
    
      Navigation

      
        	
          index

        	
          next |

        	Zend Framework 2 2.0.0 documentation 
 
      

    


    
      
          
            
  
Programmer’s Reference Guide of Zend Framework 2





Introduction to Zend Framework 2



	Overview

	Installation









User Guide

The user guide is provided to take you through a non-trivial example, showing
you various techniques and features of the framework in order to build an
application.



	Getting Started with Zend Framework 2

	Getting started: A skeleton application

	Modules

	Routing and controllers

	Database and models

	Styling and Translations

	Forms and actions

	Conclusion









Learning Zend Framework 2



	Learning Dependency Injection









Zend Framework 2 Reference


Zend\Authentication



	Introduction

	Database Table Authentication

	Digest Authentication

	HTTP Authentication Adapter

	LDAP Authentication









Zend\Barcode



	Introduction

	Barcode creation using Zend\Barcode\Barcode class

	Zend\Barcode\Barcode Objects

	Zend\Barcode Renderers









Zend\Cache



	Zend\Cache\Storage\Adapter

	Zend\Cache\Storage\Capabilities

	Zend\Cache\Storage\Plugin

	Zend\Cache\Pattern









Zend\Captcha



	Introduction

	Captcha Operation

	CAPTCHA Adapters









Zend\Console



	Introduction

	Console routes and routing

	Console-aware modules

	Console-aware action controllers

	Console adapters

	Console prompts









Zend\Config



	Introduction

	Theory of Operation

	Zend\Config\Reader

	Zend\Config\Writer

	Zend\Config\Processor









Zend\Crypt



	Introduction

	Encrypt/decrypt using block ciphers

	Key derivation function

	Secure Password Storing

	Public key cryptography









Zend\Db



	Zend\Db\Adapter

	Zend\Db\ResultSet

	Zend\Db\Sql

	Zend\Db\TableGateway

	Zend\Db\RowGateway

	Zend\Db\Metadata









Zend\Di



	Introduction to Zend\Di

	Zend\Di Quickstart

	Zend\Di Definition

	Zend\Di InstanceManager

	Zend\Di Configuration

	Zend\Di Debugging & Complex Use Cases









Zend\Dom



	Introduction

	Zend\Dom\Query









Zend\EventManager



	The EventManager









Zend\Form



	Introduction to Zend\Form

	Form Quick Start

	Form Collections

	Form Elements

	Form View Helpers









Zend\Http



	Zend\Http

	Zend\Http\Request

	Zend\Http\Response

	Zend\Http\Headers And The Various Header Classes

	Zend_Http_Cookie and Zend_Http_CookieJar

	Zend\Http\Client

	Zend_Http_Client - Connection Adapters

	Zend_Http_Client - Advanced Usage









Zend\I18n



	Translating

	I18n View Helpers

	I18n Filters









Zend\InputFilter



	Introduction









Zend\Ldap



	Introduction

	API overview

	Usage Scenarios

	Tools

	Object oriented access to the LDAP tree using Zend\Ldap\Node

	Getting information from the LDAP server

	Serializing LDAP data to and from LDIF









Zend\Loader



	The AutoloaderFactory

	The PluginClassLoader

	The ShortNameLocator Interface

	The PluginClassLocator interface

	The SplAutoloader Interface

	The ClassMapAutoloader

	The StandardAutoloader

	The Class Map Generator utility: bin/classmap_generator.php

	The PrefixPathLoader

	The PrefixPathMapper Interface









Zend\Log



	Overview

	Writers

	Filters

	Formatters









Zend\Mail



	Zend\Mail\Message

	Zend\Mail\Transport

	Zend\Mail\Transport\SmtpOptions

	Zend\Mail\Transport\FileOptions









Zend\Math



	Introduction









Zend\ModuleManager



	Introduction to the Module System

	The Module Manager

	The Module Class

	The Module Autoloader

	Best Practices when Creating Modules









Zend\Mvc



	Introduction to the MVC Layer

	Quick Start

	Default Services

	Routing

	The MvcEvent

	Available Controllers

	Controller Plugins

	Examples









Zend\Paginator



	Introduction

	Usage

	Configuration

	Advanced usage









Zend\Permissions\Acl



	Introduction

	Refining Access Controls

	Advanced Usage









Zend\ServiceManager



	Zend\ServiceManager

	Zend\ServiceManager Quick Start









Zend\Stdlib



	Zend\Stdlib\Hydrator









Zend\Uri



	Zend\Uri









Zend\Validator



	Introduction

	Standard Validation Classes

	Validator Chains

	Writing Validators

	Validation Messages









Zend\View



	Zend\View Quick Start

	The PhpRenderer

	PhpRenderer View Scripts

	View Helpers









Zend\XmlRpc



	Introduction

	Zend\XmlRpc\Client

	Zend\XmlRpc\Server











Services for Zend Framework 2 Reference


ZendService\LiveDocx



	ZendService\LiveDocx











Copyright



	Copyright Information











Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    



    
         Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	release-2.1.4

      
        	release-2.1.3

      
        	release-2.1.2

      
        	release-2.1.1

      
        	release-2.1.0

      
        	release-2.0.7

      
        	release-2.0.6

      
        	release-2.0.5

      
        	release-2.0.4

      
        	release-2.0.3

      
        	release-2.0.2

      
        	release-2.0.1

      
        	release-2.0.0

      
        	latest

      
        	develop

      
    

  











    [image: Edit this document]

  
    
    

    Index








  








    
    

    
 
  
  
    
      Navigation

      
        	
          index

        	Zend Framework 2 2.0.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	release-2.1.4

      
        	release-2.1.3

      
        	release-2.1.2

      
        	release-2.1.1

      
        	release-2.1.0

      
        	release-2.0.7

      
        	release-2.0.6

      
        	release-2.0.5

      
        	release-2.0.4

      
        	release-2.0.3

      
        	release-2.0.2

      
        	release-2.0.1

      
        	release-2.0.0

      
        	latest

      
        	develop

      
    

  










  
tutorials/quickstart.di.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Learning Dependency Injection



Very brief introduction to Di.


Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes
of this quickstart, we’ll explain the act of injecting dependencies simply with this below code:


		1


		$b = new B(new A());










Above, A is a dependency of B, and A was injected into B. If you are not familar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy [http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html], Ralph Schindler’s Learning
DI [http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php], or Fabien Potencier’s Series on DI [http://fabien.potencier.org/article/11/what-is-dependency-injection].





Very brief introduction to Di Container.


		1


		TBD.













Simplest usage case (2 classes, one consumes the other)


In the simplest use case, a developer might have one class (A) that is consumed by another class (B)
through the constructor. By having the dependency injected through the constructor, this requires an object of type
A be instantiated before an object of type B so that A can be injected into B.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		namespace My {

    class A
    {
        /* Some useful functionality */
    }

    class B
    {
        protected $a = null;
        public function __construct(A $a)
        {
            $this->a = $a;
        }
    }
}










To create B by hand, a developer would follow this work flow, or a similar workflow to this:


		1


		$b = new B(new A());










If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY up the code. While there are several ways to do this, using a dependency injection container is
one of these solutions. With Zend’s dependency injection container Zend\Di\DependencyInjector, the above use
case can be taken care of with no configuration (provided all of your autoloading is already configured properly)
with the following usage:


		1
2


		$di = new Zend\Di\DependencyInjector;
$b = $di->get('My\B'); // will produce a B object that is consuming an A object










Moreover, by using the DependencyInjector::get() method, you are ensuring that the same exact object is
returned on subsequent calls. To force new objects to be created on each and every request, one would use the
DependencyInjector::newInstance() method:


		1


		$b = $di->newInstance('My\B');










Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		namespace My {

    class A
    {
        protected $username = null;
        protected $password = null;
        public function __construct($username, $password)
        {
            $this->username = $username;
            $this->password = $password;
        }
    }

    class B
    {
        protected $a = null;
        public function __construct(A $a)
        {
            $this->a = $a;
        }
    }

    class C
    {
        protected $b = null;
        public function __construct(B $b)
        {
            $this->b = $b;
        }
    }

}










With the above, we need to ensure that our DependencyInjector is capable of seeing the A class with a few
configuration values (which are generally scalar in nature). To do this, we need to interact with the
InstanceManager:


		1
2
3


		$di = new Zend\Di\DependencyInjector;
$di->getInstanceManager()->setProperty('A', 'username', 'MyUsernameValue');
$di->getInstanceManager()->setProperty('A', 'password', 'MyHardToGuessPassword%$#');










Now that our container has values it can use when creating A, and our new goal is to have a C object that
consumes B and in turn consumes A, the usage scenario is still the same:


		1
2
3


		$c = $di->get('My\C');
// or
$c = $di->newInstance('My\C');










Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default
DependencyInjector object ($di = new Zend\Di\DependencyInjector() without any configuration to the
InstanceManager), we could do the following:


		1
2
3
4
5
6
7
8


		$parameters = array(
    'username' => 'MyUsernameValue',
    'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);
// or
$c = $di->newInstance('My\C', $parameters);










Constructor injection is not the only supported type of injection. The other most popular method of injection is
also supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our
previous example with the exception, for example, of our B class now looking like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		namespace My {
    class B
    {
        protected $a;
        public function setA(A $a)
        {
            $this->a = $a;
        }
    }
}










Since the method is prefixed with set, and is followed by a capital letter, the DependencyInjector knows that
this method is used for setter injection, and again, the use case $c = $di->get('C'), will once again know how
to fill the dependencies when needed to create an object of type C.


Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.





Simplest Usage Case Without Type-hints


If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does
practice dependency injection, you can still use the DependencyInjector, but you might find you need to
describe your dependencies explicitly. To do this, you will need to interact with one of the definitions that is
capable of letting a developer describe, with objects, the map between classes. This particular definition is
called the BuilderDefinition and can work with, or in place of, the default RuntimeDefinition.


Definitions are a part of the DependencyInjector that attempt to describe the relationship between classes so
that DependencyInjector::newInstance() and DependencyInjector::get() can know what the dependencies are
that need to be filled for a particular class/object. With no configuration, DependencyInjector will use the
RuntimeDefinition which uses reflection and the type-hints in your code to determine the dependency map.
Without type-hints, it will assume that all dependencies are scalar or required configuration parameters.


The BuilderDefinition, which can be used in tandem with the RuntimeDefinition (technically, it can be used
in tandem with any definition by way of the AggregateDefinition), allows you to programmatically describe the
mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that class
B now looks like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		namespace My {
    class B
    {
        protected $a;
        public function setA($a)
        {
            $this->a = $a;
        }
    }
}










You’ll notice the only change is that setA now does not include any type-hinting information.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

// Describe this class:
$builder = new Definition\BuilderDefinition;
$builder->addClass(($class = new Builder\PhpClass));

$class->setName('My\B');
$class->addInjectableMethod(($im = new Builder\InjectibleMethod));

$im->setName('setA');
$im->addParameter('a', 'My\A');

// Use both our Builder Definition as well as the default
// RuntimeDefinition, builder first
$aDef = new Definition\AggregateDefinition;
$aDef->addDefinition($builder);
$aDef->addDefinition(new Definition\RuntimeDefinition);

// Now make sure the DependencyInjector understands it
$di = new DependencyInjector;
$di->setDefinition($aDef);

// and finally, create C
$parameters = array(
    'username' => 'MyUsernameValue',
    'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);










This above usage scenario provides that whatever the code looks like, you can ensure that it works with the
dependency injection container. In an ideal world, all of your code would have the proper type hinting and/or would
be using a mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a
full definition that is capable of instantiating all of the objects you might require.





Simplest usage case with Compiled Definition


Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box, the
DependencyInjector uses a RuntimeDefinition which does all class map resolution via PHP’s Reflection
extension. Couple that with the fact that PHP does not have a true application layer capable of storing objects
in-memory between requests, and you get a recipe that is less performant than similar solutions you’ll find in Java
and .Net (where there is an application layer with in-memory object storage.)


To mitigate this shortcoming, Zend\Di has several features built in capable of pre-compiling the most expensive
tasks that surround dependency injection. It is worth noting that the RuntimeDefition, which is used by
default, is the only definition that does lookups on-demand. The rest of the Definition objects are capable
of being aggregated and stored to disk in a very performant way.


Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships
and parameter/property needs of each class that is to be instantiated. This Definition would have been built as
part of some deployment or packaging task by this 3rd party. When this is not the case, you can create these
Definitions via any of the Definition types provided with the exception of the RuntimeDefinition. Here
is a breakdown of the job of each definition type:



		AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it looks it
up in the order the definitions were provided to this aggregate.


		ArrayDefinition- This definition takes an array of information and exposes it via the interface provided by
Zend\Di\Definition suitable for usage by DependencyInjector or an AggregateDefinition


		BuilderDefinition- Creates a definition based on an object graph consisting of various Builder\PhpClass
objects and Builder\InectionMethod objects that describe the mapping needs of the target codebase and …


		Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(Zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).





The following is an example of producing a definition via a DirectoryScanner:


		1
2
3
4
5


		$compiler = new Zend\Di\Definition\Compiler();
$compiler->addCodeScannerDirectory(
    new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
);
$definition = $compiler->compile();










This definition can then be directly used by the DependencyInjector (assuming the above A, B, C scenario
was actually a file per class on disk):


		1
2
3
4
5


		$di = new Zend\Di\DependencyInjector;
$di->setDefinition($definition);
$di->getInstanceManager()->setProperty('My\A', 'username', 'foo');
$di->getInstanceManager()->setProperty('My\A', 'password', 'bar');
$c = $di->get('My\C');










One strategy for persisting these compiled definitions would be the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		if (!file_exists(__DIR__ . '/di-definition.php') && $isProduction) {
    $compiler = new Zend\Di\Definition\Compiler();
    $compiler->addCodeScannerDirectory(
        new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
    );
    $definition = $compiler->compile();
    file_put_contents(
        __DIR__ . '/di-definition.php',
        '<?php return ' . var_export($definition->toArray(), true) . ';'
    );
} else {
    $definition = new Zend\Di\Definition\ArrayDefinition(
        include __DIR__ . '/di-definition.php'
    );
}

// $definition can now be used; in a production system it will be written
// to disk.










Since Zend\Code\Scanner does not include files, the classes contained within are not loaded into memory.
Instead, Zend\Code\Scanner uses tokenization to determine the structure of your files. This makes this suitable
to use this solution during development and within the same request as any one of your application’s dispatched
actions.





Creating a precompiled definition for others to use


If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so
that others can utilize this Definition without having to Reflect it via the RuntimeDefintion, or
create it via the Compiler. To do this, use the same technique as above. Instead of writing the resulting array
to disk, you would write the information into a definition directly, by way of Zend\CodeGenerator:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// First, compile the information
$compiler = new Zend\Di\Definition\Compiler();
$compiler->addCodeScannerDirectory(new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/My/'));
$definition = $compiler->compile();

// Now, create a Definition class for this information
$codeGenerator = new Zend\CodeGenerator\Php\PhpFile();
$codeGenerator->setClass(($class = new Zend\CodeGenerator\Php\PhpClass()));
$class->setNamespaceName('My');
$class->setName('DiDefinition');
$class->setExtendedClass('\Zend\Di\Definition\ArrayDefinition');
$class->setMethod(array(
    'name' => '__construct',
    'body' => 'parent::__construct(' . var_export($definition->toArray(), true) . ');'
));
file_put_contents(__DIR__ . '/My/DiDefinition.php', $codeGenerator->generate());













Using Multiple Definitions From Multiple Sources


In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from
multiple places:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


		use Zend\Di\DependencyInjector;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

$di = new DependencyInjector;
$diDefAggregate = new Definition\Aggregate();

// first add in provided Definitions, for example
$diDefAggregate->addDefinition(new ThirdParty\Dbal\DiDefinition());
$diDefAggregate->addDefinition(new Zend\Controller\DiDefinition());

// for code that does not have TypeHints
$builder = new Definition\BuilderDefinition();
$builder->addClass(($class = Builder\PhpClass));
$class->addInjectionMethod(
    ($injectMethod = new Builder\InjectionMethod())
);
$injectMethod->setName('injectImplementation');
$injectMethod->addParameter(
'implementation', 'Class\For\Specific\Implementation'
);

// now, your application code
$compiler = new Definition\Compiler()
$compiler->addCodeScannerDirectory(
    new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/App/')
);
$appDefinition = $compiler->compile();
$diDefAggregate->addDefinition($appDefinition);

// now, pass in properties
$im = $di->getInstanceManager();

// this could come from Zend\Config\Config::toArray
$propertiesFromConfig = array(
    'ThirdParty\Dbal\DbAdapter' => array(
        'username' => 'someUsername',
        'password' => 'somePassword'
    ),
    'Zend\Controller\Helper\ContentType' => array(
        'default' => 'xhtml5'
    ),
);
$im->setProperties($propertiesFromConfig);













Generating Service Locators


In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?


The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance, and
generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.


The method getCodeGenerator() returns an instance of Zend\CodeGenerator\Php\PhpFile, from which you can
then write a class file with the new Service Locator. Methods on the Generator class allow you to specify the
namespace and class for the generated Service Locator.


As an example, consider the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		use Zend\Di\ServiceLocator\Generator;

// $di is a fully configured DI instance
$generator = new Generator($di);

$generator->setNamespace('Application')
          ->setContainerClass('Context');
$file = $generator->getCodeGenerator();
$file->setFilename(__DIR__ . '/../Application/Context.php');
$file->write();










The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


		<?php

namespace Application;

use Zend\Di\ServiceLocator;

class Context extends ServiceLocator
{

    public function get($name, array $params = array())
    {
        switch ($name) {
            case 'composed':
            case 'My\ComposedClass':
                return $this->getMyComposedClass();

            case 'struct':
            case 'My\Struct':
                return $this->getMyStruct();

            default:
                return parent::get($name, $params);
        }
    }

    public function getComposedClass()
    {
        if (isset($this->services['My\ComposedClass'])) {
            return $this->services['My\ComposedClass'];
        }

        $object = new \My\ComposedClass();
        $this->services['My\ComposedClass'] = $object;
        return $object;
    }
    public function getMyStruct()
    {
        if (isset($this->services['My\Struct'])) {
            return $this->services['My\Struct'];
        }

        $object = new \My\Struct();
        $this->services['My\Struct'] = $object;
        return $object;
    }

    public function getComposed()
    {
        return $this->get('My\ComposedClass');
    }

    public function getStruct()
    {
        return $this->get('My\Struct');
    }
}










To use this class, you simply consume it as you would a DI container:


		1
2
3


		$container = new Application\Context;

$struct = $container->get('struct'); // My\Struct instance










One note about this functionality in its current incarnation. Configuration is per-environment only at this time.
This means that you will need to generate a container per execution environment. Our recommendation is that you do
so, and then in your environment, specify the container class to use.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Learning Dependency Injection
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage.png
2¢.php show stats Show application statistics

2f.php run cron Run automated jobs
2f.php (enable|disable) debug  Enable or disable debug mode for the
application.

lc:\z#2app>






_static/edit.gif
= Edit this
«s document





modules/zend.ldap.api.ldap.dn.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Dn


Zend\Ldap\Dn provides an object-oriented interface to manipulating LDAP distinguished names (DN). The
parameter $caseFold that is used in several methods determines the way DN attributes are handled regarding
their case. Allowed values for this parameter are:



		ZendLdapDn::ATTR_CASEFOLD_NONE


		No case-folding will be done.


		ZendLdapDn::ATTR_CASEFOLD_UPPER


		All attributes will be converted to upper-case.


		ZendLdapDn::ATTR_CASEFOLD_LOWER


		All attributes will be converted to lower-case.





The default case-folding is Zend\Ldap\Dn::ATTR_CASEFOLD_NONE and can be set with
Zend\Ldap\Dn::setDefaultCaseFold(). Each instance of Zend\Ldap\Dn can have its own case-folding-setting. If
the $caseFold parameter is omitted in method-calls it defaults to the instance’s case-folding setting.


The class implements ArrayAccess to allow indexer-access to the different parts of the DN. The
ArrayAccess-methods proxy to Zend\Ldap\Dn::get($offset, 1, null) for offsetGet(integer $offset), to
Zend\Ldap\Dn::set($offset, $value) for offsetSet() and to Zend\Ldap\Dn::remove($offset, 1) for
offsetUnset(). offsetExists() simply checks if the index is within the bounds.



Zend\Ldap\Dn API





		Method
		Description





		Zend\Ldap\Dn factory(string|array $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from an array or a string. The array must conform to the array structure detailed under Zend\Ldap\Dn::implodeDn().



		Zend\Ldap\Dn fromString(string $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from a string.



		Zend\Ldap\Dn fromArray(array $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from an array. The array must conform to the array structure detailed under Zend\Ldap\Dn::implodeDn().



		array getRdn(string|null $caseFold)
		Gets the RDN of the current DN. The return value is an array with the RDN attribute names its keys and the RDN attribute values.



		string getRdnString(string|null $caseFold)
		Gets the RDN of the current DN. The return value is a string.



		Zend\Ldap\Dn getParentDn(integer $levelUp)
		Gets the DN of the current DN’s ancestor $levelUp levels up the tree. $levelUp defaults to 1.



		array get(integer $index, integer $length, string|null $caseFold)
		Returns a slice of the current DN determined by $index and $length. $index starts with 0 on the DN part from the left.



		Zend\Ldap\Dn set(integer $index, array $value)
		Replaces a DN part in the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn remove(integer $index, integer $length)
		Removes a DN part from the current DN. This operation manipulates the current instance. $length defaults to 1



		Zend\Ldap\Dn append(array $value)
		Appends a DN part to the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn prepend(array $value)
		Prepends a DN part to the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn insert(integer $index, array $value)
		Inserts a DN part after the index $index to the current DN. This operation manipulates the current instance.



		void setCaseFold(string|null $caseFold)
		Sets the case-folding option to the current DN instance. If $caseFold is NULL the default case-folding setting (Zend\Ldap\Dn::ATTR_CASEFOLD_NONE by default or set via Zend\Ldap\Dn::setDefaultCaseFold() will be set for the current instance.



		string toString(string|null $caseFold)
		Returns DN as a string.



		array toArray(string|null $caseFold)
		Returns DN as an array.



		string __toString()
		Returns DN as a string - proxies to Zend\Ldap\Dn::toString(null).



		void setDefaultCaseFold(string $caseFold)
		Sets the default case-folding option used by all instances on creation by default. Already existing instances are not affected by this setting.



		array escapeValue(string|array $values)
		Escapes a DN value according to RFC 2253.



		array unescapeValue(string|array $values)
		Undoes the conversion done by Zend\Ldap\Dn::escapeValue().



		array explodeDn(string $dn, array &$keys, array &$vals, string|null $caseFold)
		Explodes the DN $dn into an array containing all parts of the given DN. $keys optionally receive DN keys (e.g. CN, OU, DC, ...). $vals optionally receive DN values. The resulting array will be of type array( array(“cn” => “name1”, “uid” => “user”), array(“cn” => “name2”), array(“dc” => “example”), array(“dc” => “org”) ) for a DN of cn=name1+uid=user,cn=name2,dc=example,dc=org.



		boolean checkDn(string $dn, array &$keys, array &$vals, string|null $caseFold)
		Checks if a given DN $dn is malformed. If $keys or $keys and $vals are given, these arrays will be filled with the appropriate DN keys and values.



		string implodeRdn(array $part, string|null $caseFold)
		Returns a DN part in the form $attribute=$value



		string implodeDn(array $dnArray, string|null $caseFold, string $separator)
		Implodes an array in the form delivered by Zend\Ldap\Dn::explodeDn() to a DN string. $separator defaults to ‘,’ but some LDAP servers also understand ‘;’. $dnArray must of type array( array(“cn” => “name1”, “uid” => “user”), array(“cn” => “name2”), array(“dc” => “example”), array(“dc” => “org”) )



		boolean isChildOf(string|Zend\Ldap\Dn $childDn, string|Zend\Ldap\Dn $parentDn)
		Checks if given $childDn is beneath $parentDn subtree.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Dn
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.config.reader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Config\Reader


Zend\Config\Reader gives you the ability to read a config file. It works with concrete implementations for
different file format. The Zend\Config\Reader is only an interface, that define the two methods fromFile()
and fromString(). The concrete implementations of this interface are:



		Zend\Config\Reader\Ini


		Zend\Config\Reader\Xml


		Zend\Config\Reader\Json


		Zend\Config\Reader\Yaml





The fromFile() and fromString() return a PHP array contains the data of the configuration file.



Note


Differences from ZF1


The Zend\Config\Reader component no longer supports the following features:



		Inheritance of sections.


		Reading of specific sections.








Zend\Config\Reader\Ini


Zend\Config\Reader\Ini enables developers to store configuration data in a familiar INI format and read them
in the application by using an array syntax.


Zend\Config\Reader\Ini utilizes the parse_ini_file() [http://php.net/parse_ini_file] PHP function. Please review this documentation to be
aware of its specific behaviors, which propagate to Zend\Config\Reader\Ini, such as how the special values of
“TRUE”, “FALSE”, “yes”, “no”, and “NULL” are handled.



Note


Key Separator


By default, the key separator character is the period character (“.”). This can be changed, however, using
the setNestSeparator() method. For example:


		1
2


		$reader = new Zend\Config\Reader\Ini();
$reader->setNestSeparator('-');












The following example illustrates a basic use of Zend\Config\Reader\Ini for loading configuration data from an
INI file. In this example there are configuration data for both a production system and for a staging system.
Suppose we have the following INI configuration file:


		1
2
3
4
5
6


		webhost                  = 'www.example.com'
database.adapter         = 'pdo_mysql'
database.params.host     = 'db.example.com'
database.params.username = 'dbuser'
database.params.password = 'secret'
database.params.dbname   = 'dbproduction'










We can use the Zend\Config\Reader\Ini to read this INI file:


		1
2
3
4
5


		$reader = new Zend\Config\Reader\Ini();
$data   = $reader->fromFile('/path/to/config.ini');

echo $data['webhost']  // prints "www.example.com"
echo $data['database']['params']['dbname'];  // prints "dbproduction"










The Zend\Config\Reader\Ini supports a feature to include the content of a INI file in a specific section of
another INI file. For instance, suppose we have an INI file with the database configuration:


		1
2
3
4
5


		database.adapter         = 'pdo_mysql'
database.params.host     = 'db.example.com'
database.params.username = 'dbuser'
database.params.password = 'secret'
database.params.dbname   = 'dbproduction'










We can include this configuration in another INI file, for instance:


		1
2


		webhost  = 'www.example.com'
@include = 'database.ini'










If we read this file using the component Zend\Config\Reader\Ini we will obtain the same configuration data
structure of the previous example.


The @include = 'file-to-include.ini' can be used also in a subelement of a value. For instance we can have an
INI file like that:


		1
2
3
4
5


		adapter         = 'pdo_mysql'
params.host     = 'db.example.com'
params.username = 'dbuser'
params.password = 'secret'
params.dbname   = 'dbproduction'










And assign the @include as sublement of the database value:


		1
2


		webhost           = 'www.example.com'
database.@include = 'database.ini'













Zend\Config\Reader\Xml


Zend\Config\Reader\Xml enables developers to read configuration data in a familiar XML format and read them
in the application by using an array syntax. The root element of the XML file or string is irrelevant and may be
named arbitrarily.


The following example illustrates a basic use of Zend\Config\Reader\Xml for loading configuration data from an
XML file. Suppose we have the following XML configuration file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<?xml version="1.0" encoding="utf-8"?>?>
<config>
    <webhost>www.example.com</webhost>
    <database>
        <adapter value="pdo_mysql"/>
        <params>
            <host value="db.example.com"/>
            <username value="dbuser"/>
            <password value="secret"/>
            <dbname value="dbproduction"/>
        </params>
    </database>
</config>










We can use the Zend\Config\Reader\Xml to read this XML file:


		1
2
3
4
5


		$reader = new Zend\Config\Reader\Xml();
$data   = $reader->fromFile('/path/to/config.xml');

echo $data['webhost']  // prints "www.example.com"
echo $data['database']['params']['dbname'];  // prints "dbproduction"










Zend\Config\Reader\Xml utilizes the XMLReader [http://php.net/xmlreader] PHP class. Please review this documentation to be aware of
its specific behaviors, which propagate to Zend\Config\Reader\Xml.


Using Zend\Config\Reader\Xml we can include the content of XML files in a specific XML element. This is
provided using the standard function XInclude [http://www.w3.org/TR/xinclude/] of XML. To use this function you have to add the namespace
xmlns:xi="http://www.w3.org/2001/XInclude" to the XML file. Suppose we have an XML files that contains only the
database configuration:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<?xml version="1.0" encoding="utf-8"?>
<config>
    <database>
        <adapter>pdo_mysql</adapter>
        <params>
            <host>db.example.com</host>
            <username>dbuser</username>
            <password>secret</password>
            <dbname>dbproduction</dbname>
        </params>
    </database>
</config>










We can include this configuration in another XML file, for instance:


		1
2
3
4
5


		<?xml version="1.0" encoding="utf-8"?>
<config xmlns:xi="http://www.w3.org/2001/XInclude">
    <webhost>www.example.com</webhost>
    <xi:include href="database.xml"/>
</config>










The syntax to include an XML file in a specific element is <xi:include href="file-to-include.xml"/>





Zend\Config\Reader\Json


Zend\Config\Reader\Json enables developers to read configuration data in a JSON format and read them in the
application by using an array syntax.


The following example illustrates a basic use of Zend\Config\Reader\Json for loading configuration data from a
JSON file. Suppose we have the following JSON configuration file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		{
  "webhost"  : "www.example.com",
  "database" : {
    "adapter" : "pdo_mysql",
    "params"  : {
      "host"     : "db.example.com",
      "username" : "dbuser",
      "password" : "secret",
      "dbname"   : "dbproduction"
    }
  }
}










We can use the Zend\Config\Reader\>Json to read this JSON file:


		1
2
3
4
5


		$reader = new Zend\Config\Reader\Json();
$data   = $reader->fromFile('/path/to/config.json');

echo $data['webhost']  // prints "www.example.com"
echo $data['database']['params']['dbname'];  // prints "dbproduction"










Zend\Config\Reader\Json utilizes the Zend\Json\Json class.


Using Zend\Config\Reader\Json we can include the content of a JSON file in a specific JSON section or element.
This is provided using the special syntax @include. Suppose we have a JSON file that contains only the database
configuration:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		{
  "database" : {
    "adapter" : "pdo_mysql",
    "params"  : {
      "host"     : "db.example.com",
      "username" : "dbuser",
      "password" : "secret",
      "dbname"   : "dbproduction"
    }
  }
}










We can include this configuration in another JSON file, for instance:


		1
2
3
4


		{
    "webhost"  : "www.example.com",
    "@include" : "database.json"
}













Zend\Config\Reader\Yaml


Zend\Config\Reader\Yaml enables developers to read configuration data in a YAML format and read them in the
application by using an array syntax. In order to use the YAML reader we need to pass a callback to an external PHP
library or use the Yaml PECL extension [http://www.php.net/manual/en/book.yaml.php].


The following example illustrates a basic use of Zend\Config\Reader\Yaml that use the Yaml PECL extension.
Suppose we have the following YAML configuration file:


		1
2
3
4
5
6
7
8


		webhost: www.example.com
database:
    adapter: pdo_mysql
    params:
      host:     db.example.com
      username: dbuser
      password: secret
      dbname:   dbproduction










We can use the Zend\Config\Reader\Yaml to read this YAML file:


		1
2
3
4
5


		$reader = new Zend\Config\Reader\Yaml();
$data   = $reader->fromFile('/path/to/config.yaml');

echo $data['webhost']  // prints "www.example.com"
echo $data['database']['params']['dbname'];  // prints "dbproduction"










If you want to use an external YAML reader you have to pass the callback function in the constructor of the class.
For instance, if you want to use the Spyc [http://code.google.com/p/spyc/] library:


		1
2
3
4
5
6
7
8


		// include the Spyc library
require_once ('path/to/spyc.php');

$reader = new Zend\Config\Reader\Yaml(array('Spyc','YAMLLoadString'));
$data   = $reader->fromFile('/path/to/config.yaml');

echo $data['webhost']  // prints "www.example.com"
echo $data['database']['params']['dbname'];  // prints "dbproduction"










You can also instantiate the Zend\Config\Reader\Yaml without any parameter and specify the YAML reader in a
second moment using the setYamlDecoder() method.


Using Zend\Config\ReaderYaml we can include the content of a YAML file in a specific YAML section or element.
This is provided using the special syntax @include. Suppose we have a YAML file that contains only the database
configuration:


		1
2
3
4
5
6
7


		database:
    adapter: pdo_mysql
    params:
      host:     db.example.com
      username: dbuser
      password: secret
      dbname:   dbproduction










We can include this configuration in another YAML file, for instance:


webhost:  www.example.com
@include: database.yaml










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Config\Reader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.inline-script.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
InlineScript Helper


The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote
resource containing client-side scripting code. The InlineScript helper allows you to manage both. It is
derived from HeadScript, and any method of that helper is available;
however, use the inlineScript() method in place of headScript().



Note


Use InlineScript for HTML Body Scripts


InlineScript, should be used when you wish to include scripts inline in the HTML body. Placing scripts
at the end of your document is a good practice for speeding up delivery of your page, particularly when using
3rd party analytics scripts.


Some JS libraries need to be included in the HTML head; use HeadScript for those scripts.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                InlineScript Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.open-id.consumer.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_OpenId_Consumer Basics


Zend_OpenId_Consumer can be used to implement OpenID authentication for web sites.



OpenID Authentication


From a web site developer’s point of view, the OpenID authentication process consists of three steps:


. Show OpenID authentication form


. Accept OpenID identity and pass it to the OpenID provider


. Verify response from the OpenID provider


The OpenID authentication protocol actually requires more steps, but many of them are encapsulated inside
Zend_OpenId_Consumer and are therefore transparent to the developer.


The end user initiates the OpenID authentication process by submitting his or her identification credentials with
the appropriate form. The following example shows a simple form that accepts an OpenID identifier. Note that the
example only demonstrates a login.


The Simple OpenID Login form


		1
2
3
4
5
6


		<html><body>
<form method="post" action="example-1_2.php"><fieldset>
<legend>OpenID Login</legend>
<input type="text" name="openid_identifier">
<input type="submit" name="openid_action" value="login">
</fieldset></form></body></html>










This form passes the OpenID identity on submission to the following PHP script that performs the second step of
authentication. The PHP script need only call the Zend_OpenId_Consumer::login() method in this step. The
first argument of this method is an accepted OpenID identity, and the second is the URL of a script that handles
the third and last step of authentication.


The Authentication Request Handler


		1
2
3
4


		$consumer = new Zend_OpenId_Consumer();
if (!$consumer->login($_POST['openid_identifier'], 'example-1_3.php')) {
    die("OpenID login failed.");
}










The Zend_OpenId_Consumer::login() method performs discovery on a given identifier, and, if successful, obtains
the address of the identity provider and its local identifier. It then creates an association to the given provider
so that both the site and provider share a secret that is used to sign the subsequent messages. Finally, it passes
an authentication request to the provider. This request redirects the end user’s web browser to an OpenID server
site, where the user can continue the authentication process.


An OpenID provider usually asks users for their password (if they weren’t previously logged-in), whether the user
trusts this site and what information may be returned to the site. These interactions are not visible to the OpenID
consumer, so it can not obtain the user’s password or other information that the user did not has not directed the
OpenID provider to share with it.


On success, Zend_OpenId_Consumer::login() does not return, instead performing an HTTP redirection. However,
if there is an error it may return FALSE. Errors may occur due to an invalid identity, unresponsive provider,
communication error, etc.


The third step of authentication is initiated by the response from the OpenID provider, after it has authenticated
the user’s password. This response is passed indirectly, as an HTTP redirection using the end user’s web browser.
The consumer must now simply check that this response is valid.


The Authentication Response Verifier


		1
2
3
4
5
6


		$consumer = new Zend_OpenId_Consumer();
if ($consumer->verify($_GET, $id)) {
    echo "VALID " . htmlspecialchars($id);
} else {
    echo "INVALID " . htmlspecialchars($id);
}










This check is performed using the Zend_OpenId_Consumer::verify method, which takes an array of the HTTP
request’s arguments and checks that this response is properly signed by the OpenID provider. It may assign the
claimed OpenID identity that was entered by end user in the first step using a second, optional argument.





Combining all Steps in One Page


The following example combines all three steps in one script. It doesn’t provide any new functionality. The
advantage of using just one script is that the developer need not specify URL‘s for a script to handle the next
step. By default, all steps use the same URL. However, the script now includes some dispatch code to execute the
appropriate code for each step of authentication.


The Complete OpenID Login Script


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		<?php
$status = "";
if (isset($_POST['openid_action']) &&
    $_POST['openid_action'] == "login" &&
    !empty($_POST['openid_identifier'])) {

    $consumer = new Zend_OpenId_Consumer();
    if (!$consumer->login($_POST['openid_identifier'])) {
        $status = "OpenID login failed.";
    }
} else if (isset($_GET['openid_mode'])) {
    if ($_GET['openid_mode'] == "id_res") {
        $consumer = new Zend_OpenId_Consumer();
        if ($consumer->verify($_GET, $id)) {
            $status = "VALID " . htmlspecialchars($id);
        } else {
            $status = "INVALID " . htmlspecialchars($id);
        }
    } else if ($_GET['openid_mode'] == "cancel") {
        $status = "CANCELLED";
    }
}
?>
<html><body>
<?php echo "$status<br>" ?>
<form method="post">
<fieldset>
<legend>OpenID Login</legend>
<input type="text" name="openid_identifier" value=""/>
<input type="submit" name="openid_action" value="login"/>
</fieldset>
</form>
</body></html>










In addition, this code differentiates between cancelled and invalid authentication responses. The provider returns
a cancelled response if the identity provider is not aware of the supplied identity, the user is not logged in, or
the user doesn’t trust the site. An invalid response indicates that the response is not conformant to the OpenID
protocol or is incorrectly signed.





Consumer Realm


When an OpenID-enabled site passes authentication requests to a provider, it identifies itself with a realm URL.
This URL may be considered a root of a trusted site. If the user trusts the realm URL, he or she should also
trust matched and subsequent URLs.


By default, the realm URL is automatically set to the URL of the directory in which the login script resides.
This default value is useful for most, but not all, cases. Sometimes an entire domain, and not a directory should
be trusted. Or even a combination of several servers in one domain.


To override the default value, developers may pass the realm URL as a third argument to the
Zend_OpenId_Consumer::login method. In the following example, a single interaction asks for trusted access to
all php.net sites.


Authentication Request for Specified Realm


		1
2
3
4
5
6


		$consumer = new Zend_OpenId_Consumer();
if (!$consumer->login($_POST['openid_identifier'],
                      'example-3_3.php',
                      'http://*.php.net/')) {
    die("OpenID login failed.");
}










This example implements only the second step of authentication; the first and third steps are similar to the
examples above.





Immediate Check


In some cases, an application need only check if a user is already logged in to a trusted OpenID server without any
interaction with the user. The Zend_OpenId_Consumer::check method does precisely that. It is executed with the
same arguments as Zend_OpenId_Consumer::login, but it doesn’t display any OpenID server pages to the user. From
the users point of view this process is transparent, and it appears as though they never left the site. The third
step succeeds if the user is already logged in and trusted by the site, otherwise it will fail.


Immediate Check without Interaction


		1
2
3
4


		$consumer = new Zend_OpenId_Consumer();
if (!$consumer->check($_POST['openid_identifier'], 'example-4_3.php')) {
    die("OpenID login failed.");
}










This example implements only the second step of authentication; the first and third steps are similar to the
examples above.





Zend_OpenId_Consumer_Storage


There are three steps in the OpenID authentication procedure, and each step is performed by a separate HTTP
request. To store information between requests, Zend_OpenId_Consumer uses internal storage.


Developers do not necessarily have to be aware of this storage because by default Zend_OpenId_Consumer uses
file-based storage under the temporary directory- similar to PHP sessions. However, this storage may be not
suitable in all cases. Some developers may want to store information in a database, while others may need to use
common storage suitable for server farms. Fortunately, developers may easily replace the default storage with their
own. To specify a custom storage mechanism, one need only extend the Zend_OpenId_Consumer_Storage class and
pass this subclass to the Zend_OpenId_Consumer constructor in the first argument.


The following example demonstrates a simple storage mechanism that uses Zend_Db as its backend and exposes
three groups of functions. The first group contains functions for working with associations, while the second group
caches discovery information, and the third group can be used to check whether a response is unique. This class can
easily be used with existing or new databases; if the required tables don’t exist, it will create them.


Database Storage


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199


		class DbStorage extends Zend_OpenId_Consumer_Storage
{
    private $_db;
    private $_association_table;
    private $_discovery_table;
    private $_nonce_table;

    // Pass in the Zend_Db_Adapter object and the names of the
    // required tables
    public function __construct($db,
                                $association_table = "association",
                                $discovery_table = "discovery",
                                $nonce_table = "nonce")
    {
        $this->_db = $db;
        $this->_association_table = $association_table;
        $this->_discovery_table = $discovery_table;
        $this->_nonce_table = $nonce_table;
        $tables = $this->_db->listTables();

        // If the associations table doesn't exist, create it
        if (!in_array($association_table, $tables)) {
            $this->_db->getConnection()->exec(
                "create table $association_table (" .
                " url     varchar(256) not null primary key," .
                " handle  varchar(256) not null," .
                " macFunc char(16) not null," .
                " secret  varchar(256) not null," .
                " expires timestamp" .
                ")");
        }

        // If the discovery table doesn't exist, create it
        if (!in_array($discovery_table, $tables)) {
            $this->_db->getConnection()->exec(
                "create table $discovery_table (" .
                " id      varchar(256) not null primary key," .
                " realId  varchar(256) not null," .
                " server  varchar(256) not null," .
                " version float," .
                " expires timestamp" .
                ")");
        }

        // If the nonce table doesn't exist, create it
        if (!in_array($nonce_table, $tables)) {
            $this->_db->getConnection()->exec(
                "create table $nonce_table (" .
                " nonce   varchar(256) not null primary key," .
                " created timestamp default current_timestamp" .
                ")");
        }
    }

    public function addAssociation($url,
                                   $handle,
                                   $macFunc,
                                   $secret,
                                   $expires)
    {
        $table = $this->_association_table;
        $secret = base64_encode($secret);
        $this->_db->insert($table, array(
            'url'     => $url,
            'handle'  => $handle,
            'macFunc' => $macFunc,
            'secret'  => $secret,
            'expires' => $expires,
        ));
        return true;
    }

    public function getAssociation($url,
                                   &$handle,
                                   &$macFunc,
                                   &$secret,
                                   &$expires)
    {
        $table = $this->_association_table;
        $this->_db->delete(
            $table, $this->_db->quoteInto('expires < ?', time())
        );
        $select = $this-_db->select()
                ->from($table, array('handle', 'macFunc', 'secret', 'expires'))
                ->where('url = ?', $url);
        $res = $this->_db->fetchRow($select);

        if (is_array($res)) {
            $handle  = $res['handle'];
            $macFunc = $res['macFunc'];
            $secret  = base64_decode($res['secret']);
            $expires = $res['expires'];
            return true;
        }
        return false;
    }

    public function getAssociationByHandle($handle,
                                           &$url,
                                           &$macFunc,
                                           &$secret,
                                           &$expires)
    {
        $table = $this->_association_table;
        $this->_db->delete(
            $table, $this->_db->quoteInto('expires < ', time())
        );
        $select = $this->_db->select()
                ->from($table, array('url', 'macFunc', 'secret', 'expires')
                ->where('handle = ?', $handle);
        $res = $select->fetchRow($select);

        if (is_array($res)) {
            $url     = $res['url'];
            $macFunc = $res['macFunc'];
            $secret  = base64_decode($res['secret']);
            $expires = $res['expires'];
            return true;
        }
        return false;
    }

    public function delAssociation($url)
    {
        $table = $this->_association_table;
        $this->_db->query("delete from $table where url = '$url'");
        return true;
    }

    public function addDiscoveryInfo($id,
                                     $realId,
                                     $server,
                                     $version,
                                     $expires)
    {
        $table = $this->_discovery_table;
        $this->_db->insert($table, array(
            'id'      => $id,
            'realId'  => $realId,
            'server'  => $server,
            'version' => $version,
            'expires' => $expires,
        ));

        return true;
    }

    public function getDiscoveryInfo($id,
                                     &$realId,
                                     &$server,
                                     &$version,
                                     &$expires)
    {
        $table = $this->_discovery_table;
        $this->_db->delete($table, $this->quoteInto('expires < ?', time()));
        $select = $this->_db->select()
                ->from($table, array('realId', 'server', 'version', 'expires'))
                ->where('id = ?', $id);
        $res = $this->_db->fetchRow($select);

        if (is_array($res)) {
            $realId  = $res['realId'];
            $server  = $res['server'];
            $version = $res['version'];
            $expires = $res['expires'];
            return true;
        }
        return false;
    }

    public function delDiscoveryInfo($id)
    {
        $table = $this->_discovery_table;
        $this->_db->delete($table, $this->_db->quoteInto('id = ?', $id));
        return true;
    }

    public function isUniqueNonce($nonce)
    {
        $table = $this->_nonce_table;
        try {
            $ret = $this->_db->insert($table, array(
                'nonce' => $nonce,
            ));
        } catch (Zend_Db_Statement_Exception $e) {
            return false;
        }
        return true;
    }

    public function purgeNonces($date=null)
    {
    }
}

$db = Zend_Db::factory('Pdo_Sqlite',
    array('dbname'=>'/tmp/openid_consumer.db'));
$storage = new DbStorage($db);
$consumer = new Zend_OpenId_Consumer($storage);










This example doesn’t list the OpenID authentication code itself, but this code would be the same as that for other
examples in this chapter. examples.





Simple Registration Extension


In addition to authentication, the OpenID standard can be used for lightweight profile exchange to make information
about a user portable across multiple sites. This feature is not covered by the OpenID authentication
specification, but by the OpenID Simple Registration Extension protocol. This protocol allows OpenID-enabled sites
to ask for information about end users from OpenID providers. Such information may include:



		nickname- any UTF-8 string that the end user uses as a nickname


		email- the email address of the user as specified in section 3.4.1 of RFC2822


		fullname- a UTF-8 string representation of the user’s full name


		dob- the user’s date of birth in the format ‘YYYY-MM-DD’. Any values whose representation uses fewer than the
specified number of digits in this format should be zero-padded. In other words, the length of this value must
always be 10. If the end user does not want to reveal any particular part of this value (i.e., year, month or
day), it must be set to zero. For example, if the user wants to specify that his date of birth falls in 1980, but
not specify the month or day, the value returned should be ‘1980-00-00’.


		gender- the user’s gender: “M” for male, “F” for female


		postcode- a UTF-8 string that conforms to the postal system of the user’s country


		country- the user’s country of residence as specified by ISO3166


		language- the user’s preferred language as specified by ISO639


		timezone- an ASCII string from a TimeZone database. For example, “Europe/Paris” or “America/Los_Angeles”.





An OpenID-enabled web site may ask for any combination of these fields. It may also strictly require some
information and allow users to provide or hide additional information. The following example instantiates the
Zend_OpenId_Extension_Sreg class, requiring a nickname and optionally requests an email and a
fullname.


Sending Requests with a Simple Registration Extension


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$sreg = new Zend_OpenId_Extension_Sreg(array(
    'nickname'=>true,
    'email'=>false,
    'fullname'=>false), null, 1.1);
$consumer = new Zend_OpenId_Consumer();
if (!$consumer->login($_POST['openid_identifier'],
                      'example-6_3.php',
                      null,
                      $sreg)) {
    die("OpenID login failed.");
}










As you can see, the Zend_OpenId_Extension_Sreg constructor accepts an array of OpenID fields. This array has
the names of fields as indexes to a flag indicating whether the field is required; TRUE means the field is
required and FALSE means the field is optional. The Zend_OpenId_Consumer::login method accepts an extension
or an array of extensions as its fourth argument.


On the third step of authentication, the Zend_OpenId_Extension_Sreg object should be passed to
Zend_OpenId_Consumer::verify. Then on successful authentication the
Zend_OpenId_Extension_Sreg::getProperties method will return an associative array of requested fields.


Verifying Responses with a Simple Registration Extension


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$sreg = new Zend_OpenId_Extension_Sreg(array(
    'nickname'=>true,
    'email'=>false,
    'fullname'=>false), null, 1.1);
$consumer = new Zend_OpenId_Consumer();
if ($consumer->verify($_GET, $id, $sreg)) {
    echo "VALID " . htmlspecialchars($id) ."<br>\n";
    $data = $sreg->getProperties();
    if (isset($data['nickname'])) {
        echo "nickname: " . htmlspecialchars($data['nickname']) . "<br>\n";
    }
    if (isset($data['email'])) {
        echo "email: " . htmlspecialchars($data['email']) . "<br>\n";
    }
    if (isset($data['fullname'])) {
        echo "fullname: " . htmlspecialchars($data['fullname']) . "<br>\n";
    }
} else {
    echo "INVALID " . htmlspecialchars($id);
}










If the Zend_OpenId_Extension_Sreg object was created without any arguments, the user code should check for the
existence of the required data itself. However, if the object is created with the same list of required fields as
on the second step, it will automatically check for the existence of required data. In this case,
Zend_OpenId_Consumer::verify will return FALSE if any of the required fields are missing.


Zend_OpenId_Extension_Sreg uses version 1.0 by default, because the specification for version 1.1 is not yet
finalized. However, some libraries don’t fully support version 1.0. For example, www.myopenid.com requires an SREG
namespace in requests which is only available in 1.1. To work with such a server, you must explicitly set the
version to 1.1 in the Zend_OpenId_Extension_Sreg constructor.


The second argument of the Zend_OpenId_Extension_Sreg constructor is a policy URL, that should be provided to
the user by the identity provider.





Integration with Zend_Auth


Zend Framework provides a special class to support user authentication: Zend_Auth. This class can be used
together with Zend_OpenId_Consumer. The following example shows how OpenIdAdapter implements the
Zend_Auth_Adapter_Interface with the authenticate() method. This performs an authentication query and
verification.


The big difference between this adapter and existing ones, is that it works on two HTTP requests and includes a
dispatch code to perform the second or third step of OpenID authentication.


Zend_Auth Adapter for OpenID


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


		<?php
class OpenIdAdapter implements Zend_Auth_Adapter_Interface {
    private $_id = null;

    public function __construct($id = null) {
        $this->_id = $id;
    }

    public function authenticate() {
        $id = $this->_id;
        if (!empty($id)) {
            $consumer = new Zend_OpenId_Consumer();
            if (!$consumer->login($id)) {
                $ret = false;
                $msg = "Authentication failed.";
            }
        } else {
            $consumer = new Zend_OpenId_Consumer();
            if ($consumer->verify($_GET, $id)) {
                $ret = true;
                $msg = "Authentication successful";
            } else {
                $ret = false;
                $msg = "Authentication failed";
            }
        }
        return new Zend_Auth_Result($ret, $id, array($msg));
    }
}

$status = "";
$auth = Zend_Auth::getInstance();
if ((isset($_POST['openid_action']) &&
     $_POST['openid_action'] == "login" &&
     !empty($_POST['openid_identifier'])) ||
    isset($_GET['openid_mode'])) {
    $adapter = new OpenIdAdapter(@$_POST['openid_identifier']);
    $result = $auth->authenticate($adapter);
    if ($result->isValid()) {
        Zend_OpenId::redirect(Zend_OpenId::selfURL());
    } else {
        $auth->clearIdentity();
        foreach ($result->getMessages() as $message) {
            $status .= "$message<br>\n";
        }
    }
} else if ($auth->hasIdentity()) {
    if (isset($_POST['openid_action']) &&
        $_POST['openid_action'] == "logout") {
        $auth->clearIdentity();
    } else {
        $status = "You are logged in as " . $auth->getIdentity() . "<br>\n";
    }
}
?>
<html><body>
<?php echo htmlspecialchars($status);?>
<form method="post"><fieldset>
<legend>OpenID Login</legend>
<input type="text" name="openid_identifier" value="">
<input type="submit" name="openid_action" value="login">
<input type="submit" name="openid_action" value="logout">
</fieldset></form></body></html>










With Zend_Auth the end-user’s identity is saved in the session’s data. It may be checked with
Zend_Auth::hasIdentity and Zend_Auth::getIdentity.





Integration with Zend_Controller


Finally a couple of words about integration into Model-View-Controller applications: such Zend Framework
applications are implemented using the Zend_Controller class and they use objects of the
Zend_Controller_Response_Http class to prepare HTTP responses and send them back to the user’s web browser.


Zend_OpenId_Consumer doesn’t provide any GUI capabilities but it performs HTTP redirections on success of
Zend_OpenId_Consumer::login and Zend_OpenId_Consumer::check. These redirections may work incorrectly or not
at all if some data was already sent to the web browser. To properly perform HTTP redirection in MVC code the
real Zend_Controller_Response_Http should be sent to Zend_OpenId_Consumer::login or
Zend_OpenId_Consumer::check as the last argument.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_OpenId_Consumer Basics
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.reader.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Feed_Reader



Introduction


Zend_Feed_Reader is a component used to consume RSS and Atom feeds of any version, including RDF/RSS 1.0,
RSS 2.0, Atom 0.3 and Atom 1.0. The API for retrieving feed data is deliberately simple since
Zend_Feed_Reader is capable of searching any feed of any type for the information requested through the API.
If the typical elements containing this information are not present, it will adapt and fall back on a variety of
alternative elements instead. This ability to choose from alternatives removes the need for users to create their
own abstraction layer on top of the component to make it useful or have any in-depth knowledge of the underlying
standards, current alternatives, and namespaced extensions.


Internally, Zend_Feed_Reader works almost entirely on the basis of making XPath queries against the feed
XML‘s Document Object Model. The DOM is not exposed though a chained property API like Zend_Feed though
the underlying DOMDocument, DOMElement and DOMXPath objects are exposed for external manipulation. This singular
approach to parsing is consistent and the component offers a plugin system to add to the Feed and Entry level API
by writing Extensions on a similar basis.


Performance is assisted in three ways. First of all, Zend_Feed_Reader supports caching using Zend_Cache to
maintain a copy of the original feed XML. This allows you to skip network requests for a feed URI if the cache
is valid. Second, the Feed and Entry level API is backed by an internal cache (non-persistant) so repeat API
calls for the same feed will avoid additional DOM or XPath use. Thirdly, importing feeds from a URI can take
advantage of HTTP Conditional GET requests which allow servers to issue an empty 304 response when the
requested feed has not changed since the last time you requested it. In the final case, an instance of
Zend_Cache will hold the last received feed along with the ETag and Last-Modified header values sent in the
HTTP response.


In relation to Zend_Feed, Zend_Feed_Reader was formulated as a free standing replacement for Zend_Feed
but it is not backwards compatible with Zend_Feed. Rather it is an alternative following a different ideology
focused on being simple to use, flexible, consistent and extendable through the plugin system. Zend_Feed_Reader
is also not capable of constructing feeds and delegates this responsibility to Zend_Feed_Writer, its sibling in
arms.





Importing Feeds


Importing a feed with Zend_Feed_Reader is not that much different to Zend_Feed. Feeds can be imported from
a string, file, URI or an instance of type Zend_Feed_Abstract. Importing from a URI can additionally
utilise a HTTP Conditional GET request. If importing fails, an exception will be raised. The end result will
be an object of type Zend_Feed_Reader_FeedInterface, the core implementations of which are
Zend_Feed_Reader_Feed_Rss and Zend_Feed_Reader_Feed_Atom (Zend_Feed took all the short names!). Both
objects support multiple (all existing) versions of these broad feed types.


In the following example, we import an RDF/RSS 1.0 feed and extract some basic information that can be saved to
a database or elsewhere.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$feed = Zend_Feed_Reader::import('http://www.planet-php.net/rdf/');
$data = array(
    'title'        => $feed->getTitle(),
    'link'         => $feed->getLink(),
    'dateModified' => $feed->getDateModified(),
    'description'  => $feed->getDescription(),
    'language'     => $feed->getLanguage(),
    'entries'      => array(),
);

foreach ($feed as $entry) {
    $edata = array(
        'title'        => $entry->getTitle(),
        'description'  => $entry->getDescription(),
        'dateModified' => $entry->getDateModified(),
        'authors'       => $entry->getAuthors(),
        'link'         => $entry->getLink(),
        'content'      => $entry->getContent()
    );
    $data['entries'][] = $edata;
}










The example above demonstrates Zend_Feed_Reader‘s API, and it also demonstrates some of its internal
operation. In reality, the RDF feed selected does not have any native date or author elements, however it does
utilise the Dublin Core 1.1 module which offers namespaced creator and date elements. Zend_Feed_Reader falls
back on these and similar options if no relevant native elements exist. If it absolutely cannot find an alternative
it will return NULL, indicating the information could not be found in the feed. You should note that classes
implementing Zend_Feed_Reader_FeedInterface also implement the SPL Iterator and Countable interfaces.


Feeds can also be imported from strings, files, and even objects of type Zend_Feed_Abstract.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// from a URI
$feed = Zend_Feed_Reader::import('http://www.planet-php.net/rdf/');

// from a String
$feed = Zend_Feed_Reader::importString($feedXmlString);

// from a file
$feed = Zend_Feed_Reader::importFile('./feed.xml');

// from a Zend_Feed_Abstract object
$zfeed = Zend_Feed::import('http://www.planet-php.net/atom/');
$feed  = Zend_Feed_Reader::importFeed($zfeed);













Retrieving Underlying Feed and Entry Sources


Zend_Feed_Reader does its best not to stick you in a narrow confine. If you need to work on a feed outside of
Zend_Feed_Reader, you can extract the base DOMDocument or DOMElement objects from any class, or even an XML
string containing these. Also provided are methods to extract the current DOMXPath object (with all core and
Extension namespaces registered) and the correct prefix used in all XPath queries for the current Feed or Entry.
The basic methods to use (on any object) are saveXml(), getDomDocument(), getElement(), getXpath()
and getXpathPrefix(). These will let you break free of Zend_Feed_Reader and do whatever else you want.



		saveXml() returns an XML string containing only the element representing the current object.


		getDomDocument() returns the DOMDocument object representing the entire feed (even if called from an Entry
object).


		getElement() returns the DOMElement of the current object (i.e. the Feed or current Entry).


		getXpath() returns the DOMXPath object for the current feed (even if called from an Entry object) with the
namespaces of the current feed type and all loaded Extensions pre-registered.


		getXpathPrefix() returns the query prefix for the current object (i.e. the Feed or current Entry) which
includes the correct XPath query path for that specific Feed or Entry.





Here’s an example where a feed might include an RSS Extension not supported by Zend_Feed_Reader out of the
box. Notably, you could write and register an Extension (covered later) to do this, but that’s not always warranted
for a quick check. You must register any new namespaces on the DOMXPath object before use unless they are
registered by Zend_Feed_Reader or an Extension beforehand.


		1
2
3
4
5
6
7


		$feed        = Zend_Feed_Reader::import('http://www.planet-php.net/rdf/');
$xpathPrefix = $feed->getXpathPrefix();
$xpath       = $feed->getXpath();
$xpath->registerNamespace('admin', 'http://webns.net/mvcb/');
$reportErrorsTo = $xpath->evaluate('string('
                                 . $xpathPrefix
                                 . '/admin:errorReportsTo)');











Warning


If you register an already registered namespace with a different prefix name to that used internally by
Zend_Feed_Reader, it will break the internal operation of this component.







Cache Support and Intelligent Requests



Adding Cache Support to Zend_Feed_Reader


Zend_Feed_Reader supports using an instance of Zend_Cache to cache feeds (as XML) to avoid unnecessary
network requests. Adding a cache is as simple here as it is for other Zend Framework components, create and
configure your cache and then tell Zend_Feed_Reader to use it! The cache key used is “Zend_Feed_Reader_”
followed by the MD5 hash of the feed’s URI.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$frontendOptions = array(
   'lifetime' => 7200,
   'automatic_serialization' => true
);
$backendOptions = array('cache_dir' => './tmp/');
$cache = Zend_Cache::factory(
    'Core', 'File', $frontendOptions, $backendOptions
);

Zend_Feed_Reader::setCache($cache);











Note


While it’s a little off track, you should also consider adding a cache to Zend_Loader_PluginLoader which is
used by Zend_Feed_Reader to load Extensions.







HTTP Conditional GET Support


The big question often asked when importing a feed frequently, is if it has even changed. With a cache enabled, you
can add HTTP Conditional GET support to your arsenal to answer that question.


Using this method, you can request feeds from URIs and include their last known ETag and Last-Modified response
header values with the request (using the If-None-Match and If-Modified-Since headers). If the feed on the server
remains unchanged, you should receive a 304 response which tells Zend_Feed_Reader to use the cached version. If
a full feed is sent in a response with a status code of 200, this means the feed has changed and
Zend_Feed_Reader will parse the new version and save it to the cache. It will also cache the new ETag and
Last-Modified header values for future use.


These “conditional” requests are not guaranteed to be supported by the server you request a URI of, but can be
attempted regardless. Most common feed sources like blogs should however have this supported. To enable conditional
requests, you will need to provide a cache to Zend_Feed_Reader.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$frontendOptions = array(
   'lifetime' => 86400,
   'automatic_serialization' => true
);
$backendOptions = array('cache_dir' => './tmp/');
$cache = Zend_Cache::factory(
    'Core', 'File', $frontendOptions, $backendOptions
);

Zend_Feed_Reader::setCache($cache);
Zend_Feed_Reader::useHttpConditionalGet();

$feed = Zend_Feed_Reader::import('http://www.planet-php.net/rdf/');










In the example above, with HTTP Conditional GET requests enabled, the response header values for ETag and
Last-Modified will be cached along with the feed. For the next 24hrs (the cache lifetime), feeds will only be
updated on the cache if a non-304 response is received containing a valid RSS or Atom XML document.


If you intend on managing request headers from outside Zend_Feed_Reader, you can set the relevant
If-None-Matches and If-Modified-Since request headers via the URI import method.


		1
2
3
4
5


		$lastEtagReceived = '5e6cefe7df5a7e95c8b1ba1a2ccaff3d';
$lastModifiedDateReceived = 'Wed, 08 Jul 2009 13:37:22 GMT';
$feed = Zend_Feed_Reader::import(
    $uri, $lastEtagReceived, $lastModifiedDateReceived
);















Locating Feed URIs from Websites


These days, many websites are aware that the location of their XML feeds is not always obvious. A small RDF,
RSS or Atom graphic helps when the user is reading the page, but what about when a machine visits trying to
identify where your feeds are located? To assist in this, websites may point to their feeds using <link> tags in
the <head> section of their HTML. To take advantage of this, you can use Zend_Feed_Reader to locate these
feeds using the static findFeedLinks() method.


This method calls any URI and searches for the location of RSS, RDF and Atom feeds assuming the website’s
HTML contains the relevant links. It then returns a value object where you can check for the existence of a
RSS, RDF or Atom feed URI.


The returned object is an ArrayObject subclass called Zend_Feed_Reader_Collection_FeedLink so you can cast
it to an array, or iterate over it, to access all the detected links. However, as a simple shortcut, you can just
grab the first RSS, RDF or Atom link using its public properties as in the example below. Otherwise, each
element of the ArrayObject is a simple array with the keys “type” and “uri” where the type is one of “rdf”,
“rss” or “atom”.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$links = Zend_Feed_Reader::findFeedLinks('http://www.planet-php.net');

if(isset($links->rdf)) {
    echo $links->rdf, "\n"; // http://www.planet-php.org/rdf/
}
if(isset($links->rss)) {
    echo $links->rss, "\n"; // http://www.planet-php.org/rss/
}
if(isset($links->atom)) {
    echo $links->atom, "\n"; // http://www.planet-php.org/atom/
}










Based on these links, you can then import from whichever source you wish in the usual manner.


This quick method only gives you one link for each feed type, but websites may indicate many links of any type.
Perhaps it’s a news site with a RSS feed for each news category. You can iterate over all links using the
ArrayObject’s iterator.


		1
2
3
4
5


		$links = Zend_Feed_Reader::findFeedLinks('http://www.planet-php.net');

foreach ($links as $link) {
    echo $link['uri'], "\n";
}













Attribute Collections


In an attempt to simplify return types, with Zend Framework 1.10 return types from the various feed and entry level
methods may include an object of type Zend_Feed_Reader_Collection_CollectionAbstract. Despite the special class
name which I’ll explain below, this is just a simple subclass of SPL‘s ArrayObject.


The main purpose here is to allow the presentation of as much data as possible from the requested elements, while
still allowing access to the most relevant data as a simple array. This also enforces a standard approach to
returning such data which previously may have wandered between arrays and objects.


The new class type acts identically to ArrayObject with the sole addition being a new method getValues()
which returns a simple flat array containing the most relevant information.


A simple example of this is Zend_Feed_Reader_FeedInterface::getCategories(). When used with any RSS or Atom
feed, this method will return category data as a container object called Zend_Feed_Reader_Collection_Category.
The container object will contain, per category, three fields of data: term, scheme and label. The “term” is the
basic category name, often machine readable (i.e. plays nice with URIs). The scheme represents a categorisation
scheme (usually a URI identifier) also known as a “domain” in RSS 2.0. The “label” is a human readable category
name which supports HTML entities. In RSS 2.0, there is no label attribute so it is always set to the same
value as the term for convenience.


To access category labels by themselves in a simple value array, you might commit to something like:


		1
2
3
4
5
6


		$feed = Zend_Feed_Reader::import('http://www.example.com/atom.xml');
$categories = $feed->getCategories();
$labels = array();
foreach ($categories as $cat) {
    $labels[] = $cat['label']
}










It’s a contrived example, but the point is that the labels are tied up with other information.


However, the container class allows you to access the “most relevant” data as a simple array using the
getValues() method. The concept of “most relevant” is obviously a judgement call. For categories it means the
category labels (not the terms or schemes) while for authors it would be the authors’ names (not their email
addresses or URIs). The simple array is flat (just values) and passed through array_unique() to remove
duplication.


		1
2
3


		$feed = Zend_Feed_Reader::import('http://www.example.com/atom.xml');
$categories = $feed->getCategories();
$labels = $categories->getValues();










The above example shows how to extract only labels and nothing else thus giving simple access to the category
labels without any additional work to extract that data by itself.





Retrieving Feed Information


Retrieving information from a feed (we’ll cover entries and items in the next section though they follow identical
principals) uses a clearly defined API which is exactly the same regardless of whether the feed in question is
RSS, RDF or Atom. The same goes for sub-versions of these standards and we’ve tested every single RSS and
Atom version. While the underlying feed XML can differ substantially in terms of the tags and elements they
present, they nonetheless are all trying to convey similar information and to reflect this all the differences and
wrangling over alternative tags are handled internally by Zend_Feed_Reader presenting you with an identical
interface for each. Ideally, you should not have to care whether a feed is RSS or Atom so long as you can extract
the information you want.



Note


While determining common ground between feed types is itself complex, it should be noted that RSS in
particular is a constantly disputed “specification”. This has its roots in the original RSS 2.0 document which
contains ambiguities and does not detail the correct treatment of all elements. As a result, this component
rigorously applies the RSS 2.0.11 Specification published by the RSS Advisory Board and its accompanying
RSS Best Practices Profile. No other interpretation of RSS 2.0 will be supported though exceptions may be
allowed where it does not directly prevent the application of the two documents mentioned above.




Of course, we don’t live in an ideal world so there may be times the API just does not cover what you’re looking
for. To assist you, Zend_Feed_Reader offers a plugin system which allows you to write Extensions to expand the
core API and cover any additional data you are trying to extract from feeds. If writing another Extension is too
much trouble, you can simply grab the underlying DOM or XPath objects and do it by hand in your application. Of
course, we really do encourage writing an Extension simply to make it more portable and reusable, and useful
Extensions may be proposed to the Framework for formal addition.


Here’s a summary of the Core API for Feeds. You should note it comprises not only the basic RSS and Atom
standards, but also accounts for a number of included Extensions bundled with Zend_Feed_Reader. The naming of
these Extension sourced methods remain fairly generic - all Extension methods operate at the same level as the Core
API though we do allow you to retrieve any specific Extension object separately if required.



Feed Level API Methods





		getId()
		Returns a unique ID associated with this feed



		getTitle()
		Returns the title of the feed



		getDescription()
		Returns the text description of the feed.



		getLink()
		Returns a URI to the HTML website containing the same or similar information as this feed (i.e. if the feed is from a blog, it should provide the blog’s URI where the HTML version of the entries can be read).



		getFeedLink()
		Returns the URI of this feed, which may be the same as the URI used to import the feed. There are important cases where the feed link may differ because the source URI is being updated and is intended to be removed in the future.



		getAuthors()
		Returns an object of type Zend_Feed_Reader_Collection_Author which is an ArrayObject whose elements are each simple arrays containing any combination of the keys “name”, “email” and “uri”. Where irrelevant to the source data, some of these keys may be omitted.



		getAuthor(integer $index = 0)
		Returns either the first author known, or with the optional $index parameter any specific index on the array of Authors as described above (returning NULL if an invalid index).



		getDateCreated()
		Returns the date on which this feed was created. Generally only applicable to Atom where it represents the date the resource described by an Atom 1.0 document was created. The returned date will be a DateTime object.



		getDateModified()
		Returns the date on which this feed was last modified. The returned date will be a DateTime object.



		getLastBuildDate()
		Returns the date on which this feed was last built. The returned date will be a DateTime object. This is only supported by RSS - Atom feeds will always return NULL.



		getLanguage()
		Returns the language of the feed (if defined) or simply the language noted in the XML document.



		getGenerator()
		Returns the generator of the feed, e.g. the software which generated it. This may differ between RSS and Atom since Atom defines a different notation.



		getCopyright()
		Returns any copyright notice associated with the feed.



		getHubs()
		Returns an array of all Hub Server URI endpoints which are advertised by the feed for use with the Pubsubhubbub Protocol, allowing subscriptions to the feed for real-time updates.



		getCategories()
		Returns a Zend_Feed_Reader_Collection_Category object containing the details of any categories associated with the overall feed. The supported fields include “term” (the machine readable category name), “scheme” (the categorisation scheme and domain for this category), and “label” (a HTML decoded human readable category name). Where any of the three fields are absent from the field, they are either set to the closest available alternative or, in the case of “scheme”, set to NULL.



		getImage()
		Returns an array containing data relating to any feed image or logo, or NULL if no image found. The resulting array may contain the following keys: uri, link, title, description, height, and width. Atom logos only contain a URI so the remaining metadata is drawn from RSS feeds only.







Given the variety of feeds in the wild, some of these methods will undoubtedly return NULL indicating the
relevant information couldn’t be located. Where possible, Zend_Feed_Reader will fall back on alternative
elements during its search. For example, searching an RSS feed for a modification date is more complicated than
it looks. RSS 2.0 feeds should include a <lastBuildDate> tag and (or) a <pubDate> element. But what if it
doesn’t, maybe this is an RSS 1.0 feed? Perhaps it instead has an <atom:updated> element with identical
information (Atom may be used to supplement RSS‘s syntax)? Failing that, we could simply look at the entries,
pick the most recent, and use its <pubDate> element. Assuming it exists... Many feeds also use Dublin Core 1.0
or 1.1 <dc:date> elements for feeds and entries. Or we could find Atom lurking again.


The point is, Zend_Feed_Reader was designed to know this. When you ask for the modification date (or anything
else), it will run off and search for all these alternatives until it either gives up and returns NULL, or
finds an alternative that should have the right answer.


In addition to the above methods, all Feed objects implement methods for retrieving the DOM and XPath objects for
the current feeds as described earlier. Feed objects also implement the SPL Iterator and Countable interfaces.
The extended API is summarised below.



Extended Feed Level API Methods





		getDomDocument()
		Returns the parent DOMDocument object for the entire source XML document



		getElement()
		Returns the current feed level DOMElement object



		saveXml()
		Returns a string containing an XML document of the entire feed element (this is not the original document but a rebuilt version)



		getXpath()
		Returns the DOMXPath object used internally to run queries on the DOMDocument object (this includes core and Extension namespaces pre-registered)



		getXpathPrefix()
		Returns the valid DOM path prefix prepended to all XPath queries matching the feed being queried



		getEncoding()
		Returns the encoding of the source XML document (note: this cannot account for errors such as the server sending documents in a different encoding). Where not defined, the default UTF-8 encoding of Unicode is applied.



		count()
		Returns a count of the entries or items this feed contains (implements SPLCountable interface)



		current()
		Returns either the current entry (using the current index from key())



		key()
		Returns the current entry index



		next()
		Increments the entry index value by one



		rewind()
		Resets the entry index to 0



		valid()
		Checks that the current entry index is valid, i.e. it does fall below 0 and does not exceed the number of entries existing.



		getExtensions()
		Returns an array of all Extension objects loaded for the current feed (note: both feed-level and entry-level Extensions exist, and only feed-level Extensions are returned here). The array keys are of the form {ExtensionName}_Feed.



		getExtension(string $name)
		Returns an Extension object for the feed registered under the provided name. This allows more fine-grained access to Extensions which may otherwise be hidden within the implementation of the standard API methods.



		getType()
		Returns a static class constant (e.g. Zend_Feed_Reader::TYPE_ATOM_03, i.e. Atom 0.3) indicating exactly what kind of feed is being consumed.










Retrieving Entry/Item Information


Retrieving information for specific entries or items (depending on whether you speak Atom or RSS) is identical to
feed level data. Accessing entries is simply a matter of iterating over a Feed object or using the SPL
Iterator interface Feed objects implement and calling the appropriate method on each.



Entry Level API Methods





		getId()
		Returns a unique ID for the current entry.



		getTitle()
		Returns the title of the current entry.



		getDescription()
		Returns a description of the current entry.



		getLink()
		Returns a URI to the HTML version of the current entry.



		getPermaLink()
		Returns the permanent link to the current entry. In most cases, this is the same as using getLink().



		getAuthors()
		Returns an object of type Zend_Feed_Reader_Collection_Author which is an ArrayObject whose elements are each simple arrays containing any combination of the keys “name”, “email” and “uri”. Where irrelevant to the source data, some of these keys may be omitted.



		getAuthor(integer $index = 0)
		Returns either the first author known, or with the optional $index parameter any specific index on the array of Authors as described above (returning NULL if an invalid index).



		getDateCreated()
		Returns the date on which the current entry was created. Generally only applicable to Atom where it represents the date the resource described by an Atom 1.0 document was created.



		getDateModified()
		Returns the date on which the current entry was last modified



		getContent()
		Returns the content of the current entry (this has any entities reversed if possible assuming the content type is HTML). The description is returned if a separate content element does not exist.



		getEnclosure()
		Returns an array containing the value of all attributes from a multi-media <enclosure> element including as array keys: url, length, type. In accordance with the RSS Best Practices Profile of the RSS Advisory Board, no support is offers for multiple enclosures since such support forms no part of the RSS specification.



		getCommentCount()
		Returns the number of comments made on this entry at the time the feed was last generated



		getCommentLink()
		Returns a URI pointing to the HTML page where comments can be made on this entry



		getCommentFeedLink([string $type = ‘atom’|’rss’])
		Returns a URI pointing to a feed of the provided type containing all comments for this entry (type defaults to Atom/RSS depending on current feed type).



		getCategories()
		Returns a Zend_Feed_Reader_Collection_Category object containing the details of any categories associated with the entry. The supported fields include “term” (the machine readable category name), “scheme” (the categorisation scheme and domain for this category), and “label” (a HTML decoded human readable category name). Where any of the three fields are absent from the field, they are either set to the closest available alternative or, in the case of “scheme”, set to NULL.







The extended API for entries is identical to that for feeds with the exception of the Iterator methods which are
not needed here.



