs and editors when syntax highlighting,
we use helpers to both open and close the form and label tags. Second, there’s a lot of repetition happening here; we
could easily create a partial view script or a composite helper to reduce boilerplate. Third, note that not all elements
are created equal — the CSRF and submit elements don’t need labels or error messages necessarily. Finally, note that
the FormElement helper tries to do the right thing — it delegates actual markup generation toother view helpers;
however, it can only guess what specific form helper to delegate to based on the list it has. If you introduce new form
view helpers, you’ll need to extend the FormElement helper, or create your own.

However, your view files can quickly become long and repetitive to write. While we do not currently provide a single-
line form view helper (as this reduces the form customization), the simplest and most recommended way to render your
form is by using the FormRow view helper. This view helper automatically renders a label (if present), the element
itself using the FormElement helper, as well as any errors that could arise. Here is the previous form, rewritten to
take advantage of this helper :

<?php
// within a view script
Sform = $this->form;

Sform->prepare () ;

// Assuming the "contact/process" route exists...
Sform->setAttribute (’action’, S$this->url (’contact/process’));

// Set the method attribute for the form
Sform->setAttribute (method’, ’post’);

// Render the opening tag

echo $this->form()->openTag(Sform);
2>
<div class="form_element">
<?php
Sname = S$form->get (' name’);
echo $this->formRow ($Sname) ;
°></div>

<div class="form_element">

<?php
Ssubject = Sform->get (' subject’);
echo S$this->formRow ($Ssubject);
?></div>

<div class="form_element">

<?php
Smessage = S$Sform->get ('message’);
echo S$this->formRow (Smessage) ;
°></div>

<div class="form_element">

<?php
Scaptcha = S$form->get (/' captcha’);
echo Sthis->formRow ($Scaptcha);
?></div>
<?php echo Sthis->formElement ($form->get (' security’) ?>

<?php echo $this->formElement (Sform->get (' send’) 2>
<?php echo Sthis->form()->closeTag() ?>

Note that FormRow helper automatically prepends the label. If you want it to be rendered after the element itself, you

236 Chapter 55. Form Quick Start

Zend Framework 2 Documentation, Release 2.0.0

can pass an optional parameter to the FormRow view helper :

<div class="form_element">

<?php

Sname = S$form->get (' name’);

echo Sthis->formRow (Sname, *x*’append’ xx*);
?></div>

Validation Groups

Sometimes you want to validate only a subset of form elements. As an example, let’s say we’re re-using our contact
form over a web service; in this case, the Csrf, Captcha, and submit button elements are not of interest, and
shouldn’t be validated.

Zend\Form provides a proxy method to the underlying InputFilter‘s setValidationGroup () method,
allowing us to perform this operation.

sform—->setValidationGroup (' name’, ’‘email’, ’subject’, ’'message’);
Sform—->setData ($Sdata) ;

if (Sform—->isvalid()) {

// Contains only the "name", "email", "subject", and "message" values
Sdata = S$form->getDatal();

}

If you later want to reset the form to validate all, simply pass the FormInterface: : VALIDATE_ALL flag to the
setValidationGroup () method.

use Zend\Form\FormInterface;
Sform->setValidationGroup (FormInterface: :VALIDATE_ALL) ;

When your form contains nested fieldsets, you can use an array notation to validate only a subset of the fieldsets :

$form->setValidationGroup (array (
"profile’ => array(
"firstname’,
"lastname’
)
)) i
Sform—->setData (Sdata) ;
if (Sform—->isvValid()) {
// Contains only the "firstname" and "lastname" values from the
// "profile" fieldset

&

Sdata = S$form->getDatal();

Using Annotations

Creating a complete forms solution can often be tedious: you’ll create some domain model object, an input filter
for validating it, a form object for providing a representation for it, and potentially a hydrator for mapping the form
elements and fieldsets to the domain model. Wouldn’t it be nice to have a central place to define all of these?

Annotations allow us to solve this problem. You can define the following behaviors with the shipped annotations in
Zend\Form:

* AllowEmpty: mark an input as allowing an empty value. This annotation does not require a value.

* Attributes: specify the form, fieldset, or element attributes. This annotation requires an associative array of
values, in a JSON object format: @Attributes ({"class":"zend_form", "type":"text"}).

237

Zend Framework 2 Documentation, Release 2.0.0

* ComposedObject: specify another object with annotations to parse. Typically, this is used if a property refer-
ences another object, which will then be added to your form as an additional fieldset. Expects a string value
indicating the class for the object being composed.

e ErrorMessage: specify the error message to return for an element in the case of a failed validation. Expects a
string value.

* Exclude: mark a property to exclude from the form or fieldset. This annotation does not require a value.

* Filter: provide a specification for a filter to use on a given element. Expects an associative array of values, with a
“name” key pointing to a string filter name, and an “options” key pointing to an associatve array of filter options
for the constructor: @Filter ({"name": "Boolean", "options": {"casting":truel}}).
This annotation may be specified multiple times.

* Flags: flags to pass to the fieldset or form composing an element or fieldset; these are usually used to specify
the name or priority. The annotation expects an associative array: @Flags ({"priority": 100}).

* Hydrator: specify the hydrator class to use for this given form or fieldset. A string value is expected.

* InputFilter: specify the input filter class to use for this given form or fieldset. A string value is expected.
* Input: specify the input class to use for this given element. A string value is expected.

* Name: specify the name of the current element, fieldset, or form. A string value is expected.

* Options: options to pass to the fieldset or form that are used to inform behavior — things that are not attributes;
e.g. labels, CAPTCHA adapters, etc. The annotation expects an associative array: @Options ({"label":
"Username:"}).

Required: indicate whether an element is required. A boolean value is expected. By default, all elements are
required, so this annotation is mainly present to allow disabling a requirement.

* Type: indicate the class to use for the current element, fieldset, or form. A string value is expected.

Validator: provide a specification for a validator to use on a given element. Expects an associative array of val-
ues, with a “name” key pointing to a string validator name, and an “options” key pointing to an associatve array
of validator options for the constructor: @Validator ({"name": "StringLength", "options":
{"min":3, "max": 25}}). This annotation may be specified multiple times.

To use annotations, you simply include them in your class and/or property docblocks. Annotation names will be
resolved according to the import statements in your class; as such, you can make them as long or as short as you want
depending on what you import.

Here’s a simple example.

use Zend\Form\Annotation;

J ok k
* @Annotation\Name ("user")
* @Annotation\Hydrator ("Zend\Stdlib\Hydrator\ObjectProperty")
*/
class User
{
VAT
* (@Annotation\Exclude ()
*/
public $id;

/o k
* @Annotation\Filter ({"name":"StringTrim"})
* @Annotation\Validator ({"name":"StringLength", "options":{"min":1, "max":25}})

* @Annotation\Validator ({"name":"Regex", "options":{"pattern":"/"[a-zA-Z] [a-zA-Z20-9 —]{0,24}S/"
* @Annotation\Attributes ({"type":"text"})

238 Chapter 55. Form Quick Start

20

21

22

23

24

25

26

27

28

Zend Framework 2 Documentation, Release 2.0.0

* @Annotation\Options ({"label":"Username:"})
*/
public Susername;
VAT
* @Annotation\Type ("Zend\Form\Element \Email")
* @Annotation\Options ({"label":"Your email address:"})
*/

public Semail;

}

The above will hint to the annotation build to create a form with name ‘“user”, which uses the hydrator
Zend\Stdlib\Hydrator\ObjectProperty. That form will have two elements, “username” and ‘“email”.
The “username” element will have an associated input that has a StringTrim filter, and two validators: a
StringLength validator indicating the username is between 1 and 25 characters, and a Regex validator assert-
ing it follows a specific accepted pattern. The form element itself will have an attribute “type” with value “text” (a text
element), and a label “Username:”. The “email” element will be of type Zend\Form\Element\Email, and have
the label “Your email address:”.

To use the above, we need Zend\Form\Annotation\AnnotationBuilder:

use Zend\Form\Annotation\AnnotationBuilder;

-~ = new AnnotationBuilder () ;
= Sbuilder->createForm(’User’);

At this point, you have a form with the appropriate hydrator attached, an input filter with the appropriate inputs, and
all elements.

Note: You’re not done

In all likelihood, you’ll need to add some more elements to the form you construct. For example, you’ll want a submit
button, and likely a CSRF-protection element. We recommend creating a fieldset with common elements such as these
that you can then attach to the form you build via annotations.

239

Zend Framework 2 Documentation, Release 2.0.0

240 Chapter 55. Form Quick Start

CHAPTER
FIFTYSIX

FORM COLLECTIONS

Often, fieldsets or elements in your forms will correspond to other domain objects. In some cases, they may correspond
to collections of domain objects. In this latter case, in terms of user interfaces, you may want to add items dynamically
in the user interface — a great example is adding tasks to a task list.

This document is intended to demonstrate these features. To do so, we first need to define some domain objects that
we’ll be using.

namespace Application\Entity;

class Product
{
J ok k
* @var string
*/
protected Sname;

VAT
* @var int
\x/
protected Sprice;

/o k
* @var Brand
*x/

protected S

J ok k
* @var array
*/
protected Scategories;

VAT
* @param string $name
* @return Product

\x/
public function setName (Sname)
{
Sthis—->name = S$Sname;
return Sthis;
}
J ok k
* @return string
*/

241

Zend Framework 2 Documentation, Release 2.0.0

public function getName ()

{

return Sthis->name;

J %k
* @param int Sprice
* @return Product
\x/
public function setPrice(Sprice)
{
Sthis->price =

= S$price;
return Sthis;

J ok k
* @return int
\ %/

public function getPrice ()
{

return Sthis->price;

J x*

* @param Brand Sbrand
* @return Product

*/

public function setBrand(Brand S$brand)
{

Sthis->brand = S$brand;
return Sthis;

/o k
* @return Brand
\x/

public function getBrand()
{

return S$this->brand;

J ok k

* @param array Scategories
* @return Product

\ %/

public function setCategories (array Scategories)

{

Sthis->categories = Scategories;

return Sthis;

VAT

* @return array
\ %/

public function getCategories|()

{

return Sthis->categories;

242

Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

class Brand

J %k
* @var string
\ %/
protected Sname;

/o k
* @var string
\x/

protected Surl;

J %k
* @param string Sname
* @return Brand

*/

public function setName (S$Sname)

{
Sthis—->name = S$name;
return Sthis;

VAT
* @return string
\x/
public function getName ()

{

return S$this->name;

J %k
* @param string Surl
* @return Brand
\x/
public function setUrl (Surl)
{
Sthis->url = Surl;
return Sthis;

/ x*

* @return string

*x/
public function getUrl ()
{

return Sthis->url;

class Category

J ok k
* @var string
*/

protected S$Sname;

243

Zend Framework 2 Documentation, Release 2.0.0

J x*
* @param string Sname
* @return Category
\x/
public function setName (Sname)
{
Sthis—->name = Sname;
return Sthis;

VAT
* @return string
\ %/
public function getName ()

{

return Sthis->name;

As you can see, this is really simple code. A Product has two scalar properties (name and price), a OneToOne
relationship (one product has one brand), and a OneToMany relationship (one product has many categories).

56.1 Creating Fieldsets

The first step is to create three fieldsets. Each fieldset will contain all the fields and relationships for a specific entity.
Here is the Brand fieldset:

namespace Application\Form;

use Application\Entity\Brand;

use Zend\Form\Fieldset;

use Zend\InputFilter\InputFilterProviderInterface;

use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class BrandFieldset extends Fieldset implements InputFilterProviderInterface
{
public function __ _construct ()
{
parent::_ construct ("brand’);
Sthis->setHydrator (new ClassMethodsHydrator (false))
—>setObject (new Brand());

Sthis—->setLabel ('Brand’);

Sthis—>add (array (
"name’ => 'name’,
"options’ => array (
"label’ => ’"Name of the brand’
)I
"attributes’ => array (
"required’ => ’required’

)) i

Sthis->add (array (
"name’ => ’'url’,

244 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

"type’ => ’Zend\Form\Element\Url’,
"options’ => array (

"label’ => "Website of the brand’
)I
"attributes’ => array(

"required’ => ’required’
)
)) i
}
VAT
* @return array
*x/

public function getInputFilterSpecification()
{
return array (
"name’ => array (
"required’ => true,

}

We can discover some new things here. As you can see, the fieldset calls the method setHydrator (), giving it a
ClassMethods hydrator, and the setObject () method, giving it an empty instance of a concrete Brand object.

When the data will be validated, the Form will automatically iterate through all the field sets it contains, and automat-
ically populate the sub-objects, in order to return a complete entity.

Also notice that the Url element has a type of Zend\Form\Element\Url. This information will be used to
validate the input field. You don’t need to manually add filters or validators for this input as that element provides a
reasonable input specification.

Finally, get InputSpecification () gives the specification for the remaining input (‘“name”), indicating that
this input is required. Note that required in the array “attributes” (when elements are added) is only meant to add the
“required” attribute to the form markup (and therefore has semantic meaning only).

Here is the Category fieldset:

namespace Application\Form;

use Application\Entity\Category;

use Zend\Form\Fieldset;

use Zend\InputFilter\InputFilterProviderInterface;

use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CategoryFieldset extends Fieldset implements InputFilterProviderInterface
{
public function __ construct ()
{
parent::__construct (' category’);
Sthis->setHydrator (new ClassMethodsHydrator (false))
->setObject (new Category());

Sthis—->setLabel (' Category’);
Sthis->add (array (

"name’ => ’"name’,
"options’ => array (

56.1. Creating Fieldsets 245

Zend Framework 2 Documentation, Release 2.0.0

"label’ => ’"Name of the category’
)
"attributes’ => array(

"required’ => ’required’

J %k

* @return array

\ %/
public function getInputFilterSpecification()
{

return array (
"name’ => array (
"required’ => true,

Nothing new here.
And finally the Product fieldset:

namespace Application\Form;

use Application\Entity\Product;

use Zend\Form\Fieldset;

use Zend\InputFilter\InputFilterProviderInterface;

use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class ProductFieldset extends Fieldset implements InputFilterProviderInterface

{
public function __ construct ()

{

parent::__construct ('product’);
Sthis->setHydrator (new ClassMethodsHydrator (false))
—->setObject (new Product ());

Sthis->add (array (
"name’ => ’name’,
"options’ => array (
"label’ => ’"Name of the product’
)l
"attributes’ => array(
"required’ => "required’

)) i

Sthis->add (array (
"name’ => ’'price’,
"options’ => array(
"label’” => ’'Price of the product’
)y
"attributes’ => array(
"required’ => 'required’

246 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

Sthis—->add (array (
"type’ => ’Application\Form\BrandFieldset’,
"name’ => ’brand’,
"options’ => array (
"label’ => ’"Brand of the product’

)) i

Sthis->add (array (

"type’ => ’Zend\Form\Element\Collection’,

"name’ => ’'categories’,

"options’ => array (
"label’ => ’'Please choose categories for this product’,
"count’ => 2,
"should_create_template’ => true,
"allow_add’ => true,
"target_element’ => array (

"type’ => ’Application\Form\CategoryFieldset’

/o k
* Should return an array specification compatible with
* {@link Zend\InputFilter\Factory::createlnputFilter()}.
*

* @return array
*x/
public function getInputFilterSpecification()
{
return array (
"name’ => array (
"required’ => true,
)I
"price’ => array (
"required’ => true,
"validators’ => array (
array (
"name’ => ’'Float’

}

We have a lot of new things here!

First, notice how the brand element is added: we specify it to be of type Application\Form\BrandFieldset.
This is how you handle a OneToOne relationship. When the form is validated, the BrandFieldset will first be
populated, and will return a Brand entity (as we have specified a ClassMethods hydrator, and bound the fieldset
to a Brand entity using the setObject () method). This Brand entity will then be used to populate the Product
entity by calling the setBrand () method.

The next element shows you how to handle OneToMany relationship. The type is
Zend\Form\Element\Collection, which is a specialized element to handle such cases. As you can
see, the name of the element (“‘categories”) perfectly matches the name of the property in the Product entity.

56.1. Creating Fieldsets 247

Zend Framework 2 Documentation, Release 2.0.0

This element has a few interesting options:

e count: this is how many times the element (in this case a category) has to be rendered. We’ve set it to two in
this examples.

e should_create_template: if set to t rue, it will generate a template markup in a element, in
order to simplify adding new element on the fly (we will speak about this one later).

* allow_add: if setto t rue (which is the default), dynamically added elements will be retrieved and validated;
otherwise, they will be completely ignored. This, of course, depends on what you want to do.

* target_element: this is either an element or, as this is the case in this example, an array that describes the
element or fieldset that will be used in the collection. In this case, the target_element is a Category
fieldset.

56.2 The Form Element

So far, so good. We now have our field sets in place. But those are field sets, not forms. And only Form instances can
be validated. So here is the form :

namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form

{

public function __ construct ()

{

parent::_construct (' create_product’);

Sthis->setAttribute ('method’, ’post’)
—->setHydrator (new ClassMethodsHydrator (false))
—>setInputFilter (new InputFilter());

Sthis->add (array (
"type’ => ’Application\Form\ProductFieldset’,

"options’ => array (
"use_as_base_fieldset’ => true
)
)) i
Sthis->add (array (
"type’ => ’Zend\Form\Element\Csrf’,
"name’ => ’csrf’

)) i

Sthis->add (array (
"name’ => ’submit’,
"attributes’ => array(
"type’ => ’submit’

248 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

CreateForm is quite simple, as it only defines a Product fieldset, as well as some other useful fields (CSRF for
security, and a Submit button).

Notice the use_base_fieldset option. This option is here to say to the form: “hey, the object I bind to you is, in
fact, bound to the fieldset that is the base fieldset.” This will be to true most of the times.

What’s cool with this approach is that each entity can have its own Fieldset and can be reused. You describe the
elements, the filters, and validators for each entity only once, and the concrete Form instance will only compose those
fieldsets. You no longer have to add the “username” input to every form that deals with users!

56.3 The Controller

Now, let’s create the action in the controller:

VS

* @return array

\x/
public function indexAction()
{
Sform = new CreateProduct () ;

broduct = new Product () ;
Sform->bind ($product) ;

if (Sthis->request->isPost()) {
Sform->setData ($this->request->getPost ());

if (Sform->isvalid()) {
var_dump (Sproduct) ;

return array (
"form’ => Sform
)i
}

This is super easy. Nothing to do in the controllers. All the magic is done behind the scene.

56.4 The View

And finally, the view:

<?php
Sform->setAttribute (’action’, S$this->url (’home’))
->prepare () ;

echo $this—>form()->openTag($form);

Sproduct = S$form->get (' product’);

echo $this->formRow (Sproduct->get (' name’));
echo $this->formRow (Sproduct->get ('price’));

echo $this->formCollection ($product->get (' categories’));

$brand = Sproduct->get ('brand’);

56.3. The Controller 249

Zend Framework 2 Documentation, Release 2.0.0

echo $this->formRow (Sbrand->get (' name’));
echo $this->formRow (Sbrand->get ("url’));

echo $this->formHidden (Sform->get (' csrf’));
echo $this->formElement ($form->get (/ submit’));

echo $this->form()->closeTag();

A few new things here :

¢ the prepare () method. You msut call it prior to rendering anything in the view (this function is only meant
to be called in views, not in controllers).

¢ the FormRow helper renders a label (if present), the input itself, and errors.

* the FormCollection helper will iterate through every element in the collection, and render every element
with the FormRow helper (you may specify an alternate helper if desired, using the setElementHelper ()
method on that FormCollection helper instance). If you need more control about the way you render your
forms, you can iterate through the elements in the collection, and render them manually one by one.

Here is the result:

As you can see, collections are wrapped inside a fieldset, and every item in the collection is itself wrapped in the field-
set. In fact, the Collect ion element uses label for each item in the collection, while the label of the Collection
element itself is used as the legend of the fieldset. If you don’t want the fieldset created (just the elements within it),
just add a boolean false as the second parameter of the the FormCollection view helper.

If you validate, all elements will show errors (this is normal, as we’ve marked them as required). As soon as the form
is valid, this is what we get :

As you can see, the bound object is completely filled, not with arrays, but with objects!

But that’s not all.

56.5 Adding New Elements Dynamically

Remember the should_create_template? We are going to use it now.

Often, forms are not completely static. In our case, let’s say that we don’t want only two categories, but we want the
user to be able to add other ones at runtime. Zend\Form has this capability. First, let’s see what it generates when
we ask it to create a template:

As you can see, the collection generates two fieldsets (the two categories) plus a span with a data-template at-
tribute that contains the full HTML code to copy to create a new element in the collection. Of course ___index__ (this
is the placeholder generated) has to be changed to a valid value. Currently, we have 2 elements (categories[0]
and categories([1],so__index__ has to be changed to 2.

If you want, this placeholder (__index___is the default) can be changed using the template_placeholder
option key:

Sthis->add (array (

"type’ => ’Zend\Form\Element\Collection’,

"name’ => 'categories’,

"options’ => array (
"label’ => ’'Please choose categories for this product’,
"count’ => 2,
"should_create_template’ => true,
"template_placeholder’ => ’'__placeholder_ ',

250 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

"target_element’ => array (
"type’ => "Application\Form\CategoryFieldset’

)) i

First, let’s add a small button “Add new category” anywhere in the form:

<button onclick="return add_category()">Add a new category</button>

The add_category function is fairly simple:

First, count the number of elements we already have. # Get the template from the span‘s data-template
attribute. # Change the placeholder to a valid index. # Add the element to the DOM.

Here is the code:

<script>
function add_category () {
var currentCount = $('form > fieldset > fieldset’) .length;
var template = $('form > fieldset > span’).data(’template’);

template = template.replace(’__index__ ', currentCount);
$('form > fieldset’) .append (template);

return false;

}

</script>

(Note: the above example assumes $ () is defined, and equivalent to jQuery’s $ () function, Dojo’s dojo.query,
etc.)

One small remark about the template.replace: the example uses currentCount and not currentCount
+ 1, as the indices are zero-based (so, if we have two elements in the collection, the third one will have the index 2).

Now, if we validate the form, it will automatically take into account this new element by validating it, filtering it and
retrieving it:

Of course, if you don’t want to allow adding elements in a collection, you must to set the option allow_add to
““false. This way, even if new elements are added, they won’t be validated and, hence, not added to the entity. Here is
how you do it (and, as we don’t want elements to be added, we don’t need the data template, either):

$this->add (array (

"type’ => ’Zend\Form\Element\Collection’,

"name’ => ’'categories’,

"options’ => array(
"label’ => ’'Please choose categories for this product’,
"count’ => 2,
"should_create_template’ => false,
"allow_add’ => false,
"target_element’ => array (

"type’ => "Application\Form\CategoryFieldset’

)) i

There are some limitations of this capability:

* Although you can add new elements and remove them, you CANNOT remove more elements in a collection
than the initial count (for instance, if your code specifies count == 2, you will be able to add a third one

56.5. Adding New Elements Dynamically 251

Zend Framework 2 Documentation, Release 2.0.0

and remove it, but you won’t be able to remove any others. If the initial count is 2, you must have at least two
elements.

* Dynamically added elements have to be added at the end of the collection. They can be added anywhere (these
elements will still be validated and inserted into the entity), but if the validation fails, this newly added element
will be automatically be replaced at the end of the collection.

56.6 Validation groups for fieldsets and collection

Validation groups allow you to validate a subset of fields.

As an example, although the Brand entity has a URL property, we don’t want to user to specify it in the creation form
(but may wish to later in the “Edit Product” form, for instance). Let’s update the view to remove the URL input:

<?php

Sform->setAttribute ('action’, $this->url(’home’))
—>prepare();

echo $this->form()->openTag(Sform);

Sproduct = S$form->get ('product’);

echo $this->formRow (Sproduct->get (' name’));
echo $this->formRow (Sproduct->get ('price’));

echo $this->formCollection ($product->get (' categories’));
$Sbrand = S$product->get ('brand’);

echo $this->formRow (Sbrand->get (' name’));

echo $this->formHidden ($form->get (‘csrf’));

echo S$this->formElement (Sform->get (/ submit’));
echo $this->form()->closeTag();

This is what we get:

The URL input has disappeared, but even if we fill every input, the form won’t validate. In fact, this is normal. We
specified in the input filter that the URL is a required field, so if the form does not have it, it won’t validate, even
though we didn’t add it to the view!

Of course, you could create a BrandFieldsetWithoutURL fieldset, but of course this is not recommended, as a
lot of code will be duplicated.

The solution: validation groups. A validation group is specified in a Form object (hence, in our case, in the
CreateProduct form) by giving an array of all the elements we want to validate. Our CreateForm now looks
like this:

namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form

{

public function __ construct ()

{

252 Chapter 56. Form Collections

Zend Framework 2 Documentation, Release 2.0.0

parent::_construct (' create_product’);

Sthis->setAttribute ('method’, ’post’)
—>setHydrator (new ClassMethodsHydrator())
—>setInputFilter (new InputFilter());

Sthis->add (array (
"type’ => "Application\Form\ProductFieldset’,
"options’ => array (
"use_as_base_fieldset’ => true

)) i

Sthis->add (array (
"type’ => ’Zend\Form\Element\Csrf’,
"name’ => ’'csrf’

)) i

Sthis->add (array (
"name’ => ’submit’,
"attributes’ => array (
"type’ => ’submit’

)) i

Sthis->setValidationGroup (array (
"csrf’,
"product’ => array (
"name’,
"price’,
"brand’ => array (
"name’
) ’
"categories’ => array (
"name’

Of course, don’t forget to add the CSRF element, as we want it to be validated too (but notice that I didn’t write the
submit element, as we don’t care about it). You can recursively select the elements you want.

There is one simple limitation currently: validation groups for collections are set on a per-collection basis, not element
in a collection basis. This means you cannot say, “validate the name input for the first element of the categories
collection, but don’t validate it for the second one.” But, honestly, this is really an edge-case.

Now, the form validates (and the URL is set to null as we didn’t specify it).