Caution


There is often confusion over the concepts of modified and created dates. In Atom, these are two clearly defined
concepts (so knock yourself out) but in RSS they are vague. RSS 2.0 defines a single <pubDate> element
which typically refers to the date this entry was published, i.e. a creation date of sorts. This is not always
the case, and it may change with updates or not. As a result, if you really want to check whether an entry has
changed, don’t rely on the results of getDateModified(). Instead, consider tracking the MD5 hash of three
other elements concatenated, e.g. using getTitle(), getDescription() and getContent(). If the entry
was truly updated, this hash computation will give a different result than previously saved hashes for the same
entry. This is obviously content oriented, and will not assist in detecting changes to other relevant elements.
Atom feeds should not require such steps.


Further muddying the waters, dates in feeds may follow different standards. Atom and Dublin Core dates should
follow ISO 8601, and RSS dates should follow RFC 822 or RFC 2822 which is also common. Date methods will
throw an exception if DateTime cannot load the date string using one of the above standards, or the PHP
recognised possibilities for RSS dates.





Warning


The values returned from these methods are not validated. This means users must perform validation on all
retrieved data including the filtering of any HTML such as from getContent() before it is output from your
application. Remember that most feeds come from external sources, and therefore the default assumption should be
that they cannot be trusted.





Extended Entry Level API Methods





		getDomDocument()
		Returns the parent DOMDocument object for the entire feed (not just the current entry)



		getElement()
		Returns the current entry level DOMElement object



		getXpath()
		Returns the DOMXPath object used internally to run queries on the DOMDocument object (this includes core and Extension namespaces pre-registered)



		getXpathPrefix()
		Returns the valid DOM path prefix prepended to all XPath queries matching the entry being queried



		getEncoding()
		Returns the encoding of the source XML document (note: this cannot account for errors such as the server sending documents in a different encoding). The default encoding applied in the absence of any other is the UTF-8 encoding of Unicode.



		getExtensions()
		Returns an array of all Extension objects loaded for the current entry (note: both feed-level and entry-level Extensions exist, and only entry-level Extensions are returned here). The array keys are in the form {ExtensionName}_Entry.



		getExtension(string $name)
		Returns an Extension object for the entry registered under the provided name. This allows more fine-grained access to Extensions which may otherwise be hidden within the implementation of the standard API methods.



		getType()
		Returns a static class constant (e.g. Zend_Feed_Reader::TYPE_ATOM_03, i.e. Atom 0.3) indicating exactly what kind of feed is being consumed.










Extending Feed and Entry APIs


Extending Zend_Feed_Reader allows you to add methods at both the feed and entry level which cover the retrieval
of information not already supported by Zend_Feed_Reader. Given the number of RSS and Atom extensions that
exist, this is a good thing since Zend_Feed_Reader couldn’t possibly add everything.


There are two types of Extensions possible, those which retrieve information from elements which are immediate
children of the root element (e.g. <channel> for RSS or <feed> for Atom) and those who retrieve
information from child elements of an entry (e.g. <item> for RSS or <entry> for Atom). On the filesystem
these are grouped as classes within a namespace based on the extension standard’s name. For example, internally we
have Zend_Feed_Reader_Extension_DublinCore_Feed and Zend_Feed_Reader_Extension_DublinCore_Entry classes
which are two Extensions implementing Dublin Core 1.0 and 1.1 support.


Extensions are loaded into Zend_Feed_Reader using Zend_Loader_PluginLoader, so their operation will be
familiar from other Zend Framework components. Zend_Feed_Reader already bundles a number of these Extensions,
however those which are not used internally and registered by default (so called Core Extensions) must be
registered to Zend_Feed_Reader before they are used. The bundled Extensions include:



Core Extensions (pre-registered)





		DublinCore (Feed and Entry)
		Implements support for Dublin Core Metadata Element Set 1.0 and 1.1



		Content (Entry only)
		Implements support for Content 1.0



		Atom (Feed and Entry)
		Implements support for Atom 0.3 and Atom 1.0



		Slash
		Implements support for the Slash RSS 1.0 module



		WellFormedWeb
		Implements support for the Well Formed Web CommentAPI 1.0



		Thread
		Implements support for Atom Threading Extensions as described in RFC 4685



		Podcast
		Implements support for the Podcast 1.0 DTD from Apple







The Core Extensions are somewhat special since they are extremely common and multi-faceted. For example, we have a
Core Extension for Atom. Atom is implemented as an Extension (not just a base class) because it doubles as a valid
RSS module - you can insert Atom elements into RSS feeds. I’ve even seen RDF feeds which use a lot of Atom in
place of more common Extensions like Dublin Core.



Non-Core Extensions (must register manually)





		Syndication
		Implements Syndication 1.0 support for RSS feeds



		CreativeCommons
		A RSS module that adds an element at the <channel> or <item> level that specifies which Creative Commons license applies.







The additional non-Core Extensions are offered but not registered to Zend_Feed_Reader by default. If you want
to use them, you’ll need to tell Zend_Feed_Reader to load them in advance of importing a feed. Additional
non-Core Extensions will be included in future iterations of the component.


Registering an Extension with Zend_Feed_Reader, so it is loaded and its API is available to Feed and Entry
objects, is a simple affair using the Zend_Loader_PluginLoader. Here we register the optional Slash Extension,
and discover that it can be directly called from the Entry level API without any effort. Note that Extension
names are case sensitive and use camel casing for multiple terms.


		1
2
3


		Zend_Feed_Reader::registerExtension('Syndication');
$feed = Zend_Feed_Reader::import('http://rss.slashdot.org/Slashdot/slashdot');
$updatePeriod = $feed->current()->getUpdatePeriod();










In the simple example above, we checked how frequently a feed is being updated using the getUpdatePeriod()
method. Since it’s not part of Zend_Feed_Reader‘s core API, it could only be a method supported by the newly
registered Syndication Extension.


As you can also notice, the new methods from Extensions are accessible from the main API using PHP‘s magic
methods. As an alternative, you can also directly access any Extension object for a similar result as seen below.


		1
2
3
4


		Zend_Feed_Reader::registerExtension('Syndication');
$feed = Zend_Feed_Reader::import('http://rss.slashdot.org/Slashdot/slashdot');
$syndication = $feed->getExtension('Syndication');
$updatePeriod = $syndication->getUpdatePeriod();











Writing Zend_Feed_Reader Extensions


Inevitably, there will be times when the Zend_Feed_Reader API is just not capable of getting something you
need from a feed or entry. You can use the underlying source objects, like DOMDocument, to get these by hand
however there is a more reusable method available by writing Extensions supporting these new queries.


As an example, let’s take the case of a purely fictitious corporation named Jungle Books. Jungle Books have been
publishing a lot of reviews on books they sell (from external sources and customers), which are distributed as an
RSS 2.0 feed. Their marketing department realises that web applications using this feed cannot currently figure
out exactly what book is being reviewed. To make life easier for everyone, they determine that the geek department
needs to extend RSS 2.0 to include a new element per entry supplying the ISBN-10 or ISBN-13 number of the
publication the entry concerns. They define the new <isbn> element quite simply with a standard name and
namespace URI:


		1
2


		JungleBooks 1.0:
http://example.com/junglebooks/rss/module/1.0/










A snippet of RSS containing this extension in practice could be something similar to:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		<?xml version="1.0" encoding="utf-8" ?>
<rss version="2.0"
   xmlns:content="http://purl.org/rss/1.0/modules/content/"
   xmlns:jungle="http://example.com/junglebooks/rss/module/1.0/">
<channel>
    <title>Jungle Books Customer Reviews</title>
    <link>http://example.com/junglebooks</link>
    <description>Many book reviews!</description>
    <pubDate>Fri, 26 Jun 2009 19:15:10 GMT</pubDate>
    <jungle:dayPopular>
        http://example.com/junglebooks/book/938
    </jungle:dayPopular>
    <item>
        <title>Review Of Flatland: A Romance of Many Dimensions</title>
        <link>http://example.com/junglebooks/review/987</link>
        <author>Confused Physics Student</author>
        <content:encoded>
        A romantic square?!
        </content:encoded>
        <pubDate>Thu, 25 Jun 2009 20:03:28 -0700</pubDate>
        <jungle:isbn>048627263X</jungle:isbn>
    </item>
</channel>
</rss>










Implementing this new ISBN element as a simple entry level extension would require the following class (using
your own class namespace outside of Zend).


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		class My_FeedReader_Extension_JungleBooks_Entry
    extends Zend_Feed_Reader_Extension_EntryAbstract
{
    public function getIsbn()
    {
        if (isset($this->_data['isbn'])) {
            return $this->_data['isbn'];
        }
        $isbn = $this->_xpath->evaluate(
            'string(' . $this->getXpathPrefix() . '/jungle:isbn)'
        );
        if (!$isbn) {
            $isbn = null;
        }
        $this->_data['isbn'] = $isbn;
        return $this->_data['isbn'];
    }

    protected function _registerNamespaces()
    {
        $this->_xpath->registerNamespace(
            'jungle', 'http://example.com/junglebooks/rss/module/1.0/'
        );
    }
}










This extension is easy enough to follow. It creates a new method getIsbn() which runs an XPath query on the
current entry to extract the ISBN number enclosed by the <jungle:isbn> element. It can optionally store this
to the internal non-persistent cache (no need to keep querying the DOM if it’s called again on the same entry).
The value is returned to the caller. At the end we have a protected method (it’s abstract so it must exist) which
registers the Jungle Books namespace for their custom RSS module. While we call this an RSS module, there’s
nothing to prevent the same element being used in Atom feeds - and all Extensions which use the prefix provided by
getXpathPrefix() are actually neutral and work on RSS or Atom feeds with no extra code.


Since this Extension is stored outside of Zend Framework, you’ll need to register the path prefix for your
Extensions so Zend_Loader_PluginLoader can find them. After that, it’s merely a matter of registering the
Extension, if it’s not already loaded, and using it in practice.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		if(!Zend_Feed_Reader::isRegistered('JungleBooks')) {
    Zend_Feed_Reader::addPrefixPath(
        'My_FeedReader_Extension', '/path/to/My/FeedReader/Extension'
    );
    Zend_Feed_Reader::registerExtension('JungleBooks');
}
$feed = Zend_Feed_Reader::import('http://example.com/junglebooks/rss');

// ISBN for whatever book the first entry in the feed was concerned with
$firstIsbn = $feed->current()->getIsbn();










Writing a feed level Extension is not much different. The example feed from earlier included an unmentioned
<jungle:dayPopular> element which Jungle Books have added to their standard to include a link to the day’s most
popular book (in terms of visitor traffic). Here’s an Extension which adds a getDaysPopularBookLink() method to
the feel level API.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		class My_FeedReader_Extension_JungleBooks_Feed
    extends Zend_Feed_Reader_Extension_FeedAbstract
{
    public function getDaysPopularBookLink()
    {
        if (isset($this->_data['dayPopular'])) {
            return $this->_data['dayPopular'];
        }
        $dayPopular = $this->_xpath->evaluate(
            'string(' . $this->getXpathPrefix() . '/jungle:dayPopular)'
        );
        if (!$dayPopular) {
            $dayPopular = null;
        }
        $this->_data['dayPopular'] = $dayPopular;
        return $this->_data['dayPopular'];
    }

    protected function _registerNamespaces()
    {
        $this->_xpath->registerNamespace(
            'jungle', 'http://example.com/junglebooks/rss/module/1.0/'
        );
    }
}










Let’s repeat the last example using a custom Extension to show the method being used.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		if(!Zend_Feed_Reader::isRegistered('JungleBooks')) {
    Zend_Feed_Reader::addPrefixPath(
        'My_FeedReader_Extension', '/path/to/My/FeedReader/Extension'
    );
    Zend_Feed_Reader::registerExtension('JungleBooks');
}
$feed = Zend_Feed_Reader::import('http://example.com/junglebooks/rss');

// URI to the information page of the day's most popular book with visitors
$daysPopularBookLink = $feed->getDaysPopularBookLink();

// ISBN for whatever book the first entry in the feed was concerned with
$firstIsbn = $feed->current()->getIsbn();










Going through these examples, you’ll note that we don’t register feed and entry Extensions separately. Extensions
within the same standard may or may not include both a feed and entry class, so Zend_Feed_Reader only requires
you to register the overall parent name, e.g. JungleBooks, DublinCore, Slash. Internally, it can check at what
level Extensions exist and load them up if found. In our case, we have a full set of Extensions now:
JungleBooks_Feed and JungleBooks_Entry.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Feed_Reader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.prompt5.png





modules/zend.server.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend_Server family of classes provides functionality for the various server classes, including
Zend_XmlRpc_Server, Zend_Rest_Server, Zend_Json_Server and Zend_Soap_Wsdl.
Zend_Server_Interface provides an interface that mimics PHP 5’s SoapServer class; all server classes
should implement this interface in order to provide a standard server API.


The Zend_Server_Reflection tree provides a standard mechanism for performing function and class introspection
for use as callbacks with the server classes, and provides data suitable for use with Zend_Server_Interface‘s
getFunctions() and loadFunctions() methods.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.credit-card.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
CreditCard


Zend\Validator\CreditCard allows you to validate if a given value could be a credit card number.


A credit card contains several items of metadata, including a hologram, account number, logo, expiration date,
security code and the card holder name. The algorithms for verifying the combination of metadata are only known to
the issuing company, and should be verified with them for purposes of payment. However, it’s often useful to know
whether or not a given number actually falls within the ranges of possible numbers prior to performing such
verification, and, as such, Zend\Validator\CreditCard simply verifies that the credit card number provided is
well-formed.


For those cases where you have a service that can perform comprehensive verification, Zend\Validator\CreditCard
also provides the ability to attach a service callback to trigger once the credit card number has been deemed
valid; this callback will then be triggered, and its return value will determine overall validity.


The following issuing institutes are accepted:



		American Express


China UnionPay


Diners Club Card Blanche


Diners Club International


Diners Club US & Canada


Discover Card


JCB


Laser


Maestro


MasterCard


Solo


Visa


Visa Electron









Note


Invalid institutes


The institutes Bankcard and Diners Club enRoute do not exist anymore. Therefore they are treated as
invalid.


Switch has been rebranded to Visa and is therefore also treated as invalid.





Supported options for Zend\Validator\CreditCard


The following options are supported for Zend\Validator\CreditCard:



		service: A callback to an online service which will additionally be used for the validation.


		type: The type of credit card which will be validated. See the below list of institutes for details.








Basic usage


There are several credit card institutes which can be validated by Zend\Validator\CreditCard. Per default, all
known institutes will be accepted. See the following example:


		1
2
3
4
5
6


		$valid = new Zend\Validator\CreditCard();
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The above example would validate against all known credit card institutes.





Accepting defined credit cards


Sometimes it is necessary to accept only defined credit card institutes instead of all; e.g., when you have a
webshop which accepts only Visa and American Express cards. Zend\Validator\CreditCard allows you to do exactly
this by limiting it to exactly these institutes.


To use a limitation you can either provide specific institutes at initiation, or afterwards by using setType().
Each can take several arguments.


You can provide a single institute:


		1
2
3


		$valid = new Zend\Validator\CreditCard(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS
);










When you want to allow multiple institutes, then you can provide them as array:


		1
2
3
4


		$valid = new Zend\Validator\CreditCard(array(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS,
    Zend\Validator\CreditCard::VISA
));










And as with all validators, you can also pass an associative array of options or an instance of Traversable. In
this case you have to provide the institutes with the type array key as simulated here:


		1
2
3


		$valid = new Zend\Validator\CreditCard(array(
    'type' => array(Zend\Validator\CreditCard::AMERICAN_EXPRESS)
));











Constants for credit card institutes





		Institute
		Constant





		American Express
		AMERICAN_EXPRESS



		China UnionPay
		UNIONPAY



		Diners Club Card Blanche
		DINERS_CLUB



		Diners Club International
		DINERS_CLUB



		Diners Club US & Canada
		DINERS_CLUB_US



		Discover Card
		DISCOVER



		JCB
		JCB



		Laser
		LASER



		Maestro
		MAESTRO



		MasterCard
		MASTERCARD



		Solo
		SOLO



		Visa
		VISA



		Visa Electron
		VISA







You can also set or add institutes afterward instantiation by using the methods setType(), addType() and
getType().


		1
2
3
4
5


		$valid = new Zend\Validator\CreditCard();
$valid->setType(array(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS,
    Zend\Validator\CreditCard::VISA
));











Note


Default institute


When no institute is given at initiation then ALL will be used, which sets all institutes at once.


In this case the usage of addType() is useless because all institutes are already added.







Validation by using foreign APIs


As said before Zend\Validator\CreditCard will only validate the credit card number. Fortunately, some
institutes provide online APIs which can validate a credit card number by using algorithms which are not
available to the public. Most of these services are paid services. Therefore, this check is deactivated per
default.


When you have access to such an API, then you can use it as an add on for Zend\Validator\CreditCard and
increase the security of the validation.


To do so, you simply need to give a callback which will be called when the generic validation has passed. This
prevents the API from being called for invalid numbers, which increases the performance of the application.


setService() sets a new service, and getService() returns the set service. As a configuration option, you
can give the array key ‘service‘ at initiation. For details about possible options take a look into
Callback.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Your service class
class CcService
{
    public function checkOnline($cardnumber, $types)
    {
        // some online validation
    }
}

// The validation
$service = new CcService();
$valid   = new Zend\Validator\CreditCard(Zend\Validator\CreditCard::VISA);
$valid->setService(array($service, 'checkOnline'));










As you can see the callback method will be called with the credit card number as the first parameter, and the
accepted types as the second parameter.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                CreditCard
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.less-than.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
LessThan


Zend\Validator\LessThan allows you to validate if a given value is less than a maximum border value.



Note


ZendValidatorLessThan supports only number validation


It should be noted that Zend\Validator\LessThan supports only the validation of numbers. Strings or dates
can not be validated with this validator.





Supported options for Zend\Validator\LessThan


The following options are supported for Zend\Validator\LessThan:



		inclusive: Defines if the validation is inclusive the maximum border value or exclusive. It defaults to
FALSE.


		max: Sets the maximum allowed value.








Basic usage


To validate if a given value is less than a defined border simply use the following example.


		1
2
3
4


		$valid  = new Zend\Validator\LessThan(array('max' => 10));
$value  = 12;
$return = $valid->isValid($value);
// returns false










The above example returns TRUE for all values which are lower than 10.





Validation inclusive the border value


Sometimes it is useful to validate a value by including the border value. See the following example:


		1
2
3
4
5
6
7
8
9


		$valid  = new Zend\Validator\LessThan(
    array(
        'max' => 10,
        'inclusive' => true
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns true










The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed
and will return TRUE.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                LessThan
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.exception.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Exceptions


Zend_Exception is simply the base class for all exceptions thrown within Zend Framework.


Catching an Exception


The following code listing demonstrates how to catch an exception thrown in a Zend Framework class:


		1
2
3
4
5
6
7
8
9


		try {
    // Calling Zend_Loader::loadClass() with a non-existant class will cause
    // an exception to be thrown in Zend_Loader:
    Zend_Loader::loadClass('nonexistantclass');
} catch (Zend_Exception $e) {
    echo "Caught exception: " . get_class($e) . "\n";
    echo "Message: " . $e->getMessage() . "\n";
    // Other code to recover from the error
}










Zend_Exception can be used as a catch-all exception class in a catch block to trap all exceptions thrown by
Zend Framework classes. This can be useful when the program can not recover by catching a specific exception type.


The documentation for each Zend Framework component and class will contain specific information on which methods
throw exceptions, the circumstances that cause an exception to be thrown, and the various exception types that may
be thrown.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Exceptions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.skeleton-application.404.png
Z7 272 Skeleton Application

€ € © zf2-tutorial.localhost/ 1234

Skeleton Application  H

A 404 error occurred
Page not found.

‘The requested URL could not be matched by routing.

© 2006 - 2012 by Zend Technologies Ltd. Al rights reserved,






modules/zend.memory.memory-manager.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Memory Manager



Creating a Memory Manager


You can create new a memory manager (Zend_Memory_Manager object) using the Zend_Memory::factory($backendName
[, $backendOprions]) method.


The first argument $backendName is a string that names one of the backend implementations supported by
Zend_Cache.


The second argument $backendOptions is an optional backend options array.


		1
2
3
4
5


		$backendOptions = array(
    'cache_dir' => './tmp/' // Directory where to put the swapped memory blocks
);

$memoryManager = Zend_Memory::factory('File', $backendOptions);










Zend_Memory uses Zend_Cache backends as storage providers.


You may use the special name ‘None’ as a backend name, in addition to standard Zend_Cache backends.


		1


		$memoryManager = Zend_Memory::factory('None');










If you use ‘None’ as the backend name, then the memory manager never swaps memory blocks. This is useful if you
know that memory is not limited or the overall size of objects never reaches the memory limit.


The ‘None’ backend doesn’t need any option specified.





Managing Memory Objects


This section describes creating and destroying objects in the managed memory, and settings to control memory
manager behavior.



Creating Movable Objects


Create movable objects (objects, which may be swapped) using the Zend_Memory_Manager::create([$data]) method:


		1


		$memObject = $memoryManager->create($data);










The $data argument is optional and used to initialize the object value. If the $data argument is omitted,
the value is an empty string.





Creating Locked Objects


Create locked objects (objects, which are not swapped) using the Zend_Memory_Manager::createLocked([$data])
method:


		1


		$memObject = $memoryManager->createLocked($data);










The $data argument is optional and used to initialize the object value. If the $data argument is omitted,
the value is an empty string.





Destroying Objects


Memory objects are automatically destroyed and removed from memory when they go out of scope:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		function foo()
{
    global $memoryManager, $memList;

    ...

    $memObject1 = $memoryManager->create($data1);
    $memObject2 = $memoryManager->create($data2);
    $memObject3 = $memoryManager->create($data3);

    ...

    $memList[] = $memObject3;

    ...

    unset($memObject2); // $memObject2 is destroyed here

    ...
    // $memObject1 is destroyed here
    // but $memObject3 object is still referenced by $memList
    // and is not destroyed
}










This applies to both movable and locked objects.







Memory Manager Settings



Memory Limit


Memory limit is a number of bytes allowed to be used by loaded movable objects.


If loading or creation of an object causes memory usage to exceed of this limit, then the memory manager swaps some
other objects.


You can retrieve or set the memory limit setting using the getMemoryLimit() and setMemoryLimit($newLimit)
methods:


		1
2


		$oldLimit = $memoryManager->getMemoryLimit();  // Get memory limit in bytes
$memoryManager->setMemoryLimit($newLimit);     // Set memory limit in bytes










A negative value for memory limit means ‘no limit’.


The default value is two-thirds of the value of ‘memory_limit’ in php.ini or ‘no limit’ (-1) if ‘memory_limit’ is
not set in php.ini.





MinSize


MinSize is a minimal size of memory objects, which may be swapped by memory manager. The memory manager does not
swap objects that are smaller than this value. This reduces the number of swap/load operations.


You can retrieve or set the minimum size using the getMinSize() and setMinSize($newSize) methods:


		1
2


		$oldMinSize = $memoryManager->getMinSize();  // Get MinSize in bytes
$memoryManager->setMinSize($newSize);        // Set MinSize limit in bytes










The default minimum size value is 16KB (16384 bytes).










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Memory Manager
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.strike-iron.overview.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_StrikeIron


Zend_Service_StrikeIron provides a PHP 5 client to StrikeIron web services. See the following sections:




		Zend_Service_StrikeIron


		Bundled Services


		Advanced Use










Overview


StrikeIron [http://www.strikeiron.com] offers hundreds of commercial data services (“Data as a Service”) such as Online Sales Tax, Currency
Rates, Stock Quotes, Geocodes, Global Address Verification, Yellow/White Pages, MapQuest Driving Directions, Dun &
Bradstreet Business Credit Checks, and much, much more.


Each StrikeIron web service shares a standard SOAP (and REST) API, making it easy to integrate and manage
multiple services. StrikeIron also manages customer billing for all services in a single account, making it perfect
for solution providers. Get started with free web services at http://www.strikeiron.com/sdp.


StrikeIron’s services may be used through the PHP 5 SOAP extension [http://us.php.net/soap] alone. However, using StrikeIron this way
does not give an ideal PHP-like interface. The Zend_Service_StrikeIron component provides a lightweight layer
on top of the SOAP extension for working with StrikeIron services in a more convenient, PHP-like manner.



Note


The PHP 5 SOAP extension must be installed and enabled to use Zend_Service_StrikeIron.




The Zend_Service_StrikeIron component provides:




		A single point for configuring your StrikeIron authentication credentials that can be used across many
StrikeIron services.


		A standard way of retrieving your StrikeIron subscription information such as license status and the number of
hits remaining to a service.


		The ability to use any StrikeIron service from its WSDL without creating a PHP wrapper class, and the option
of creating a wrapper for a more convenient interface.


		Wrappers for three popular StrikeIron services.












Registering with StrikeIron


Before you can get started with Zend_Service_StrikeIron, you must first register [http://strikeiron.com/Register.aspx] for a StrikeIron developer
account.


After registering, you will receive a StrikeIron username and password. These will be used when connecting to
StrikeIron using Zend_Service_StrikeIron.


You will also need to sign up [http://www.strikeiron.com/ProductDetail.aspx?p=257] for StrikeIron’s Super Data Pack Web Service.


Both registration steps are free and can be done relatively quickly through the StrikeIron website.





Getting Started


Once you have registered [http://strikeiron.com/Register.aspx] for a StrikeIron account and signed up for the Super Data Pack [http://www.strikeiron.com/ProductDetail.aspx?p=257], you’re ready to
start using Zend_Service_StrikeIron.


StrikeIron consists of hundreds of different web services. Zend_Service_StrikeIron can be used with many of
these services but provides supported wrappers for three of them:



		ZIP Code Information


		US Address Verification


		Sales & Use Tax Basic





The class Zend_Service_StrikeIron provides a simple way of specifying your StrikeIron account information and
other options in its constructor. It also has a factory method that will return clients for StrikeIron services:


		1
2
3
4


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));










The getService() method will return a client for any StrikeIron service by the name of its PHP wrapper class.
In this case, the name ‘SalesUseTaxBasic’ refers to the wrapper class Zend_Service_StrikeIron_SalesUseTaxBasic.
Wrappers are included for three services and described in Bundled Services.


The getService() method can also return a client for a StrikeIron service that does not yet have a PHP
wrapper. This is explained in Using Services by WSDL.





Making Your First Query


Once you have used the getService() method to get a client for a particular StrikeIron service, you can utilize
that client by calling methods on it just like any other PHP object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

// Get a client for the Sales & Use Tax Basic service
$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));

// Query tax rate for Ontario, Canada
$rateInfo = $taxBasic->getTaxRateCanada(array('province' => 'ontario'));
echo $rateInfo->province;
echo $rateInfo->abbreviation;
echo $rateInfo->GST;










In the example above, the getService() method is used to return a client to the Sales & Use Tax Basic service. The client object is stored in
$taxBasic.


The getTaxRateCanada() method is then called on the service. An associative array is used to supply keyword
parameters to the method. This is the way that all StrikeIron methods are called.


The result from getTaxRateCanada() is stored in $rateInfo and has properties like province and GST.


Many of the StrikeIron services are as simple to use as the example above. See Bundled Services for detailed information on three StrikeIron services.





Examining Results


When learning or debugging the StrikeIron services, it’s often useful to dump the result returned from a method
call. The result will always be an object that is an instance of Zend_Service_StrikeIron_Decorator. This is a
small decorator [http://en.wikipedia.org/wiki/Decorator_pattern] object that wraps the results from the method call.


The simplest way to examine a result from the service is to use the built-in PHP functions like print_r() [http://www.php.net/print_r]:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		<?php
$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));

$rateInfo = $taxBasic->getTaxRateCanada(array('province' => 'ontario'));
print_r($rateInfo);
?>

Zend_Service_StrikeIron_Decorator Object
(
    [_name:protected] => GetTaxRateCanadaResult
    [_object:protected] => stdClass Object
        (
            [abbreviation] => ON
            [province] => ONTARIO
            [GST] => 0.06
            [PST] => 0.08
            [total] => 0.14
            [HST] => Y
        )
)










In the output above, we see that the decorator ($rateInfo) wraps an object named GetTaxRateCanadaResult,
the result of the call to getTaxRateCanada().


This means that $rateInfo has public properties like abbreviation, province>, and GST. These are
accessed like $rateInfo->province.



Tip


StrikeIron result properties sometimes start with an uppercase letter such as Foo or Bar where most
PHP object properties normally start with a lowercase letter as in foo or bar. The decorator will
automatically do this inflection so you may read a property Foo as foo.




If you ever need to get the original object or its name out of the decorator, use the respective methods
getDecoratedObject() and getDecoratedObjectName().





Handling Errors


The previous examples are naive, i.e. no error handling was shown. It’s possible that StrikeIron will return a
fault during a method call. Events like bad account credentials or an expired subscription can cause StrikeIron to
raise a fault.


An exception will be thrown when such a fault occurs. You should anticipate and catch these exceptions when making
method calls to the service:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));

try {

  $taxBasic->getTaxRateCanada(array('province' => 'ontario'));

} catch (Zend_Service_StrikeIron_Exception $e) {

  // error handling for events like connection
  // problems or subscription errors

}










The exceptions thrown will always be Zend_Service_StrikeIron_Exception.


It’s important to understand the difference between exceptions and normal failed method calls. Exceptions occur for
exceptional conditions, such as the network going down or your subscription expiring. Failed method calls that
are a common occurrence, such as getTaxRateCanada() not finding the province you supplied, will not result
an in exception.



Note


Every time you make a method call to a StrikeIron service, you should check the response object for validity and
also be prepared to catch an exception.







Checking Your Subscription


StrikeIron provides many different services. Some of these are free, some are available on a trial basis, and some
are pay subscription only. When using StrikeIron, it’s important to be aware of your subscription status for the
services you are using and check it regularly.


Each StrikeIron client returned by the getService() method has the ability to check the subscription status for
that service using the getSubscriptionInfo() method of the client:


		1
2
3
4
5
6
7
8
9


		// Get a client for the Sales & Use Tax Basic service
$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

$taxBasic = $strikeIron->getService(array('class => 'SalesUseTaxBasic'));

// Check remaining hits for the Sales & Use Tax Basic service
$subscription = $taxBasic->getSubscriptionInfo();
echo $subscription->remainingHits;










The getSubscriptionInfo() method will return an object that typically has a remainingHits property. It’s
important to check the status on each service that you are using. If a method call is made to StrikeIron after the
remaining hits have been used up, an exception will occur.


Checking your subscription to a service does not use any remaining hits to the service. Each time any method call
to the service is made, the number of hits remaining will be cached and this cached value will be returned by
getSubscriptionInfo() without connecting to the service again. To force getSubscriptionInfo() to override
its cache and query the subscription information again, use getSubscriptionInfo(true).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_StrikeIron
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.slide-share.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_SlideShare


The Zend_Service_SlideShare component is used to interact with the slideshare.net [http://www.slideshare.net/] web services for hosting
slide shows online. With this component, you can embed slide shows which are hosted on this web site within a web
site and even upload new slide shows to your account.



Getting Started with Zend_Service_SlideShare


In order to use the Zend_Service_SlideShare component you must first create an account on the slideshare.net
servers (more information can be found here [http://www.slideshare.net/developers/]) in order to receive an API key, username, password and shared
secret value – all of which are needed in order to use the Zend_Service_SlideShare component.


Once you have setup an account, you can begin using the Zend_Service_SlideShare component by creating a new
instance of the Zend_Service_SlideShare object and providing these values as shown below:


		1
2
3
4
5


		// Create a new instance of the component
$ss = new Zend_Service_SlideShare('APIKEY',
                                  'SHAREDSECRET',
                                  'USERNAME',
                                  'PASSWORD');













The SlideShow object


All slide shows in the Zend_Service_SlideShare component are represented using the
Zend_Service_SlideShare_SlideShow object (both when retrieving and uploading new slide shows). For your
reference a pseudo-code version of this class is provided below.


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


		class Zend_Service_SlideShare_SlideShow {

    /**
     * Retrieves the location of the slide show
     */
    public function getLocation() {
        return $this->_location;
    }

    /**
     * Gets the transcript for this slide show
     */
    public function getTranscript() {
        return $this->_transcript;
    }

    /**
     * Adds a tag to the slide show
     */
    public function addTag($tag) {
        $this->_tags[] = (string)$tag;
        return $this;
    }

    /**
     * Sets the tags for the slide show
     */
    public function setTags(Array $tags) {
        $this->_tags = $tags;
        return $this;
    }

    /**
     * Gets all of the tags associated with the slide show
     */
    public function getTags() {
        return $this->_tags;
    }

    /**
     * Sets the filename on the local filesystem of the slide show
     * (for uploading a new slide show)
     */
    public function setFilename($file) {
        $this->_slideShowFilename = (string)$file;
        return $this;
    }

    /**
     * Retrieves the filename on the local filesystem of the slide show
     * which will be uploaded
     */
    public function getFilename() {
        return $this->_slideShowFilename;
    }

    /**
     * Gets the ID for the slide show
     */
    public function getId() {
        return $this->_slideShowId;
    }

    /**
     * Retrieves the HTML embed code for the slide show
     */
    public function getEmbedCode() {
        return $this->_embedCode;
    }

    /**
     * Retrieves the Thumbnail URi for the slide show
     */
    public function getThumbnailUrl() {
        return $this->_thumbnailUrl;
    }

    /**
     * Sets the title for the Slide show
     */
    public function setTitle($title) {
        $this->_title = (string)$title;
        return $this;
    }

    /**
     * Retrieves the Slide show title
     */
    public function getTitle() {
        return $this->_title;
    }

    /**
     * Sets the description for the Slide show
     */
    public function setDescription($desc) {
        $this->_description = (string)$desc;
        return $this;
    }

    /**
     * Gets the description of the slide show
     */
    public function getDescription() {
        return $this->_description;
    }

    /**
     * Gets the numeric status of the slide show on the server
     */
    public function getStatus() {
        return $this->_status;
    }

    /**
     * Gets the textual description of the status of the slide show on
     * the server
     */
    public function getStatusDescription() {
        return $this->_statusDescription;
    }

    /**
     * Gets the permanent link of the slide show
     */
    public function getPermaLink() {
        return $this->_permalink;
    }

    /**
     * Gets the number of views the slide show has received
     */
    public function getNumViews() {
        return $this->_numViews;
    }
}











Note


The above pseudo-class only shows those methods which should be used by end-user developers. Other available
methods are internal to the component.




When using the Zend_Service_SlideShare component, this data class will be used frequently to browse or add new
slide shows to or from the web service.





Retrieving a single slide show


The simplest usage of the Zend_Service_SlideShare component is the retrieval of a single slide show by slide
show ID provided by the slideshare.net application and is done by calling the getSlideShow() method of a
Zend_Service_SlideShare object and using the resulting Zend_Service_SlideShare_SlideShow object as shown.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Create a new instance of the component
$ss = new Zend_Service_SlideShare('APIKEY',
                                  'SHAREDSECRET',
                                  'USERNAME',
                                  'PASSWORD');

$slideshow = $ss->getSlideShow(123456);

print "Slide Show Title: {$slideshow->getTitle()}<br/>\n";
print "Number of views: {$slideshow->getNumViews()}<br/>\n";













Retrieving Groups of Slide Shows


If you do not know the specific ID of a slide show you are interested in retrieving, you can retrieving groups of
slide shows by using one of three methods:



		Slide shows from a specific account


You can retrieve slide shows from a specific account by using the getSlideShowsByUsername() method and
providing the username from which the slide shows should be retrieved





		Slide shows which contain specific tags


You can retrieve slide shows which contain one or more specific tags by using the getSlideShowsByTag() method
and providing one or more tags which the slide show must have assigned to it in order to be retrieved





		Slide shows by group


You can retrieve slide shows which are a member of a specific group using the getSlideShowsByGroup() method
and providing the name of the group which the slide show must belong to in order to be retrieved








Each of the above methods of retrieving multiple slide shows a similar approach is used. An example of using each
method is shown below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Create a new instance of the component
$ss = new Zend_Service_SlideShare('APIKEY',
                                  'SHAREDSECRET',
                                  'USERNAME',
                                  'PASSWORD');

$starting_offset = 0;
$limit = 10;

// Retrieve the first 10 of each type
$ss_user = $ss->getSlideShowsByUser('username', $starting_offset, $limit);
$ss_tags = $ss->getSlideShowsByTag('zend', $starting_offset, $limit);
$ss_group = $ss->getSlideShowsByGroup('mygroup', $starting_offset, $limit);

// Iterate over the slide shows
foreach($ss_user as $slideshow) {
   print "Slide Show Title: {$slideshow->getTitle}<br/>\n";
}













Zend_Service_SlideShare Caching policies


By default, Zend_Service_SlideShare will cache any request against the web service automatically to the
filesystem (default path /tmp) for 12 hours. If you desire to change this behavior, you must provide your own
Zend_Cache object using the setCacheObject() method as shown:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		$frontendOptions = array(
                        'lifetime' => 7200,
                        'automatic_serialization' => true);
$backendOptions  = array(
                        'cache_dir' => '/webtmp/');

$cache = Zend_Cache::factory('Core',
                             'File',
                             $frontendOptions,
                             $backendOptions);

$ss = new Zend_Service_SlideShare('APIKEY',
                                  'SHAREDSECRET',
                                  'USERNAME',
                                  'PASSWORD');
$ss->setCacheObject($cache);

$ss_user = $ss->getSlideShowsByUser('username', $starting_offset, $limit);













Changing the behavior of the HTTP Client


If for whatever reason you would like to change the behavior of the HTTP client when making the web service
request, you can do so by creating your own instance of the Zend_Http_Client object (see Zend_Http). This is useful for instance when it is desirable to set the timeout for the connection to something
other then default as shown:


		1
2
3
4
5
6
7
8
9


		$client = new Zend_Http_Client();
$client->setConfig(array('timeout' => 5));

$ss = new Zend_Service_SlideShare('APIKEY',
                                  'SHAREDSECRET',
                                  'USERNAME',
                                  'PASSWORD');
$ss->setHttpClient($client);
$ss_user = $ss->getSlideShowsByUser('username', $starting_offset, $limit);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_SlideShare
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.create.layout.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Create A Layout


You may have noticed that the view scripts in the previous sections were HTML fragments- not complete pages. This
is by design; we want our actions to return content only related to the action itself, not the application as a
whole.


Now we must compose that generated content into a full HTML page. We’d also like to have a consistent look and
feel for the application. We will use a global site layout to accomplish both of these tasks.


There are two design patterns that Zend Framework uses to implement layouts: Two Step View [http://martinfowler.com/eaaCatalog/twoStepView.html] and Composite
View [http://java.sun.com/blueprints/corej2eepatterns/Patterns/CompositeView.html]. Two Step View is usually associated with the Transform View [http://www.martinfowler.com/eaaCatalog/transformView.html] pattern; the basic idea is that your
application view creates a representation that is then injected into the master view for final transformation. The
Composite View pattern deals with a view made of one or more atomic, application views.


In Zend Framework, Zend_Layout combines the ideas behind these patterns. Instead of each
action view script needing to include site-wide artifacts, they can simply focus on their own responsibilities.


Occasionally, however, you may need application-specific information in your site-wide view script. Fortunately,
Zend Framework provides a variety of view placeholders to allow you to provide such information from your
action view scripts.


To get started using Zend_Layout, first we need to inform our bootstrap to use the Layout resource. This
can be done using the zf enable layout command:


		1
2
3
4


		% zf enable layout
Layouts have been enabled, and a default layout created at
application/layouts/scripts/layout.phtml
A layout entry has been added to the application config file.










As noted by the command, application/configs/application.ini is updated, and now contains the following within
the production section:


		1
2
3
4


		; application/configs/application.ini

; Add to [production] section:
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"










The final INI file should look as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		; application/configs/application.ini

[production]
; PHP settings we want to initialize
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0
includePaths.library = APPLICATION_PATH "/../library"
bootstrap.path = APPLICATION_PATH "/Bootstrap.php"
bootstrap.class = "Bootstrap"
appnamespace = "Application"
resources.frontController.controllerDirectory = APPLICATION_PATH "/controllers"
resources.frontController.params.displayExceptions = 0
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"

[staging : production]

[testing : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1










This directive tells your application to look for layout view scripts in application/layouts/scripts. If you
examine your directory tree, you’ll see that this directory has been created for you now, with the file
layout.phtml.


We also want to ensure we have an XHTML DocType declaration for our application. To enable this, we need to add a
resource to our bootstrap.


The simplest way to add a bootstrap resource is to simply create a protected method beginning with the phrase
_init. In this case, we want to initialize the doctype, so we’ll create an _initDoctype() method within our
bootstrap class:


		1
2
3
4
5
6
7
8


		// application/Bootstrap.php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    protected function _initDoctype()
    {
    }
}










Within that method, we need to hint to the view to use the appropriate doctype. But where will the view object come
from? The easy solution is to initialize the View resource; once we have, we can pull the view object from the
bootstrap and use it.


To initialize the view resource, add the following line to your application/configs/application.ini file, in
the section marked production:


		1
2
3
4


		; application/configs/application.ini

; Add to [production] section:
resources.view[] =










This tells us to initialize the view with no options (the ‘[]’ indicates that the “view” key is an array, and we
pass nothing to it).


Now that we have a view, let’s flesh out our _initDoctype() method. In it, we will first ensure the View
resource has run, fetch the view object, and then configure it:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// application/Bootstrap.php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    protected function _initDoctype()
    {
        $this->bootstrap('view');
        $view = $this->getResource('view');
        $view->doctype('XHTML1_STRICT');
    }
}










Now that we’ve initialized Zend_Layout and set the Doctype, let’s create our site-wide layout:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		<!-- application/layouts/scripts/layout.phtml -->
<?php echo $this->doctype() ?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
  <title>Zend Framework Quickstart Application</title>
  <?php echo $this->headLink()->appendStylesheet('/css/global.css') ?>
</head>
<body>
<div id="header" style="background-color: #EEEEEE; height: 30px;">
    <div id="header-logo" style="float: left">
        <b>ZF Quickstart Application</b>
    </div>
    <div id="header-navigation" style="float: right">
        <a href="<?php echo $this->url(
            array('controller'=>'guestbook'),
            'default',
            true) ?>">Guestbook</a>
    </div>
</div>

<?php echo $this->layout()->content ?>

</body>
</html>










We grab our application content using the layout() view helper, and accessing the “content” key. You may render
to other response segments if you wish to, but in most cases, this is all that’s necessary.


Note also the use of the headLink() placeholder. This is an easy way to generate the HTML for <link>
elements, as well as to keep track of them throughout your application. If you need to add additional CSS sheets to
support a single action, you can do so, and be assured it will be present in the final rendered page.



Note


Checkpoint


Now go to “http://localhost” and check out the source. You should see your XHTML header, head, title, and body
sections.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Create A Layout
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.paginator.configuration.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Configuration


Zend\Paginator has several configuration methods that can be called:



Configuration methods for Zend\Paginator\Paginator





		Method
		Description





		setCurrentPageNumber
		Sets the current page number (default 1).



		setItemCountPerPage
		Sets the maximum number of items to display on a page (default 10).



		setPageRange
		Sets the number of items to display in the pagination control (default 10). Note: Most of the time this number will be adhered to exactly, but scrolling styles do have the option of only using it as a guideline or starting value (e.g., Elastic).



		setView
		Sets the view instance, for rendering convenience.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Configuration
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.using-file-transport.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using File Transport


Zend_Mail_Transport_File is useful in a development environment or for testing purposes. Instead of sending any
real emails it simply dumps the email’s body and headers to a file in the filesystem. Like the other transports it
may be configured using Zend_Application_Resource_Mail or passed to the send() method of a Zend_Mail
instance.


The transport has two optional parameters that can be passed to the constructor or via setOptions() method. The
path option specifies the base path where new files are saved. If nothing is set transport tries to get the
default system directory for temporary files calling sys_get_temp_dir. The second parameter, callback,
defines what function is used to generate a filename. As an example, assume we need to use recipient’s email plus
some hash as the filename:


		1
2
3
4
5
6
7


		$mail = new Zend_Mail();
$mail->addTo('somebody@example.com', 'Some Recipient');
// build message...
$tr = new Zend_Mail_Transport_File(array('callback' => function ($transport){
    return $transport->recipients . '_' . mt_rand() . '.tmp';
}));
$mail->send($tr);










The resulting file will be something like somebody@example.com_1493362665.tmp






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using File Transport
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.sending.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Sending via SMTP


To send mail via SMTP, Zend_Mail_Transport_Smtp needs to be created and registered with Zend_Mail before
the send() method is called. For all remaining Zend_Mail::send() calls in the current script, the SMTP
transport will then be used:


Sending E-Mail via SMTP


		1
2


		$tr = new Zend_Mail_Transport_Smtp('mail.example.com');
Zend_Mail::setDefaultTransport($tr);










The setDefaultTransport() method and the constructor of Zend_Mail_Transport_Smtp are not expensive. These
two lines can be processed at script setup time (e.g., config.inc or similar) to configure the behavior of the
Zend_Mail class for the rest of the script. This keeps configuration information out of the application logic -
whether mail is sent via SMTP or mail() [http://php.net/mail], what mail server is used, etc.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Sending via SMTP
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.calendar.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Google Calendar


You can use the Zend_Gdata_Calendar class to view, create, update, and delete events in the online Google
Calendar service.


See http://code.google.com/apis/calendar/overview.html for more information about the Google Calendar API.



Connecting To The Calendar Service


The Google Calendar API, like all GData APIs, is based off of the Atom Publishing Protocol (APP), an XML
based format for managing web-based resources. Traffic between a client and the Google Calendar servers occurs over
HTTP and allows for both authenticated and unauthenticated connections.


Before any transactions can occur, this connection needs to be made. Creating a connection to the calendar servers
involves two steps: creating an HTTP client and binding a Zend_Gdata_Calendar service instance to that
client.



Authentication


The Google Calendar API allows access to both public and private calendar feeds. Public feeds do not require
authentication, but are read-only and offer reduced functionality. Private feeds offers the most complete
functionality but requires an authenticated connection to the calendar servers. There are three authentication
schemes that are supported by Google Calendar:



		ClientAuth provides direct username/password authentication to the calendar servers. Since this scheme
requires that users provide your application with their password, this authentication is only recommended when
other authentication schemes are insufficient.


		AuthSub allows authentication to the calendar servers via a Google proxy server. This provides the same level
of convenience as ClientAuth but without the security risk, making this an ideal choice for web-based
applications.


		MagicCookie allows authentication based on a semi-random URL available from within the Google Calendar
interface. This is the simplest authentication scheme to implement, but requires that users manually retrieve
their secure URL before they can authenticate, doesn’t provide access to calendar lists, and is limited to
read-only access.





The Zend_Gdata library provides support for all three authentication schemes. The rest of this chapter will
assume that you are familiar the authentication schemes available and how to create an appropriate authenticated
connection. For more information, please see section the Authentication section of this manual or the Authentication Overview in the Google Data API
Developer’s Guide [http://code.google.com/apis/gdata/auth.html].





Creating A Service Instance


In order to interact with Google Calendar, this library provides the Zend_Gdata_Calendar service class. This
class provides a common interface to the Google Data and Atom Publishing Protocol models and assists in marshaling
requests to and from the calendar servers.


Once deciding on an authentication scheme, the next step is to create an instance of Zend_Gdata_Calendar. The
class constructor takes an instance of Zend_Http_Client as a single argument. This provides an interface for
AuthSub and ClientAuth authentication, as both of these require creation of a special authenticated HTTP client.
If no arguments are provided, an unauthenticated instance of Zend_Http_Client will be automatically created.


The example below shows how to create a Calendar service class using ClientAuth authentication:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Parameters for ClientAuth authentication
$service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;
$user = "sample.user@gmail.com";
$pass = "pa$$w0rd";

// Create an authenticated HTTP client
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);

// Create an instance of the Calendar service
$service = new Zend_Gdata_Calendar($client);










A Calendar service using AuthSub can be created in a similar, though slightly more lengthy fashion:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


		/*
 * Retrieve the current URL so that the AuthSub server knows where to
 * redirect the user after authentication is complete.
 */
function getCurrentUrl()
{
    global $_SERVER;

    // Filter php_self to avoid a security vulnerability.
    $php_request_uri =
        htmlentities(substr($_SERVER['REQUEST_URI'],
                            0,
                            strcspn($_SERVER['REQUEST_URI'], "\n\r")),
                            ENT_QUOTES);

    if (isset($_SERVER['HTTPS']) &&
        strtolower($_SERVER['HTTPS']) == 'on') {
        $protocol = 'https://';
    } else {
        $protocol = 'http://';
    }
    $host = $_SERVER['HTTP_HOST'];
    if ($_SERVER['HTTP_PORT'] != '' &&
        (($protocol == 'http://' && $_SERVER['HTTP_PORT'] != '80') ||
        ($protocol == 'https://' && $_SERVER['HTTP_PORT'] != '443'))) {
        $port = ':' . $_SERVER['HTTP_PORT'];
    } else {
        $port = '';
    }
    return $protocol . $host . $port . $php_request_uri;
}

/**
 * Obtain an AuthSub authenticated HTTP client, redirecting the user
 * to the AuthSub server to login if necessary.
 */
function getAuthSubHttpClient()
{
    global $_SESSION, $_GET;

    // if there is no AuthSub session or one-time token waiting for us,
    // redirect the user to the AuthSub server to get one.
    if (!isset($_SESSION['sessionToken']) && !isset($_GET['token'])) {
        // Parameters to give to AuthSub server
        $next = getCurrentUrl();
        $scope = "http://www.google.com/calendar/feeds/";
        $secure = false;
        $session = true;

        // Redirect the user to the AuthSub server to sign in

        $authSubUrl = Zend_Gdata_AuthSub::getAuthSubTokenUri($next,
                                                             $scope,
                                                             $secure,
                                                             $session);
         header("HTTP/1.0 307 Temporary redirect");

         header("Location: " . $authSubUrl);

         exit();
    }

    // Convert an AuthSub one-time token into a session token if needed
    if (!isset($_SESSION['sessionToken']) && isset($_GET['token'])) {
        $_SESSION['sessionToken'] =
            Zend_Gdata_AuthSub::getAuthSubSessionToken($_GET['token']);
    }

    // At this point we are authenticated via AuthSub and can obtain an
    // authenticated HTTP client instance

    // Create an authenticated HTTP client
    $client = Zend_Gdata_AuthSub::getHttpClient($_SESSION['sessionToken']);
    return $client;
}

// -> Script execution begins here <-

// Make sure that the user has a valid session, so we can record the
// AuthSub session token once it is available.
session_start();

// Create an instance of the Calendar service, redirecting the user
// to the AuthSub server if necessary.
$service = new Zend_Gdata_Calendar(getAuthSubHttpClient());










Finally, an unauthenticated server can be created for use with either public feeds or MagicCookie authentication:


		1
2
3
4


		// Create an instance of the Calendar service using an unauthenticated
// HTTP client

$service = new Zend_Gdata_Calendar();










Note that MagicCookie authentication is not supplied with the HTTP connection, but is instead specified along
with the desired visibility when submitting queries. See the section on retrieving events below for an example.







Retrieving A Calendar List


The calendar service supports retrieving a list of calendars for the authenticated user. This is the same list of
calendars which are displayed in the Google Calendar UI, except those marked as “hidden” are also available.


The calendar list is always private and must be accessed over an authenticated connection. It is not possible to
retrieve another user’s calendar list and it cannot be accessed using MagicCookie authentication. Attempting to
access a calendar list without holding appropriate credentials will fail and result in a 401 (Authentication
Required) status code.


		1
2
3
4
5
6
7
8
9


		$service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Calendar($client);

try {
    $listFeed= $service->getCalendarListFeed();
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










Calling getCalendarListFeed() creates a new instance of Zend_Gdata_Calendar_ListFeed containing each
available calendar as an instance of Zend_Gdata_Calendar_ListEntry. After retrieving the feed, you can use the
iterator and accessors contained within the feed to inspect the enclosed calendars.


		1
2
3
4
5
6
7


		echo "<h1>Calendar List Feed</h1>";
echo "<ul>";
foreach ($listFeed as $calendar) {
    echo "<li>" . $calendar->title .
         " (Event Feed: " . $calendar->id . ")</li>";
}
echo "</ul>";













Retrieving Events


Like the list of calendars, events are also retrieved using the Zend_Gdata_Calendar service class. The event
list returned is of type Zend_Gdata_Calendar_EventFeed and contains each event as an instance of
Zend_Gdata_Calendar_EventEntry. As before, the iterator and accessors contained within the event feed instance
allow inspection of individual events.



Queries


When retrieving events using the Calendar API, specially constructed query URLs are used to describe what
events should be returned. The Zend_Gdata_Calendar_EventQuery class simplifies this task by automatically
constructing a query URL based on provided parameters. A full list of these parameters is available at the
Queries section of the Google Data APIs Protocol Reference [http://code.google.com/apis/gdata/reference.html#Queries]. However, there are three parameters that are worth
special attention:



		User is used to specify the user whose calendar is being searched for, and is specified as an email address.
If no user is provided, “default” will be used instead to indicate the currently authenticated user (if
authenticated).


		Visibility specifies whether a users public or private calendar should be searched. If using an
unauthenticated session and no MagicCookie is available, only the public feed will be available.


		Projection specifies how much data should be returned by the server and in what format. In most cases you
will want to use the “full” projection. Also available is the “basic” projection, which places most meta-data
into each event’s content field as human readable text, and the “composite” projection which includes complete
text for any comments alongside each event. The “composite” view is often much larger than the “full” view.








Retrieving Events In Order Of Start Time


The example below illustrates the use of the Zend_Gdata_Query class and specifies the private visibility feed,
which requires that an authenticated connection is available to the calendar servers. If a MagicCookie is being
used for authentication, the visibility should be instead set to “private-magicCookieValue”, where
magicCookieValue is the random string obtained when viewing the private XML address in the Google Calendar UI.
Events are requested chronologically by start time and only events occurring in the future are returned.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		$query = $service->newEventQuery();
$query->setUser('default');
// Set to $query->setVisibility('private-magicCookieValue') if using
// MagicCookie auth
$query->setVisibility('private');
$query->setProjection('full');
$query->setOrderby('starttime');
$query->setFutureevents('true');

// Retrieve the event list from the calendar server
try {
    $eventFeed = $service->getCalendarEventFeed($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}

// Iterate through the list of events, outputting them as an HTML list
echo "<ul>";
foreach ($eventFeed as $event) {
    echo "<li>" . $event->title . " (Event ID: " . $event->id . ")</li>";
}
echo "</ul>";










Additional properties such as ID, author, when, event status, visibility, web content, and content, among others
are available within Zend_Gdata_Calendar_EventEntry. Refer to the Zend Framework API Documentation [http://framework.zend.com/apidoc/core/] and the
Calendar Protocol Reference [http://code.google.com/apis/gdata/reference.html] for a complete list.





Retrieving Events In A Specified Date Range


To print out all events within a certain range, for example from December 1, 2006 through December 15, 2007, add
the following two lines to the previous sample. Take care to remove “$query->setFutureevents('true')”, since
futureevents will override startMin and startMax.


		1
2


		$query->setStartMin('2006-12-01');
$query->setStartMax('2006-12-16');










Note that startMin is inclusive whereas startMax is exclusive. As a result, only events through 2006-12-15
23:59:59 will be returned.





Retrieving Events By Fulltext Query


To print out all events which contain a specific word, for example “dogfood”, use the setQuery() method when
creating the query.


		1


		$query->setQuery("dogfood");













Retrieving Individual Events


Individual events can be retrieved by specifying their event ID as part of the query. Instead of calling
getCalendarEventFeed(), getCalendarEventEntry() should be called instead.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$query = $service->newEventQuery();
$query->setUser('default');
$query->setVisibility('private');
$query->setProjection('full');
$query->setEvent($eventId);

try {
    $event = $service->getCalendarEventEntry($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










In a similar fashion, if the event URL is known, it can be passed directly into getCalendarEntry() to
retrieve a specific event. In this case, no query object is required since the event URL contains all the
necessary information to retrieve the event.


		1
2
3
4
5
6
7
8


		$eventURL = "http://www.google.com/calendar/feeds/default/private"
          . "/full/g829on5sq4ag12se91d10uumko";

try {
    $event = $service->getCalendarEventEntry($eventURL);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}















Creating Events



Creating Single-Occurrence Events


Events are added to a calendar by creating an instance of Zend_Gdata_EventEntry and populating it with the
appropriate data. The calendar service instance (Zend_Gdata_Calendar) is then used to used to transparently
covert the event into XML and POST it to the calendar server. Creating events requires either an AuthSub or
ClientAuth authenticated connection to the calendar server.


At a minimum, the following attributes should be set:



		Title provides the headline that will appear above the event within the Google Calendar UI.


		When indicates the duration of the event and, optionally, any reminders that are associated with it. See the
next section for more information on this attribute.





Other useful attributes that may optionally set include:



		Author provides information about the user who created the event.


		Content provides additional information about the event which appears when the event details are requested
from within Google Calendar.


		EventStatus indicates whether the event is confirmed, tentative, or canceled.


		Hidden removes the event from the Google Calendar UI.


		Transparency indicates whether the event should be consume time on the user’s free/busy list.


		WebContent allows links to external content to be provided within an event.


		Where indicates the location of the event.


		Visibility allows the event to be hidden from the public event lists.





For a complete list of event attributes, refer to the Zend Framework API Documentation [http://framework.zend.com/apidoc/core/] and the Calendar
Protocol Reference [http://code.google.com/apis/gdata/reference.html]. Attributes that can contain multiple values, such as where, are implemented as arrays and
need to be created accordingly. Be aware that all of these attributes require objects as parameters. Trying instead
to populate them using strings or primitives will result in errors during conversion to XML.


Once the event has been populated, it can be uploaded to the calendar server by passing it as an argument to the
calendar service’s insertEvent() function.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		// Create a new entry using the calendar service's magic factory method
$event= $service->newEventEntry();

// Populate the event with the desired information
// Note that each attribute is crated as an instance of a matching class
$event->title = $service->newTitle("My Event");
$event->where = array($service->newWhere("Mountain View, California"));
$event->content =
    $service->newContent(" This is my awesome event. RSVP required.");

// Set the date using RFC 3339 format.
$startDate = "2008-01-20";
$startTime = "14:00";
$endDate = "2008-01-20";
$endTime = "16:00";
$tzOffset = "-08";

$when = $service->newWhen();
$when->startTime = "{$startDate}T{$startTime}:00.000{$tzOffset}:00";
$when->endTime = "{$endDate}T{$endTime}:00.000{$tzOffset}:00";
$event->when = array($when);

// Upload the event to the calendar server
// A copy of the event as it is recorded on the server is returned
$newEvent = $service->insertEvent($event);













Event Schedules and Reminders


An event’s starting time and duration are determined by the value of its when property, which contains the
properties startTime, endTime, and valueString. StartTime and EndTime control the duration of
the event, while the valueString property is currently unused.


All-day events can be scheduled by specifying only the date omitting the time when setting startTime and
endTime. Likewise, zero-duration events can be specified by omitting the endTime. In all cases, date and
time values should be provided in RFC3339 [http://www.ietf.org/rfc/rfc3339.txt] format.


		1
2
3
4
5
6
7
8


		// Schedule the event to occur on December 05, 2007 at 2 PM PST (UTC-8)
// with a duration of one hour.
$when = $service->newWhen();
$when->startTime = "2007-12-05T14:00:00-08:00";
$when->endTime="2007-12-05T15:00:00:00-08:00";

// Apply the when property to an event
$event->when = array($when);










The when attribute also controls when reminders are sent to a user. Reminders are stored in an array and each
event may have up to find reminders associated with it.


For a reminder to be valid, it needs to have two attributes set: method and a time. Method can accept
one of the following strings: “alert”, “email”, or “sms”. The time should be entered as an integer and can be set
with either the property minutes, hours, days, or absoluteTime. However, a valid request may only
have one of these attributes set. If a mixed time is desired, convert to the most precise unit available. For
example, 1 hour and 30 minutes should be entered as 90 minutes.


		1
2
3
4
5
6
7
8
9


		// Create a new reminder object. It should be set to send an email
// to the user 10 minutes beforehand.
$reminder = $service->newReminder();
$reminder->method = "email";
$reminder->minutes = "10";

// Apply the reminder to an existing event's when property
$when = $event->when[0];
$when->reminders = array($reminder);













Creating Recurring Events


Recurring events are created the same way as single-occurrence events, except a recurrence attribute should be
provided instead of a where attribute. The recurrence attribute should hold a string describing the event’s
recurrence pattern using properties defined in the iCalendar standard (RFC 2445 [http://www.ietf.org/rfc/rfc2445.txt]).


Exceptions to the recurrence pattern will usually be specified by a distinct recurrenceException attribute.
However, the iCalendar standard provides a secondary format for defining recurrences, and the possibility that
either may be used must be accounted for.


Due to the complexity of parsing recurrence patterns, further information on this them is outside the scope of this
document. However, more information can be found in the Common Elements section of the Google Data APIs Developer
Guide [http://code.google.com/apis/gdata/elements.html#gdRecurrence], as well as in RFC 2445.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		 // Create a new entry using the calendar service's magic factory method
$event= $service->newEventEntry();

// Populate the event with the desired information
// Note that each attribute is crated as an instance of a matching class
$event->title = $service->newTitle("My Recurring Event");
$event->where = array($service->newWhere("Palo Alto, California"));
$event->content =
    $service->newContent(' This is my other awesome event, ' .
                         ' occurring all-day every Tuesday from ' .
                         '2007-05-01 until 207-09-04. No RSVP required.');

// Set the duration and frequency by specifying a recurrence pattern.

$recurrence = "DTSTART;VALUE=DATE:20070501\r\n" .
        "DTEND;VALUE=DATE:20070502\r\n" .
        "RRULE:FREQ=WEEKLY;BYDAY=Tu;UNTIL=20070904\r\n";

$event->recurrence = $service->newRecurrence($recurrence);

// Upload the event to the calendar server
// A copy of the event as it is recorded on the server is returned
$newEvent = $service->insertEvent($event);













Using QuickAdd


QuickAdd is a feature which allows events to be created using free-form text entry. For example, the string “Dinner
at Joe’s Diner on Thursday” would create an event with the title “Dinner”, location “Joe’s Diner”, and date
“Thursday”. To take advantage of QuickAdd, create a new QuickAdd property set to TRUE and store the
freeform text as a content property.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Create a new entry using the calendar service's magic factory method
$event= $service->newEventEntry();

// Populate the event with the desired information
$event->content= $service->newContent("Dinner at Joe's Diner on Thursday");
$event->quickAdd = $service->newQuickAdd("true");

// Upload the event to the calendar server
// A copy of the event as it is recorded on the server is returned
$newEvent = $service->insertEvent($event);















Modifying Events


Once an instance of an event has been obtained, the event’s attributes can be locally modified in the same way as
when creating an event. Once all modifications are complete, calling the event’s save() method will upload the
changes to the calendar server and return a copy of the event as it was created on the server.


In the event another user has modified the event since the local copy was retrieved, save() will fail and the
server will return a 409 (Conflict) status code. To resolve this a fresh copy of the event must be retrieved from
the server before attempting to resubmit any modifications.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Get the first event in the user's event list
$event = $eventFeed[0];

// Change the title to a new value
$event->title = $service->newTitle("Woof!");

// Upload the changes to the server
try {
    $event->save();
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}













Deleting Events


Calendar events can be deleted either by calling the calendar service’s delete() method and providing the edit
URL of an event or by calling an existing event’s own delete() method.


In either case, the deleted event will still show up on a user’s private event feed if an updateMin query
parameter is provided. Deleted events can be distinguished from regular events because they will have their
eventStatus property set to “http://schemas.google.com/g/2005#event.canceled”.


		1
2


		// Option 1: Events can be deleted directly
$event->delete();










		1
2
3


		// Option 2: Events can be deleted supplying the edit URL of the event
// to the calendar service, if known
$service->delete($event->getEditLink()->href);













Accessing Event Comments


When using the full event view, comments are not directly stored within an entry. Instead, each event contains a
URL to its associated comment feed which must be manually requested.


Working with comments is fundamentally similar to working with events, with the only significant difference being
that a different feed and event class should be used and that the additional meta-data for events such as where and
when does not exist for comments. Specifically, the comment’s author is stored in the author property, and the
comment text is stored in the content property.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Extract the comment URL from the first event in a user's feed list
$event = $eventFeed[0];
$commentUrl = $event->comments->feedLink->url;

// Retrieve the comment list for the event
try {
$commentFeed = $service->getFeed($commentUrl);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}

// Output each comment as an HTML list
echo "<ul>";
foreach ($commentFeed as $comment) {
    echo "<li><em>Comment By: " . $comment->author->name "</em><br/>" .
         $comment->content . "</li>";
}
echo "</ul>";
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Google Calendar
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.banner2.png
Welcome to my ZF2 Console-enabled app






modules/zend.oauth.protocol-workflow.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Protocol Workflow


Before implementing OAuth it makes sense to understand how the protocol operates. To do so we’ll take the example
of Twitter which currently implements OAuth based on the OAuth Core 1.0 Revision A Specification. This example
looks at the protocol from the perspectives of the User (who will approve access), the Consumer (who is seeking
access) and the Provider (who holds the User’s private data). Access may be read-only or read and write.


By chance, our User has decided that they want to utilise a new service called TweetExpress which claims to be
capable of reposting your blog posts to Twitter in a manner of seconds. TweetExpress is a registered application on
Twitter meaning that it has access to a Consumer Key and a Consumer Secret (all OAuth applications must have these
from the Provider they will be accessing) which identify its requests to Twitter and that ensure all requests can
be signed using the Consumer Secret to verify their origin.


To use TweetExpress you are asked to register for a new account, and after your registration is confirmed you are
informed that TweetExpress will seek to associate your Twitter account with the service.


In the meantime TweetExpress has been busy. Before gaining your approval from Twitter, it has sent a HTTP request
to Twitter’s service asking for a new unauthorized Request Token. This token is not User specific from Twitter’s
perspective, but TweetExpress may use it specifically for the current User and should associate it with their
account and store it for future use. TweetExpress now redirects the User to Twitter so they can approve
TweetExpress’ access. The URL for this redirect will be signed using TweetExpress’ Consumer Secret and it will
contain the unauthorized Request Token as a parameter.


At this point the User may be asked to log into Twitter and will now be faced with a Twitter screen asking if they
approve this request by TweetExpress to access Twitter’s API on the User’s behalf. Twitter will record the
response which we’ll assume was positive. Based on the User’s approval, Twitter will record the current
unauthorized Request Token as having been approved by the User (thus making it User specific) and will generate a
new value in the form of a verification code. The User is now redirected back to a specific callback URL used by
TweetExpress (this callback URL may be registered with Twitter or dynamically set using an oauth_callback parameter
in requests). The redirect URL will contain the newly generated verification code.


TweetExpress’ callback URL will trigger an examination of the response to determine whether the User has granted
their approval to Twitter. Assuming so, it may now exchange it’s unauthorized Request Token for a fully authorized
Access Token by sending a request back to Twitter including the Request Token and the received verification code.
Twitter should now send back a response containing this Access Token which must be used in all requests used to
access Twitter’s API on behalf of the User. Twitter will only do this once they have confirmed the attached
Request Token has not already been used to retrieve another Access Token. At this point, TweetExpress may confirm
the receipt of the approval to the User and delete the original Request Token which is no longer needed.


From this point forward, TweetExpress may use Twitter’s API to post new tweets on the User’s behalf simply by
accessing the API endpoints with a request that has been digitally signed (via HMAC-SHA1) with a combination of
TweetExpress’ Consumer Secret and the Access Key being used.


Although Twitter do not currently expire Access Tokens, the User is free to deauthorize TweetExpress from their
Twitter account settings. Once deauthorized, TweetExpress’ access will be cut off and their Access Token rendered
invalid.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Protocol Workflow
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/styling-and-translations.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Styling and Translations


We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to
change the title and and remove the copyright message.


The ZendSkeletonApplication is set up to use Zend\I18n’s translation
functionality for all the text. It uses .po files that live in
Application/language, and you need to use poedit [http://www.poedit.net/download.php/] to change the text. Start poedit and
open application/language/en_US.po. Click on “Skeleton Application” in the
list of Original strings and then type in “Tutorial” as the translation.


[image: ../_images/user-guide.styling-and-translations.poedit.png]
Press Save in the toolbar and poedit will create an en_US.mo file for us.
If you find that no .mo file is generated, check Preferences -> Editor -> Behavior
and see if the checkbox marked Automatically compile .mo file on save is checked.


To remove the copyright message, we need to edit the Application module’s
layout.phtml view script:


// module/Application/view/layout/layout.phtml:
// Remove this line:
<p>&copy; 2005 - 2012 by Zend Technologies Ltd. <?php echo $this->translate('All
rights reserved.') ?></p>






The page now looks ever so slightly better now!


[image: ../_images/user-guide.styling-and-translations.translated-image.png]




          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Styling and Translations
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.06.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 0.6


When upgrading from a previous release to Zend Framework 0.6 or higher you should note the following migration
notes.



Zend_Controller


The most basic usage of the MVC components has not changed; you can still do each of the following:


		1


		Zend_Controller_Front::run('/path/to/controllers');










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		/* -- create a router -- */
$router = new Zend_Controller_RewriteRouter();
$router->addRoute('user',
                  'user/:username',
                  array('controller' => 'user', 'action' => 'info')
);

/* -- set it in a controller -- */
$ctrl = Zend_Controller_Front::getInstance();
$ctrl->setRouter($router);

/* -- set controller directory and dispatch -- */
$ctrl->setControllerDirectory('/path/to/controllers');
$ctrl->dispatch();










We encourage use of the Response object to aggregate content and headers. This will allow for more flexible output
format switching (for instance, JSON or XML instead of XHTML) in your applications. By default,
dispatch() will render the response, sending both headers and rendering any content. You may also have the
front controller return the response using returnResponse(), and then render the response using your own logic.
A future version of the front controller may enforce use of the response object via output buffering.


There are many additional features that extend the existing API, and these are noted in the documentation.


The main changes you will need to be aware of will be found when subclassing the various components. Key amongst
these are:



		Zend_Controller_Front::dispatch() by default traps exceptions in the response object, and does not render
them, in order to prevent sensitive system information from being rendered. You can override this in several
ways:



		Set throwExceptions() in the front controller:


		1


		$front->throwExceptions(true);













		Set renderExceptions() in the response object:


		1
2
3
4
5
6
7
8
9


		$response->renderExceptions(true);
$front->setResponse($response);
$front->dispatch();

// or:
$front->returnResponse(true);
$response = $front->dispatch();
$response->renderExceptions(true);
echo $response;



















		Zend_Controller_Dispatcher_Interface::dispatch() now accepts and returns a The Request Object instead of a dispatcher token.





		Zend_Controller_Router_Interface::route() now accepts and returns a The Request Object instead of a dispatcher token.





		Zend_Controller_Action changes include:



		The constructor now accepts exactly three arguments, Zend_Controller_Request_Abstract $request,
Zend_Controller_Response_Abstract $response, and Array $params (optional).
Zend_Controller_Action::__construct() uses these to set the request, response, and invokeArgs properties of
the object, and if overriding the constructor, you should do so as well. Better yet, use the init() method
to do any instance configuration, as this method is called as the final action of the constructor.





		run() is no longer defined as final, but is also no longer used by the front controller; its sole purpose
is for using the class as a page controller. It now takes two optional arguments, a
Zend_Controller_Request_Abstract $request and a Zend_Controller_Response_Abstract $response.





		indexAction() no longer needs to be defined, but is encouraged as the default action. This allows using the
RewriteRouter and action controllers to specify different default action methods.





		__call() should be overridden to handle any undefined actions automatically.





		_redirect() now takes an optional second argument, the HTTP code to return with the redirect, and an
optional third argument, $prependBase, that can indicate that the base URL registered with the request
object should be prepended to the url specified.





		The $_action property is no longer set. This property was a Zend_Controller_Dispatcher_Token, which no
longer exists in the current incarnation. The sole purpose of the token was to provide information about the
requested controller, action, and URL parameters. This information is now available in the request object,
and can be accessed as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		// Retrieve the requested controller name
// Access used to be via: $this->_action->getControllerName().
// The example below uses getRequest(), though you may also directly
// access the $_request property; using getRequest() is recommended as
// a parent class may override access to the request object.
$controller = $this->getRequest()->getControllerName();

// Retrieve the requested action name
// Access used to be via: $this->_action->getActionName().
$action = $this->getRequest()->getActionName();

// Retrieve the request parameters
// This hasn't changed; the _getParams() and _getParam() methods simply
// proxy to the request object now.
$params = $this->_getParams();
// request 'foo' parameter, using 'default' as default value if not found
$foo = $this->_getParam('foo', 'default');













		noRouteAction() has been removed. The appropriate way to handle non-existent action methods should you wish
to route them to a default action is using __call():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		public function __call($method, $args)
{
    // If an unmatched 'Action' method was requested, pass on to the
    // default action method:
    if ('Action' == substr($method, -6)) {
        return $this->defaultAction();
    }

    throw new Zend_Controller_Exception('Invalid method called');
}



















		Zend_Controller_RewriteRouter::setRewriteBase() has been removed. Use Zend_Controller_Front::setBaseUrl()
instead (or Zend_Controller_Request_Http::setBaseUrl(), if using that request class).





		Zend_Controller_Plugin_Interface was replaced by Zend_Controller_Plugin_Abstract. All methods now accept
and return a The Request Object instead of a dispatcher token.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 0.6
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.code-generator.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_CodeGenerator provides facilities to generate arbitrary code using an object oriented interface, both to
create new code as well as to update existing code. While the current implementation is limited to generating PHP
code, you can easily extend the base class in order to provide code generation for other tasks: JavaScript,
configuration files, apache vhosts, etc.



Theory of Operation


In the most typical use case, you will simply instantiate a code generator class and either pass it the appropriate
configuration or configure it after instantiation. To generate the code, you will simply echo the object or call
its generate() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		// Passing configuration to the constructor:
$file = new Zend_CodeGenerator_Php_File(array(
    'classes' => array(
        new Zend_CodeGenerator_Php_Class(array(
            'name'    => 'World',
            'methods' => array(
                new Zend_CodeGenerator_Php_Method(array(
                    'name' => 'hello',
                    'body' => 'echo \'Hello world!\';',
                )),
            ),
        )),
    )
));

// Configuring after instantiation
$method = new Zend_CodeGenerator_Php_Method();
$method->setName('hello')
       ->setBody('echo \'Hello world!\';');

$class = new Zend_CodeGenerator_Php_Class();
$class->setName('World')
      ->setMethod($method);

$file = new Zend_CodeGenerator_Php_File();
$file->setClass($class);

// Render the generated file
echo $file;

// or write it to a file:
file_put_contents('World.php', $file->generate());










Both of the above samples will render the same result:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<?php

class World
{

    public function hello()
    {
        echo 'Hello world!';
    }

}










Another common use case is to update existing code – for instance, to add a method to a class. In such a case, you
must first inspect the existing code using reflection, and then add your new method. Zend_CodeGenerator makes
this trivially simple, by leveraging Zend_Reflection.


As an example, let’s say we’ve saved the above to the file “World.php”, and have already included it. We could
then do the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$class = Zend_CodeGenerator_Php_Class::fromReflection(
    new Zend_Reflection_Class('World')
);

$method = new Zend_CodeGenerator_Php_Method();
$method->setName('mrMcFeeley')
       ->setBody('echo \'Hello, Mr. McFeeley!\';');
$class->setMethod($method);

$file = new Zend_CodeGenerator_Php_File();
$file->setClass($class);

// Render the generated file
echo $file;

// Or, better yet, write it back to the original file:
file_put_contents('World.php', $file->generate());










The resulting class file will now look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		<?php

class World
{

    public function hello()
    {
        echo 'Hello world!';
    }

    public function mrMcFeeley()
    {
        echo 'Hellow Mr. McFeeley!';
    }

}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/autoloading.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Autoloading is a mechanism that eliminates the need to manually require dependencies within your PHP code. Per
the PHP autoload manual [http://php.net/autoload], once an autoloader has been defined, it “is automatically called in case you are trying
to use a class or an interface which hasn’t been defined yet.”


Using autoloading, you do not need to worry about where a class exists in your project. With well-defined
autoloaders, you do not need to worry about where a class file is relative to the current class file; you simply
use the class, and the autoloader will perform the file lookup.


Additionally, autoloading, because it defers loading to the last possible moment and ensures that a match only has
to occur once, can be a huge performance boost – particularly if you take the time to strip out require_once()
calls before you move to deployment.


Zend Framework encourages the use of autoloading, and provides several tools to provide autoloading of both library
code as well as application code. This tutorial covers these tools, as well as how to use them effectively.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.rest.client.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Rest_Client



Introduction


Using the Zend_Rest_Client is very similar to using SoapClient objects (SOAP web service extension [http://www.php.net/soap]). You
can simply call the REST service procedures as Zend_Rest_Client methods. Specify the service’s full address in
the Zend_Rest_Client constructor.


A basic REST request


		1
2
3
4
5
6


		/**
 * Connect to framework.zend.com server and retrieve a greeting
 */
$client = new Zend_Rest_Client('http://framework.zend.com/rest');

echo $client->sayHello('Davey', 'Day')->get(); // "Hello Davey, Good Day"











Note


Differences in calling


Zend_Rest_Client attempts to make remote methods look as much like native methods as possible, the only
difference being that you must follow the method call with one of either get(), post(), put() or
delete(). This call may be made via method chaining or in separate method calls:


		1
2


		$client->sayHello('Davey', 'Day');
echo $client->get();















Responses


All requests made using Zend_Rest_Client return a Zend_Rest_Client_Response object. This object has many
properties that make it easier to access the results.


When the service is based on Zend_Rest_Server, Zend_Rest_Client can make several assumptions about the
response, including response status (success or failure) and return type.


Response Status


		1
2
3
4
5


		$result = $client->sayHello('Davey', 'Day')->get();

if ($result->isSuccess()) {
    echo $result; // "Hello Davey, Good Day"
}










In the example above, you can see that we use the request result as an object, to call isSuccess(), and then
because of __toString(), we can simply echo the object to get the result. Zend_Rest_Client_Response will
allow you to echo any scalar value. For complex types, you can use either array or object notation.


If however, you wish to query a service not using Zend_Rest_Server the Zend_Rest_Client_Response object
will behave more like a SimpleXMLElement. However, to make things easier, it will automatically query the XML
using XPath if the property is not a direct descendant of the document root element. Additionally, if you access a
property as a method, you will receive the PHP value for the object, or an array of PHP value results.


Using Technorati’s Rest Service


		1
2
3
4
5


		$technorati = new Zend_Rest_Client('http://api.technorati.com/bloginfo');
$technorati->key($key);
$technorati->url('http://pixelated-dreams.com');
$result = $technorati->get();
echo $result->firstname() .' '. $result->lastname();










Example Technorati Response


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		<?xml version="1.0" encoding="utf-8"?>
<!-- generator="Technorati API version 1.0 /bloginfo" -->
<!DOCTYPE tapi PUBLIC "-//Technorati, Inc.//DTD TAPI 0.02//EN"
                      "http://api.technorati.com/dtd/tapi-002.xml">
<tapi version="1.0">
    <document>
        <result>
            <url>http://pixelated-dreams.com</url>
            <weblog>
                <name>Pixelated Dreams</name>
                <url>http://pixelated-dreams.com</url>
                <author>
                    <username>DShafik</username>
                    <firstname>Davey</firstname>
                    <lastname>Shafik</lastname>
                </author>
                <rssurl>
                    http://pixelated-dreams.com/feeds/index.rss2
                </rssurl>
                <atomurl>
                    http://pixelated-dreams.com/feeds/atom.xml
                </atomurl>
                <inboundblogs>44</inboundblogs>
                <inboundlinks>218</inboundlinks>
                <lastupdate>2006-04-26 04:36:36 GMT</lastupdate>
                <rank>60635</rank>
            </weblog>
            <inboundblogs>44</inboundblogs>
            <inboundlinks>218</inboundlinks>
        </result>
    </document>
</tapi>










Here we are accessing the firstname and lastname properties. Even though these are not top-level elements, they
are automatically returned when accessed by name.



Note


Multiple items


If multiple items are found when accessing a value by name, an array of SimpleXMLElements will be returned;
accessing via method notation will return an array of PHP values.







Request Arguments


Unless you are making a request to a Zend_Rest_Server based service, chances are you will need to send multiple
arguments with your request. This is done by calling a method with the name of the argument, passing in the value
as the first (and only) argument. Each of these method calls returns the object itself, allowing for chaining, or
“fluent” usage. The first call, or the first argument if you pass in more than one argument, is always assumed to
be the method when calling a Zend_Rest_Server service.


Setting Request Arguments


		1
2
3
4
5
6
7
8
9


		$client = new Zend_Rest_Client('http://example.org/rest');

$client->arg('value1');
$client->arg2('value2');
$client->get();

// or

$client->arg('value1')->arg2('value2')->get();










Both of the methods in the example above, will result in the following get args:
?method=arg&arg1=value1&arg=value1&arg2=value2


You will notice that the first call of $client->arg(‘value1’); resulted in both method=arg&arg1=value1 and
arg=value1; this is so that Zend_Rest_Server can understand the request properly, rather than requiring
pre-existing knowledge of the service.



Warning


Strictness of Zend_Rest_Client


Any REST service that is strict about the arguments it receives will likely fail using Zend_Rest_Client,
because of the behavior described above. This is not a common practice and should not cause problems.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Rest_Client
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage4.png
Welcome to my ZF2 Console-enabled app

|Version 0.0.1
lUser Module BETAL

<userEmail>

email of the user

Turn on verbose mode
Perform a "quick” operation
Same as --verbose

Wide output






_static/file.png





modules/zend.i18n.view.helper.translate.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Translate Helper


The Translate view helper can be used to translate content. It acts as a wrapper for the
Zend\I18n\Translator\Translator class.


Setup


Before using the Translate view helper, you must have first created a Translator object and have attached
it to the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper,
this will be done automatically for you.


Basic Usage


		1
2
3
4
5
6
7
8
9


		// Within your view

echo $this->translate("Some translated text.");

echo $this->translate("Translated text from a custom text domain.", "customDomain");

echo sprintf($this->translate("The current time is %s."), $currentTime);

echo $this->translate("Translate in a specific locale", "default", "de_DE");











		
translate(string $message[, string $textDomain[, string $locale]])


		



		Parameters:		
		$message – The message to be translated.


		$textDomain – (Optional) The text domain where this translation lives. Defaults to the value “default”.


		$locale – (Optional) Locale in which the message would be translated (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Gettext


The xgettext utility can be used to compile *.po files from PHP source files containing the translate view helper.


xgettext --language=php --add-location --keyword=translate my-view-file.phtml






See the Gettext Wikipedia page [http://en.wikipedia.org/wiki/Gettext] for more information.


Public Methods



		Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from


		Zend\I18n\View\Helper\AbstractTranslatorHelper.









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Translate Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Google Data APIs provide programmatic interface to some of Google’s online services. The Google data Protocol
is based upon the Atom Publishing Protocol [http://ietfreport.isoc.org/idref/draft-ietf-atompub-protocol/] and allows client applications to retrieve data matching queries,
post data, update data and delete data using standard HTTP and the Atom syndication formation. The Zend_Gdata
component is a PHP 5 interface for accessing Google Data from PHP. The Zend_Gdata component also supports
accessing other services implementing the Atom Publishing Protocol.


See http://code.google.com/apis/gdata/ for more information about Google Data API.


The services that are accessible by Zend_Gdata include the following:




		Google Calendar is a popular online calendar application.


		Google Spreadsheets provides an online collaborative spreadsheets tool which
can be used as a simple data store for your applications.


		Google Documents List provides an online list of all spreadsheets, word processing
documents, and presentations stored in a Google account.


		Google Provisioning provides the ability to create, retrieve, update, and delete
user accounts, nicknames, groups, and email lists on a Google Apps hosted domain.


		YouTube provides the ability to search and retrieve videos, comments, favorites,
subscriptions, user profiles and more.


		Picasa Web Albums provides an online photo sharing application.


		Google Analytics is a visitor statistics application.


		Google Blogger [http://code.google.com/apis/blogger/developers_guide_php.html] is a popular Internet provider of “push-button publishing” and syndication.


		Google CodeSearch allows you to search public source code from many projects.


		Google Notebook allows you to view public Notebook content.










Note


Unsupported services


Zend_Gdata does not provide an interface to any other Google service, such as Search, Gmail, Translation, or
Maps. Only services that support the Google Data API are supported.





Structure of Zend_Gdata


Zend_Gata is composed of several types of classes:




		Service classes - inheriting from Zend_Gdata_App. These also include other classes such as Zend_Gdata,
Zend_Gdata_Spreadsheets, etc. These classes enable interacting with APP or GData services and provide the
ability to retrieve feeds, retrieve entries, post entries, update entries and delete entries.


		Query classes - inheriting from Zend_Gdata_Query. These also include other classes for specific services,
such as Zend_Gdata_Spreadsheets_ListQuery and Zend_Gdata_Spreadsheets_CellQuery. Query classes provide
methods used to construct a query for data to be retrieved from GData services. Methods include getters and
setters like setUpdatedMin(), setStartIndex(), and getPublishedMin(). The query classes also have
a method to generate a URL representing the constructed query –getQueryUrl(). Alternatively, the query
string component of the URL can be retrieved used the getQueryString() method.


		Feed classes - inheriting from Zend_Gdata_App_Feed. These also include other classes such as
Zend_Gdata_Feed, Zend_Gdata_Spreadsheets_SpreadsheetFeed, and Zend_Gdata_Spreadsheets_ListFeed.
These classes represent feeds of entries retrieved from services. They are primarily used to retrieve data
returned from services.


		Entry classes - inheriting from Zend_Gdata_App_Entry. These also include other classes such as
Zend_Gdata_Entry, and Zend_Gdata_Spreadsheets_ListEntry. These classes represent entries retrieved
from services or used for constructing data to send to services. In addition to being able to set the
properties of an entry (such as the spreadsheet cell value), you can use an entry object to send update or
delete requests to a service. For example, you can call $entry->save() to save changes made to an entry
back to service from which the entry initiated, or $entry->delete() to delete an entry from the server.


		Other Data model classes - inheriting from Zend_Gdata_App_Extension. These include classes such as
Zend_Gdata_App_Extension_Title (representing the atom:title XML element), Zend_Gdata_Extension_When
(representing the gd:when XML element used by the GData Event “Kind”), and Zend_Gdata_Extension_Cell
(representing the gs:cell XML element used by Google Spreadsheets). These classes are used purely to store
the data retrieved back from services and for constructing data to be sent to services. These include getters
and setters such as setText() to set the child text node of an element, getText() to retrieve the text
node of an element, getStartTime() to retrieve the start time attribute of a When element, and other
similiar methods. The data model classes also include methods such as getDOM() to retrieve a DOM
representation of the element and all children and transferFromDOM() to construct a data model
representation of a DOM tree.












Interacting with Google Services


Google data services are based upon the Atom Publishing Protocol (APP) and the Atom syndication format. To interact
with APP or Google services using the Zend_Gdata component, you need to use the service classes such as
Zend_Gdata_App, Zend_Gdata, Zend_Gdata_Spreadsheets, etc. These service classes provide methods to
retrieve data from services as feeds, insert new entries into feeds, update entries, and delete entries.


Note: A full example of working with Zend_Gdata is available in the demos/Zend/Gdata directory. This
example is runnable from the command-line, but the methods contained within are easily portable to a web
application.





Obtaining instances of Zend_Gdata classes


The Zend Framework naming standards require that all classes be named based upon the directory structure in which
they are located. For instance, extensions related to Spreadsheets are stored in:
Zend/Gdata/Spreadsheets/Extension/... and, as a result of this, are named
Zend_Gdata_Spreadsheets_Extension_.... This causes a lot of typing if you’re trying to construct a new instance
of a spreadsheet cell element!


We’ve implemented a magic factory method in all service classes (such as Zend_Gdata_App, Zend_Gdata,
Zend_Gdata_Spreadsheets) that should make constructing new instances of data model, query and other classes
much easier. This magic factory is implemented by using the magic __call() method to intercept all attempts to
call $service->newXXX(arg1, arg2, ...). Based off the value of XXX, a search is performed in all registered
‘packages’ for the desired class. Here’s some examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$ss = new Zend_Gdata_Spreadsheets();

// creates a Zend_Gdata_App_Spreadsheets_CellEntry
$entry = $ss->newCellEntry();

// creates a Zend_Gdata_App_Spreadsheets_Extension_Cell
$cell = $ss->newCell();
$cell->setText('My cell value');
$cell->setRow('1');
$cell->setColumn('3');
$entry->cell = $cell;

// ... $entry can then be used to send an update to a Google Spreadsheet










Each service class in the inheritance tree is responsible for registering the appropriate ‘packages’ (directories)
which are to be searched when calling the magic factory method.





Google Data Client Authentication


Most Google Data services require client applications to authenticate against the Google server before accessing
private data, or saving or deleting data. There are two implementations of authentication for Google Data:
AuthSub and ClientLogin. Zend_Gdata offers class
interfaces for both of these methods.


Most other types of queries against Google Data services do not require authentication.





Dependencies


Zend_Gdata makes use of Zend_Http_Client to send requests to google.com and fetch
results. The response to most Google Data requests is returned as a subclass of the Zend_Gdata_App_Feed or
Zend_Gdata_App_Entry classes.


Zend_Gdata assumes your PHP application is running on a host that has a direct connection to the Internet.
The Zend_Gdata client operates by contacting Google Data servers.





Creating a new Gdata client


Create a new object of class Zend_Gdata_App, Zend_Gdata, or one of the subclasses available that offer
helper methods for service-specific behavior.


The single optional parameter to the Zend_Gdata_App constructor is an instance of Zend_Http_Client. If you don’t pass this parameter, Zend_Gdata creates a default Zend_Http_Client
object, which will not have associated credentials to access private feeds. Specifying the Zend_Http_Client
object also allows you to pass configuration options to that client object.


		1
2
3
4


		$client = new Zend_Http_Client();
$client->setConfig( ...options... );

$gdata = new Zend_Gdata($client);










Beginning with Zend Framework 1.7, support has been added for protocol versioning. This allows the client and
server to support new features while maintaining backwards compatibility. While most services will manage this for
you, if you create a Zend_Gdata instance directly (as opposed to one of its subclasses), you may need to
specify the desired protocol version to access certain server functionality.


		1
2
3
4
5
6


		$client = new Zend_Http_Client();
$client->setConfig( ...options... );

$gdata = new Zend_Gdata($client);
$gdata->setMajorProtocolVersion(2);
$gdata->setMinorProtocolVersion(null);










Also see the sections on authentication for methods to create an authenticated Zend_Http_Client object.





Common Query Parameters


You can specify parameters to customize queries with Zend_Gdata. Query parameters are specified using
subclasses of Zend_Gdata_Query. The Zend_Gdata_Query class includes methods to set all query parameters
used throughout GData services. Individual services, such as Spreadsheets, also provide query classes to defined
parameters which are custom to the particular service and feeds. Spreadsheets includes a CellQuery class to query
the Cell Feed and a ListQuery class to query the List Feed, as different query parameters are applicable to each of
those feed types. The GData-wide parameters are described below.



		The q parameter specifies a full-text query. The value of the parameter is a string.


Set this parameter with the setQuery() function.





		The alt parameter specifies the feed type. The value of the parameter can be atom, rss, json, or
json-in-script. If you don’t specify this parameter, the default feed type is atom. NOTE: Only the output
of the atom feed format can be processed using Zend_Gdata. The Zend_Http_Client could be used to retrieve
feeds in other formats, using query URLs generated by the Zend_Gdata_Query class and its subclasses.


Set this parameter with the setAlt() function.





		The maxResults parameter limits the number of entries in the feed. The value of the parameter is an integer.
The number of entries returned in the feed will not exceed this value.


Set this parameter with the setMaxResults() function.





		The startIndex parameter specifies the ordinal number of the first entry returned in the feed. Entries before
this number are skipped.


Set this parameter with the setStartIndex() function.





		The updatedMin and updatedMax parameters specify bounds on the entry date. If you specify a value for
updatedMin, no entries that were updated earlier than the date you specify are included in the feed. Likewise
no entries updated after the date specified by updatedMax are included.


You can use numeric timestamps, or a variety of date/time string representations as the value for these
parameters.


Set this parameter with the setUpdatedMin() and setUpdatedMax() functions.








There is a get*() function for each set*() function.


		1
2
3


		$query = new Zend_Gdata_Query();
$query->setMaxResults(10);
echo $query->getMaxResults();   // returns 10










The Zend_Gdata class also implements “magic” getter and setter methods, so you can use the name of the
parameter as a virtual member of the class.


		1
2
3


		$query = new Zend_Gdata_Query();
$query->maxResults = 10;
echo $query->maxResults;        // returns 10










You can clear all parameters with the resetParameters() function. This is useful to do if you reuse a
Zend_Gdata object for multiple queries.


		1
2
3
4
5
6


		$query = new Zend_Gdata_Query();
$query->maxResults = 10;
// ...get feed...

$query->resetParameters();      // clears all parameters
// ...get a different feed...













Fetching a Feed


Use the getFeed() function to retrieve a feed from a specified URI. This function returns an instance of
class specified as the second argument to getFeed, which defaults to Zend_Gdata_Feed.


		1
2
3
4
5


		$gdata = new Zend_Gdata();
$query = new Zend_Gdata_Query(
        'http://www.blogger.com/feeds/blogID/posts/default');
$query->setMaxResults(10);
$feed = $gdata->getFeed($query);










See later sections for special functions in each helper class for Google Data services. These functions help you to
get feeds from the URI that is appropriate for the respective service.





Working with Multi-page Feeds


When retrieving a feed that contains a large number of entries, the feed may be broken up into many smaller “pages”
of feeds. When this occurs, each page will contain a link to the next page in the series. This link can be accessed
by calling getLink('next'). The following example shows how to retrieve the next page of a feed:


		1
2
3
4
5
6
7
8


		function getNextPage($feed) {
    $nextURL = $feed->getLink('next');
    if ($nextURL !== null) {
        return $gdata->getFeed($nextURL);
    } else {
        return null;
    }
}










If you would prefer not to work with pages in your application, pass the first page of the feed into
Zend_Gdata_App::retrieveAllEntriesForFeed(), which will consolidate all entries from each page into a single
feed. This example shows how to use this function:


		1
2
3
4


		$gdata = new Zend_Gdata();
$query = new Zend_Gdata_Query(
        'http://www.blogger.com/feeds/blogID/posts/default');
$feed = $gdata->retrieveAllEntriesForFeed($gdata->getFeed($query));










Keep in mind when calling this function that it may take a long time to complete on large feeds. You may need to
increase PHP‘s execution time limit by calling set_time_limit().





Working with Data in Feeds and Entries


After retrieving a feed, you can read the data from the feed or the entries contained in the feed using either the
accessors defined in each of the data model classes or the magic accessors. Here’s an example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$gdata = new Zend_Gdata($client);
$query = new Zend_Gdata_Query(
        'http://www.blogger.com/feeds/blogID/posts/default');
$query->setMaxResults(10);
$feed = $gdata->getFeed($query);
foreach ($feed as $entry) {
    // using the magic accessor
    echo 'Title: ' . $entry->title->text;
    // using the defined accessors
    echo 'Content: ' . $entry->getContent()->getText();
}













Updating Entries


After retrieving an entry, you can update that entry and save changes back to the server. Here’s an example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$gdata = new Zend_Gdata($client);
$query = new Zend_Gdata_Query(
        'http://www.blogger.com/feeds/blogID/posts/default');
$query->setMaxResults(10);
$feed = $gdata->getFeed($query);
foreach ($feed as $entry) {
    // update the title to append 'NEW'
    echo 'Old Title: ' . $entry->title->text;
    $entry->title->text = $entry->title->text . ' NEW';

    // update the entry on the server
    $newEntry = $entry->save();
    echo 'New Title: ' . $newEntry->title->text;
}













Posting Entries to Google Servers


The Zend_Gdata object has a function insertEntry() with which you can upload data to save new entries to
Google Data services.


You can use the data model classes for each service to construct the appropriate entry to post to Google’s
services. The insertEntry() function will accept a child of Zend_Gdata_App_Entry as data to post to the
service. The method returns a child of Zend_Gdata_App_Entry which represents the state of the entry as it was
returned from the server.


Alternatively, you could construct the XML structure for an entry as a string and pass the string to the
insertEntry() function.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$gdata = new Zend_Gdata($authenticatedHttpClient);

$entry = $gdata->newEntry();
$entry->title = $gdata->newTitle('Playing football at the park');
$content =
    $gdata->newContent('We will visit the park and play football');
$content->setType('text');
$entry->content = $content;

$entryResult = $gdata->insertEntry($entry,
        'http://www.blogger.com/feeds/blogID/posts/default');

echo 'The <id> of the resulting entry is: ' . $entryResult->id->text;










To post entries, you must be using an authenticated Zend_Http_Client that you created using the
Zend_Gdata_AuthSub or Zend_Gdata_ClientLogin classes.





Deleting Entries on Google Servers


Option 1: The Zend_Gdata object has a function delete() with which you can delete entries from Google Data
services. Pass the edit URL value from a feed entry to the delete() method.


Option 2: Alternatively, you can call $entry->delete() on an entry retrieved from a Google service.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$gdata = new Zend_Gdata($authenticatedHttpClient);
// a Google Data feed
$feedUri = ...;
$feed = $gdata->getFeed($feedUri);
foreach ($feed as $feedEntry) {
    // Option 1 - delete the entry directly
    $feedEntry->delete();
    // Option 2 - delete the entry by passing the edit URL to
    // $gdata->delete()
    // $gdata->delete($feedEntry->getEditLink()->href);
}










To delete entries, you must be using an authenticated Zend_Http_Client that you created using the
Zend_Gdata_AuthSub or Zend_Gdata_ClientLogin classes.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.authentication.adapter.http.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HTTP Authentication Adapter



Introduction


Zend\Authentication\Adapter\Http provides a mostly-compliant implementation of RFC-2617 [http://tools.ietf.org/html/rfc2617], Basic [http://en.wikipedia.org/wiki/Basic_authentication_scheme] and
Digest [http://en.wikipedia.org/wiki/Digest_access_authentication] HTTP Authentication. Digest authentication is a method of HTTP authentication that improves upon
Basic authentication by providing a way to authenticate without having to transmit the password in clear text
across the network.


Major Features:



		Supports both Basic and Digest authentication.


		Issues challenges in all supported schemes, so client can respond with any scheme it supports.


		Supports proxy authentication.


		Includes support for authenticating against text files and provides an interface for authenticating against other
sources, such as databases.





There are a few notable features of RFC-2617 that are not implemented yet:



		Nonce tracking, which would allow for “stale” support, and increased replay attack protection.


		Authentication with integrity checking, or “auth-int”.


		Authentication-Info HTTP header.








Design Overview


This adapter consists of two sub-components, the HTTP authentication class itself, and the so-called “Resolvers.”
The HTTP authentication class encapsulates the logic for carrying out both Basic and Digest authentication. It
uses a Resolver to look up a client’s identity in some data store (text file by default), and retrieve the
credentials from the data store. The “resolved” credentials are then compared to the values submitted by the client
to determine whether authentication is successful.





Configuration Options


The Zend\Authentication\Adapter\Http class requires a configuration array passed to its constructor. There are
several configuration options available, and some are required:



Configuration Options






		Option Name
		Required
		Description





		accept_schemes
		Yes
		Determines which authentication schemes the adapter will accept from the client. Must be a space=separated list containing ‘basic’ and/or ‘digest’.



		realm
		Yes
		Sets the authentication realm; usernames should be unique within a given realm.



		digest_domains
		Yes, when accept_schemes contains digest
		Space-separated list of URIs for which the same authentication information is valid. The URIs need not all point to the same server.



		nonce_timeout
		Yes, when accept_schemes contains digest
		Sets the number of seconds for which the nonce is valid. See notes below.



		use_opaque
		No
		Specifies whether to send the opaque value in the header. True by default.



		algorithm
		No
		Specified the algorithm. Defaults to MD5, the only supported option (for now).



		proxy_auth
		No
		Disabled by default. Enable to perform Proxy authentication, instead of normal origin server authentication.








Note


The current implementation of the nonce_timeout has some interesting side effects. This setting is supposed
to determine the valid lifetime of a given nonce, or effectively how long a client’s authentication information
is accepted. Currently, if it’s set to 3600 (for example), it will cause the adapter to prompt the client for
new credentials every hour, on the hour. This will be resolved in a future release, once nonce tracking and
stale support are implemented.







Resolvers


The resolver’s job is to take a username and realm, and return some kind of credential value. Basic authentication
expects to receive the Base64 encoded version of the user’s password. Digest authentication expects to receive a
hash of the user’s username, the realm, and their password (each separated by colons). Currently, the only
supported hash algorithm is MD5.


Zend\Authentication\Adapter\Http relies on objects implementing
Zend\Authentication\Adapter\Http\ResolverInterface. A text file resolver class is included with this adapter,
but any other kind of resolver can be created simply by implementing the resolver interface.



File Resolver


The file resolver is a very simple class. It has a single property specifying a filename, which can also be passed
to the constructor. Its resolve() method walks through the text file, searching for a line with a matching
username and realm. The text file format similar to Apache htpasswd files:


		1


		<username>:<realm>:<credentials>\n










Each line consists of three fields - username, realm, and credentials - each separated by a colon. The credentials
field is opaque to the file resolver; it simply returns that value as-is to the caller. Therefore, this same file
format serves both Basic and Digest authentication. In Basic authentication, the credentials field should be
written in clear text. In Digest authentication, it should be the MD5 hash described above.


There are two equally easy ways to create a File resolver:


		1
2
3


		use Zend\Authentication\Adapter\Http\FileResolver;
$path     = 'files/passwd.txt';
$resolver = new FileResolver($path);










or


		1
2
3


		$path     = 'files/passwd.txt';
$resolver = new FileResolver();
$resolver->setFile($path);










If the given path is empty or not readable, an exception is thrown.







Basic Usage


First, set up an array with the required configuration values:


		1
2
3
4
5
6


		$config = array(
    'accept_schemes' => 'basic digest',
    'realm'          => 'My Web Site',
    'digest_domains' => '/members_only /my_account',
    'nonce_timeout'  => 3600,
);










This array will cause the adapter to accept either Basic or Digest authentication, and will require authenticated
access to all the areas of the site under /members_only and /my_account. The realm value is usually
displayed by the browser in the password dialog box. The nonce_timeout, of course, behaves as described above.


Next, create the Zend\Authentication\Adapter\Http object:


		1


		$adapter = new Zend\Authentication\Adapter\Http($config);










Since we’re supporting both Basic and Digest authentication, we need two different resolver objects. Note that this
could just as easily be two different classes:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		use Zend\Authentication\Adapter\Http\FileResolver;

$basicResolver = new FileResolver();
$basicResolver->setFile('files/basicPasswd.txt');

$digestResolver = new FileResolver();
$digestResolver->setFile('files/digestPasswd.txt');

$adapter->setBasicResolver($basicResolver);
$adapter->setDigestResolver($digestResolver);










Finally, we perform the authentication. The adapter needs a reference to both the Request and Response objects in
order to do its job:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		assert($request instanceof Zend\Http\Request);
assert($response instanceof Zend\Http\Response);

$adapter->setRequest($request);
$adapter->setResponse($response);

$result = $adapter->authenticate();
if (!$result->isValid()) {
    // Bad userame/password, or canceled password prompt
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HTTP Authentication Adapter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.rest.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


REST Web Services use service-specific XML formats. These ad-hoc standards mean that the manner for accessing a
REST web service is different for each service. REST web services typically use URL parameters (GET data) or
path information for requesting data and POST data for sending data.


Zend Framework provides both Client and Server capabilities, which, when used together allow for a much more
“local” interface experience via virtual object property access. The Server component features automatic exposition
of functions and classes using a meaningful and simple XML format. When accessing these services using the
Client, it is possible to easily retrieve the return data from the remote call. Should you wish to use the client
with a non-Zend_Rest_Server based service, it will still provide easier data access.


In addition to Zend_Rest_Server and Zend_Rest_Client components, Zend_Rest_Route and
Zend_Rest_Controller classes are provided to aid routing REST requests to
controllers.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.messages.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Validation Messages


Each validator which is based on Zend\Validator\ValidatorInterface provides one or multiple messages in the
case of a failed validation. You can use this information to set your own messages, or to translate existing
messages which a validator could return to something different.


These validation messages are constants which can be found at top of each validator class. Let’s look into
Zend\Validator\GreaterThan for an descriptive example:


		1
2
3


		protected $messageTemplates = array(
    self::NOT_GREATER => "'%value%' is not greater than '%min%'",
);










As you can see the constant self::NOT_GREATER refers to the failure and is used as key, and the message itself
is used as value of the message array.


You can retrieve all message templates from a validator by using the getMessageTemplates() method. It returns
you the above array which contains all messages a validator could return in the case of a failed validation.


		1
2


		$validator = new Zend\Validator\GreaterThan();
$messages  = $validator->getMessageTemplates();










Using the setMessage() method you can set another message to be returned in case of the specified failure.


		1
2
3
4
5


		$validator = new Zend\Validator\GreaterThan();
$validator->setMessage(
    'Please enter a lower value',
    Zend\Validator\GreaterThan::NOT_GREATER
);










The second parameter defines the failure which will be overridden. When you omit this parameter, then the given
message will be set for all possible failures of this validator.



Using pre-translated validation messages


Zend Framework is shipped with more than 45 different validators with more than 200 failure messages. It can be a
tedious task to translate all of these messages. But for your convenience Zend Framework comes with already
pre-translated validation messages. You can find them within the path /resources/languages in your Zend
Framework installation.



Note


Used path


The resource files are outside of the library path because all of your translations should also be outside of
this path.




So to translate all validation messages to German for example, all you have to do is to attach a translator to
Zend\Validator\AbstractValidator using these resource files.


		1
2
3
4
5
6
7
8


		$translator = new Zend\I18n\Translator\Translator();
$translator->addTranslationFile(
    'phpArray'
    'resources/languages/en.php',
    'default',
    'en_US
);
Zend\Validator\AbstractValidator::setDefaultTranslator($translator);











Note


Supported languages


This feature is very young, so the amount of supported languages may not be complete. New languages will be
added with each release. Additionally feel free to use the existing resource files to make your own
translations.


You could also use these resource files to rewrite existing translations. So you are not in need to create these
files manually yourself.







Limit the size of a validation message


Sometimes it is necessary to limit the maximum size a validation message can have. For example when your view
allows a maximum size of 100 chars to be rendered on one line. To simplify the usage,
Zend\Validator\AbstractValidator is able to automatically limit the maximum returned size of a validation
message.


To get the actual set size use Zend\Validator\AbstractValidator::getMessageLength(). If it is -1, then the
returned message will not be truncated. This is default behaviour.


To limit the returned message size use Zend\Validator\AbstractValidator::setMessageLength(). Set it to any
integer size you need. When the returned message exceeds the set size, then the message will be truncated and the
string ‘...‘ will be added instead of the rest of the message.


		1


		Zend\Validator\AbstractValidator::setMessageLength(100);











Note


Where is this parameter used?


The set message length is used for all validators, even for self defined ones, as long as they extend
Zend\Validator\AbstractValidator.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Validation Messages
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.find-feeds.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Retrieving Feeds from Web Pages


Web pages often contain <link> tags that refer to feeds with content relevant to the particular page.
Zend_Feed enables you to retrieve all feeds referenced by a web page with one simple method call:


		1


		$feedArray = Zend_Feed::findFeeds('http://www.example.com/news.html');










Here the findFeeds() method returns an array of Zend_Feed_Abstract objects that are referenced by
<link> tags on the news.html web page. Depending on the type of each feed, each respective entry in the
$feedArray array may be a Zend_Feed_Rss or Zend_Feed_Atom instance. Zend_Feed will throw a
Zend_Feed_Exception upon failure, such as an HTTP 404 response code or a malformed feed.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Retrieving Feeds from Web Pages
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.email-address.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
EmailAddress


Zend\Validator\EmailAddress allows you to validate an email address. The validator first splits the email
address on local-part @ hostname and attempts to match these against known specifications for email addresses and
hostnames.



Basic usage


A basic example of usage is below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\EmailAddress();
if ($validator->isValid($email)) {
    // email appears to be valid
} else {
    // email is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










This will match the email address $email and on failure populate getMessages() with useful error messages.





Options for validating Email Addresses


Zend\Validator\EmailAddress supports several options which can either be set at initiation, by giving an array
with the related options, or afterwards, by using setOptions(). The following options are supported:



		allow: Defines which type of domain names are accepted. This option is used in conjunction with the hostname
option to set the hostname validator. For more information about possible values of this option, look at
Hostname and possible ALLOW* constants. This option defaults to
ALLOW_DNS.


		deep: Defines if the servers MX records should be verified by a deep check. When this option is set to
TRUE then additionally to MX records also the A, A6 and AAAA records are used to verify if the server
accepts emails. This option defaults to FALSE.


		domain: Defines if the domain part should be checked. When this option is set to FALSE, then only the
local part of the email address will be checked. In this case the hostname validator will not be called. This
option defaults to TRUE.


		hostname: Sets the hostname validator with which the domain part of the email address will be validated.


		mx: Defines if the MX records from the server should be detected. If this option is defined to TRUE then
the MX records are used to verify if the server accepts emails. This option defaults to FALSE.





		1
2


		$validator = new Zend\Validator\EmailAddress();
$validator->setOptions(array('domain' => false));













Complex local parts


Zend\Validator\EmailAddress will match any valid email address according to RFC2822. For example, valid emails
include bob@domain.com, bob+jones@domain.us, “bob@jones”@domain.com and “bob jones”@domain.com


Some obsolete email formats will not currently validate (e.g. carriage returns or a “\” character in an email
address).





Validating only the local part


If you need Zend\Validator\EmailAddress to check only the local part of an email address, and want to disable
validation of the hostname, you can set the domain option to FALSE. This forces
Zend\Validator\EmailAddress not to validate the hostname part of the email address.


		1
2


		$validator = new Zend\Validator\EmailAddress();
$validator->setOptions(array('domain' => FALSE));













Validating different types of hostnames


The hostname part of an email address is validated against Zend\Validator\Hostname. By default only DNS hostnames of the form domain.com are accepted, though if
you wish you can accept IP addresses and Local hostnames too.


To do this you need to instantiate Zend\Validator\EmailAddress passing a parameter to indicate the type of
hostnames you want to accept. More details are included in Zend\Validator\Hostname, though an example of how to
accept both DNS and Local hostnames appears below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$validator = new Zend\Validator\EmailAddress(
                    Zend\Validator\Hostname::ALLOW_DNS |
                    Zend\Validator\Hostname::ALLOW_LOCAL);
if ($validator->isValid($email)) {
    // email appears to be valid
} else {
    // email is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}













Checking if the hostname actually accepts email


Just because an email address is in the correct format, it doesn’t necessarily mean that email address actually
exists. To help solve this problem, you can use MX validation to check whether an MX (email) entry exists in the
DNS record for the email’s hostname. This tells you that the hostname accepts email, but doesn’t tell you the exact
email address itself is valid.


MX checking is not enabled by default. To enable MX checking you can pass a second parameter to the
Zend\Validator\EmailAddress constructor.


		1
2
3
4
5
6


		$validator = new Zend\Validator\EmailAddress(
    array(
        'allow' => Zend\Validator\Hostname::ALLOW_DNS,
        'mx'    => true
    )
);











Note


MX Check under Windows


Within Windows environments MX checking is only available when PHP 5.3 or above is used. Below PHP 5.3 MX
checking will not be used even if it’s activated within the options.




Alternatively you can either pass TRUE or FALSE to setValidateMx() to enable or disable MX validation.


By enabling this setting network functions will be used to check for the presence of an MX record on the hostname
of the email address you wish to validate. Please be aware this will likely slow your script down.


Sometimes validation for MX records returns FALSE, even if emails are accepted. The reason behind this
behaviour is, that servers can accept emails even if they do not provide a MX record. In this case they can provide
A, A6 or AAAA records. To allow Zend\Validator\EmailAddress to check also for these other records, you need
to set deep MX validation. This can be done at initiation by setting the deep option or by using
setOptions().


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\EmailAddress(
    array(
        'allow' => Zend\Validator\Hostname::ALLOW_DNS,
        'mx'    => true,
        'deep'  => true
    )
);










Sometimes it can be useful to get the server’s MX information which have been used to do further processing. Simply
use getMXRecord() after validation. This method returns the received MX record including weight and sorted by
it.



Warning


Performance warning


You should be aware that enabling MX check will slow down you script because of the used network functions.
Enabling deep check will slow down your script even more as it searches the given server for 3 additional types.





Note


Disallowed IP addresses


You should note that MX validation is only accepted for external servers. When deep MX validation is enabled,
then local IP addresses like 192.168.* or 169.254.* are not accepted.







Validating International Domains Names


Zend\Validator\EmailAddress will also match international characters that exist in some domains. This is known
as International Domain Name (IDN) support. This is enabled by default, though you can disable this by changing the
setting via the internal Zend\Validator\Hostname object that exists within Zend\Validator\EmailAddress.


		1


		$validator->getHostnameValidator()->setValidateIdn(false);










More information on the usage of setValidateIdn() appears in the Zend\Validator\Hostname documentation.


Please note IDNs are only validated if you allow DNS hostnames to be validated.





Validating Top Level Domains


By default a hostname will be checked against a list of known TLDs. This is enabled by default, though you can
disable this by changing the setting via the internal Zend\Validator\Hostname object that exists within
Zend\Validator\EmailAddress.


		1


		$validator->getHostnameValidator()->setValidateTld(false);










More information on the usage of setValidateTld() appears in the Zend\Validator\Hostname documentation.


Please note TLDs are only validated if you allow DNS hostnames to be validated.





Setting messages


Zend\Validator\EmailAddress makes also use of Zend\Validator\Hostname to check the hostname part of a given
email address. As with Zend Framework 1.10 you can simply set messages for Zend\Validator\Hostname from within
Zend\Validator\EmailAddress.


		1
2
3
4
5
6


		$validator = new Zend\Validator\EmailAddress();
$validator->setMessages(
    array(
        Zend\Validator\Hostname::UNKNOWN_TLD => 'I don't know the TLD you gave'
    )
);










Before Zend Framework 1.10 you had to attach the messages to your own Zend\Validator\Hostname, and then set
this validator within Zend\Validator\EmailAddress to get your own messages returned.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                EmailAddress
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.intro.mvc.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework & MVC Introduction



Zend Framework


Zend Framework is an open source, object oriented web application framework for PHP 5. Zend Framework is often
called a ‘component library’, because it has many loosely coupled components that you can use more or less
independently. But Zend Framework also provides an advanced Model-View-Controller (MVC) implementation that can
be used to establish a basic structure for your Zend Framework applications. A full list of Zend Framework
components along with short descriptions may be found in the components overview [http://framework.zend.com/about/components]. This QuickStart will introduce
you to some of Zend Framework’s most commonly used components, including Zend_Controller, Zend_Layout,
Zend_Config, Zend_Db, Zend_Db_Table, Zend_Registry, along with a few view helpers.


Using these components, we will build a simple database-driven guest book application within minutes. The complete
source code for this application is available in the following archives:



		zip [http://framework.zend.com/demos/ZendFrameworkQuickstart.zip]


		tar.gz [http://framework.zend.com/demos/ZendFrameworkQuickstart.tar.gz]








Model-View-Controller


So what exactly is this MVC pattern everyone keeps talking about, and why should you care? MVC is much more
than just a three-letter acronym (TLA) that you can whip out anytime you want to sound smart; it has become
something of a standard in the design of modern web applications. And for good reason. Most web application code
falls under one of the following three categories: presentation, business logic, and data access. The MVC pattern
models this separation of concerns well. The end result is that your presentation code can be consolidated in one
part of your application with your business logic in another and your data access code in yet another. Many
developers have found this well-defined separation indispensable for keeping their code organized, especially when
more than one developer is working on the same application.



Note


More Information


Let’s break down the pattern and take a look at the individual pieces:


[image: ../_images/learning.quickstart.intro.mvc.png]

		Model- This is the part of your application that defines its basic functionality behind a set of
abstractions. Data access routines and some business logic can be defined in the model.


		View- Views define exactly what is presented to the user. Usually controllers pass data to each view to
render in some format. Views will often collect data from the user, as well. This is where you’re likely to
find HTML markup in your MVC applications.


		Controller- Controllers bind the whole pattern together. They manipulate models, decide which view to
display based on the user’s request and other factors, pass along the data that each view will need, or hand
off control to another controller entirely. Most MVC experts recommend keeping controllers as skinny as
possible [http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model].





Of course there is more to be said [http://ootips.org/mvc-pattern.html] about this critical pattern, but this should give you enough background to
understand the guestbook application we’ll be building.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework & MVC Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/skeleton-application.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Getting started: A skeleton application


In order to build our application, we will start with the
ZendSkeletonApplication [https://github.com/zendframework/ZendSkeletonApplication]
available on github [https://github.com/].
Go to https://github.com/zendframework/ZendSkeletonApplication and click the “Zip”
button. This will download a ﬁle with a name like
zendframework-ZendSkeletonApplication-zfrelease-2.0.0beta5-2-gc2c7315.zip or
similar.


Unzip this ﬁle into the directory where you keep all your vhosts and rename the
resultant directory to zf2-tutorial.


ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to
resolve its dependencies. In this case, the dependency is Zend Framework 2
itself.


To install Zend Framework 2 into our application we simply type:


php composer.phar self-update
php composer.phar install






from the zf2-tutorial folder. This takes a while. You should see an output like:


Installing dependencies from lock file
- Installing zendframework/zendframework (dev-master)
  Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

Generating autoload files







Note


If you see this message:


[RuntimeException]
  The process timed out.






then your connection was too slow to download the entire package in time, and composer
timed out. To avoid this, instead of running:


php composer.phar install






run instead:


COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar install








We can now move on to the virtual host.



Virtual host


You now need to create an Apache virtual host for the application and edit your
hosts ﬁle so that http://zf2-tutorial.localhost will serve index.php from the
zf2-tutorial/public directory.


Setting up the virtual host is usually done within httpd.conf or
extra/httpd-vhosts.conf. (If you are using httpd-vhosts.conf, ensure
that this ﬁle is included by your main httpd.conf ﬁle.)


Ensure that NameVirtualHost is deﬁned and set to “*:80” or similar, and then
deﬁne a virtual host along these lines:


<VirtualHost *:80>
    ServerName zf2-tutorial.localhost
    DocumentRoot /path/to/zf2-tutorial/public
    SetEnv APPLICATION_ENV "development"
    <Directory /path/to/zf2-tutorial/public>
        DirectoryIndex index.php
        AllowOverride All
        Order allow,deny
        Allow from all
    </Directory>
</VirtualHost>






Make sure that you update your /etc/hosts or
c:\windows\system32\drivers\etc\hosts ﬁle so that zf2-tutorial.localhost
is mapped to 127.0.0.1. The website can then be accessed using
http://zf2-tutorial.localhost.


127.0.0.1               zf2-tutorial.localhost localhost




If you’ve done it right, you should see something like this:


[image: ../_images/user-guide.skeleton-application.hello-world.png]
To test that your .htaccess ﬁle is working, navigate to
http://zf2-tutorial.localhost/1234 and you should see this:


[image: ../_images/user-guide.skeleton-application.404.png]
If you see a standard Apache 404 error, then you need to ﬁx .htaccess usage
before continuing.


You now have a working skeleton application and we can start adding the speciﬁcs
for our application.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Getting started: A skeleton application
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.index.opening.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Index Opening and Creation


All index operations (e.g., creating a new index, adding a document to the index, deleting a document, searching
through the index) need an index object. One can be obtained using one of the following two methods.


Lucene Index Creation


		1


		$index = Zend_Search_Lucene::create($indexPath);










Lucene Index Opening


		1


		$index = Zend_Search_Lucene::open($indexPath);














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Index Opening and Creation
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.securitygroups.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Security Groups


A security group is a named collection of access rules. These access rules specify which ingress (i.e., incoming)
network traffic should be delivered to your instance. All other ingress traffic will be discarded.


You can modify rules for a group at any time. The new rules are automatically enforced for all running instances
and instances launched in the future.



Note


Maximum Security Groups


You can create up to 100 security groups.





Security Group Maintenance


Create a new Security Group


create a new security group. Every instance is launched in a security group. If no security group is specified
during launch, the instances are launched in the default security group. Instances within the same security group
have unrestricted network access to each other. Instances will reject network access attempts from other instances
in a different security group.


create returns boolean TRUE or FALSE


		1
2
3


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->create('mygroup', 'my group description');










Describe a Security Group


describe returns information about security groups that you own.


If you specify security group names, information about those security groups is returned. Otherwise, information
for all security groups is returned. If you specify a group that does not exist, a fault is returned.


describe will return an array containing information about security groups which includes the ownerId, groupName,
groupDescription and an array containing all the rules for that security group.


		1
2
3


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->describe('mygroup');










Delete a Security Group


delete will remove the security group. If you attempt to delete a security group that contains instances, a fault
is returned. If you attempt to delete a security group that is referenced by another security group, a fault is
returned. For example, if security group B has a rule that allows access from security group A, security group A
cannot be deleted until the allow rule is removed.


delete returns boolean TRUE or FALSE.


		1
2
3


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->delete('mygroup');













Authorizing Access


Authorizing by IP


authorizeIp Adds permissions to a security group based on an IP address, protocol type and port range.


Permissions are specified by the IP protocol (TCP, UDP or ICMP), the source of the request (by IP range or an
Amazon EC2 user-group pair), the source and destination port ranges (for TCP and UDP), and the ICMP codes and
types (for ICMP). When authorizing ICMP, -1 can be used as a wildcard in the type and code fields.


Permission changes are propagated to instances within the security group as quickly as possible. However, depending
on the number of instances, a small delay might occur.


authorizeIp returns boolean TRUE or FALSE


		1
2
3
4
5
6
7


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->authorizeIp('mygroup',
                                'protocol',
                                'fromPort',
                                'toPort',
                                'ipRange');










Authorize By Group


authorizeGroup Adds permissions to a security group.


Permission changes are propagated to instances within the security group as quickly as possible. However, depending
on the number of instances, a small delay might occur.


authorizeGroup returns boolean TRUE or FALSE.


		1
2
3


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->authorizeGroup('mygroup', 'securityGroupName', 'ownerId');













Revoking Access


Revoke by IP


revokeIp Revokes permissions to a security group based on an IP address, protocol type and port range. The
permissions used to revoke must be specified using the same values used to grant the permissions.


Permissions are specified by the IP protocol (TCP, UDP or ICMP), the source of the request (by IP range or an
Amazon EC2 user-group pair), the source and destination port ranges (for TCP and UDP), and the ICMP codes and
types (for ICMP). When authorizing ICMP, -1 can be used as a wildcard in the type and code fields.


Permission changes are propagated to instances within the security group as quickly as possible. However, depending
on the number of instances, a small delay might occur.


revokeIp returns boolean TRUE or FALSE


		1
2
3
4
5
6
7


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->revokeIp('mygroup',
                             'protocol',
                             'fromPort',
                             'toPort',
                             'ipRange');










Revoke By Group


revokeGroup Adds permissions to a security group. The permissions to revoke must be specified using the same
values used to grant the permissions.


Permission changes are propagated to instances within the security group as quickly as possible. However, depending
on the number of instances, a small delay might occur.


revokeGroup returns boolean TRUE or FALSE.


		1
2
3


		$ec2_sg = new Zend_Service_Amazon_Ec2_Securitygroups('aws_key',
                                                     'aws_secret_key');
$return = $ec2_sg->revokeGroup('mygroup', 'securityGroupName', 'ownerId');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Security Groups
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.between.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Between


Zend\Validator\Between allows you to validate if a given value is between two other values.



Note


ZendValidatorBetween supports only number validation


It should be noted that Zend\Validator\Between supports only the validation of numbers. Strings or dates can
not be validated with this validator.





Supported options for Zend\Validator\Between


The following options are supported for Zend\Validator\Between:



		inclusive: Defines if the validation is inclusive the minimum and maximum border values or exclusive. It
defaults to TRUE.


		max: Sets the maximum border for the validation.


		min: Sets the minimum border for the validation.








Default behaviour for Zend\Validator\Between


Per default this validator checks if a value is between min and max where both border values are allowed as
value.


		1
2
3
4


		$valid  = new Zend\Validator\Between(array('min' => 0, 'max' => 10));
$value  = 10;
$result = $valid->isValid($value);
// returns true










In the above example the result is TRUE due to the reason that per default the search is inclusively the border
values. This means in our case that any value from ‘0’ to ‘10’ is allowed. And values like ‘-1’ and ‘11’ will
return FALSE.





Validation exclusive the border values


Sometimes it is useful to validate a value by excluding the border values. See the following example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid  = new Zend\Validator\Between(
    array(
        'min' => 0,
        'max' => 10,
        'inclusive' => false
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns false










The example is almost equal to our first example but we excluded the border value. Now the values ‘0’ and ‘10’ are
no longer allowed and will return FALSE.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Between
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction



Getting started


Zend_Mail provides generalized functionality to compose and send both text and MIME-compliant multipart
e-mail messages. Mail can be sent with Zend_Mail via the default Zend_Mail_Transport_Sendmail transport or
via Zend_Mail_Transport_Smtp.


Simple E-Mail with Zend_Mail


A simple e-mail consists of some recipients, a subject, a body and a sender. To send such a mail using
Zend_Mail_Transport_Sendmail, do the following:


		1
2
3
4
5
6


		$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.');
$mail->setFrom('somebody@example.com', 'Some Sender');
$mail->addTo('somebody_else@example.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send();











Note


Minimum definitions


In order to send an e-mail with Zend_Mail you have to specify at least one recipient, a sender (e.g., with
setFrom()), and a message body (text and/or HTML).




For most mail attributes there are “get” methods to read the information stored in the mail object. for further
details, please refer to the API documentation. A special one is getRecipients(). It returns an array with
all recipient e-mail addresses that were added prior to the method call.


For security reasons, Zend_Mail filters all header fields to prevent header injection with newline (n)
characters. Double quotation is changed to single quotation and angle brackets to square brackets in the name of
sender and recipients. If the marks are in email address, the marks will be removed.


You also can use most methods of the Zend_Mail object with a convenient fluent interface.


		1
2
3
4
5
6


		$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.')
    ->setFrom('somebody@example.com', 'Some Sender')
    ->addTo('somebody_else@example.com', 'Some Recipient')
    ->setSubject('TestSubject')
    ->send();













Configuring the default sendmail transport


The default transport for a Zend_Mail instance is Zend_Mail_Transport_Sendmail. It is essentially a wrapper
to the PHP mail() [http://php.net/mail] function. If you wish to pass additional parameters to the mail() [http://php.net/mail] function, simply create
a new transport instance and pass your parameters to the constructor. The new transport instance can then act as
the default Zend_Mail transport, or it can be passed to the send() method of Zend_Mail.


Passing additional parameters to the Zend_Mail_Transport_Sendmail transport


This example shows how to change the Return-Path of the mail() [http://php.net/mail] function.


		1
2
3
4
5
6
7
8
9


		$tr = new Zend_Mail_Transport_Sendmail('-freturn_to_me@example.com');
Zend_Mail::setDefaultTransport($tr);

$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.');
$mail->setFrom('somebody@example.com', 'Some Sender');
$mail->addTo('somebody_else@example.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send();











Note


Safe mode restrictions


The optional additional parameters will be cause the mail() [http://php.net/mail] function to fail if PHP is running in safe
mode.





Warning


Sendmail Transport and Windows


As the PHP manual states the mail() function has different behaviour on Windows and on *nix based
systems. Using the Sendmail Transport on Windows will not work in combination with addBcc(). The mail()
function will sent to the BCC recipient such that all the other recipients can see him as recipient!


Therefore if you want to use BCC on a windows server, use the SMTP transport for sending!










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.log.overview.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Overview


Zend\Log\Logger is a component for general purpose logging. It supports multiple log backends, formatting
messages sent to the log, and filtering messages from being logged. These functions are divided into the following
objects:



		A Logger (instance of Zend\Log\Logger) is the object that your application uses the most. You can have as
many Logger objects as you like; they do not interact. A Logger object must contain at least one Writer, and can
optionally contain one or more Filters.


		A Writer (inherits from Zend\Log\Writer\AbstractWriter) is responsible for saving data to storage.


		A Filter (implements Zend\Log\Filter) blocks log data from being saved. A filter is applied to an  individual
writer. Filters can be chained.


		A Formatter (inheriting from Zend\Log\Formatter\AbstractFormatter) can format the log data before it is
written by a Writer. Each Writer has exactly one Formatter.






Creating a Log


To get started logging, instantiate a Writer and then pass it to a Logger instance:


		1
2
3
4


		$logger = new Zend\Log\Logger;
$writer = new Zend\Log\Writer\Stream('php://output');

$logger->addWriter($writer);










It is important to note that the Logger must have at least one Writer. You can add any number of Writers using the
Log’s addWriter() method.


You can also add a priority to each writer. The priority is specified as number and passed as second argument in
the addWriter() method.


Another way to add a writer to a Logger is to use the name of the writer as follow:


		1
2
3


		$logger = new Zend\Log\Logger;

$logger->addWriter('stream', null, array('stream' => 'php://output'));










In this example we passed the stream php://output as parameter (as array).





Logging Messages


To log a message, call the log() method of a Log instance and pass it the message with a corresponding
priority:


		1


		$logger->log(Zend\Log\Logger::INFO, 'Informational message');










The first parameter of the log() method is an integer priority and the second parameter is a string
message. The priority must be one of the priorities recognized by the Logger instance. This is explained in the
next section. There is also an optional third parameter used to pass extra informations to the writer’s log.


A shortcut is also available. Instead of calling the log() method, you can call a method by the same name as
the priority:


		1
2
3
4
5


		$logger->log(Zend\Log\Logger::INFO, 'Informational message');
$logger->info('Informational message');

$logger->log(Zend\Log\Logger::EMERG, 'Emergency message');
$logger->emerg('Emergency message');













Destroying a Log


If the Logger object is no longer needed, set the variable containing it to NULL to destroy it. This will
automatically call the shutdown() instance method of each attached Writer before the Log object is destroyed:


		1


		$logger = null;










Explicitly destroying the log in this way is optional and is performed automatically at PHP shutdown.





Using Built-in Priorities


The Zend\Log\Logger class defines the following priorities:


		1
2
3
4
5
6
7
8


		EMERG   = 0;  // Emergency: system is unusable
ALERT   = 1;  // Alert: action must be taken immediately
CRIT    = 2;  // Critical: critical conditions
ERR     = 3;  // Error: error conditions
WARN    = 4;  // Warning: warning conditions
NOTICE  = 5;  // Notice: normal but significant condition
INFO    = 6;  // Informational: informational messages
DEBUG   = 7;  // Debug: debug messages










These priorities are always available, and a convenience method of the same name is available for each one.


The priorities are not arbitrary. They come from the BSD syslog protocol, which is described in RFC-3164 [http://tools.ietf.org/html/rfc3164]. The
names and corresponding priority numbers are also compatible with another PHP logging system, PEAR Log [http://pear.php.net/package/log], which
perhaps promotes interoperability between it and Zend\Log\Logger.


Priority numbers descend in order of importance. EMERG (0) is the most important priority. DEBUG (7) is the
least important priority of the built-in priorities. You may define priorities of lower importance than DEBUG.
When selecting the priority for your log message, be aware of this priority hierarchy and choose appropriately.





Understanding Log Events


When you call the log() method or one of its shortcuts, a log event is created. This is simply an associative
array with data describing the event that is passed to the writers. The following keys are always created in this
array: timestamp, message, priority, and priorityName.


The creation of the event array is completely transparent.





Log PHP Errors


Zend\Log\Logger can also be used to log PHP errors and intercept Exceptions. Calling the static method
registerErrorHandler($logger) will add the $logger object before the current PHP error handler, and will pass
the error along as well.


		1
2
3
4
5
6


		$logger = new Zend\Log\Logger;
$writer = new Zend\Log\Writer\Stream('php://output');

$logger->addWriter($writer);

Zend\Log\Logger::registerErrorHandler($logger);










If you want to unregister the error handler you can use the unregisterErrorHandler() static method.



Zend\Log\Logger events from PHP errors fields matching handler ( int $errno , string $errstr [, string $errfile [, int $errline [, array $errcontext ]]] ) from set_error_handler






		Name
		Error Handler Parameter
		Description





		message
		errstr
		Contains the error message, as a string.



		errno
		errno
		Contains the level of the error raised, as an integer.



		file
		errfile
		Contains the filename that the error was raised in, as a string.



		line
		errline
		Contains the line number the error was raised at, as an integer.



		context
		errcontext
		(optional) An array that points to the active symbol table at the point the error occurred. In other words, errcontext will contain an array of every variable that existed in the scope the error was triggered in. User error handler must not modify error context.







You can also configure a Logger to intercept Exceptions using the static method
registerExceptionHandler($logger).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Overview
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.uri.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
ZendNavigationPageUri


Pages of type Zend\Navigation\Page\Uri can be used to link to pages on other domains or sites, or to implement
custom logic for the page. URI pages are simple; in addition to the common page options, a URI page takes only
one option — uri. The uri will be returned when calling $page->getHref(), and may be a String or
NULL.



Note


Zend\Navigation\Page\Uri will not try to determine whether it should be active when calling
$page->isActive(). It merely returns what currently is set, so to make a URI page active you have to
manually call $page->setActive() or specifying active as a page option when constructing.





URI page options







		Key
		Type
		Default
		Description





		uri
		String
		NULL
		URI to page. This can be any string or NULL.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                ZendNavigationPageUri
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.common.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Common page features


All page classes must extend Zend\Navigation\Page\AbstractPage, and will thus share a common set of features
and properties. Most notably they share the options in the table below and the same initialization process.


Option keys are mapped to set methods. This means that the option order maps to the method setOrder(), and
reset_params maps to the method setResetParams(). If there is no setter method for the option, it will be set
as a custom property of the page.


Read more on extending Zend\Navigation\Page\AbstractPage in Creating custom page types.



Common page options







		Key
		Type
		Default
		Description





		label
		String
		NULL
		A page label, such as ‘Home’ or ‘Blog’.



		fragment
		String | NULL
		NULL
		A fragment identifier (anchor identifier) pointing to an anchor within a resource that is subordinate to another, primary resource. The fragment identifier introduced by a hash mark “#”. Example: http://www.example.org/foo.html#bar (bar is the fragment identifier)



		id
		String | int
		NULL
		An id tag/attribute that may be used when rendering the page, typically in an anchor element.



		class
		String
		NULL
		A CSS class that may be used when rendering the page, typically in an anchor element.



		title
		String
		NULL
		A short page description, typically for using as the title attribute in an anchor.



		target
		String
		NULL
		Specifies a target that may be used for the page, typically in an anchor element.



		rel
		Array
		array()
		Specifies forward relations for the page. Each element in the array is a key-value pair, where the key designates the relation/link type, and the value is a pointer to the linked page. An example of a key-value pair is 'alternate' => 'format/plain.html'. To allow full flexbility, there are no restrictions on relation values. The value does not have to be a string. Read more about rel and rev in the section on the Links helper.



		rev
		Array
		array()
		Specifies reverse relations for the page. Works exactly like rel.



		order
		String | int | NULL
		NULL
		Works like order for elements in Zend\Form. If specified, the page will be iterated in a specific order, meaning you can force a page to be iterated before others by setting the order attribute to a low number, e.g. -100. If a String is given, it must parse to a valid int. If NULL is given, it will be reset, meaning the order in which the page was added to the container will be used.



		resource
		String | Zend\Permissions\Acl\Resource\ResourceInterface | NULL
		NULL
		ACL resource to associate with the page. Read more in the section on ACL integration in view helpers.



		privilege
		String | NULL
		NULL
		ACL privilege to associate with the page. Read more in the section on ACL integration in view helpers.



		active
		bool
		FALSE
		Whether the page should be considered active for the current request. If active is FALSE or not given, MVC pages will check its properties against the request object upon calling $page->isActive().



		visible
		bool
		TRUE
		Whether page should be visible for the user, or just be a part of the structure. Invisible pages are skipped by view helpers.



		pages
		Array | ZendConfig | NULL
		NULL
		Child pages of the page. This could be an Array or Zend\Config object containing either page options that can be passed to the factory() method, or actual Zend\Navigation\Page\AbstractPage instances, or a mixture of both.








Note


Custom properties


All pages support setting and getting of custom properties by use of the magic methods __set($name, $value),
__get($name), __isset($name) and __unset($name). Custom properties may have any value, and will be
included in the array that is returned from $page->toArray(), which means that pages can be
serialized/deserialized successfully even if the pages contains properties that are not native in the page
class.


Both native and custom properties can be set using $page->set($name, $value) and retrieved using
$page->get($name), or by using magic methods.




Custom page properties


This example shows how custom properties can be used.


		1
2
3
4
5
6
7
8
9


		$page = new Zend\Navigation\Page\Mvc();
$page->foo = 'bar';
$page->meaning = 42;

echo $page->foo;

if ($page->meaning != 42) {
    // action should be taken
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Common page features
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-element-errors.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormElementErrors


The FormElementErrors view helper is used to render the validation
error messages of an element.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		use Zend\Form\Form;
use Zend\Form\Element;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Input;

// Create a form
$form    = new Form();
$element = new Element\Text('my-text');
$form->add($element);

// Create a input
$input = new Input('my-text');
$input->setRequired(true);

$inputFilter = new InputFilter();
$inputFilter->add($input);
$form->setInputFilter($inputFilter);

// Force a failure
$form->setData(array()); // Empty data
$form->isValid();        // Not valid

// Within your view...

/**
 * Example #1: Default options
 */
echo $this->formElementErrors($element);
// <ul><li>Value is required and can&#039;t be empty</li></ul>

/**
 * Example #2: Add attributes to open format
 */
echo $this->formElementErrors($element, array('class' => 'help-inline'));
// <ul class="help-inline"><li>Value is required and can&#039;t be empty</li></ul>

/**
 * Example #3: Custom format
 */
echo $this->formElementErrors()
                ->setMessageOpenFormat('<div class="help-inline">')
                ->setMessageSeparatorString('</div><div class="help-inline">')
                ->setMessageCloseString('</div>')
                ->render($element);
// <div class="help-inline">Value is required and can&#039;t be empty</div>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
setMessageOpenFormat(string $messageOpenFormat)


		Set the formatted string used to open message representation.






		Parameters:		$messageOpenFormat – The formatted string to use to open the messages. Uses '<ul%s><li>' by default. Attributes are inserted here.














		
getMessageOpenFormat()


		Returns the formatted string used to open message representation.






		Return type:		string














		
setMessageSeparatorString(string $messageSeparatorString)


		Sets the string used to separate messages.






		Parameters:		$messageSeparatorString – The string to use to separate the messages. Uses '</li><li>' by default.














		
getMessageSeparatorString()


		Returns the string used to separate messages.






		Return type:		string














		
setMessageCloseString(string $messageCloseString)


		Sets the string used to close message representation.






		Parameters:		$messageCloseString – The string to use to close the messages. Uses '</li></ul>' by default.














		
getMessageCloseString()


		Returns the string used to close message representation.






		Return type:		string














		
setAttributes(array $attributes)


		Set the attributes that will go on the message open format.






		Parameters:		$attributes – Key value pairs of attributes.














		
getAttributes()


		Returns the attributes that will go on the message open format.






		Return type:		array














		
render(ElementInterface $element[, array $attributes = array()])


		Renders validation errors for the provided $element.






		Parameters:		
		$element – The element.


		$attributes – Additional attributes that will go on the message open format. These are merged with those set via setAttributes().









		Return type:		string




















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormElementErrors
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.base-name.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
BaseName


Zend_Filter_BaseName allows you to filter a string which contains the path to a file and it will return the
base name of this file.



Supported options for Zend_Filter_BaseName


There are no additional options for Zend_Filter_BaseName.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_BaseName();

print $filter->filter('/vol/tmp/filename');










This will return ‘filename’.


		1
2
3


		$filter = new Zend_Filter_BaseName();

print $filter->filter('/vol/tmp/filename.txt');










This will return ‘filename.txt‘.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                BaseName
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.ean8.png
H)zs4“ss7n“





modules/zend.form.element.color.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Color Element


Zend\Form\Element\Color is meant to be paired with the Zend/Form/View/Helper/FormColor for HTML5 inputs with
type color [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#color-state-(type=color)]. This element adds filters and a Regex validator to it’s input filter specification in order to
validate a HTML5 valid simple color [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-simple-color] value on the server.



Basic Usage


This element automatically adds a "type" attribute of value "color".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$color = new Element\Color('color');
$color->setLabel('Background color');

$form = new Form('my-form');
$form->add($color);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and
Zend\Filter\StringToLower filters, and a Zend\Validator\Regex to validate the RGB hex format.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Color Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.create.model.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Create a Model and Database Table


Before we get started, let’s consider something: where will these classes live, and how will we find them? The
default project we created instantiates an autoloader. We can attach other autoloaders to it so that it knows where
to find different classes. Typically, we want our various MVC classes grouped under the same tree – in this case,
application/– and most often using a common prefix.


Zend_Controller_Front has a notion of “modules”, which are individual mini-applications. Modules mimic the
directory structure that the zf tool sets up under application/, and all classes inside them are assumed to
begin with a common prefix, the module name. application/ is itself a module – the “default” or “application”
module. As such, we’ll want to setup autoloading for resources within this directory.


Zend_Application_Module_Autoloader provides the functionality needed to map the various resources under a
module to the appropriate directories, and provides a standard naming mechanism as well. An instance of the class
is created by default during initialization of the bootstrap object; your application bootstrap will be default use
the module prefix “Application”. As such, our models, forms, and table classes will all begin with the class prefix
“Application_”.


Now, let’s consider what makes up a guestbook. Typically, they are simply a list of entries with a comment,
timestamp, and, often, email address. Assuming we store them in a database, we may also want a unique
identifier for each entry. We’ll likely want to be able to save an entry, fetch individual entries, and retrieve
all entries. As such, a simple guestbook model API might look something like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		// application/models/Guestbook.php

class Application_Model_Guestbook
{
    protected $_comment;
    protected $_created;
    protected $_email;
    protected $_id;

    public function __set($name, $value);
    public function __get($name);

    public function setComment($text);
    public function getComment();

    public function setEmail($email);
    public function getEmail();

    public function setCreated($ts);
    public function getCreated();

    public function setId($id);
    public function getId();
}

class Application_Model_GuestbookMapper
{
    public function save(Application_Model_Guestbook $guestbook);
    public function find($id);
    public function fetchAll();
}










__get() and __set() will provide a convenience mechanism for us to access the individual entry properties,
and proxy to the other getters and setters. They also will help ensure that only properties we whitelist will be
available in the object.


find() and fetchAll() provide the ability to fetch a single entry or all entries, while save() takes
care of saving an entry to the data store.


Now from here, we can start thinking about setting up our database.


First we need to initialize our Db resource. As with the Layout and View resource, we can provide
configuration for the Db resource. We can do this with the zf configure db-adapter command:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		% zf configure db-adapter \
> 'adapter=PDO_SQLITE&dbname=APPLICATION_PATH "/../data/db/guestbook.db"' \
> production
A db configuration for the production has been written to the application config file.

% zf configure db-adapter \
> 'adapter=PDO_SQLITE&dbname=APPLICATION_PATH "/../data/db/guestbook-testing.db"' \
> testing
A db configuration for the production has been written to the application config file.

% zf configure db-adapter \
> 'adapter=PDO_SQLITE&dbname=APPLICATION_PATH "/../data/db/guestbook-dev.db"' \
> development
A db configuration for the production has been written to the application config file.










Now edit your application/configs/application.ini file, where you’ll see the following lines were added in the
appropriate sections.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		; application/configs/application.ini

[production]
; ...
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook.db"

[testing : production]
; ...
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook-testing.db"

[development : production]
; ...
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook-dev.db"










Your final configuration file should look like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		; application/configs/application.ini

[production]
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0
bootstrap.path = APPLICATION_PATH "/Bootstrap.php"
bootstrap.class = "Bootstrap"
appnamespace = "Application"
resources.frontController.controllerDirectory = APPLICATION_PATH "/controllers"
resources.frontController.params.displayExceptions = 0
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"
resources.view[] =
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook.db"

[staging : production]

[testing : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook-testing.db"

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1
resources.db.adapter = "PDO_SQLITE"
resources.db.params.dbname = APPLICATION_PATH "/../data/db/guestbook-dev.db"










Note that the database(s) will be stored in data/db/. Create those directories, and make them world-writeable.
On unix-like systems, you can do that as follows:


		1


		% mkdir -p data/db; chmod -R a+rwX data










On Windows, you will need to create the directories in Explorer and set the permissions to allow anyone to write to
the directory.


At this point we have a connection to a database; in our case, its a connection to a Sqlite database located inside
our application/data/ directory. So, let’s design a simple table that will hold our guestbook entries.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		-- scripts/schema.sqlite.sql
--
-- You will need load your database schema with this SQL.

CREATE TABLE guestbook (
    id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
    email VARCHAR(32) NOT NULL DEFAULT 'noemail@test.com',
    comment TEXT NULL,
    created DATETIME NOT NULL
);

CREATE INDEX "id" ON "guestbook" ("id");










And, so that we can have some working data out of the box, lets create a few rows of information to make our
application interesting.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		-- scripts/data.sqlite.sql
--
-- You can begin populating the database with the following SQL statements.

INSERT INTO guestbook (email, comment, created) VALUES
    ('ralph.schindler@zend.com',
    'Hello! Hope you enjoy this sample zf application!',
    DATETIME('NOW'));
INSERT INTO guestbook (email, comment, created) VALUES
    ('foo@bar.com',
    'Baz baz baz, baz baz Baz baz baz - baz baz baz.',
    DATETIME('NOW'));










Now that we have both the schema and some data defined. Lets get a script together that we can now execute to build
this database. Naturally, this is not needed in production, but this script will help developers build out the
database requirements locally so they can have the fully working application. Create the script as
scripts/load.sqlite.php with the following contents:


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101


		// scripts/load.sqlite.php

/**
 * Script for creating and loading database
 */

// Initialize the application path and autoloading
defined('APPLICATION_PATH')
    || define('APPLICATION_PATH', realpath(dirname(__FILE__) . '/../application'));
set_include_path(implode(PATH_SEPARATOR, array(
    APPLICATION_PATH . '/../library',
    get_include_path(),
)));
require_once 'Zend/Loader/Autoloader.php';
Zend_Loader_Autoloader::getInstance();

// Define some CLI options
$getopt = new Zend_Console_Getopt(array(
    'withdata|w' => 'Load database with sample data',
    'env|e-s'    => 'Application environment for which to create database (defaults to development)',
    'help|h'     => 'Help -- usage message',
));
try {
    $getopt->parse();
} catch (Zend_Console_Getopt_Exception $e) {
    // Bad options passed: report usage
    echo $e->getUsageMessage();
    return false;
}

// If help requested, report usage message
if ($getopt->getOption('h')) {
    echo $getopt->getUsageMessage();
    return true;
}

// Initialize values based on presence or absence of CLI options
$withData = $getopt->getOption('w');
$env      = $getopt->getOption('e');
defined('APPLICATION_ENV')
    || define('APPLICATION_ENV', (null === $env) ? 'development' : $env);

// Initialize Zend_Application
$application = new Zend_Application(
    APPLICATION_ENV,
    APPLICATION_PATH . '/configs/application.ini'
);

// Initialize and retrieve DB resource
$bootstrap = $application->getBootstrap();
$bootstrap->bootstrap('db');
$dbAdapter = $bootstrap->getResource('db');

// let the user know whats going on (we are actually creating a
// database here)
if ('testing' != APPLICATION_ENV) {
    echo 'Writing Database Guestbook in (control-c to cancel): ' . PHP_EOL;
    for ($x = 5; $x > 0; $x--) {
        echo $x . "\r"; sleep(1);
    }
}

// Check to see if we have a database file already
$options = $bootstrap->getOption('resources');
$dbFile  = $options['db']['params']['dbname'];
if (file_exists($dbFile)) {
    unlink($dbFile);
}

// this block executes the actual statements that were loaded from
// the schema file.
try {
    $schemaSql = file_get_contents(dirname(__FILE__) . '/schema.sqlite.sql');
    // use the connection directly to load sql in batches
    $dbAdapter->getConnection()->exec($schemaSql);
    chmod($dbFile, 0666);

    if ('testing' != APPLICATION_ENV) {
        echo PHP_EOL;
        echo 'Database Created';
        echo PHP_EOL;
    }

    if ($withData) {
        $dataSql = file_get_contents(dirname(__FILE__) . '/data.sqlite.sql');
        // use the connection directly to load sql in batches
        $dbAdapter->getConnection()->exec($dataSql);
        if ('testing' != APPLICATION_ENV) {
            echo 'Data Loaded.';
            echo PHP_EOL;
        }
    }

} catch (Exception $e) {
    echo 'AN ERROR HAS OCCURED:' . PHP_EOL;
    echo $e->getMessage() . PHP_EOL;
    return false;
}

// generally speaking, this script will be run from the command line
return true;










Now, let’s execute this script. From a terminal or the DOS command line, do the following:


		1


		% php scripts/load.sqlite.php --withdata










You should see output like the following:


		1
2
3
4
5


		path/to/ZendFrameworkQuickstart/scripts$ php load.sqlite.php --withdata
Writing Database Guestbook in (control-c to cancel):
1
Database Created
Data Loaded.










Now we have a fully working database and table for our guestbook application. Our next few steps are to build out
our application code. This includes building a data source (in our case, we will use Zend_Db_Table), and a data
mapper to connect that data source to our domain model. Finally we’ll also create the controller that will interact
with this model to both display existing entries and process new entries.


We’ll use a Table Data Gateway [http://martinfowler.com/eaaCatalog/tableDataGateway.html] to connect to our data source; Zend_Db_Table provides this functionality. To
get started, lets create a Zend_Db_Table-based table class. Just as we’ve done for layouts and the database
adapter, we can use the zf tool to assist, using the command create db-table. This takes minimally two
arguments, the name by which you want to refer to the class, and the database table it maps to.


		1
2
3


		% zf create db-table Guestbook guestbook
Creating a DbTable at application/models/DbTable/Guestbook.php
Updating project profile 'zfproject.xml'










Looking at your directory tree, you’ll now see that a new directory, application/models/DbTable/, was created,
with the file Guestbook.php. If you open that file, you’ll see the following contents:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// application/models/DbTable/Guestbook.php

/**
 * This is the DbTable class for the guestbook table.
 */
class Application_Model_DbTable_Guestbook extends Zend_Db_Table_Abstract
{
    /** Table name */
    protected $_name    = 'guestbook';
}










Note the class prefix: Application_Model_DbTable. The class prefix for our module, “Application”, is the first
segment, and then we have the component, “Model_DbTable”; the latter is mapped to the models/DbTable/ directory
of the module.


All that is truly necessary when extending Zend_Db_Table is to provide a table name and optionally the primary
key (if it is not “id”).