56.6. Validation groups for fieldsets and collection 253

Zend Framework 2 Documentation, Release 2.0.0

254 Chapter 56. Form Collections

CHAPTER
FIFTYSEVEN

FORM ELEMENTS

57.1 Introduction

A set of specialized elements are provided for accomplishing application-centric tasks. These include several HTML5
input elements with matching server-side validators, the Csr f element (to prevent Cross Site Request Forgery attacks),
and the Captcha element (to display and validate CAPTCHAY).

A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. See the
Zend\Form Quick Start for more information.

57.2 Element Base Class

Zend\Form\Element is a base class for all specialized elements and Zend\\Form\\Fieldset.

57.2.1 Basic Usage
At the bare minimum, each element or fieldset requires a name. You will also typically provide some attributes to hint
to the view layer how it might render the item.

use Zend\Form\Element;
use Zend\Form\Form;

Susername = new Element\Text ('username’);

Susername
->setLabel (' Username’) ;
—->setAttributes (array (
"class’ => ’username’,
"size’ => 30",

)) i

ord = new Element\Password(’password’);
Spassword

->setLabel (' Password’) ;

->setAttributes (array (
"size’ => "30',

)) i

Sform = new Form('my-form’);

Sform

255

21

22

Zend Framework 2 Documentation, Release 2.0.0

—>add (Susername)
—->add (Spassw

ord) ;

57.2.2 Public Methods

setName (string $name)
Set the name for this element.

getName ()
Return the name for this element.

Return type string

setLabel (string $label)
Set the label content for this element.

getLabel ()
Return the label content for this element.

Return type string

setLabelAttributes (array $labelAttributes)
Set the attributes to use with the label.

getLabelAttributes ()
Return the attributes to use with the label.

Return type array

setOptions (array $options)
Set options for an element. Accepted options are: "label" and "label_attributes", which call
setLabel and setLabelAttributes, respectively.

setAttribute (string $key, mixed $value)
Set a single element attribute.

getAttribute (string $key)
Retrieve a single element attribute.

Return type mixed

hasAttribute (string $key)
Check if a specific attribute exists for this element.

Return type boolean

setAttributes (arraylTraversable $arrayOrTraversable)
Set many attributes at once. Implementation will decide if this will overwrite or merge.

getAttributes ()
Retrieve all attributes at once.

Return type arraylTraversable

clearAttributes ()
Clear all attributes for this element.

setMessages (arraylTraversable $messages)
Set a list of messages to report when validation fails.

getMessages ()
Returns a list of validation failure messages, if any.

256 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

Return type array|Traversable

57.3 Standard Elements

57.3.1 Captcha Element

Zend\Form\Element\Captcha can be used with forms where authenticated users are not necessary, but you
want to prevent spam submissions. It is pairs with one of the Zend/Form/View/Helper/Captcha/* view
helpers that matches the type of CAPTCHA adapter in use.

Basic Usage
A CAPTCHA adapter must be attached in order for validation to be included in the element’s input filter specification.
See the section on Zend CAPTCHA Adapters for more information on what adapters are available.

use Zend\Captcha;
use Zend\Form\Element;
use Zend\Form\Form;

Scaptcha = new Element\Captcha (’captcha’);
Scaptcha
->setCaptcha (new Captcha\Dumb ())
—->setLabel (' Please verify you are human’);

Sform = new Form(’'my-form’);

Sform->add (Scaptcha);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

setCaptcha (arraylZend\Captcha\AdapterInterface $captcha)

Set the CAPTCHA adapter for this element. If S$captcha is an array,
Zend\Captcha\Factory: :factory () will be run to create the adapter from the array configura-
tion.

getCaptcha ()
Return the CAPTCHA adapter for this element.

Return type Zend\Captcha\AdapterInterface

getInputSpecification ()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a CAPTCHA
validator.

Return type array

57.3.2 Checkbox Element

Zend\Form\Element \Checkbox is meant to be paired with the Zend/Form/View/Helper/FormCheckbox
for HTML inputs with type checkbox. This element adds an InArray validator to its input filter specification in
order to validate on the server if the checkbox contains either the checked value or the unchecked value.

57.3. Standard Elements 257

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type™" attribute of value "checkbox".

use Zend\Form\Element;
use Zend\Form\Form;

. = new Element\Checkbox (' checkbox’);
—>setLabel (A checkbox’);
->setUseHiddenElement (true) ;
»x—>setCheckedValue ("good") ;
box—->setUncheckedvValue ("bad") ;

OX

form = new Form('my—-form’);
‘m—>add (Schec

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element .

setOptions (array $options)
Set options for an element of type Checkbox. Accepted options, in addition to the inherited options
of Zend\Form\Element <zend.form.element.methods.set-options>‘ , are: "use_hidden_element",
"checked_value" and "unchecked_value" , which call setUseHiddenElement,
setCheckedValue and setUncheckedValue, respectively.

setUseHiddenElement (boolean $useHiddenElement)
If set to true (which is default), the view helper will generate a hidden element that contains the unchecked
value. Therefore, when using custom unchecked value, this option have to be set to true.

useHiddenElement ()
Return if a hidden element is generated.

Return type boolean

setCheckedValue (string $checkedValue)
Set the value to use when the checkbox is checked.

getCheckedValue ()
Return the value used when the checkbox is checked.

Return type string

setUncheckedValue (string $uncheckedValue)
Set the value to use when the checkbox is unchecked. For this to work, you must make sure that
use_hidden_element is set to true.

getUncheckedValue ()
Return the value used when the checkbox is unchecked.

Return type string

getInputSpecification ()
Returns a input filter specification, which includes a Zend\Validator\InArray to validate if the value is
either checked value or unchecked value.

Return type array

258 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

57.3.3 Collection Element

Sometimes, you may want to add input (or a set of inputs) multiple times, either because you don’t want to duplicate
code, or because you does not know in advance how many elements you need (in the case of elements dynamically
added to a form using JavaScript, for instance).

Zend\Form\Element\Collection is meantto be paired with the Zend\Form\View\Helper\FormCollection.
Basic Usage

use Zend\Form\Element;
use Zend\Form\Form;

; = new Element\Collection(’collection’);
->setLabel (" Colors’);

rs—>setCount (2) ;

ors—>setTargetElement (new Element\Color());
colors—>setShouldCreateTemplate (true);

Sform = new Form('my-form’);
Sform->add ($Scolors) ;

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element .

setOptions (array $options)
Set options for an element of type Collection. Accepted options, in addition to the inherited op-
tions of Zend\Form\Element <zend.form.element.methods.set-options>‘ , are: "target_element",
"count", "allow_add", "should_create_template" and "template_placeholder"
which call setTargetElement, setCount, setAllowAdd, setShouldCreateTemplate and
setTemplatePlaceholder, respectively.

setCount ($count)
Defines how many times the target element will be rendered by the
Zend/Form/View/Helper/FormCollection view helper.

getCount ()
Return the number of times the target element will be initially rendered by the
Zend/Form/View/Helper/FormCollection view helper.

Return type integer

setTargetElement ($elementOrFieldset)
This function either takes an Zend/Form/ElementInterface, Zend/Form/FieldsetInterface
instance or an array to pass to the form factory. When the Collection element will be validated, the input filter
will be retrieved from this target element and be used to validate each element in the collection.

getTargetElement ()
Return the target element used by the collection.

Return type ElementInterface | null

setAllowadd ($allowAdd)
If allowAdd is set to true (which is the default), new elements added dynamically in the form (using JavaScript,
for instance) will also be validated and retrieved.

57.3. Standard Elements 259

e N o

Zend Framework 2 Documentation, Release 2.0.0

allowAdd ()
Return if new elements can by dynamically added in the collection.

Return type boolean

setAllowRemove ($allowRemove)
If allowRemove is set to true (which is the default), new elements added dynamically in the form (using
JavaScript, for instance) will be allowed to be removed.

allowRemove ()
Return if new elements can by dynamically added in the collection.

Return type boolean

setShouldCreateTemplate ($shouldCreateTemplate)
If shouldCreateTemplate is set to true (defaults to false), a element will be generated by the
Zend/Form/View/Helper/FormCollection view helper. This non-semantic span element contains
a single data-template HTMLS attribute whose value is the whole HTML to copy to create a new element in the
form. The template is indexed using the templatePlaceholder value.

shouldCreateTemplate ()
Return if a template should be created.

Return type boolean

setTemplatePlaceholder ($templatePlaceholder)
Set the template placeholder (defaults to __index__) used to index element in the template.

getTemplatePlaceholder ()
Returns the template placeholder used to index element in the template.

Return type string

57.3.4 Csrf Element

Zend\Form\Element \Csrf pairs with the Zend/Form/View/Helper/FormHidden to provide protection
from CSRF attacks on forms, ensuring the data is submitted by the user session that generated the form and not by a
rogue script. Protection is achieved by adding a hash element to a form and verifying it when the form is submitted.

Basic Usage

This element automatically adds a "type™" attribute of value "hidden™".

use Zend\Form\Element;
use Zend\Form\Form;

Scsrf = new Element\Csrf ('csrf’);
Sform = new Form(’my—form’);

Sform->add ($csrf);

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification ()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter and a
Zend\Validator\Csrf to validate the CSRF value.

260 Chapter 57. Form Elements

Zend Framework 2 Documentation, Release 2.0.0

Return type array

57.3.5 Email Element

Zend\Form\Element\Email is meant to be paired with the Zend/Form/View/Helper/FormEmail for
HTMLS inputs with type email. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS valid email address on the server.

Basic Usage

This element automatically adds a "type™" attribute of value "email™".

use Zend\Form\Element;
use Zend\Form\Form;

Sform = new Form(’my-form’);

// Single email address

Semall = new Element\Email ('email’);
Semail->setLabel ('Email Address’)
Sform—>add ($Semail) ;

// Comma separated list of emails
ails = new Element\Email (‘emails’);

Semails
->setLabel (Email Addresses’)
->setAttribute (‘multiple’, true);
Sform->add ($Semails);

Note: Note: the multiple attribute should be set prior to calling Zend\Form::prepare(). Otherwise, the default
input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification/()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a validator
based on the multiple attribute.

If the multiple attribute is unset or false, a Zend\Validator\Regex validator will be added to validate
a single email address.

Ifthemultiple attribute is true, a Zend\Validator\Explode validator will be added to ensure the input
string value is split by commas before validating each email address with Zend\Validator\Regex.

Return type array

57.3.6 Hidden Element

Zend\Form\Element\Hidden represents a hidden form input. It can be wused with the
Zend/Form/View/Helper/FormHidden view helper.

Zend\Form\Element \Hidden extends from Zend\Form\Element.

57.3. Standard Elements 261

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#e-mail-state-(type=email)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#valid-e-mail-address

® 9 o U R W D =

L Y N

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type™" attribute of value "hidden™".

use Zend\Form\Element;
use Zend\Form\Form;

Shidden = new Element\Hidden ('my-hidden’);
Shidden—->setValue (' foo’);

Sform = new Form('my-form’);
Sform->add ($hidden) ;

57.3.7 Url Element

Zend\Form\Element\Url is meant to be paired with the Zend/Form/View/Helper/FormUrl for HTML5
inputs with type url. This element adds filters and a Zend\Validator\Uri validator to it’s input filter specification
for validating HTMLS URL input values on the server.

Basic Usage

This element automatically adds a "t ype™" attribute of value "url".

use Zend\Form\Element;
use Zend\Form\Form;

surl = new Element\Url (' webpage-url’);
Surl->setLabel (' Webpage URL’);

Sform = new Form(’my—-form’);
Sform->add (Surl) ;

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification()
Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a
Zend\Validator\Uri to validate the URI string.

Return type array

57.4 HTML5 Elements

57.4.1 Color Element

Zend\Form\Element\Color is meant to be paired with the Zend/Form/View/Helper/FormColor for
HTMLS inputs with type color. This element adds filters and a Regex validator to it’s input filter specification in
order to validate a HTMLS5 valid simple color value on the server.

262 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#color-state-(type=color)
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-simple-color

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type™" attribute of value "color™".

use Zend\Form\Element;
use Zend\Form\Form;

Scolor = new Element\Color (’color’);
Scolor->setLabel (' Background color’);

Sform = new Form('my-form’);
Sform->add ($Scolor) ;
Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification ()

Returns a input filter specification, which includes Zend\Filter\StringTrim and
Zend\Filter\StringToLower filters, and a Zend\Validator\Regex to validate the RGB
hex format.

Return type array

57.4.2 Date Element

Zend\Form\Element\Date is meant to be paired with the Zend/Form/View/Helper/FormDate for
HTMLS inputs with type date. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS5 date input values on the server.

Basic Usage

This element automatically adds a "t ype™" attribute of value "date™".

use Zend\Form\Element;
use Zend\Form\Form;

Sdate = new Element\Date ('’ appointment-date’);
Sdate
->setLabel (' Appointment Date’)
—->setAttributes (array (
"min’ => ’2012-01-01",
"max’ => ’'2020-01-01",
"step’ => '1’', // days; default step interval is 1 day
))i

Sform = new Form(’my-form’);
Sform->add ($Sdate) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

57.4. HTML5 Elements 263

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-state-(type=date)

Zend Framework 2 Documentation, Release 2.0.0

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemeni\DateTime.

getInputSpecification()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Elemeni\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of days (default is 1 day).

Return type array

57.4.3 DateTime Element

Zend\Form\Element \DateTime is meant to be paired with the Zend/Form/View/Helper/FormDateTime
for HTMLS inputs with type datetime. This element adds filters and validators to it’s input filter specification in order
to validate HTMLS5 datetime input values on the server.

Basic Usage

This element automatically adds a "type™" attribute of value "datet ime".

use Zend\Form\Element;
use Zend\Form\Form;

SdateTime = new Element\DateTime (’/ appointment-date-time’);
SdateTime

->setLabel (' Appointment Date/Time’)

->setAttributes (array (
min’ => ’2010-01-01T00:00:002",

"max’ => ’2020-01-01T00:00:00z",

"step’ => '1', // minutes; default step interval is 1 min
)) i

’

Sform = new Form('my-form’);
Sform->add ($SdateTime) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.

If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the date
value is greater than the minimum value.

If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure
the date value is less than the maximum value.

264 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-and-time-state-(type=datetime)

Zend Framework 2 Documentation, Release 2.0.0

If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\DateStep validator will be added to ensure the date value is within a certain interval of
minutes (default is 1 minute).

Return type array

57.4.4 DateTimeLocal Element

Zend\Form\Element\DateTimeLocal is meant to be paired with the
Zend/Form/View/Helper/FormDateTimeLocal for HTMLS inputs with type datetime-local. This el-
ement adds filters and validators to it’s input filter specification in order to validate HTMLS5 a local datetime input
values on the server.

Basic Usage

This element automatically adds a "type™" attribute of value "datetime-local".

use Zend\Form\Element;
use Zend\Form\Form;

SdateTimeLocal = new Element\DateTimeLocal (' appointment-date-time’);
$dateTimeLocal
—>setLabel (' Appointment Date’)
->setAttributes (array (
"min’” => ’'2010-01-01T00:00:00",
"max’ => ’2020-01-01T00:00:00",

"step’ => '1', // minutes; default step interval is 1 min
)) i
Sform = new Form(’my-form’);
Sform—>add ($dateTimeLocal) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemeni\DateTime.

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Elemeni\DateTime for more information.

Return type array

57.4.5 Month Element

Zend\Form\Element\Month is meant to be paired with the Zend/Form/View/Helper/FormMonth for
HTMLS inputs with type month. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS month input values on the server.

57.4. HTML5 Elements 265

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#local-date-and-time-state-(type=datetime-local)
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#month-state-(type=month)

Zend Framework 2 Documentation, Release 2.0.0

Basic Usage

This element automatically adds a "type™" attribute of value "month™".

use Zend\Form\Element;
use Zend\Form\Form;

Smonth = new Element\Month (’month’);
Smonth
->setLabel (" Month’)
->setAttributes (array (
"min’ => ’2012-01",
"max’ => ’2020-01",
"step’ => '1', // months; default step interval is 1 month
))i

Sform = new Form('my-form’);
Sform->add (Smonth) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemenf\DateTime.

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Elemeni\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of months (default is 1 month).

Return type array

57.4.6 Number Element

Zend\Form\Element \Number is meant to be paired with the Zend/Form/View/Helper/FormNumber for
HTMLS inputs with type number. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS5 number input values on the server.

Basic Usage

This element automatically adds a "t ype™" attribute of value "number".

use Zend\Form\Element;
use Zend\Form\Form;

Snumber = new Element\Number (' quantity’);
Snumber
—->setLabel (' Quantity’)
—->setAttributes (array (
"min’ = '0',

266 Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#number-state-(type=number)

Zend Framework 2 Documentation, Release 2.0.0

"max’ => '10’,
"step’ => '1', // default step interval is 1
)) i

Sform = new Form('my-form’);
Sform->add (Snumber) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Element.

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.

If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the number
value is greater than the minimum value. The min value should be a valid floating point number.

If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure
the number value is less than the maximum value. The max value should be a valid floating point number.

If the step attribute is set to “any”, step validations will be skipped. Otherwise, aa Zend\Validator\Step
validator will be added to ensure the number value is within a certain interval (default is 1). The step value
should be either “any” or a valid floating point number.

Return type array

57.4.7 Range Element

Zend\Form\Element \Range is meant to be paired with the Zend/Form/View/Helper/FormRange for
HTMLS inputs with type range. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS5 range values on the server.

Basic Usage

This element automatically adds a "t ype" attribute of value "range".

use Zend\Form\Element;
use Zend\Form\Form;

Srange = new Element\Range (' range’);

Srange

->setLabel (Minimum and Maximum Amount’)

—->setAttributes (array (
‘min’ => '0’, // default minimum is 0
"max’ => ’100’', // default maximum is 100
"step’ => '1', // default interval is 1

)) i

Sform = new Form(’'my-form’);
$form->add (Srange) ;

57.4. HTML5 Elements 267

http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number
http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#range-state-(type=range)

Zend Framework 2 Documentation, Release 2.0.0

Note:

Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the

default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemenf\Number .

getInputSpecification() ‘"

Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Element\Number for more information.

The Range element differs from Zend\Form\Element \Number in that the
Zend\Validator\GreaterThan and Zend\Validator\LessThan validators will always be
present. The default minimum is 1, and the default maximum is 100.

Return type array

57.4.8 Time Element

Zend\Form\Element\Time is meant to be paired with the Zend/Form/View/Helper/FormTime for
HTMLS inputs with type time. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS5 time input values on the server.

Basic Usage

This element automatically adds a "type™" attribute of value "time".

use Zend\Form\Element;
use Zend\Form\Form;

Stime = new Element\Month (’time’);

Stime

Sfo

->setLabel (' Time’)
->setAttributes (array (

"min’” => ’00:00:00",
"max’ => ’23:59:59",
"step’ => '60’, // seconds; default step interval is 60 seconds

)) i

rm = new Form('my-form’);

Sform—>add (Stime) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemeni\DateTime.

268

Chapter 57. Form Elements

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#time-state-(type=time)

Zend Framework 2 Documentation, Release 2.0.0

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Elemeni\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of seconds (default is 60 seconds).

Return type array

57.4.9 Week Element

Zend\Form\Element \Week is meant to be paired with the Zend/Form/View/Helper/FormWeek for
HTMLS inputs with type week. This element adds filters and validators to it’s input filter specification in order to
validate HTMLS5 week input values on the server.

Basic Usage

This element automatically adds a "t ype™" attribute of value "week".

use Zend\Form\Element;
use Zend\Form\Form;

Sweek = new Element\Week (' week’);
ek
->setLabel (' Week’)
—->setAttributes (array (
"min’ => ’2012-wW01’,
"max’ => '2020-W01’,
"step’ => '1', // weeks; default step interval is 1 week

)) i

Sform = new Form(’my—-form’);
Sform->add (Sweek) ;

Note: Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare(). Otherwise, the
default input specification for the element may not contain the correct validation rules.

Public Methods

The following methods are in addition to the inherited methods of Zend\Form\Elemenf\DateTime.

getInputSpecification ()
Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appro-
priate validators based on the values from the min, max, and step attributes. See getInputSpecification in
Zend\Form\Elemeni\DateTime for more information.

One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep val-
idator will expect the step attribute to use an interval of weeks (default is 1 week).

Return type array

57.4. HTML5 Elements 269

http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#week-state-(type=week)

Zend Framework 2 Documentation, Release 2.0.0

270 Chapter 57. Form Elements

21

22

23

24

CHAPTER
FIFTYEIGHT

FORM VIEW HELPERS

58.1 Introduction

Zend Framework comes with an initial set of helper classes related to Forms: e.g., rendering a text input, selection

box, or form labels. You can use helper, or plugin, classes to perform these behaviors for you.

See the section on view helpers for more information.

58.2 Standard Helpers

58.2.1 Form

The Form view helper is used to render a <form> HTML element and its attributes.
Basic usage:

use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...
Sform = new Form();
// ...add elements and input filter to form...

// Set attributes
Sform->setAttribute (‘action’, S$this->url(’contact/process’));
Sform->setAttribute ('method’, ’'post’);

// Prepare the form elements
Sform->prepare () ;

// Render the opening tag
echo S$this->form()->openTag ($form);
// <form action="/contact/process" method="post">

// ...render the form elements...
// Render the closing tag

echo S$this->form()->closeTag();
// </form>

The following public methods are in addition to those inherited from Zend\Form\View\Helpe\AbstractHelper.

271

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

openTag (Forminterface $form = null)
Renders the <form> open tag for the $ form instance.

Return type string

closeTag ()
Renders a </ form> closing tag.

Return type string

58.2.2 FormButton

The FormButton view helper is used to render a <button> HTML element and its attributes.
Basic usage:

use Zend\Form\Element;

Selement = new Element\Button ('my-button’);
Selement—>setLabel ("Reset") ;

// Within your view. ..

J ok k
* Example #1: Render entire button in one shot...
*/
echo Sthis->formButton ($element) ;
// <button name="my-button" type="button">Reset</button>

VEZ:
* Example #2: Render button in 3 steps
*/
// Render the opening tag
echo Sthis->formButton ()->openTag (Selement);

// <button name="my-button" type="button">

echo ’'’ . S$element->getlLabel() . ’'’

~

// Render the closing tag
echo $this->formButton()->closeTag();
// </button>

J ok
* Example #3: Override the element label
*/
echo $this->formButton()->render ($Selement, ’'My Content’);

// <button name="my-button" type="button">My Content</button>

The following public methods are in addition to those inherited from Zend\Form\View\Helper\FormInput.

openTag ($element = null)
Renders the <button> open tag for the $element instance.

Return type string

closeTag ()
Renders a </button> closing tag.

Return type string

272 Chapter 58. Form View Helpers

20

21

22

23

24

25

26

27

28

29

Zend Framework 2 Documentation, Release 2.0.0

render (ElementInterface $element[, $buttonContent = null])
Renders a button’s opening tag, inner content, and closing tag.

Parameters
* $element — The button element.

¢ $buttonContent — (optional) The inner content to render. If null, will default to the
Selement ‘s label.

Return type string

58.2.3 FormCheckbox

The FormCheckbox view helper can be used to render a <input type="checkbox"> HTML form input. It
is meant to work with the Zend\Form\Elemen\Checkbox element, which provides a default input specification for
validating the checkbox values.

FormCheckbox extends from Zend\Form\View\Helper\FormInput. Basic usage:

use Zend\Form\Element;
Selement = new Element\Checkbox ('my-checkbox’) ;
// Within your view...

J ok k
* Example #1: Default options
*/
echo $this->formCheckbox (Selement) ;
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

J ko
* Example #2: Disable hidden element
*/
Selement—>setUseHiddenElement (false) ;
echo $Sthis->formCheckbox (Selement) ;
// <input type="checkbox" name="my-checkbox" value="1">

VS
* Example #3: Change checked/unchecked values
*/
Selement—->setUseHiddenElement (true)
—->setUncheckedValue (' no’)
—->setCheckedValue ('yes’);
echo $Sthis->formCheckbox (Selement) ;
// <input type="hidden" name="my-checkbox" value="no">
// <input type="checkbox" name="my-checkbox" value="yes">

58.2.4 FormElement

The FormElement view helper proxies the rendering to specific form view helpers depending on the type of
the Zend\\Form\\Element that is passed in. For instance, if the passed in element had a type of “text”, the
FormElement helper will retrieve and use the FormText helper to render the element.

Basic usage:

58.2. Standard Helpers 273

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Zend Framework 2 Documentation, Release 2.0.0

use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...

J x*
* Example #1: Render different types of form elements
*/
StextElement = new Element\Text ('my-text’);
ScheckboxElement = new Element\Checkbox ('my—-checkbox’);

echo $Sthis->formElement (StextElement);
// <input type="text" name="my-text" value="">

echo $Sthis->formElement (ScheckboxElement) ;
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

J ok k
* Example #2: Loop through form elements and render them
*/

Sform = new Form();

// ...add elements and input filter to form...

Sform->prepare () ;

// Render the opening tag
echo $this->form()->openTag(Sform);

// ...loop through and render the form elements...
foreach (Sform as Selement) {

echo Sthis->formElement (Selement); // <-— Magic!

echo $this->formElementErrors ($Selement);

// Render the closing tag
echo S$this->form()->closeTag();

58.2.5 FormElementErrors

The FormElementErrors view helper is used to render the validation error messages of an element.

Basic usage:

use Zend\Form\Form;

use Zend\Form\Element;

use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Input;

// Create a form

Sform = new Form();

Selement = new Element\Text ('my-text’);
Sform->add (Selement) ;

// Create a input
Sinput = new Input (‘my-text’);
Sinput->setRequired (true);

274

Chapter 58. Form View Helpers

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

Zend Framework 2 Documentation, Release 2.0.0

SinputFilter = new InputFilter();
SinputFilter->add($input);
$form->setInputFilter ($inputFilter);

// Force a failure
Sform->setData (array()); // Empty data
Sform—->isvalid(); // Not valid

// Within your view...