Now let’s create a Data Mapper [http://martinfowler.com/eaaCatalog/dataMapper.html]. A Data Mapper maps a domain object to the database. In our case, it will map
our model, Application_Model_Guestbook, to our data source, Application_Model_DbTable_Guestbook. A typical
API for a data mapper is as follows:


		1
2
3
4
5
6
7
8


		// application/models/GuestbookMapper.php

class Application_Model_GuestbookMapper
{
    public function save($model);
    public function find($id, $model);
    public function fetchAll();
}










In addition to these methods, we’ll add methods for setting and retrieving the Table Data Gateway. To create the
initial class, use the zf CLI tool:


		1
2
3


		% zf create model GuestbookMapper
Creating a model at application/models/GuestbookMapper.php
Updating project profile '.zfproject.xml'










Now, edit the class Application_Model_GuestbookMapper found in application/models/GuestbookMapper.php to
read as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


		// application/models/GuestbookMapper.php

class Application_Model_GuestbookMapper
{
    protected $_dbTable;

    public function setDbTable($dbTable)
    {
        if (is_string($dbTable)) {
            $dbTable = new $dbTable();
        }
        if (!$dbTable instanceof Zend_Db_Table_Abstract) {
            throw new Exception('Invalid table data gateway provided');
        }
        $this->_dbTable = $dbTable;
        return $this;
    }

    public function getDbTable()
    {
        if (null === $this->_dbTable) {
            $this->setDbTable('Application_Model_DbTable_Guestbook');
        }
        return $this->_dbTable;
    }

    public function save(Application_Model_Guestbook $guestbook)
    {
        $data = array(
            'email'   => $guestbook->getEmail(),
            'comment' => $guestbook->getComment(),
            'created' => date('Y-m-d H:i:s'),
        );

        if (null === ($id = $guestbook->getId())) {
            unset($data['id']);
            $this->getDbTable()->insert($data);
        } else {
            $this->getDbTable()->update($data, array('id = ?' => $id));
        }
    }

    public function find($id, Application_Model_Guestbook $guestbook)
    {
        $result = $this->getDbTable()->find($id);
        if (0 == count($result)) {
            return;
        }
        $row = $result->current();
        $guestbook->setId($row->id)
                  ->setEmail($row->email)
                  ->setComment($row->comment)
                  ->setCreated($row->created);
    }

    public function fetchAll()
    {
        $resultSet = $this->getDbTable()->fetchAll();
        $entries   = array();
        foreach ($resultSet as $row) {
            $entry = new Application_Model_Guestbook();
            $entry->setId($row->id)
                  ->setEmail($row->email)
                  ->setComment($row->comment)
                  ->setCreated($row->created);
            $entries[] = $entry;
        }
        return $entries;
    }
}










Now it’s time to create our model class. We’ll do so, once again, using the zf create model command:


		1
2
3


		% zf create model Guestbook
Creating a model at application/models/Guestbook.php
Updating project profile '.zfproject.xml'










We’ll modify this empty PHP class to make it easy to populate the model by passing an array of data either to the
constructor or a setOptions() method. The final model class, located in application/models/Guestbook.php,
should look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


		// application/models/Guestbook.php

class Application_Model_Guestbook
{
    protected $_comment;
    protected $_created;
    protected $_email;
    protected $_id;

    public function __construct(array $options = null)
    {
        if (is_array($options)) {
            $this->setOptions($options);
        }
    }

    public function __set($name, $value)
    {
        $method = 'set' . $name;
        if (('mapper' == $name) || !method_exists($this, $method)) {
            throw new Exception('Invalid guestbook property');
        }
        $this->$method($value);
    }

    public function __get($name)
    {
        $method = 'get' . $name;
        if (('mapper' == $name) || !method_exists($this, $method)) {
            throw new Exception('Invalid guestbook property');
        }
        return $this->$method();
    }

    public function setOptions(array $options)
    {
        $methods = get_class_methods($this);
        foreach ($options as $key => $value) {
            $method = 'set' . ucfirst($key);
            if (in_array($method, $methods)) {
                $this->$method($value);
            }
        }
        return $this;
    }

    public function setComment($text)
    {
        $this->_comment = (string) $text;
        return $this;
    }

    public function getComment()
    {
        return $this->_comment;
    }

    public function setEmail($email)
    {
        $this->_email = (string) $email;
        return $this;
    }

    public function getEmail()
    {
        return $this->_email;
    }

    public function setCreated($ts)
    {
        $this->_created = $ts;
        return $this;
    }

    public function getCreated()
    {
        return $this->_created;
    }

    public function setId($id)
    {
        $this->_id = (int) $id;
        return $this;
    }

    public function getId()
    {
        return $this->_id;
    }
}










Lastly, to connect these elements all together, lets create a guestbook controller that will both list the entries
that are currently inside the database.


To create a new controller, use the zf create controller command:


		1
2
3
4
5
6
7
8
9


		% zf create controller Guestbook
Creating a controller at
    application/controllers/GuestbookController.php
Creating an index action method in controller Guestbook
Creating a view script for the index action method at
    application/views/scripts/guestbook/index.phtml
Creating a controller test file at
    tests/application/controllers/GuestbookControllerTest.php
Updating project profile '.zfproject.xml'










This will create a new controller, GuestbookController, in application/controllers/GuestbookController.php,
with a single action method, indexAction(). It will also create a view script directory for the controller,
application/views/scripts/guestbook/, with a view script for the index action.


We’ll use the “index” action as a landing page to view all guestbook entries.


Now, let’s flesh out the basic application logic. On a hit to indexAction(), we’ll display all guestbook
entries. This would look like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// application/controllers/GuestbookController.php

class GuestbookController extends Zend_Controller_Action
{
    public function indexAction()
    {
        $guestbook = new Application_Model_GuestbookMapper();
        $this->view->entries = $guestbook->fetchAll();
    }
}










And, of course, we need a view script to go along with that. Edit
application/views/scripts/guestbook/index.phtml to read as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		<!-- application/views/scripts/guestbook/index.phtml -->

<p><a href="<?php echo $this->url(
    array(
        'controller' => 'guestbook',
        'action'     => 'sign'
    ),
    'default',
    true) ?>">Sign Our Guestbook</a></p>

Guestbook Entries: <br />
<dl>
    <?php foreach ($this->entries as $entry): ?>
    <dt><?php echo $this->escape($entry->email) ?></dt>
    <dd><?php echo $this->escape($entry->comment) ?></dd>
    <?php endforeach ?>
</dl>











Note


Checkpoint


Now browse to “http://localhost/guestbook”. You should see the following in your browser:


[image: ../_images/learning.quickstart.create-model.png]



Note


Using the data loader script


The data loader script introduced in this section (scripts/load.sqlite.php) can be used to create the
database for each environment you have defined, as well as to load it with sample data. Internally, it utilizes
Zend_Console_Getopt, which allows it to provide a number of command line switches. If you pass the “-h” or
“–help” switch, it will give you the available options:


		1
2
3
4
5


		Usage: load.sqlite.php [ options ]
--withdata|-w         Load database with sample data
--env|-e [  ]         Application environment for which to create database
                      (defaults to development)
--help|-h             Help -- usage message)]]










The “-e” switch allows you to specify the value to use for the constant APPLICATION_ENV– which in turn
allows you to create a SQLite database for each environment you define. Be sure to run the script for the
environment you choose for your application when deploying.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Create a Model and Database Table
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.plugins.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Controller Plugins


When using the AbstractActionController or AbstractRestfulController, or if you compose the
Zend\Mvc\Controller\PluginBroker in your custom controllers, you have access to a number of pre-built plugins.
Additionally, you can register your own custom plugins with the broker, just as you would with
Zend\Loader\PluginBroker.


The built-in plugins are:



		Zend\Mvc\Controller\Plugin\FlashMessenger


		Zend\Mvc\Controller\Plugin\Forward


		Zend\Mvc\Controller\Plugin\PostRedirectGet


		Zend\Mvc\Controller\Plugin\Redirect


		Zend\Mvc\Controller\Plugin\Url





If your controller implements the Zend\Loader\Pluggable interface, you can access these using their shortname
via the plugin() method:


		1


		$plugin = $this->plugin('url');










For an extra layer of convenience, both AbstractActionController and AbstractRestfulController have
__call() implementations that allow you to retrieve plugins via method calls:


		1


		$plugin = $this->url();











The FlashMessenger


The FlashMessenger is a plugin designed to create and retrieve self-expiring, session-based messages. It
exposes a number of methods:



		setSessionManager() allows you to specify an alternate session manager, if desired.


		getSessionManager() allows you to retrieve the session manager registered.


		getContainer() returns the Zend\Session\Container instance in which the flash messages are stored.


		setNamespace() allows you to specify a specific namespace in the container in which to store or from which to
retrieve flash messages.


		getNamespace() retrieves the name of the flash message namespace.


		addMessage() allows you to add a message to the current namespace of the session container.


		hasMessages() lets you determine if there are any flash messages from the current namespace in the session
container.


		getMessages() retrieves the flash messages from the current namespace of the session container.


		clearMessages() clears all flash messages in current namespace of the session container.


		hasCurrentMessages() indicates whether any messages were added during the current request.


		getCurrentMessages() retrieves any messages added during the current request.


		clearCurrentMessages() removes any messages added during the current request.





Additionally, the FlashMessenger implements both IteratorAggregate and Countable, allowing you to
iterate over and count the flash messages in the current namespace within the session container.



Examples


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		public function processAction()
{
    // ... do some work ...
    $this->flashMessenger()->addMessage('You are now logged in.');
    return $this->redirect()->toRoute('user-success');
}

public function successAction()
{
    $return = array('success' => true);
    $flashMessenger = $this->flashMessenger();
    if ($flashMessenger->hasMessages()) {
        $return['messages'] = $flashMessenger->getMessages();
    }
    return $return;
}















The Forward Plugin


Occasionally, you may want to dispatch additional controllers from within the matched controller – for instance,
you might use this approach to build up “widgetized” content. The Forward plugin helps enable this.


For the Forward plugin to work, the controller calling it must be ServiceManagerAware; otherwise, the
plugin will be unable to retrieve a configured and injected instance of the requested controller.


The plugin exposes a single method, dispatch(), which takes two arguments:



		$name, the name of the controller to invoke. This may be either the fully qualified class name, or an alias
defined and recognized by the ServiceManager instance attached to the invoking controller.


		$params is an optional array of parameters with which to see a RouteMatch object for purposes of this
specific request.





Forward returns the results of dispatching the requested controller; it is up to the developer to determine
what, if anything, to do with those results. One recommendation is to aggregate them in any return value from the
invoking controller.


As an example:


		1
2
3
4
5


		$foo = $this->forward()->dispatch('foo', array('action' => 'process'));
return array(
    'somekey' => $somevalue,
    'foo'     => $foo,
);













The Post/Redirect/Get Plugin


When a user sends a POST request (e.g. after submitting a form), their browser will try to protect them from
sending the POST again, breaking the back button, causing browser warnings and pop-ups, and sometimes reposting
the form. Instead, when receiving a POST, we should store the data in a session container and redirect the user
to a GET request.


This plugin can be invoked with two arguments:



		$redirect, a string containing the redirect location which can either be a named route or a URL, based on
the contents of the second parameter.


		$redirectToUrl, a boolean that when set to TRUE, causes the first parameter to be treated as a URL instead
of a route name (this is required when redirecting to a URL instead of a route). This argument defaults to false.





		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// Pass in the route/url you want to redirect to after the POST
$prg = $this->prg('/user/register', true);

if ($prg instanceof \Zend\Http\PhpEnvironment\Response) {
    // returned a response to redirect us
    return $prg;
} elseif ($prg === false) {
    // this wasn't a POST request, but there were no params in the flash messenger
    // probably this is the first time the form was loaded
    return array('form' => $myForm);
}

// $prg is an array containing the POST params from the previous request
$form->setData($prg);

// ... your form processing code here













The Redirect Plugin


Redirections are quite common operations within applications. If done manually, you will need to do the following
steps:



		Assemble a url using the router


		Create and inject a “Location” header into the Response object, pointing to the assembled URL


		Set the status code of the Response object to one of the 3xx HTTP statuses.





The Redirect plugin does this work for you. It offers two methods:



		toRoute($route, array $params = array(), array $options = array()): Redirects to a named route, using the
provided $params and $options to assembled the URL.


		toUrl($url): Simply redirects to the given URL.





In each case, the Response object is returned. If you return this immediately, you can effectively
short-circuit execution of the request.


One note: this plugin requires that the controller invoking it implements InjectApplicationEvent, and thus has
an MvcEvent composed, as it retrieves the router from the event object.


As an example:


		1


		return $this->redirect()->toRoute('login-success');













The Url Plugin


Often you may want to generate URLs from route definitions within your controllers – in order to seed the view,
generate headers, etc. While the MvcEvent object composes the router, doing so manually would require this
workflow:


		1
2


		$router = $this->getEvent()->getRouter();
$url    = $router->assemble($params, array('name' => 'route-name'));










The Url helper makes this slightly more convenient:


		1


		$url = $this->url()->fromRoute('route-name', $params);










The fromRoute() method is the only public method defined, and has the following signature:


		1


		public function fromRoute($route, array $params = array(), array $options = array())










One note: this plugin requires that the controller invoking it implements InjectApplicationEvent, and thus has
an MvcEvent composed, as it retrieves the router from the event object.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Controller Plugins
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-month.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormMonth


The FormMonth view helper can be used to render a <input type="month">
HTML5 form input. It is meant to work with the Zend\Form\Element\Month
element, which provides a default input specification for validating HTML5 date values.


FormMonth extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Month('my-month');

// Within your view...

echo $this->formMonth($element);
// <input type="month" name="my-month" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormMonth
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.node.schema.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Node\Schema


The following methods are available on all vendor-specific subclasses.


ZendLdapNodeSchema includes the magic property accessors __get() and __isset() to access the attributes by
their name. They proxy to ZendLdapNodeSchema::getAttribute() and ZendLdapNodeSchema::existsAttribute()
respectively. __set() and __unset() are also implemented, but they throw a BadMethodCallException as
modifications are not allowed on RootDSE nodes. Furthermore the class implements ArrayAccess for
array-style-access to the attributes. offsetSet() and offsetUnset() also throw a BadMethodCallException due
to obvious reasons.



Zend\Ldap\Node\Schema API





		Method
		Description





		Zend\Ldap\Dn getDn()
		Gets the DN of the current node as a Zend\Ldap\Dn.



		string getDnString(string $caseFold)
		Gets the DN of the current node as a string.



		array getDnArray(string $caseFold)
		Gets the DN of the current node as an array.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array.



		array getObjectClass()
		Returns the objectClass of the node.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE), the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node\Schema::getAttributes(), the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node\Schema::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE, empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE, empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node\Schema reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server.



		Zend\Ldap\Node\Schema create(Zend\Ldap\Ldap $ldap)
		Factory method to create the Schema node.



		array getAttributeTypes()
		Gets the attribute types as an array of .



		array getObjectClasses()
		Gets the object classes as an array of Zend\Ldap\Node\Schema\ObjectClass\Interface.








Zend\Ldap\Node\Schema\AttributeType\Interface API





		Method
		Description





		string getName()
		Gets the attribute name.



		string getOid()
		Gets the attribute OID.



		string getSyntax()
		Gets the attribute syntax.



		int|null getMaxLength()
		Gets the attribute maximum length.



		boolean isSingleValued()
		Returns if the attribute is single-valued.



		string getDescription()
		Gets the attribute description








Zend\Ldap\Node\Schema\ObjectClass\Interface API





		Method
		Description





		string getName()
		Returns the objectClass name.



		string getOid()
		Returns the objectClass OID.



		array getMustContain()
		Returns the attributes that this objectClass must contain.



		array getMayContain()
		Returns the attributes that this objectClass may contain.



		string getDescription()
		Returns the attribute description



		integer getType()
		Returns the objectClass type. The method returns one of the following values: Zend\Ldap\Node\Schema::OBJECTCLASS_TYPE_UNKNOWNfor unknown class typesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_STRUCTURALfor structural classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_ABSTRACTfor abstract classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_AUXILIARYfor auxiliary classes



		array getParentClasses()
		Returns the parent objectClasses of this class. This includes structural, abstract and auxiliary objectClasses.







Classes representing attribute types and object classes extend ZendLdapNodeSchemaAbstractItem which provides
some core methods to access arbitrary attributes on the underlying LDAP node.
ZendLdapNodeSchemaAbstractItem includes the magic property accessors __get() and __isset() to access the
attributes by their name. Furthermore the class implements ArrayAccess for array-style-access to the attributes.
offsetSet() and offsetUnset() throw a BadMethodCallException as modifications are not allowed on schema
information nodes.



Zend\Ldap\Node\Schema\AbstractItem API





		Method
		Description





		array getData()
		Gets all the underlying data from the schema information node.



		integer count()
		Returns the number of attributes in this schema information node. Implements Countable.








OpenLDAP


Additionally the common methods above apply to instances of ZendLdapNodeSchemaOpenLDAP.



Zend\Ldap\Node\Schema\OpenLDAP API





		Method
		Description





		array getLdapSyntaxes()
		Gets the LDAP syntaxes.



		array getMatchingRules()
		Gets the matching rules.



		array getMatchingRuleUse()
		Gets the matching rule use.








Zend\Ldap\Node\Schema\AttributeType\OpenLDAP API





		Method
		Description





		Zend\Ldap\Node\Schema\AttributeType\OpenLdap|null getParent()
		Returns the parent attribute type in the inheritance tree if one exists.








Zend\Ldap\Node\Schema\ObjectClass\OpenLDAP API





		Method
		Description





		array getParents()
		Returns the parent object classes in the inheritance tree if one exists. The returned array is an array of Zend\Ldap\Node\Schema\ObjectClass\OpenLdap.










ActiveDirectory



Note


Schema browsing on ActiveDirectory servers


Due to restrictions on Microsoft ActiveDirectory servers regarding the number of entries returned by generic
search routines and due to the structure of the ActiveDirectory schema repository, schema browsing is currently
not available for Microsoft ActiveDirectory servers.




ZendLdapNodeSchemaActiveDirectory does not provide any additional methods.



Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory API




		Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory does not provide any additional methods.








Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory API




		Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory does not provide any additional methods.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Node\Schema
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.abstract-helper.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
AbstractHelper


The AbstractHelper is used as a base abstract class for Form view helpers, providing methods
for validating form HTML attributes, as well as controlling the doctype and character encoding.
AbstractHelper also extends from Zend\I18n\View\Helper\AbstractTranslatorHelper which
provides an implementation for the Zend\I18n\Translator\TranslatorAwareInterface
that allows setting a translator and text domain.


The following public methods are in addition to the inherited methods of Zend\I18n\View\Helper\AbstractTranslatorHelper.



		
setDoctype(string $doctype)


		Sets a doctype to use in the helper.









		
getDoctype()


		Returns the doctype used in the helper.






		Return type:		string














		
setEncoding(string $encoding)


		Set the translation text domain to use in helper when translating.









		
getEncoding()


		Returns the character encoding used in the helper.






		Return type:		string














		
getId()


		Returns the element id.
If no ID attribute present, attempts to use the name attribute.
If name attribute is also not present, returns null.






		Return type:		string or null

















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                AbstractHelper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.analytics.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Google Analytics


The Google Analytics API allows client applications to request data, saved in the analytics accounts.


See http://code.google.com/apis/analytics/docs/gdata/v2/gdataOverview.html for more information about the Google
Analytics API.



Retrieving account data


Using the account feed, you are able to retrieve a list of all the accounts available to a specified user.


		1
2
3
4
5
6
7
8


		$service = Zend\GData\Analytics::AUTH_SERVICE_NAME;
$client = Zend\GData\ClientLogin::getHttpClient($email, $password, $service);
$analytics = new Zend\GData\Analytics($client);
$accounts = $analytics->getAccountFeed();

foreach ($accounts as $account) {
  echo "\n{$account->title}\n";
}










The $analytics->getAccountFeed() call, results in a Zend\GData\Analytics\AccountFeed object that contains
Zend\GData\Analytics\AccountEntry objects. Each of this objects represent a google analytics account.





Retrieving report data


Besides the account feed, google offers a data feed, to retrieve report data using the Google Analytics API. To
easily request for these reports, Zend\GData\Analytics offers a simple query construction interface. You can use
all the metrics and dimensions [http://code.google.com/intl/de-CH/apis/analytics/docs/gdata/dimsmets/dimsmets.html] specified by the API. Additionaly you can apply some filters [http://code.google.com/intl/de-CH/apis/analytics/docs/gdata/v2/gdataReferenceDataFeed.html#filters] to retrieve some
common data [http://code.google.com/intl/de-CH/apis/analytics/docs/gdata/gdataCommonQueries.html] or even complex results.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$query = $service->newDataQuery()->setProfileId($profileId)
  ->addMetric(Zend\GData\Analytics\DataQuery::METRIC_BOUNCES)
  ->addMetric(Zend\GData\Analytics\DataQuery::METRIC_VISITS)
  ->addDimension(Zend\GData\Analytics\DataQuery::DIMENSION_MEDIUM)
  ->addDimension(Zend\GData\Analytics\DataQuery::DIMENSION_SOURCE)
  ->addFilter("ga:browser==Firefox")
  ->setStartDate('2011-05-01')
  ->setEndDate('2011-05-31')
  ->addSort(Zend\GData\Analytics\DataQuery::METRIC_VISITS, true)
  ->addSort(Zend\GData\Analytics\DataQuery::METRIC_BOUNCES, false)
  ->setMaxResults(50);

$result = $analytics->getDataFeed($query);
foreach($result as $row){
  echo $row->getMetric('ga:visits')."\t";
  echo $row->getValue('ga:bounces')."\n";
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Google Analytics
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-date-time-local.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormDateTimeLocal


The FormDateTimeLocal view helper can be used to render a <input type="datetime-local">
HTML5 form input. It is meant to work with the Zend\Form\Element\DateTimeLocal
element, which provides a default input specification for validating HTML5 datetime values.


FormDateTimeLocal extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\DateTimeLocal('my-datetime');

// Within your view...

echo $this->formDateTimeLocal($element);
// <input type="datetime-local" name="my-datetime" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormDateTimeLocal
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/routing-and-controllers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Routing and controllers


We will build a very simple inventory system to display our album
collection. The home page will list our collection and allow us to add, edit and
delete albums. Hence the following pages are required:








		Page
		Description





		Home
		This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.



		Add new album
		This page will provide a form for adding a new album.



		Edit album
		This page will provide a form for editing an album.



		Delete album
		This page will confirm that we want to delete an album and
then delete it.







Before we set up our ﬁles, it’s important to understand how the framework
expects the pages to be organised. Each page of the application is known as an
action and actions are grouped into controllers within modules. Hence, you
would generally group related actions into a controller; for instance, a news
controller might have actions of current, archived and view.


As we have four pages that all apply to albums, we will group them in a single
controller AlbumController within our Album module as four actions. The
four actions will be:









		Page
		Controller
		Action





		Home
		AlbumController
		index



		Add new album
		AlbumController
		add



		Edit album
		AlbumController
		edit



		Delete album
		AlbumController
		delete







The mapping of a URL to a particular action is done using routes that are deﬁned
in the module’s module.config.php file. We will add a route for our album
actions. This is the updated conﬁg file with the new code commented.


// module/Album/conﬁg/module.conﬁg.php:
return array(
    'controllers' => array(
        'invokables' => array(
            'Album\Controller\Album' => 'Album\Controller\AlbumController',
        ),
    ),

    // The following section is new and should be added to your file
    'router' => array(
        'routes' => array(
            'album' => array(
                'type'    => 'segment',
                'options' => array(
                    'route'    => '/album[/:action][/:id]',
                    'constraints' => array(
                        'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
                        'id'     => '[0-9]+',
                    ),
                    'defaults' => array(
                        'controller' => 'Album\Controller\Album',
                        'action'     => 'index',
                    ),
                ),
            ),
        ),
    ),

    'view_manager' => array(
        'template_path_stack' => array(
            'album' => __DIR__ . '/../view',
        ),
    ),
);






The name of the route is ‘album’ and has a type of ‘segment’. The segment route
allows us to specify placeholders in the URL pattern (route) that will be mapped
to named parameters in the matched route. In this case, the route is
``/album[/:action][/:id]`` which will match any URL that starts with
/album. The next segment will be an optional action name, and then ﬁnally
the next segment will be mapped to an optional id. The square brackets indicate
that a segment is optional. The constraints section allows us to ensure that the
characters within a segment are as expected, so we have limited actions to
starting with a letter and then subsequent characters only being alphanumeric,
underscore or hyphen. We also limit the id to a number.


This route allows us to have the following URLs:









		URL
		Page
		Action





		/album
		Home (list of albums)
		index



		/album/add
		Add new album
		add



		/album/edit/2
		Edit album with an id of 2
		edit



		/album/delete/4
		Delete album with an id of 4
		delete








Create the controller


We are now ready to set up our controller. In Zend Framework 2, the controller
is a class that is generally called {Controller name}Controller. Note that
{Controller name} must start with a capital letter.  This class lives in a ﬁle
called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is
a public method within the controller class that is named {action name}Action.
In this case {action name} should start with a lower case letter.



Note


This is by convention. Zend Framework 2 doesn’t provide many
restrictions on controllers other than that they must implement the
Zend\Stdlib\Dispatchable interface. The framework provides two abstract
classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be using the
standard AbstractActionController, but if you’re intending to write a
RESTful web service, AbstractRestfulController may be useful.




Let’s go ahead and create our controller class:


// module/Album/src/Album/Controller/AlbumController.php:
namespace Album\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class AlbumController extends AbstractActionController
{
    public function indexAction()
    {
    }

    public function addAction()
    {
    }

    public function editAction()
    {
    }

    public function deleteAction()
    {
    }
}







Note


We have already informed the module about our controller in the
‘controller’ section of config/module.config.php.




We have now set up the four actions that we want to use. They won’t work yet
until we set up the views. The URLs for each action are:








		URL
		Method called





		http://zf2-tutorial.localhost/album
		Album\Controller\AlbumController::indexAction



		http://zf2-tutorial.localhost/album/add
		Album\Controller\AlbumController::addAction



		http://zf2-tutorial.localhost/album/edit
		Album\Controller\AlbumController::editAction



		http://zf2-tutorial.localhost/album/delete
		Album\Controller\AlbumController::deleteAction







We now have a working router and the actions are set up for each page of our
application.


It’s time to build the view and the model layer.



Initialise the view scripts


To integrate the view into our application all we need to do is create some view
script files. These ﬁles will be executed by the DefaultViewStrategy and will be
passed any variables or view models that are returned from the controller action
method. These view scripts are stored in our module’s views directory within a
directory named after the controller. Create these four empty files now:



		module/Album/view/album/album/index.phtml


		module/Album/view/album/album/add.phtml


		module/Album/view/album/album/edit.phtml


		module/Album/view/album/album/delete.phtml





We can now start filling everything in, starting with our database and models.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Routing and controllers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.authentication.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend\Authentication component provides an API for authentication and includes concrete authentication
adapters for common use case scenarios.


Zend\Authentication is concerned only with authentication and not with authorization. Authentication is
loosely defined as determining whether an entity actually is what it purports to be (i.e., identification), based
on some set of credentials. Authorization, the process of deciding whether to allow an entity access to, or to
perform operations upon, other entities is outside the scope of Zend\Authentication. For more information about
authorization and access control with Zend Framework, please see the Zend\Permissions\Acl component.



Note


There is no Zend\Authentication\Authentication class, instead the class
Zend\Authentication\AuthenticationService is provided. This class uses underlying authentication adapters
and persistent storage backends.





Adapters


Zend\Authentication adapters are used to authenticate against a particular type of authentication service, such
as LDAP, RDBMS, or file-based storage. Different adapters are likely to have vastly different options and
behaviors, but some basic things are common among authentication adapters. For example, accepting authentication
credentials (including a purported identity), performing queries against the authentication service, and returning
results are common to Zend\Authentication adapters.


Each Zend\Authentication adapter class implements Zend\Authentication\Adapter\AdapterInterface. This
interface defines one method, authenticate(), that an adapter class must implement for performing an
authentication query. Each adapter class must be prepared prior to calling authenticate(). Such adapter
preparation includes setting up credentials (e.g., username and password) and defining values for adapter-specific
configuration options, such as database connection settings for a database table adapter.


The following is an example authentication adapter that requires a username and password to be set for
authentication. Other details, such as how the authentication service is queried, have been omitted for brevity:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		use Zend\Authentication\Adapter\AdapterInterface;

class My\Auth\Adapter implements AdapterInterface
{
    /**
     * Sets username and password for authentication
     *
     * @return void
     */
    public function __construct($username, $password)
    {
        // ...
    }

    /**
     * Performs an authentication attempt
     *
     * @return \Zend\Authentication\Result
     * @throws \Zend\Authentication\Adapter\Exception\ExceptionInterface
     *               If authentication cannot be performed
     */
    public function authenticate()
    {
        // ...
    }
}










As indicated in its docblock, authenticate() must return an instance of Zend\Authentication\Result (or of a
class derived from Zend\Authentication\Result). If for some reason performing an authentication query is
impossible, authenticate() should throw an exception that derives from
Zend\Authentication\Adapter\Exception\ExceptionInterface.





Results


Zend\Authentication adapters return an instance of Zend\Authentication\Result with authenticate() in
order to represent the results of an authentication attempt. Adapters populate the Zend\Authentication\Result
object upon construction, so that the following four methods provide a basic set of user-facing operations that are
common to the results of Zend\Authentication adapters:



		isValid()- returns TRUE if and only if the result represents a successful authentication attempt


		getCode()- returns a Zend\Authentication\Result constant identifier for determining the type of
authentication failure or whether success has occurred. This may be used in situations where the developer wishes
to distinguish among several authentication result types. This allows developers to maintain detailed
authentication result statistics, for example. Another use of this feature is to provide specific, customized
messages to users for usability reasons, though developers are encouraged to consider the risks of providing such
detailed reasons to users, instead of a general authentication failure message. For more information, see the
notes below.


		getIdentity()- returns the identity of the authentication attempt


		getMessages()- returns an array of messages regarding a failed authentication attempt





A developer may wish to branch based on the type of authentication result in order to perform more specific
operations. Some operations developers might find useful are locking accounts after too many unsuccessful password
attempts, flagging an IP address after too many nonexistent identities are attempted, and providing specific,
customized authentication result messages to the user. The following result codes are available:


		1
2
3
4
5
6
7
8


		use Zend\Authentication\Result;

Result::SUCCESS
Result::FAILURE
Result::FAILURE_IDENTITY_NOT_FOUND
Result::FAILURE_IDENTITY_AMBIGUOUS
Result::FAILURE_CREDENTIAL_INVALID
Result::FAILURE_UNCATEGORIZED










The following example illustrates how a developer may branch on the result code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// inside of AuthController / loginAction
$result = $this->auth->authenticate($adapter);

switch ($result->getCode()) {

    case Result::FAILURE_IDENTITY_NOT_FOUND:
        /** do stuff for nonexistent identity **/
        break;

    case Result::FAILURE_CREDENTIAL_INVALID:
        /** do stuff for invalid credential **/
        break;

    case Result::SUCCESS:
        /** do stuff for successful authentication **/
        break;

    default:
        /** do stuff for other failure **/
        break;
}













Identity Persistence


Authenticating a request that includes authentication credentials is useful per se, but it is also important to
support maintaining the authenticated identity without having to present the authentication credentials with each
request.


HTTP is a stateless protocol, however, and techniques such as cookies and sessions have been developed in order
to facilitate maintaining state across multiple requests in server-side web applications.



Default Persistence in the PHP Session


By default, Zend\Authentication provides persistent storage of the identity from a successful authentication
attempt using the PHP session. Upon a successful authentication attempt,
Zend\Authentication\AuthenticationService::authenticate() stores the identity from the authentication result
into persistent storage. Unless specified otherwise, Zend\Authentication\AuthenticationService uses a storage
class named Zend\Authentication\Storage\Session, which, in turn, uses Zend\Session. A
custom class may instead be used by providing an object that implements
Zend\Authentication\Storage\StorageInterface to Zend\Authentication\AuthenticationService::setStorage().



Note


If automatic persistent storage of the identity is not appropriate for a particular use case, then developers
may forego using the Zend\Authentication\AuthenticationService class altogether, instead using an adapter
class directly.




Modifying the Session Namespace


Zend\Authentication\Storage\Session uses a session namespace of ‘Zend_Auth‘. This namespace may be
overridden by passing a different value to the constructor of Zend\Authentication\Storage\Session, and this
value is internally passed along to the constructor of Zend\Session\Container. This should
occur before authentication is attempted, since Zend\Authentication\AuthenticationService::authenticate()
performs the automatic storage of the identity.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Storage\Session as SessionStorage;

$auth = new AuthenticationService();

// Use 'someNamespace' instead of 'Zend_Auth'
$auth->setStorage(new SessionStorage('someNamespace'));

/**
 * @todo Set up the auth adapter, $authAdapter
 */

// Authenticate, saving the result, and persisting the identity on
// success
$result = $auth->authenticate($authAdapter);













Implementing Customized Storage


Sometimes developers may need to use a different identity storage mechanism than that provided by
Zend\Authentication\Storage\Session. For such cases developers may simply implement
Zend\Authentication\Storage\StorageInterface and supply an instance of the class to
Zend\Authentication\AuthenticationService::setStorage().


Using a Custom Storage Class


In order to use an identity persistence storage class other than Zend\Authentication\Storage\Session, a
developer implements Zend\Authentication\Storage\StorageInterface:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


		use Zend\Authentication\Storage\StorageInterface;

class My\Storage implements StorageInterface
{
    /**
     * Returns true if and only if storage is empty
     *
     * @throws \Zend\Authentication\Exception\ExceptionInterface
     *               If it is impossible to
     *               determine whether storage is empty
     * @return boolean
     */
    public function isEmpty()
    {
        /**
         * @todo implementation
         */
    }

    /**
     * Returns the contents of storage
     *
     * Behavior is undefined when storage is empty.
     *
     * @throws \Zend\Authentication\Exception\ExceptionInterface
     *               If reading contents from storage is impossible
     * @return mixed
     */

    public function read()
    {
        /**
         * @todo implementation
         */
    }

    /**
     * Writes $contents to storage
     *
     * @param  mixed $contents
     * @throws \Zend\Authentication\Exception\ExceptionInterface
     *               If writing $contents to storage is impossible
     * @return void
     */

    public function write($contents)
    {
        /**
         * @todo implementation
         */
    }

    /**
     * Clears contents from storage
     *
     * @throws \Zend\Authentication\Exception\ExceptionInterface
     *               If clearing contents from storage is impossible
     * @return void
     */

    public function clear()
    {
        /**
         * @todo implementation
         */
    }
}










In order to use this custom storage class, Zend\Authentication\AuthenticationService::setStorage() is invoked
before an authentication query is attempted:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Authentication\AuthenticationService;

// Instruct AuthenticationService to use the custom storage class
$auth = new AuthenticationService();

$auth->setStorage(new My\Storage());

/**
 * @todo Set up the auth adapter, $authAdapter
 */

// Authenticate, saving the result, and persisting the identity on
// success
$result = $auth->authenticate($authAdapter);















Usage


There are two provided ways to use Zend\Authentication adapters:


. indirectly, through Zend\Authentication\AuthenticationService::authenticate()


. directly, through the adapter’s authenticate() method


The following example illustrates how to use a Zend\Authentication adapter indirectly, through the use of the
Zend\Authentication\AuthenticationService class:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		use Zend\Authentication\AuthenticationService;

// instantiate the authentication service
$auth = new AuthenticationService();

// Set up the authentication adapter
$authAdapter = new My\Auth\Adapter($username, $password);

// Attempt authentication, saving the result
$result = $auth->authenticate($authAdapter);

if (!$result->isValid()) {
    // Authentication failed; print the reasons why
    foreach ($result->getMessages() as $message) {
        echo "$message\n";
    }
} else {
    // Authentication succeeded; the identity ($username) is stored
    // in the session
    // $result->getIdentity() === $auth->getIdentity()
    // $result->getIdentity() === $username
}










Once authentication has been attempted in a request, as in the above example, it is a simple matter to check
whether a successfully authenticated identity exists:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Authentication\AuthenticationService;

$auth = new AuthenticationService();

/**
 * @todo Set up the auth adapter, $authAdapter
 */

if ($auth->hasIdentity()) {
    // Identity exists; get it
    $identity = $auth->getIdentity();
}










To remove an identity from persistent storage, simply use the clearIdentity() method. This typically would be
used for implementing an application “logout” operation:


		1


		$auth->clearIdentity();










When the automatic use of persistent storage is inappropriate for a particular use case, a developer may simply
bypass the use of the Zend\Authentication\AuthenticationService class, using an adapter class directly. Direct
use of an adapter class involves configuring and preparing an adapter object and then calling its
authenticate() method. Adapter-specific details are discussed in the documentation for each adapter. The
following example directly utilizes My\Auth\Adapter:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// Set up the authentication adapter
$authAdapter = new My\Auth\Adapter($username, $password);

// Attempt authentication, saving the result
$result = $authAdapter->authenticate();

if (!$result->isValid()) {
    // Authentication failed; print the reasons why
    foreach ($result->getMessages() as $message) {
        echo "$message\n";
    }
} else {
    // Authentication succeeded
    // $result->getIdentity() === $username
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.properties.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Document Info and Metadata


A PDF document may include general information such as the document’s title, author, and creation and
modification dates.


Historically this information is stored using special Info structure. This structure is available for read and
writing as an associative array using properties public property of Zend_Pdf objects:


		1
2
3
4
5
6
7


		$pdf = Zend_Pdf::load($pdfPath);

echo $pdf->properties['Title'] . "\n";
echo $pdf->properties['Author'] . "\n";

$pdf->properties['Title'] = 'New Title.';
$pdf->save($pdfPath);










The following keys are defined by PDF v1.4 (Acrobat 5) standard:




		Title- string, optional, the document’s title.





		Author- string, optional, the name of the person who created the document.





		Subject- string, optional, the subject of the document.





		Keywords- string, optional, keywords associated with the document.





		Creator- string, optional, if the document was converted to PDF from another format, the name of the
application (for example, Adobe FrameMaker®) that created the original document from which it was converted.





		Producer- string, optional, if the document was converted to PDF from another format, the name of the
application (for example, Acrobat Distiller) that converted it to PDF..





		CreationDate- string, optional, the date and time the document was created, in the following form:
“D:YYYYMMDDHHmmSSOHH’mm’”, where:




		YYYY is the year.


		MM is the month.


		DD is the day (01–31).


		HH is the hour (00–23).


		mmis the minute (00–59).


		SS is the second (00–59).


		O is the relationship of local time to Universal Time (UT), denoted by one of the characters +, −,
or Z (see below).


		HH followed by ‘ is the absolute value of the offset from UT in hours (00–23).


		mm followed by ‘ is the absolute value of the offset from UT in minutes (00–59).









The apostrophe character (‘) after HH and mm is part of the syntax. All fields after the year are optional.
(The prefix D:, although also optional, is strongly recommended.) The default values for MM and DD are both
01; all other numerical fields default to zero values. A plus sign (+) as the value of the O field signifies
that local time is later than UT, a minus sign (−) that local time is earlier than UT, and the letter Z that
local time is equal to UT. If no UT information is specified, the relationship of the specified time to UT is
considered to be unknown. Whether or not the time zone is known, the rest of the date should be specified in
local time.


For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is represented by the string
“D:199812231952−08‘00’”.





		ModDate- string, optional, the date and time the document was most recently modified, in the same form as
CreationDate.





		Trapped- boolean, optional, indicates whether the document has been modified to include trapping
information.




		TRUE- The document has been fully trapped; no further trapping is needed.


		FALSE- The document has not yet been trapped; any desired trapping must still be done.


		NULL- Either it is unknown whether the document has been trapped or it has been partly but not yet
fully trapped; some additional trapping may still be needed.



















Since PDF v 1.6 metadata can be stored in the special XML document attached to the PDF (XMP -Extensible
Metadata Platform [http://www.adobe.com/products/xmp/]).


This XML document can be retrieved and attached to the PDF with Zend_Pdf::getMetadata() and
Zend_Pdf::setMetadata($metadata) methods:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		$pdf = Zend_Pdf::load($pdfPath);
$metadata = $pdf->getMetadata();
$metadataDOM = new DOMDocument();
$metadataDOM->loadXML($metadata);

$xpath = new DOMXPath($metadataDOM);
$pdfPreffixNamespaceURI = $xpath->query('/rdf:RDF/rdf:Description')
                                ->item(0)
                                ->lookupNamespaceURI('pdf');
$xpath->registerNamespace('pdf', $pdfPreffixNamespaceURI);

$titleNode = $xpath->query('/rdf:RDF/rdf:Description/pdf:Title')->item(0);
$title = $titleNode->nodeValue;
...

$titleNode->nodeValue = 'New title';
$pdf->setMetadata($metadataDOM->saveXML());
$pdf->save($pdfPath);










Common document properties are duplicated in the Info structure and Metadata document (if presented). It’s user
application responsibility now to keep them synchronized.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Document Info and Metadata
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.interactive-features.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Interactive Features



Destinations


A destination defines a particular view of a document, consisting of the following items:



		The page of the document to be displayed.


		The location of the document window on that page.


		The magnification (zoom) factor to use when displaying the page.





Destinations may be associated with outline items (Document Outline (bookmarks)), annotations (Annotations), or actions (Actions). In each case, the destination specifies the view of the document
to be presented when the outline item or annotation is opened or the action is performed. In addition, the optional
document open action can be specified.



Supported Destination Types


The following types are supported by Zend_Pdf component.





Zend_Pdf_Destination_Zoom


Display the specified page, with the coordinates (left, top) positioned at the upper-left corner of the window and
the contents of the page magnified by the factor zoom.


Destination object may be created using Zend_Pdf_Destination_Zoom::create($page, $left = null, $top = null, $zoom
= null) method.


Where:



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$left is a left edge of the displayed page (float).


		$top is a top edge of the displayed page (float).


		$zoom is a zoom factor (float).





NULL, specified for $left, $top or $zoom parameter means “current viewer application value”.


Zend_Pdf_Destination_Zoom class also provides the following methods:



		Float getLeftEdge();


		setLeftEdge(float $left);


		Float getTopEdge();


		setTopEdge(float $top);


		Float getZoomFactor();


		setZoomFactor(float $zoom);








Zend_Pdf_Destination_Fit


Display the specified page, with the coordinates (left, top) positioned at the upper-left corner of the window and
the contents of the page magnified by the factor zoom. Display the specified page, with its contents magnified just
enough to fit the entire page within the window both horizontally and vertically. If the required horizontal and
vertical magnification factors are different, use the smaller of the two, centering the page within the window in
the other dimension.


Destination object may be created using Zend_Pdf_Destination_Fit::create($page) method.


Where $page is a destination page (a Zend_Pdf_Page object or a page number).





Zend_Pdf_Destination_FitHorizontally


Display the specified page, with the vertical coordinate top positioned at the top edge of the window and the
contents of the page magnified just enough to fit the entire width of the page within the window.


Destination object may be created using Zend_Pdf_Destination_FitHorizontally::create($page, $top) method.


Where:



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$top is a top edge of the displayed page (float).





Zend_Pdf_Destination_FitHorizontally class also provides the following methods:



		Float getTopEdge();


		setTopEdge(float $top);








Zend_Pdf_Destination_FitVertically


Display the specified page, with the horizontal coordinate left positioned at the left edge of the window and the
contents of the page magnified just enough to fit the entire height of the page within the window.


Destination object may be created using Zend_Pdf_Destination_FitVertically::create($page, $left) method.


Where:



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$left is a left edge of the displayed page (float).





Zend_Pdf_Destination_FitVertically class also provides the following methods:



		Float getLeftEdge();


		setLeftEdge(float $left);








Zend_Pdf_Destination_FitRectangle


Display the specified page, with its contents magnified just enough to fit the rectangle specified by the
coordinates left, bottom, right, and top entirely within the window both horizontally and vertically. If the
required horizontal and vertical magnification factors are different, use the smaller of the two, centering the
rectangle within the window in the other dimension.


Destination object may be created using Zend_Pdf_Destination_FitRectangle::create($page, $left, $bottom, $right,
$top) method.


Where:



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$left is a left edge of the displayed page (float).


		$bottom is a bottom edge of the displayed page (float).


		$right is a right edge of the displayed page (float).


		$top is a top edge of the displayed page (float).





Zend_Pdf_Destination_FitRectangle class also provides the following methods:



		Float getLeftEdge();


		setLeftEdge(float $left);


		Float getBottomEdge();


		setBottomEdge(float $bottom);


		Float getRightEdge();


		setRightEdge(float $right);


		Float getTopEdge();


		setTopEdge(float $top);








Zend_Pdf_Destination_FitBoundingBox


Display the specified page, with its contents magnified just enough to fit its bounding box entirely within the
window both horizontally and vertically. If the required horizontal and vertical magnification factors are
different, use the smaller of the two, centering the bounding box within the window in the other dimension.


Destination object may be created using Zend_Pdf_Destination_FitBoundingBox::create($page, $left, $bottom,
$right, $top) method.


Where $page is a destination page (a Zend_Pdf_Page object or a page number).





Zend_Pdf_Destination_FitBoundingBoxHorizontally


Display the specified page, with the vertical coordinate top positioned at the top edge of the window and the
contents of the page magnified just enough to fit the entire width of its bounding box within the window.


Destination object may be created using Zend_Pdf_Destination_FitBoundingBoxHorizontally::create($page, $top)
method.


Where



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$top is a top edge of the displayed page (float).





Zend_Pdf_Destination_FitBoundingBoxHorizontally class also provides the following methods:



		Float getTopEdge();


		setTopEdge(float $top);








Zend_Pdf_Destination_FitBoundingBoxVertically


Display the specified page, with the horizontal coordinate left positioned at the left edge of the window and the
contents of the page magnified just enough to fit the entire height of its bounding box within the window.


Destination object may be created using Zend_Pdf_Destination_FitBoundingBoxVertically::create($page, $left)
method.


Where



		$page is a destination page (a Zend_Pdf_Page object or a page number).


		$left is a left edge of the displayed page (float).





Zend_Pdf_Destination_FitBoundingBoxVertically class also provides the following methods:



		Float getLeftEdge();


		setLeftEdge(float $left);








Zend_Pdf_Destination_Named


All destinations listed above are “Explicit Destinations”.


In addition to this, PDF document may contain a dictionary of such destinations which may be used to reference
from outside the PDF (e.g. ‘http://www.mycompany.com/document.pdf#chapter3‘).


Zend_Pdf_Destination_Named objects allow to refer destinations from the document named destinations dictionary.


Named destination object may be created using Zend_Pdf_Destination_Named::create(string $name) method.


Zend_Pdf_Destination_Named class provides the only one additional method:


String getName();





Document level destination processing


Zend_Pdf class provides a set of destinations processing methods.


Each destination object (including named destinations) can be resolved using the
resolveDestination($destination) method. It returns corresponding Zend_Pdf_Page object, if destination
target is found, or NULL otherwise.


Zend_Pdf::resolveDestination() method also takes an optional boolean parameter
$refreshPageCollectionHashes, which is TRUE by default. It forces Zend_Pdf object to refresh internal
page collection hashes since document pages list may be updated by user using Zend_Pdf::$pages property
(Working with Pages). It may be turned off for performance reasons, if it’s known that
document pages list wasn’t changed since last method request.


Complete list of named destinations can be retrieved using Zend_Pdf::getNamedDestinations() method. It returns
an array of Zend_Pdf_Target objects, which are actually either an explicit destination or a GoTo action
(Actions).


Zend_Pdf::getNamedDestination(string $name) method returns specified named destination (an explicit destination
or a GoTo action).


PDF document named destinations dictionary may be updated with Zend_Pdf::setNamedDestination(string $name,
$destination) method, where $destination is either an explicit destination (any destination except
Zend_Pdf_Destination_Named) or a GoTo action.


If NULL is specified in place of $destination, then specified named destination is removed.



Note


Unresolvable named destinations are automatically removed from a document while document saving.




Destinations usage example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		$pdf = new Zend_Pdf();
$page1 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);
$page2 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);
$page3 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);
// Page created, but not included into pages list

$pdf->pages[] = $page1;
$pdf->pages[] = $page2;

$destination1 = Zend_Pdf_Destination_Fit::create($page2);
$destination2 = Zend_Pdf_Destination_Fit::create($page3);

// Returns $page2 object
$page = $pdf->resolveDestination($destination1);

// Returns null, page 3 is not included into document yet
$page = $pdf->resolveDestination($destination2);

$pdf->setNamedDestination('Page2', $destination1);
$pdf->setNamedDestination('Page3', $destination2);

// Returns $destination2
$destination = $pdf->getNamedDestination('Page3');

// Returns $destination1
$pdf->resolveDestination(Zend_Pdf_Destination_Named::create('Page2'));

// Returns null, page 3 is not included into document yet
$pdf->resolveDestination(Zend_Pdf_Destination_Named::create('Page3'));















Actions


Instead of simply jumping to a destination in the document, an annotation or outline item can specify an action for
the viewer application to perform, such as launching an application, playing a sound, or changing an annotation’s
appearance state.



Supported action types


The following action types are recognized while loading PDF document:



		Zend_Pdf_Action_GoTo- go to a destination in the current document.


		Zend_Pdf_Action_GoToR- go to a destination in another document.


		Zend_Pdf_Action_GoToE- go to a destination in an embedded file.


		Zend_Pdf_Action_Launch- launch an application or open or print a document.


		Zend_Pdf_Action_Thread- begin reading an article thread.


		Zend_Pdf_Action_URI- resolve a URI.


		Zend_Pdf_Action_Sound- play a sound.


		Zend_Pdf_Action_Movie- play a movie.


		Zend_Pdf_Action_Hide- hides or shows one or more annotations on the screen.


		Zend_Pdf_Action_Named- execute an action predefined by the viewer application:
		NextPage- Go to the next page of the document.


		PrevPage- Go to the previous page of the document.


		FirstPage- Go to the first page of the document.


		LastPage- Go to the last page of the document.








		Zend_Pdf_Action_SubmitForm- send data to a uniform resource locator.


		Zend_Pdf_Action_ResetForm- set fields to their default values.


		Zend_Pdf_Action_ImportData- import field values from a file.


		Zend_Pdf_Action_JavaScript- execute a JavaScript script.


		Zend_Pdf_Action_SetOCGState- set the state of one or more optional content groups.


		Zend_Pdf_Action_Rendition- control the playing of multimedia content (begin, stop, pause, or resume a playing
rendition).


		Zend_Pdf_Action_Trans- update the display of a document, using a transition dictionary.


		Zend_Pdf_Action_GoTo3DView- set the current view of a 3D annotation.





Only Zend_Pdf_Action_GoTo and Zend_Pdf_Action_URI actions can be created by user now.


GoTo action object can be created using Zend_Pdf_Action_GoTo::create($destination) method, where
$destination is a Zend_Pdf_Destination object or a string which can be used to identify named destination.


Zend_Pdf_Action_URI::create($uri[, $isMap]) method has to be used to create a URI action (see API
documentation for the details). Optional $isMap parameter is set to FALSE by default.


It also supports the following methods:





Actions chaining


Actions objects can be chained using Zend_Pdf_Action::$next public property.


It’s an array of Zend_Pdf_Action objects, which also may have their sub-actions.


Zend_Pdf_Action class supports RecursiveIterator interface, so child actions may be iterated recursively:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		$pdf = new Zend_Pdf();
$page1 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);
$page2 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);
// Page created, but not included into pages list
$page3 = $pdf->newPage(Zend_Pdf_Page::SIZE_A4);

$pdf->pages[] = $page1;
$pdf->pages[] = $page2;

$action1 = Zend_Pdf_Action_GoTo::create(
                            Zend_Pdf_Destination_Fit::create($page2));
$action2 = Zend_Pdf_Action_GoTo::create(
                            Zend_Pdf_Destination_Fit::create($page3));
$action3 = Zend_Pdf_Action_GoTo::create(
                            Zend_Pdf_Destination_Named::create('Chapter1'));
$action4 = Zend_Pdf_Action_GoTo::create(
                            Zend_Pdf_Destination_Named::create('Chapter5'));

$action2->next[] = $action3;
$action2->next[] = $action4;

$action1->next[] = $action2;

$actionsCount = 1; // Note! Iteration doesn't include top level action and
                   // walks through children only
$iterator = new RecursiveIteratorIterator(
                                        $action1,
                                        RecursiveIteratorIterator::SELF_FIRST);
foreach ($iterator as $chainedAction) {
    $actionsCount++;
}

// Prints 'Actions in a tree: 4'
printf("Actions in a tree: %d\n", $actionsCount++);













Document Open Action


Special open action may be specify a destination to be displayed or an action to be performed when the document is
opened.


Zend_Pdf_Target Zend_Pdf::getOpenAction() method returns current document open action (or NULL if open
action is not set).


setOpenAction(Zend_Pdf_Target $openAction = null) method sets document open action or clean it if
$openAction is NULL.







Document Outline (bookmarks)


A PDF document may optionally display a document outline on the screen, allowing the user to navigate interactively
from one part of the document to another. The outline consists of a tree-structured hierarchy of outline items
(sometimes called bookmarks), which serve as a visual table of contents to display the document’s structure to the
user. The user can interactively open and close individual items by clicking them with the mouse. When an item is
open, its immediate children in the hierarchy become visible on the screen; each child may in turn be open or
closed, selectively revealing or hiding further parts of the hierarchy. When an item is closed, all of its
descendants in the hierarchy are hidden. Clicking the text of any visible item activates the item, causing the
viewer application to jump to a destination or trigger an action associated with the item.


Zend_Pdf class provides public property $outlines which is an array of Zend_Pdf_Outline objects.



		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$pdf = Zend_Pdf::load($path);

// Remove outline item
unset($pdf->outlines[0]->childOutlines[1]);

// Set Outline to be displayed in bold
$pdf->outlines[0]->childOutlines[3]->setIsBold(true);

// Add outline entry
$pdf->outlines[0]->childOutlines[5]->childOutlines[] =
    Zend_Pdf_Outline::create('Chapter 2', 'chapter_2');

$pdf->save($path, true);














Outline attributes may be retrieved or set using the following methods:



		string getTitle()- get outline item title.


		setTitle(string $title)- set outline item title.


		boolean isOpen()-TRUE if outline is open by default.


		setIsOpen(boolean $isOpen)- set isOpen state.


		boolean isItalic()-TRUE if outline item is displayed in italic.


		setIsItalic(boolean $isItalic)- set isItalic state.


		boolean isBold()-TRUE if outline item is displayed in bold.


		setIsBold(boolean $isBold)- set isBold state.


		Zend_Pdf_Color_Rgb getColor()- get outline text color (NULL means black).


		setColor(Zend_Pdf_Color_Rgb $color)- set outline text color (NULL means black).


		Zend_Pdf_Target getTarget()- get outline target (action or explicit or named destination object).


		setTarget(Zend_Pdf_Target|string $target)- set outline target (action or destination). String may be used to
identify named destination. NULL means ‘no target’.


		array getOptions()- get outline attributes as an array.


		setOptions(array $options)- set outline options. The following options are recognized: ‘title’, ‘open’,
‘color’, ‘italic’, ‘bold’, and ‘target’.





New outline may be created in two ways:



		Zend_Pdf_Outline::create(string $title[, Zend_Pdf_Target|string $target])


		Zend_Pdf_Outline::create(array $options)





Each outline object may have child outline items listed in Zend_Pdf_Outline::$childOutlines public property.
It’s an array of Zend_Pdf_Outline objects, so outlines are organized in a tree.


Zend_Pdf_Outline class implements RecursiveArray interface, so child outlines may be recursively iterated using
RecursiveIteratorIterator:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		$pdf = Zend_Pdf::load($path);

foreach ($pdf->outlines as $documentRootOutlineEntry) {
    $iterator = new RecursiveIteratorIterator(
                    $documentRootOutlineEntry,
                    RecursiveIteratorIterator::SELF_FIRST
                );
    foreach ($iterator as $childOutlineItem) {
        $OutlineItemTarget = $childOutlineItem->getTarget();
        if ($OutlineItemTarget instanceof Zend_Pdf_Destination) {
            if ($pdf->resolveDestination($OutlineItemTarget) === null) {
                // Mark Outline item with unresolvable destination
                // using RED color
                $childOutlineItem->setColor(new Zend_Pdf_Color_Rgb(1, 0, 0));
            }
        } else if ($OutlineItemTarget instanceof Zend_Pdf_Action_GoTo) {
            $OutlineItemTarget->setDestination();
            if ($pdf->resolveDestination($OutlineItemTarget) === null) {
                // Mark Outline item with unresolvable destination
                // using RED color
                $childOutlineItem->setColor(new Zend_Pdf_Color_Rgb(1, 0, 0));
            }
        }
    }
}

$pdf->save($path, true);











Note


All outline items with unresolved destinations (or destinations of GoTo actions) are updated while document
saving by setting their targets to NULL. So document will not be corrupted by removing pages referenced by
outlines.







Annotations


An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF document, or
provides a way to interact with the user by means of the mouse and keyboard.


All annotations are represented by Zend_Pdf_Annotation abstract class.


Annotation may be attached to a page using Zend_Pdf_Page::attachAnnotation(Zend_Pdf_Annotation $annotation)
method.


Three types of annotations may be created by user now:



		Zend_Pdf_Annotation_Link::create($x1, $y1, $x2, $y2, $target) where $target is an action object or a
destination or string (which may be used in place of named destination object).


		Zend_Pdf_Annotation_Text::create($x1, $y1, $x2, $y2, $text)


		Zend_Pdf_Annotation_FileAttachment::create($x1, $y1, $x2, $y2, $fileSpecification)





A link annotation represents either a hypertext link to a destination elsewhere in the document or an action to be
performed.


A text annotation represents a “sticky note” attached to a point in the PDF document.


A file attachment annotation contains a reference to a file.


The following methods are shared between all annotation types:



		setLeft(float $left)


		float getLeft()


		setRight(float $right)


		float getRight()


		setTop(float $top)


		float getTop()


		setBottom(float $bottom)


		float getBottom()


		setText(string $text)


		string getText()





Text annotation property is a text to be displayed for the annotation or, if this type of annotation does not
display text, an alternate description of the annotation’s contents in human-readable form.


Link annotation objects also provide two additional methods:



		setDestination(Zend_Pdf_Target|string $target)


		Zend_Pdf_Target getDestination()











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Interactive Features
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.consuming-atom.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Consuming an Atom Feed


Zend_Feed_Atom is used in much the same way as Zend_Feed_Rss. It provides the same access to feed-level
properties and iteration over entries in the feed. The main difference is in the structure of the Atom protocol
itself. Atom is a successor to RSS; it is more generalized protocol and it is designed to deal more easily with
feeds that provide their full content inside the feed, splitting RSS‘description tag into two elements,
summary and content, for that purpose.


Basic Use of an Atom Feed


Read an Atom feed and print the title and summary of each entry:


		1
2
3
4
5
6
7


		$feed = new Zend_Feed_Atom('http://atom.example.com/feed/');
echo 'The feed contains ' . $feed->count() . ' entries.' . "\n\n";
foreach ($feed as $entry) {
    echo 'Title: ' . $entry->title() . "\n";
    echo 'Summary: ' . $entry->summary() . "\n";
    echo 'URL: ' . $entry->link['href'] . "\n\n";
}










In an Atom feed you can expect to find the following feed properties:



		title- The feed’s title, same as RSS‘s channel title





		id- Every feed and entry in Atom has a unique identifier





		link- Feeds can have multiple links, which are distinguished by a type attribute


The equivalent to RSS‘s channel link would be type="text/html". if the link is to an alternate version of
the same content that’s in the feed, it would have a rel="alternate" attribute.





		subtitle- The feed’s description, equivalent to RSS‘ channel description


author->name()- The feed author’s name


author->email()- The feed author’s email address








Atom entries commonly have the following properties:



		id- The entry’s unique identifier





		title- The entry’s title, same as RSS item titles





		link- A link to another format or an alternate view of this entry


The link property of an atom entry typically has an href attribute. Attributes can be accessed using array
notation. For example, $entry->link['rel'] and $entry->link['href'].





		summary- A summary of this entry’s content





		content- The full content of the entry; can be skipped if the feed just contains summaries





		author- with name and email sub-tags like feeds have





		published- the date the entry was published, in RFC 3339 format





		updated- the date the entry was last updated, in RFC 3339 format








For more information on Atom and plenty of resources, see http://www.atomenabled.org/.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Consuming an Atom Feed
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/learning.quickstart.create-form.png
Please use the form below to sign our guestbook!

Your email address:

C_— 7]

Please Comment:

Please enter the 5 letters displayed below:

| sign Guestbook |






modules/zend.filter.callback.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Callback


This filter allows you to use own methods in conjunction with Zend_Filter. You don’t have to create a new
filter when you already have a method which does the job.



Supported options for Zend_Filter_Callback


The following options are supported for Zend_Filter_Callback:



		callback: This sets the callback which should be used.


		options: This property sets the options which are used when the callback is processed.








Basic usage


The usage of this filter is quite simple. Let’s expect we want to create a filter which reverses a string.


		1
2
3
4


		$filter = new Zend_Filter_Callback('strrev');

print $filter->filter('Hello!');
// returns "!olleH"










As you can see it’s really simple to use a callback to define a own filter. It is also possible to use a method,
which is defined within a class, by giving an array as callback.


		1
2
3
4
5
6
7
8
9


		// Our classdefinition
class MyClass
{
    public function Reverse($param);
}

// The filter definition
$filter = new Zend_Filter_Callback(array('MyClass', 'Reverse'));
print $filter->filter('Hello!');










To get the actual set callback use getCallback() and to set another callback use setCallback().



Note


Possible exceptions


You should note that defining a callback method which can not be called will raise an exception.







Default parameters within a callback


It is also possible to define default parameters, which are given to the called method as array when the filter is
executed. This array will be concatenated with the value which will be filtered.


		1
2
3
4
5
6
7


		$filter = new Zend_Filter_Callback(
    array(
        'callback' => 'MyMethod',
        'options'  => array('key' => 'param1', 'key2' => 'param2')
    )
);
$filter->filter(array('value' => 'Hello'));










When you would call the above method definition manually it would look like this:


		1


		$value = MyMethod('Hello', 'param1', 'param2');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Callback
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.windows-azure.queue.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_WindowsAzure_Storage_Queue


The Queue service stores messages that may be read by any client who has access to the storage account.


A queue can contain an unlimited number of messages, each of which can be up to 8 KB in size. Messages are
generally added to the end of the queue and retrieved from the front of the queue, although first in/first out
(FIFO) behavior is not guaranteed. If you need to store messages larger than 8 KB, you can store message data as
a queue or in a table and then store a reference to the data as a message in a queue.


Queue Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Queue class in order to provide a native PHP interface to the storage
account.



API Examples


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Queue class. Other features are
available in the download package, as well as a detailed API documentation of those features.



Creating a queue


Using the following code, a queue can be created on development storage.


Creating a queue


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();
$result = $storageClient->createQueue('testqueue');

echo 'Queue name is: ' . $result->Name;













Deleting a queue


Using the following code, a queue can be removed from development storage.


Deleting a queue


		1
2


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();
$storageClient->deleteQueue('testqueue');













Adding a message to a queue


Using the following code, a message can be added to a queue on development storage. Note that the queue has already
been created before.


Adding a message to a queue


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// 3600 = time-to-live of the message, if omitted defaults to 7 days
$storageClient->putMessage('testqueue', 'This is a test message', 3600);













Reading a message from a queue


Using the following code, a message can be read from a queue on development storage. Note that the queue and
message have already been created before.


Reading a message from a queue


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->getMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message->MessageText . "\r\n";
}










The messages that are read using getMessages() will be invisible in the queue for 30 seconds, after which the
messages will re-appear in the queue. To mark a message as processed and remove it from the queue, use the
deleteMessage() method.


Marking a message as processed


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->getMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message . "\r\n";

    // Mark the message as processed
    $storageClient->deleteMessage('testqueue', $message);
}













Check if there are messages in a queue


Using the following code, a queue can be checked for new messages. Note that the queue and message have already
been created before.


Check if there are messages in a queue


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->peekMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message->MessageText . "\r\n";
}










Note that messages that are read using peekMessages() will not become invisible in the queue, nor can they be
marked as processed using the deleteMessage() method. To do this, use getMessages() instead.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_WindowsAzure_Storage_Queue
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.searching.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Searching


Searching is performed by using the find() method:


Searching through the index


		1
2
3
4
5


		$hits = $index->find($query);

foreach ($hits as $hit) {
    printf("%d %f %s\n", $hit->id, $hit->score, $hit->title);
}










This example demonstrates the usage of two special search hit properties -id and score.


id is an internal document identifier used within a Lucene index. It may be used for a variety of operations,
including deleting a document from the index:


Deleting an Indexed Document


		1


		$index->delete($id);










Or retrieving the document from the index:


Retrieving an Indexed Document


		1


		$doc = $index->getDocument($id);











Note


Internal Document Identifiers


Important note! Internal document identifiers may be changed by index optimization or the auto-optimization
process, but it’s never changed within a single script’s execution unless the addDocument() (which may
involve an auto-optimization procedure) or optimize() methods are called.




The score field is a hit score. Search results are ordered by score by default (best results returned first).


It’s also possible to order result sets by specific field values. See the Zend_Search_Lucene documentation for more details about this possibility.


The example also demonstrates an ability to access stored fields (e.g., $hit->title). At the first access to
any hit property other than id or score, document stored fields are loaded, and the corresponding field
value is returned.


This causes an ambiguity for documents having their own id or score fields; as a result, it’s not
recommended to use these field names within stored documents. Nevertheless, they still can be accessed via the
getDocument() method:


Accessing the original document’s “id” and “score” fields


		1
2


		$id    = $hit->getDocument()->id;
$score = $hit->getDocument()->score;














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Searching
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/multiuser.sessions.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Managing User Sessions In ZF



Introduction to Sessions


The success of the web is deeply rooted in the protocol that drives the web: HTTP. HTTP over TCP is by its very
nature stateless, which means that inherently the web is also stateless. While this very aspect is one of the
dominating factors for why the web has become such a popular medium, it also causes an interesting problem for
developers that want to use the web as an application platform.


The act of interacting with a web application is typically defined by the sum of all requests sent to a web server.
Since there can be many consumers being served simultaneously, the application must decide which requests belong to
which consumer. These requests are typically known as a “session”.


In PHP, the session problem is solved by the session extension which utilizes some state tracking, typically
cookies, and some form of local storage which is exposed via the $_SESSION superglobal. In Zend Framework, the
component Zend_Session adds value to the PHP session extension making it easier to use and depend on inside
object-oriented applications.





Basic Usage of Zend_Session


The Zend_Session component is both a session manager as well as an API for storing data into a session object
for long-term persistence. The Zend_Session API is for managing the options and behavior of a session, like
options, starting and stopping a session, whereas Zend_Session_Namespace is the actual object used to store
data.


While its generally good practice to start a session inside a bootstrap process, this is generally not necessary as
all sessions will be automatically started upon the first creation of a Zend_Session_Namespace object.


Zend_Application is capable of configuring Zend_Session for you as part of the
Zend_Application_Resource system. To use this, assuming your project uses Zend_Application to bootstrap,
you would add the following code to your application.ini file:


		1
2
3


		resources.session.save_path = APPLICATION_PATH "/../data/session"
resources.session.use_only_cookies = true
resources.session.remember_me_seconds = 864000










As you can see, the options passed in are the same options that you’d expect to find in the ext/session extension
in PHP. Those options setup the path to the session files where data will be stored within the project. Since
INI files can additionally use constants, the above will use the APPLICATION_PATH constant and relatively point
to a data session directory.


Most Zend Framework components that use sessions need nothing more to use Zend_Session. At this point, you an
either use a component that consumes Zend_Session, or start storing your own data inside a session with
Zend_Session_Namespace.


Zend_Session_Namespace is a simple class that proxies data via an easy to use API into the Zend_Session
managed $_SESSION superglobal. The reason it is called Zend_Session_Namespace is that it effectively namespaces
the data inside $_SESSION, thus allowing multiple components and objects to safely store and retrieve data. In the
following code, we’ll explore how to build a simple session incrementing counter, starting at 1000 and resetting
itself after 1999.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$mysession = new Zend_Session_Namespace('mysession');

if (!isset($mysession->counter)) {
    $mysession->counter = 1000;
} else {
    $mysession->counter++;
}

if ($mysession->counter > 1999) {
    unset($mysession->counter);
}










As you can see above, the session namespace object uses the magic __get, __set, __isset, and __unset to allow
you to seamlessly and fluently interact with the session. The information stored in the above example is stored at
$_SESSION[‘mysession’][‘counter’].





Advanced Usage of Zend_Session


Additionally, if you wanted to use the DbTable save handler for Zend_Session, you’d add the following code to
your application.ini:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		resources.session.saveHandler.class = "Zend_Session_SaveHandler_DbTable"
resources.session.saveHandler.options.name = "session"
resources.session.saveHandler.options.primary.session_id = "session_id"
resources.session.saveHandler.options.primary.save_path = "save_path"
resources.session.saveHandler.options.primary.name = "name"
resources.session.saveHandler.options.primaryAssignment.sessionId = "sessionId"
resources.session.saveHandler.options.primaryAssignment.sessionSavePath = "sessionSavePath"
resources.session.saveHandler.options.primaryAssignment.sessionName = "sessionName"
resources.session.saveHandler.options.modifiedColumn = "modified"
resources.session.saveHandler.options.dataColumn = "session_data"
resources.session.saveHandler.options.lifetimeColumn = "lifetime"
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Managing User Sessions In ZF
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.database-and-models.album-list.png
.0 0/ 77y abums - 272 st

€ C | © zf2-tutorial.localhost /album

My albums

Add new album
Title
In My Dreams
2
Wrecking Bal (Deluxe)
Bom To Die

Making Mirrors

© 2006 - 2012 by Zend Technologies Ltd. Al rights reserved,

Artist
The Military Wives
Adele

Bruce Springsteen
Lana Del Rey

Gotye

Edit Delete

Edit Delete

Edit Delete

Edit Delete

Edit Delete

e @A






modules/zend.validator.int.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Int


Zend\Validator\Int validates if a given value is an integer. Also localized integer values are recognised and
can be validated.



Supported options for Zend\Validator\Int


The following options are supported for Zend\Validator\Int:



		locale: Sets the locale which will be used to validate localized integers.








Simple integer validation


The simplest way to validate an integer is by using the system settings. When no option is used, the environment
locale is used for validation:


		1
2
3
4
5


		$validator = new Zend\Validator\Int();

$validator->isValid(1234);   // returns true
$validator->isValid(1234.5); // returns false
$validator->isValid('1,234'); // returns true










In the above example we expected that our environment is set to “en” as locale. As you can see in the third example
also grouping is recognised.





Localized integer validation


Often it’s useful to be able to validate also localized values. Integer values are often written different in other
countries. For example using english you can write “1234” or “1,234”. Both are integer values but the grouping is
optional. In german for example you may write “1.234” and in french “1 234”.


Zend\Validator\Int is able to validate such notations. But it is limited to the locale you set. This means that
it not simply strips off the separator, it validates if the correct separator is used. See the following code:


		1
2
3
4
5


		$validator = new Zend\Validator\Int(array('locale' => 'de'));

$validator->isValid(1234); // returns true
$validator->isValid("1,234"); // returns false
$validator->isValid("1.234"); // returns true










As you can see, by using a locale, your input is validated localized. Using the english notation you get a
FALSE when the locale forces a different notation.


The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Int
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.adapter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Console adapters


Zend Framework 2 provides console abstraction layer, which works around various bugs and limitations in operating
systems. It handles displaying of colored text, retrieving console window size, charset and provides basic line
drawing capabilities.



See also


Console Adapters can be used for a low-level access to the console. If you plan on building functional console
applications you do not normally need to use adapters. Make sure to
read about console MVC integration first, because it provides a convenient way
for running modular console applications without directly writing to or reading from console window.





Retreving console adapter


If you are using MVC controllers you can obtain Console adapter instance using
Service Manager.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		namespace Application;
use Zend\Console\AdapterInterface as Console;

class Module
{
    public function testAction()
    {
        $console = $this->getServiceManager()->get('console');
        if (!$console instanceof Console) {
            throw new RuntimeException('Cannot obtain console adapter. Are we running in a console?');
        }
    }
}










If you are using Zend\Console without MVC, we can get adapter using the following code:


		1
2
3
4
5
6
7
8


		use Zend\Console\Console;
use Zend\Console\Exception\RuntimeException as ConsoleException;

try {
    $console = Console::getInstance();
} catch (ConsoleException $e){
    // Could not get console adapter - most likely we are not running inside a console window.
}











Note


For practical and security reasons, Console::getInstance() will always throw an exception if you attempt to
get console instance in a non-console environment (i.e. when running on a HTTP server). You can override this
behavior by manually instantiating one of Zend\Console\Adapter\* classes.







Using console adapter



Window size and title



		$console->getWidth()


		(int) Get real console window width in characters.


		$console->getHeight()


		(int) Get real console window height in characters.


		$console->getSize()


		(array) Get an array( $width, $height) with current console window dimensions.


		$console->getTitle()


		(string) Get console window title.






Note


For UTF-8 enabled consoles (terminals) dimensions represent the number of multibyte characters (real characters).





Note


On consoles with virtual buffers (i.e. MS Windows Command Prompt) width and height represent visible (real) size,
without scrolling the window. For example - if the window scrolling width is 120 chars, but it’s real, visible width
is 80 chars, getWidth() will return 80.







Character set



		$console->isUtf8()


		(boolean) Is the console UTF-8 compatible (can display unicode strings) ?


		$console->getCharset()


		(Zend\Console\Charset\CharsetInterface) This method will return one of Console\Charset\* classes that represent
the readable charset that can be used for line-drawing. It is automatically detected by the adapter.








Writing to console



		$console->write( string $text, $color = null, $bgColor = null )


		Write a $text to the console, optionally using foreground $color and background $bgColor.
Color value is one of the constants in Zend\Console\ColorInteface.


		$console->writeLine( string $text, $color = null, $bgColor = null )


		Write a single line of $text to the console. This method will output a newline character at the end of text
moving console cursor to next line.


		$console->writeAt( string $text, int $x, int $y, $color = null, $bgColor = null )


		Write $text at the specified $x and $y coordinates of console window. Top left corner of the screen
has coordinates of $x = 1; $x = 1. To retrieve far-right and bottom coordinates, use getWidth() and
getHeight() methods.








Reading from console



		$console->readChar( string $mask = null )


		(string) Read a single character from console. Optional (string) $mask can be provided to force entering only a
selected set of characters. For example, to read a single digit, we can use the following syntax:
$digit = $console->readChar('0123456789');


		$console->readLine( int $maxLength = 2048 )


		(string) Read a single line of input from console. Optional (int) $maxLength can be used to limit the length
of data that will be read. The line will be returned without ending newline character.








Miscellaneous



		$console->hideCursor()


		Hide blinking cursor from console.


		$console->showCursor()


		Show blinking cursor in console.


		$console->clear()


		Clear the screen.


		$console->clearLine()


		Clear the line that the cursor currently sits at.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Console adapters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.18.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.8


When upgrading from a previous release to Zend Framework 1.8 or higher you should note the following migration
notes.



Zend_Controller



Standard Route Changes


As translated segments were introduced into the new standard route, the ‘@‘ character is now a special
character in the beginning of a route segment. To be able to use it in a static segment, you must escape it by
prefixing it with second ‘@‘ character. The same rule now applies for the ‘:‘ character.







Zend_Locale



Default caching


As with Zend Framework 1.8 a default caching was added. The reason behind this change was, that most users had
performance problems but did not add caching at all. As the I18n core is a bottleneck when no caching is used we
decided to add a default caching when no cache has been set to Zend_Locale.


Sometimes it is still wanted to prevent caching at all even if this decreases performance. To do so you can simply
disable caching by using the disableCache() method.


Disabling default caching


		1


		Zend_Locale::disableCache(true);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.8
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.modifying-feed.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Modifying Feed and Entry structures


Zend_Feed‘s natural syntax extends to constructing and modifying feeds and entries as well as reading them. You
can easily turn your new or modified objects back into well-formed XML for saving to a file or sending to a
server.


Modifying an Existing Feed Entry


		1
2
3
4
5
6
7


		$feed = new Zend_Feed_Atom('http://atom.example.com/feed/1');
$entry = $feed->current();

$entry->title = 'This is a new title';
$entry->author->email = 'my_email@example.com';

echo $entry->saveXML();










This will output a full (includes <?xml ... > prologue) XML representation of the new entry, including any
necessary XML namespaces.