J ok k
* Example #1: Default options
*/
echo Sthis->formElementErrors (Selement) ;
// Value is required and can't be empty

J ok k
* Example #2: Add attributes to open format
*/
echo $this->formElementErrors (Selement, array(’class’ => ’'help-inline’));
// <ul class="help-inline">Value is required and can't be empty

J ok k
* Example #3: Custom format
*/
echo $Sthis->formElementErrors ()
—->setMessageOpenFormat (’ <div class="help-inline">')
->setMessageSeparatorString (/' </div><div class="help-inline">’)
->setMessageCloseString (/ </div>")
->render (Selement) ;
// <div class="help-inline">Value is required and can't be empty</div>

The following public methods are in addition to those inherited from Zend\Form\View\Helpe\AbstractHelper.

setMessageOpenFormat (string $messageOpenFormat)
Set the formatted string used to open message representation.

Parameters $messageOpenFormat — The formatted string to use to open the messages. Uses
" <ul%s><1i>’ by default. Attributes are inserted here.

getMessageOpenFormat ()
Returns the formatted string used to open message representation.

Return type string

setMessageSeparatorString (string $messageSeparatorString)
Sets the string used to separate messages.

Parameters $messageSeparatorString — The string to use to separate the messages. Uses
"</1i><1i>" by default.

getMessageSeparatorString ()
Returns the string used to separate messages.

Return type string

setMessageCloseString (string $messageCloseString)
Sets the string used to close message representation.

Parameters $messageCloseString — The string to use to close the messages. Uses
"</1i>’ by default.

58.2. Standard Helpers 275

Zend Framework 2 Documentation, Release 2.0.0

getMessageCloseString ()
Returns the string used to close message representation.

Return type string

setAttributes (array Sattributes)
Set the attributes that will go on the message open format.

Parameters $attributes — Key value pairs of attributes.

getAttributes ()
Returns the attributes that will go on the message open format.

Return type array

render (ElementInterface $element[, array $attributes = array()])
Renders validation errors for the provided $element.

Parameters
* $element — The element.

* $attributes — Additional attributes that will go on the message open format. These are
merged with those set via setAttributes ().

Return type string

58.2.6 FormHidden

The FormHidden view helper can be used to render a <input type="hidden"> HTML form input. It is meant
to work with the Zend\Form\Elemeni\Hidden element.

FormHidden extends from Zend\Form\View\Helper\FormInput. Basic usage:

use Zend\Form\Element;

Selement = new Element\Hidden ('my-hidden’);
=ment->setValue (' foo’);

0

// Within your view. ..

echo S$this->formHidden (Selement) ;
// <input type="hidden" name="my-hidden" value="foo">

58.2.7 Formimage

The FormImage view helper can be used to render a <input type="image"> HTML form input. It is meant to
work with the Zend\Form\Elemeni\lmage element.

FormImage extends from Zend\Form\View\Helper\FormInput. Basic usage:

use Zend\Form\Element;

lement = new Element\Image ('my-image’);
Selement->setAttribute (' src’, ’'/img/my-pic.png’);

// Within your view...

echo S$this->formImage (Selement);
// <input type="image" name="my-image" src="/img/my-pic.png">

276 Chapter 58. Form View Helpers

20

21

22

23

24

25

26

27

28

29

30

31

Zend Framework 2 Documentation, Release 2.0.0

58.2.8 Forminput

The FormInput view helper is used to render a <input> HTML form input tag. It acts as a base class for all of the
specifically typed form input helpers (FormText, FormCheckbox, FormSubmit, etc.), and is not suggested for direct
use.

It contains a general map of valid tag attributes and types for attribute filtering. Each subclass of FormInput imple-
ments it’s own specific map of valid tag attributes. The following public methods are in addition to those inherited
from Zend\Form\View\Helper\AbstractHelper.

render (Elementlnterface $element)
Renders the <input> tag for the Selement.

Return type string

58.2.9 FormLabel

The FormLabel view helper is used to render a <label> HTML element and its attributes. If you have a
Zend\\I1l8n\\Translator\\Translator attached, FormLabel will translate the label contents during it’s
rendering.

Basic usage:

use Zend\Form\Element;

Selement = new Element\Text (‘my-text’);
Selement—->setLabel (' Label’)
->setAttribute (' id’, ’'text-id’)
—->setLabelAttributes (array (' class’ => ’'control-label’));

// Within your view...

J ok k
* Example #1: Render label in one shot
*/
echo Sthis->formLabel ($Selement) ;
// <label class="control-label" for="text-id">Label</label>

echo Sthis->formLabel (Selement, S$this->formText (Selement));

// <label class="control-label" for="text-id">Label<input type="text" name="my-text"></label>

echo $this->formLabel ($Selement, S$this->formText (Selement), ’append’);

// <label class="control-label" for="text-id"><input type="text" name="my-text">Label</label>

J ok k
* Example #2: Render label in separate steps
*/

// Render the opening tag

echo $this->formlLabel () ->openTag ($element) ;

// <label class="control-label" for="text-id">

// Render the closing tag
echo $this->formLabel () ->closeTag();

// </label>

Attaching a translator and setting a text domain:

58.2. Standard Helpers 277

L Y N

Zend Framework 2 Documentation, Release 2.0.0

// Setting a translator
Sthis—>formLabel () —>setTranslator ($Stranslator);

// Setting a text domain
Sthis->formLabel () ->setTranslatorTextDomain (' my-text-domain’);

// Setting both
Sthis->formLabel () ->setTranslator (Stranslator, 'my-text-domain’);

Note: Note: If you have a translator in the Service Manager under the key, ‘translator’, the
view helper plugin manager will automatically attach the translator to the FormLabel view helper. See
Zend\\View\\HelperPluginManager: :injectTranslator () for more information.

The following public methods are in addition to those inherited from Zend\Form\View\Helper\AbstractHelper.

___invoke (Elementinterface $element = null, string $labelContent = null, string $position = null)
Render a form label, optionally with content.

Always generates a “for” statement, as we cannot assume the form input will be provided in the
SlabelContent.

Parameters
* $element — A form element.
¢ $labelContent — If null, will attempt to use the element’s label value.

* $position — Append or prepend the element’s label value to the $1abelContent. One of
FormLabel : : APPEND or FormLabel : : PREPEND (default)

Return type string

openTag (array|Elementlnterface $attributesOrElement = null)
Renders the <1abel> open tag and attributes.

Parameters $attributesOrElement — An array of key value attributes or a ElementInterface
instance.

Return type string

closeTag ()
Renders a </1label> closing tag.

Return type string

58.2.10 AbstractHelper

The AbstractHelper is used as a base abstract class for Form view helpers, providing methods for vali-
dating form HTML attributes, as well as controlling the doctype and character encoding. AbstractHelper
also extends from Zend\I18n\View\Helper\AbstractTranslatorHelper which provides an imple-
mentation for the Zend\Il8n\Translator\TranslatorAwareInterface that allows setting a trans-
lator and text domain. The following public methods are in addition to the inherited methods of
Zend\I18n\View\Helpe\AbstractTranslatorHelper.

setDoctype (string $doctype)
Sets a doctype to use in the helper.

getDoctype ()
Returns the doctype used in the helper.

278 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

Return type string

setEncoding (string $encoding)
Set the translation text domain to use in helper when translating.

getEncoding ()
Returns the character encoding used in the helper.

Return type string

getId()
Returns the element id. If no ID attribute present, attempts to use the name attribute. If name attribute is also
not present, returns null.

Return type string or null

58.3 HTML5 Helpers

58.3.1 FormColor

The FormColor view helper can be used to render a <input type="color">HTMLS form input. It is meant to
work with the Zend\Form\Elemeni\Color element, which provides a default input specification for validating HTML5
color values.

FormColor extends from Zend\Form\View\Helper\FormInput. Basic usage:
use Zend\Form\Element;

Selement = new Element\Color ('my-color’);

// Within your view. ..

echo $Sthis->formColor ($Selement) ;
// <input type="color" name="my-color" value="">

58.3.2 FormDate

The FormDate view helper can be used to render a <input type="date"> HTMLS form input. It is meant to
work with the Zend\Form\Elemenf\Date element, which provides a default input specification for validating HTMLS5
date values.

FormDate extends from Zend\Form\View\Helper\FormDateTime. Basic usage:
use Zend\Form\Element;

Selement = new Element\Date ('my-date’);

// Within your view. ..

echo $Sthis->formDate (Selement);

—_n

// <input type="date" name="my-date" value="">

58.3. HTML5 Helpers 279

Zend Framework 2 Documentation, Release 2.0.0

58.3.3 FormDateTime

The FormDateTime view helper can be used to render a <input type="datetime"> HTMLS form input.
It is meant to work with the Zend\Form\Elemeni\DateTime element, which provides a default input specification for
validating HTMLS5 datetime values.

FormDateTime extends from Zend\Form\View\Helper\FormInput. Basic usage:

use Zend\Form\Element;
Selement = new Element\DateTime ('my-datetime’);
// Within your view. ..

echo Sthis->formDateTime (Selement) ;
// <input type="datetime" name="my-datetime" value="">

58.3.4 FormDateTimeLocal

The FormDateTimeLocal view helper can be used to render a <input type="datetime-local">HTMLS
form input. It is meant to work with the Zend\Form\Elemeni\DateTimeLocal element, which provides a default input
specification for validating HTMLS5 datetime values.

FormDateTimeLocal extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

use Zend\Form\Element;
Selement = new Element\DateTimeLocal ('my-datetime’);
// Within your view...

echo Sthis->formDateTimeLocal (Selement) ;
// <input type="datetime-local" name="my-datetime" value="">

58.3.5 FormEmail

The FormEmail view helper can be used to render a <input type="email"> HTMLS form input. It is meant to
work with the Zend\Form\Elemen\Email element, which provides a default input specification with an email validator.

FormEmail extends from Zend\Form\View\Helper\FormInput. Basic usage:

use Zend\Form\Element;
element = new Element\Email ('my-email’);
// Within your view...

echo Sthis->formEmail (Selement) ;
// <input type="email" name="my-email" value="">

58.3.6 FormMonth

The FormMonth view helper can be used to render a <input type="month">HTMLS form input. It is meant to
work with the Zend\Form\Elemeni\Month element, which provides a default input specification for validating HTMLS5
date values.

280 Chapter 58. Form View Helpers

Zend Framework 2 Documentation, Release 2.0.0

FormMonth extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

use Zend\Form\Element;
Selement = new Element\Month (' my-month’);
// Within your view. ..

echo Sthis->formMonth ($Selement) ;

—_n

// <input type="month" name="my-month" value="">

58.3.7 FormTime

The FormTime view helper can be used to render a <input type="time"> HTMLS form input. It is meant to
work with the Zend\Form\Elemeni\Time element, which provides a default input specification for validating HTMLS5
time values.

FormTime extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

use Zend\Form\Element;
Selement = new Element\Time ('my-time’);
// Within your view...

echo Sthis->formTime (Selement);
// <input type="time" name="my-time" value="">

58.3.8 FormWeek

The FormWeek view helper can be used to render a <input type="week"> HTMLS5 form input. It is meant to
work with the Zend\Form\Elemen\Week element, which provides a default input specification for validating HTMLS5
week values.

FormWeek extends from Zend\Form\View\Helper\FormDateTime. Basic usage:

use Zend\Form\Element;
Selement = new Element\Week ('my-week’);
// Within your view...

echo Sthis->formWeek (Selement) ;
// <input type="week" name="my-week" value="">

58.3. HTML5 Helpers 281

Zend Framework 2 Documentation, Release 2.0.0

282 Chapter 58. Form View Helpers

CHAPTER
FIFTYNINE

ZEND\HTTP

59.1 Overview

Zend\Http is a primary foundational component of Zend Framework. Since much of what PHP does is web-based,
specifically HTTP, it makes sense to have a performant, extensible, concise and consistent API to do all things HTTP.
In nutshell, there are several parts of Zend\Http:

* Context-less Request and Response classes that expose a fluent API for introspecting several aspects of
HTTP messages:

Request line information and response status information

Parameters, such as those found in POST and GET

Message Body

Headers

* A Client implementation with various adapters that allow for sending requests and introspecting responses.

59.2 Zend\Http Request, Response and Headers

The Request, Response and Headers portion of the Zend\Http component provides a fluent, object-oriented inter-
face for introspecting information from all the various parts of an HTTP request or HTTP response. The two main
objects are Zend\Http\Request and Zend\Http\Response. These two classes are “context-less”, meaning
that they model a request or response in the same way whether it is presented by a client (to send a request and receive
aresponse) or by a server (to receive a request and send a response). In other words, regardless of the context, the API
remains the same for introspecting their various respective parts. Each attempts to fully model a request or response
so that a developer can create these objects from a factory, or create and populate them manually.

283

Zend Framework 2 Documentation, Release 2.0.0

284 Chapter 59. Zend\Http

CHAPTER
SIXTY

ZEND\HTTP\REQUEST

60.1 Overview

The Zend\Http\Request object is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP request.

A typical HTTP request looks like this:

In simplified terms, the request consist of a method, URI and the HTTP version number which all make up the “Request
Line.” Next is a set of headers; there can be 0 or an unlimited number of headers. After that is the request body, which
is typically used when a client wishes to send data to the server in the form of an encoded file, or include a set of
POST parameters, for example. More information on the structure and specification of an HTTP request can be found
in RFC-2616 on the W3.org site.

60.2 Quick Start

Request objects can either be created from the provided fromString () factory, or, if you wish to have a completely
empty object to start with, by simply instantiating the Zend\Http\Request class.

use Zend\Http\Request;

Srequest = Request::fromString (<<<EOS
POST /foo HTTP/1.1

HeaderFieldl: header-field-value
HeaderField2: header-field-value2

foo=bars
EOS) ;

// OR, the completely equivalent

= new Request ();

>setMethod (Request: :METHOD_POST) ;
>setUri (’ /foo’);
Srequest—>header () —>addHeaders (array (

285

http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Zend Framework 2 Documentation, Release 2.0.0

"HeaderFieldl’ => "header-field-value’,
"HeaderField2’ => ’'header-field-value2’,
)

Srequest—->post () ->set (' foo’, ’'bar’);

60.3 Configuration Options

None currently

60.4 Available Methods

Request::fromString Request::fromString(string $string)
A factory that produces a Request object from a well-formed Http Request string
Returns Zend\Http\Request
setMethod setMethod (string S$method)
Set the method for this request.
Returns Zend\Http\Request
getMethod getMethod ()
Return the method for this request.
Returns string.

setUri setUri (string|\Zend\Stdlib\RequestInterface|\Zend\Stdlib\Message|\Zend\Stdlib\Paramet
Suri)

Set the URI/URL for this request; this can be a string or an instance of Zend\Uri\Http.
Returns Zend\Http\Request
getUri getUri ()
Return the URI for this request object.
Returns string.
uri uri ()
Return the URI for this request object as an instance of Zend\Uri\Http.
Returns Zend\Uri\Http.
setVersion setVersion (string $version)

Set the HTTP version for this object, one of 1.0 or 1.1 (Request::VERSION_10,
Request: :VERSION_11).

Returns Zend\Http\Request.
setVersion getVersion ()
Return the HTTP version for this request

Returns string

286 Chapter 60. Zend\Http\Request

Zend Framework 2 Documentation, Release 2.0.0

setQuery setQuery (Zend\Stdlib\ParametersInterface $query)

Provide an alternate Parameter Container implementation for query parameters in this object. (This is NOT the
primary API for value setting; for that, see query () .)

Returns Zend\Http\Request

setQuery query ()
Return the parameter container responsible for query parameters.
Returns Zend\Stdlib\ParametersInterface

setPost setPost (Zend\Stdlib\ParametersInterface S$post)

Provide an alternate Parameter Container implementation for post parameters in this object. (This is NOT the
primary API for value setting; for that, see post () .)

Returns Zend\Http\Request
post post ()
Return the parameter container responsible for post parameters.
Returns Zend\Stdlib\ParametersInterface
cookie cookie ()
Return the Cookie header, this is the same as calling $request->header()->get(‘Cookie’); .
Returns Zend\Http\Header\Cookie
setFile setFile (Zend\Stdlib\ParametersInterface $files)

Provide an alternate Parameter Container implementation for file parameters in this object. (This is NOT the
primary API for value setting; for that, see file ().)

Returns Zend\Http\Request
file file ()
Return the parameter container responsible for file parameters
Returns Zend\Stdlib\ParametersInterface
setServer setServer (Zend\Stdlib\ParametersInterface S$server)

Provide an alternate Parameter Container implementation for server parameters in this object. (This is NOT the
primary API for value setting; for that, see server ().)

Returns Zend\Http\Request

server server ()
Return the parameter container responsible for server parameters
Returns Zend\Stdlib\ParametersInterface

setEnv setEnv (Zend\Stdlib\ParametersInterface $env)

Provide an alternate Parameter Container implementation for env parameters in this object. (This is NOT the
primary API for value setting; for that, see env () .)

Returns Zend\Http\Request
env env ()
Return the parameter container responsible for env parameters

Returns Zend\Stdlib\ParametersInterface

60.4. Available Methods 287

Zend Framework 2 Documentation, Release 2.0.0

setHeader setHeader (Zend\Http\Headers S$headers)

Provide an alternate Parameter Container implementation for headers in this object. (This is NOT the primary

API for value setting; for that, see header () .)

Returns Zend\Http\Request

header header ()

Return the header container responsible for headers

Returns Zend\Http\Headers

setRawBody setRawBody (string $string)

Set the raw body for the request
Returns Zend\Http\Request

getRawBody getRawBody ()
Get the raw body for the request
Returns string

isOptions isOptions ()
Is this an OPTIONS method request?
Returns bool

isGet isGet ()
Is this a GET method request?
Returns bool

isHead isHead ()
Is this a HEAD method request?
Returns bool

isPost isPost ()
Is this a POST method request?
Returns bool

isPut isPut ()
Is this a PUT method request?
Returns bool

isDelete isDelete ()
Is this a DELETE method request?
Returns bool

isTrace isTrace ()
Is this a TRACE method request?
Returns bool

isConnect isConnect ()

Is this a CONNECT method request?

288

Chapter 60. Zend\Http\Request

Zend Framework 2 Documentation, Release 2.0.0

Returns bool
renderRequestLine renderRequestLine ()
Return the formatted request line (first line) for this HTTP request
Returns string
toString toString ()
Returns string
__toString __ _toString()
Allow PHP casting of this object
Returns string
setMetadata setMetadata (string|int|array|Traversable $spec, mixed $value)
Set message metadata

Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata
container.

Returns Zend\Stdlib\Message
getMetadata getMetadata (null|string|int $key, null|mixed S$default)
Retrieve all metadata or a single metadatum as specified by key
Returns mixed
setContent setContent (mixed $value)
Set message content
Returns Zend\Stdlib\Message
getContent getContent ()
Get message content

Returns mixed

60.5 Examples

Generating a Request object from a string

use Zend\Http\Request;
Sstring = "GET /foo HTTP/1.1\r\n\r\nSome Content";
Srequest = Request::fromString(Sstring);

Srequest->getMethod(); // returns Request::METHOD_GET

// returns ’/foo’

// returns Request::VERSION_11 or ’1.1’
// returns ’Some Content’

60.5. Examples 289

Zend Framework 2 Documentation, Release 2.0.0

Generating a Request object from an array

N/A

Retrieving and setting headers

use Zend\Http\Request;
Srequest = new Request () ;

Srequest->getHeaders () —>get (' Content-Type’); // return content type

Srequest->getHeaders () —>addHeader (new Cookie ('’ foo’ => ’'bar’));
foreach (Srequest->getHeaders () as Sheader) {

echo $header->getFieldName() . '’ with value ’ . Sheader->getFieldValue();

Retrieving and setting GET and POST values

use Zend\Http\Request;
Srequest = new Request ();

// post () and get () both return, by default, a Parameters object,
Srequest—->post () —>foo = 'value’;

echo S$request->get () ->myVar;

echo Srequest->get () —>offsetGet ('myVar’);

Generating a formatted HTTP Request from a Request object

use Zend\Http\Request;

Srequest = new Request () ;

Srequest->setMethod (Request: :METHOD_POST) ;

Srequest—->setUri (' /foo’);

Srequest->header () ->addHeaders (array (
"HeaderFieldl’ => "header-field-value’,
"HeaderField2’ => ’'header-field-value2’,

)i

Srequest->post () ->set (' foo’, ’'bar’);

echo Srequest->toString();

/*+ Will produce:

POST /foo HTTP/1.1

HeaderFieldl: header-field-value
HeaderField2: header-field-valueZ2

foo=bar

*/

which extends ArrayObiject

290 Chapter 60. Zend\Http\Request

CHAPTER
SIXTYONE

ZEND\HTTP\RESPONSE

61.1 Overview

The Zend\Http\Response class is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP response.

A typical HTTP Response looks like this:

The first line of the response consists of the HTTP version, status code, and the reason string for the provided status
code; this is called the Response Line. Next is a set of headers; there can be 0 or an unlimited number of headers.
The remainder of the response is the response body, which is typically a string of HTML that will render on the
client’s browser, but which can also be a place for request/response payload data typical of an AJAX request. More
information on the structure and specification of an HTTP response can be found in RFC-2616 on the W3.org site.

61.2 Quick Start

Response objects can either be created from the provided fromString () factory, or, if you wish to have a com-
pletely empty object to start with, by simply instantiating the Zend\Http\Response class.

use Zend\Http\Response;

Sresponse = Response::fromString (<<<EOS
HTTP/1.0 200 OK

HeaderFieldl: header-field-value
HeaderField2: header-field-value2

<html>
<body>
Hello World
</body>
</html>
EOS) ;

// OR

291

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Zend Framework 2 Documentation, Release 2.0.0

= = new Response();
—>setStatusCode (Response: : STATUS_CODE_200) ;
se—>getHeaders () —>addHeaders (array (
"HeaderFieldl’ => ’'header-field-value’,
"HeaderField2’ => ’"header-field-value2’,

)
Sresponse—->setRawBody (<<<EOS
<html>
<body>
Hello World
</body>
</html>
EOS) ;

61.3 Configuration Options

None currently available

61.4 Available Methods

Response::fromString Response: :fromString(string $string)
Populate object from string
Returns Zend\Http\Response
renderStatusLine renderStatusLine ()
Render the status line header
Returns string
setHeaders setHeaders (Zend\Http\Headers S$headers)
Set response headers
Returns Zend\Http\Response
headers headers ()
Get response headers
Returns Zend\Http\Headers
setVersion setVersion (string $version)
Returns Zend\Http\Response
getVersion getVersion ()
Returns string
getStatusCode getStatusCode ()
Retrieve HTTP status code
Returns int
setReasonPhrase setReasonPhrase (string $reasonPhrase)

Returns Zend\Http\Response

292

Chapter 61. Zend\Http\Response

Zend Framework 2 Documentation, Release 2.0.0

getReasonPhrase getReasonPhrase ()
Get HTTP status message
Returns string
setStatusCode setStatusCode (numeric $code)
Set HTTP status code and (optionally) message
Returns Zend\Http\Response
isClientError isClientError ()
Does the status code indicate a client error?
Returns bool
isForbidden isForbidden ()
Is the request forbidden due to ACLs?
Returns bool
isInformational isInformational ()
Is the current status “informational”?
Returns bool

isNotFound isNotFound ()

Does the status code indicate the resource is not found?

Returns bool

isOk isOk ()
Do we have a normal, OK response?
Returns bool

isServerError isServerError ()
Does the status code reflect a server error?
Returns bool

isRedirect isRedirect ()
Do we have a redirect?
Returns bool

isSuccess isSuccess ()
Was the response successful?

Returns bool

decodeChunkedBody decodeChunkedBody (string S$body)

Decode a “chunked” transfer-encoded body and return the decoded text

Returns string

decodeGzip decodeGzip (string S$body)

Decode a gzip encoded message (when Content-encoding = gzip)

Currently requires PHP with zlib support

61.4. Available Methods

293

Zend Framework 2 Documentation, Release 2.0.0

Returns string

decodeGzip decodeDeflate (string $body)

Decode a zlib deflated message (when Content-encoding = deflate)

Currently requires PHP with zlib support

Returns string

setMetadata setMetadata (string|int|array|Traversable $spec, mixed $value)

Set message metadata

Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata

container.

Returns Zend\Stdlib\Message

getMetadata getMetadata (null|string|int S$key,

Retrieve all metadata or a single metadatum as specified by key

Returns mixed
setContent setContent (mixed $value)
Set message content
Returns Zend\Stdlib\Message
getContent getContent ()
Get message content
Returns mixed
toString toString ()

Returns string

61.5 Examples

Generating a Response object from a string

use Zend\Http\Response;

Srequest = Response::fromString (<<<EOS
HTTP/1.0 200 OK

HeaderFieldl: header-field-value
HeaderField2: header-field-value?2

<html>
<body>
Hello World
</body>
</html>
EOS) ;

null |mixed S$default)

294

Chapter 61. Zend\Http\Response

Zend Framework 2 Documentation, Release 2.0.0

Generating a Response object from a string

use Zend\Http\Response;

Sresponse = new Response();

Sresponse—->setStatusCode (Response: : STATUS_CODE_200) ;

Sresponse->getHeaders () ->addHeaders (array (
"HeaderFieldl’ => ’'header-field-value’,
"HeaderField2’ => "header-field-value2’,

)i

Sresponse—->setRawBody (<<<EOS

<html>

<body>
Hello World

</body>

</html>

EOS) ;

61.5. Examples

295

Zend Framework 2 Documentation, Release 2.0.0

296 Chapter 61. Zend\Http\Response

CHAPTER
SIXTYTWO

ZEND\HTTP\AHEADERS AND THE
VARIOUS HEADER CLASSES

62.1 Overview

The Zend\Http\Headers class is a container for HTTP headers. It is typically accessed as part of a
Zend\Http\Request or Zend\Http\Response header () call. The Headers container will lazily load ac-
tual Header objects as to reduce the overhead of header specific parsing.