Note that the above will work even if the existing entry does not already have an author tag. You can use as many
levels of -> access as you like before getting to an assignment; all of the intervening levels will be created
for you automatically if necessary.


If you want to use a namespace other than atom:, rss:, or osrss: in your entry, you need to register
the namespace with Zend_Feed using Zend_Feed::registerNamespace(). When you are modifying an existing
element, it will always maintain its original namespace. When adding a new element, it will go into the default
namespace if you do not explicitly specify another namespace.


Creating an Atom Entry with Elements of Custom Namespaces


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$entry = new Zend_Feed_Entry_Atom();
// id is always assigned by the server in Atom
$entry->title = 'my custom entry';
$entry->author->name = 'Example Author';
$entry->author->email = 'me@example.com';

// Now do the custom part.
Zend_Feed::registerNamespace('myns', 'http://www.example.com/myns/1.0');

$entry->{'myns:myelement_one'} = 'my first custom value';
$entry->{'myns:container_elt'}->part1 = 'first nested custom part';
$entry->{'myns:container_elt'}->part2 = 'second nested custom part';

echo $entry->saveXML();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Modifying Feed and Entry structures
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.windows-azure.blob.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_WindowsAzure_Storage_Blob


Blob Storage stores sets of binary data. Blob storage offers the following three resources: the storage account,
containers, and blobs. Within your storage account, containers provide a way to organize sets of blobs within your
storage account.


Blob Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Blob class in order to provide a native PHP interface to the storage
account.



API Examples


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Blob class. Other features are
available in the download package, as well as a detailed API documentation of those features.



Creating a storage container


Using the following code, a blob storage container can be created on development storage.


Creating a storage container


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
$result = $storageClient->createContainer('testcontainer');

echo 'Container name is: ' . $result->Name;













Deleting a storage container


Using the following code, a blob storage container can be removed from development storage.


Deleting a storage container


		1
2


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
$storageClient->deleteContainer('testcontainer');













Storing a blob


Using the following code, a blob can be uploaded to a blob storage container on development storage. Note that the
container has already been created before.


Storing a blob


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// upload /home/maarten/example.txt to Azure
$result = $storageClient->putBlob(
    'testcontainer', 'example.txt', '/home/maarten/example.txt'
);

echo 'Blob name is: ' . $result->Name;













Copying a blob


Using the following code, a blob can be copied from inside the storage account. The advantage of using this method
is that the copy operation occurs in the Azure cloud and does not involve downloading the blob. Note that the
container has already been created before.


Copying a blob


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// copy example.txt to example2.txt
$result = $storageClient->copyBlob(
    'testcontainer', 'example.txt', 'testcontainer', 'example2.txt'
);

echo 'Copied blob name is: ' . $result->Name;













Downloading a blob


Using the following code, a blob can be downloaded from a blob storage container on development storage. Note that
the container has already been created before and a blob has been uploaded.


Downloading a blob


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// download file to /home/maarten/example.txt
$storageClient->getBlob(
    'testcontainer', 'example.txt', '/home/maarten/example.txt'
);













Making a blob publicly available


By default, blob storage containers on Windows Azure are protected from public viewing. If any user on the Internet
should have access to a blob container, its ACL can be set to public. Note that this applies to a complete
container and not to a single blob!


Using the following code, blob storage container ACL can be set on development storage. Note that the container has
already been created before.


Making a blob publicly available


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// make container publicly available
$storageClient->setContainerAcl(
    'testcontainer',
    Zend_Service_WindowsAzure_Storage_Blob::ACL_PUBLIC
);















Root container


Windows Azure Blob Storage provides support to work with a “root container”. This means that a blob can be stored
in the root of your storage account, i.e. http://myaccount.blob.core.windows.net/somefile.txt.


In order to work with the root container, it should first be created using the createContainer() method, naming
the container $root. All other operations on the root container should be issued with the container name set to
$root.





Blob storage stream wrapper


The Windows Azure SDK for PHP provides support for registering a blob storage client as a PHP file stream
wrapper. The blob storage stream wrapper provides support for using regular file operations on Windows Azure Blob
Storage. For example, one can open a file from Windows Azure Blob Storage with the fopen() function:


Example usage of blob storage stream wrapper


		1
2
3
4
5


		$fileHandle = fopen('azure://mycontainer/myfile.txt', 'r');

// ...

fclose($fileHandle);










In order to do this, the Windows Azure SDK for PHP blob storage client must be registered as a stream wrapper.
This can be done by calling the registerStreamWrapper() method:


Registering the blob storage stream wrapper


		1
2
3
4
5
6
7
8
9


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
// registers azure:// on this storage client
$storageClient->registerStreamWrapper();


// or:

// regiters blob:// on this storage client
$storageClient->registerStreamWrapper('blob://');










To unregister the stream wrapper, the unregisterStreamWrapper() method can be used.





Shared Access Signature


Windows Azure Bob Storage provides a feature called “Shared Access Signatures”. By default, there is only one level
of authorization possible in Windows Azure Blob Storage: either a container is private or it is public. Shared
Access Signatures provide a more granular method of authorization: read, write, delete and list permissions can be
assigned on a container or a blob and given to a specific client using an URL-based model.


An example would be the following signature:


http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D




The above signature gives write access to the “phpazuretestshared1” container of the “phpstorage” account.



Generating a Shared Access Signature


When you are the owner of a Windows Azure Bob Storage account, you can create and distribute a shared access key
for any type of resource in your account. To do this, the generateSharedAccessUrl() method of the
Zend_Service_WindowsAzure_Storage_Blob storage client can be used.


The following example code will generate a Shared Access Signature for write access in a container named
“container1”, within a timeframe of 3000 seconds.


Generating a Shared Access Signature for a container


		1
2
3
4
5
6
7
8
9


		$storageClient   = new Zend_Service_WindowsAzure_Storage_Blob();
$sharedAccessUrl = $storageClient->generateSharedAccessUrl(
    'container1',
    '',
    'c',
    'w',
    $storageClient ->isoDate(time() - 500),
    $storageClient ->isoDate(time() + 3000)
);










The following example code will generate a Shared Access Signature for read access in a blob named test.txt in
a container named “container1” within a time frame of 3000 seconds.


Generating a Shared Access Signature for a blob


		1
2
3
4
5
6
7
8
9


		$storageClient   = new Zend_Service_WindowsAzure_Storage_Blob();
$sharedAccessUrl = $storageClient->generateSharedAccessUrl(
    'container1',
    'test.txt',
    'b',
    'r',
    $storageClient ->isoDate(time() - 500),
    $storageClient ->isoDate(time() + 3000)
);













Working with Shared Access Signatures from others


When you receive a Shared Access Signature from someone else, you can use the Windows Azure SDK for PHP to work
with the addressed resource. For example, the following signature can be retrieved from the owner of a storage
account:


http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D




The above signature gives write access to the “phpazuretestshared1” “container” of the phpstorage account. Since
the shared key for the account is not known, the Shared Access Signature can be used to work with the authorized
resource.


Consuming a Shared Access Signature for a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob(
    'blob.core.windows.net', 'phpstorage', ''
);
$storageClient->setCredentials(
    new Zend_Service_WindowsAzure_Credentials_SharedAccessSignature()
);
$storageClient->getCredentials()->setPermissionSet(array(
    'http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D'
));
$storageClient->putBlob(
    'phpazuretestshared1', 'NewBlob.txt', 'C:\Files\dataforazure.txt'
);










Note that there was no explicit permission to write to a specific blob. Instead, the Windows Azure SDK for PHP
determined that a permission was required to either write to that specific blob, or to write to its container.
Since only a signature was available for the latter, the Windows Azure SDK for PHP chose those credentials to
perform the request on Windows Azure blob storage.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_WindowsAzure_Storage_Blob
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.drawing.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Drawing



Geometry


PDF uses the same geometry as PostScript. It starts from bottom-left corner of page and by default is measured in
points (1/72 of an inch).


Page size can be retrieved from a page object:


		1
2


		$width  = $pdfPage->getWidth();
$height = $pdfPage->getHeight();













Colors


PDF has a powerful capabilities for colors representation. Zend_Pdf module supports Gray Scale, RGB and CMYK
color spaces. Any of them can be used in any place, where Zend_Pdf_Color object is required.
Zend_Pdf_Color_GrayScale, Zend_Pdf_Color_Rgb and Zend_Pdf_Color_Cmyk classes provide this
functionality:


		1
2
3
4
5
6
7
8


		// $grayLevel (float number). 0.0 (black) - 1.0 (white)
$color1 = new Zend_Pdf_Color_GrayScale($grayLevel);

// $r, $g, $b (float numbers). 0.0 (min intensity) - 1.0 (max intensity)
$color2 = new Zend_Pdf_Color_Rgb($r, $g, $b);

// $c, $m, $y, $k (float numbers). 0.0 (min intensity) - 1.0 (max intensity)
$color3 = new Zend_Pdf_Color_Cmyk($c, $m, $y, $k);










HTML style colors are also provided with Zend_Pdf_Color_Html class:


		1
2
3


		$color1 = new Zend_Pdf_Color_Html('#3366FF');
$color2 = new Zend_Pdf_Color_Html('silver');
$color3 = new Zend_Pdf_Color_Html('forestgreen');













Shape Drawing


All drawing operations can be done in a context of PDF page.


Zend_Pdf_Page class provides a set of drawing primitives:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		/**
 * Draw a line from x1,y1 to x2,y2.
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @return Zend_Pdf_Page
 */
public function drawLine($x1, $y1, $x2, $y2);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		/**
 * Draw a rectangle.
 *
 * Fill types:
 * Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE - fill rectangle
 *                                             and stroke (default)
 * Zend_Pdf_Page::SHAPE_DRAW_STROKE          - stroke rectangle
 * Zend_Pdf_Page::SHAPE_DRAW_FILL            - fill rectangle
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @param integer $fillType
 * @return Zend_Pdf_Page
 */
public function drawRectangle($x1, $y1, $x2, $y2,
                    $fillType = Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		/**
 * Draw a rounded rectangle.
 *
 * Fill types:
 * Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE - fill rectangle
 *                                             and stroke (default)
 * Zend_Pdf_Page::SHAPE_DRAW_STROKE      - stroke rectangle
 * Zend_Pdf_Page::SHAPE_DRAW_FILL        - fill rectangle
 *
 * radius is an integer representing radius of the four corners, or an array
 * of four integers representing the radius starting at top left, going
 * clockwise
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @param integer|array $radius
 * @param integer $fillType
 * @return Zend_Pdf_Page
 */
public function drawRoundedRectangle($x1, $y1, $x2, $y2, $radius,
                       $fillType = Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		/**
 * Draw a polygon.
 *
 * If $fillType is Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE or
 * Zend_Pdf_Page::SHAPE_DRAW_FILL, then polygon is automatically closed.
 * See detailed description of these methods in a PDF documentation
 * (section 4.4.2 Path painting Operators, Filling)
 *
 * @param array $x  - array of float (the X co-ordinates of the vertices)
 * @param array $y  - array of float (the Y co-ordinates of the vertices)
 * @param integer $fillType
 * @param integer $fillMethod
 * @return Zend_Pdf_Page
 */
public function drawPolygon($x, $y,
                            $fillType =
                                Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE,
                            $fillMethod =
                                Zend_Pdf_Page::FILL_METHOD_NON_ZERO_WINDING);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		/**
 * Draw a circle centered on x, y with a radius of radius.
 *
 * Angles are specified in radians
 *
 * Method signatures:
 * drawCircle($x, $y, $radius);
 * drawCircle($x, $y, $radius, $fillType);
 * drawCircle($x, $y, $radius, $startAngle, $endAngle);
 * drawCircle($x, $y, $radius, $startAngle, $endAngle, $fillType);
 *
 *
 * It's not a really circle, because PDF supports only cubic Bezier
 * curves. But very good approximation.
 * It differs from a real circle on a maximum 0.00026 radiuses (at PI/8,
 * 3*PI/8, 5*PI/8, 7*PI/8, 9*PI/8, 11*PI/8, 13*PI/8 and 15*PI/8 angles).
 * At 0, PI/4, PI/2, 3*PI/4, PI, 5*PI/4, 3*PI/2 and 7*PI/4 it's exactly
 * a tangent to a circle.
 *
 * @param float $x
 * @param float $y
 * @param float $radius
 * @param mixed $param4
 * @param mixed $param5
 * @param mixed $param6
 * @return Zend_Pdf_Page
 */
public function  drawCircle($x,
                            $y,
                            $radius,
                            $param4 = null,
                            $param5 = null,
                            $param6 = null);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		/**
 * Draw an ellipse inside the specified rectangle.
 *
 * Method signatures:
 * drawEllipse($x1, $y1, $x2, $y2);
 * drawEllipse($x1, $y1, $x2, $y2, $fillType);
 * drawEllipse($x1, $y1, $x2, $y2, $startAngle, $endAngle);
 * drawEllipse($x1, $y1, $x2, $y2, $startAngle, $endAngle, $fillType);
 *
 * Angles are specified in radians
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @param mixed $param5
 * @param mixed $param6
 * @param mixed $param7
 * @return Zend_Pdf_Page
 */
public function drawEllipse($x1,
                            $y1,
                            $x2,
                            $y2,
                            $param5 = null,
                            $param6 = null,
                            $param7 = null);













Text Drawing


Text drawing operations also exist in the context of a PDF page. You can draw a single line of text at any
position on the page by supplying the x and y coordinates of the baseline. Current font and current font size are
used for text drawing operations (see detailed description below).


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		/**
 * Draw a line of text at the specified position.
 *
 * @param string $text
 * @param float $x
 * @param float $y
 * @param string $charEncoding (optional) Character encoding of source
 *               text.Defaults to current locale.
 * @throws Zend_Pdf_Exception
 * @return Zend_Pdf_Page
 */
public function drawText($text, $x, $y, $charEncoding = '');










Draw a string on the page


		1
2
3


		...
$pdfPage->drawText('Hello world!', 72, 720);
...










By default, text strings are interpreted using the character encoding method of the current locale. if you have a
string that uses a different encoding method (such as a UTF-8 string read from a file on disk, or a MacRoman string
obtained from a legacy database), you can indicate the character encoding at draw time and Zend_Pdf will handle
the conversion for you. You can supply source strings in any encoding method supported by PHP‘s iconv() [http://www.php.net/manual/function.iconv.php]
function:


Draw a UTF-8-encoded string on the page


		1
2
3
4
5
6
7


		...
// Read a UTF-8-encoded string from disk
$unicodeString = fread($fp, 1024);

// Draw the string on the page
$pdfPage->drawText($unicodeString, 72, 720, 'UTF-8');
...













Using fonts


Zend_Pdf_Page::drawText() uses the page’s current font and font size, which is set with the
Zend_Pdf_Page::setFont() method:


		1
2
3
4
5
6
7
8


		/**
 * Set current font.
 *
 * @param Zend_Pdf_Resource_Font $font
 * @param float $fontSize
 * @return Zend_Pdf_Page
 */
public function setFont(Zend_Pdf_Resource_Font $font, $fontSize);










PDF documents support PostScript Type 1 and TrueType fonts, as well as two specialized PDF types, Type 3 and
composite fonts. There are also 14 standard Type 1 fonts built-in to every PDF viewer: Courier (4 styles),
Helvetica (4 styles), Times (4 styles), Symbol, and Zapf Dingbats.


Zend_Pdf currently supports the standard 14 PDF fonts as well as your own custom TrueType fonts. Font objects
are obtained via one of two factory methods: Zend_Pdf_Font::fontWithName($fontName) for the standard 14 PDF
fonts or Zend_Pdf_Font::fontWithPath($filePath) for custom fonts.


Create a standard font


		1
2
3
4
5
6
7


		...
// Create new font
$font = Zend_Pdf_Font::fontWithName(Zend_Pdf_Font::FONT_HELVETICA);

// Apply font
$pdfPage->setFont($font, 36);
...










Constants for the standard 14 PDF font names are defined in the Zend_Pdf_Font class:




		Zend_Pdf_Font::FONT_COURIER


		Zend_Pdf_Font::FONT_COURIER_BOLD


		Zend_Pdf_Font::FONT_COURIER_ITALIC


		Zend_Pdf_Font::FONT_COURIER_BOLD_ITALIC


		Zend_Pdf_Font::FONT_TIMES


		Zend_Pdf_Font::FONT_TIMES_BOLD


		Zend_Pdf_Font::FONT_TIMES_ITALIC


		Zend_Pdf_Font::FONT_TIMES_BOLD_ITALIC


		Zend_Pdf_Font::FONT_HELVETICA


		Zend_Pdf_Font::FONT_HELVETICA_BOLD


		Zend_Pdf_Font::FONT_HELVETICA_ITALIC


		Zend_Pdf_Font::FONT_HELVETICA_BOLD_ITALIC


		Zend_Pdf_Font::FONT_SYMBOL


		Zend_Pdf_Font::FONT_ZAPFDINGBATS









You can also use any individual TrueType font (which usually has a ‘.ttf’ extension) or an OpenType font (‘.otf’
extension) if it contains TrueType outlines. Currently unsupported, but planned for a future release are Mac OS X
.dfont files and Microsoft TrueType Collection (‘.ttc’ extension) files.


To use a TrueType font, you must provide the full file path to the font program. If the font cannot be read for
some reason, or if it is not a TrueType font, the factory method will throw an exception:


Create a TrueType font


		1
2
3
4
5
6
7


		...
// Create new font
$goodDogCoolFont = Zend_Pdf_Font::fontWithPath('/path/to/GOODDC__.TTF');

// Apply font
$pdfPage->setFont($goodDogCoolFont, 36);
...










By default, custom fonts will be embedded in the resulting PDF document. This allows recipients to view the page
as intended, even if they don’t have the proper fonts installed on their system. If you are concerned about file
size, you can request that the font program not be embedded by passing a ‘do not embed’ option to the factory
method:


Create a TrueType font, but do not embed it in the PDF document


		1
2
3
4
5
6
7
8


		...
// Create new font
$goodDogCoolFont = Zend_Pdf_Font::fontWithPath('/path/to/GOODDC__.TTF',
                                               Zend_Pdf_Font::EMBED_DONT_EMBED);

// Apply font
$pdfPage->setFont($goodDogCoolFont, 36);
...










If the font program is not embedded but the recipient of the PDF file has the font installed on their system,
they will see the document as intended. If they do not have the correct font installed, the PDF viewer
application will do its best to synthesize a replacement.


Some fonts have very specific licensing rules which prevent them from being embedded in PDF documents. So you are
not caught off-guard by this, if you try to use a font that cannot be embedded, the factory method will throw an
exception.


You can still use these fonts, but you must either pass the do not embed flag as described above, or you can simply
suppress the exception:


Do not throw an exception for fonts that cannot be embedded


		1
2
3
4
5
6


		...
$font = Zend_Pdf_Font::fontWithPath(
           '/path/to/unEmbeddableFont.ttf',
           Zend_Pdf_Font::EMBED_SUPPRESS_EMBED_EXCEPTION
        );
...










This suppression technique is preferred if you allow an end-user to choose their own fonts. Fonts which can be
embedded in the PDF document will be; those that cannot, won’t.


Font programs can be rather large, some reaching into the tens of megabytes. By default, all embedded fonts are
compressed using the Flate compression scheme, resulting in a space savings of 50% on average. If, for some reason,
you do not want to compress the font program, you can disable it with an option:


Do not compress an embedded font


		1
2
3
4


		...
$font = Zend_Pdf_Font::fontWithPath('/path/to/someReallyBigFont.ttf',
                                    Zend_Pdf_Font::EMBED_DONT_COMPRESS);
...










Finally, when necessary, you can combine the embedding options by using the bitwise OR operator:


Combining font embedding options


		1
2
3
4
5
6


		...
$font = Zend_Pdf_Font::fontWithPath(
            $someUserSelectedFontPath,
            (Zend_Pdf_Font::EMBED_SUPPRESS_EMBED_EXCEPTION |
            Zend_Pdf_Font::EMBED_DONT_COMPRESS));
...













Standard PDF fonts limitations


Standard PDF fonts use several single byte encodings internally (see PDF Reference, Sixth Edition, version 1.7 [http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf]
Appendix D for details). They are generally equal to Latin1 character set (except Symbol and ZapfDingbats fonts).


Zend_Pdf uses CP1252 (WinLatin1) for drawing text with standard fonts.


Text still can be provided in any other encoding, which must be specified if it differs from a current locale. Only
WinLatin1 characters will be actually drawn.


Combining font embedding options


		1
2
3
4
5
6


		...
$font = Zend_Pdf_Font::fontWithName(Zend_Pdf_Font::FONT_COURIER);
$pdfPage->setFont($font, 36)
        ->drawText('Euro sign - €', 72, 720, 'UTF-8')
        ->drawText('Text with umlauts - à è ì', 72, 650, 'UTF-8');
...













Extracting fonts


Zend_Pdf module provides a possibility to extract fonts from loaded documents.


It may be useful for incremental document updates. Without this functionality you have to attach and possibly embed
font into a document each time you want to update it.


Zend_Pdf and Zend_Pdf_Page objects provide special methods to extract all fonts mentioned within a document
or a page:


Extracting fonts from a loaded document


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		...
$pdf = Zend_Pdf::load($documentPath);
...
// Get all document fonts
$fontList = $pdf->extractFonts();
$pdf->pages[] = ($page = $pdf->newPage(Zend_Pdf_Page::SIZE_A4));
$yPosition = 700;
foreach ($fontList as $font) {
    $page->setFont($font, 15);
    $fontName = $font->getFontName(Zend_Pdf_Font::NAME_POSTSCRIPT,
                                   'en',
                                   'UTF-8');
    $page->drawText($fontName . ': The quick brown fox jumps over the lazy dog',
                    100,
                    $yPosition,
                    'UTF-8');
    $yPosition -= 30;
}
...
// Get fonts referenced within the first document page
$firstPage = reset($pdf->pages);
$firstPageFonts = $firstPage->extractFonts();
...










Extracting font from a loaded document by specifying font name


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		...
$pdf = new Zend_Pdf();
...
$pdf->pages[] = ($page = $pdf->newPage(Zend_Pdf_Page::SIZE_A4));

$font = Zend_Pdf_Font::fontWithPath($fontPath);
$page->setFont($font, $fontSize);
$page->drawText($text, $x, $y);
...
// This font name should be stored somewhere...
$fontName = $font->getFontName(Zend_Pdf_Font::NAME_POSTSCRIPT,
                               'en',
                               'UTF-8');
...
$pdf->save($docPath);
...










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		...
$pdf = Zend_Pdf::load($docPath);
...
$pdf->pages[] = ($page = $pdf->newPage(Zend_Pdf_Page::SIZE_A4));

/* $srcPage->extractFont($fontName) can also be used here */
$font = $pdf->extractFont($fontName);

$page->setFont($font, $fontSize);
$page->drawText($text, $x, $y);
...
$pdf->save($docPath, true /* incremental update mode */);
...










Extracted fonts can be used in the place of any other font with the following limitations:




		Extracted font can be used only in the context of the document from which it was extracted.





		Possibly embedded font program is actually not extracted. So extracted font can’t provide correct font metrics
and original font has to be used for text width calculations:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		...
$font = $pdf->extractFont($fontName);
$originalFont = Zend_Pdf_Font::fontWithPath($fontPath);

$page->setFont($font /* use extracted font for drawing */, $fontSize);
$xPosition = $x;
for ($charIndex = 0; $charIndex < strlen($text); $charIndex++) {
    $page->drawText($text[$charIndex], xPosition, $y);

    // Use original font for text width calculation
    $width = $originalFont->widthForGlyph(
                 $originalFont->glyphNumberForCharacter($text[$charIndex])
             );
    $xPosition += $width/$originalFont->getUnitsPerEm()*$fontSize;
}
...























Image Drawing


Zend_Pdf_Page class provides drawImage() method to draw image:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		/**
 * Draw an image at the specified position on the page.
 *
 * @param Zend_Pdf_Resource_Image $image
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @return Zend_Pdf_Page
 */
public function drawImage(Zend_Pdf_Resource_Image $image, $x1, $y1, $x2, $y2);










Image objects should be created with Zend_Pdf_Image::imageWithPath($filePath) method (JPG, PNG and TIFF images
are supported now):


Image drawing


		1
2
3
4
5
6


		...
// load image
$image = Zend_Pdf_Image::imageWithPath('my_image.jpg');

$pdfPage->drawImage($image, 100, 100, 400, 300);
...










Important! JPEG support requires PHP GD extension to be configured. Important! PNG support requires ZLIB
extension to be configured to work with Alpha channel images.


Refer to the PHP documentation for detailed information (http://www.php.net/manual/en/ref.image.php).
(http://www.php.net/manual/en/ref.zlib.php).





Line drawing style


Line drawing style is defined by line width, line color and line dashing pattern. All of this parameters can be
assigned by Zend_Pdf_Page class methods:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		/** Set line color. */
public function setLineColor(Zend_Pdf_Color $color);

/** Set line width. */
public function setLineWidth(float $width);

/**
 * Set line dashing pattern.
 *
 * Pattern is an array of floats:
 *     array(on_length, off_length, on_length, off_length, ...)
 * Phase is shift from the beginning of line.
 *
 * @param array $pattern
 * @param array $phase
 * @return Zend_Pdf_Page
 */
public function setLineDashingPattern($pattern, $phase = 0);













Fill style


Zend_Pdf_Page::drawRectangle(), Zend_Pdf_Page::drawPolygon(), Zend_Pdf_Page::drawCircle() and
Zend_Pdf_Page::drawEllipse() methods take $fillType argument as an optional parameter. It can be:



		Zend_Pdf_Page::SHAPE_DRAW_STROKE - stroke shape


		Zend_Pdf_Page::SHAPE_DRAW_FILL - only fill shape


		Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE - fill and stroke (default behavior)





Zend_Pdf_Page::drawPolygon() methods also takes an additional parameter $fillMethod:



		Zend_Pdf_Page::FILL_METHOD_NON_ZERO_WINDING (default behavior)


PDF reference  describes this rule as follows:
| The nonzero winding number rule determines whether a given point is inside a path by conceptually drawing a ray
from that point to infinity in any direction and then examining the places where a segment of the path crosses
the ray. Starting with a count of 0, the rule adds 1 each time a path segment crosses the ray from left to right
and subtracts 1 each time a segment crosses from right to left. After counting all the crossings, if the result
is 0 then the point is outside the path; otherwise it is inside. Note: The method just described does not specify
what to do if a path segment coincides with or is tangent to the chosen ray. Since the direction of the ray is
arbitrary, the rule simply chooses a ray that does not encounter such problem intersections. For simple convex
paths, the nonzero winding number rule defines the inside and outside as one would intuitively expect. The more
interesting cases are those involving complex or self-intersecting paths like the ones shown in Figure 4.10 (in a
PDF Reference). For a path consisting of a five-pointed star, drawn with five connected straight line segments
intersecting each other, the rule considers the inside to be the entire area enclosed by the star, including the
pentagon in the center. For a path composed of two concentric circles, the areas enclosed by both circles are
considered to be inside, provided that both are drawn in the same direction. If the circles are drawn in opposite
directions, only the “doughnut” shape between them is inside, according to the rule; the “doughnut hole” is
outside.





		Zend_Pdf_Page::FILL_METHOD_EVEN_ODD


PDF reference  describes this rule as follows:
| An alternative to the nonzero winding number rule is the even-odd rule. This rule determines the “insideness”
of
a point by drawing a ray from that point in any direction and simply counting the number of path segments that
cross the ray, regardless of direction. If this number is odd, the point is inside; if even, the point is
outside. This yields the same results as the nonzero winding number rule for paths with simple shapes, but
produces different results for more complex shapes. Figure 4.11 (in a PDF Reference) shows the effects of
applying the even-odd rule to complex paths. For the five-pointed star, the rule considers the triangular points
to be inside the path, but not the pentagon in the center. For the two concentric circles, only the “doughnut”
shape between the two circles is considered inside, regardless of the directions in which the circles are drawn.











Linear Transformations



Rotations


PDF page can be rotated before applying any draw operation. It can be done by Zend_Pdf_Page::rotate() method:


		1
2
3
4
5
6
7
8
9


		/**
 * Rotate the page.
 *
 * @param float $x  - the X co-ordinate of rotation point
 * @param float $y  - the Y co-ordinate of rotation point
 * @param float $angle - rotation angle
 * @return Zend_Pdf_Page
 */
public function rotate($x, $y, $angle);













Starting from ZF 1.8, scaling


Scaling transformation is provided by Zend_Pdf_Page::scale() method:


		1
2
3
4
5
6
7
8


		/**
 * Scale coordination system.
 *
 * @param float $xScale - X dimention scale factor
 * @param float $yScale - Y dimention scale factor
 * @return Zend_Pdf_Page
 */
public function scale($xScale, $yScale);













Starting from ZF 1.8, translating


Coordinate system shifting is performed by Zend_Pdf_Page::translate() method:


		1
2
3
4
5
6
7
8


		/**
 * Translate coordination system.
 *
 * @param float $xShift - X coordinate shift
 * @param float $yShift - Y coordinate shift
 * @return Zend_Pdf_Page
 */
public function translate($xShift, $yShift);













Starting from ZF 1.8, skewing


Page skewing can be done using Zend_Pdf_Page::skew() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		/**
 * Translate coordination system.
 *
 * @param float $x  - the X co-ordinate of axis skew point
 * @param float $y  - the Y co-ordinate of axis skew point
 * @param float $xAngle - X axis skew angle
 * @param float $yAngle - Y axis skew angle
 * @return Zend_Pdf_Page
 */
public function skew($x, $y, $xAngle, $yAngle);















Save/restore graphics state


At any time page graphics state (current font, font size, line color, fill color, line style, page rotation, clip
area) can be saved and then restored. Save operation puts data to a graphics state stack, restore operation
retrieves it from there.


There are two methods in Zend_Pdf_Page class for these operations:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		/**
 * Save the graphics state of this page.
 * This takes a snapshot of the currently applied style, position,
 * clipping area and any rotation/translation/scaling that has been
 * applied.
 *
 * @return Zend_Pdf_Page
 */
public function saveGS();

/**
 * Restore the graphics state that was saved with the last call to
 * saveGS().
 *
 * @return Zend_Pdf_Page
 */
public function restoreGS();













Clipping draw area


PDF and Zend_Pdf module support clipping of draw area. Current clip area limits the regions of the page
affected by painting operators. It’s a whole page initially.


Zend_Pdf_Page class provides a set of methods for clipping operations.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		/**
 * Intersect current clipping area with a rectangle.
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @return Zend_Pdf_Page
 */
public function clipRectangle($x1, $y1, $x2, $y2);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		/**
 * Intersect current clipping area with a polygon.
 *
 * @param array $x  - array of float (the X co-ordinates of the vertices)
 * @param array $y  - array of float (the Y co-ordinates of the vertices)
 * @param integer $fillMethod
 * @return Zend_Pdf_Page
 */
public function clipPolygon($x,
                            $y,
                            $fillMethod =
                                Zend_Pdf_Page::FILL_METHOD_NON_ZERO_WINDING);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Intersect current clipping area with a circle.
 *
 * @param float $x
 * @param float $y
 * @param float $radius
 * @param float $startAngle
 * @param float $endAngle
 * @return Zend_Pdf_Page
 */
public function clipCircle($x,
                           $y,
                           $radius,
                           $startAngle = null,
                           $endAngle = null);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		/**
 * Intersect current clipping area with an ellipse.
 *
 * Method signatures:
 * drawEllipse($x1, $y1, $x2, $y2);
 * drawEllipse($x1, $y1, $x2, $y2, $startAngle, $endAngle);
 *
 * @todo process special cases with $x2-$x1 == 0 or $y2-$y1 == 0
 *
 * @param float $x1
 * @param float $y1
 * @param float $x2
 * @param float $y2
 * @param float $startAngle
 * @param float $endAngle
 * @return Zend_Pdf_Page
 */
public function clipEllipse($x1,
                            $y1,
                            $x2,
                            $y2,
                            $startAngle = null,
                            $endAngle = null);













Styles


Zend_Pdf_Style class provides styles functionality.


Styles can be used to store a set of graphic state parameters and apply it to a PDF page by one operation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		/**
 * Set the style to use for future drawing operations on this page
 *
 * @param Zend_Pdf_Style $style
 * @return Zend_Pdf_Page
 */
public function setStyle(Zend_Pdf_Style $style);

/**
 * Return the style, applied to the page.
 *
 * @return Zend_Pdf_Style|null
 */
public function getStyle();










Zend_Pdf_Style class provides a set of methods to set or get different graphics state parameters:


		1
2
3
4
5
6
7


		/**
 * Set line color.
 *
 * @param Zend_Pdf_Color $color
 * @return Zend_Pdf_Page
 */
public function setLineColor(Zend_Pdf_Color $color);










		1
2
3
4
5
6


		/**
 * Get line color.
 *
 * @return Zend_Pdf_Color|null
 */
public function getLineColor();










		1
2
3
4
5
6
7


		/**
 * Set line width.
 *
 * @param float $width
 * @return Zend_Pdf_Page
 */
public function setLineWidth($width);










		1
2
3
4
5
6


		/**
 * Get line width.
 *
 * @return float
 */
public function getLineWidth();










		1
2
3
4
5
6
7
8


		/**
 * Set line dashing pattern
 *
 * @param array $pattern
 * @param float $phase
 * @return Zend_Pdf_Page
 */
public function setLineDashingPattern($pattern, $phase = 0);










		1
2
3
4
5
6


		/**
 * Get line dashing pattern
 *
 * @return array
 */
public function getLineDashingPattern();










		1
2
3
4
5
6


		/**
 * Get line dashing phase
 *
 * @return float
 */
public function getLineDashingPhase();










		1
2
3
4
5
6
7


		/**
 * Set fill color.
 *
 * @param Zend_Pdf_Color $color
 * @return Zend_Pdf_Page
 */
public function setFillColor(Zend_Pdf_Color $color);










		1
2
3
4
5
6


		/**
 * Get fill color.
 *
 * @return Zend_Pdf_Color|null
 */
public function getFillColor();










		1
2
3
4
5
6
7
8


		/**
 * Set current font.
 *
 * @param Zend_Pdf_Resource_Font $font
 * @param float $fontSize
 * @return Zend_Pdf_Page
 */
public function setFont(Zend_Pdf_Resource_Font $font, $fontSize);










		1
2
3
4
5
6
7


		/**
 * Modify current font size
 *
 * @param float $fontSize
 * @return Zend_Pdf_Page
 */
public function setFontSize($fontSize);










		1
2
3
4
5
6


		/**
 * Get current font.
 *
 * @return Zend_Pdf_Resource_Font $font
 */
public function getFont();










		1
2
3
4
5
6


		/**
 * Get current font size
 *
 * @return float $fontSize
 */
public function getFontSize();













Transparency


Zend_Pdf module supports transparency handling.


Transparency may be set using Zend_Pdf_Page::setAlpha() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		/**
 * Set the transparency
 *
 * $alpha == 0  - transparent
 * $alpha == 1  - opaque
 *
 * Transparency modes, supported by PDF:
 * Normal (default), Multiply, Screen, Overlay, Darken, Lighten,
 * ColorDodge, ColorBurn, HardLight, SoftLight, Difference, Exclusion
 *
 * @param float $alpha
 * @param string $mode
 * @throws Zend_Pdf_Exception
 * @return Zend_Pdf_Page
 */
public function setAlpha($alpha, $mode = 'Normal');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Drawing
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.templates-mswordtemplatefull_zoom.png
@9 om)s template.docx - Microsoft Word

i)

% cut i % A Fina -
Arial - 10 C A A
poe 3 CoPy = ‘v = AaBbCc| AaBbCc o . Replace
g romatparter | [B1 7L e % X a0 A ovoman | £t =) o || & seve-
[l @
Creote documents onthe fY
:
li feom

License Agreement - { MERGEFIELD software }

This legal document is an agreement between { MERGEFIELD licensee }, the Licensee and { MERGEFIELD
company }. By installing { MERGEFIELD software } on a computer. you are agreeing to be bound by the terms
of this agreement.If you o not agree to the terms of this agreement, promptly retum the unopened package,
togetherwith allthe other material which comprises the product, respectively delete all { MERGEFIELD software
}related files. For questions regarding this agreement please contact us

Subject of agreement
The subject of this agreement is the software { MERGEFIELD software }, the operating manuals, online
help files and al other accompanying material. It will be referred to henceforth as { MERGEFIELD software

}

2. Grant of license
{MERGEFIELD company } grants the Licensee  non-exclusive, non-transferable, personal and worldwide
license to use one copy of { MERGEFIELD software } in the development of an end-user application as
described in section 3 (below). This license is fora single developer and ot foran entire company. If
‘additional programmers wish to use { MERGEFIELD software }, additional copies must be licensed

3. End-user application
An enduser application is a specific application program that is licensed to a person or firm for business or
personal use. The files which are not listed under section 5 must not be included with the end-user
application. Furthermore, the end-user must not be in a position to be able to neither modify the program,
norto create { MERGEFIELD software } based programs. Likewise, the end-user must not be given the {

MERGEFIELD software } serial number.

Page:1of2 Words:i603 < German (Germany) ]






modules/zend.crypt.key.derivation.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Key derivation function


In cryptography, a key derivation function (or KDF) derives one or more secret keys from a secret value such as a
master key or other known information such as a password or passphrase using a pseudo-random function. For
instance, a KDF function can be used to generate encryption or authentication keys from a user password. The
Zend\Crypt\Key\Derivation implements a key derivation function using specific adapters.


User passwords are not really suitable to be used as keys in cryptographic algorithms, since users normally choose
keys they can write on keyboard. These passwords use only 6 to 7 bits per character (or less). It is highly
recommended to use always a KDF function of transformation a user’s password to a cryptography key.



Pbkdf2 adapter


Pbkdf2 [http://en.wikipedia.org/wiki/PBKDF2] is a KDF that applies a pseudorandom function, such as a cryptographic hash, to the input password
or passphrase along with a salt value and repeats the process many times to produce a derived key, which can
then be used as a cryptographic key in subsequent operations.
The added computational work makes password cracking much more difficult, and is known as key stretching [http://en.wikipedia.org/wiki/Key_stretching].


In the example below we show a typical usage of the Pbkdf2 adapter.


		1
2
3
4
5
6
7
8
9


		use Zend\Crypt\Key\Derivation\Pbkdf2;
use Zend\Math\Rand;

$pass = 'password';
$salt = Rand::getBytes(strlen($pass), true);
$key  = Pbkdf2::calc('sha256', $pass, $salt, 10000, strlen($pass)*2);

echo "Original password: $pass \n";
echo "Key derivation   : $key \n";










The Pbkdf2 adapter takes the password ($pass) and generate a binary key with a size double of
the password. The syntax is calc($hash, $pass, $salt, $iterations, $length) where $hash is the name of
the hash function to use, $pass is the password, $salt is a pseudo random value, $iterations is
the number of iterations of the algorithm and $length is the size of the key to be generated.
We used the Rand::getBytes function of the Zend\Math\Rand class to generate a random bytes using
a strong generators (the true value means the usage of strong generators).


The number of iterations is a very important parameter for the security of the algorithm. Big values means more
security. There is not a fixed value for that because the number of iterations depends on the CPU power.
You should always choose a number of iteration that prevent brute force attacks. For instance, a value of
1‘000‘000 iterations, that is equal to 1 sec of elaboration for the PBKDF2 algorithm, is enough secure using
an Intel Core i5-2500 CPU at 3.3 Ghz.





SaltedS2k adapter


The SaltedS2k [http://www.faqs.org/rfcs/rfc2440.html] algorithm uses an hash function and a salt to generate a key based on a user’s password.
This algorithm doesn’t use a parameter that specify the number of iterations and for that reason it’s
considered less secure compared with Pbkdf2.
We suggest to use the SaltedS2k algorithm only if you really need it.


Below is reported a usage example of the SaltedS2k adapter.


		1
2
3
4
5
6
7
8
9


		use Zend\Crypt\Key\Derivation\SaltedS2k;
use Zend\Math\Rand;

$pass = 'password';
$salt = Rand::getBytes(strlen($pass), true);
$key  = SaltedS2k::calc('sha256', $pass, $salt, strlen($pass)*2);

echo "Original password: $pass \n";
echo "Key derivation   : $key \n";
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Key derivation function
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.auth-sub.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Authenticating with AuthSub


The AuthSub mechanism enables you to write web applications that acquire authenticated access Google Data services,
without having to write code that handles user credentials.


See http://code.google.com/apis/accounts/AuthForWebApps.html for more information about Google Data AuthSub
authentication.


The Google documentation says the ClientLogin mechanism is appropriate for “installed applications” whereas the
AuthSub mechanism is for “web applications.” The difference is that AuthSub requires interaction from the user, and
a browser interface that can react to redirection requests. The ClientLogin solution uses PHP code to supply the
account credentials; the user is not required to enter her credentials interactively.


The account credentials supplied via the AuthSub mechanism are entered by the user of the web application.
Therefore they must be account credentials that are known to that user.



Note


Registered applications


Zend_Gdata currently does not support use of secure tokens, because the AuthSub authentication does not
support passing a digital certificate to acquire a secure token.





Creating an AuthSub authenticated Http Client


Your PHP application should provide a hyperlink to the Google URL that performs authentication. The static
function Zend_Gdata_AuthSub::getAuthSubTokenUri() provides the correct URL. The arguments to this function
include the URL to your PHP application so that Google can redirect the user’s browser back to your application
after the user’s credentials have been verified.


After Google’s authentication server redirects the user’s browser back to the current application, a GET
request parameter is set, called token. The value of this parameter is a single-use token that can be used for
authenticated access. This token can be converted into a multi-use token and stored in your session.


Then use the token value in a call to Zend_Gdata_AuthSub::getHttpClient(). This function returns an instance of
Zend_Http_Client, with appropriate headers set so that subsequent requests your application submits using that
HTTP Client are also authenticated.


Below is an example of PHP code for a web application to acquire authentication to use the Google Calendar
service and create a Zend_Gdata client object using that authenticated HTTP Client.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		$my_calendar = 'http://www.google.com/calendar/feeds/default/private/full';

if (!isset($_SESSION['cal_token'])) {
    if (isset($_GET['token'])) {
        // You can convert the single-use token to a session token.
        $session_token =
            Zend_Gdata_AuthSub::getAuthSubSessionToken($_GET['token']);
        // Store the session token in our session.
        $_SESSION['cal_token'] = $session_token;
    } else {
        // Display link to generate single-use token
        $googleUri = Zend_Gdata_AuthSub::getAuthSubTokenUri(
            'http://'. $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'],
            $my_calendar, 0, 1);
        echo "Click <a href='$googleUri'>here</a> " .
             "to authorize this application.";
        exit();
    }
}

// Create an authenticated HTTP Client to talk to Google.
$client = Zend_Gdata_AuthSub::getHttpClient($_SESSION['cal_token']);

// Create a Gdata object using the authenticated Http Client
$cal = new Zend_Gdata_Calendar($client);













Revoking AuthSub authentication


To terminate the authenticated status of a given token, use the Zend_Gdata_AuthSub::AuthSubRevokeToken() static
function. Otherwise, the token is still valid for some time.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Carefully construct this value to avoid application security problems.
$php_self = htmlentities(substr($_SERVER['PHP_SELF'],
                         0,
                         strcspn($_SERVER['PHP_SELF'], "\n\r")),
                         ENT_QUOTES);

if (isset($_GET['logout'])) {
    Zend_Gdata_AuthSub::AuthSubRevokeToken($_SESSION['cal_token']);
    unset($_SESSION['cal_token']);
    header('Location: ' . $php_self);
    exit();
}











Note


Security notes


The treatment of the $php_self variable in the example above is a general security guideline, it is not
specific to Zend_Gdata. You should always filter content you output to HTTP headers.


Regarding revoking authentication tokens, it is recommended to do this when the user is finished with her Google
Data session. The possibility that someone can intercept the token and use it for malicious purposes is very
small, but nevertheless it is a good practice to terminate authenticated access to any service.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Authenticating with AuthSub
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.captcha.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Captcha Element


Zend\Form\Element\Captcha can be used with forms where authenticated users are not necessary, but you want to prevent
spam submissions. It is pairs with one of the Zend/Form/View/Helper/Captcha/* view helpers that matches the
type of CAPTCHA adapter in use.



Basic Usage


A CAPTCHA adapter must be attached in order for validation to be included in the element’s input filter
specification. See the section on Zend CAPTCHA Adapters for more information on what
adapters are available.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Captcha;
use Zend\Form\Element;
use Zend\Form\Form;

$captcha = new Element\Captcha('captcha');
$captcha
    ->setCaptcha(new Captcha\Dumb())
    ->setLabel('Please verify you are human');

$form = new Form('my-form');
$form->add($captcha);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
setCaptcha(array|Zend\Captcha\AdapterInterface $captcha)


		Set the CAPTCHA adapter for this element. If $captcha is an array, Zend\Captcha\Factory::factory()
will be run to create the adapter from the array configuration.









		
getCaptcha()


		Return the CAPTCHA adapter for this element.






		Return type:		Zend\Captcha\AdapterInterface














		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a CAPTCHA
validator.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Captcha Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.week.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Week Element


Zend\Form\Element\Week is meant to be paired with the Zend/Form/View/Helper/FormWeek for HTML5 inputs with type
week [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#week-state-(type=week)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 week
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "week".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$week = new Element\Week('week');
$week
    ->setLabel('Week')
    ->setAttributes(array(
        'min'  => '2012-W01',
        'max'  => '2020-W01',
        'step' => '1', // weeks; default step interval is 1 week
    ));

$form = new Form('my-form');
$form->add($week);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of weeks (default is 1 week).






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Week Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.prefix-path-mapper.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The PrefixPathMapper Interface



Overview


One approach to resolving plugin names to class names utilizes prefix/path pairs. In this methodology, the
developer specifies one or more directories containing plugins that have a common namespace or prefix. When
resolving a plugin, the mapper will loop through these prefixes, and look for a class file matching the requested
plugin; if found, that plugin class is loaded from the file and used. The PrefixPathMapper interface defines a
common interface for specifying and modifying a map of prefix/path pairs.





Quick Start


The PrefixPathMapper provides simply two methods: one for registering a prefix path, and another for removing
one.


		1
2
3
4
5
6
7


		namespace Zend\Loader;

interface PrefixPathMapper
{
    public function addPrefixPath($prefix, $path);
    public function removePrefixPath($prefix, $path);
}













Configuration Options


This component defines no configuration options, as it is an interface.





Available Methods



		addPrefixPath


		Register a prefix/path association
addPrefixPath($prefix, $path)


addPrefixPath()
Implement this method to allow registering a prefix/path pair. The prefix may be either an older, PHP 5.2-style
vendor prefix or a true PHP 5.3 namespace; the path should be a path to a directory of files using the given
prefix or namespace. The implemenation should determine whether or not to aggregate paths for each namespace, or
simply maintain a 1:1 association.









		removePrefixPath


		Remove a prefix/path association
removePrefixPath($prefix, $path)


removePrefixPath()
Implement this method to remove a prefix/path association from the internal map.











Examples


Please see the Quick Start for the interface specification.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The PrefixPathMapper Interface
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.validator-chains.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Validator Chains


Often multiple validations should be applied to some value in a particular order. The following code demonstrates a
way to solve the example from the introduction, where a username must be
between 6 and 12 alphanumeric characters:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// Create a validator chain and add validators to it
$validatorChain = new Zend\Validator\ValidatorChain();
$validatorChain->addValidator(
                    new Zend\Validator\StringLength(array('min' => 6,
                                                         'max' => 12)))
               ->addValidator(new Zend\Validator\Alnum());

// Validate the username
if ($validatorChain->isValid($username)) {
    // username passed validation
} else {
    // username failed validation; print reasons
    foreach ($validatorChain->getMessages() as $message) {
        echo "$message\n";
    }
}










Validators are run in the order they were added to Zend\Validator\ValidatorChain. In the above example, the
username is first checked to ensure that its length is between 6 and 12 characters, and then it is checked to
ensure that it contains only alphanumeric characters. The second validation, for alphanumeric characters, is
performed regardless of whether the first validation, for length between 6 and 12 characters, succeeds. This means
that if both validations fail, getMessages() will return failure messages from both validators.


In some cases it makes sense to have a validator break the chain if its validation process fails.
Zend\Validator\ValidatorChain supports such use cases with the second parameter to the addValidator()
method. By setting $breakChainOnFailure to TRUE, the added validator will break the chain execution upon
failure, which avoids running any other validations that are determined to be unnecessary or inappropriate for the
situation. If the above example were written as follows, then the alphanumeric validation would not occur if the
string length validation fails:


		1
2
3
4
5


		$validatorChain->addValidator(
                    new Zend\Validator\StringLength(array('min' => 6,
                                                         'max' => 12)),
                    true)
               ->addValidator(new Zend\Validator\Alnum());










Any object that implements Zend\Validator\ValidatorInterface may be used in a validator chain.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Validator Chains
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.ean2.png
Y





_images/zend.console.prompt4.png





_static/down.png





modules/zend.mvc.services.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Default Services


The default and recommended way to write Zend Framework applications uses a set of services defined in the
Zend\Mvc\Service namespace. This chapter details what each of those services are, the classes they represent,
and the configuration options available.



ServiceManager


This is the one service class referenced directly in the bootstrapping. It provides the following:



		Invokable services



		DispatchListener, mapping to Zend\Mvc\DispatchListener.


		Request, mapping to Zend\Http\PhpEnvironment\Request.


		Response, mapping to Zend\Http\PhpEnvironment\Response.


		RouteListener, mapping to Zend\Mvc\RouteListener.


		ViewManager, mapping to Zend\Mvc\View\ViewManager.








		Factories



		Application, mapping to Zend\Mvc\Service\ApplicationFactory.





		Configuration, mapping to Zend\Mvc\Service\ConfigFactory. Internally, this pulls the
ModuleManager service, and calls its loadModules() method, and retrieves the merged configuration from
the module event. As such, this service contains the entire, merged application configuration.





		ControllerLoader, mapping to Zend\Mvc\Service\ControllerLoaderFactory. Internally, this pulls the
Configuration service, and, if it contains a controller key, inspects that for classes and
factories subkeys. These are used to configure a scoped service manager container, from which controllers
will be retrieved.


Additionally, the scoped container is configured to use the Di service as an abstract service factory –
effectively allowing you to fall back to DI in order to retrieve your controllers.
If you want to use Zend\Di to retrieve your controllers, you must white-list them in your DI configuration
under the allowed_controllers key (otherwise, they will just be ignored).


Finally, if the loaded controller is Pluggable, an initializer will inject it with the
ControllerPluginBroker service.





		ControllerPluginBroker, mapping to Zend\Mvc\Service\ControllerPluginBrokerFactory. This instantiates
the Zend\Mvc\Controller\PluginBroker instance, passing it the ControllerPluginLoader service as well as
the service manager instance.





		ControllerPluginLoader, mapping to Zend\Mvc\Service\ControllerPluginLoaderFactory. This grabs the
Configuration service, and looks for a controller key with a map subkey. If found, this value is
passed to the constructor of Zend\Mvc\Controller\PluginLoader (otherwise, an empty array is passed).





		DependencyInjector, mapping to Zend\Mvc\Service\DiFactory. This pulls the Configuration service,
and looks for a “di” key; if found, that value is used to configure a new Zend\Di\Di instance.
Additionally, the Di instance is used to seed a Zend\ServiceManager\Di\DiAbstractServiceFactory
instance which is then attached to the service manager as an abstract factory – effectively enabling DI as a
fallback for providing services.





		EventManager, mapping to Zend\Mvc\Service\EventManagerFactory. This factory composes a static reference
to a SharedEventManager, which is injected in a new EventManager instance. This service is not shared
by default, allowing the ability to have an EventManager per service, with a shared SharedEventManager
injected in each.





		ModuleManager, mapping to Zend\Mvc\Service\ModuleManagerFactory.


This is perhaps the most complex factory in the MVC stack. It expects that an ApplicationConfiguration
service has been injected, with keys for module_listener_options and modules; see the quick start for
samples.


It instantiates an instance of Zend\ModuleManager\Listener\DefaultListenerAggregate, using the
“module_listener_options” retrieved. It also instantiates an instance of
Zend\ModuleManager\Listener\ServiceListener, providing it the service manager.


Next, it retrieves the EventManager service, and attaches the above listeners.


It instantiates a Zend\ModuleManager\ModuleEvent instance, setting the “ServiceManager” parameter to the
service manager object.


Finally, it instantiates a Zend\ModuleManager\ModuleManager instance, and injects the EventManager and
ModuleEvent.





		Router, mapping to Zend\Mvc\Service\RouterFactory. This grabs the Configuration service, and pulls
from the router key, passing it to Zend\Mvc\Router\Http\TreeRouteStack::factory in order to get a
configured router instance.





		ViewFeedRenderer, mapping to Zend\Mvc\Service\ViewFeedRendererFactory, which simply returns a
Zend\View\Renderer\FeedRenderer instance.





		ViewFeedStrategy, mapping to Zend\Mvc\Service\ViewFeedStrategyFactory. This instantiates a
Zend\View\Strategy\FeedStrategy instance with the ViewFeedRenderer service.





		ViewJsonRenderer, mapping to Zend\Mvc\Service\ViewJsonRendererFactory, which simply returns a
Zend\View\Renderer\JsonRenderer instance.





		ViewJsonStrategy, mapping to Zend\Mvc\Service\ViewJsonStrategyFactory. This instantiates a
Zend\View\Strategy\JsonStrategy instance with the ViewJsonRenderer service.











		Aliases



		Config, mapping to the Configuration service.


		Di, mapping to the DependencyInjector service.


		Zend\EventManager\EventManagerInterface, mapping to the EventManager service. This is mainly to ensure
that when falling through to DI, classes are still injected via the ServiceManager.


		Zend\Mvc\Controller\PluginBroker, mapping to the ControllerPluginBroker service. This is mainly to
ensure that when falling through to DI, classes are still injected via the ServiceManager.


		Zend\Mvc\Controller\PluginLoader, mapping to the ControllerPluginLoader service. This is mainly to
ensure that when falling through to DI, classes are still injected via the ServiceManager.











Additionally, two initializers are registered. Initializers are run on created instances, and may be used to
further configure them. The two initializers the ServiceManagerConfig class creates and registers do the
following:



		For objects that implement Zend\EventManager\EventManagerAwareInterface, the EventManager service will be
retrieved and injected. This service is not shared, though each instance it creates is injected with a shared
instance of SharedEventManager.


		For objects that implement Zend\ServiceManager\ServiceManagerAwareInterface, the ServiceManager will
inject itself into the object.





Finally, the ServiceManager registers itself as the ServiceManager service, and aliases itself to the class
names Zend\ServiceManager\ServiceManagerInterface and Zend\ServiceManager\ServiceManager.





ViewManager


The View layer within Zend\Mvc consists of a large number of collaborators and event listeners. As such,
Zend\Mvc\View\ViewManager was created to handle creation of the various objects, as well as wiring them
together and establishing event listeners.


The ViewManager itself is an event listener on the bootstrap event. It retrieves the ServiceManager
from the Application object, as well as its composed EventManager.


Configuration for all members of the ViewManager fall under the view_manager configuration key, and expect
values as noted below. The following services are created and managed by the ViewManager:



		ViewHelperLoader, representing and aliased to Zend\View\HelperLoader. If a helper_map subkey is
provided, its value will be used as a map to seed the helper loader.





		ViewHelperBroker, representing and aliased to Zend\View\HelperBroker. It is seeded with the
ViewHelperLoader service, as well as the ServiceManager itself.


The Router service is retrieved, and injected into the Url helper.


If the base_path key is present, it is used to inject the BasePath view helper; otherwise, the
Request service is retrieved, and the value of its getBasePath() method is used.


If the doctype key is present, it will be used to set the value of the Doctype view helper.





		ViewTemplateMapResolver, representing and aliased to Zend\View\Resolver\TemplateMapResolver. If a
template_map key is present, it will be used to seed the template map.





		ViewTemplatePathStack, representing and aliased to Zend\View\Resolver\TemplatePathStack. If a
template_path_stack key is prsent, it will be used to seed the stack.





		ViewResolver, representing and aliased to Zend\View\Resolver\AggregateResolver and
Zend\View\Resolver\ResolverInterface. It is seeded with the ViewTemplateMapResolver and
ViewTemplatePathStack services as resolvers.





		ViewRenderer, representing and aliased to Zend\View\Renderer\PhpRenderer and
Zend\View\Renderer\RendererInterface. It is seeded with the ViewResolver and ViewHelperBroker
services. Additionally, the ViewModel helper gets seeded with the ViewModel as its root (layout) model.





		ViewPhpRendererStrategy, representing and aliased to Zend\View\Strategy\PhpRendererStrategy. It gets
seeded with the ViewRenderer service.





		View, representing and aliased to Zend\View\View. It gets seeded with the EventManager service, and
attaches the ViewPhpRendererStrategy as an aggregate listener.





		DefaultRenderingStrategy, representing and aliased to Zend\Mvc\View\DefaultRenderingStrategy. If the
layout key is prsent, it is used to seed the strategy’s layout template. It is seeded with the View
service.





		ExceptionStrategy, representing and aliased to Zend\Mvc\View\ExceptionStrategy. If the
dislay_exceptions or exception_template keys are present, they are usd to configure the strategy.





		RouteNotFoundStrategy, representing and aliased to Zend\Mvc\View\RouteNotFoundStrategy and
404Stategy. If the display_not_found_reason or not_found_template keys are present, they are used to
configure the strategy.





		ViewModel. In this case, no service is registered; the ViewModel is simply retrieved from the
MvcEvent and injected with the layout template name. template








The ViewManager also creates several other listeners, but does not expose them as services; these include
Zend\Mvc\View\CreateViewModelListener, Zend\Mvc\View\InjectTemplateListener, and
Zend\Mvc\View\InjectViewModelListener. These, along with RouteNotFoundStrategy, ExceptionStrategy, and
DefaultRenderingStrategy are attached as listeners either to the application EventManager instance or the
SharedEventManager instance.


Finally, if you have a strategies key in your configuration, the ViewManager will loop over these and
attach them in order to the View service as listeners, at a priority of 100 (allowing them to execute before
the DefaultRenderingStrategy).





Application Configuration Options


The following options may be used to provide initial configuration for the ServiceManager, ModuleManager,
and Application instances, allowing them to then find and aggregate the configuration used for the
Configuration service, which is intended for configuring all other objects in the system.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


		<?php
return array(
    // This should be an array of module namespaces used in the application.
    'modules' => array(
    ),

    // These are various options for the listeners attached to the ModuleManager
    'module_listener_options' => array(
        // This should be an array of paths in which modules reside.
        // If a string key is provided, the listener will consider that a module
        // namespace, the value of that key the specific path to that module's
        // Module class.
        'module_paths' => array(
        ),

        // An array of paths from which to glob configuration files after
        // modules are loaded. These effectively overide configuration
        // provided by modules themselves. Paths may use GLOB_BRACE notation.
        'config_glob_paths' => array(
        ),

        // Whether or not to enable a configuration cache.
        // If enabled, the merged configuration will be cached and used in
        // subsequent requests.
        'config_cache_enabled' => $booleanValue,

        // The key used to create the configuration cache file name.
        'config_cache_key' => $stringKey,

        // The path in which to cache merged configuration.
        'cache_dir' => $stringPath,
    ),

    // Initial configuration with which to seed the ServiceManager.
    // Should be compatible with Zend\ServiceManager\Config.
    'service_manager' => array(
    ),
);













Default Configuration Options


The following options are available when using the default services configured by the
ServiceManagerConfig and ViewManager.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


		<?php
return array(
    // The following are used to configure controller or controller plugin loading
    'controller' => array(
        // Map of controller "name" to class
        // This should be used if you do not need to inject any dependencies
        // in your controller
        'classes' => array(
        ),

        // Map of controller "name" to factory for creating controller instance
        // You may provide either the class name of a factory, or a PHP callback.
        'factories' => array(
        ),

        // Map of controller plugin names to their classes
        'map' => array(
        ),
    ),

    // The following is used to configure a Zend\Di\Di instance.
    // The array should be in a format that Zend\Di\Config can understand.
    'di' => array(
    ),

    // Configuration for the Router service
    // Can contain any router configuration, but typically will always define
    // the routes for the application. See the router documentation for details
    // on route configuration.
    'router' => array(
        'routes' => array(
        ),
    ),

    // ViewManager configuration
    'view_manager' => array(
        // Defined helpers.
        // Typically helper name/helper class pairs. Can contain values without keys
        // that refer to either Traversable classes or Zend\Loader\PluginClassLoader
        // instances as well.
        'helper_map' => array(
            'foo' => 'My\Helper\Foo',      // name/class pair
            'Zend\Form\View\HelperLoader', // additional helper loader to seed
        ),

        // Base URL path to the application
        'base_path' => $stringBasePath,

        // Doctype with which to seed the Doctype helper
        'doctype' => $doctypeHelperConstantString, // e.g. HTML5, XHTML1

        // TemplateMapResolver configuration
        // template/path pairs
        'template_map' => array(
        ),

        // TemplatePathStack configuration
        // module/view script path pairs
        'template_path_stack' => array(
        ),

        // Layout template name
        'layout' => $layoutTemplateName, // e.g., 'layout/layout'

        // ExceptionStrategy configuration
        'display_exceptions' => $bool, // display exceptions in template
        'exception_template' => $stringTemplateName, // e.g. 'error'

        // RouteNotFoundStrategy configuration
        'display_not_found_reason' => $bool, // display 404 reason in template
        'not_found_template' => $stringTemplateName, // e.g. '404'

        // Additional strategies to attach
        // These should be class names or service names of View strategy classes
        // that act as ListenerAggregates. They will be attached at priority 100,
        // in the order registered.
        'strategies' => array(
            'ViewJsonStrategy', // register JSON renderer strategy
            'ViewFeedStrategy', // register Feed renderer strategy
        ),
    ),
);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Default Services
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.forms-and-actions.add-album-form.png
2

© 0 O /2= Add new album - zF2 Tutor

€ €' | © zf2-tutorial.localhost/album/add Tl e B X

Add new album

Artist

Title






modules/zend.session.save-handler.db-table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Session_SaveHandler_DbTable


The basic setup for Zend_Session_SaveHandler_DbTable must at least have four columns, denoted in the config
array or Zend_Config object: primary, which is the primary key and defaults to just the session id which by
default is a string of length 32; modified, which is the unix timestamp of the last modified date; lifetime, which
is the lifetime of the session (modified + lifetime > time();); and data, which is the serialized data stored
in the session


Basic Setup


		1
2
3
4
5
6
7


		CREATE TABLE `session` (
  `id` char(32),
  `modified` int,
  `lifetime` int,
  `data` text,
  PRIMARY KEY (`id`)
);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		//get your database connection ready
$db = Zend_Db::factory('Pdo_Mysql', array(
    'host'        =>'example.com',
    'username'    => 'dbuser',
    'password'    => '******',
    'dbname'    => 'dbname'
));

//you can either set the Zend_Db_Table default adapter
//or you can pass the db connection straight to the save handler $config
Zend_Db_Table_Abstract::setDefaultAdapter($db);
$config = array(
    'name'           => 'session',
    'primary'        => 'id',
    'modifiedColumn' => 'modified',
    'dataColumn'     => 'data',
    'lifetimeColumn' => 'lifetime'
);

//create your Zend_Session_SaveHandler_DbTable and
//set the save handler for Zend_Session
Zend_Session::setSaveHandler(new Zend_Session_SaveHandler_DbTable($config));

//start your session!
Zend_Session::start();

//now you can use Zend_Session like any other time










You can also use Multiple Columns in your primary key for Zend_Session_SaveHandler_DbTable.


Using a Multi-Column Primary Key


		1
2
3
4
5
6
7
8
9


		CREATE TABLE `session` (
    `session_id` char(32) NOT NULL,
    `save_path` varchar(32) NOT NULL,
    `name` varchar(32) NOT NULL DEFAULT '',
    `modified` int,
    `lifetime` int,
    `session_data` text,
    PRIMARY KEY (`Session_ID`, `save_path`, `name`)
);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		//setup your DB connection like before
//NOTE: this config is also passed to Zend_Db_Table so anything specific
//to the table can be put in the config as well
$config = array(
    'name'              => 'session', //table name as per Zend_Db_Table
    'primary'           => array(
        'session_id',   //the sessionID given by PHP
        'save_path',    //session.save_path
        'name',         //session name
    ),
    'primaryAssignment' => array(
        //you must tell the save handler which columns you
        //are using as the primary key. ORDER IS IMPORTANT
        'sessionId', //first column of the primary key is of the sessionID
        'sessionSavePath', //second column of the primary key is the save path
        'sessionName', //third column of the primary key is the session name
    ),
    'modifiedColumn'    => 'modified',     //time the session should expire
    'dataColumn'        => 'session_data', //serialized data
    'lifetimeColumn'    => 'lifetime',     //end of life for a specific record
);

//Tell Zend_Session to use your Save Handler
Zend_Session::setSaveHandler(new Zend_Session_SaveHandler_DbTable($config));

//start your session
Zend_Session::start();

//use Zend_Session as normal














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Session_SaveHandler_DbTable
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.permissions.acl.advanced.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Advanced Usage



Storing ACL Data for Persistence


The Zend\Permissions\Acl component was designed in such a way that it does not require any particular backend technology
such as a database or cache server for storage of the ACL data. Its complete PHP implementation enables
customized administration tools to be built upon Zend\Permissions\Acl\Acl with relative ease and flexibility. Many
situations require some form of interactive maintenance of the ACL, and Zend\Permissions\Acl\Acl provides methods for
setting up, and querying against, the access controls of an application.


Storage of ACL data is therefore left as a task for the developer, since use cases are expected to vary widely
for various situations. Because Zend\Permissions\Acl\Acl is serializable, ACL objects may be serialized with PHP‘s
serialize() [http://php.net/serialize] function, and the results may be stored anywhere the developer should desire, such as a file,
database, or caching mechanism.





Writing Conditional ACL Rules with Assertions


Sometimes a rule for allowing or denying a role access to a resource should not be absolute but dependent upon
various criteria. For example, suppose that certain access should be allowed, but only between the hours of 8:00am
and 5:00pm. Another example would be denying access because a request comes from an IP address that has been
flagged as a source of abuse. Zend\Permissions\Acl\Acl has built-in support for implementing rules based on whatever
conditions the developer needs.


Zend\Permissions\Acl\Acl provides support for conditional rules with Zend\Permissions\Acl\Assertion\AssertionInterface. In order to
use the rule assertion interface, a developer writes a class that implements the assert() method of the
interface:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class CleanIPAssertion implements Zend\Permissions\Acl\Assertion\AssertionInterface
{
    public function assert(Zend\Permissions\Acl $acl,
                           Zend\Permissions\Acl\Role\RoleInterface $role = null,
                           Zend\Permissions\Acl\Resource\ResourceInterface $resource = null,
                           $privilege = null)
    {
        return $this->_isCleanIP($_SERVER['REMOTE_ADDR']);
    }

    protected function _isCleanIP($ip)
    {
        // ...
    }
}










Once an assertion class is available, the developer must supply an instance of the assertion class when assigning
conditional rules. A rule that is created with an assertion only applies when the assertion method returns
TRUE.


		1
2
3
4


		use Zend\Permissions\Acl\Acl;

$acl = new Acl();
$acl->allow(null, null, null, new CleanIPAssertion());










The above code creates a conditional allow rule that allows access to all privileges on everything by everyone,
except when the requesting IP is “blacklisted.” If a request comes in from an IP that is not considered “clean,”
then the allow rule does not apply. Since the rule applies to all roles, all resources, and all privileges, an
“unclean” IP would result in a denial of access. This is a special case, however, and it should be understood that
in all other cases (i.e., where a specific role, resource, or privilege is specified for the rule), a failed
assertion results in the rule not applying, and other rules would be used to determine whether access is allowed or
denied.


The assert() method of an assertion object is passed the ACL, role, resource, and privilege to which the
authorization query (i.e., isAllowed()) applies, in order to provide a context for the assertion class to
determine its conditions where needed.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Advanced Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.file.transfer.filters.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Filters for Zend_File_Transfer


Zend_File_Transfer is delivered with several file related filters which can be used to automate several tasks
which are often done on files. Note that file filters are applied after validation. Also file filters behave
slightly different that other filters. They will always return the file name and not the changed content (which
would be a bad idea when working on 1GB files). All filters which are provided with Zend_File_Transfer can be
found in the Zend_Filter component and are named Zend_Filter_File_*. The following filters are actually
available:



		Decrypt: This filter can decrypt a encrypted file.


		Encrypt: This filter can encrypt a file.


		LowerCase: This filter can lowercase the content of a textfile.


		Rename: This filter can rename files, change the location and even force overwriting of existing files.


		UpperCase: This filter can uppercase the content of a textfile.






Using filters with Zend_File_Transfer


The usage of filters is quite simple. There are several methods for adding and manipulating filters.



		addFilter($filter, $options = null, $files = null): Adds the given filter to the filter stack (optionally
only to the file(s) specified). $filter may be either an actual filter instance, or a short name specifying
the filter type (e.g., ‘Rename’).


		addFilters(array $filters, $files = null): Adds the given filters to the stack of filters. Each entry may be
either a filter type/options pair, or an array with the key ‘filter’ specifying the filter (all other options
will be considered filter options for instantiation).


		setFilters(array $filters, $files = null): Overwrites any existing filters with the filters specified. The
filters should follow the syntax for addFilters().


		hasFilter($name): Indicates if a filter has been registered.


		getFilter($name): Returns a previously registered filter.


		getFilters($files = null): Returns registered filters; if $files is passed, returns filters for that
particular file or set of files.


		removeFilter($name): Removes a previously registered filter.


		clearFilters(): Clears all registered filters.





Add filters to a file transfer


		1
2
3
4
5
6
7
8
9


		$upload = new Zend_File_Transfer();

// Set a new destination path
$upload->addFilter('Rename', 'C:\picture\uploads');

// Set a new destination path and overwrites existing files
$upload->addFilter('Rename',
                   array('target' => 'C:\picture\uploads',
                         'overwrite' => true));










Limit filters to single files


addFilter(), addFilters(), and setFilters() each accept a final $files argument. This argument can
be used to specify a particular file or array of files on which to set the given filter.


		1
2
3
4


		$upload = new Zend_File_Transfer();

// Set a new destination path and limits it only to 'file2'
$upload->addFilter('Rename', 'C:\picture\uploads', 'file2');










Generally you should simply use the addFilters() method, which can be called multiple times.


Add multiple filters


Often it’s simpler just to call addFilter() multiple times. One call for each filter. This also increases the
readability and makes your code more maintainable. As all methods provide a fluent interface you can couple the
calls as shown below:


		1
2
3
4
5


		$upload = new Zend_File_Transfer();

// Set a filesize with 20000 bytes
$upload->addFilter('Rename', 'C:\picture\newjpg', 'file1')
       ->addFilter('Rename', 'C:\picture\newgif', 'file2');











Note


Note that even though setting the same filter multiple times is allowed, doing so can lead to issues when using
different options for the same filter.







Decrypt filter


The Decrypt filter allows to decrypt a encrypted file.


This filter makes use of Zend_Filter_Decrypt. It supports the Mcrypt and OpenSSL extensions from PHP.
Please read the related section for details about how to set the options for decryption and which options are
supported.


This filter supports one additional option which can be used to save the decrypted file with another filename. Set
the filename option to change the filename where the decrypted file will be stored. If you suppress this
option, the decrypted file will overwrite the original encrypted file.


Using the Decrypt filter with Mcrypt


		1
2
3
4
5
6


		$upload = new Zend_File_Transfer_Adapter_Http();

// Adds a filter to decrypt the uploaded encrypted file
// with mcrypt and the key mykey
$upload->addFilter('Decrypt',
    array('adapter' => 'mcrypt', 'key' => 'mykey'));










Using the Decrypt filter with OpenSSL


		1
2
3
4
5
6
7
8


		$upload = new Zend_File_Transfer_Adapter_Http();

// Adds a filter to decrypt the uploaded encrypted file
// with openssl and the provided keys
$upload->addFilter('Decrypt',
    array('adapter' => 'openssl',
          'private' => '/path/to/privatekey.pem',
          'envelope' => '/path/to/envelopekey.pem'));













Encrypt filter


The Encrypt filter allows to encrypt a file.


This filter makes use of Zend_Filter_Encrypt. It supports the Mcrypt and OpenSSL extensions from PHP.
Please read the related section for details about how to set the options for encryption and which options are
supported.


This filter supports one additional option which can be used to save the encrypted file with another filename. Set
the filename option to change the filename where the encrypted file will be stored. If you suppress this
option, the encrypted file will overwrite the original file.


Using the Encrypt filter with Mcrypt


		1
2
3
4
5
6


		$upload = new Zend_File_Transfer_Adapter_Http();

// Adds a filter to encrypt the uploaded file
// with mcrypt and the key mykey
$upload->addFilter('Encrypt',
    array('adapter' => 'mcrypt', 'key' => 'mykey'));










Using the Encrypt filter with OpenSSL


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer_Adapter_Http();

// Adds a filter to encrypt the uploaded file
// with openssl and the provided keys
$upload->addFilter('Encrypt',
    array('adapter' => 'openssl',
          'public' => '/path/to/publickey.pem'));













LowerCase filter


The LowerCase filter allows to change the content of a file to lowercase. You should use this filter only on
textfiles.


At initiation you can give a string which will then be used as encoding. Or you can use the setEncoding()
method to set it afterwards.


Using the LowerCase filter


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('MimeType', 'text');

// Adds a filter to lowercase the uploaded textfile
$upload->addFilter('LowerCase');

// Adds a filter to lowercase the uploaded file but only for uploadfile1
$upload->addFilter('LowerCase', null, 'uploadfile1');

// Adds a filter to lowercase with encoding set to ISO-8859-1
$upload->addFilter('LowerCase', 'ISO-8859-1');











Note


Note that due to the fact that the options for the LowerCase filter are optional, you must give a NULL as
second parameter (the options) when you want to limit it to a single file element.







Rename filter


The Rename filter allows to change the destination of the upload, the filename and also to overwrite existing
files. It supports the following options:



		source: The name and destination of the old file which shall be renamed.


		target: The new directory, or filename of the file.


		overwrite: Sets if the old file overwrites the new one if it already exists. The default value is FALSE.





Additionally you can also use the method setFile() to set files, which erases all previous set, addFile()
to add a new file to existing ones, and getFile() to get all actually set files. To simplify things, this
filter understands several notations and that methods and constructor understand the same notations.


Using the Rename filter


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer_Adapter_Http();

// Set a new destination path for all files
$upload->addFilter('Rename', 'C:\mypics\new');

// Set a new destination path only for uploadfile1
$upload->addFilter('Rename', 'C:\mypics\newgifs', 'uploadfile1');










You can use different notations. Below is a table where you will find a description and the intention for the
supported notations. Note that when you use the Adapter or the Form Element you will not be able to use all
described notations.



Different notations of the rename filter and their meaning





		notation
		description





		addFile(‘C:\uploads’)
		Specifies a new location for all files when the given string is a directory. Note that you will get an exception when the file already exists, see the overwriting parameter.



		addFile(‘C:\uploads\file.ext’)
		Specifies a new location and filename for all files when the given string is not detected as directory. Note that you will get an exception when the file already exists, see the overwriting parameter.



		addFile(array(‘C:\uploads\file.ext’, ‘overwrite’ => true))
		Specifies a new location and filename for all files when the given string is not detected as directory and overwrites an existing file with the same target name. Note, that you will get no notification that a file was overwritten.



		addFile(array(‘source’ => ‘C:\temp\uploads’, ‘target’ => ‘C:\uploads’))
		Specifies a new location for all files in the old location when the given strings are detected as directory. Note that you will get an exception when the file already exists, see the overwriting parameter.



		addFile(array(‘source’ => ‘C:\temp\uploads’, ‘target’ => ‘C:\uploads’, ‘overwrite’ => true))
		Specifies a new location for all files in the old location when the given strings are detected as directory and overwrites and existing file with the same target name. Note, that you will get no notification that a file was overwritten.