The Zend\Http\Header* classes are the domain specific implementations for the various types of Headers
that one might encounter during the typical HTTP request. If a header of unknown type is encountered, it will be
implemented as a Zend\Http\Header\GenericHeader instance. See the below table for a list of the various
HTTP headers and the API that is specific to each header type.

62.2 Quick Start

The quickest way to get started interacting with header objects is by getting an already populated Headers container
from a request or response object.

62.3 Configuration Options

None currently available.

62.4 Available Methods

Headers::fromString Headers: :fromString(string $string)
Populates headers from string representation

Parses a string for headers, and aggregates them, in order, in the current instance, primarily as strings until they
are needed (they will be lazy loaded).

Returns Zend\Http\Headers

setPluginClassLoader setPluginClassLoader (Zend\Loader\PluginClassLocator
SpluginClassLoader)

Set an alternate implementation for the plugin class loader

297

Zend Framework 2 Documentation, Release 2.0.0

Returns Zend\Http\Headers
getPluginClassLoader getPluginClassLoader ()
Return an instance of a Zend\Loader\PluginClassLocator, lazyload and inject map if necessary.
Returns Zend\Loader\PluginClassLocator
addHeaders addHeaders (array|Traversable Sheaders)
Add many headers at once
Expects an array (or Traversable object) of type/value pairs.
Returns Zend\Http\Headers
addHeaders addHeaderLine (string $headerFieldNameOrLine, string S$fieldValue)
Add a raw header line, either in name => value, or as a single string ‘name: value’

This method allows for lazy-loading in that the parsing and instantiation of Header object will be delayed until
they are retrieved by either get () or current ().

Returns Zend\Http\Headers
addHeader addHeader (Zend\Http\Header\HeaderInterface S$header)
Add a Header to this container, for raw values see addHeaderLine () and addHeaders ().
Returns Zend\Http\Headers
removeHeader removeHeader (Zend\Http\Header\HeaderInterface S$header)
Remove a Header from the container
Returns bool
clearHeaders clearHeaders ()
Clear all headers
Removes all headers from queue
Returns Zend\Http\Headers
get get (string $name)
Get all headers of a certain name/type
Returns falsel Zend\Http\Header\HeaderInterfacel ArrayIterator
has has (string $name)
Test for existence of a type of header
Returns bool
next next ()
Advance the pointer for this object as an interator
Returns void
key key ()
Return the current key for this object as an interator

Returns mixed

298 Chapter 62. Zend\Http\Headers And The Various Header Classes

Zend Framework 2 Documentation, Release 2.0.0

valid valid ()
Is this iterator still valid?
Returns bool
rewind rewind ()
Reset the internal pointer for this object as an iterator
Returns void
current current ()
Return the current value for this iterator, lazy loading it if need be
Returns Zend\Http\Header\HeaderInterface
count count ()

Return the number of headers in this container. If all headers have not been parsed, actual count could increase
if MultipleHeader objects exist in the Request/Response. If you need an exact count, iterate.

Returns int
toString toString ()
Render all headers at once

This method handles the normal iteration of headers; it is up to the concrete classes to prepend with the appro-
priate status/request line.

Returns string
toArray toArray ()
Return the headers container as an array
Returns array
forceLoading forcelLoading ()
By calling this, it will force parsing and loading of all headers, after this count () will be accurate

Returns bool

62.5 Examples

62.6 Zend\Http\Header* Base Methods

fromString fromString(string $headerLine)
Factory to generate a header object from a string
Returns Zend\Http\Header\GenericHeader
getFieldName getFieldName ()
Retrieve header field name

Returns string

62.5. Examples 299

Zend Framework 2 Documentation, Release 2.0.0

getFieldValue getFieldvalue ()

Retrieve header field value

Returns string

toString toString ()

Cast to string as a well formed HTTP header line

Returns in form of “NAME: VALUE\r\n”

Returns string

62.7 List of Hitp Header Types

Table 62.1: Zend\Http\Header* Classes

| Class Name | Additional Methods |

Accept N/A
AcceptCharset N/A
AcceptEncoding N/A
AcceptLanguage N/A
AcceptRanges getRangeUnit() / setRangeUnit() - The range unit of the accept ranges header
Age getDeltaSeconds() / setDeltaSeconds() - The age in delta seconds
Allow getAllowedMethods() / setAllowedMethods() - An array of allowed methods
AuthenticationInfo | N/A
Authorization N/A
CacheControl N/A
Connection N/A
ContentDisposition | N/A
ContentEncoding N/A
ContentLanguage N/A
ContentLength N/A
ContentLocation N/A
ContentMD5 N/A
ContentRange N/A
ContentType N/A
Cookie Extends \ArrayObjectsetEncodeValue() / getEncodeValue() - Whether or not to encode values
Date N/A
Etag N/A
Expect N/A
Expires N/A
From N/A
Host N/A
IfMatch N/A
IfModifiedSince N/A
IfNoneMatch N/A
IfRange N/A
IfUnmodifiedSince | N/A
KeepAlive N/A
LastModified N/A
\ Continued on next page |
300 Chapter 62. Zend\Http\Headers And The Various Header Classes

Zend Framework 2 Documentation, Release 2.0.0

Table 62.1 — continued from previous page
| Class Name | Additional Methods \

Location N/A
MaxForwards N/A
Pragma N/A
ProxyAuthenticate | N/A
ProxyAuthorization | N/A
Range N/A
Referer N/A
Refresh N/A
RetryAfter N/A
Server N/A
SetCookie getName() / setName() - The cookies namegetValue() / setValue() - The cookie valuegetDomain() / setDomain(
TE N/A
Trailer N/A
TransferEncoding N/A
Upgrade N/A
UserAgent N/A
Vary N/A
Via N/A
Warning N/A
WWWAuthenticate | N/A

62.7. List of Http Header Types 301

Zend Framework 2 Documentation, Release 2.0.0

302 Chapter 62. Zend\Http\Headers And The Various Header Classes

CHAPTER
SIXTYTHREE

ZEND_HTTP_COOKIE AND
ZEND HTTP_COOKIEJAR

63.1 Introduction

Zend_Http_Cookie, as expected, is a class that represents an HTTP cookie. It provides methods for parsing HTTP
response strings, collecting cookies, and easily accessing their properties. It also allows checking if a cookie matches
against a specific scenario, IE a request URL, expiration time, secure connection, etc.

Zend_Http_CookieJar is an object usually used by Zend Http_Client to hold a set of
Zend_Http_Cookie objects. The idea is that if a Zend_Http_CookieJar object is attached to a
Zend_Http_Client object, all cookies going from and into the client through HTTP requests and responses will
be stored by the CookieJar object. Then, when the client will send another request, it will first ask the CookieJar
object for all cookies matching the request. These will be added to the request headers automatically. This is highly
useful in cases where you need to maintain a user session over consecutive HTTP requests, automatically sending the
session ID cookies when required. Additionally, the Zend_Http_CookieJar object can be serialized and stored
in $_SESSION when needed.

63.2 Instantiating Zend_Http_Cookie Objects

Instantiating a Cookie object can be done in two ways:

* Through the constructor, using the following syntax: new Zend_Http_Cookie (string
Sname, string S$value, string S$domain, [int S$expires, [string
Spath, [boolean S$securelll);

— S$name: The name of the cookie (eg. ‘PHPSESSID’) (required)

$value: The value of the cookie (required)

$domain: The cookie’s domain (eg. ‘.example.com’) (required)

Sexpires: Cookie expiration time, as UNIX time stamp (optional, defaults to NULL). If not
set, cookie will be treated as a ‘session cookie’ with no expiration time.

S$path: Cookie path, eg. ‘/foo/bar/’ (optional, defaults to */’)

— $secure: Boolean, Whether the cookie is to be sent over secure (HTTPS) connections only
(optional, defaults to boolean FALSE)

By calling the fromString($cookieStr, [$refUri, [$encodeValue]]) static method, with a cookie string
as represented in the ‘Set-Cookie ‘HTTP response header or ‘Cookie’ HTTP request header. In this

303

Zend Framework 2 Documentation, Release 2.0.0

case, the cookie value must already be encoded. When the cookie string does not contain a ‘domain’
part, you must provide a reference URI according to which the cookie’s domain and path will be set.

The fromString () method accepts the following parameters:

— ScookieStr: a cookie string as represented in the ‘Set-Cookie’ HTTP response header or
‘Cookie’ HTTP request header (required)

— SrefUri: a reference URI according to which the cookie’s domain and path will be set.
(optional, defaults to parsing the value from the $cookieStr)

— SencodeValue: If the value should be passed through urldecode. Also effects the cookie’s
behavior when being converted back to a cookie string. (optional, defaults to true)

Instantiating a Zend_Http_Cookie object

\ // First, using the constructor. This cookie will expire in 2 hours

2 Scookie = new Zend_Http_Cookie(’ foo’,

3 "bar’,

4 ! .example.com’,
5 time () + 7200,
6 " /path’);

s // You can also take the HTTP response Set-Cookie header and use it.

9 // This cookie is similar to the previous one, only it will not expire, and

w // will only be sent over secure connections

1 Scookie = Zend_Http_Cookie::fromString(’ foo=bar; domain=.example.com;
"path=/path; secure’);

14

4 // If the cookie’s domain is not set, you have to manually specify it
15 Scookie = Zend_Http_Cookie::fromString(’ foo=bar; secure;’,
16 "http://www.example.com/path’);

Note: When instantiating a cookie object using the Zend_Http_Cookie::fromString() method, the
cookie value is expected to be URL encoded, as cookie strings should be. However, when using the
constructor, the cookie value string is expected to be the real, decoded value.

A cookie object can be transferred back into a string, using the __toString() magic method. This method will produce
a HTTP request “Cookie” header string, showing the cookie’s name and value, and terminated by a semicolon (*;’).
The value will be URL encoded, as expected in a Cookie header:

Stringifying a Zend_Http_Cookie object

1 // Create a new cookie

> Scookie = new Zend_Http_Cookie(’ foo’,

3 "two words’,

4 ! .example.com’,
5 time () + 7200,
6 " /path’);

s // Will print out ’foo=two+words;’
9 echo Scookie->__ toString();

n // This is actually the same:

304 Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

Zend Framework 2 Documentation, Release 2.0.0

12 echo (string) Scookie;

4 // In PHP 5.2 and higher, this also works:
15 echo Scookie;

63.3 Zend_Http_Cookie getter methods

Once a Zend_Http_Cookie object is instantiated, it provides several getter methods to get the different properties
of the HTTP cookie:

¢ getName () : Get the name of the cookie
e getValue (): Get the real, decoded value of the cookie
e getDomain () : Get the cookie’s domain
* getPath () : Get the cookie’s path, which defaults to ‘/°

* getExpiryTime (): Get the cookie’s expiration time, as UNIX time stamp. If the cookie has no expiration
time set, will return NULL.

Additionally, several boolean tester methods are provided:

e isSecure (): Check whether the cookie is set to be sent over secure connections only. Generally speaking, if
TRUE the cookie should only be sent over HTTPS.

* isExpired(int $time = null): Check whether the cookie is expired or not. If the cookie has no
expiration time, will always return TRUE. If $time is provided, it will override the current time stamp as the
time to check the cookie against.

e isSessionCookie (): Check whether the cookie is a “session cookie” - that is a cookie with no expiration
time, which is meant to expire when the session ends.

Using getter methods with Zend_Http_Cookie

1 // First, create the cookie

& L
2 2 CO0OK1le =

3 Zend_Http_Cookie::fromString(’ foo=twotwords; ' +

4 "domain=.example.com; ' +

5 "path=/somedir; ' +

6 "secure; ' +

7 "expires=Wednesday, 28-Feb-05 20:41:22 UTC’);
8

9 echo $

cookie—->getName () ; // Will echo ’foo”’
10 echo Scookie->getValue(); // will echo ’"two words’
n echo Scookie->getDomain(); // Will echo ’.example.com’
2 echo Scookie->getPath(); // Will echo 7/’

14 echo date (' Y-m-d’, Scookie->getExpiryTime());
s // Will echo 72005-02-28"

17 echo ($cookie->isExpired() ? ’"Yes’ : 'No’);
8 // Will echo ’Yes’

20 echo ($Scookie->isExpired(strtotime(’2005-01-01") ? ’Yes’ : ’'No’);
n // Will echo ’“No’

63.3. Zend_Http_Cookie getter methods 305

Zend Framework 2 Documentation, Release 2.0.0

3 echo (Scookie->isSessionCookie() ? ’'Yes’ : "No’);
u // Will echo ’“No’

63.4 Zend_Http_Cookie: Matching against a scenario

The only real logic contained in a Zend_Http_Cookie object, is in the match() method. This method is used to
test a cookie against a given HTTP request scenario, in order to tell whether the cookie should be sent in this request
or not. The method has the following syntax and parameters: Zend_Http_Cookie->match (mixed $uri,
[boolean S$matchSessionCookies, [int S$now]]);

e Suri: A Zend_Uri_Http object with a domain name and path to be checked. Optionally, a string represent-
ing a valid HTTP URL can be passed instead. The cookie will match if the URL‘s scheme (HTTP or HTTPS),
domain and path all match.

e SmatchSessionCookies: Whether session cookies should be matched or not. Defaults to TRUE. If set to
FALSE, cookies with no expiration time will never match.

* Snow: Time (represented as UNIX time stamp) to check a cookie against for expiration. If not specified, will
default to the current time.

Matching cookies

1 // Create the cookie object - first, a secure session cookie

> Scookie = Zend_Http_Cookie::fromString(’ foo=two+words; ' +

3 "domain=.example.com; ' +
4 "path=/somedir; ' +

5 "secure;’);

7 S$cookie->match (’https://www.example.com/somedir/foo.php’);
s // Will return true

10 Scookie->match (’http://www.example.com/somedir/foo.php’);
nw // Will return false, because the connection 1is not secure

13 Scookie->match (’https://otherexample.com/somedir/foo.php’);
4w // Will return false, because the domain is wrong

16 Scookie->match (’https://example.com/foo.php’);
v // Will return false, because the path is wrong

19 Scookie->match (’https://www.example.com/somedir/foo.php’, false);

» // Will return false, because session cookies are not matched

21

» S$cookie->match (’https://sub.domain.example.com/somedir/otherdir/foo.php’);
» // Will return true

24

s // Create another cookie object - now, not secure, with expiration time

% // in two hours

27 Scookie = Zend_Http_Cookie::fromString(’ foo=two+twords; ' +

28 "domain=www.example.com; ' +

29 "expires=’'

30 . date (DATE_COOKIE, time() + 7200));

» Scookie->match (’http://www.example.com/’) ;
3 // Will return true

306 Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

Zend Framework 2 Documentation, Release 2.0.0

33 Scookie->match (’https://www.example.com/’);
3 // Will return true — non secure cookies can go over secure connections
w // as well!

3 Scookie->match (' http://subdomain.example.com/");
9 // Will return false, because the domain is wrong

© Scookie->match(’http://www.example.com/’, true, time() + (3 % 3600));
s // Will return false, because we added a time offset of +3 hours to
4 // current time

63.5 The Zend_Http_Cookiedar Class: Instantiation

In most cases, there is no need to directly instantiate a Zend_Http_CookieJar object. If you want to attach a
new cookie jar to your Zend_Http_Client object, just call the Zend_Http_Client->setCookieJar() method, and
a new, empty cookie jar will be attached to your client. You could later get this cookie jar using Zend_Hittp_Client-
>getCookieJar().

If you still wish to manually instantiate a CookieJar object, you can do so by calling “new Zend_Http_CookieJar()”
directly - the constructor method does not take any parameters. Another way to instantiate a CookieJar ob-
ject is to use the static Zend_Http_CookieJar::fromResponse() method. This method takes two parameters: a
Zend_Http_Response object, and a reference URI, as either a string or a Zend_Uri_Http object. This method
will return a new Zend_Http_CookieJar object, already containing the cookies set by the passed HTTP response.
The reference URI will be used to set the cookie’s domain and path, if they are not defined in the Set-Cookie headers.

63.6 Adding Cookies to a Zend_Http_CookiedJar object

Usually, the Zend_Http_Client object you attached your CookieJar object to will automatically add cookies set
by HTTP responses to your jar. if you wish to manually add cookies to your jar, this can be done by using two methods:

* Zend_Http_CookieJar->addCookie ($cookie[, $ref_uri]): Add a single cookie to the jar.
$cookie can be either a Zend_Http_Cookie object or a string, which will be converted automatically into a
Cookie object. If a string is provided, you should also provide $ref_uri - which is a reference URI either as a
string or Zend_Uri_Http object, to use as the cookie’s default domain and path.

e Zend_Http_CookieJar->addCookiesFromResponse (Sresponse, Sref_uri): Add all cook-
ies set in a single HTTP response to the jar. $response is expected to be a Zend_Http_Response object with
Set-Cookie headers. $ref_uri is the request URI, either as a string or a Zend_Uri_Http object, according to
which the cookies’ default domain and path will be set.

63.7 Retrieving Cookies From a Zend_Http_CookiedJar object

Just like with adding cookies, there is usually no need to manually fetch cookies from a CookieJar object. Your
Zend_Http_Client object will automatically fetch the cookies required for an HTTP request for you. However,
you can still use 3 provided methods to fetch cookies from the jar object: getCookie (), getAllCookies (),
and getMatchingCookies (). Additionnaly, iterating over the CookieJar will let you retrieve all the
Zend_Http_Cookie objects from it.

It is important to note that each one of these methods takes a special parameter, which sets the return type of the
method. This parameter can have 3 values:

63.5. The Zend_Http_Cookiedar Class: Instantiation 307

Zend Framework 2 Documentation, Release 2.0.0

e Zend_Http_CookieJar::COOKIE_OBJECT: Return a Zend_Http_Cookie object. If the method re-

turns more than one cookie, an array of objects will be returned.

Zend_Http_CookieJar: :COOKIE_STRING_ARRAY: Return cookies as strings, in a “foo=bar” format,
suitable for sending in a HTTP request “Cookie” header. If more than one cookie is returned, an array of strings
is returned.

Zend_Http_CookieJar: :COOKIE_STRING_CONCAT: Similar to COOKIE_STRING_ARRAY, but if
more than one cookie is returned, this method will concatenate all cookies into a single, long string separated
by semicolons (;), and return it. This is especially useful if you want to directly send all matching cookies in a
single HTTP request “Cookie” header.

The structure of the different cookie-fetching methods is described below:

e Zend_Http_CookieJar->getCookie (Suri, Scookie_name[, S$ret_as]): Get a single

cookie from the jar, according to its URI (domain and path) and name. $uri is either a string or a
Zend_Uri_Http object representing the URI. $cookie_name is a string identifying the cookie name. $ret_as
specifies the return type as described above. $ret_type is optional, and defaults to COOKIE_OBJECT.

Zend_Http_CookieJar->getAllCookies ($ret_as): Getall cookies from the jar. $ret_as specifies
the return type as described above. If not specified, $ret_type defaults to COOKIE_OBJECT.

Zend_Http_CookieJar->getMatchingCookies (Suri[, $matchSessionCookies],
Sret_as[, $now]]]l): Get all cookies from the jar that match a specified scenario, that is a URI
and expiration time.

— Suri is either a Zend_Uri_Http object or a string specifying the connection type (secure or non-
secure), domain and path to match against.

$SmatchSessionCookies isaboolean telling whether to match session cookies or not. Session cookies
are cookies that have no specified expiration time. Defaults to TRUE.

Sret_as specifies the return type as described above. If not specified, defaults to COOKIE_OBJECT.

$now is an integer representing the UNIX time stamp to consider as “now” - that is any cookies who are
set to expire before this time will not be matched. If not specified, defaults to the current time.

You can read more about cookie matching here: this section.

308

Chapter 63. Zend_Http_Cookie and Zend_Http_CookieJar

CHAPTER
SIXTYFOUR

ZEND\HTTP\CLIENT

64.1 Overview

Zend\Http\Client provides an easy interface for performing Hyper-Text Transfer Protocol (HTTP) requests.
Zend\Http\Client supports most simple features expected from an HTTP client, as well as some more complex
features such as HTTP authentication and file uploads. Successful requests (and most unsuccessful ones too) return a
Zend\Http\Response object, which provides access to the response’s headers and body (see this section).

64.2 Quick Start

The class constructor optionally accepts a URL as its first parameter (can be either a string or a Zend\Uri\Http
object), and an array or Zend\Config\Config object containing configuration options. Both can be left out, and
set later using the setUri() and setConfig() methods.

use Zend\Http\Client;

$client = new Client ('http://example.org’, array(
"maxredirects’ => 0,
"timeout’ => 30

)) i

// This 1is actually exactly the same:
Sclient = new Client ();
lient->setUri (' http://example.org’);
Sclient->setConfig(array (
"maxredirects’ => 0,
"timeout’ => 30

)) i

// You can also use a Zend\Config\Ini object to set the client’s configuration
Sconfig = new Zend\Config\Ini(’httpclient.ini’, ’secure’);
$client->setConfig($Sconfig);

Note: Zend\Http\Client uses Zend\Uri\Http to validate URLs. This means that some special characters
like the pipe symbol (‘') or the caret symbol (‘*’) will not be accepted in the URL by default. This can be modified
by setting the ‘allowunwise’ option of Zend\Ur1i to ‘TRUE‘. See this section for more information.

309

Zend Framework 2 Documentation, Release 2.0.0

64.3 Configuration Options

The constructor and setConfig() method accept an associative array of configuration parameters, or a
Zend\Config\Config object. Setting these parameters is optional, as they all have default values.
Table 64.1: Zend\Http\Client configuration parameters
Pa- Description Ex- Default
ram- pected | Value
eter Values
maxredi-Maximum number of redirections to follow (0 = none) integer | 5
rects
strict | Whether perform validation on header names. When set to boolean | TRUE
FALSE, validation functions will be skipped. Usually this should
not be changed
stric- | Whether to strictly follow the RFC when redirecting (see this boolean | FALSE
tredi- | section)
rects
user- | User agent identifier string (sent in request headers) string ‘Zend\Http\Client’
agent
time- | Connection timeout (seconds) integer | 10
out
httpvert HTTP protocol version (usually ‘1.1’ or ‘1.0”) string ‘1.1
sion
adapter Connection adapter class to use (see this section) mixed | ‘Zend\Http\Client\Adapter\Socket’
keepalivéWhether to enable keep-alive connections with the server. Useful | boolean | FALSE
and might improve performance if several consecutive requests to
the same server are performed.
stor- | Whether to store last response for later retrieval with boolean | TRUE
ere- getLastResponse(). If set to FALSEgetLastResponse() will return
sponse| NULL.
en- Whether to pass the cookie value through urlencode/urldecode. boolean | TRUE
code- | Enabling this breaks support with some web servers. Disabling
cook- | this limits the range of values the cookies can contain.
ies

64.4 Ava

_ construct ___construct (string $uri,

ilable Methods

array Sconfigqg)

Constructor

Returns void

setConfig setConfig(Configlarray $config

))

array (

Set configuration parameters for this HTTP client

Returns Zend\Http\Client

setAdapter setAdapter (Zend\Http\Client\Adapter|string $adapter)

Load the

connection adapter

While this method is not called more than one for a client, it is seperated from ->send() to preserve logic and
readability

310

Chapter 64. Zend\Http\Client

Zend Framework 2 Documentation, Release 2.0.0

Returns null
getAdapter getAdapter ()
Load the connection adapter
Returns Zend\Http\Client\Adapter
getRequest getRequest ()
Get Request
Returns Request
getResponse getResponse ()
Get Response
Returns Response
setRequest setRequest (Zend\Http\Zend\Http\Request S$request)
Set request
Returns void
setResponse setResponse (Zend\Http\Zend\Http\Response S$response)
Set response
Returns void
getLastRequest getLastRequest ()
Get the last request (as a string)
Returns string
getLastResponse getLastResponse ()
Get the last response (as a string)
Returns string
getRedirectionsCount getRedirectionsCount ()
Get the redirections count
Returns integer
setUri setUri (string|Zend\Http\Zend\Uri\Http S$Suri)
Set Uri (to the request)
Returns void
getUri getUri ()
Get uri (from the request)
Returns Zend\Http\Zend\Uri\Http
setMethod setMethod (string S$method)
Set the HTTP method (to the request)
Returns Zend\Http\Client

64.4. Available Methods 311

Zend Framework 2 Documentation, Release 2.0.0

getMethod getMethod ()
Get the HTTP method
Returns string
setEncType setEncType (string $encType, string S$boundary)
Set the encoding type and the boundary (if any)
Returns void
getEncType getEncType ()
Get the encoding type
Returns type
setRawBody setRawBody (string $body)
Set raw body (for advanced use cases)
Returns Zend\Http\Client
setParameterPost setParameterPost (array S$post)
Set the POST parameters
Returns Zend\Http\Client
setParameterGet setParameterGet (array Squery)
Set the GET parameters
Returns Zend\Http\Client
getCookies getCookies ()
Return the current cookies
Returns array

addCookie addCookie (Arraylterator|SetCookie|string S$cookie, string $value,

string $domain, string S$expire, string S$Spath, boolean S$secure = false,
boolean $httponly = true)
Add a cookie

Returns Zend\Http\Client
setCookies setCookies (array $cookies)
Set an array of cookies
Returns Zend\Http\Client
clearCookies clearCookies ()
Clear all the cookies
Returns void
setHeaders setHeaders (Headers|array S$headers)
Set the headers (for the request)
Returns Zend\Http\Client

312 Chapter 64. Zend\Http\Client

Zend Framework 2 Documentation, Release 2.0.0

hasHeader hasHeader (string S$name)
Check if exists the header type specified
Returns boolean
getHeader getHeader (string $name)
Get the header value of the request
Returns stringlboolean
setStream setStream(string|boolean S$streamfile = true)
Set streaming for received data
Returns Zend\Http\Client
getStream getStream ()
Get status of streaming for received data
Returns booleanlstring
setAuth setAuth (string S$Suser, string $password, string S$type = ’'basic’)

Create a HTTP authentication “Authorization:” header according to the specified user, password and authenti-
cation method.

Returns Zend\Http\Client
resetParameters resetParameters ()
Reset all the HTTP par