UpperCase filter


The UpperCase filter allows to change the content of a file to uppercase. You should use this filter only on
textfiles.


At initiation you can give a string which will then be used as encoding. Or you can use the setEncoding()
method to set it afterwards.


Using the UpperCase filter


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('MimeType', 'text');

// Adds a filter to uppercase the uploaded textfile
$upload->addFilter('UpperCase');

// Adds a filter to uppercase the uploaded file but only for uploadfile1
$upload->addFilter('UpperCase', null, 'uploadfile1');

// Adds a filter to uppercase with encoding set to ISO-8859-1
$upload->addFilter('UpperCase', 'ISO-8859-1');











Note


Note that due to the fact that the options for the UpperCase filter are optional, you must give a NULL as
second parameter (the options) when you want to limit it to a single file element.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Filters for Zend_File_Transfer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.twitter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Twitter



Introduction


Zend_Service_Twitter provides a client for the Twitter RESTAPI [http://apiwiki.twitter.com/Twitter-API-Documentation]. Zend_Service_Twitter allows you to query
the public timeline. If you provide a username and OAuth details for Twitter, it will allow you to get and update
your status, reply to friends, direct message friends, mark tweets as favorite, and much more.


Zend_Service_Twitter implements a REST service, and all methods return an instance of
Zend_Rest_Client_Result.


Zend_Service_Twitter is broken up into subsections so you can easily identify which type of call is being
requested.



		account makes sure that your account credentials are valid, checks your API rate limit, and ends the current
session for the authenticated user.


		status retrieves the public and user timelines and shows, updates, destroys, and retrieves replies for the
authenticated user.


		user retrieves friends and followers for the authenticated user and returns extended information about a passed
user.


		directMessage retrieves the authenticated user’s received direct messages, deletes direct messages, and sends
new direct messages.


		friendship creates and removes friendships for the authenticated user.


		favorite lists, creates, and removes favorite tweets.


		block blocks and unblocks users from following you.








Authentication


With the exception of fetching the public timeline, Zend_Service_Twitter requires authentication as a valid
user. This is achieved using the OAuth authentication protocol. OAuth is the only supported authentication mode for
Twitter as of August 2010. The OAuth implementation used by Zend_Service_Twitter is Zend_Oauth.


Creating the Twitter Class


Zend_Service_Twitter must authorize itself, on behalf of a user, before use with the Twitter API (except for
public timeline). This must be accomplished using OAuth since Twitter has disabled it’s basic HTTP authentication
as of August 2010.


There are two options to establishing authorization. The first is to implement the workflow of Zend_Oauth via
Zend_Service_Twitter which proxies to an internal Zend_Oauth_Consumer object. Please refer to the
Zend_Oauth documentation for a full example of this workflow - you can call all documented
Zend_Oauth_Consumer methods on Zend_Service_Twitter including constructor options. You may also use
Zend_Oauth directly and only pass the resulting access token into Zend_Service_Twitter. This is the normal
workflow once you have established a reusable access token for a particular Twitter user. The resulting OAuth
access token should be stored to a database for future use (otherwise you will need to authorize for every new
instance of Zend_Service_Twitter). Bear in mind that authorization via OAuth results in your user being
redirected to Twitter to give their consent to the requested authorization (this is not repeated for stored access
tokens). This will require additional work (i.e. redirecting users and hosting a callback URL) over the previous
HTTP authentication mechanism where a user just needed to allow applications to store their username and password.


The following example demonstrates setting up Zend_Service_Twitter which is given an already established OAuth
access token. Please refer to the Zend_Oauth documentation to understand the workflow involved. The access
token is a serializable object, so you may store the serialized object to a database, and unserialize it at
retrieval time before passing the objects into Zend_Service_Twitter. The Zend_Oauth documentation
demonstrates the workflow and objects involved.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		/**
 * We assume $serializedToken is the serialized token retrieved from a database
 * or even $_SESSION (if following the simple Zend_Oauth documented example)
 */
$token = unserialize($serializedToken);

$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));

// verify user's credentials with Twitter
$response = $twitter->account->verifyCredentials();











Note


In order to authenticate with Twitter, ALL applications MUST be registered with Twitter in order to receive a
Consumer Key and Consumer Secret to be used when authenticating with OAuth. This can not be reused across
multiple applications - you must register each new application separately. Twitter access tokens have no expiry
date, so storing them to a database is advised (they can, of course, be refreshed simply be repeating the OAuth
authorization process). This can only be done while interacting with the user associated with that access token.


The previous pre-OAuth version of Zend_Service_Twitter allowed passing in a username as the first parameter
rather than within an array. This is no longer supported.







Account Methods



		verifyCredentials() tests if supplied user credentials are valid with minimal overhead.


Verifying credentials


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->account->verifyCredentials();













		endSession() signs users out of client-facing applications.


Sessions ending


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->account->endSession();













		rateLimitStatus() returns the remaining number of API requests available to the authenticating user before
the API limit is reached for the current hour.


Rating limit status


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->account->rateLimitStatus();



















Status Methods



		publicTimeline() returns the 20 most recent statuses from non-protected users with a custom user icon. The
public timeline is cached by Twitter for 60 seconds.


Retrieving public timeline


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->publicTimeline();













		friendsTimeline() returns the 20 most recent statuses posted by the authenticating user and that user’s
friends.


Retrieving friends timeline


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->friendsTimeline();










The friendsTimeline() method accepts an array of optional parameters to modify the query.



		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.








		userTimeline() returns the 20 most recent statuses posted from the authenticating user.


Retrieving user timeline


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->userTimeline();










The userTimeline() method accepts an array of optional parameters to modify the query.



		id specifies the ID or screen name of the user for whom to return the friends_timeline.


		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.


		count specifies the number of statuses to retrieve. May not be greater than 200.








		show() returns a single status, specified by the id parameter below. The status’ author will be returned
inline.


Showing user status


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->show(1234);













		update() updates the authenticating user’s status. This method requires that you pass in the status update
that you want to post to Twitter.


Updating user status


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->update('My Great Tweet');










The update() method accepts a second additional parameter.



		in_reply_to_status_id specifies the ID of an existing status that the status to be posted is in reply to.








		replies() returns the 20 most recent @replies (status updates prefixed with @username) for the authenticating
user.


Showing user replies


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->replies();










The replies() method accepts an array of optional parameters to modify the query.



		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.


		since_id returns only statuses with an ID greater than (that is, more recent than) the specified ID.








		destroy() destroys the status specified by the required id parameter.


Deleting user status


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->status->destroy(12345);



















User Methods



		friends()r eturns up to 100 of the authenticating user’s friends who have most recently updated, each with
current status inline.


Retrieving user friends


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->user->friends();










The friends() method accepts an array of optional parameters to modify the query.



		id specifies the ID or screen name of the user for whom to return a list of friends.


		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.








		followers() returns the authenticating user’s followers, each with current status inline.


Retrieving user followers


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->user->followers();










The followers() method accepts an array of optional parameters to modify the query.



		id specifies the ID or screen name of the user for whom to return a list of followers.


		page specifies which page you want to return.








		show() returns extended information of a given user, specified by ID or screen name as per the required id
parameter below.


Showing user informations


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->user->show('myfriend');



















Direct Message Methods



		messages() returns a list of the 20 most recent direct messages sent to the authenticating user.


Retrieving recent direct messages received


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->directMessage->messages();










The message() method accepts an array of optional parameters to modify the query.



		since_id returns only direct messages with an ID greater than (that is, more recent than) the specified ID.


		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.








		sent() returns a list of the 20 most recent direct messages sent by the authenticating user.


Retrieving recent direct messages sent


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->directMessage->sent();










The sent() method accepts an array of optional parameters to modify the query.



		since_id returns only direct messages with an ID greater than (that is, more recent than) the specified ID.


		since narrows the returned results to just those statuses created after the specified date/time (up to 24
hours old).


		page specifies which page you want to return.








		new() sends a new direct message to the specified user from the authenticating user. Requires both the user
and text parameters below.


Sending direct message


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->directMessage->new('myfriend', 'mymessage');













		destroy() destroys the direct message specified in the required id parameter. The authenticating user must
be the recipient of the specified direct message.


Deleting direct message


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->directMessage->destroy(123548);



















Friendship Methods



		create() befriends the user specified in the id parameter with the authenticating user.


Creating friend


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->friendship->create('mynewfriend');













		destroy() discontinues friendship with the user specified in the id parameter and the authenticating user.


Deleting friend


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->friendship->destroy('myoldfriend');













		exists() tests if a friendship exists between the user specified in the id parameter and the authenticating
user.


Checking friend existence


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->friendship->exists('myfriend');



















Favorite Methods



		favorites() returns the 20 most recent favorite statuses for the authenticating user or user specified by the
id parameter.


Retrieving favorites


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->favorite->favorites();










The favorites() method accepts an array of optional parameters to modify the query.



		id specifies the ID or screen name of the user for whom to request a list of favorite statuses.


		page specifies which page you want to return.








		create() favorites the status specified in the id parameter as the authenticating user.


Creating favorites


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->favorite->create(12351);













		destroy() un-favorites the status specified in the id parameter as the authenticating user.


Deleting favorites


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->favorite->destroy(12351);



















Block Methods



		exists() checks if the authenticating user is blocking a target user and can optionally return the blocked
user’s object if a block does exists.


Checking if block exists


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));

// returns true or false
$response = $twitter->block->exists('blockeduser');

// returns the blocked user's info if the user is blocked
$response2 = $twitter->block->exists('blockeduser', true);










The favorites() method accepts a second optional parameter.



		returnResult specifies whether or not return the user object instead of just TRUE or FALSE.








		create() blocks the user specified in the id parameter as the authenticating user and destroys a friendship
to the blocked user if one exists. Returns the blocked user in the requested format when successful.


Blocking a user


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->block->create('usertoblock);













		destroy() un-blocks the user specified in the id parameter for the authenticating user. Returns the
un-blocked user in the requested format when successful.


Removing a block


		1
2
3
4
5


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));
$response   = $twitter->block->destroy('blockeduser');













		blocking() returns an array of user objects that the authenticating user is blocking.


Who are you blocking


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$twitter = new Zend_Service_Twitter(array(
    'username' => 'johndoe',
    'accessToken' => $token
));

// return the full user list from the first page
$response = $twitter->block->blocking();

// return an array of numeric user IDs from the second page
$response2 = $twitter->block->blocking(2, true);










The favorites() method accepts two optional parameters.



		page specifies which page ou want to return. A single page contains 20 IDs.


		returnUserIds specifies whether to return an array of numeric user IDs the authenticating user is blocking
instead of an array of user objects.
















Zend_Service_Twitter_Search



Introduction


Zend_Service_Twitter_Search provides a client for the Twitter Search API [http://apiwiki.twitter.com/Search+API+Documentation]. The Twitter Search service is use
to search Twitter. Currently, it only returns data in Atom or JSON format, but a full REST service is in the
future, which will support XML responses.





Twitter Trends


Returns the top ten queries that are currently trending on Twitter. The response includes the time of the request,
the name of each trending topic, and the url to the Twitter Search results page for that topic. Currently the
search API for trends only supports a JSON return so the function returns an array.


		1
2
3
4
5
6


		$twitterSearch  = new Zend_Service_Twitter_Search();
$twitterTrends  = $twitterSearch->trends();

foreach ($twitterTrends as $trend) {
    print $trend['name'] . ' - ' . $trend['url'] . PHP_EOL
}










The return array has two values in it:



		name is the name of trend.


		url is the URL to see the tweets for that trend.








Searching Twitter


Using the search method returns tweets that match a specific query. There are a number of Search Operators [http://search.twitter.com/operators] that
you can use to query with.


The search method can accept six different optional URL parameters passed in as an array:



		lang restricts the tweets to a given language. lang must be given by an ISO 639-1 code [http://en.wikipedia.org/wiki/ISO_639-1].


		rpp is the number of tweets to return per page, up to a maximum of 100.


		page specifies the page number to return, up to a maximum of roughly 1500 results (based on rpp * page).


		since_id returns tweets with status IDs greater than the given ID.


		show_user specifies whether to add “>user<:” to the beginning of the tweet. This is useful for readers that do
not display Atom’s author field. The default is “FALSE”.


		geocode returns tweets by users located within a given radius of the given latitude/longitude, where the user’s
location is taken from their Twitter profile. The parameter value is specified by “latitude,longitude,radius”,
where radius units must be specified as either “mi” (miles) or “km” (kilometers).





JSON Search Example


The following code sample will return an array with the search results.


		1
2


		$twitterSearch  = new Zend_Service_Twitter_Search('json');
$searchResults  = $twitterSearch->search('zend', array('lang' => 'en'));










ATOM Search Example


The following code sample will return a Zend_Feed_Atom object.


		1
2


		$twitterSearch  = new Zend_Service_Twitter_Search('atom');
$searchResults  = $twitterSearch->search('zend', array('lang' => 'en'));













Zend-specific Accessor Methods


While the Twitter Search API only specifies two methods, Zend_Service_Twitter_Search has additional methods
that may be used for retrieving and modifying internal properties.



		getResponseType() and setResponseType() allow you to retrieve and modify the response type of the search
between JSON and Atom.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Twitter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.json.basics.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Basic Usage


Usage of Zend_Json involves using the two public static methods available: Zend_Json::encode() and
Zend_Json::decode().


		1
2
3
4
5


		// Retrieve a value:
$phpNative = Zend_Json::decode($encodedValue);

// Encode it to return to the client:
$json = Zend_Json::encode($phpNative);











Pretty-printing JSON


Sometimes, it may be hard to explore JSON data generated by Zend_Json::encode(), since it has no spacing or
indentation. In order to make it easier, Zend_Json allows you to pretty-print JSON data in the human-readable
format with Zend_Json::prettyPrint().


		1
2
3
4
5


		// Encode it to return to the client:
$json = Zend_Json::encode($phpNative);
if($debug) {
    echo Zend_Json::prettyPrint($json, array("indent" => " "));
}










Second optional argument of Zend_Json::prettyPrint() is an option array. Option indent allows to set
indentation string - by default it’s a single tab character.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Basic Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.books.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using the Book Search Data API


The Google Book Search Data API allows client applications to view and update Book Search content in the form of
Google Data API feeds.


Your client application can use the Book Search Data API to issue full-text searches for books and to retrieve
standard book information, ratings, and reviews. You can also access individual users’library collections and
public reviews [http://books.google.com/googlebooks/mylibrary/]. Finally, your application can submit authenticated requests to enable users to create and modify
library collections, ratings, labels, reviews, and other account-specific entities.


For more information on the Book Search Data API, please refer to the official PHP Developer’s Guide [http://code.google.com/apis/books/gdata/developers_guide_php.html] on
code.google.com.



Authenticating to the Book Search service


You can access both public and private feeds using the Book Search Data API. Public feeds don’t require any
authentication, but they are read-only. If you want to modify user libraries, submit reviews or ratings, or add
labels, then your client needs to authenticate before requesting private feeds. It can authenticate using either of
two approaches: AuthSub proxy authentication or ClientLogin username/password authentication. Please refer to the
Authentication section in the PHP Developer’s Guide [http://code.google.com/apis/books/gdata/developers_guide_php.html#Authentication] for more detail.





Searching for books


The Book Search Data API provides a number of feeds that list collections of books.


The most common action is to retrieve a list of books that match a search query. To do so you create a
VolumeQuery object and pass it to the Books::getVolumeFeed() method.


For example, to perform a keyword query, with a filter on viewability to restrict the results to partial or full
view books, use the setMinViewability() and setQuery() methods of the VolumeQuery object. The following
code snippet prints the title and viewability of all volumes whose metadata or text matches the query term
“domino”:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$books = new Zend_Gdata_Books();
$query = $books->newVolumeQuery();

$query->setQuery('domino');
$query->setMinViewability('partial_view');

$feed = $books->getVolumeFeed($query);

foreach ($feed as $entry) {
    echo $entry->getVolumeId();
    echo $entry->getTitle();
    echo $entry->getViewability();
}










The Query class, and subclasses like VolumeQuery, are responsible for constructing feed URLs. The
VolumeQuery shown above constructs a URL equivalent to the following:


		1


		http://www.google.com/books/feeds/volumes?q=keyword&min-viewability=partial










Note: Since Book Search results are public, you can issue a Book Search query without authentication.


Here are some of the most common VolumeQuery methods for setting search parameters:


setQuery(): Specifies a search query term. Book Search searches all book metadata and full text for books
matching the term. Book metadata includes titles, keywords, descriptions, author names, and subjects. Note that any
spaces, quotes or other punctuation in the parameter value must be URL-escaped (Use a plus (+) for a space).
To search for an exact phrase, enclose the phrase in quotation marks. For example, to search for books matching the
phrase “spy plane”, set the q parameter to %22spy+plane%22. You can also use any of the advanced search
operators [http://books.google.com/advanced_book_search] supported by Book Search. For example, jane+austen+-inauthor:austen returns matches that mention
(but are not authored by) Jane Austen.


setStartIndex(): Specifies the index of the first matching result that should be included in the result set.
This parameter uses a one-based index, meaning the first result is 1, the second result is 2 and so forth. This
parameter works in conjunction with the max-results parameter to determine which results to return. For example, to
request the third set of 10 results—results 21-30—set the start-index parameter to 21 and the
max-results parameter to 10. Note: This isn’t a general cursoring mechanism. If you first send a query with
?start-index=1&max-results=10 and then send another query with ?start-index=11&max-results=10, the service
cannot guarantee that the results are equivalent to ?start-index=1&max-results=20, because insertions and
deletions could have taken place in between the two queries.


setMaxResults(): Specifies the maximum number of results that should be included in the result set. This
parameter works in conjunction with the start-index parameter to determine which results to return. The default
value of this parameter is 10 and the maximum value is 20.


setMinViewability(): Allows you to filter the results according to the books’viewability status [http://code.google.com/apis/books/docs/dynamic-links.html#terminology]. This
parameter accepts one of three values: ‘none’ (the default, returning all matching books regardless of
viewability), ‘partial_view’ (returning only books that the user can preview or view in their entirety), or
‘full_view’ (returning only books that the user can view in their entirety).



Partner Co-Branded Search


Google Book Search provides Co-Branded Search [http://books.google.com/support/partner/bin/answer.py?hl=en&answer=65113], which lets content partners provide full-text search of their
books from their own websites.


If you are a partner who wants to do Co-Branded Search using the Book Search Data API, you may do so by modifying
the feed URL above to point to your Co-Branded Search implementation. if, for example, a Co-Branded Search is
available at the following URL:


		1


		http://www.google.com/books/p/PARTNER_COBRAND_ID?q=ball










then you can obtain the same results using the Book Search Data API at the following URL:


		1


		http://www.google.com/books/feeds/p/PARTNER_COBRAND_ID/volumes?q=ball+-soccer










To specify an alternate URL when querying a volume feed, you can provide an extra parameter to
newVolumeQuery()


		1
2


		$query =
    $books->newVolumeQuery('http://www.google.com/books/p/PARTNER_COBRAND_ID');










For additional information or support, visit our Partner help center [http://books.google.com/support/partner/].







Using community features



Adding a rating


A user can add a rating to a book. Book Search uses a 1-5 rating system in which 1 is the lowest rating. Users
cannot update or delete ratings.


To add a rating, add a Rating object to a VolumeEntry and post it to the annotation feed. In the example
below, we start from an empty VolumeEntry object.


		1
2
3
4


		$entry = new Zend_Gdata_Books_VolumeEntry();
$entry->setId(new Zend_Gdata_App_Extension_Id(VOLUME_ID));
$entry->setRating(new Zend_Gdata_Extension_Rating(3, 1, 5, 1));
$books->insertVolume($entry, Zend_Gdata_Books::MY_ANNOTATION_FEED_URI);













Reviews


In addition to ratings, authenticated users can submit reviews or edit their reviews. For information on how to
request previously submitted reviews, see Retrieving annotations.





Adding a review


To add a review, add a Review object to a VolumeEntry and post it to the annotation feed. In the example
below, we start from an existing VolumeEntry object.


		1
2
3
4
5
6


		$annotationUrl = $entry->getAnnotationLink()->href;
$review        = new Zend_Gdata_Books_Extension_Review();

$review->setText("This book is amazing!");
$entry->setReview($review);
$books->insertVolume($entry, $annotationUrl);













Editing a review


To update an existing review, first you retrieve the review you want to update, then you modify it, and then you
submit it to the annotation feed.


		1
2
3
4
5
6


		$entryUrl = $entry->getId()->getText();
$review   = new Zend_Gdata_Books_Extension_Review();

$review->setText("This book is actually not that good!");
$entry->setReview($review);
$books->updateVolume($entry, $entryUrl);













Labels


You can use the Book Search Data API to label volumes with keywords. A user can submit, retrieve and modify
labels. See Retrieving annotations for how to read previously submitted labels.





Submitting a set of labels


To submit labels, add a Category object with the scheme LABELS_SCHEME to a VolumeEntry and post it to
the annotation feed.


		1
2
3
4
5
6


		$annotationUrl = $entry->getAnnotationLink()->href;
$category      = new Zend_Gdata_App_Extension_Category(
    'rated',
    'http://schemas.google.com/books/2008/labels');
$entry->setCategory(array($category));
$books->insertVolume($entry, Zend_Gdata_Books::MY_ANNOTATION_FEED_URI);













Retrieving annotations: reviews, ratings, and labels


You can use the Book Search Data API to retrieve annotations submitted by a given user. Annotations include
reviews, ratings, and labels. To retrieve any user’s annotations, you can send an unauthenticated request that
includes the user’s user ID. To retrieve the authenticated user’s annotations, use the value me as the user ID.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$feed = $books->getVolumeFeed(
            'http://www.google.com/books/feeds/users/USER_ID/volumes');
<i>(or)</i>
$feed = $books->getUserAnnotationFeed();

// print title(s) and rating value
foreach ($feed as $entry) {
    foreach ($feed->getTitles() as $title) {
        echo $title;
    }
    if ($entry->getRating()) {
        echo 'Rating: ' . $entry->getRating()->getAverage();
    }
}










For a list of the supported query parameters, see the query parameters section.





Deleting Annotations


If you retrieved an annotation entry containing ratings, reviews, and/or labels, you can remove all annotations by
calling deleteVolume() on that entry.


		1


		$books->deleteVolume($entry);















Book collections and My Library


Google Book Search provides a number of user-specific book collections, each of which has its own feed.


The most important collection is the user’s My Library, which represents the books the user would like to remember,
organize, and share with others. This is the collection the user sees when accessing his or her My Library page [http://books.google.com/books?op=library].



Retrieving books in a user’s library


The following sections describe how to retrieve a list of books from a user’s library, with or without query
parameters.


You can query a Book Search public feed without authentication.





Retrieving all books in a user’s library


To retrieve the user’s books, send a query to the My Library feed. To get the library of the authenticated user,
use me in place of USER_ID.


		1


		$feed = $books->getUserLibraryFeed();










Note: The feed may not contain all of the user’s books, because there’s a default limit on the number of results
returned. For more information, see the max-results query parameter in Searching for books.





Searching for books in a user’s library


Just as you can search across all books, you can do a full-text search over just the books in a user’s library.
To do this, just set the appropriate paramters on the VolumeQuery object.


For example, the following query returns all the books in your library that contain the word “bear”:


		1
2
3
4
5


		$query = $books->newVolumeQuery(
    'http://www.google.com/books/feeds/users' .
    '/USER_ID/collections/library/volumes');
$query->setQuery('bear');
$feed = $books->getVolumeFeed($query);










For a list of the supported query parameters, see the query parameters section. In addition, you can search for
books that have been labeled by the user:


		1
2
3
4
5
6


		$query = $books->newVolumeQuery(
    'http://www.google.com/books/feeds/users/' .
    'USER_ID/collections/library/volumes');
$query->setCategory(
$query->setCategory('favorites');
$feed = $books->getVolumeFeed($query);













Updating books in a user’s library


You can use the Book Search Data API to add a book to, or remove a book from, a user’s library. Ratings, reviews,
and labels are valid across all the collections of a user, and are thus edited using the annotation feed (see
Using community features).





Adding a book to a library


After authenticating, you can add books to the current user’s library.


You can either create an entry from scratch if you know the volume ID, or insert an entry read from any feed.


The following example creates a new entry and adds it to the library:


		1
2
3
4
5
6


		$entry = new Zend_Gdata_Books_VolumeEntry();
$entry->setId(new Zend_Gdata_App_Extension_Id(VOLUME_ID));
$books->insertVolume(
    $entry,
    Zend_Gdata_Books::MY_LIBRARY_FEED_URI
);










The following example adds an existing VolumeEntry object to the library:


		1
2
3
4


		$books->insertVolume(
    $entry,
    Zend_Gdata_Books::MY_LIBRARY_FEED_URI
);













Removing a book from a library


To remove a book from a user’s library, call deleteVolume() on the VolumeEntry object.


		1


		$books->deleteVolume($entry);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using the Book Search Data API
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.soap.auto-discovery.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
AutoDiscovery



AutoDiscovery Introduction


SOAP functionality implemented within Zend Framework is intended to make all steps required for SOAP
communications more simple.


SOAP is language independent protocol. So it may be used not only for PHP-to-PHP communications.


There are three configurations for SOAP applications where Zend Framework may be utilized:



. SOAP server PHP application <—> SOAP client PHP application


. SOAP server non-PHP application <—> SOAP client PHP application


. SOAP server PHP application <—> SOAP client non-PHP application






We always have to know, which functionality is provided by SOAP server to operate with it. WSDL [http://www.w3.org/TR/wsdl] is used to
describe network service API in details.


WSDL language is complex enough (see http://www.w3.org/TR/wsdl for the details). So it’s difficult to prepare
correct WSDL description.


Another problem is synchronizing changes in network service API with already existing WSDL.


Both these problem may be solved by WSDL autogeneration. A prerequisite for this is a SOAP server autodiscovery.
It constructs object similar to object used in SOAP server application, extracts necessary information and
generates correct WSDL using this information.


There are two ways for using Zend Framework for SOAP server application:




		Use separated class.


		Use set of functions









Both methods are supported by Zend Framework Autodiscovery functionality.


The Zend\Soap\AutoDiscover class also supports datatypes mapping from PHP to XSD types [http://www.w3.org/TR/xmlschema-2/].


Here is an example of common usage of the autodiscovery functionality. The generate() function generates the
WSDL object and in conjunction with toXml() function you can posts it to the browser.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		class MySoapServerClass {
...
}

$autodiscover = new Zend\Soap\AutoDiscover();
$autodiscover->setClass('MySoapServerClass')
             ->setUri('http://localhost/server.php')
             ->setServiceName('MySoapService');
$wsdl = $autodiscover->generate();
echo $wsdl->toXml();
$wsdl->dump("/path/to/file.wsdl");
$dom = $wsdl->toDomDocument();











Note


ZendSoapAutodiscover is not a Soap Server


It is very important to note, that the class Zend\Soap\AutoDiscover does not act as a SOAP Server on its
own.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		if(isset($_GET['wsdl'])) {
    $autodiscover = new Zend\Soap\AutoDiscover();
    $autodiscover->setClass('HelloWorldService')
                 ->setUri('http://example.com/soap.php');
    echo $autodiscover->toXml();
} else {
    // pointing to the current file here
    $soap = new Zend\Soap\Server("http://example.com/soap.php?wsdl");
    $soap->setClass('HelloWorldService');
    $soap->handle();
}















Class autodiscovering


If a class is used to provide SOAP server functionality, then the same class should be provided to
Zend\Soap\AutoDiscover for WSDL generation:


		1
2
3
4
5


		$autodiscover = new Zend\Soap\AutoDiscover();
$autodiscover->setClass('My_SoapServer_Class')
             ->setUri('http://localhost/server.php')
             ->setServiceName('MySoapService');
$wsdl = $autodiscover->generate();










The following rules are used while WSDL generation:




		Generated WSDL describes an RPC/Encoded style Web Service. If you want to use a document/literal server use
the setBindingStyle() and setOperationBodyStyle() methods.





		Class name is used as a name of the Web Service being described unless setServiceName() is used explicitly
to set the name. When only functions are used for generation the service name has to be set explicitly or an
exception is thrown during generation of the WSDL document.





		You can set the endpoint of the actual SOAP Server via the setUri() method. This is a required option.


It’s also used as a target namespace for all service related names (including described complex types).





		Class methods are joined into one Port Type [http://www.w3.org/TR/wsdl#_porttypes].


$serviceName . ‘Port’ is used as Port Type name.





		Each class method/function is registered as a corresponding port operation.





		Only the “longest” available method prototype is used for generation of the WSDL.





		WSDL autodiscover utilizes the PHP docblocks provided by the developer to determine the parameter and return
types. In fact, for scalar types, this is the only way to determine the parameter types, and for return types,
this is the only way to determine them.


That means, providing correct and fully detailed docblocks is not only best practice, but is required for
discovered class.















Functions autodiscovering


If set of functions are used to provide SOAP server functionality, then the same set should be provided to
Zend\Soap\AutoDiscovery for WSDL generation:


		1
2
3
4
5
6


		$autodiscover = new Zend\Soap\AutoDiscover();
$autodiscover->addFunction('function1');
$autodiscover->addFunction('function2');
$autodiscover->addFunction('function3');
...
$wsdl = $autodiscover->generate();










The same rules apply to generation as described in the class audodiscover seection above.





Autodiscovering Datatypes


Input/output datatypes are converted into network service types using the following mapping:




		PHP strings <-> xsd:string.


		PHP integers <-> xsd:int.


		PHP floats and doubles <-> xsd:float.


		PHP booleans <-> xsd:boolean.


		PHP arrays <-> soap-enc:Array.


		PHP object <-> xsd:struct.


		PHP class <-> based on complex type strategy (See: this section)
[1].


		type[] or object[] (ie. int[]) <-> based on complex type strategy


		PHP void <-> empty type.


		If type is not matched to any of these types by some reason, then xsd:anyType is used.









Where xsd: is “http://www.w3.org/2001/XMLSchema” namespace, soap-enc: is a
“http://schemas.xmlsoap.org/soap/encoding/” namespace, tns: is a “target namespace” for a service.





WSDL Binding Styles


WSDL offers different transport mechanisms and styles. This affects the soap:binding and soap:body tags within
the Binding section of WSDL. Different clients have different requirements as to what options really work.
Therefore you can set the styles before you call any setClass or addFunction method on the AutoDiscover class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$autodiscover = new Zend\Soap\AutoDiscover();
// Default is 'use' => 'encoded' and
// 'encodingStyle' => 'http://schemas.xmlsoap.org/soap/encoding/'
$autodiscover->setOperationBodyStyle(
                    array('use' => 'literal',
                          'namespace' => 'http://framework.zend.com')
                );

// Default is 'style' => 'rpc' and
// 'transport' => 'http://schemas.xmlsoap.org/soap/http'
$autodiscover->setBindingStyle(
                    array('style' => 'document',
                          'transport' => 'http://framework.zend.com')
                );
...
$autodiscover->addFunction('myfunc1');
$wsdl = $autodiscover->generate();













		[1]		Zend\Soap\AutoDiscover will be created with the
Zend\Soap\Wsdl\ComplexTypeStrategy\DefaultComplexType class as detection algorithm for complex
types. The first parameter of the AutoDiscover constructor takes any complex type strategy implementing
Zend\Soap\Wsdl\ComplexTypeStrategy\Interface or a string with the name of the class. See the
Zend\Soap\Wsdl manual on adding complex types for more
information.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                AutoDiscovery
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.standard-autoloader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The StandardAutoloader



Overview


Zend\Loader\StandardAutoloader is designed as a PSR-0 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md]-compliant autoloader. It assumes a 1:1 mapping of the
namespace+classname to the filesystem, wherein namespace separators and underscores are translated to directory
separators. A simple statement that illustrates how resolution works is as follows:


		1
2


		$filename = str_replace(array('_', '\\'), DIRECTORY_SEPARATOR, $classname)
          . '.php';










Previous incarnations of PSR-0-compliant autoloaders in Zend Framework have relied upon the include_path for
file lookups. This has led to a number of issues:



		Due to the use of include, if the file is not found, a warning is raised – even if another autoloader is
capable of resolving the class later.


		Documenting how to setup the include_path has proven to be a difficult concept to convey.


		If multiple Zend Framework installations exist on the include_path, the first one on the path wins – even if
that was not the one the developer intended.





To solve these problems, the StandardAutoloader by default requires that you explicitly register namespace/path
pairs (or vendor prefix/path pairs), and will only load a file if it exists within the given path. Multiple pairs
may be provided.


As a measure of last resort, you may also use the StandardAutoloader as a “fallback” autoloader – one that
will look for classes of any namespace or vendor prefix on the include_path. This practice is not recommended,
however, due to performance implications.


Finally, as with all autoloaders in Zend Framework, the StandardAutoloader is capable of registering itself
with PHP’s SPL autoloader registry.



Note


Vocabulary: Namespaces vs. Vendor Prefixes


In terms of autloading, a “namespace” corresponds to PHP’s own definition of namespaces in PHP versions 5.3 and
above.


A “vendor prefix” refers to the practice, popularized in PHP versions prior to 5.3, of providing a
pseudo-namespace in the form of underscore-separated words in class names. As an example, the class
Phly_Couch_Document uses a vendor prefix of “Phly”, and a component prefix of “Phly_Couch” – but it is a
class sitting in the global namespace within PHP 5.3.


The StandardAutoloader is capable of loading either namespaced or vendor prefixed class names, but treats
them separately when attempting to match them to an appropriate path.







Quick Start


Basic use of the StandardAutoloader requires simply registering namespace/path pairs. This can either be done
at instantiation, or via explicit method calls after the object has been initialized. Calling register() will
register the autoloader with the SPL autoloader registry.


If the option key ‘autoregister_zf’ is set to true then the class will register the “Zend” namespace to the
directory above where its own classfile is located on the filesystem.


Manual Configuration


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// This example assumes ZF is on your include_path.
// You could also load the autoloader class from a path relative to the
// current script, or via an absolute path.
require_once 'Zend/Loader/StandardAutoloader.php';
$loader = new Zend\Loader\StandardAutoloader(array('autoregister_zf' => true));

// Register the "Phly" namespace:
$loader->registerNamespace('Phly', APPLICATION_PATH . '/../library/Phly');

// Register the "Scapi" vendor prefix:
$loader->registerPrefix('Scapi', APPLICATION_PATH . '/../library/Scapi');

// Optionally, specify the autoloader as a "fallback" autoloader;
// this is not recommended.
$loader->setFallbackAutoloader(true);

// Register with spl_autoload:
$loader->register();










Configuration at Instantiation


The StandardAutoloader may also be configured at instantiation. Please note:



		The argument passed may be either an array or a Traversable object (such as a Zend\Config object.


		The argument passed is also a valid argument for passing to the setOptions() method.





The following is equivalent to the previous example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		require_once 'Zend/Loader/StandardAutoloader.php';
$loader = new Zend\Loader\StandardAutoloader(array(
    'autoregister_zf' => true,
    'namespaces' => array(
        'Phly' => APPLICATION_PATH . '/../library/Phly',
    ),
    'prefixes' => array(
        'Scapi' => APPLICATION_PATH . '/../library/Scapi',
    ),
    'fallback_autoloader' => true,
));

// Register with spl_autoload:
$loader->register();













Configuration Options


The StandardAutoloader defines the following options.


StandardAutoloader Options



		namespaces


		An associative array of namespace/path pairs. The path should be an absolute path or path relative to the
calling script, and contain only classes that live in that namespace (or its subnamespaces). By default, the
“Zend” namespace is registered, pointing to the arent directory of the file defining the StandardAutoloader.


		prefixes


		An associative array of vendor prefix/path pairs. The path should be an absolute path or path relative to the
calling script, and contain only classes that begin with the provided vendor prefix.


		fallback_autoloader


		A boolean value indicating whether or not this instance should act as a “fallback” autoloader (i.e., look for
classes of any namespace or vendor prefix on the include_path). By default, false.


		autoregister_zf


		An boolean value indicating that the class should register the “Zend” namespace to the directory above where its
own classfile is located on the filesystem.








Available Methods



		__construct


		Initialize a new instance of the object
__construct($options = null)


Constructor
Takes an optional $options argument. This argument may be an associative array or Traversable object. If
not null, the argument is passed to setOptions().









		setOptions


		Set object state based on provided options.
setOptions($options)


setOptions()
Takes an argument of either an associative array or Traversable object. Recognized keys are detailed under
:ref:` <zend.loader.standard-autoloader.options>`, with the following behaviors:



		The namespaces value will be passed to registerNamespaces().


		The prefixes value will be passed to registerPrefixes().


		The fallback_autoloader value will be passed to setFallbackAutoloader().












		setFallbackAutoloader


		Enable/disable fallback autoloader status
setFallbackAutoloader($flag)


setFallbackAutoloader()
Takes a boolean flag indicating whether or not to act as a fallback autoloader when registered with the SPL
autoloader.









		isFallbackAutoloader


		Query fallback autoloader status
isFallbackAutoloader()


isFallbackAutoloader()
Indicates whether or not this instance is flagged as a fallback autoloader.









		registerNamespace


		Register a namespace with the autoloader
registerNamespace($namespace, $directory)


registerNamespace()
Register a namespace with the autoloader, pointing it to a specific directory on the filesystem for class
resolution. For classes matching that initial namespace, the autoloader will then perform lookups within that
directory.









		registerNamespaces


		Register multiple namespaces with the autoloader
registerNamespaces($namespaces)


registerNamespaces()
Accepts either an array or Traversable object. It will then iterate through the argument, and pass each item
to registerNamespace().









		registerPrefix


		Register a vendor prefix with the autoloader.
registerPrefix($prefix, $directory)


registerPrefix()
Register a vendor prefix with the autoloader, pointing it to a specific directory on the filesystem for class
resolution. For classes matching that initial vendor prefix, the autoloader will then perform lookups within
that directory.









		registerPrefixes


		Register many vendor prefixes with the autoloader
registerPrefixes($prefixes)


registerPrefixes()
Accepts either an array or Traversable object. It will then iterate through the argument, and pass each item
to registerPrefix().









		autoload


		Attempt to load a class.
autoload($class)


autoload()
Attempts to load the class specified. Returns a boolean false on failure, or a string indicating the class
loaded on success.









		register


		Register with spl_autoload.
register()


register()
Registers the autoload() method of the current instance with spl_autoload_register().











Examples


Please review the examples in the quick start for usage.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The StandardAutoloader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.transport.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Mail\Transport



Overview


Transports take care of the actual delivery of mail. Typically, you only need to worry about two possibilities:
using PHP’s native mail() functionality, which uses system resources to deliver mail, or using the SMTP
protocol for delivering mail via a remote server. Zend Framework also includes a “File” transport, which creates a
mail file for each message sent; these can later be introspected as logs or consumed for the purposes of sending
via an alternate transport mechanism later.


The Zend\Mail\Transport interface defines exactly one method, send(). This method accepts a
Zend\Mail\Message instance, which it then introspects and serializes in order to send.





Quick Start


Using a mail transport is typically as simple as instantiating it, optionally configuring it, and then passing a
message to it.


Sendmail Transport Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Mail\Message;
use Zend\Mail\Transport\Sendmail as SendmailTransport;

$message = new Message();
$message->addTo('matthew@zend.com')
        ->addFrom('ralph.schindler@zend.com')
        ->setSubject('Greetings and Salutations!')
        ->setBody("Sorry, I'm going to be late today!");

$transport = new SendmailTransport();
$transport->send($message);










SMTP Transport Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		use Zend\Mail\Message;
use Zend\Mail\Transport\Smtp as SmtpTransport;
use Zend\Mail\Transport\SmtpOptions;

$message = new Message();
$message->addTo('matthew@zend.com')
        ->addFrom('ralph.schindler@zend.com')
        ->setSubject('Greetings and Salutations!')
        ->setBody("Sorry, I'm going to be late today!");

// Setup SMTP transport using LOGIN authentication
$transport = new SmtpTransport();
$options   = new SmtpOptions(array(
    'name'              => 'localhost.localdomain',
    'host'              => '127.0.0.1',
    'connection_class'  => 'login',
    'connection_config' => array(
        'username' => 'user',
        'password' => 'pass',
    ),
));
$transport->setOptions($options);
$transport->send($message);










File Transport Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\Mail\Message;
use Zend\Mail\Transport\File as FileTransport;
use Zend\Mail\Transport\FileOptions;

$message = new Message();
$message->addTo('matthew@zend.com')
        ->addFrom('ralph.schindler@zend.com')
        ->setSubject('Greetings and Salutations!')
        ->setBody("Sorry, I'm going to be late today!");

// Setup SMTP transport using LOGIN authentication
$transport = new FileTransport();
$options   = new FileOptions(array(
    'path'              => 'data/mail/',
    'callback'  => function (FileTransport $transport) {
        return 'Message_' . microtime(true) . '_' . mt_rand() . '.txt';
    },
));
$transport->setOptions($options);
$transport->send($message);













Configuration Options


Configuration options are per transport. Please follow the links below for transport-specific options.



		SMTP Transport Options


		File Transport Options








Available Methods



		send


		send(Zend\Mail\Message $message)


Send a mail message.


Returns void











Examples


Please see the Quick Start section for examples.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Mail\Transport
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.windows-azure.table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_WindowsAzure_Storage_Table


The Table service offers structured storage in the form of tables.


Table Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Table class in order to provide a native PHP interface to the storage
account.


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Table class. Other features are
available in the download package, as well as a detailed API documentation of those features.


Note that development table storage (in the Windows Azure SDK) does not support all features provided by the
API. Therefore, the examples listed on this page are to be used on Windows Azure production table storage.



Operations on tables


This topic lists some samples of operations that can be executed on tables.



Creating a table


Using the following code, a table can be created on Windows Azure production table storage.


Creating a table


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->createTable('testtable');

echo 'New table name is: ' . $result->Name;













Listing all tables


Using the following code, a list of all tables in Windows Azure production table storage can be queried.


Listing all tables


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->listTables();
foreach ($result as $table) {
    echo 'Table name is: ' . $table->Name . "\r\n";
}















Operations on entities


Tables store data as collections of entities. Entities are similar to rows. An entity has a primary key and a set
of properties. A property is a named, typed-value pair, similar to a column.


The Table service does not enforce any schema for tables, so two entities in the same table may have different sets
of properties. Developers may choose to enforce a schema on the client side. A table may contain any number of
entities.


Zend_Service_WindowsAzure_Storage_Table provides 2 ways of working with entities:



		Enforced schema


		No enforced schema





All examples will make use of the following enforced schema class.


Enforced schema used in samples


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class SampleEntity extends Zend_Service_WindowsAzure_Storage_TableEntity
{
    /**
    * @azure Name
    */
    public $Name;

    /**
    * @azure Age Edm.Int64
    */
    public $Age;

    /**
    * @azure Visible Edm.Boolean
    */
    public $Visible = false;
}










Note that if no schema class is passed into table storage methods, Zend_Service_WindowsAzure_Storage_Table
automatically works with Zend_Service_WindowsAzure_Storage_DynamicTableEntity.



Enforced schema entities


To enforce a schema on the client side using the Zend_Service_WindowsAzure_Storage_Table class, you can create
a class which inherits Zend_Service_WindowsAzure_Storage_TableEntity. This class provides some basic
functionality for the Zend_Service_WindowsAzure_Storage_Table class to work with a client-side schema.


Base properties provided by Zend_Service_WindowsAzure_Storage_TableEntity are:



		PartitionKey (exposed through getPartitionKey() and setPartitionKey())


		RowKey (exposed through getRowKey() and setRowKey())


		Timestamp (exposed through getTimestamp() and setTimestamp())


		Etag value (exposed through getEtag() and setEtag())





Here’s a sample class inheriting Zend_Service_WindowsAzure_Storage_TableEntity:


Sample enforced schema class


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class SampleEntity extends Zend_Service_WindowsAzure_Storage_TableEntity
{
    /**
     * @azure Name
     */
    public $Name;

    /**
     * @azure Age Edm.Int64
     */
    public $Age;

    /**
     * @azure Visible Edm.Boolean
     */
    public $Visible = false;
}










The Zend_Service_WindowsAzure_Storage_Table class will map any class inherited from
Zend_Service_WindowsAzure_Storage_TableEntity to Windows Azure table storage entities with the correct data
type and property name. All there is to storing a property in Windows Azure is adding a docblock comment to a
public property or public getter/setter, in the following format:


Enforced property


		1
2
3
4


		/**
 * @azure <property name in Windows Azure> <optional property type>
 */
public $<property name in PHP>;










Let’s see how to define a propety “Age” as an integer on Windows Azure table storage:


Sample enforced property


		1
2
3
4


		/**
 * @azure Age Edm.Int64
 */
public $Age;










Note that a property does not necessarily have to be named the same on Windows Azure table storage. The Windows
Azure table storage property name can be defined as well as the type.


The following data types are supported:



		Edm.Binary- An array of bytes up to 64 KB in size.


		Edm.Boolean- A boolean value.


		Edm.DateTime- A 64-bit value expressed as Coordinated Universal Time (UTC). The supported DateTime range
begins from 12:00 midnight, January 1, 1601 A.D. (C.E.), Coordinated Universal Time (UTC). The range ends at
December 31st, 9999.


		Edm.Double- A 64-bit floating point value.


		Edm.Guid- A 128-bit globally unique identifier.


		Edm.Int32- A 32-bit integer.


		Edm.Int64- A 64-bit integer.


		Edm.String- A UTF-16-encoded value. String values may be up to 64 KB in size.








No enforced schema entities (a.k.a. DynamicEntity)


To use the Zend_Service_WindowsAzure_Storage_Table class without defining a schema, you can make use of the
Zend_Service_WindowsAzure_Storage_DynamicTableEntity class. This class inherits
Zend_Service_WindowsAzure_Storage_TableEntity like an enforced schema class does, but contains additional logic
to make it dynamic and not bound to a schema.


Base properties provided by Zend_Service_WindowsAzure_Storage_DynamicTableEntity are:



		PartitionKey (exposed through getPartitionKey() and setPartitionKey())


		RowKey (exposed through getRowKey() and setRowKey())


		Timestamp (exposed through getTimestamp() and setTimestamp())


		Etag value (exposed through getEtag() and setEtag())





Other properties can be added on the fly. Their Windows Azure table storage type will be determined on-the-fly:


Dynamicaly adding properties Zend_Service_WindowsAzure_Storage_DynamicTableEntity


		1
2
3
4
5


		$target = new Zend_Service_WindowsAzure_Storage_DynamicTableEntity(
    'partition1', '000001'
);
$target->Name = 'Name'; // Will add property "Name" of type "Edm.String"
$target->Age  = 25;     // Will add property "Age" of type "Edm.Int32"










Optionally, a property type can be enforced:


Forcing property types on Zend_Service_WindowsAzure_Storage_DynamicTableEntity


		1
2
3
4
5
6
7
8


		$target = new Zend_Service_WindowsAzure_Storage_DynamicTableEntity(
    'partition1', '000001'
);
$target->Name = 'Name'; // Will add property "Name" of type "Edm.String"
$target->Age  = 25;     // Will add property "Age" of type "Edm.Int32"

// Change type of property "Age" to "Edm.Int32":
$target->setAzurePropertyType('Age', 'Edm.Int64');










The Zend_Service_WindowsAzure_Storage_Table class automatically works with
Zend_Service_WindowsAzure_Storage_TableEntity if no specific class is passed into Table Storage methods.





Entities API examples





Inserting an entity


Using the following code, an entity can be inserted into a table named “testtable”. Note that the table has already
been created before.


Inserting an entity


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$entity = new SampleEntity ('partition1', 'row1');
$entity->FullName = "Maarten";
$entity->Age = 25;
$entity->Visible = true;

$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->insertEntity('testtable', $entity);

// Check the timestamp and etag of the newly inserted entity
echo 'Timestamp: ' . $result->getTimestamp() . "\n";
echo 'Etag: ' . $result->getEtag() . "\n";













Retrieving an entity by partition key and row key


Using the following code, an entity can be retrieved by partition key and row key. Note that the table and entity
have already been created before.


Retrieving an entity by partition key and row key


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity= $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);













Updating an entity


Using the following code, an entity can be updated. Note that the table and entity have already been created
before.


Updating an entity


		1
2
3
4
5
6
7
8
9


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);

$entity->Name = 'New name';
$result = $storageClient->updateEntity('testtable', $entity);










If you want to make sure the entity has not been updated before, you can make sure the Etag of the entity is
checked. If the entity already has had an update, the update will fail to make sure you do not overwrite any newer
data.


Updating an entity (with Etag check)


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);

$entity->Name = 'New name';

// last parameter instructs the Etag check:
$result = $storageClient->updateEntity('testtable', $entity, true);













Deleting an entity


Using the following code, an entity can be deleted. Note that the table and entity have already been created
before.


Deleting an entity


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);
$result = $storageClient->deleteEntity('testtable', $entity);













Performing queries


Queries in Zend_Service_WindowsAzure_Storage_Table table storage can be performed in two ways:



		By manually creating a filter condition (involving learning a new query language)


		By using the fluent interface provided by the Zend_Service_WindowsAzure_Storage_Table





Using the following code, a table can be queried using a filter condition. Note that the table and entities have
already been created before.


Performing queries using a filter condition


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entities = $storageClient->storageClient->retrieveEntities(
    'testtable',
    'Name eq \'Maarten\' and PartitionKey eq \'partition1\'',
    'SampleEntity'
);

foreach ($entities as $entity) {
    echo 'Name: ' . $entity->Name . "\n";
}










Using the following code, a table can be queried using a fluent interface. Note that the table and entities have
already been created before.


Performing queries using a fluent interface


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entities = $storageClient->storageClient->retrieveEntities(
    'testtable',
    $storageClient->select()
                  ->from($tableName)
                  ->where('Name eq ?', 'Maarten')
                  ->andWhere('PartitionKey eq ?', 'partition1'),
    'SampleEntity'
);

foreach ($entities as $entity) {
    echo 'Name: ' . $entity->Name . "\n";
}













Batch operations


This topic demonstrates how to use the table entity group transaction features provided by Windows Azure table
storage. Windows Azure table storage supports batch transactions on entities that are in the same table and belong
to the same partition group. A transaction can include at most 100 entities.


The following example uses a batch operation (transaction) to insert a set of entities into the “testtable” table.
Note that the table has already been created before.


Executing a batch operation


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

// Start batch
$batch = $storageClient->startBatch();

// Insert entities in batch
$entities = generateEntities();
foreach ($entities as $entity) {
    $storageClient->insertEntity($tableName, $entity);
}

// Commit
$batch->commit();















Table storage session handler


When running a PHP application on the Windows Azure platform in a load-balanced mode (running 2 Web Role
instances or more), it is important that PHP session data can be shared between multiple Web Role instances. The
Windows Azure SDK for PHP provides the Zend_Service_WindowsAzure_SessionHandler class, which uses Windows
Azure Table Storage as a session handler for PHP applications.


To use the Zend_Service_WindowsAzure_SessionHandler session handler, it should be registered as the default
session handler for your PHP application:


Registering table storage session handler


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

$sessionHandler = new Zend_Service_WindowsAzure_SessionHandler(
    $storageClient , 'sessionstable'
);
$sessionHandler->register();










The above classname registers the Zend_Service_WindowsAzure_SessionHandler session handler and will store
sessions in a table called “sessionstable”.


After registration of the Zend_Service_WindowsAzure_SessionHandler session handler, sessions can be started and
used in the same way as a normal PHP session:


Using table storage session handler


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

$sessionHandler = new Zend_Service_WindowsAzure_SessionHandler(
    $storageClient , 'sessionstable'
);
$sessionHandler->register();

session_start();

if (!isset($_SESSION['firstVisit'])) {
    $_SESSION['firstVisit'] = time();
}

// ...











Warning


The Zend_Service_WindowsAzure_SessionHandler session handler should be registered before a call to
session_start() is made!










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_WindowsAzure_Storage_Table
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.crypt.password.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Secure Password Storing


Zend\Crypt\Password stores a user’s password in a secure way using dedicated adapters like the bcrypt [http://en.wikipedia.org/wiki/Bcrypt]
algorithm.


The example below shows how to use the bcrypt algorithm to store a user’s password:


		1
2
3
4


		use Zend\Crypt\Password\Bcrypt;

$bcrypt = new Bcrypt()
$securePass = $bcrypt->create('user password');










The output of the create() method is the encrypted password. This value can then be stored in a repository like a
database. Classic hashing mechanisms like MD5 or SHA are not considered secure anymore (read
this post to know why [http://codahale.com/how-to-safely-store-a-password/]).


To verify if a given password is valid against a bcrypt value you can use the verify() method. Example time:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Crypt\Password\Bcrypt;

$bcrypt = new Bcrypt();
$securePass = 'the stored bcrypt value';
$password = 'the password to check';

if ($bcrypt->verify($password, $bcrypt)) {
    echo "The password is correct! \n";
} else {
    echo "The password is NOT correct.\n";
}










By default, the Zend\Crypt\Password\Bcrypt class uses a value of 14 for bcrypts cost parameter. The cost parameter is an integer between 4 to
31. A greater value means longer execution time for bcrypt, thus more secure against brute force or
dictionary attacks.


If you want to change the cost parameter of the bcrypt algorithm you can use the setCost() method.



Note


Bcrypt with non-ASCII passwords (8-bit characters)


The bcrypt implementation used by PHP < 5.3.7 can contains a security flaw if the password uses 8-bit characters
(here’s the security report [http://php.net/security/crypt_blowfish.php]). The impact of this bug was that most (but not all) passwords containing non-ASCII
characters with the 8th bit set were hashed incorrectly, resulting in password hashes incompatible with those of
OpenBSD’s original implementation of bcrypt. This security flaw has been fixed starting from PHP 5.3.7 and the
prefix used in the output was changed to ‘$2y$’ in order to put evidence on the correctness of the hash value.
If you are using PHP < 5.3.7 with 8-bit passwords, the Zend\Crypt\Password\Bcrypt throws an exception
suggesting to upgrade to PHP 5.3.7+ or use only 7-bit passwords.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Secure Password Storing
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage5.png
<userEmail>
verbose

lc:\z#2app>

Welcome to my ZF2 Console-enabled app

user email
verbose mode

“quick” operation
Same as --verbose

wide output

Full email address of the user to find.
Display additional information during
processing

Do not check integrity, just make
changes and finish

Display additional information during
processing

When listing users, use the whole
available screen width






tutorials/multiuser.authorization.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Building an Authorization System in Zend Framework



Introduction to Authorization


After a user has been identified as being authentic, an application can go about its business of providing some
useful and desirable resources to a consumer. In many cases, applications might contain different resource types,
with some resources having stricter rules regarding access. This process of determining who has access to which
resources is the process of “authorization”. Authorization in its simplest form is the composition of these
elements:



		the identity whom wishes to be granted access


		the resource the identity is asking permission to consume


		and optionally, what the identity is privileged to do with the resource





In Zend Framework, the Zend\Permissions\Acl component handles the task of building a tree of roles, resources and
privileges to manage and query authorization requests against.





Basic Usage of ZendPermissionsAcl


When using Zend\Permissions\Acl, any models can serve as roles or resources by simply implementing the proper interface. To
be used in a role capacity, the class must implement the Zend\Permissions\Acl\Role\RoleInterface, which requires only
getRoleId(). To be used in a resource capacity, a class must implement the Zend\Permissions\Acl\Resource\ResourceInterface
which similarly requires the class implement the getResourceId() method.


Demonstrated below is a simple user model. This model can take part in our ACL system simply by implementing the
Zend\Permissions\Acl\Role\RoleInterface. The method getRoleId() will return the id “guest” when an ID is not known, or it
will return the role ID that was assigned to this actual user object. This value can effectively come from
anywhere, a static definition or perhaps dynamically from the users database role itself.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		class Default_Model_User implements Zend\Permissions\Acl\Role\RoleInterface
{
    protected $_aclRoleId = null;

    public function getRoleId()
    {
        if ($this->_aclRoleId == null) {
            return 'guest';
        }

        return $this->_aclRoleId;
    }
}










While the concept of a user as a role is pretty straight forward, your application might choose to have any other
models in your system as a potential “resource” to be consumed in this ACL system. For simplicity, we’ll use the
example of a blog post. Since the type of the resource is tied to the type of the object, this class will only
return ‘blogPost’ as the resource ID in this system. Naturally, this value can be dynamic if your system requires
it to be so.


		1
2
3
4
5
6
7


		class Default_Model_BlogPost implements Zend\Permissions\Acl\Resource\ResourceInterface
{
    public function getResourceId()
    {
        return 'blogPost';
    }
}










Now that we have at least a role and a resource, we can go about defining the rules of the ACL system. These
rules will be consulted when the system receives a query about what is possible given a certain role, resources,
and optionally a privilege.


Lets assume the following rules:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$acl = new Zend\Permissions\Acl\Acl();

// setup the various roles in our system
$acl->addRole('guest');
// owner inherits all of the rules of guest
$acl->addRole('owner', 'guest');

// add the resources
$acl->addResource('blogPost');

// add privileges to roles and resource combinations
$acl->allow('guest', 'blogPost', 'view');
$acl->allow('owner', 'blogPost', 'post');
$acl->allow('owner', 'blogPost', 'publish');










The above rules are quite simple: a guest role and an owner role exist; as does a blogPost type resource. Guests
are allowed to view blog posts, and owners are allowed to post and publish blog posts. To query this system one
might do any of the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// assume the user model is of type guest resource
$guestUser = new Default_Model_User();
$ownerUser = new Default_Model_Owner('OwnersUsername');

$post = new Default_Model_BlogPost();

$acl->isAllowed($guestUser, $post, 'view'); // true
$acl->isAllowed($ownerUser, $post, 'view'); // true
$acl->isAllowed($guestUser, $post, 'post'); // false
$acl->isAllowed($ownerUser, $post, 'post'); // true










As you can see, the above rules exercise whether owners and guests can view posts, which they can, or post new
posts, which owners can and guests cannot. But as you might expect this type of system might not be as dynamic as
we wish it to be. What if we want to ensure a specific owner actual owns a very specific blog post before allowing
him to publish it? In other words, we want to ensure that only post owners have the ability to publish their own
posts.


This is where assertions come in. Assertions are methods that will be called out to when the static rule checking
is simply not enough. When registering an assertion object this object will be consulted to determine, typically
dynamically, if some roles has access to some resource, with some optional privlidge that can only be answered by
the logic within the assertion. For this example, we’ll use the following assertion:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		class OwnerCanPublishBlogPostAssertion implements Zend\Permissions\Acl\Assert\AssertInterface
{
    /**
     * This assertion should receive the actual User and BlogPost objects.
     *
     * @param Zend\Permissions\Acl $acl
     * @param Zend\Permissions\Acl\Role\RoleInterface $user
     * @param Zend\Permissions\Acl\Resource\ResourceInterface $blogPost
     * @param $privilege
     * @return bool
     */
    public function assert(Zend\Permissions\Acl $acl,
                           Zend\Permissions\Acl\Role\RoleInterface $user = null,
                           Zend\Permissions\Acl\Resource\ResourceInterface $blogPost = null,
                           $privilege = null)
    {
        if (!$user instanceof Default_Model_User) {
            throw new Exception(__CLASS__
                              . '::'
                              . __METHOD__
                              . ' expects the role to be'
                              . ' an instance of User');
        }

        if (!$blogPost instanceof Default_Model_BlogPost) {
            throw new Exception(__CLASS__
                              . '::'
                              . __METHOD__
                              . ' expects the resource to be'
                              . ' an instance of BlogPost');
        }

        // if role is publisher, he can always modify a post
        if ($user->getRoleId() == 'publisher') {
            return true;
        }

        // check to ensure that everyone else is only modifying their own post
        if ($user->id != null && $blogPost->ownerUserId == $user->id) {
            return true;
        } else {
            return false;
        }
    }
}










To hook this into our ACL system, we would do the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// replace this:
//   $acl->allow('owner', 'blogPost', 'publish');
// with this:
$acl->allow('owner',
            'blogPost',
            'publish',
            new OwnerCanPublishBlogPostAssertion());

// lets also add the role of a "publisher" who has access to everything
$acl->allow('publisher', 'blogPost', 'publish');










Now, anytime the ACL is consulted about whether or not an owner can publish a specific blog post, this assertion
will be run. This assertion will ensure that unless the role type is ‘publisher’ the owner role must be logically
tied to the blog post in question. In this example, we check to see that the ownerUserId property of the blog
post matches the id of the owner passed in.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Building an Authorization System in Zend Framework
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Ldap


Zend\Ldap\Ldap is the base interface into a LDAP server. It provides connection and binding methods as well
as methods to operate on the LDAP tree.



Zend\Ldap\Ldap API





		Method
		Description





		__construct($options)
		Constructor. The $options parameter is optional and can be set to an array or a Traversable object. If no options are provided at instantiation, the connection parameters must be passed to the instance using Zend\Ldap\Ldap::setOptions(). The allowed options are specified in Zend\Ldap\Ldap Options



		resource getResource()
		Returns the raw LDAP extension (ext/ldap) resource.



		integer getLastErrorCode()
		Returns the LDAP error number of the last LDAP command.



		string getLastError(integer &$errorCode, array &$errorMessages)
		Returns the LDAP error message of the last LDAP command. The optional $errorCode parameter is set to the LDAP error number when given. The optional $errorMessages array will be filled with the raw error messages when given. The various LDAP error retrieval functions can return different things, so they are all collected if $errorMessages is given.



		Zend\Ldap\Ldap setOptions($options)
		Sets the LDAP connection and binding parameters. $options can be an array or an Traversable object. The allowed options are specified in Zend\Ldap\Ldap Options



		array getOptions()
		Returns the current connection and binding parameters.



		string getBaseDn()
		Returns the base DN this LDAP connection is bound to.



		string getCanonicalAccountName(string $acctname, integer $form)
		Returns the canonical account name of the given account name $acctname. $form specifies the format into which the account name is canonicalized. See Account Name Canonicalization for more details.



		Zend\Ldap\Ldap disconnect()
		Disconnects the Zend\Ldap\Ldap instance from the LDAP server.



		Zend\Ldap\Ldap connect(string $host, integer $port, boolean $useSsl, boolean $useStartTls, integer $networkTimeout)
		Connects the Zend\Ldap\Ldap instance to the given LDAP server. All parameters are optional and will be taken from the LDAP connection and binding parameters passed to the instance via the constructor or via Zend\Ldap\Ldap::setOptions() when set to NULL.



		Zend\Ldap\Ldap bind(string $username, string $password)
		Authenticates $username with $password at the LDAP server. If both parameters are omitted the binding will be carried out with the credentials given in the connection and binding parameters. If no credentials are given in the connection and binding parameters an anonymous bind will be performed. Note that this requires anonymous binds to be allowed on the LDAP server. An empty string ‘’ can be passed as $password together with a username if, and only if, allowEmptyPassword is set to TRUE in the connection and binding parameters.



		Zend\Ldap\Collection search(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $collectionClass, integer $sizelimit, integer $timelimit)
		Searches the LDAP tree with the given $filter and the given search parameters. string|Zend\Ldap\Filter\AbstractFilter $filter The filter string to be used in the search, e.g. (objectClass=posixAccount). string|Zend\Ldap\Dn $basedn The search base for the search. If omitted or NULL, the baseDn from the connection and binding parameters is used. integer $scope The search scope. Zend\Ldap\Ldap::SEARCH_SCOPE_SUB searches the complete subtree including the $baseDn node. Zend\Ldap\Ldap::SEARCH_SCOPE_ONE restricts search to one level below $baseDn. Zend\Ldap\Ldap::SEARCH_SCOPE_BASE restricts search to the $baseDn itself; this can be used to efficiently retrieve a single entry by its DN. The default value is Zend\Ldap\Ldap::SEARCH_SCOPE_SUB. array $attributes Specifies the attributes contained in the returned entries. To include all possible attributes (ACL restrictions can disallow certain attribute to be retrieved by a given user) pass either an empty array array() or array(‘*’) to the method. On some LDAP servers you can retrieve special internal attributes by passing array(‘*’, ‘+’) to the method. string $sort If given the result collection will be sorted after the attribute $sort. Results can only be sorted after one single attribute as this parameter uses the ext/ldap function ldap_sort(). string $collectionClass If given the result will be wrapped in an object of type $collectionClass. By default an object of type Zend\Ldap\Collection will be returned. The custom class must extend Zend\Ldap\Collection and will be passed a Zend\Ldap\Collection\Iterator\Default on instantiation. integer $sizelimit Enables you to limit the count of entries fetched. Setting this to 0 means no limit. integer $timelimit Sets the number of seconds how long is spend on the search. Setting this to 0 means no limit.



		integer count(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope)
		Counts the elements returned by the given search parameters. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.



		integer countChildren(string|Zend\Ldap\Dn $dn)
		Counts the direct descendants (children) of the entry identified by the given $dn.



		boolean exists(string|Zend\Ldap\Dn $dn)
		Checks whether the entry identified by the given $dn exists.



		array searchEntries(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $reverseSort, integer $sizelimit, integer $timelimit)
		Performs a search operation and returns the result as an PHP array. This is essentially the same method as Zend\Ldap\Ldap::search() except for the return type. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.



		array getEntry(string|Zend\Ldap\Dn $dn, array $attributes, boolean $throwOnNotFound)
		Retrieves the LDAP entry identified by $dn with the attributes specified in $attributes. if $attributes is omitted, all attributes (array()) are included in the result. $throwOnNotFound is FALSE by default, so the method will return NULL if the specified entry cannot be found. If set to TRUE, a Zend\Ldap\Exception\LdapException will be thrown instead.



		void prepareLdapEntryArray(array &$entry)
		Prepare an array for the use in LDAP modification operations. This method does not need to be called by the end-user as it’s implicitly called on every data modification method.



		Zend\Ldap\Ldap add(string|Zend\Ldap\Dn $dn, array $entry)
		Adds the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be added.



		Zend\Ldap\Ldap update(string|Zend\Ldap\Dn $dn, array $entry)
		Updates the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be modified.



		Zend\Ldap\Ldap save(string|Zend\Ldap\Dn $dn, array $entry)
		Saves the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be saved. This method decides by querying the LDAP tree if the entry will be added or updated.



		Zend\Ldap\Ldap delete(string|Zend\Ldap\Dn $dn, boolean $recursively)
		Deletes the entry identified by $dn from the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be deleted. $recursively is FALSE by default. If set to TRUE the deletion will be carried out recursively and will effectively delete a complete subtree. Deletion will fail if $recursively is FALSE and the entry $dn is not a leaf entry.



		Zend\Ldap\Ldap moveToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		Moves the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation. All move-operations are carried out by copying and then deleting the corresponding entries in the LDAP tree. These operations are not atomic so that failures during the operation will result in an inconsistent state on the LDAP server. The same is true for all recursive operations. They also are by no means atomic. Please keep this in mind.



		Zend\Ldap\Ldap move(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		This is an alias for Zend\Ldap\Ldap::rename().



		Zend\Ldap\Ldap rename(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		Renames the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation.



		Zend\Ldap\Ldap copyToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively)
		Copies the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.



		Zend\Ldap\Ldap copy(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively)
		Copies the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.



		Zend\Ldap\Node getNode(string|Zend\Ldap\Dn $dn)
		Returns the entry $dn wrapped in a Zend\Ldap\Node.



		Zend\Ldap\Node getBaseNode()
		Returns the entry for the base DN $baseDn wrapped in a Zend\Ldap\Node.



		Zend\Ldap\Node\RootDse getRootDse()
		Returns the RootDSE for the current server.



		Zend\Ldap\Node\Schema getSchema()
		Returns the LDAP schema for the current server.








Zend\Ldap\Collection


Zend\Ldap\Collection implements Iterator to allow for item traversal using foreach() and Countable to
be able to respond to count(). With its protected createEntry() method it provides a simple extension point
for developers needing custom result objects.



Zend\Ldap\Collection API





		Method
		Description





		__construct(Zend\Ldap\Collection\Iterator\Interface $iterator)
		Constructor. The constructor must be provided by a Zend\Ldap\Collection\Iterator\Interface which does the real result iteration. Zend\Ldap\Collection\Iterator\Default is the default implementation for iterating ext/ldap results.



		boolean close()
		Closes the internal iterator. This is also called in the destructor.



		array toArray()
		Returns all entries as an array.



		array getFirst()
		Returns the first entry in the collection or NULL if the collection is empty.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Ldap
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.range.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Range Element


Zend\Form\Element\Range is meant to be paired with the Zend/Form/View/Helper/FormRange for HTML5 inputs with
type range [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#range-state-(type=range)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 range values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "range".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$range = new Element\Range('range');
$range
    ->setLabel('Minimum and Maximum Amount')
    ->setAttributes(array(
        'min'  => '0',   // default minimum is 0
        'max'  => '100', // default maximum is 100
        'step' => '1',   // default interval is 1
    ));

$form = new Form('my-form');
$form->add($range);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\Number.



		
getInputSpecification()``


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\Number for more information.


The Range element differs from Zend\Form\Element\Number in that the Zend\Validator\GreaterThan and
Zend\Validator\LessThan validators will always be present. The default minimum is 1, and the default maximum
is 100.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Range Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.xmlrpc.client.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\XmlRpc\Client



Introduction


Zend Framework provides support for consuming remote XML-RPC services as a client in the Zend\XmlRpc\Client
package. Its major features include automatic type conversion between PHP and XML-RPC, a server proxy object,
and access to server introspection capabilities.





Method Calls


The constructor of Zend\XmlRpc\Client receives the URL of the remote XML-RPC server endpoint as its first
parameter. The new instance returned may be used to call any number of remote methods at that endpoint.


To call a remote method with the XML-RPC client, instantiate it and use the call() instance method. The code
sample below uses a demonstration XML-RPC server on the Zend Framework website. You can use it for testing or
exploring the Zend\XmlRpc components.


XML-RPC Method Call


		1
2
3
4
5


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

echo $client->call('test.sayHello');

// hello










The XML-RPC value returned from the remote method call will be automatically unmarshaled and cast to the
equivalent PHP native type. In the example above, a PHP String is returned and is immediately ready to be
used.


The first parameter of the call() method receives the name of the remote method to call. If the remote method
requires any parameters, these can be sent by supplying a second, optional parameter to call() with an
Array of values to pass to the remote method:


XML-RPC Method Call with Parameters


		1
2
3
4
5
6
7
8


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

$arg1 = 1.1;
$arg2 = 'foo';

$result = $client->call('test.sayHello', array($arg1, $arg2));

// $result is a native PHP type










If the remote method doesn’t require parameters, this optional parameter may either be left out or an empty
array() passed to it. The array of parameters for the remote method can contain native PHP types,
Zend\XmlRpc\Value objects, or a mix of each.


The call() method will automatically convert the XML-RPC response and return its equivalent PHP native
type. A Zend\XmlRpc\Response object for the return value will also be available by calling the
getLastResponse() method after the call.





Types and Conversions


Some remote method calls require parameters. These are given to the call() method of Zend\XmlRpc\Client as
an array in the second parameter. Each parameter may be given as either a native PHP type which will be
automatically converted, or as an object representing a specific XML-RPC type (one of the Zend\XmlRpc\Value
objects).



PHP Native Types as Parameters


Parameters may be passed to call() as native PHP variables, meaning as a String, Integer, Float,
Boolean, Array, or an Object. In this case, each PHP native type will be auto-detected and converted
into one of the XML-RPC types according to this table:



PHP and XML-RPC Type Conversions





		PHP Native Type
		XML-RPC Type





		integer
		int



		Zend\Math\BigInteger\BigInteger
		i8



		double
		double



		boolean
		boolean



		string
		string



		null
		nil



		array
		array



		associative array
		struct



		object
		array



		DateTime
		dateTime.iso8601



		DateTime
		dateTime.iso8601








Note


What type do empty arrays get cast to?


Passing an empty array to an XML-RPC method is problematic, as it could represent either an array or a struct.
Zend\XmlRpc\Client detects such conditions and makes a request to the server’s system.methodSignature
method to determine the appropriate XML-RPC type to cast to.


However, this in itself can lead to issues. First off, servers that do not support system.methodSignature
will log failed requests, and Zend\XmlRpc\Client will resort to casting the value to an XML-RPC array
type. Additionally, this means that any call with array arguments will result in an additional call to the
remote server.


To disable the lookup entirely, you can call the setSkipSystemLookup() method prior to making your XML-RPC
call:


		1
2


		$client->setSkipSystemLookup(true);
$result = $client->call('foo.bar', array(array()));















Zend\XmlRpc\Value Objects as Parameters


Parameters may also be created as Zend\XmlRpc\Value instances to specify an exact XML-RPC type. The primary
reasons for doing this are:




		When you want to make sure the correct parameter type is passed to the procedure (i.e. the procedure requires
an integer and you may get it from a database as a string)


		When the procedure requires base64 or dateTime.iso8601 type (which doesn’t exists as a PHP native
type)


		When auto-conversion may fail (i.e. you want to pass an empty XML-RPC struct as a parameter. Empty structs
are represented as empty arrays in PHP but, if you give an empty array as a parameter it will be
auto-converted to an XML-RPC array since it’s not an associative array)









There are two ways to create a Zend\XmlRpc\Value object: instantiate one of the Zend\XmlRpc\Value
subclasses directly, or use the static factory method Zend\XmlRpc\Value::getXmlRpcValue().



Zend\XmlRpc\Value Objects for XML-RPC Types






		XML-RPC Type
		Zend\XmlRpc\Value Constant
		Zend\XmlRpc\Value Object





		int
		Zend\XmlRpc\Value::XMLRPC_TYPE_INTEGER
		Zend\XmlRpc\Value\Integer



		i8
		Zend\XmlRpc\Value::XMLRPC_TYPE_I8
		Zend\XmlRpc\Value\BigInteger



		ex:i8
		Zend\XmlRpc\Value::XMLRPC_TYPE_APACHEI8
		Zend\XmlRpc\Value\BigInteger



		double
		Zend\XmlRpc\Value::XMLRPC_TYPE_DOUBLE
		Zend\XmlRpc\Value_Double



		boolean
		Zend\XmlRpc\Value::XMLRPC_TYPE_BOOLEAN
		Zend\XmlRpc\Value\Boolean



		string
		Zend\XmlRpc\Value::XMLRPC_TYPE_STRING
		Zend\XmlRpc\Value\String



		nil
		Zend\XmlRpc\Value::XMLRPC_TYPE_NIL
		Zend\XmlRpc\Value\Nil



		ex:nil
		Zend\XmlRpc\Value::XMLRPC_TYPE_APACHENIL
		Zend\XmlRpc\Value\Nil



		base64
		Zend\XmlRpc\Value::XMLRPC_TYPE_BASE64
		Zend\XmlRpc\Value\Base64



		dateTime.iso8601
		Zend\XmlRpc\Value::XMLRPC_TYPE_DATETIME
		Zend\XmlRpc\Value\DateTime



		array
		Zend\XmlRpc\Value::XMLRPC_TYPE_ARRAY
		Zend\XmlRpc\Value\Array



		struct
		Zend\XmlRpc\Value::XMLRPC_TYPE_STRUCT
		Zend\XmlRpc\Value\Struct








Note


Automatic Conversion


When building a new Zend\XmlRpc\Value object, its value is set by a PHP type. The PHP type will be
converted to the specified type using PHP casting. For example, if a string is given as a value to the
Zend\XmlRpc\Value\Integer object, it will be converted using (int)$value.









Server Proxy Object


Another way to call remote methods with the XML-RPC client is to use the server proxy. This is a PHP object
that proxies a remote XML-RPC namespace, making it work as close to a native PHP object as possible.


To instantiate a server proxy, call the getProxy() instance method of Zend\XmlRpc\Client. This will return
an instance of Zend\XmlRpc\Client\ServerProxy. Any method call on the server proxy object will be forwarded to
the remote, and parameters may be passed like any other PHP method.


Proxy the Default Namespace


		1
2
3
4
5


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

$service = $client->getProxy();           // Proxy the default namespace

$hello = $service->test->sayHello(1, 2);  // test.Hello(1, 2) returns "hello"










The getProxy() method receives an optional argument specifying which namespace of the remote server to proxy.
If it does not receive a namespace, the default namespace will be proxied. In the next example, the ‘test’
namespace will be proxied:


Proxy Any Namespace


		1
2
3
4
5


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

$test  = $client->getProxy('test');     // Proxy the "test" namespace

$hello = $test->sayHello(1, 2);         // test.Hello(1,2) returns "hello"










If the remote server supports nested namespaces of any depth, these can also be used through the server proxy. For
example, if the server in the example above had a method test.foo.bar(), it could be called as
$test->foo->bar().





Error Handling


Two kinds of errors can occur during an XML-RPC method call: HTTP errors and XML-RPC faults. The
Zend\XmlRpc\Client recognizes each and provides the ability to detect and trap them independently.



HTTP Errors


If any HTTP error occurs, such as the remote HTTP server returns a 404 Not Found, a
Zend\XmlRpc\Client\Exception\HttpException will be thrown.


Handling HTTP Errors


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$client = new Zend\XmlRpc\Client('http://foo/404');

try {

    $client->call('bar', array($arg1, $arg2));

} catch (Zend\XmlRpc\Client\Exception\HttpException $e) {

    // $e->getCode() returns 404
    // $e->getMessage() returns "Not Found"

}










Regardless of how the XML-RPC client is used, the Zend\XmlRpc\Client\Exception\HttpException will be thrown
whenever an HTTP error occurs.





XML-RPC Faults


An XML-RPC fault is analogous to a PHP exception. It is a special type returned from an XML-RPC method call
that has both an error code and an error message. XML-RPC faults are handled differently depending on the context
of how the Zend\XmlRpc\Client is used.


When the call() method or the server proxy object is used, an XML-RPC fault will result in a
Zend\XmlRpc\Client\Exception\FaultException being thrown. The code and message of the exception will map
directly to their respective values in the original XML-RPC fault response.


Handling XML-RPC Faults


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

try {

    $client->call('badMethod');

} catch (Zend\XmlRpc\Client\Exception\FaultException $e) {

    // $e->getCode() returns 1
    // $e->getMessage() returns "Unknown method"

}










When the call() method is used to make the request, the Zend\XmlRpc\Client\Exception\FaultException will be
thrown on fault. A Zend\XmlRpc\Response object containing the fault will also be available by calling
getLastResponse().


When the doRequest() method is used to make the request, it will not throw the exception. Instead, it will
return a Zend\XmlRpc\Response object returned will containing the fault. This can be checked with isFault()
instance method of Zend\XmlRpc\Response.







Server Introspection


Some XML-RPC servers support the de facto introspection methods under the XML-RPC system. namespace.
Zend\XmlRpc\Client provides special support for servers with these capabilities.


A Zend\XmlRpc\Client\ServerIntrospection instance may be retrieved by calling the getIntrospector() method
of Zend\XmlRpc\Client. It can then be used to perform introspection operations on the server.





From Request to Response


Under the hood, the call() instance method of Zend\XmlRpc\Client builds a request object
(Zend\XmlRpc\Request) and sends it to another method, doRequest(), that returns a response object
(Zend\XmlRpc\Response).


The doRequest() method is also available for use directly:


Processing Request to Response


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$client = new Zend\XmlRpc\Client('http://framework.zend.com/xmlrpc');

$request = new Zend\XmlRpc\Request();
$request->setMethod('test.sayHello');
$request->setParams(array('foo', 'bar'));

$client->doRequest($request);

// $client->getLastRequest() returns instanceof Zend_XmlRpc_Request
// $client->getLastResponse() returns instanceof Zend_XmlRpc_Response










Whenever an XML-RPC method call is made by the client through any means, either the call() method,
doRequest() method, or server proxy, the last request object and its resultant response object will always be
available through the methods getLastRequest() and getLastResponse() respectively.





HTTP Client and Testing


In all of the prior examples, an HTTP client was never specified. When this is the case, a new instance of
Zend\Http\Client will be created with its default options and used by Zend\XmlRpc\Client automatically.


The HTTP client can be retrieved at any time with the getHttpClient() method. For most cases, the default
HTTP client will be sufficient. However, the setHttpClient() method allows for a different HTTP client
instance to be injected.


The setHttpClient() is particularly useful for unit testing. When combined with the
Zend\Http\Client\Adapter\Test, remote services can be mocked out for testing. See the unit tests for
Zend\XmlRpc\Client for examples of how to do this.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\XmlRpc\Client
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/database-and-models.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Database and models



The database


Now that we have the Album module set up with controller action methods and
view scripts, it is time to look at the model section of our application.
Remember that the model is the part that deals with the application’s core
purpose (the so-called “business rules”) and, in our case, deals with the
database. We will make use of the Zend Framework class
Zend\Db\TableGateway\TableGateway which is used to find, insert, update and
delete rows from a database table.


We are going to use MySQL, via PHP’s PDO driver, so create a database called
zf2tutorial, and run these SQL statements to create the album table with some
data in it.


CREATE TABLE album (
  id int(11) NOT NULL auto_increment,
  artist varchar(100) NOT NULL,
  title varchar(100) NOT NULL,
  PRIMARY KEY (id)
);
INSERT INTO album (artist, title)
    VALUES  ('The  Military  Wives',  'In  My  Dreams');
INSERT INTO album (artist, title)
    VALUES  ('Adele',  '21');
INSERT INTO album (artist, title)
    VALUES  ('Bruce  Springsteen',  'Wrecking Ball (Deluxe)');
INSERT INTO album (artist, title)
    VALUES  ('Lana  Del  Rey',  'Born  To  Die');
INSERT INTO album (artist, title)
    VALUES  ('Gotye',  'Making  Mirrors');






(The test data chosen happens to be the Bestsellers on Amazon UK at the time of
writing!)


We now have some data in a database and can write a very simple model for it.





The model files


Zend Framework does not provide a Zend\Model component as the model is your
business logic and it’s up to you to decide how you want it to work. There are
many components that you can use for this depending on your needs. One approach
is to have model classes represent each entity in your application and then
use mapper objects that load and save entities to the database. Another is to
use an ORM like Doctrine or Propel.


For this tutorial, we are going to create a very simple model by creating an
AlbumTable class that extends Zend\Db\TableGateway\TableGateway where
each album object is an Album object (known as an entity). This is an
implementation of the Table Data Gateway design pattern to allow for interfacing
with data in a database table. Be aware though that the Table Data Gateway
pattern can become limiting in larger systems. There is also a temptation to put
database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!


Let’s start with our Album entity class within the Model directory:


// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

class Album
{
    public $id;
    public $artist;
    public $title;

    public function exchangeArray($data)
    {
        $this->id     = (isset($data['id'])) ? $data['id'] : null;
        $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
        $this->title  = (isset($data['title'])) ? $data['title'] : null;
    }
}






Our Album entity object is a simple PHP class. In order to work with
Zend\Db’s AbstractTableGateway class, we need to implement the
exchangeArray() method. This method simply copies the data from the passed
in array to our entity’s properties. We will add an input filter for use with
our form later.


Next, we extend Zend\Db\TableGateway\AbstractTableGateway and create our own
AlbumTable class in the module’s Model directory like this:


// module/Album/src/Album/Model/AlbumTable.php:
namespace Album\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\ResultSet\ResultSet;
use Zend\Db\TableGateway\AbstractTableGateway;

class AlbumTable extends AbstractTableGateway
{
    protected $table ='album';

    public function __construct(Adapter $adapter)
    {
        $this->adapter = $adapter;
        $this->resultSetPrototype = new ResultSet();
        $this->resultSetPrototype->setArrayObjectPrototype(new Album());
        $this->initialize();
    }

    public function fetchAll()
    {
        $resultSet = $this->select();
        return $resultSet;
    }

    public function getAlbum($id)
    {
        $id  = (int) $id;
        $rowset = $this->select(array('id' => $id));
        $row = $rowset->current();
        if (!$row) {
            throw new \Exception("Could not find row $id");
        }
        return $row;
    }

    public function saveAlbum(Album $album)
    {
        $data = array(
            'artist' => $album->artist,
            'title'  => $album->title,
        );
        $id = (int)$album->id;
        if ($id == 0) {
            $this->insert($data);
        } else {
            if ($this->getAlbum($id)) {
                $this->update($data, array('id' => $id));
            } else {
                throw new \Exception('Form id does not exist');
            }
        }
    }

    public function deleteAlbum($id)
    {
        $this->delete(array('id' => $id));
    }
}






There’s a lot going on here. Firstly, we set the protected property $table
to the name of the database table, ‘album’ in this case. We then write a
constructor that takes a database adapter as its only parameter and assigns it
to the adapter property of our class. We then need to tell the table gateway’s
result set that whenever it creates a new row object, it should use an Album
object to do so. The TableGateway classes use the prototype pattern for
creation of result sets and entities. This means that instead of instantiating
when required, the system clones a previously instantiated object. See
PHP Constructor Best Practices and the Prototype Pattern [http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern]
for more details.


We then create some helper methods that our application will use to interface
with the database table.  fetchAll() retrieves all albums rows from the
database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum() either creates a new row in the database or
updates a row that already exists and deleteAlbum() removes the row
completely. The code for each of these methods is, hopefully, self-explanatory.





Using ServiceManager to configure the database credentials and inject into the controller


In order to always use the same instance of our AlbumTable, we will use the
ServiceManager to define how to create one. This is most easily done in the
Module class where we create a method called getServiceConfig() which is
automatically called by the ModuleManager and applied to the ServiceManager.
We’ll then be able to retrieve it in our controller when we need it.


To configure the ServiceManager, we can either supply the name of the class
to be instantiated or a factory (closure or callback) that instantiates the
object when the ServiceManager needs it. We start by implementing
getServiceConfig() to provide a factory that creates an AlbumTable. Add
this method to the bottom of the Module class.


// module/Album/Module.php:
namespace Album;

// Add this import statement:
use Album\Model\AlbumTable;

class Module
{
    // getAutoloaderConfig() and getConfig() methods here

    // Add this method:
    public function getServiceConfig()
    {
        return array(
            'factories' => array(
                'Album\Model\AlbumTable' =>  function($sm) {
                    $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');
                    $table     = new AlbumTable($dbAdapter);
                    return $table;
                },
            ),
        );
    }
}






This method returns an array of factories that are all merged together by
the ModuleManager before passing to the ServiceManager. We also need to
configure the ServiceManager so that it knows how to get a
Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the
merged config system. Zend Framework 2’s ModuleManager merges all the
configuration from each module’s module.config.php file and then merges in
the files in config/autoload (*.global.php and then *.local.php
files). We’ll add our database configuration information to global.php which
you should commit to your version control system. You can use local.php
(outside of the VCS) to store the credentials for your database if you want to:


// config/autoload/global.php:
return array(
    'db' => array(
        'driver'         => 'Pdo',
        'dsn'            => 'mysql:dbname=zf2tutorial;host=localhost',
        'driver_options' => array(
            PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
        ),
    ),
    'service_manager' => array(
        'factories' => array(
            'Zend\Db\Adapter\Adapter'
                    => 'Zend\Db\Adapter\AdapterServiceFactory',
        ),
    ),
);






You should put your database credentials in config/autoload/local.php so
that they are not in the git repository (as local.php is ignored):


// config/autoload/local.php:
return array(
    'db' => array(
        'username' => 'YOUR USERNAME HERE',
        'password' => 'YOUR PASSWORD HERE',
    ),
);






Now that the ServiceManager can create an AlbumTable instance for us, we
can add a method to the controller to retrieve it. Add getAlbumTable() to
the AlbumController class:


// module/Album/src/Album/Controller/AlbumController.php:
    public function getAlbumTable()
    {
        if (!$this->albumTable) {
            $sm = $this->getServiceLocator();
            $this->albumTable = $sm->get('Album\Model\AlbumTable');
        }
        return $this->albumTable;
    }






You should also add:


protected $albumTable;






to the top of the class.


We can now call getAlbumTable() from within our controller whenever we need
to interact with our model. Let’s start with a list of albums when the index
action is called.





Listing albums


In order to list the albums, we need to retrieve them from the model and pass
them to the view. To do this, we fill in indexAction() within
AlbumController.  Update the AlbumController’s indexAction() like
this:


// module/Album/src/Album/Controller/AlbumController.php:
// ...
    public function indexAction()
    {
        return new ViewModel(array(
            'albums' => $this->getAlbumTable()->fetchAll(),
        ));
    }
// ...






With Zend Framework 2, in order to set variables in the view, we return a
ViewModel instance where the first parameter of the constructor is an array
from the action containing data we need. These are then automatically passed to
the view script. The ViewModel object also allows us to change the view
script that is used, but the default is to use {controller name}/{action
name}. We can now fill in the index.phtml view script:


<?php
// module/Album/view/album/album/index.phtml:

$title = 'My albums';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p><a href="<?php echo $this->url('album', array(
        'action'=>'add'));?>">Add new album</a></p>

<table class="table">
<tr>
    <th>Title</th>
    <th>Artist</th>
    <th>&nbsp;</th>
</tr>
<?php foreach($albums as $album) : ?>
<tr>
    <td><?php echo $this->escapeHtml($album->title);?></td>
    <td><?php echo $this->escapeHtml($album->artist);?></td>    <td>
        <a href="<?php echo $this->url('album',
            array('action'=>'edit', 'id' => $album->id));?>">Edit</a>
        <a href="<?php echo $this->url('album',
            array('action'=>'delete', 'id' => $album->id));?>">Delete</a>
    </td>
</tr>
<?php endforeach; ?>
</table>






The first thing we do is to set the title for the page (used in the layout) and
also set the title for the <head> section using the headTitle() view
helper which will display in the browser’s title bar. We then create a link to
add a new album.


The url() view helper is provided by Zend Framework 2 and is used to create
the links we need. The first parameter to url() is the route name we wish to use
for construction of the URL, and the the second parameter is an array of all the
variables to fit into the placeholders to use. In this case we use our ‘album’
route which is set up to accept two placeholder variables: action and id.


We iterate over the $albums that we assigned from the controller action. The
Zend Framework 2 view system automatically ensures that these variables are
extracted into the scope of the view script, so that we don’t have to worry
about prefixing them with $this-> as we used to have to do with Zend
Framework 1; however you can do so if you wish.


We then create a table to display each album’s title and artist, and provide
links to allow for editing and deleting the record. A standard foreach: loop
is used to iterate over the list of albums, and we use the alternate form using
a colon and endforeach; as it is easier to scan than to try and match up
braces. Again, the url() view helper is used to create the edit and delete
links.



Note


We always use the escapeHtml() view helper to help protect
ourselves from XSS vulnerabilities.




If you open http://zf2-tutorial.localhost/album you should see this:


[image: ../_images/user-guide.database-and-models.album-list.png]






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Database and models
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.mvc.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Navigation_Page_Mvc


MVC pages are defined using MVC parameters known from the Zend_Controller component. An MVC page will use
Zend_Controller_Action_Helper_Url internally in the getHref() method to generate hrefs, and the
isActive() method will intersect the Zend_Controller_Request_Abstract params with the page’s params to
determine if the page is active.



MVC page options







		Key
		Type
		Default
		Description





		action
		String
		NULL
		Action name to use when generating href to the page.



		controller
		String
		NULL
		Controller name to use when generating href to the page.



		module
		String
		NULL
		Module name to use when generating href to the page.



		params
		Array
		array()
		User params to use when generating href to the page.



		route
		String
		NULL
		Route name to use when generating href to the page.



		reset_params
		bool
		TRUE
		Whether user params should be reset when generating href to the page.








Note


The three examples below assume a default MVC setup with the default route in place.


The URI returned is relative to the baseUrl in Zend_Controller_Front. In the examples, the baseUrl is
‘/’ for simplicity.




getHref() generates the page URI


This example show that MVC pages use Zend_Controller_Action_Helper_Url internally to generate URIs when
calling $page->getHref().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		// getHref() returns /
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'index',
    'controller' => 'index'
));

// getHref() returns /blog/post/view
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog'
));

// getHref() returns /blog/post/view/id/1337
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog',
    'params'     => array('id' => 1337)
));










isActive() determines if page is active


This example show that MVC pages determine whether they are active by using the params found in the request
object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


		/*
 * Dispatched request:
 * - module:     default
 * - controller: index
 * - action:     index
 */
$page1 = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'index',
    'controller' => 'index'
));

$page2 = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'bar',
    'controller' => 'index'
));

$page1->isActive(); // returns true
$page2->isActive(); // returns false

/*
 * Dispatched request:
 * - module:     blog
 * - controller: post
 * - action:     view
 * - id:         1337
 */
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog'
));

// returns true, because request has the same module, controller and action
$page->isActive();

/*
 * Dispatched request:
 * - module:     blog
 * - controller: post
 * - action:     view
 */
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog',
    'params'     => array('id' => null)
));

// returns false, because page requires the id param to be set in the request
$page->isActive(); // returns false










Using routes


Routes can be used with MVC pages. If a page has a route, this route will be used in getHref() to generate
the URL for the page.



Note


Note that when using the route property in a page, you should also specify the default params that the route
defines (module, controller, action, etc.), otherwise the isActive() method will not be able to determine if
the page is active. The reason for this is that there is currently no way to get the default params from a
Zend_Controller_Router_Route_Interface object, nor to retrieve the current route from a
Zend_Controller_Router_Interface object.




		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// the following route is added to the ZF router
Zend_Controller_Front::getInstance()->getRouter()->addRoute(
    'article_view', // route name
    new Zend_Controller_Router_Route(
        'a/:id',
        array(
            'module'     => 'news',
            'controller' => 'article',
            'action'     => 'view',
            'id'         => null
        )
    )
);

// a page is created with a 'route' option
$page = new Zend_Navigation_Page_Mvc(array(
    'label'      => 'A news article',
    'route'      => 'article_view',
    'module'     => 'news',    // required for isActive(), see note above
    'controller' => 'article', // required for isActive(), see note above
    'action'     => 'view',    // required for isActive(), see note above
    'params'     => array('id' => 42)
));

// returns: /a/42
$page->getHref();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Navigation_Page_Mvc
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.db.metadata.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\Metadata


Zend\Db\Metadata is as sub-component of Zend\Db that makes it possible to get metadata information about
tables, columns, constraints, triggers, and other information from a database in a standardized way. The primary
interface for the Metadata objects is:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		interface MetadataInterface
{
    public function getSchemas();

    public function getTableNames($schema = null, $includeViews = false);
    public function getTables($schema = null, $includeViews = false);
    public function getTable($tableName, $schema = null);

    public function getViewNames($schema = null);
    public function getViews($schema = null);
    public function getView($viewName, $schema = null);

    public function getColumnNames($table, $schema = null);
    public function getColumns($table, $schema = null);
    public function getColumn($columnName, $table, $schema = null);

    public function getConstraints($table, $schema = null);
    public function getConstraint($constraintName, $table, $schema = null);
    public function getConstraintKeys($constraint, $table, $schema = null);

    public function getTriggerNames($schema = null);
    public function getTriggers($schema = null);
    public function getTrigger($triggerName, $schema = null);
}











Basic Usage


Usage of Zend\Db\Metadata is very straight forward. The top level class Zend\Db\Metadata\Metadata will,
given an adapter, choose the best strategy (based on the database platform being used) for retrieving metadata. In
most cases, information will come from querying the INFORMATION_SCHEMA tables generally accessible to all database
connections about the currently accessible schema.


Metadata::get*Names() methods will return an array of strings, while the other methods will return specific value
objects with the containing information. This is best demonstrated by the script below.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		$metadata = new Zend\Db\Metadata\Metadata($adapter);

// get the table names
$tableNames = $metadata->getTableNames();

foreach ($tableNames as $tableName) {
    echo 'In Table ' . $tableName . PHP_EOL;

    $table = $metadata->getTable($tableName);


    echo '    With columns: ' . PHP_EOL;
    foreach ($table->getColumns() as $column) {
        echo '        ' . $column->getName()
            . ' -> ' . $column->getDataType()
            . PHP_EOL;
    }

    echo PHP_EOL;
    echo '    With constraints: ' . PHP_EOL;

    foreach ($metadata->getConstraints($tableName) as $constraint) {
        /** @var $constraint Zend\Db\Metadata\Object\ConstraintObject */
        echo '        ' . $constraint->getName()
            . ' -> ' . $constraint->getType()
            . PHP_EOL;
        if (!$constraint->hasColumns()) {
            continue;
        }
        echo '            column: ' . implode(', ', $constraint->getColumns());
        if ($constraint->isForeignKey()) {
            $fkCols = array();
            foreach ($constraint->getReferencedColumns() as $refColumn) {
                $fkCols[] = $constraint->getReferencedTableName() . '.' . $refColumn;
            }
            echo ' => ' . implode(', ', $fkCols);
        }
        echo PHP_EOL;

    }

    echo '----' . PHP_EOL;
}










Metadata returns value objects that provide an interface to help developers better explore the metadata. Below is
the API for the various value objects:


The TableObject:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		class Zend\Db\Metadata\Object\TableObject
{
    public function __construct($name);
    public function setColumns(array $columns);
    public function getColumns();
    public function setConstraints($constraints);
    public function getConstraints();
    public function setName($name);
    public function getName();
}










The ColumnObject:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		class Zend\Db\Metadata\Object\ColumnObject {
    public function __construct($name, $tableName, $schemaName = null);
    public function setName($name);
    public function getName();
    public function getTableName();
    public function setTableName($tableName);
    public function setSchemaName($schemaName);
    public function getSchemaName();
    public function getOrdinalPosition();
    public function setOrdinalPosition($ordinalPosition);
    public function getColumnDefault();
    public function setColumnDefault($columnDefault);
    public function getIsNullable();
    public function setIsNullable($isNullable);
    public function isNullable();
    public function getDataType();
    public function setDataType($dataType);
    public function getCharacterMaximumLength();
    public function setCharacterMaximumLength($characterMaximumLength);
    public function getCharacterOctetLength();
    public function setCharacterOctetLength($characterOctetLength);
    public function getNumericPrecision();
    public function setNumericPrecision($numericPrecision);
    public function getNumericScale();
    public function setNumericScale($numericScale);
    public function getNumericUnsigned();
    public function setNumericUnsigned($numericUnsigned);
    public function isNumericUnsigned();
    public function getErratas();
    public function setErratas(array $erratas);
    public function getErrata($errataName);
    public function setErrata($errataName, $errataValue);
}










The ConstraintObject:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		class Zend\Db\Metadata\Object\ConstraintObject
{
    public function __construct($name, $tableName, $schemaName = null);
    public function setName($name);
    public function getName();
    public function setSchemaName($schemaName);
    public function getSchemaName();
    public function getTableName();
    public function setTableName($tableName);
    public function setType($type);
    public function getType();
    public function hasColumns();
    public function getColumns();
    public function setColumns(array $columns);
    public function getReferencedTableSchema();
    public function setReferencedTableSchema($referencedTableSchema);
    public function getReferencedTableName();
    public function setReferencedTableName($referencedTableName);
    public function getReferencedColumns();
    public function setReferencedColumns(array $referencedColumns);
    public function getMatchOption();
    public function setMatchOption($matchOption);
    public function getUpdateRule();
    public function setUpdateRule($updateRule);
    public function getDeleteRule();
    public function setDeleteRule($deleteRule);
    public function getCheckClause();
    public function setCheckClause($checkClause);
    public function isPrimaryKey();
    public function isUnique();
    public function isForeignKey();
    public function isCheck();

}










The TriggerObject:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		class Zend\Db\Metadata\Object\TriggerObject
{
    public function getName();
    public function setName($name);
    public function getEventManipulation();
    public function setEventManipulation($eventManipulation);
    public function getEventObjectCatalog();
    public function setEventObjectCatalog($eventObjectCatalog);
    public function getEventObjectSchema();
    public function setEventObjectSchema($eventObjectSchema);
    public function getEventObjectTable();
    public function setEventObjectTable($eventObjectTable);
    public function getActionOrder();
    public function setActionOrder($actionOrder);
    public function getActionCondition();
    public function setActionCondition($actionCondition);
    public function getActionStatement();
    public function setActionStatement($actionStatement);
    public function getActionOrientation();
    public function setActionOrientation($actionOrientation);
    public function getActionTiming();
    public function setActionTiming($actionTiming);
    public function getActionReferenceOldTable();
    public function setActionReferenceOldTable($actionReferenceOldTable);
    public function getActionReferenceNewTable();
    public function setActionReferenceNewTable($actionReferenceNewTable);
    public function getActionReferenceOldRow();
    public function setActionReferenceOldRow($actionReferenceOldRow);
    public function getActionReferenceNewRow();
    public function setActionReferenceNewRow($actionReferenceNewRow);
    public function getCreated();
    public function setCreated($created);
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\Metadata
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.different-transports.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Different Transports


In case you want to send different e-mails through different connections, you can also pass the transport object
directly to send() without a prior call to setDefaultTransport(). The passed object will override the
default transport for the actual send() request.


Using Different Transports


		1
2
3
4
5
6
7


		$mail = new Zend_Mail();
// build message...
$tr1 = new Zend_Mail_Transport_Smtp('server@example.com');
$tr2 = new Zend_Mail_Transport_Smtp('other_server@example.com');
$mail->send($tr1);
$mail->send($tr2);
$mail->send();  // use default again











Note


Additional transports


Additional transports can be written by implementing Zend_Mail_Transport_Interface.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Different Transports
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/comment-bright.png





ref/migration.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


When you are working with Zend Framework for a longer time, then you may want to upgrade to new releases as new
features are integrated and found bugs are fixed.


We at Zend Framework try to prevent possible problems which you may have when you are in need to do a upgrade.
Backwards compatibility is one of our main goals.


Still, from time to time, it is not possible or even necessary to make changes which have effect on your code, to
prevent or solve other problems. To help you to detect possible changes you may need to do when upgrading to a new
Zend Framework release, you should carefully read this section.


Below you will find informations about all known changes which can have effect on your code, and examples for you
about necessary changes you have to do when doing an upgrade.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.upca.png
Al 23455H7sgm b





modules/zend.ldap.api.ldap.attribute.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Attribute


Zend\Ldap\Attribute is a helper class providing only static methods to manipulate arrays suitable to the
structure used in Zend\Ldap\Ldap data modification methods and to the data format required by the LDAP
server. PHP data types are converted using Zend\Ldap\Converter\Converter methods.



Zend\Ldap\Attribute API





		Method
		Description





		void setAttribute(array &$data, string $attribName, mixed $value, boolean $append)
		Sets the attribute $attribName in $data to the value $value. If $append is TRUE (FALSE by default) $value will be appended to the attribute. $value can be a scalar value or an array of scalar values. Conversion will take place.



		array|mixed getAttribute(array $data, string $attribName, integer|null $index)
		Returns the attribute $attribName from $data. If $index is NULL (default) an array will be returned containing all the values for the given attribute. An empty array will be returned if the attribute does not exist in the given array. If an integer index is specified the corresponding value at the given index will be returned. If the index is out of bounds, NULL will be returned. Conversion will take place.



		boolean attributeHasValue(array &$data, string $attribName, mixed|array $value)
		Checks if the attribute $attribName in $data has the value(s) given in $value. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		void removeDuplicatesFromAttribute(array &$data, string $attribName)
		Removes all duplicates from the attribute $attribName in $data.



		void removeFromAttribute(array &$data, string $attribName, mixed|array $value)
		Removes the value(s) given in $value from the attribute $attribName in $data.



		void setPassword(array &$data, string $password, string $hashType, string $attribName)
		Sets a LDAP password for the attribute $attribName in $data. $attribName defaults to ‘userPassword’ which is the standard password attribute. The password hash can be specified with $hashType. The default value here is Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other possibility.



		string createPassword(string $password, string $hashType)
		Creates a LDAP password. The password hash can be specified with $hashType. The default value here is Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other possibility.



		void setDateTimeAttribute(array &$data, string $attribName, integer|array $value, boolean $utc, boolean $append)
		Sets the attribute $attribName in $data to the date/time value $value. if $append is TRUE (FALSE by default) $value will be appended to the attribute. $value can be an integer value or an array of integers. Date-time-conversion according to Zend\Ldap\Converter\Converter::toLdapDateTime() will take place.



		array|integer getDateTimeAttribute(array $data, string $attribName, integer|null $index)
		Returns the date/time attribute $attribName from $data. If $index is NULL (default) an array will be returned containing all the date/time values for the given attribute. An empty array will be returned if the attribute does not exist in the given array. If an integer index is specified the corresponding date/time value at the given index will be returned. If the index is out of bounds, NULL will be returned. Date-time-conversion according to Zend\Ldap\Converter\Converter::fromLdapDateTime() will take place.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Attribute
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Form utilizes the decorator pattern in order to render elements and forms. Unlike the
classic decorator pattern [http://en.wikipedia.org/wiki/Decorator_pattern], in which you pass an object to a wrapping class, decorators in Zend_Form
implement a strategy pattern [http://en.wikipedia.org/wiki/Strategy_pattern], and utilize the metadata contained in an element or form in order to create a
representation of it


Don’t let the terminology scare you away, however; at heart, decorators in Zend_Form are not terribly
difficult, and the mini-tutorials that follow should help you along the way. They will guide you through the basics
of decoration, all the way to creating decorators for composite elements.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.itf14.png
345 A 780015 31





modules/zend.loader.plugin-class-locator.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The PluginClassLocator interface



Overview


The PluginClassLocator interface describes a component capable of maintaining an internal map of plugin names
to actual class names. Classes implementing this interface can register and unregister plugin/class associations,
and return the entire map.





Quick Start


Classes implementing the PluginClassLocator need to implement only three methods, as illustrated below.


		1
2
3
4
5
6
7
8


		namespace Zend\Loader;

interface PluginClassLocator
{
    public function registerPlugin($shortName, $className);
    public function unregisterPlugin($shortName);
    public function getRegisteredPlugins();
}













Configuration Options


This component defines no configuration options, as it is an interface.





Available Methods



		registerPlugin


		Register a mapping of plugin name to class name
registerPlugin($shortName, $className)


registerPlugin()
Implement this method to add or overwrite plugin name/class name associations in the internal plugin map.
$shortName will be aliased to $className.









		unregisterPlugin


		Remove a plugin/class name association
unregisterPlugin($shortName)


unregisterPlugin()
Implement this to allow removing an existing plugin mapping corresponding to $shortName.









		getRegisteredPlugins


		Retrieve the map of plugin name/class name associations
getRegisteredPlugins()


getRegisteredPlugins()
Implement this to allow returning the plugin name/class name map.











Examples


Please see the Quick Start for the interface specification.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The PluginClassLocator interface
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.callback.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Callback


Zend\Validator\Callback allows you to provide a callback with which to validate a given value.



Supported options for Zend\Validator\Callback


The following options are supported for Zend\Validator\Callback:



		callback: Sets the callback which will be called for the validation.


		options: Sets the additional options which will be given to the callback.








Basic usage


The simplest usecase is to have a single function and use it as a callback. Let’s expect we have the following
function.


		1
2
3
4
5


		function myMethod($value)
{
    // some validation
    return true;
}










To use it within Zend\Validator\Callback you just have to call it this way:


		1
2
3
4
5
6


		$valid = new Zend\Validator\Callback('myMethod');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Usage with closures


PHP 5.3 introduces closures [http://php.net/functions.anonymous], which are basically self-contained or anonymous functions. PHP considers
closures another form of callback, and, as such, may be used with Zend\Validator\Callback. As an example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid = new Zend\Validator\Callback(function($value){
    // some validation
    return true;
});

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Usage with class-based callbacks


Of course it’s also possible to use a class method as callback. Let’s expect we have the following class method:


		1
2
3
4
5
6
7
8


		class MyClass
{
    public function myMethod($value)
    {
        // some validation
        return true;
    }
}










The definition of the callback is in this case almost the same. You have just to create an instance of the class
before the method and create an array describing the callback:


		1
2
3
4
5
6
7


		$object = new MyClass;
$valid = new Zend\Validator\Callback(array($object, 'myMethod'));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










You may also define a static method as a callback. Consider the following class definition and validator usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class MyClass
{
    public static function test($value)
    {
        // some validation
        return true;
    }
}

$valid = new Zend\Validator\Callback(array('MyClass', 'test'));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










Finally, if you are using PHP 5.3, you may define the magic method __invoke() in your class. If you do so,
simply providing an instance of the class as the callback will also work:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class MyClass
{
    public function __invoke($value)
    {
        // some validation
        return true;
    }
}

$object = new MyClass();
$valid = new Zend\Validator\Callback($object);
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Adding options


Zend\Validator\Callback also allows the usage of options which are provided as additional arguments to the
callback.


Consider the following class and method definition:


		1
2
3
4
5
6
7
8


		class MyClass
{
    function myMethod($value, $option)
    {
        // some validation
        return true;
    }
}










There are two ways to inform the validator of additional options: pass them in the constructor, or pass them to the
setOptions() method.


To pass them to the constructor, you would need to pass an array containing two keys, “callback” and “options”:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid = new Zend\Validator\Callback(array(
    'callback' => array('MyClass', 'myMethod'),
    'options'  => $option,
));

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










Otherwise, you may pass them to the validator after instantiation:


		1
2
3
4
5
6
7
8


		$valid = new Zend\Validator\Callback(array('MyClass', 'myMethod'));
$valid->setOptions($option);

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










When there are additional values given to isValid() then these values will be added immediately after
$value.


		1
2
3
4
5
6
7
8


		$valid = new Zend\Validator\Callback(array('MyClass', 'myMethod'));
$valid->setOptions($option);

if ($valid->isValid($input, $additional)) {
    // input appears to be valid
} else {
    // input is invalid
}










When making the call to the callback, the value to be validated will always be passed as the first argument to the
callback followed by all other values given to isValid(); all other options will follow it. The amount and type
of options which can be used is not limited.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Callback
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.input.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Filter_Input


Zend_Filter_Input provides a declarative interface to associate multiple filters and validators, apply them to
collections of data, and to retrieve input values after they have been processed by the filters and validators.
Values are returned in escaped format by default for safe HTML output.


Consider the metaphor that this class is a cage for external data. Data enter the application from external
sources, such as HTTP request parameters, HTTP headers, a web service, or even read from a database or another
file. Data are first put into the cage, and subsequently the application can access data only by telling the cage
what the data should be and how they plan to use it. The cage inspects the data for validity. It might apply
escaping to the data values for the appropriate context. The cage releases data only if it can fulfill these
responsibilities. With a simple and convenient interface, it encourages good programming habits and makes
developers think about how data are used.



		Filters transform input values, by removing or changing characters within the value. The goal is to
“normalize” input values until they match an expected format. For example, if a string of numeric digits is
needed, and the input value is “abc123”, then it might be a reasonable transformation to change the value to the
string “123”.


		Validators check input values against criteria and report whether they passed the test or not. The value is
not changed, but the check may fail. For example, if a string must look like an email address, and the input
value is “abc123”, then the value is not considered valid.


		Escapers transform a value by removing magic behavior of certain characters. In some output contexts, special
characters have meaning. For example, the characters ‘<’ and ‘>’ delimit HTML tags, and if a string containing
those characters is output in an HTML context, the content between them might affect the output or
functionality of the HTML presentation. Escaping the characters removes the special meaning, so they are output
as literal characters.





To use Zend_Filter_Input, perform the following steps:


. Declare filter and validator rules


. Create the filter and validator processor


. Provide input data


. Retrieve validated fields and other reports


The following sections describe the steps for using this class.



Declaring Filter and Validator Rules


Before creating an instance of Zend_Filter_Input, declare an array of filter rules and an array of validator
rules. This associative array maps a rule name to a filter or validator or a chain of filters or validators.


The following example filter rule set that declares the field ‘month’ is filtered by Zend_Filter_Digits, and
the field ‘account’ is filtered by Zend_Filter_StringTrim. Then a validation rule set declares that the field
‘account’ is valid only if it contains only alphabetical characters.


		1
2
3
4
5
6
7
8


		$filters = array(
    'month'   => 'Digits',
    'account' => 'StringTrim'
);

$validators = array(
    'account' => 'Alpha'
);










Each key in the $filters array above is the name of a rule for applying a filter to a specific data field. By
default, the name of the rule is also the name of the input data field to which to apply the rule.


You can declare a rule in several formats:



		A single string scalar, which is mapped to a class name.


		1
2
3


		$validators = array(
    'month'   => 'Digits',
);













		An object instance of one of the classes that implement Zend_Filter_Interface or Zend_Validate_Interface.


		1
2
3
4
5


		$digits = new Zend_Validate_Digits();

$validators = array(
    'month'   => $digits
);













		An array, to declare a chain of filters or validators. The elements of this array can be strings mapping to class
names or filter/validator objects, as in the cases described above. In addition, you can use a third choice: an
array containing a string mapping to the class name followed by arguments to pass to its constructor.


		1
2
3
4
5
6
7


		$validators = array(
    'month'   => array(
        'Digits',                // string
        new Zend_Validate_Int(), // object instance
        array('Between', 1, 12)  // string with constructor arguments
    )
);

















Note


If you declare a filter or validator with constructor arguments in an array, then you must make an array for the
rule, even if the rule has only one filter or validator.




You can use a special “wildcard” rule key ‘*’ in either the filters array or the validators array. This means
that the filters or validators declared in this rule will be applied to all input data fields. Note that the order
of entries in the filters array or validators array is significant; the rules are applied in the same order in
which you declare them.


		1
2
3
4


		$filters = array(
    '*'     => 'StringTrim',
    'month' => 'Digits'
);













Creating the Filter and Validator Processor


After declaring the filters and validators arrays, use them as arguments in the constructor of
Zend_Filter_Input. This returns an object that knows all your filtering and validating rules, and you can use
this object to process one or more sets of input data.


		1


		$input = new Zend_Filter_Input($filters, $validators);










You can specify input data as the third constructor argument. The data structure is an associative array. The keys
are field names, and the values are data values. The standard $_GET and $_POST superglobal variables in
PHP are examples of this format. You can use either of these variables as input data for Zend_Filter_Input.


		1
2
3


		$data = $_GET;

$input = new Zend_Filter_Input($filters, $validators, $data);










Alternatively, use the setData() method, passing an associative array of key/value pairs the same format as
described above.


		1
2


		$input = new Zend_Filter_Input($filters, $validators);
$input->setData($newData);










The setData() method redefines data in an existing Zend_Filter_Input object without changing the filtering
and validation rules. Using this method, you can run the same rules against different sets of input data.





Retrieving Validated Fields and other Reports


After you have declared filters and validators and created the input processor, you can retrieve reports of
missing, unknown, and invalid fields. You also can get the values of fields after filters have been applied.



Querying if the input is valid


If all input data pass the validation rules, the isValid() method returns TRUE. If any field is invalid or
any required field is missing, isValid() returns FALSE.


		1
2
3


		if ($input->isValid()) {
  echo "OK\n";
}










This method accepts an optional string argument, naming an individual field. If the specified field passed
validation and is ready for fetching, isValid('fieldName') returns TRUE.


		1
2
3


		if ($input->isValid('month')) {
  echo "Field 'month' is OK\n";
}













Getting Invalid, Missing, or Unknown Fields



		Invalid fields are those that don’t pass one or more of their validation checks.


		Missing fields are those that are not present in the input data, but were declared with the metacommand
'presence'=>'required' (see the later section on
metacommands).


		Unknown fields are those that are not declared in any rule in the array of validators, but appear in the
input data.





		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		if ($input->hasInvalid() || $input->hasMissing()) {
  $messages = $input->getMessages();
}

// getMessages() simply returns the merge of getInvalid() and
// getMissing()

if ($input->hasInvalid()) {
  $invalidFields = $input->getInvalid();
}

if ($input->hasMissing()) {
  $missingFields = $input->getMissing();
}

if ($input->hasUnknown()) {
  $unknownFields = $input->getUnknown();
}










The results of the getMessages() method is an associative array, mapping a rule name to an array of error
messages related to that rule. Note that the index of this array is the rule name used in the rule declaration,
which may be different from the names of fields checked by the rule.


The getMessages() method returns the merge of the arrays returned by the getInvalid() and getMissing().
These methods return subsets of the messages, related to validation failures, or fields that were declared as
required but missing from the input.


The getErrors() method returns an associative array, mapping a rule name to an array of error identifiers.
Error identifiers are fixed strings, to identify the reason for a validation failure, while messages can be
customized. See this section for more information.


You can specify the message returned by getMissing() using the ‘missingMessage’ option, as an argument to the
Zend_Filter_Input constructor or using the setOptions() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$options = array(
    'missingMessage' => "Field '%field%' is required"
);

$input = new Zend_Filter_Input($filters, $validators, $data, $options);

// alternative method:

$input = new Zend_Filter_Input($filters, $validators, $data);
$input->setOptions($options);










And you can also add a translator which gives you the ability to provide multiple languages for the messages which
are returned by Zend_Filter_Input.


		1
2
3
4
5
6
7
8


		$translate = new Zend_Translator_Adapter_Array(array(
    'content' => array(
        Zend_Filter_Input::MISSING_MESSAGE => "Where is the field?"
    )
);

$input = new Zend_Filter_Input($filters, $validators, $data);
$input->setTranslator($translate);










When you are using an application wide translator, then it will also be used by Zend_Filter_Input. In this case
you will not have to set the translator manually.


The results of the getUnknown() method is an associative array, mapping field names to field values. Field
names are used as the array keys in this case, instead of rule names, because no rule mentions the fields
considered to be unknown fields.





Getting Valid Fields


All fields that are neither invalid, missing, nor unknown are considered valid. You can get values for valid fields
using a magic accessor. There are also non-magic accessor methods getEscaped() and getUnescaped().


		1
2
3


		$m = $input->month;                 // escaped output from magic accessor
$m = $input->getEscaped('month');   // escaped output
$m = $input->getUnescaped('month'); // not escaped










By default, when retrieving a value, it is filtered with the Zend_Filter_HtmlEntities. This is the default
because it is considered the most common usage to output the value of a field in HTML. The HtmlEntities filter
helps prevent unintentional output of code, which can result in security problems.



Note


As shown above, you can retrieve the unescaped value using the getUnescaped() method, but you must write
code to use the value safely, and avoid security issues such as vulnerability to cross-site scripting attacks.





Warning


Escaping unvalidated fields


As mentioned before getEscaped() returns only validated fields. Fields which do not have an associated
validator can not be received this way. Still, there is a possible way. You can add a empty validator for all
fields.


		1
2
3


		$validators = array('*' => array());

$input = new Zend_Filter_Input($filters, $validators, $data, $options);










But be warned that using this notation introduces a security leak which could be used for cross-site scripting
attacks. Therefor you should always set individual validators for each field.




You can specify a different filter for escaping values, by specifying it in the constructor options array:


		1
2


		$options = array('escapeFilter' => 'StringTrim');
$input = new Zend_Filter_Input($filters, $validators, $data, $options);










Alternatively, you can use the setDefaultEscapeFilter() method:


		1
2


		$input = new Zend_Filter_Input($filters, $validators, $data);
$input->setDefaultEscapeFilter(new Zend_Filter_StringTrim());










In either usage, you can specify the escape filter as a string base name of the filter class, or as an object
instance of a filter class. The escape filter can be an instance of a filter chain, an object of the class
Zend_Filter.


Filters to escape output should be run in this way, to make sure they run after validation. Other filters you
declare in the array of filter rules are applied to input data before data are validated. If escaping filters were
run before validation, the process of validation would be more complex, and it would be harder to provide both
escaped and unescaped versions of the data. So it is recommended to declare filters to escape output using
setDefaultEscapeFilter(), not in the $filters array.


There is only one method getEscaped(), and therefore you can specify only one filter for escaping (although
this filter can be a filter chain). If you need a single instance of Zend_Filter_Input to return escaped output
using more than one filtering method, you should extend Zend_Filter_Input and implement new methods in your
subclass to get values in different ways.







Using Metacommands to Control Filter or Validator Rules


In addition to declaring the mapping from fields to filters or validators, you can specify some “metacommands” in
the array declarations, to control some optional behavior of Zend_Filter_Input. Metacommands appear as
string-indexed entries in a given filter or validator array value.



The FIELDS metacommand


If the rule name for a filter or validator is different than the field to which it should apply, you can specify
the field name with the ‘fields’ metacommand.


You can specify this metacommand using the class constant Zend_Filter_Input::FIELDS instead of the string.


		1
2
3
4
5
6


		$filters = array(
    'month' => array(
        'Digits',        // filter name at integer index [0]
        'fields' => 'mo' // field name at string index ['fields']
    )
);










In the example above, the filter rule applies the ‘digits’ filter to the input field named ‘mo’. The string ‘month’
simply becomes a mnemonic key for this filtering rule; it is not used as the field name if the field is specified
with the ‘fields’ metacommand, but it is used as the rule name.


The default value of the ‘fields’ metacommand is the index of the current rule. In the example above, if the
‘fields’ metacommand is not specified, the rule would apply to the input field named ‘month’.


Another use of the ‘fields’ metacommand is to specify fields for filters or validators that require multiple fields
as input. If the ‘fields’ metacommand is an array, the argument to the corresponding filter or validator is an
array of the values of those fields. For example, it is common for users to specify a password string in two
fields, and they must type the same string in both fields. Suppose you implement a validator class that takes an
array argument, and returns TRUE if all the values in the array are equal to each other.


		1
2
3
4
5
6
7
8
9


		$validators = array(
    'password' => array(
        'StringEquals',
        'fields' => array('password1', 'password2')
    )
);
// Invokes hypothetical class Zend_Validate_StringEquals,
// passing an array argument containing the values of the two input
// data fields named 'password1' and 'password2'.










If the validation of this rule fails, the rule key (‘password’) is used in the return value of getInvalid(),
not any of the fields named in the ‘fields’ metacommand.





The PRESENCE metacommand


Each entry in the validator array may have a metacommand called ‘presence’. If the value of this metacommand is
‘required’ then the field must exist in the input data, or else it is reported as a missing field.


You can specify this metacommand using the class constant Zend_Filter_Input::PRESENCE instead of the string.


		1
2
3
4
5
6


		$validators = array(
    'month' => array(
        'digits',
        'presence' => 'required'
    )
);










The default value of this metacommand is ‘optional’.





The DEFAULT_VALUE metacommand


If a field is not present in the input data, and you specify a value for the ‘default’ metacommand for that rule,
the field takes the value of the metacommand.


You can specify this metacommand using the class constant Zend_Filter_Input::DEFAULT_VALUE instead of the
string.


This default value is assigned to the field before any of the validators are invoked. The default value is applied
to the field only for the current rule; if the same field is referenced in a subsequent rule, the field has no
value when evaluating that rule. Thus different rules can declare different default values for a given field.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validators = array(
    'month' => array(
        'digits',
        'default' => '1'
    )
);

// no value for 'month' field
$data = array();

$input = new Zend_Filter_Input(null, $validators, $data);
echo $input->month; // echoes 1










If your rule uses the FIELDS metacommand to define an array of multiple fields, you can define an array for the
DEFAULT_VALUE metacommand and the defaults of corresponding keys are used for any missing fields. If FIELDS
defines multiple fields but DEFAULT_VALUE is a scalar, then that default value is used as the value for any
missing fields in the array.


There is no default value for this metacommand.





The ALLOW_EMPTY metacommand


By default, if a field exists in the input data, then validators are applied to it, even if the value of the field
is an empty string (‘’). This is likely to result in a failure to validate. For example, if the validator
checks for digit characters, and there are none because a zero-length string has no characters, then the validator
reports the data as invalid.


If in your case an empty string should be considered valid, you can set the metacommand ‘allowEmpty’ to TRUE.
Then the input data passes validation if it is present in the input data, but has the value of an empty string.


You can specify this metacommand using the class constant Zend_Filter_Input::ALLOW_EMPTY instead of the string.


		1
2
3
4
5
6


		$validators = array(
    'address2' => array(
        'Alnum',
        'allowEmpty' => true
    )
);










The default value of this metacommand is FALSE.


In the uncommon case that you declare a validation rule with no validators, but the ‘allowEmpty’ metacommand is
FALSE (that is, the field is considered invalid if it is empty), Zend_Filter_Input returns a default error
message that you can retrieve with getMessages(). You can specify this message using the ‘notEmptyMessage’
option, as an argument to the Zend_Filter_Input constructor or using the setOptions() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$options = array(
    'notEmptyMessage' => "A non-empty value is required for field '%field%'"
);

$input = new Zend_Filter_Input($filters, $validators, $data, $options);

// alternative method:

$input = new Zend_Filter_Input($filters, $validators, $data);
$input->setOptions($options);













The BREAK_CHAIN metacommand


By default if a rule has more than one validator, all validators are applied to the input, and the resulting
messages contain all error messages caused by the input.


Alternatively, if the value of the ‘breakChainOnFailure’ metacommand is TRUE, the validator chain terminates
after the first validator fails. The input data is not checked against subsequent validators in the chain, so it
might cause more violations even if you correct the one reported.


You can specify this metacommand using the class constant Zend_Filter_Input::BREAK_CHAIN instead of the string.


		1
2
3
4
5
6
7
8
9


		$validators = array(
    'month' => array(
        'Digits',
        new Zend_Validate_Between(1,12),
        new Zend_Validate_GreaterThan(0),
        'breakChainOnFailure' => true
    )
);
$input = new Zend_Filter_Input(null, $validators);










The default value of this metacommand is FALSE.


The validator chain class, Zend_Validate, is more flexible with respect to breaking chain execution than
Zend_Filter_Input. With the former class, you can set the option to break the chain on failure independently
for each validator in the chain. With the latter class, the defined value of the ‘breakChainOnFailure’ metacommand
for a rule applies uniformly for all validators in the rule. If you require the more flexible usage, you should
create the validator chain yourself, and use it as an object in the validator rule definition:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Create validator chain with non-uniform breakChainOnFailure
// attributes
$chain = new Zend_Validate();
$chain->addValidator(new Zend_Validate_Digits(), true);
$chain->addValidator(new Zend_Validate_Between(1,12), false);
$chain->addValidator(new Zend_Validate_GreaterThan(0), true);

// Declare validator rule using the chain defined above
$validators = array(
    'month' => $chain
);
$input = new Zend_Filter_Input(null, $validators);













The MESSAGES metacommand


You can specify error messages for each validator in a rule using the metacommand ‘messages’. The value of this
metacommand varies based on whether you have multiple validators in the rule, or if you want to set the message for
a specific error condition in a given validator.


You can specify this metacommand using the class constant Zend_Filter_Input::MESSAGES instead of the string.


Below is a simple example of setting the default error message for a single validator.


		1
2
3
4
5
6


		$validators = array(
    'month' => array(
        'digits',
        'messages' => 'A month must consist only of digits'
    )
);










If you have multiple validators for which you want to set the error message, you should use an array for the value
of the ‘messages’ metacommand.


Each element of this array is applied to the validator at the same index position. You can specify a message for
the validator at position n by using the value n as the array index. Thus you can allow some validators to
use their default message, while setting the message for a subsequent validator in the chain.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$validators = array(
    'month' => array(
        'digits',
        new Zend_Validate_Between(1, 12),
        'messages' => array(
            // use default message for validator [0]
            // set new message for validator [1]
            1 => 'A month value must be between 1 and 12'
        )
    )
);










If one of your validators has multiple error messages, they are identified by a message key. There are different
keys in each validator class, serving as identifiers for error messages that the respective validator class might
generate. Each validate class defines constants for its message keys. You can use these keys in the ‘messages’
metacommand by passing an associative array instead of a string.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$validators = array(
    'month' => array(
        'digits', new Zend_Validate_Between(1, 12),
        'messages' => array(
            'A month must consist only of digits',
            array(
                Zend_Validate_Between::NOT_BETWEEN =>
                    'Month value %value% must be between ' .
                    '%min% and %max%',
                Zend_Validate_Between::NOT_BETWEEN_STRICT =>
                    'Month value %value% must be strictly between ' .
                    '%min% and %max%'
            )
        )
    )
);










You should refer to documentation for each validator class to know if it has multiple error messages, the keys of
these messages, and the tokens you can use in the message templates.


If you have only one validator in validation rule or all used validators has the same messages set, then they can
be referenced without additional array construction:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$validators = array(
    'month' => array(
        new Zend_Validate_Between(1, 12),
        'messages' => array(
                        Zend_Validate_Between::NOT_BETWEEN =>
                            'Month value %value% must be between ' .
                            '%min% and %max%',
                        Zend_Validate_Between::NOT_BETWEEN_STRICT =>
                            'Month value %value% must be strictly between ' .
                            '%min% and %max%'
        )
    )
);













Using options to set metacommands for all rules


The default value for ‘allowEmpty’, ‘breakChainOnFailure’, and ‘presence’ metacommands can be set for all rules
using the $options argument to the constructor of Zend_Filter_Input. This allows you to set the default
value for all rules, without requiring you to set the metacommand for every rule.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// The default is set so all fields allow an empty string.
$options = array('allowEmpty' => true);

// You can override this in a rule definition,
// if a field should not accept an empty string.
$validators = array(
    'month' => array(
        'Digits',
        'allowEmpty' => false
    )
);

$input = new Zend_Filter_Input($filters, $validators, $data, $options);










The ‘fields’, ‘messages’, and ‘default’ metacommands cannot be set using this technique.







Adding Filter Class Namespaces


By default, when you declare a filter or validator as a string, Zend_Filter_Input searches for the
corresponding classes under the Zend_Filter or Zend_Validate namespaces. For example, a filter named by the
string ‘digits’ is found in the class Zend_Filter_Digits.


If you write your own filter or validator classes, or use filters or validators provided by a third-party, the
classes may exist in different namespaces than Zend_Filter or Zend_Validate. You can tell
Zend_Filter_Input to search more namespaces. You can specify namespaces in the constructor options:


		1
2
3


		$options = array('filterNamespace' => 'My_Namespace_Filter',
                 'validatorNamespace' => 'My_Namespace_Validate');
$input = new Zend_Filter_Input($filters, $validators, $data, $options);










Alternatively, you can use the addValidatorPrefixPath($prefix, $path) or addFilterPrefixPath($prefix,
$path) methods, which directly proxy to the plugin loader that is used by Zend_Filter_Input:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$input->addValidatorPrefixPath('Other_Namespace', 'Other/Namespace');
$input->addFilterPrefixPath('Foo_Namespace', 'Foo/Namespace');

// Now the search order for validators is:
// 1. My_Namespace_Validate
// 2. Other_Namespace
// 3. Zend_Validate

// The search order for filters is:
// 1. My_Namespace_Filter
// 2. Foo_Namespace
// 3. Zend_Filter










You cannot remove Zend_Filter and Zend_Validate as namespaces, you only can add namespaces. User-defined
namespaces are searched first, Zend namespaces are searched last.



Note


As of version 1.5 the function addNamespace($namespace) was deprecated and exchanged with the plugin loader
and the addFilterPrefixPath() and addValidatorPrefixPath() were added. Also the constant
Zend_Filter_Input::INPUT_NAMESPACE is now deprecated. The constants
Zend_Filter_Input::VALIDATOR_NAMESPACE and Zend_Filter_Input::FILTER_NAMESPACE are available in releases
after 1.7.0.





Note


As of version 1.0.4, Zend_Filter_Input::NAMESPACE, having value namespace, was changed to
Zend_Filter_Input::INPUT_NAMESPACE, having value inputNamespace, in order to comply with the PHP 5.3
reservation of the keyword namespace.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Filter_Input
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.in-array.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
InArray


Zend\Validator\InArray allows you to validate if a given value is contained within an array. It is also able to validate multidimensional arrays.



Supported options for Zend\Validator\InArray


The following options are supported for Zend\Validator\InArray:



		haystack: Sets the haystack for the validation.





		recursive: Defines if the validation should be done recursive. This option defaults to FALSE.





		strict: Three modes of comparison are offered owing to an often overlooked, and potentially dangerous security issue when validating string input from user input.



		InArray::COMPARE_STRICT



This is a normal in_array strict comparison that checks value and type.









		InArray::COMPARE_NOT_STRICT



This is a normal in_array non-strict comparison that checks value only.



















Warning


This mode may give false positives when strings are compared against ints or floats owing to in_array’s behaviour of converting strings to int in such cases. Therefore, “foo” would become 0, “43foo” would become 43, while “foo43” would also become 0.






		InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY



To remedy the above warning, this mode offers a middle-ground which allows string representations of numbers to be successfully matched against either their string or int counterpart and vice versa. For example: “0” will successfully match against 0, but “foo” would not match against 0 as would be true in the *COMPARE_NOT_STRICT* mode. This is the safest option to use when validating web input, and is the default.
















Defines if the validation should be done strict. This option defaults to FALSE.





Simple array validation


The simplest way, is just to give the array which should be searched against at initiation:


		1
2
3
4
5
6


		$validator = new Zend\Validator\InArray(array('value1', 'value2',...'valueN'));
if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}










This will behave exactly like PHP‘s in_array() method.



Note


Per default this validation is not strict nor can it validate multidimensional arrays.




Alternatively, you can define the array to validate against after object construction by using the setHaystack() method.
getHaystack() returns the actual set haystack array.


		1
2
3
4
5
6
7
8


		$validator = new Zend\Validator\InArray();
$validator->setHaystack(array('value1', 'value2',...'valueN'));

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}













Array validation modes


As previously mentioned, there are possible security issues when using the default non-strict comparison mode, so rather than restricting the developer, we’ve chosen to offer both strict and non-strict comparisons and adding a safer middle-ground.


It’s possible to set the strict mode at initialisation and afterwards with the setStrict method. InArray::COMPARE_STRICT equates to true and InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY equates to false.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// defaults to InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
    )
);

// set strict mode
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
         'strict'   => InArray::COMPARE_STRICT  // equates to ``true``
    )
);

// set non-strict mode
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
         'strict'   => InArray:COMPARE_NOT_STRICT  // equates to ``false``
    )
);

// or

$validator->setStrict(InArray::COMPARE_STRICT);
$validator->setStrict(InArray::COMPARE_NOT_STRICT);
$validator->setStrict(InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY);











Note


Note that the strict setting is per default FALSE.







Recursive array validation


In addition to PHP‘s in_array() method this validator can also be used to validate multidimensional arrays.


To validate multidimensional arrays you have to set the recursive option.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$validator = new Zend\Validator\InArray(
    array(
        'haystack' => array(
            'firstDimension' => array('value1', 'value2',...'valueN'),
            'secondDimension' => array('foo1', 'foo2',...'fooN')),
        'recursive' => true
    )
);

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}










Your array will then be validated recursively to see if the given value is contained. Additionally you could use
setRecursive() to set this option afterwards and getRecursive() to retrieve it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$validator = new Zend\Validator\InArray(
    array(
        'firstDimension' => array('value1', 'value2',...'valueN'),
        'secondDimension' => array('foo1', 'foo2',...'fooN')
    )
);

$validator->setRecursive(true);

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}











Note


Default setting for recursion


Per default the recursive validation is turned off.





Note


Option keys within the haystack


When you are using the keys ‘haystack‘, ‘strict‘ or ‘recursive‘ within your haystack, then you must
wrap the haystack key.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                InArray
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-hidden.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormHidden


The FormHidden view helper can be used to render a <input type="hidden">
HTML form input. It is meant to work with the Zend\Form\Element\Hidden
element.


FormHidden extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8
9


		use Zend\Form\Element;

$element = new Element\Hidden('my-hidden');
$element->setValue('foo');

// Within your view...

echo $this->formHidden($element);
// <input type="hidden" name="my-hidden" value="foo">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormHidden
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cache.pattern.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cache\Pattern



Overview


Cache patterns are configurable objects to solve known performance bottlenecks. Each should be used only in the
specific situations they are designed to address. For example you can use one of the CallbackCache,
ObjectCache or ClassCache patterns to cache method and function calls; to cache output generation, the
OutputCache pattern could assist.


All cache patterns implements the same interface, Zend\Cache\Pattern, and most extend the abstract class
Zend\Cache\Pattern\AbstractPattern to implement basic logic.


Configuration is provided via the Zend\Cache\Pattern\PatternOptions class, which can simply be instantiated
with an associative array of options passed to the constructor. To configure a pattern object, you can set an
instance of Zend\Cache\Pattern\PatternOptions with setOptions, or provide your options (either as an
associative array or PatternOptions instance) as the second argument to the factory.


It’s also possible to use a single instance of Zend\Cache\Pattern\PatternOptions and pass it to multiple
pattern objects.





Quick Start


Pattern objects can either be created from the provided Zend\Cache\PatternFactory factory, or, by simply
instantiating one of the Zend\Cache\Pattern\* classes.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Cache\PatternFactory;
use Zend\Cache\Pattern\PatternOptions;

// Via the factory:
$callbackCache = PatternFactory::factory('callback', array(
    'storage'      => 'apc',
    'cache_output' => true,
));

// OR, the equivalent manual instantiation:
$callbackCache = new \Zend\Cache\Pattern\CallbackCache();
$callbackCache->setOptions(new PatternOptions(array(
    'storage'      => 'apc',
    'cache_output' => true,
)));













Configuration Options



		cache_by_default


		Flag indicating whether or not to cache by default. Used by the ClassCache and ObjectCache patterns.



		setCacheByDefault(bool $cacheByDefault)
Implements a fluent interface.


		getCacheByDefault()
Returns boolean.












		cache_output


		Used by the CallbackCache, ClassCache, and ObjectCache patterns. Flag used to determine whether or
not to cache output.



		setCacheOutput(bool $cacheOutput)
Implements a fluent interface.


		getCacheOutput()
Returns boolean












		class


		Set the name of the class to cache. Used by the ClassCache pattern.



		setclass(string $class)
Implements a fluent interface.


		getClass()
Returns null|string












		class_cache_methods


		Set list of method return values to cache. Used by ClassCache Pattern.



		setClassCacheMethods(array $classCacheMethods)
Implements a fluent interface.


		getClassCacheMethods()
Returns array












		class_non_cache_methods


		Set list of method return values that should not be cached. Used by the ClassCache pattern.



		setClassNonCacheMethods(array $classNonCacheMethods)
Implements a fluent interface.


		getClassNonCacheMethods()
Returns array












		dir_perm


		Set directory permissions; proxies to “dir_umask” property, setting the inverse of the provided value. Used by
the CaptureCache pattern.



		setDirPerm(string|int $dirPerm)
Implements a fluent interface.


		getDirPerm()
Returns int












		dir_umask


		Set the directory umask value. Used by the CaptureCache pattern.



		setDirUmask(int $dirUmask)
Implements a fluent interface.


		getDirUmask()
Returns int












		file_locking


		Set whether or not file locking should be used. Used by the CaptureCache pattern.



		setFileLocking(bool $fileLocking)
Implements a fluent interface.


		getFileLocking()
Returns bool












		file_perm


		Set file permissions; proxies to the “file_umask” property, setting the inverse of the value provided. Used by
the CaptureCache pattern.



		setFilePerm(int|string $filePerm)
Implements a fluent interface.


		getFilePerm()
Returns int












		file_umask


		Set file umask; used by the CaptureCache pattern.



		setFileUmask(int $fileUmask)
Implements a fluent interface.


		getFileUmask()
Returns int












		index_filename


		Set value for index filename. Used by the CaptureCache pattern.



		setIndexFilename(string $indexFilename)
Implements a fluent interface.


		getIndexFilename()
Returns string












		object


		Set object to cache; used by the ObjectCache pattern.



		setObject(object $object)
Implements a fluent interface.


		getObject()
Returns null|object.












		object_cache_magic_properties


		Set flag indicating whether or not to cache magic properties. Used by the ObjectCache pattern.



		setObjectCacheMagicProperties(bool $objectCacheMagicProperties)
Implements a fluent interface.


		getObjectCacheMagicProperties()
Returns bool












		object_cache_methods


		Set list of object methods for which to cache return values. Used by ObjectCache pattern.



		setObjectCacheMethods(array $objectCacheMethods)
Implements a fluent interface.


		getObjectCacheMethods()
Returns array












		object_key


		Set the object key part; used to generate a callback key in order to speed up key generation. Used by the
ObjectCache pattern.



		setObjectKey(null|string $objectKey)
Implements a fluent interface.


		getObjectKey()
Returns null|string












		object_non_cache_methods


		Set list of object methods for which not to cache return values. Used by the ObjectCache pattern.



		setObjectNonCacheMethods(array $objectNonCacheMethods)
Implements a fluent interface.


		getObjectNonCacheMethods()
Returns array












		public_dir


		Set location of public directory; used by the CaptureCache pattern.



		setPublicDir()
Implements a fluent interface.


		getPublicDir()
Returns null|string












		storage


		Set the storage adapter. Required for the following Pattern classes: CallbackCache, ClassCache,
ObjectCache, OutputCache.



		setStorage(string|array|Zend\Cache\Storage\Adapter $storage)
Implements a fluent interface.


		getStorage()
Returns null|Zend\Cache\Storage\Adapter












		tag_key


		Set the prefix used for tag keys. Used by the CaptureCache pattern.



		setTagKey(string $tagKey)
Implements a fluent interface.


		getTagKey()
Returns string












		tags


		Set list of tags to use for captured content. Used by the CaptureCache pattern.



		setTags(array $tags)
Implements a fluent interface.


		getTags()
Returns array












Set storage adapter to use for tags. Used by the CaptureCache pattern.



		setTagStorage(string|array|Zend\Cache\Storage\Adapter $tagStorage)
Implements a fluent interface.


		getTagStorage()
Returns null|Zend\Cache\Storage\Adapter












Available Methods



		setOptions


		setOptions(Zend\Cache\Pattern\PatternOptions $options)


Set pattern options


Returns Zend\Cache\Pattern









		getOptions


		getOptions()


Get all pattern options


Returns PatternOptions instance.











Examples


Using the callback cache pattern


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Cache\PatternFactory;

$callbackCache = PatternFactory::factory('callback', array(
    'storage' => 'apc'
));

// Calls and caches the function doResourceIntensiceStuff with three arguments
// and returns result
$result = $callbackCache->call('doResourceIntensiveStuff', array(
    'argument1',
    'argument2',
    'argumentN',
));










Using the object cache pattern


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Cache\PatternFactory;

$object      = new MyObject();
$objectProxy = PatternFactory::factory('object', array(
    'object'  => $object,
    'storage' => 'apc',
));

// Calls and caches $object->doResourceIntensiveStuff with three arguments
// and returns result
$result = $objectProxy->doResourceIntensiveStuff('argument1', 'argument2', 'argumentN');










Using the class cache pattern


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		use Zend\Cache\PatternFactory;

$classProxy = PatternFactory::factory('class', array(
    'class'   => 'MyClass',
    'storage' => 'apc',
));

// Calls and caches MyClass::doResourceIntensiveStuff with three arguments
// and returns result
$result = $classProxy->doResourceIntensiveStuff('argument1', 'argument2', 'argumentN');










Using the output cache pattern


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\Cache\PatternFactory;

$outputCache = PatternFactory::factory('output', array(
    'storage' => 'filesystem',
));

// Start capturing all output (excluding headers) and write it to storage.
// If there is already a cached item with the same key it will be
// output and return true, else false.
if ($outputCache->start('MyUniqueKey') === false) {
    echo 'cache output since: ' . date('H:i:s') . "<br />\n";

    // end capturing output, write content to cache storage and display
    // captured content
    $outputCache->end();
}

echo 'This output is never cached.';










Using the capture cache pattern


You need to configure your HTTP server to redirect missing content to run your script generating it.


This example uses Apache with the following .htaccess:


		1


		ErrorDocument 404 /index.php










Within your index.php you can add the following content:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Cache\PatternFactory;

$capture = PatternFactory::factory('capture', array(
    'public_dir' => __DIR__,
));

// Start capturing all output excl. headers. and write to public directory
// If the request was already written the file will be overwritten.
$capture->start();

// do stuff to dynamically generate output
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cache\Pattern
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.filters.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
I18n Filters


Zend Framework comes with a set of filters related to Internationalization.





Alnum Filter


The Alnum filter can be used to return only alphabetic characters and digits in the unicode “letter” and
“number” categories, respectively. All other characters are supressed.


Supported options for Alnum Filter


The following options are supported for Alnum:


Alnum([ boolean $allowWhiteSpace [, string $locale ]])



		$allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).


Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()





		$locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset,
it will use the default locale (Locale::getDefault()).


Methods for getting/setting the locale are also available: getLocale() and setLocale()








Alnum Filter Usage


		1
2
3
4
5
6
7
8
9


		// Default settings, deny whitespace
$filter = \Zend\I18n\Filter\Alnum();
echo $filter->filter("This is (my) content: 123");
// Returns "Thisismycontent123"

// First param in constructor is $allowWhiteSpace
$filter = \Zend\I18n\Filter\Alnum(true);
echo $filter->filter("This is (my) content: 123");
// Returns "This is my content 123"











Note


Note: Alnum works on almost all languages, except: Chinese, Japanese and Korean. Within these languages the
english alphabet is used instead of the characters from these languages. The language itself is detected using
the Locale.







Alpha Filter


The Alpha filter can be used to return only alphabetic characters in the unicode “letter” category. All other
characters are supressed.


Supported options for Alpha Filter


The following options are supported for Alpha:


Alpha([ boolean $allowWhiteSpace [, string $locale ]])



		$allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).


Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()





		$locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset,
it will use the default locale (Locale::getDefault()).


Methods for getting/setting the locale are also available: getLocale() and setLocale()








Alpha Filter Usage


		1
2
3
4
5
6
7
8
9


		// Default settings, deny whitespace
$filter = \Zend\I18n\Filter\Alpha();
echo $filter->filter("This is (my) content: 123");
// Returns "Thisismycontent"

// Allow whitespace
$filter = \Zend\I18n\Filter\Alpha(true);
echo $filter->filter("This is (my) content: 123");
// Returns "This is my content "











Note


Note: Alpha works on almost all languages, except: Chinese, Japanese and Korean. Within these languages the
english alphabet is used instead of the characters from these languages. The language itself is detected using
the Locale.







NumberFormat Filter


The NumberFormat filter can be used to return locale-specific number and percentage strings. It acts as a
wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Supported options for NumberFormat Filter


The following options are supported for NumberFormat:


NumberFormat([ string $locale [, int $style [, int $type ]]])



		$locale: (Optional) Locale in which the number would be formatted (locale name, e.g. en_US). If unset, it
will use the default locale (Locale::getDefault())


Methods for getting/setting the locale are also available: getLocale() and setLocale()





		$style: (Optional) Style of the formatting, one of the format style constants [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle]. If unset, it will use
NumberFormatter::DEFAULT_STYLE as the default style.


Methods for getting/setting the format style are also available: getStyle() and setStyle()





		$type: (Optional) The formatting type [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types] to use. If unset, it will use NumberFormatter::TYPE_DOUBLE as
the default type.


Methods for getting/setting the format type are also available: getType() and setType()








NumberFormat Filter Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$filter = \Zend\I18n\Filter\NumberFormat("de_DE");
echo $filter->filter(1234567.8912346);
// Returns "1.234.567,891"

$filter = \Zend\I18n\Filter\NumberFormat("en_US", NumberFormatter::PERCENT);
echo $filter->filter(0.80);
// Returns "80%"

$filter = \Zend\I18n\Filter\NumberFormat("fr_FR", NumberFormatter::SCIENTIFIC);
echo $filter->filter(0.00123456789);
// Returns "1,23456789E-3"














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                I18n Filters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.ldif.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Serializing LDAP data to and from LDIF



Serialize a LDAP entry to LDIF


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


		$data = array(
    'dn'                         => 'uid=rogasawara,ou=営業部,o=Airius',
    'objectclass'                => array('top',
                                          'person',
                                          'organizationalPerson',
                                          'inetOrgPerson'),
    'uid'                        => array('rogasawara'),
    'mail'                       => array('rogasawara@airius.co.jp'),
    'givenname;lang-ja'          => array('ロドニー'),
    'sn;lang-ja'                 => array('小笠原'),
    'cn;lang-ja'                 => array('小笠原 ロドニー'),
    'title;lang-ja'              => array('営業部 部長'),
    'preferredlanguage'          => array('ja'),
    'givenname'                  => array('ロドニー'),
    'sn'                         => array('小笠原'),
    'cn'                         => array('小笠原 ロドニー'),
    'title'                      => array('営業部 部長'),
    'givenname;lang-ja;phonetic' => array('ろどにー'),
    'sn;lang-ja;phonetic'        => array('おがさわら'),
    'cn;lang-ja;phonetic'        => array('おがさわら ろどにー'),
    'title;lang-ja;phonetic'     => array('えいぎょうぶ ぶちょう'),
    'givenname;lang-en'          => array('Rodney'),
    'sn;lang-en'                 => array('Ogasawara'),
    'cn;lang-en'                 => array('Rodney Ogasawara'),
    'title;lang-en'              => array('Sales, Director'),
);
$ldif = Zend\Ldap\Ldif\Encoder::encode($data, array('sort' => false,
                                                    'version' => null));
/*
$ldif contains:
dn:: dWlkPXJvZ2FzYXdhcmEsb3U95Za25qWt6YOoLG89QWlyaXVz
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: rogasawara
mail: rogasawara@airius.co.jp
givenname;lang-ja:: 44Ot44OJ44OL44O8
sn;lang-ja:: 5bCP56yg5Y6f
cn;lang-ja:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
title;lang-ja:: 5Za25qWt6YOoIOmDqOmVtw==
preferredlanguage: ja
givenname:: 44Ot44OJ44OL44O8
sn:: 5bCP56yg5Y6f
cn:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
title:: 5Za25qWt6YOoIOmDqOmVtw==
givenname;lang-ja;phonetic:: 44KN44Gp44Gr44O8
sn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJ
cn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJIOOCjeOBqeOBq+ODvA==
title;lang-ja;phonetic:: 44GI44GE44GO44KH44GG44G2IOOBtuOBoeOCh+OBhg==
givenname;lang-en: Rodney
sn;lang-en: Ogasawara
cn;lang-en: Rodney Ogasawara
title;lang-en: Sales, Director
*/













Deserialize a LDIF string into a LDAP entry


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


		$ldif = "dn:: dWlkPXJvZ2FzYXdhcmEsb3U95Za25qWt6YOoLG89QWlyaXVz
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: rogasawara
mail: rogasawara@airius.co.jp
givenname;lang-ja:: 44Ot44OJ44OL44O8
sn;lang-ja:: 5bCP56yg5Y6f
cn;lang-ja:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
title;lang-ja:: 5Za25qWt6YOoIOmDqOmVtw==
preferredlanguage: ja
givenname:: 44Ot44OJ44OL44O8
sn:: 5bCP56yg5Y6f
cn:: 5bCP56yg5Y6fIOODreODieODi+ODvA==
title:: 5Za25qWt6YOoIOmDqOmVtw==
givenname;lang-ja;phonetic:: 44KN44Gp44Gr44O8
sn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJ
cn;lang-ja;phonetic:: 44GK44GM44GV44KP44KJIOOCjeOBqeOBq+ODvA==
title;lang-ja;phonetic:: 44GI44GE44GO44KH44GG44G2IOOBtuOBoeOCh+OBhg==
givenname;lang-en: Rodney
sn;lang-en: Ogasawara
cn;lang-en: Rodney Ogasawara
title;lang-en: Sales, Director";
$data = Zend\Ldap\Ldif\Encoder::decode($ldif);
/*
$data = array(
    'dn'                         => 'uid=rogasawara,ou=営業部,o=Airius',
    'objectclass'                => array('top',
                                          'person',
                                          'organizationalPerson',
                                          'inetOrgPerson'),
    'uid'                        => array('rogasawara'),
    'mail'                       => array('rogasawara@airius.co.jp'),
    'givenname;lang-ja'          => array('ロドニー'),
    'sn;lang-ja'                 => array('小笠原'),
    'cn;lang-ja'                 => array('小笠原 ロドニー'),
    'title;lang-ja'              => array('営業部 部長'),
    'preferredlanguage'          => array('ja'),
    'givenname'                  => array('ロドニー'),
    'sn'                         => array('小笠原'),
    'cn'                         => array('小笠原 ロドニー'),
    'title'                      => array('営業部 部長'),
    'givenname;lang-ja;phonetic' => array('ろどにー'),
    'sn;lang-ja;phonetic'        => array('おがさわら'),
    'cn;lang-ja;phonetic'        => array('おがさわら ろどにー'),
    'title;lang-ja;phonetic'     => array('えいぎょうぶ ぶちょう'),
    'givenname;lang-en'          => array('Rodney'),
    'sn;lang-en'                 => array('Ogasawara'),
    'cn;lang-en'                 => array('Rodney Ogasawara'),
    'title;lang-en'              => array('Sales, Director'),
);
*/
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Serializing LDAP data to and from LDIF
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend_Filter component provides a set of commonly needed data filters. It also provides a simple filter
chaining mechanism by which multiple filters may be applied to a single datum in a user-defined order.



What is a filter?


In the physical world, a filter is typically used for removing unwanted portions of input, and the desired portion
of the input passes through as filter output (e.g., coffee). In such scenarios, a filter is an operator that
produces a subset of the input. This type of filtering is useful for web applications - removing illegal input,
trimming unnecessary white space, etc.


This basic definition of a filter may be extended to include generalized transformations upon input. A common
transformation applied in web applications is the escaping of HTML entities. For example, if a form field is
automatically populated with untrusted input (e.g., from a web browser), this value should either be free of HTML
entities or contain only escaped HTML entities, in order to prevent undesired behavior and security
vulnerabilities. To meet this requirement, HTML entities that appear in the input must either be removed or
escaped. Of course, which approach is more appropriate depends on the situation. A filter that removes the HTML
entities operates within the scope of the first definition of filter - an operator that produces a subset of the
input. A filter that escapes the HTML entities, however, transforms the input (e.g., “&” is transformed to
“&amp;”). Supporting such use cases for web developers is important, and “to filter,” in the context of using
Zend_Filter, means to perform some transformations upon input data.





Basic usage of filters


Having this filter definition established provides the foundation for Zend_Filter_Interface, which requires a
single method named filter() to be implemented by a filter class.


Following is a basic example of using a filter upon two input data, the ampersand (&) and double quote (“)
characters:


		1
2
3
4


		$htmlEntities = new Zend_Filter_HtmlEntities();

echo $htmlEntities->filter('&'); // &
echo $htmlEntities->filter('"'); // "















Using the StaticFilter


If it is inconvenient to load a given filter class and create an instance of the filter, you can use
StaticFilter with it’s method execute() as an alternative invocation style. The first argument of this
method is a data input value, that you would pass to the filter() method. The second argument is a string,
which corresponds to the basename of the filter class, relative to the Zend_Filter namespace. The execute()
method automatically loads the class, creates an instance, and applies the filter() method to the data input.


		1


		echo StaticFilter::execute('&', 'HtmlEntities');










You can also pass an array of constructor arguments, if they are needed for the filter class.


		1
2
3


		echo StaticFilter::execute('"',
                           'HtmlEntities',
                           array('quotestyle' => ENT_QUOTES));










The static usage can be convenient for invoking a filter ad hoc, but if you have the need to run a filter for
multiple inputs, it’s more efficient to follow the first example above, creating an instance of the filter object
and calling its filter() method.


Also, the FilterChain class allows you to instantiate and run multiple filter and validator classes on demand
to process sets of input data. See FilterChain.



Double filtering


When using two filters after each other you have to keep in mind that it is often not possible to get the original
output by using the opposite filter. Take the following example:


		1
2
3
4
5
6
7
8
9


		$original = "my_original_content";

// Attach a filter
$filter   = new Zend_Filter_Word_UnderscoreToCamelCase();
$filtered = $filter->filter($original);

// Use it's opposite
$filter2  = new Zend_Filter_Word_CamelCaseToUnderscore();
$filtered = $filter2->filter($filtered)










The above code example could lead to the impression that you will get the original output after the second filter
has been applied. But thinking logically this is not the case. After applying the first filter
my_original_content will be changed to MyOriginalContent. But after applying the second filter the result
is My_Original_Content.


As you can see it is not always possible to get the original output by using a filter which seems to be the
opposite. It depends on the filter and also on the given input.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.elements.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Form Elements



Introduction


A set of specialized elements are provided for accomplishing application-centric tasks. These include several HTML5
input elements with matching server-side validators, the Csrf element (to prevent Cross Site Request Forgery
attacks), and the Captcha element (to display and validate CAPTCHAs).


A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. See
the Zend\Form Quick Start for more information.





Element Base Class


Zend\Form\Element is a base class for all specialized elements and Zend\\Form\\Fieldset.



Basic Usage


At the bare minimum, each element or fieldset requires a name. You will also typically provide some attributes to
hint to the view layer how it might render the item.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		use Zend\Form\Element;
use Zend\Form\Form;

$username = new Element\Text('username');
$username
    ->setLabel('Username');
    ->setAttributes(array(
        'class' => 'username',
        'size'  => '30',
    ));

$password = new Element\Password('password');
$password
    ->setLabel('Password');
    ->setAttributes(array(
        'size'  => '30',
    ));

$form = new Form('my-form');
$form
    ->add($username)
    ->add($password);













Public Methods



		
setName(string $name)


		Set the name for this element.









		
getName()


		Return the name for this element.






		Return type:		string














		
setLabel(string $label)


		Set the label content for this element.









		
getLabel()


		Return the label content for this element.






		Return type:		string














		
setLabelAttributes(array $labelAttributes)


		Set the attributes to use with the label.









		
getLabelAttributes()


		Return the attributes to use with the label.






		Return type:		array














		
setOptions(array $options)


		Set options for an element. Accepted options are: "label" and "label_attributes", which call
setLabel and setLabelAttributes, respectively.









		
setAttribute(string $key, mixed $value)


		Set a single element attribute.









		
getAttribute(string $key)


		Retrieve a single element attribute.






		Return type:		mixed














		
hasAttribute(string $key)


		Check if a specific attribute exists for this element.






		Return type:		boolean














		
setAttributes(array|Traversable $arrayOrTraversable)


		Set many attributes at once. Implementation will decide if this will overwrite or merge.









		
getAttributes()


		Retrieve all attributes at once.






		Return type:		array|Traversable














		
clearAttributes()


		Clear all attributes for this element.









		
setMessages(array|Traversable $messages)


		Set a list of messages to report when validation fails.









		
getMessages()


		Returns a list of validation failure messages, if any.






		Return type:		array|Traversable


















Standard Elements



Captcha Element


Zend\Form\Element\Captcha can be used with forms where authenticated users are not necessary, but you want to prevent
spam submissions. It is pairs with one of the Zend/Form/View/Helper/Captcha/* view helpers that matches the
type of CAPTCHA adapter in use.



Basic Usage


A CAPTCHA adapter must be attached in order for validation to be included in the element’s input filter
specification. See the section on Zend CAPTCHA Adapters for more information on what
adapters are available.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Captcha;
use Zend\Form\Element;
use Zend\Form\Form;

$captcha = new Element\Captcha('captcha');
$captcha
    ->setCaptcha(new Captcha\Dumb())
    ->setLabel('Please verify you are human');

$form = new Form('my-form');
$form->add($captcha);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
setCaptcha(array|Zend\Captcha\AdapterInterface $captcha)


		Set the CAPTCHA adapter for this element. If $captcha is an array, Zend\Captcha\Factory::factory()
will be run to create the adapter from the array configuration.









		
getCaptcha()


		Return the CAPTCHA adapter for this element.






		Return type:		Zend\Captcha\AdapterInterface














		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a CAPTCHA
validator.






		Return type:		array


















Checkbox Element


Zend\Form\Element\Checkbox is meant to be paired with the Zend/Form/View/Helper/FormCheckbox for HTML inputs with type checkbox. This element adds an InArray validator to its input filter specification in order to validate on the server if the checkbox contains either the checked value or the unchecked value.



Basic Usage


This element automatically adds a "type" attribute of value "checkbox".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Form\Element;
use Zend\Form\Form;

$checkbox = new Element\Checkbox('checkbox');
$checkbox->setLabel('A checkbox');
$checkbox->setUseHiddenElement(true);
$checkbox->setCheckedValue("good");
$checkbox->setUncheckedValue("bad");

$form = new Form('my-form');
$form->add($checkbox);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element .



		
setOptions(array $options)


		Set options for an element of type Checkbox. Accepted options, in addition to the inherited options of Zend\Form\Element <zend.form.element.methods.set-options>` , are: "use_hidden_element", "checked_value" and "unchecked_value" , which call setUseHiddenElement, setCheckedValue and setUncheckedValue , respectively.









		
setUseHiddenElement(boolean $useHiddenElement)


		If set to true (which is default), the view helper will generate a hidden element that contains the unchecked value. Therefore, when using custom unchecked value, this option have to be set to true.









		
useHiddenElement()


		Return if a hidden element is generated.






		Return type:		boolean














		
setCheckedValue(string $checkedValue)


		Set the value to use when the checkbox is checked.









		
getCheckedValue()


		Return the value used when the checkbox is checked.






		Return type:		string














		
setUncheckedValue(string $uncheckedValue)


		Set the value to use when the checkbox is unchecked. For this to work, you must make sure that use_hidden_element is set to true.









		
getUncheckedValue()


		Return the value used when the checkbox is unchecked.






		Return type:		string














		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Validator\InArray to validate if the value is either checked value or unchecked value.






		Return type:		array


















Collection Element


Sometimes, you may want to add input (or a set of inputs) multiple times, either because you don’t want to duplicate code, or because you does not know in advance how many elements you need (in the case of elements dynamically added to a form using JavaScript, for instance).


Zend\Form\Element\Collection is meant to be paired with the Zend\Form\View\Helper\FormCollection.



Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Form\Element;
use Zend\Form\Form;

$colors = new Element\Collection('collection');
$colors->setLabel('Colors');
$colors->setCount(2);
$colors->setTargetElement(new Element\Color());
$colors->setShouldCreateTemplate(true);

$form = new Form('my-form');
$form->add($colors);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element .



		
setOptions(array $options)


		Set options for an element of type Collection. Accepted options, in addition to the inherited options of Zend\Form\Element <zend.form.element.methods.set-options>` , are: "target_element", "count", "allow_add", "should_create_template" and "template_placeholder" , which call setTargetElement, setCount, setAllowAdd, setShouldCreateTemplate and setTemplatePlaceholder , respectively.









		
setCount($count)


		Defines how many times the target element will be rendered by the Zend/Form/View/Helper/FormCollection view helper.









		
getCount()


		Return the number of times the target element will be initially rendered by the Zend/Form/View/Helper/FormCollection view helper.






		Return type:		integer














		
setTargetElement($elementOrFieldset)


		This function either takes an Zend/Form/ElementInterface, Zend/Form/FieldsetInterface instance or an array to pass to the form factory. When the Collection element will be validated, the input filter will be retrieved from this target element and be used to validate each element in the collection.









		
getTargetElement()


		Return the target element used by the collection.






		Return type:		ElementInterface | null














		
setAllowAdd($allowAdd)


		If allowAdd is set to true (which is the default), new elements added dynamically in the form (using JavaScript, for instance) will also be validated and retrieved.









		
allowAdd()


		Return if new elements can by dynamically added in the collection.






		Return type:		boolean














		
setAllowRemove($allowRemove)


		If allowRemove is set to true (which is the default), new elements added dynamically in the form (using JavaScript, for instance) will be allowed to be removed.









		
allowRemove()


		Return if new elements can by dynamically added in the collection.






		Return type:		boolean














		
setShouldCreateTemplate($shouldCreateTemplate)


		If shouldCreateTemplate is set to true (defaults to false), a <span> element will be generated by the Zend/Form/View/Helper/FormCollection view helper. This non-semantic span element contains a single data-template HTML5 attribute whose value is the whole HTML to copy to create a new element in the form. The template is indexed using the templatePlaceholder value.









		
shouldCreateTemplate()


		Return if a template should be created.






		Return type:		boolean














		
setTemplatePlaceholder($templatePlaceholder)


		Set the template placeholder (defaults to __index__) used to index element in the template.









		
getTemplatePlaceholder()


		Returns the template placeholder used to index element in the template.






		Return type:		string


















Csrf Element


Zend\Form\Element\Csrf pairs with the Zend/Form/View/Helper/FormHidden to provide protection from CSRF attacks
on forms, ensuring the data is submitted by the user session that generated the form and not by a rogue script.
Protection is achieved by adding a hash element to a form and verifying it when the form is submitted.



Basic Usage


This element automatically adds a "type" attribute of value "hidden".


		1
2
3
4
5
6
7


		use Zend\Form\Element;
use Zend\Form\Form;

$csrf = new Element\Csrf('csrf');

$form = new Form('my-form');
$form->add($csrf);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter and a
Zend\Validator\Csrf to validate the CSRF value.






		Return type:		array


















Email Element


Zend\Form\Element\Email is meant to be paired with the Zend/Form/View/Helper/FormEmail for HTML5 inputs with
type email [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#e-mail-state-(type=email)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 valid email address [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#valid-e-mail-address] on the server.



Basic Usage


This element automatically adds a "type" attribute of value "email".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		use Zend\Form\Element;
use Zend\Form\Form;

$form = new Form('my-form');

// Single email address
$email = new Element\Email('email');
$email->setLabel('Email Address')
$form->add($email);

// Comma separated list of emails
$emails = new Element\Email('emails');
$emails
    ->setLabel('Email Addresses')
    ->setAttribute('multiple', true);
$form->add($emails);











Note


Note: the multiple attribute should be set prior to calling Zend\Form::prepare(). Otherwise, the default
input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a validator based
on the multiple attribute.


If the multiple attribute is unset or false, a Zend\Validator\Regex validator will be added to validate
a single email address.


If the multiple attribute is true, a Zend\Validator\Explode validator will be added to ensure the input
string value is split by commas before validating each email address with Zend\Validator\Regex.






		Return type:		array


















Hidden Element


Zend\Form\Element\Hidden represents a hidden form input.
It can be used with the Zend/Form/View/Helper/FormHidden view helper.


Zend\Form\Element\Hidden extends from Zend\Form\Element.



Basic Usage


This element automatically adds a "type" attribute of value "hidden".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$hidden = new Element\Hidden('my-hidden');
$hidden->setValue('foo');

$form = new Form('my-form');
$form->add($hidden);















Url Element


Zend\Form\Element\Url is meant to be paired with the Zend/Form/View/Helper/FormUrl for HTML5 inputs with type
url [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)]. This element adds filters and a Zend\Validator\Uri validator to it’s input filter specification for
validating HTML5 URL input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "url".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$url = new Element\Url('webpage-url');
$url->setLabel('Webpage URL');

$form = new Form('my-form');
$form->add($url);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a
Zend\Validator\Uri to validate the URI string.






		Return type:		array




















HTML5 Elements



Color Element


Zend\Form\Element\Color is meant to be paired with the Zend/Form/View/Helper/FormColor for HTML5 inputs with
type color [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#color-state-(type=color)]. This element adds filters and a Regex validator to it’s input filter specification in order to
validate a HTML5 valid simple color [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-simple-color] value on the server.



Basic Usage


This element automatically adds a "type" attribute of value "color".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$color = new Element\Color('color');
$color->setLabel('Background color');

$form = new Form('my-form');
$form->add($color);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and
Zend\Filter\StringToLower filters, and a Zend\Validator\Regex to validate the RGB hex format.






		Return type:		array


















Date Element


Zend\Form\Element\Date is meant to be paired with the Zend/Form/View/Helper/FormDate for HTML5 inputs with type
date [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-state-(type=date)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 date
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "date".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$date = new Element\Date('appointment-date');
$date
    ->setLabel('Appointment Date')
    ->setAttributes(array(
        'min'  => '2012-01-01',
        'max'  => '2020-01-01',
        'step' => '1', // days; default step interval is 1 day
    ));

$form = new Form('my-form');
$form->add($date);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of days (default is 1 day).






		Return type:		array


















DateTime Element


Zend\Form\Element\DateTime is meant to be paired with the Zend/Form/View/Helper/FormDateTime for HTML5 inputs
with type datetime [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-and-time-state-(type=datetime)]. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 datetime input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "datetime".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$dateTime = new Element\DateTime('appointment-date-time');
$dateTime
    ->setLabel('Appointment Date/Time')
    ->setAttributes(array(
        'min'  => '2010-01-01T00:00:00Z',
        'max'  => '2020-01-01T00:00:00Z',
        'step' => '1', // minutes; default step interval is 1 min
    ));

$form = new Form('my-form');
$form->add($dateTime);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.


If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the date
value is greater than the minimum value.


If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure the
date value is less than the maximum value.


If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\DateStep validator will be added to ensure the date value is within a certain interval of
minutes (default is 1 minute).






		Return type:		array


















DateTimeLocal Element


Zend\Form\Element\DateTimeLocal is meant to be paired with the Zend/Form/View/Helper/FormDateTimeLocal for HTML5
inputs with type datetime-local [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#local-date-and-time-state-(type=datetime-local)]. This element adds filters and validators to it’s input filter specification in
order to validate HTML5 a local datetime input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "datetime-local".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$dateTimeLocal = new Element\DateTimeLocal('appointment-date-time');
$dateTimeLocal
    ->setLabel('Appointment Date')
    ->setAttributes(array(
        'min'  => '2010-01-01T00:00:00',
        'max'  => '2020-01-01T00:00:00',
        'step' => '1', // minutes; default step interval is 1 min
    ));

$form = new Form('my-form');
$form->add($dateTimeLocal);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.






		Return type:		array


















Month Element


Zend\Form\Element\Month is meant to be paired with the Zend/Form/View/Helper/FormMonth for HTML5 inputs with
type month [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#month-state-(type=month)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 month input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "month".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$month = new Element\Month('month');
$month
    ->setLabel('Month')
    ->setAttributes(array(
        'min'  => '2012-01',
        'max'  => '2020-01',
        'step' => '1', // months; default step interval is 1 month
    ));

$form = new Form('my-form');
$form->add($month);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of months (default is 1 month).






		Return type:		array


















Number Element


Zend\Form\Element\Number is meant to be paired with the Zend/Form/View/Helper/FormNumber for HTML5 inputs with
type number [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#number-state-(type=number)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 number input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "number".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$number = new Element\Number('quantity');
$number
    ->setLabel('Quantity')
    ->setAttributes(array(
        'min'  => '0',
        'max'  => '10',
        'step' => '1', // default step interval is 1
    ));

$form = new Form('my-form');
$form->add($number);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.


If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the number
value is greater than the minimum value. The min value should be a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].


If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure the
number value is less than the maximum value. The max value should be a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].


If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\Step validator will be added to ensure the number value is within a certain interval (default
is 1). The step value should be either “any” or a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].






		Return type:		array


















Range Element


Zend\Form\Element\Range is meant to be paired with the Zend/Form/View/Helper/FormRange for HTML5 inputs with
type range [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#range-state-(type=range)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 range values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "range".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$range = new Element\Range('range');
$range
    ->setLabel('Minimum and Maximum Amount')
    ->setAttributes(array(
        'min'  => '0',   // default minimum is 0
        'max'  => '100', // default maximum is 100
        'step' => '1',   // default interval is 1
    ));

$form = new Form('my-form');
$form->add($range);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\Number.



		
getInputSpecification()``


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\Number for more information.


The Range element differs from Zend\Form\Element\Number in that the Zend\Validator\GreaterThan and
Zend\Validator\LessThan validators will always be present. The default minimum is 1, and the default maximum
is 100.






		Return type:		array


















Time Element


Zend\Form\Element\Time is meant to be paired with the Zend/Form/View/Helper/FormTime for HTML5 inputs with type
time [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#time-state-(type=time)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 time
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "time".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$time = new Element\Month('time');
$time
    ->setLabel('Time')
    ->setAttributes(array(
        'min'  => '00:00:00',
        'max'  => '23:59:59',
        'step' => '60', // seconds; default step interval is 60 seconds
    ));

$form = new Form('my-form');
$form->add($time);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of seconds (default is 60 seconds).






		Return type:		array


















Week Element


Zend\Form\Element\Week is meant to be paired with the Zend/Form/View/Helper/FormWeek for HTML5 inputs with type
week [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#week-state-(type=week)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 week
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "week".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$week = new Element\Week('week');
$week
    ->setLabel('Week')
    ->setAttributes(array(
        'min'  => '2012-W01',
        'max'  => '2020-W01',
        'step' => '1', // weeks; default step interval is 1 week
    ));

$form = new Form('my-form');
$form->add($week);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of weeks (default is 1 week).






		Return type:		array























          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Form Elements
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.csrf.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Csrf Element


Zend\Form\Element\Csrf pairs with the Zend/Form/View/Helper/FormHidden to provide protection from CSRF attacks
on forms, ensuring the data is submitted by the user session that generated the form and not by a rogue script.
Protection is achieved by adding a hash element to a form and verifying it when the form is submitted.



Basic Usage


This element automatically adds a "type" attribute of value "hidden".


		1
2
3
4
5
6
7


		use Zend\Form\Element;
use Zend\Form\Form;

$csrf = new Element\Csrf('csrf');

$form = new Form('my-form');
$form->add($csrf);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter and a
Zend\Validator\Csrf to validate the CSRF value.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Csrf Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/installation.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Installation



		New to Zend Framework?
Download the latest stable release. [http://packages.zendframework.com/] Available in .zip and .tar.gz formats.


		Brave, cutting edge?
Download Zend Framework’s Git repository [https://github.com/zendframework/zf2] using a Git [http://git-scm.com/] client. Zend Framework is open source software,
and the Git repository used for its development is publicly available on GitHub [http://github.com/]. Consider using Git to get
Zend Framework if you want to contribute back to the framework, or need to upgrade your framework version more
often than releases occur.





Once you have a copy of Zend Framework available, your application needs to be able to access the framework classes
found in the library folder. Though there are several ways to achieve this [http://www.php.net/manual/en/configuration.changes.php], your PHP include_path [http://www.php.net/manual/en/ini.core.php#ini.include-path] needs to
contain the path to Zend Framework’s library.


Rob Allen [http://akrabat.com/about] has kindly provided the community with an introduction to :user-guide:`Getting Started with Zend Framework 2 <overview>`.
Other Zend Framework community members are actively working on expanding the tutorial [http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html].






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Installation
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/plus.png





modules/zend.crypt.block-cipher.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Encrypt/decrypt using block ciphers


Zend\Crypt\BlockCipher implements the encrypt-then-authenticate mode using HMAC [http://en.wikipedia.org/wiki/HMAC] to provide authentication.


The symmetric cipher can be choose with a specific adapter that implements the
Zend\Crypt\Symmetric\SymmetricInterface. We support the standard algorithms of the Mcrypt [http://php.net/manual/en/book.mcrypt.php] extension. The
adapter that implements the Mcrypt is Zend\Crypt\Symmetric\Mcrypt.


In the following code we reported an example on how to use the BlockCipher class to encrypt-then-authenticate a
string using the AES [http://en.wikipedia.org/wiki/Advanced_Encryption_Standard] block cipher (with a key of 256 bit) and the HMAC algorithm (using the SHA-256 [http://en.wikipedia.org/wiki/SHA-2] hash
function).


		1
2
3
4
5
6


		use Zend\Crypt\BlockCipher;

$blockCipher = BlockCipher::factory('mcrypt', array('algo' => 'aes'));
$blockCipher->setKey('encryption key');
$result = $blockCipher->encrypt('this is a secret message');
echo "Encrypted text: $result \n";










The BlockCipher is initialized using a factory method with the name of the cipher adapter to use (mcrypt) and the
parameters to pass to the adapter (the AES algorithm). In order to encrypt a string we need to specify an
encryption key and we used the setKey() method for that scope. The encryption is provided by the encrypt()
method.


The output of the encryption is a string, encoded in Base64 (default), that contains the HMAC value, the IV vector,
and the encrypted text. The encryption mode used is the CBC [http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29] (with a random IV [http://en.wikipedia.org/wiki/Initialization_vector] by default) and SHA256 as default
hash algorithm of the HMAC.
The Mcrypt adapter encrypts using the PKCS#7 padding [http://en.wikipedia.org/wiki/Padding_%28cryptography%29] mechanism by default. You can specify a different padding
method using a special adapter for that (Zend\Crypt\Symmetric\Padding). The encryption and authentication keys
used by the BlockCipher are generated with the PBKDF2 [http://en.wikipedia.org/wiki/PBKDF2] algorithm, used as key derivation function from the
user’s key specified using the setKey() method.



Note


Key size


BlockCipher try to use always the longest size of the key for the specified cipher. For instance, for the
AES algorithm it uses 256 bits and for the Blowfish [http://en.wikipedia.org/wiki/Blowfish_%28cipher%29] algorithm it uses 448 bits.




You can change all the default settings passing the values to the factory parameters. For instance, if you want to
use the Blowfish algorithm, with the CFB mode and the SHA512 hash function for HMAC you have to initialize the
class as follow:


		1
2
3
4
5
6
7


		use Zend\Crypt\BlockCipher;

$blockCipher = BlockCipher::factory('mcrypt', array(
                                'algo' => 'blowfish',
                                'mode' => 'cfb',
                                'hash' => 'sha512'
                            ));











Note


Recommendation


If you are not familiar with symmetric encryption techniques we strongly suggest to use the default values of
the BlockCipher class. The default values are: AES algorithm, CBC mode, HMAC with SHA256, PKCS#7 padding.




To decrypt a string we can use the decrypt() method. In order to successfully decrypt a string we have to
configure the BlockCipher with the same parameters of the encryption.


We can also initialize the BlockCipher manually without use the factory method. We can inject the symmetric cipher
adapter directly to the constructor of the BlockCipher class. For instance, we can rewrite the previous example as
follow:


		1
2
3
4
5
6
7


		use Zend\Crypt\BlockCipher;
use Zend\Crypt\Symmetric\Mcrypt;

$blockCipher = new BlockCipher(new Mcrypt(array('algo' => 'aes'));
$blockCipher->setKey('encryption key');
$result = $blockCipher->encrypt('this is a secret message');
echo "Encrypted text: $result \n";














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Encrypt/decrypt using block ciphers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.permissions.acl.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend\Permissions\Acl component provides a lightweight and flexible access control list (ACL) implementation for
privileges management. In general, an application may utilize such ACL‘s to control access to certain protected
objects by other requesting objects.


For the purposes of this documentation:



		a resource is an object to which access is controlled.


		a role is an object that may request access to a Resource.





Put simply, roles request access to resources. For example, if a parking attendant requests access to a car,
then the parking attendant is the requesting role, and the car is the resource, since access to the car may not be
granted to everyone.


Through the specification and use of an ACL, an application may control how roles are granted access to
resources.



Resources


Creating a resource using Zend\Permissions\Acl\Acl is very simple. A resource interface
Zend\Permissions\Acl\Resource\ResourceInterface is provided to facilitate creating resources in an application. A class
need only implement this interface, which consists of a single method, getResourceId(), for Zend\Permissions\Acl\Acl to
recognize the object as a resource. Additionally, Zend\Permissions\Acl\Resource\GenericResource is provided as a basic
resource implementation for developers to extend as needed.


Zend\Permissions\Acl\Acl provides a tree structure to which multiple resources can be added. Since resources are stored in
such a tree structure, they can be organized from the general (toward the tree root) to the specific (toward the
tree leaves). Queries on a specific resource will automatically search the resource’s hierarchy for rules assigned
to ancestor resources, allowing for simple inheritance of rules. For example, if a default rule is to be applied to
each building in a city, one would simply assign the rule to the city, instead of assigning the same rule to each
building. Some buildings may require exceptions to such a rule, however, and this can be achieved in
Zend\Permissions\Acl\Acl by assigning such exception rules to each building that requires such an exception. A resource may
inherit from only one parent resource, though this parent resource can have its own parent resource, etc.


Zend\Permissions\Acl\Acl also supports privileges on resources (e.g., “create”, “read”, “update”, “delete”), so the
developer can assign rules that affect all privileges or specific privileges on one or more resources.





Roles


As with resources, creating a role is also very simple. All roles must implement Zend\Permissions\Acl\Role\RoleInterface.
This interface consists of a single method, getRoleId(), Additionally, Zend\Permissions\Acl\Role\GenericRole is
provided by the Zend\Permissions\Acl component as a basic role implementation for developers to extend as needed.


In Zend\Permissions\Acl\Acl, a role may inherit from one or more roles. This is to support inheritance of rules among
roles. For example, a user role, such as “sally”, may belong to one or more parent roles, such as “editor” and
“administrator”. The developer can assign rules to “editor” and “administrator” separately, and “sally” would
inherit such rules from both, without having to assign rules directly to “sally”.


Though the ability to inherit from multiple roles is very useful, multiple inheritance also introduces some degree
of complexity. The following example illustrates the ambiguity condition and how Zend\Permissions\Acl\Acl solves it.


Multiple Inheritance among Roles


The following code defines three base roles - “guest”, “member”, and “admin” - from which other roles may inherit.
Then, a role identified by “someUser” is established and inherits from the three other roles. The order in which
these roles appear in the $parents array is important. When necessary, Zend\Permissions\Acl\Acl searches for access
rules defined not only for the queried role (herein, “someUser”), but also upon the roles from which the queried
role inherits (herein, “guest”, “member”, and “admin”):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		use Zend\Permissions\Acl\Acl;
use Zend\Permissions\Acl\Role\GenericRole as Role;
use Zend\Permissions\Acl\Resource\GenericResource as Resource;

$acl = new Acl();

$acl->addRole(new Role('guest'))
    ->addRole(new Role('member'))
    ->addRole(new Role('admin'));

$parents = array('guest', 'member', 'admin');
$acl->addRole(new Role('someUser'), $parents);

$acl->addResource(new Resource('someResource'));

$acl->deny('guest', 'someResource');
$acl->allow('member', 'someResource');

echo $acl->isAllowed('someUser', 'someResource') ? 'allowed' : 'denied';










Since there is no rule specifically defined for the “someUser” role and “someResource”, Zend\Permissions\Acl\Acl must
search for rules that may be defined for roles that “someUser” inherits. First, the “admin” role is visited, and
there is no access rule defined for it. Next, the “member” role is visited, and Zend\Permissions\Acl\Acl finds that there
is a rule specifying that “member” is allowed access to “someResource”.


If Zend\Permissions\Acl\Acl were to continue examining the rules defined for other parent roles, however, it would find
that “guest” is denied access to “someResource”. This fact introduces an ambiguity because now “someUser” is both
denied and allowed access to “someResource”, by reason of having inherited conflicting rules from different parent
roles.


Zend\Permissions\Acl\Acl resolves this ambiguity by completing a query when it finds the first rule that is directly
applicable to the query. In this case, since the “member” role is examined before the “guest” role, the example
code would print “allowed”.



Note


When specifying multiple parents for a role, keep in mind that the last parent listed is the first one searched
for rules applicable to an authorization query.







Creating the Access Control List


An Access Control List (ACL) can represent any set of physical or virtual objects that you wish. For the purposes
of demonstration, however, we will create a basic Content Management System (CMS) ACL that maintains several
tiers of groups over a wide variety of areas. To create a new ACL object, we instantiate the ACL with no
parameters:


		1
2


		use Zend\Permissions\Acl\Acl;
$acl = new Acl();











Note


Until a developer specifies an “allow” rule, Zend\Permissions\Acl\Acl denies access to every privilege upon every
resource by every role.







Registering Roles


CMS‘s will nearly always require a hierarchy of permissions to determine the authoring capabilities of its users.
There may be a ‘Guest’ group to allow limited access for demonstrations, a ‘Staff’ group for the majority of CMS
users who perform most of the day-to-day operations, an ‘Editor’ group for those responsible for publishing,
reviewing, archiving and deleting content, and finally an ‘Administrator’ group whose tasks may include all of
those of the other groups as well as maintenance of sensitive information, user management, back-end configuration
data, backup and export. This set of permissions can be represented in a role registry, allowing each group to
inherit privileges from ‘parent’ groups, as well as providing distinct privileges for their unique group only. The
permissions may be expressed as follows:



Access Controls for an Example CMS






		Name
		Unique Permissions
		Inherit Permissions From





		Guest
		View
		N/A



		Staff
		Edit, Submit, Revise
		Guest



		Editor
		Publish, Archive, Delete
		Staff



		Administrator
		(Granted all access)
		N/A







For this example, Zend\Permissions\Acl\Role\GenericRole is used, but any object that implements
Zend\Permissions\Acl\Role\RoleInterface is acceptable. These groups can be added to the role registry as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		use Zend\Permissions\Acl\Acl;
use Zend\Permissions\Acl\Role\GenericRole as Role;

$acl = new Acl();

// Add groups to the Role registry using Zend\Permissions\Acl\Role\GenericRole
// Guest does not inherit access controls
$roleGuest = new Role('guest');
$acl->addRole($roleGuest);

// Staff inherits from guest
$acl->addRole(new Role('staff'), $roleGuest);

/*
Alternatively, the above could be written:
$acl->addRole(new Role('staff'), 'guest');
*/

// Editor inherits from staff
$acl->addRole(new Role('editor'), 'staff');

// Administrator does not inherit access controls
$acl->addRole(new Role('administrator'));













Defining Access Controls


Now that the ACL contains the relevant roles, rules can be established that define how resources may be accessed
by roles. You may have noticed that we have not defined any particular resources for this example, which is
simplified to illustrate that the rules apply to all resources. Zend\Permissions\Acl\Acl provides an implementation whereby
rules need only be assigned from general to specific, minimizing the number of rules needed, because resources and
roles inherit rules that are defined upon their ancestors.



Note


In general, Zend\Permissions\Acl\Acl obeys a given rule if and only if a more specific rule does not apply.




Consequently, we can define a reasonably complex set of rules with a minimum amount of code. To apply the base
permissions as defined above:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		use Zend\Permissions\Acl\Acl;
use Zend\Permissions\Acl\Role\GenericRole as Role;

$acl = new Acl();

$roleGuest = new Role('guest');
$acl->addRole($roleGuest);
$acl->addRole(new Role('staff'), $roleGuest);
$acl->addRole(new Role('editor'), 'staff');
$acl->addRole(new Role('administrator'));

// Guest may only view content
$acl->allow($roleGuest, null, 'view');

/*
Alternatively, the above could be written:
$acl->allow('guest', null, 'view');
//*/

// Staff inherits view privilege from guest, but also needs additional
// privileges
$acl->allow('staff', null, array('edit', 'submit', 'revise'));

// Editor inherits view, edit, submit, and revise privileges from
// staff, but also needs additional privileges
$acl->allow('editor', null, array('publish', 'archive', 'delete'));

// Administrator inherits nothing, but is allowed all privileges
$acl->allow('administrator');










The NULL values in the above allow() calls are used to indicate that the allow rules apply to all
resources.





Querying an ACL


We now have a flexible ACL that can be used to determine whether requesters have permission to perform functions
throughout the web application. Performing queries is quite simple using the isAllowed() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		echo $acl->isAllowed('guest', null, 'view') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('staff', null, 'publish') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('staff', null, 'revise') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('editor', null, 'view') ?
     "allowed" : "denied";
// allowed because of inheritance from guest

echo $acl->isAllowed('editor', null, 'update') ?
     "allowed" : "denied";
// denied because no allow rule for 'update'

echo $acl->isAllowed('administrator', null, 'view') ?
     "allowed" : "denied";
// allowed because administrator is allowed all privileges

echo $acl->isAllowed('administrator') ?
     "allowed" : "denied";
// allowed because administrator is allowed all privileges

echo $acl->isAllowed('administrator', null, 'update') ?
     "allowed" : "denied";
// allowed because administrator is allowed all privileges
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.prefix-path-loader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The PrefixPathLoader



Overview


Zend Framework’s 1.X series introduced a plugin methodology surrounding associations of vendor/component prefixes
and filesystem paths in the Zend_Loader_PluginLoader class. Zend Framework 2 provides equivalent functionality
with the PrefixPathLoader class, and expands it to take advantage of PHP 5.3 namespaces.


The concept is relatively simple: a given vendor prefix or namespace is mapped to one or more paths, and multiple
prefix/path maps may be provided. To resolve a plugin name, the prefixes are searched as a stack (i.e., last in,
first out, or LIFO), and each path associated with the prefix is also searched as a stack. As soon as a file is
found matching the plugin name, the class will be returned.


Since searching through the filesystem can lead to performance degradation, the PrefixPathLoader provides
several optimizations. First, it will attempt to autoload a plugin before scanning the filesystem. This allows you
to benefit from your autoloader and/or an opcode cache. Second, it aggregates the class name and class file
associated with each discovered plugin. You can then retrieve this information and cache it for later seeding a
ClassMapAutoloader and PluginClassLoader.


PrefixPathLoader implements the ShortNameLocator and PrefixPathMapper interfaces.



Note


Case Sensitivity


Unlike the PluginClassLoader, plugins resolved via the
PrefixPathLoader are considered case sensitive. This is due to the fact that the lookup is done on the
filesystem, and thus a file exactly matching the plugin name must exist.





Note


Preference is for Namespaces


Unlike the Zend Framework 1 variant, the PrefixPathLoader assumes that “prefixes” are PHP 5.3 namespaces by
default. You can override this behavior, however, per prefix/path you map. Please see the documentation and
examples below for details.







Quick Start


The PrefixPathLoader invariably requires some configuration – it needs to know what namespaces and/or vendor
prefixes it should try, as well as the paths associated with each. You can inform the class of these at
instantiation, or later by calling either the addPrefixPath() or addPrefixPaths() methods.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		use Zend\Loader\PrefixPathLoader;

// Configure at instantiation:
$loader = new PrefixPathLoader(array(
    array('prefix' => 'Foo', 'path' => '../library/Foo'),
    array('prefix' => 'Bar', 'path' => '../vendor/Bar'),
));

// Or configure manually using methods:
$loader = new PrefixPathLoader();
$loader->addPrefixPath('Foo', '../library/Foo');

$loader->addPrefixPaths(array(
    array('prefix' => 'Foo', 'path' => '../library/Foo'),
    array('prefix' => 'Bar', 'path' => '../vendor/Bar'),
));










Once configured, you may then attempt to lookup a plugin.


		1
2
3
4


		if (false === ($class = $loader->load('bar'))) {
    throw new Exception("Plugin class matching 'bar' not found!");
}
$plugin = new $class();













Configuration Options


PrefixPathLoader Options



		$options


		The constructor accepts either an array or a Traversable object of prefix paths. For the format allowed,
please see the addPrefixPaths() method
documentation.








Available Methods



		__construct


		Instantiate and initialize loader
__construct($options = null)


__construct()
Instantiates and initializes a PrefixPathLoader instance. If the $prefixPaths protected member is
defined, it re-initializes it to an Zend\Stdlib\ArrayStack instance, and passes the original value to
the addPrefixPaths() method. It then checks to
see if $staticPaths has been populated, and, if so, passes that on to the addPrefixPaths() method to
merge the values. Finally, if $options is non-null, it passes that to addPrefixPaths().









		addStaticPaths


		Add paths statically
addStaticPaths($paths)


addStaticPaths()
Expects an array or Traversable object compatible with the addPrefixPaths() method. This method is
static, and populates the protected $staticPaths member, which is used during instantiation to either
override default paths or add additional prefix/path pairs to search.









		setOptions


		Configure object state
setOptions($options)


setOptions()
Proxies to addPrefixPaths().









		addPrefixPath


		Map a namespace/vendor prefix to the given filesystem path
addPrefixPath($prefix, $path, $namespaced = true)


addPrefixPath()
Use this method to map a single filesystem path to a given namespace or vendor prefix. By default, the
$prefix will be considered a PHP 5.3 namespace; you may specify that it is a vendor prefix by passing a
boolean false value to the $namespaced argument.


If the $prefix has been previously mapped, this method adds another $path to a stack – meaning the new
path will be searched first when attempting to resolve a plugin name to this $prefix.









		addPrefixPaths


		Add many prefix/path pairs at once
addPrefixPaths($prefixPaths)


addPrefixPaths()
This method expects an array or Traversable object. Each item in the array or object must be one of the
following:



		An array, with the keys “prefix” and “path”, and optionally “namespaced”; the keys correspond to the arguments
to addPrefixPath(). The “prefix” and “path”
keys should point to string values, while the “namespaced” key should be a boolean.


		An object, with the attributes “prefix” and “path”, and optionally “namespaced”; the attributes correspond to
the arguments to addPrefixPath(). The “prefix”
and “path” attributes should point to string values, while the “namespaced” attribute should be a boolean.





The method will loop over arguments, and pass values to addPrefixPath() to process.









		getPaths


		Retrieve all paths associated with a prefix, or all paths
getPaths($prefix = null)


getPaths()
Use this method to obtain the prefix/paths map. If no $prefix is provided, the return value is an
Zend\Stdlib\ArrayStack, where the keys are namespaces or vendor prefixes, and the values are
Zend\Stdlib\SplStack instances containing all paths associated with the given namespace or prefix.


If the $prefix argument is provided, two outcomes are possible. If the prefix is not found, a boolean
false value is returned. If the prefix is found, a Zend\Stdlib\SplStack instance containing all paths
associated with that prefix is returned.









		clearPaths


		Clear all maps, or all paths for a given prefix
clearPaths($prefix = null)


clearPaths()
If no $prefix is provided, all prefix/path pairs are removed. If a $prefix is provided and found within
the map, only that prefix is removed. Finally, if a $prefix is provided, but not found, a boolean false
is returned.








removePrefixPath



removePrefixPath($prefix, $path)


removePrefixPath()
Removes a single path from a given prefix.







		isLoaded


		Has the given plugin been loaded?
isLoaded($name)


isLoaded()
Use this method to determine if the given plugin has been resolved to a class and file. Unlike
PluginClassLoader, this method can return a boolean false even if the loader is capable of loading the
plugin; it simply indicates whether or not the current instance has yet resolved the plugin via the load()
method.









		getClassName


		Retrieve the class name to which a plugin resolves
getClassName($name)


getClassName()
Given a plugin name, this method will attempt to return the associated class name. The method completes
successfully if, and only if, the plugin has been successfully loaded via load(). Otherwise, it will return
a boolean false.









		load


		Attempt to resolve a plugin to a class
load($name)


load()
Given a plugin name, the load() method will loop through the internal ArrayStack. The plugin name is
first normalized using ucwords(), and then appended to the current vendor prefix or namespace. If the
resulting class name resolves via autoloading, the class name is immediately returned. Otherwise, it then loops
through the associated SplStack of paths for the prefix, looking for a file matching the plugin name (i.e.,
for plugin Foo, file name Foo.php) in the given path. If a match is found, the class name is returned.


If no match is found, a boolean false is returned.









		getPluginMap


		Get a list of plugin/class name pairs
getPluginMap()


getPluginMap()
Returns an array of resolved plugin name/class name pairs. This value may be used to seed a
PluginClassLoader instance.









		getClassMap


		Get a list of class name/file name pairs
getClassMap()


getClassMap()
Returns an array of resolved class name/file name pairs. This value may be used to seed a ClassMapAutoloader
instance.











Examples


Using multiple paths for the same prefix


Sometimes you may have code containing the same namespace or vendor prefix in two different locations. Potentially,
the same class may be defined in different locations, but with slightly different functionality. (We do not
recommend this, but sometimes it happens.)


The PrefixPathLoader easily allows for these situations; simply register the path you want to take precedence
last.


Consider the following directory structures:


		1
2
3
4
5
6
7
8
9


		project
|-- library
|   |-- Foo
|   |   |-- Bar.php
|   |   `-- Baz.php
|-- vendor
|   |-- Foo
|   |   |-- Bar.php
|   |   `-- Foobar.php










For purposes of this example, we’ll assume that the common namespace is “Foo”, and that the “Bar” plugin from the
vendor branch is preferred. To make this possible, simply register the “vendor” directory last.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\Loader\PrefixPathLoader;

$loader = new PrefixPathLoader();

// Multiple calls to addPrefixPath():
$loader->addPrefixPath('Foo', PROJECT_ROOT . '/library/Foo')
       ->addPrefixPath('Foo', PROJECT_ROOT . '/vendor/Foo');

// Or use a single call to addPrefixPaths():
$loader->addPrefixPaths(array(
    array('prefix' => 'Foo', 'path' => PROJECT_ROOT . '/library/Foo'),
    array('prefix' => 'Foo', 'path' => PROJECT_ROOT . '/vendor/Foo'),
));

// And then resolve plugins:
$bar    = $loader->load('bar');    // Foo\Bar from vendor/Foo/Bar.php
$baz    = $loader->load('baz');    // Foo\Baz from library/Foo/Baz.php
$foobar = $loader->load('foobar'); // Foo\Foobar from vendor/Foo/Baz.php










Prototyping with PrefixPathLoader


PrefixPathLoader is quite useful for prototyping applications. With minimal configuration, you can access a
full directory of plugins, without needing to update maps as new plugins are added. However, this comes with a
price: performance. Since plugins are resolved typically using by searching the filesystem, you are introducing I/O
calls every time you request a new plugin.


With this in mind, PrefixPathLoader provides two methods for assisting in migrating to more performant
solutions. The first is getClassMap(). This method returns an array of class name/file name pairs suitable for
use with ClassMapAutoloader. Injecting your autoloader with that map will
ensure that on subsequent calls, load() should be able to find the appropriate class via autoloading –
assuming that the match is on the first prefix checked.


The second solution is the getPluginMap() method, which creates a plugin name/class name map suitable for
injecting into a PluginClassLoader instance. Combine this with class
map-based autoloading, and you can actually eliminate I/O calls altogether when using an opcode cache.


Usage of these methods is quite simple.


		1
2
3


		// After a number of load() operations, or at the end of the request:
$classMap  = $loader->getClassMap();
$pluginMap = $loader->getPluginMap();










From here, you will need to do a little work. First, you need to serialize this information somehow for later use.
For that, there are two options: Zend\Serializer or Zend\Cache.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// Using Zend\Serializer:
use Zend\Serializer\Serializer;

$adapter = Serializer::factory('PhpCode');
$content = "<?php\nreturn " . $adapter->serialize($classMap) . ";";
file_put_contents(APPLICATION_PATH . '/.classmap.php', $content);

// Using Zend\Cache:
use Zend\Cache\Cache;

$cache = Cache::factory(
    'Core', 'File',
    array('lifetime' => null, 'automatic_serialization' => true),
    array('cache_dir' => APPLICATION_PATH . '/../cache/classmaps')
);
$cache->save($pluginMap, 'pluginmap');










Note: the examples alternate between the class map and plugin map; however, either technique applies to either map.


Once the data is cached, you can retrieve it late to populate. In the example of the class map above, you would
simply pass the filename to the ClassMapAutoloader instance:


		1
2


		$autoloader = new Zend\Loader\ClassMapAutoloader();
$autoloader->registerAutoloadMap(APPLICATION_PATH . '/.classmap.php');










If using Zend\Cache, you would retrieve the cached data, and pass it to the appropriate component; in this
case, we pass the value to a PluginClassLoader instance.


		1
2
3


		$map = $cache->load('pluginmap');

$loader = new Zend\Loader\PluginClassLoader($map);










With some creative and well disciplined architecture, you can likely automate these processes to ensure that
development can benefit from the dynamic nature of the PrefixPathLoader, and production can benefit from the
performance optimizations of the ClassMapAutoloader and PluginClassLoader.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The PrefixPathLoader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.windows-azure.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_WindowsAzure



Introduction


Windows Azure is the name for Microsoft’s Software + Services platform, an operating system in the cloud providing
services for hosting, management, scalable storage with support for simple blobs, tables, and queues, as well as a
management infrastructure for provisioning and geo-distribution of cloud-based services, and a development platform
for the Azure Services layer.





Installing the Windows Azure SDK


There are two development scenario’s when working with Windows Azure.



		You can develop your application using Zend_Service_WindowsAzure and the Windows Azure SDK, which provides
a local developent environment of the services provided by Windows Azure’s cloud infrastructure.


		You can develop your application using Zend_Service_WindowsAzure, working directly with the Windows Azure
cloud infrastructure.





The first case requires you to install the Windows Azure SDK [http://www.microsoft.com/downloads/details.aspx?FamilyID=6967ff37-813e-47c7-b987-889124b43abd&displaylang=en] on your development machine. It is currently only
available for Windows environments; progress is being made on a Java-based version of the SDK which can run on
any platform.


The latter case requires you to have an account at Azure.com [http://www.azure.com].





API Documentation


The Zend_Service_WindowsAzure class provides the PHP wrapper to the Windows Azure REST interface. Please
consult the REST documentation [http://msdn.microsoft.com/en-us/library/dd179355.aspx] for detailed description of the service. You will need to be familiar with basic
concepts in order to use this service.





Features


Zend_Service_WindowsAzure provides the following functionality:



		PHP classes for Windows Azure Blobs, Tables and Queues (for CRUD operations)


		Helper Classes for HTTP transport, AuthN, AuthZ, REST and Error Management


		Manageability, Instrumentation and Logging support








Architecture


Zend_Service_WindowsAzure provides access to Windows Azure’s storage, computation and management interfaces by
abstracting the REST-XML interface Windows Azure provides into a simple PHP API.


An application built using Zend_Service_WindowsAzure can access Windows Azure’s features, no matter if it is
hosted on the Windows Azure platform or on an in-premise web server.







Zend_Service_WindowsAzure_Storage_Blob


Blob Storage stores sets of binary data. Blob storage offers the following three resources: the storage account,
containers, and blobs. Within your storage account, containers provide a way to organize sets of blobs within your
storage account.


Blob Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Blob class in order to provide a native PHP interface to the storage
account.



API Examples


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Blob class. Other features are
available in the download package, as well as a detailed API documentation of those features.



Creating a storage container


Using the following code, a blob storage container can be created on development storage.


Creating a storage container


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
$result = $storageClient->createContainer('testcontainer');

echo 'Container name is: ' . $result->Name;













Deleting a storage container


Using the following code, a blob storage container can be removed from development storage.


Deleting a storage container


		1
2


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
$storageClient->deleteContainer('testcontainer');













Storing a blob


Using the following code, a blob can be uploaded to a blob storage container on development storage. Note that the
container has already been created before.


Storing a blob


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// upload /home/maarten/example.txt to Azure
$result = $storageClient->putBlob(
    'testcontainer', 'example.txt', '/home/maarten/example.txt'
);

echo 'Blob name is: ' . $result->Name;













Copying a blob


Using the following code, a blob can be copied from inside the storage account. The advantage of using this method
is that the copy operation occurs in the Azure cloud and does not involve downloading the blob. Note that the
container has already been created before.


Copying a blob


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// copy example.txt to example2.txt
$result = $storageClient->copyBlob(
    'testcontainer', 'example.txt', 'testcontainer', 'example2.txt'
);

echo 'Copied blob name is: ' . $result->Name;













Downloading a blob


Using the following code, a blob can be downloaded from a blob storage container on development storage. Note that
the container has already been created before and a blob has been uploaded.


Downloading a blob


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// download file to /home/maarten/example.txt
$storageClient->getBlob(
    'testcontainer', 'example.txt', '/home/maarten/example.txt'
);













Making a blob publicly available


By default, blob storage containers on Windows Azure are protected from public viewing. If any user on the Internet
should have access to a blob container, its ACL can be set to public. Note that this applies to a complete
container and not to a single blob!


Using the following code, blob storage container ACL can be set on development storage. Note that the container has
already been created before.


Making a blob publicly available


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();

// make container publicly available
$storageClient->setContainerAcl(
    'testcontainer',
    Zend_Service_WindowsAzure_Storage_Blob::ACL_PUBLIC
);















Root container


Windows Azure Blob Storage provides support to work with a “root container”. This means that a blob can be stored
in the root of your storage account, i.e. http://myaccount.blob.core.windows.net/somefile.txt.


In order to work with the root container, it should first be created using the createContainer() method, naming
the container $root. All other operations on the root container should be issued with the container name set to
$root.





Blob storage stream wrapper


The Windows Azure SDK for PHP provides support for registering a blob storage client as a PHP file stream
wrapper. The blob storage stream wrapper provides support for using regular file operations on Windows Azure Blob
Storage. For example, one can open a file from Windows Azure Blob Storage with the fopen() function:


Example usage of blob storage stream wrapper


		1
2
3
4
5


		$fileHandle = fopen('azure://mycontainer/myfile.txt', 'r');

// ...

fclose($fileHandle);










In order to do this, the Windows Azure SDK for PHP blob storage client must be registered as a stream wrapper.
This can be done by calling the registerStreamWrapper() method:


Registering the blob storage stream wrapper


		1
2
3
4
5
6
7
8
9


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob();
// registers azure:// on this storage client
$storageClient->registerStreamWrapper();


// or:

// regiters blob:// on this storage client
$storageClient->registerStreamWrapper('blob://');










To unregister the stream wrapper, the unregisterStreamWrapper() method can be used.





Shared Access Signature


Windows Azure Bob Storage provides a feature called “Shared Access Signatures”. By default, there is only one level
of authorization possible in Windows Azure Blob Storage: either a container is private or it is public. Shared
Access Signatures provide a more granular method of authorization: read, write, delete and list permissions can be
assigned on a container or a blob and given to a specific client using an URL-based model.


An example would be the following signature:


http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D




The above signature gives write access to the “phpazuretestshared1” container of the “phpstorage” account.



Generating a Shared Access Signature


When you are the owner of a Windows Azure Bob Storage account, you can create and distribute a shared access key
for any type of resource in your account. To do this, the generateSharedAccessUrl() method of the
Zend_Service_WindowsAzure_Storage_Blob storage client can be used.


The following example code will generate a Shared Access Signature for write access in a container named
“container1”, within a timeframe of 3000 seconds.


Generating a Shared Access Signature for a container


		1
2
3
4
5
6
7
8
9


		$storageClient   = new Zend_Service_WindowsAzure_Storage_Blob();
$sharedAccessUrl = $storageClient->generateSharedAccessUrl(
    'container1',
    '',
    'c',
    'w',
    $storageClient ->isoDate(time() - 500),
    $storageClient ->isoDate(time() + 3000)
);










The following example code will generate a Shared Access Signature for read access in a blob named test.txt in
a container named “container1” within a time frame of 3000 seconds.


Generating a Shared Access Signature for a blob


		1
2
3
4
5
6
7
8
9


		$storageClient   = new Zend_Service_WindowsAzure_Storage_Blob();
$sharedAccessUrl = $storageClient->generateSharedAccessUrl(
    'container1',
    'test.txt',
    'b',
    'r',
    $storageClient ->isoDate(time() - 500),
    $storageClient ->isoDate(time() + 3000)
);













Working with Shared Access Signatures from others


When you receive a Shared Access Signature from someone else, you can use the Windows Azure SDK for PHP to work
with the addressed resource. For example, the following signature can be retrieved from the owner of a storage
account:


http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D




The above signature gives write access to the “phpazuretestshared1” “container” of the phpstorage account. Since
the shared key for the account is not known, the Shared Access Signature can be used to work with the authorized
resource.


Consuming a Shared Access Signature for a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$storageClient = new Zend_Service_WindowsAzure_Storage_Blob(
    'blob.core.windows.net', 'phpstorage', ''
);
$storageClient->setCredentials(
    new Zend_Service_WindowsAzure_Credentials_SharedAccessSignature()
);
$storageClient->getCredentials()->setPermissionSet(array(
    'http://phpstorage.blob.core.windows.net/phpazuretestshared1?st=2009-08-17T09%3A06%3A17Z&se=2009-08-17T09%3A56%3A17Z&sr=c&sp=w&sig=hscQ7Su1nqd91OfMTwTkxabhJSaspx%2BD%2Fz8UqZAgn9s%3D'
));
$storageClient->putBlob(
    'phpazuretestshared1', 'NewBlob.txt', 'C:\Files\dataforazure.txt'
);










Note that there was no explicit permission to write to a specific blob. Instead, the Windows Azure SDK for PHP
determined that a permission was required to either write to that specific blob, or to write to its container.
Since only a signature was available for the latter, the Windows Azure SDK for PHP chose those credentials to
perform the request on Windows Azure blob storage.









Zend_Service_WindowsAzure_Storage_Table


The Table service offers structured storage in the form of tables.


Table Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Table class in order to provide a native PHP interface to the storage
account.


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Table class. Other features are
available in the download package, as well as a detailed API documentation of those features.


Note that development table storage (in the Windows Azure SDK) does not support all features provided by the
API. Therefore, the examples listed on this page are to be used on Windows Azure production table storage.



Operations on tables


This topic lists some samples of operations that can be executed on tables.



Creating a table


Using the following code, a table can be created on Windows Azure production table storage.


Creating a table


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->createTable('testtable');

echo 'New table name is: ' . $result->Name;













Listing all tables


Using the following code, a list of all tables in Windows Azure production table storage can be queried.


Listing all tables


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->listTables();
foreach ($result as $table) {
    echo 'Table name is: ' . $table->Name . "\r\n";
}















Operations on entities


Tables store data as collections of entities. Entities are similar to rows. An entity has a primary key and a set
of properties. A property is a named, typed-value pair, similar to a column.


The Table service does not enforce any schema for tables, so two entities in the same table may have different sets
of properties. Developers may choose to enforce a schema on the client side. A table may contain any number of
entities.


Zend_Service_WindowsAzure_Storage_Table provides 2 ways of working with entities:



		Enforced schema


		No enforced schema





All examples will make use of the following enforced schema class.


Enforced schema used in samples


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class SampleEntity extends Zend_Service_WindowsAzure_Storage_TableEntity
{
    /**
    * @azure Name
    */
    public $Name;

    /**
    * @azure Age Edm.Int64
    */
    public $Age;

    /**
    * @azure Visible Edm.Boolean
    */
    public $Visible = false;
}










Note that if no schema class is passed into table storage methods, Zend_Service_WindowsAzure_Storage_Table
automatically works with Zend_Service_WindowsAzure_Storage_DynamicTableEntity.



Enforced schema entities


To enforce a schema on the client side using the Zend_Service_WindowsAzure_Storage_Table class, you can create
a class which inherits Zend_Service_WindowsAzure_Storage_TableEntity. This class provides some basic
functionality for the Zend_Service_WindowsAzure_Storage_Table class to work with a client-side schema.


Base properties provided by Zend_Service_WindowsAzure_Storage_TableEntity are:



		PartitionKey (exposed through getPartitionKey() and setPartitionKey())


		RowKey (exposed through getRowKey() and setRowKey())


		Timestamp (exposed through getTimestamp() and setTimestamp())


		Etag value (exposed through getEtag() and setEtag())





Here’s a sample class inheriting Zend_Service_WindowsAzure_Storage_TableEntity:


Sample enforced schema class


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class SampleEntity extends Zend_Service_WindowsAzure_Storage_TableEntity
{
    /**
     * @azure Name
     */
    public $Name;

    /**
     * @azure Age Edm.Int64
     */
    public $Age;

    /**
     * @azure Visible Edm.Boolean
     */
    public $Visible = false;
}










The Zend_Service_WindowsAzure_Storage_Table class will map any class inherited from
Zend_Service_WindowsAzure_Storage_TableEntity to Windows Azure table storage entities with the correct data
type and property name. All there is to storing a property in Windows Azure is adding a docblock comment to a
public property or public getter/setter, in the following format:


Enforced property


		1
2
3
4


		/**
 * @azure <property name in Windows Azure> <optional property type>
 */
public $<property name in PHP>;










Let’s see how to define a propety “Age” as an integer on Windows Azure table storage:


Sample enforced property


		1
2
3
4


		/**
 * @azure Age Edm.Int64
 */
public $Age;










Note that a property does not necessarily have to be named the same on Windows Azure table storage. The Windows
Azure table storage property name can be defined as well as the type.


The following data types are supported:



		Edm.Binary- An array of bytes up to 64 KB in size.


		Edm.Boolean- A boolean value.


		Edm.DateTime- A 64-bit value expressed as Coordinated Universal Time (UTC). The supported DateTime range
begins from 12:00 midnight, January 1, 1601 A.D. (C.E.), Coordinated Universal Time (UTC). The range ends at
December 31st, 9999.


		Edm.Double- A 64-bit floating point value.


		Edm.Guid- A 128-bit globally unique identifier.


		Edm.Int32- A 32-bit integer.


		Edm.Int64- A 64-bit integer.


		Edm.String- A UTF-16-encoded value. String values may be up to 64 KB in size.








No enforced schema entities (a.k.a. DynamicEntity)


To use the Zend_Service_WindowsAzure_Storage_Table class without defining a schema, you can make use of the
Zend_Service_WindowsAzure_Storage_DynamicTableEntity class. This class inherits
Zend_Service_WindowsAzure_Storage_TableEntity like an enforced schema class does, but contains additional logic
to make it dynamic and not bound to a schema.


Base properties provided by Zend_Service_WindowsAzure_Storage_DynamicTableEntity are:



		PartitionKey (exposed through getPartitionKey() and setPartitionKey())


		RowKey (exposed through getRowKey() and setRowKey())


		Timestamp (exposed through getTimestamp() and setTimestamp())


		Etag value (exposed through getEtag() and setEtag())





Other properties can be added on the fly. Their Windows Azure table storage type will be determined on-the-fly:


Dynamicaly adding properties Zend_Service_WindowsAzure_Storage_DynamicTableEntity


		1
2
3
4
5


		$target = new Zend_Service_WindowsAzure_Storage_DynamicTableEntity(
    'partition1', '000001'
);
$target->Name = 'Name'; // Will add property "Name" of type "Edm.String"
$target->Age  = 25;     // Will add property "Age" of type "Edm.Int32"










Optionally, a property type can be enforced:


Forcing property types on Zend_Service_WindowsAzure_Storage_DynamicTableEntity


		1
2
3
4
5
6
7
8


		$target = new Zend_Service_WindowsAzure_Storage_DynamicTableEntity(
    'partition1', '000001'
);
$target->Name = 'Name'; // Will add property "Name" of type "Edm.String"
$target->Age  = 25;     // Will add property "Age" of type "Edm.Int32"

// Change type of property "Age" to "Edm.Int32":
$target->setAzurePropertyType('Age', 'Edm.Int64');










The Zend_Service_WindowsAzure_Storage_Table class automatically works with
Zend_Service_WindowsAzure_Storage_TableEntity if no specific class is passed into Table Storage methods.





Entities API examples





Inserting an entity


Using the following code, an entity can be inserted into a table named “testtable”. Note that the table has already
been created before.


Inserting an entity


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$entity = new SampleEntity ('partition1', 'row1');
$entity->FullName = "Maarten";
$entity->Age = 25;
$entity->Visible = true;

$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$result = $storageClient->insertEntity('testtable', $entity);

// Check the timestamp and etag of the newly inserted entity
echo 'Timestamp: ' . $result->getTimestamp() . "\n";
echo 'Etag: ' . $result->getEtag() . "\n";













Retrieving an entity by partition key and row key


Using the following code, an entity can be retrieved by partition key and row key. Note that the table and entity
have already been created before.


Retrieving an entity by partition key and row key


		1
2
3
4
5
6


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity= $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);













Updating an entity


Using the following code, an entity can be updated. Note that the table and entity have already been created
before.


Updating an entity


		1
2
3
4
5
6
7
8
9


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);

$entity->Name = 'New name';
$result = $storageClient->updateEntity('testtable', $entity);










If you want to make sure the entity has not been updated before, you can make sure the Etag of the entity is
checked. If the entity already has had an update, the update will fail to make sure you do not overwrite any newer
data.


Updating an entity (with Etag check)


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);

$entity->Name = 'New name';

// last parameter instructs the Etag check:
$result = $storageClient->updateEntity('testtable', $entity, true);













Deleting an entity


Using the following code, an entity can be deleted. Note that the table and entity have already been created
before.


Deleting an entity


		1
2
3
4
5
6
7


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entity = $storageClient->retrieveEntityById(
    'testtable', 'partition1', 'row1', 'SampleEntity'
);
$result = $storageClient->deleteEntity('testtable', $entity);













Performing queries


Queries in Zend_Service_WindowsAzure_Storage_Table table storage can be performed in two ways:



		By manually creating a filter condition (involving learning a new query language)


		By using the fluent interface provided by the Zend_Service_WindowsAzure_Storage_Table





Using the following code, a table can be queried using a filter condition. Note that the table and entities have
already been created before.


Performing queries using a filter condition


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entities = $storageClient->storageClient->retrieveEntities(
    'testtable',
    'Name eq \'Maarten\' and PartitionKey eq \'partition1\'',
    'SampleEntity'
);

foreach ($entities as $entity) {
    echo 'Name: ' . $entity->Name . "\n";
}










Using the following code, a table can be queried using a fluent interface. Note that the table and entities have
already been created before.


Performing queries using a fluent interface


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);
$entities = $storageClient->storageClient->retrieveEntities(
    'testtable',
    $storageClient->select()
                  ->from($tableName)
                  ->where('Name eq ?', 'Maarten')
                  ->andWhere('PartitionKey eq ?', 'partition1'),
    'SampleEntity'
);

foreach ($entities as $entity) {
    echo 'Name: ' . $entity->Name . "\n";
}













Batch operations


This topic demonstrates how to use the table entity group transaction features provided by Windows Azure table
storage. Windows Azure table storage supports batch transactions on entities that are in the same table and belong
to the same partition group. A transaction can include at most 100 entities.


The following example uses a batch operation (transaction) to insert a set of entities into the “testtable” table.
Note that the table has already been created before.


Executing a batch operation


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

// Start batch
$batch = $storageClient->startBatch();

// Insert entities in batch
$entities = generateEntities();
foreach ($entities as $entity) {
    $storageClient->insertEntity($tableName, $entity);
}

// Commit
$batch->commit();















Table storage session handler


When running a PHP application on the Windows Azure platform in a load-balanced mode (running 2 Web Role
instances or more), it is important that PHP session data can be shared between multiple Web Role instances. The
Windows Azure SDK for PHP provides the Zend_Service_WindowsAzure_SessionHandler class, which uses Windows
Azure Table Storage as a session handler for PHP applications.


To use the Zend_Service_WindowsAzure_SessionHandler session handler, it should be registered as the default
session handler for your PHP application:


Registering table storage session handler


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

$sessionHandler = new Zend_Service_WindowsAzure_SessionHandler(
    $storageClient , 'sessionstable'
);
$sessionHandler->register();










The above classname registers the Zend_Service_WindowsAzure_SessionHandler session handler and will store
sessions in a table called “sessionstable”.


After registration of the Zend_Service_WindowsAzure_SessionHandler session handler, sessions can be started and
used in the same way as a normal PHP session:


Using table storage session handler


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$storageClient = new Zend_Service_WindowsAzure_Storage_Table(
    'table.core.windows.net', 'myaccount', 'myauthkey'
);

$sessionHandler = new Zend_Service_WindowsAzure_SessionHandler(
    $storageClient , 'sessionstable'
);
$sessionHandler->register();

session_start();

if (!isset($_SESSION['firstVisit'])) {
    $_SESSION['firstVisit'] = time();
}

// ...











Warning


The Zend_Service_WindowsAzure_SessionHandler session handler should be registered before a call to
session_start() is made!









Zend_Service_WindowsAzure_Storage_Queue


The Queue service stores messages that may be read by any client who has access to the storage account.


A queue can contain an unlimited number of messages, each of which can be up to 8 KB in size. Messages are
generally added to the end of the queue and retrieved from the front of the queue, although first in/first out
(FIFO) behavior is not guaranteed. If you need to store messages larger than 8 KB, you can store message data as
a queue or in a table and then store a reference to the data as a message in a queue.


Queue Storage is offered by Windows Azure as a REST API which is wrapped by the
Zend_Service_WindowsAzure_Storage_Queue class in order to provide a native PHP interface to the storage
account.



API Examples


This topic lists some examples of using the Zend_Service_WindowsAzure_Storage_Queue class. Other features are
available in the download package, as well as a detailed API documentation of those features.



Creating a queue


Using the following code, a queue can be created on development storage.


Creating a queue


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();
$result = $storageClient->createQueue('testqueue');

echo 'Queue name is: ' . $result->Name;













Deleting a queue


Using the following code, a queue can be removed from development storage.


Deleting a queue


		1
2


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();
$storageClient->deleteQueue('testqueue');













Adding a message to a queue


Using the following code, a message can be added to a queue on development storage. Note that the queue has already
been created before.


Adding a message to a queue


		1
2
3
4


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// 3600 = time-to-live of the message, if omitted defaults to 7 days
$storageClient->putMessage('testqueue', 'This is a test message', 3600);













Reading a message from a queue


Using the following code, a message can be read from a queue on development storage. Note that the queue and
message have already been created before.


Reading a message from a queue


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->getMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message->MessageText . "\r\n";
}










The messages that are read using getMessages() will be invisible in the queue for 30 seconds, after which the
messages will re-appear in the queue. To mark a message as processed and remove it from the queue, use the
deleteMessage() method.


Marking a message as processed


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->getMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message . "\r\n";

    // Mark the message as processed
    $storageClient->deleteMessage('testqueue', $message);
}













Check if there are messages in a queue


Using the following code, a queue can be checked for new messages. Note that the queue and message have already
been created before.


Check if there are messages in a queue


		1
2
3
4
5
6
7
8


		$storageClient = new Zend_Service_WindowsAzure_Storage_Queue();

// retrieve 10 messages at once
$messages = $storageClient->peekMessages('testqueue', 10);

foreach ($messages as $message) {
    echo $message->MessageText . "\r\n";
}










Note that messages that are read using peekMessages() will not become invisible in the queue, nor can they be
marked as processed using the deleteMessage() method. To do this, use getMessages() instead.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_WindowsAzure
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.nirvanix.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Nirvanix



Introduction


Nirvanix provides an Internet Media File System (IMFS), an Internet storage service that allows applications to
upload, store and organize files and subsequently access them using a standard Web Services interface. An IMFS is
distributed clustered file system, accessed over the Internet, and optimized for dealing with media files (audio,
video, etc). The goal of an IMFS is to provide massive scalability to deal with the challenges of media storage
growth, with guaranteed access and availability regardless of time and location. Finally, an IMFS gives
applications the ability to access data securely, without the large fixed costs associated with acquiring and
maintaining physical storage assets.





Registering with Nirvanix


Before you can get started with Zend_Service_Nirvanix, you must first register for an account. Please see the
Getting Started [http://www.nirvanix.com/gettingStarted.aspx] page on the Nirvanix website for more information.


After registering, you will receive a Username, Password, and Application Key. All three are required to use
Zend_Service_Nirvanix.





API Documentation


Access to the Nirvanix IMFS is available through both SOAP and a faster REST service. Zend_Service_Nirvanix
provides a relatively thin PHP 5 wrapper around the REST service.


Zend_Service_Nirvanix aims to make using the Nirvanix REST service easier but understanding the service itself
is still essential to be successful with Nirvanix.


The Nirvanix API Documentation [http://developer.nirvanix.com/sitefiles/1000/API.html] provides an overview as well as detailed information using the service. Please
familiarize yourself with this document and refer back to it as you use Zend_Service_Nirvanix.





Features


Nirvanix’s REST service can be used effectively with PHP using the SimpleXML [http://www.php.net/simplexml] extension and
Zend_Http_Client alone. However, using it this way is somewhat inconvenient due to repetitive operations like
passing the session token on every request and repeatedly checking the response body for error codes.


Zend_Service_Nirvanix provides the following functionality:




		A single point for configuring your Nirvanix authentication credentials that can be used across the Nirvanix
namespaces.


		A proxy object that is more convenient to use than an HTTP client alone, mostly removing the need to
manually construct HTTP POST requests to access the REST service.


		A response wrapper that parses each response body and throws an exception if an error occurred, alleviating
the need to repeatedly check the success of many commands.


		Additional convenience methods for some of the more common operations.












Getting Started


Once you have registered with Nirvanix, you’re ready to store your first file on the IMFS. The most common
operations that you will need to do on the IMFS are creating a new file, downloading an existing file, and deleting
a file. Zend_Service_Nirvanix provides convenience methods for these three operations.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$auth = array('username' => 'your-username',
              'password' => 'your-password',
              'appKey'   => 'your-app-key');

$nirvanix = new Zend_Service_Nirvanix($auth);
$imfs = $nirvanix->getService('IMFS');

$imfs->putContents('/foo.txt', 'contents to store');

echo $imfs->getContents('/foo.txt');

$imfs->unlink('/foo.txt');










The first step to using Zend_Service_Nirvanix is always to authenticate against the service. This is done by
passing your credentials to the Zend_Service_Nirvanix constructor above. The associative array is passed
directly to Nirvanix as POST parameters.


Nirvanix divides its web services into namespaces [http://developer.nirvanix.com/sitefiles/1000/API.html#_Toc175999879]. Each namespace encapsulates a group of related operations.
After getting an instance of Zend_Service_Nirvanix, call the getService() method to create a proxy for the
namespace you want to use. Above, a proxy for the IMFS namespace is created.


After you have a proxy for the namespace you want to use, call methods on it. The proxy will allow you to use any
command available on the REST API. The proxy may also make convenience methods available, which wrap web service
commands. The example above shows using the IMFS convenience methods to create a new file, retrieve and display
that file, and finally delete the file.





Understanding the Proxy


In the previous example, we used the getService() method to return a proxy object to the IMFS namespace.
The proxy object allows you to use the Nirvanix REST service in a way that’s closer to making a normal PHP method
call, as opposed to constructing your own HTTP request objects.


A proxy object may provide convenience methods. These are methods that the Zend_Service_Nirvanix provides to
simplify the use of the Nirvanix web services. In the previous example, the methods putContents(),
getContents(), and unlink() do not have direct equivalents in the REST API. They are convenience methods
provided by Zend_Service_Nirvanix that abstract more complicated operations on the REST API.


For all other method calls to the proxy object, the proxy will dynamically convert the method call to the
equivalent HTTP POST request to the REST API. It does this by using the method name as the API command, and
an associative array in the first argument as the POST parameters.


Let’s say you want to call the REST API method RenameFile [http://developer.nirvanix.com/sitefiles/1000/API.html#_Toc175999923], which does not have a convenience method in
Zend_Service_Nirvanix:


		1
2
3
4
5
6
7
8
9


		$auth = array('username' => 'your-username',
              'password' => 'your-password',
              'appKey'   => 'your-app-key');

$nirvanix = new Zend_Service_Nirvanix($auth);
$imfs = $nirvanix->getService('IMFS');

$result = $imfs->renameFile(array('filePath' => '/path/to/foo.txt',
                                  'newFileName' => 'bar.txt'));










Above, a proxy for the IMFS namespace is created. A method, renameFile(), is then called on the proxy. This
method does not exist as a convenience method in the PHP code, so it is trapped by __call() and converted
into a POST request to the REST API where the associative array is used as the POST parameters.


Notice in the Nirvanix API documentation that sessionToken is required for this method but we did not give it
to the proxy object. It is added automatically for your convenience.


The result of this operation will either be a Zend_Service_Nirvanix_Response object wrapping the XML returned
by Nirvanix, or a Zend_Service_Nirvanix_Exception if an error occurred.





Examining Results


The Nirvanix REST API always returns its results in XML. Zend_Service_Nirvanix parses this XML with the
SimpleXML extension and then decorates the resulting SimpleXMLElement with a Zend_Service_Nirvanix_Response
object.


The simplest way to examine a result from the service is to use the built-in PHP functions like print_r():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		<?php
$auth = array('username' => 'your-username',
              'password' => 'your-password',
              'appKey'   => 'your-app-key');

$nirvanix = new Zend_Service_Nirvanix($auth);
$imfs = $nirvanix->getService('IMFS');

$result = $imfs->putContents('/foo.txt', 'fourteen bytes');
print_r($result);
?>

Zend_Service_Nirvanix_Response Object
(
    [_sxml:protected] => SimpleXMLElement Object
        (
            [ResponseCode] => 0
            [FilesUploaded] => 1
            [BytesUploaded] => 14
        )
)










You can access any property or method of the decorated SimpleXMLElement. In the above example,
$result->BytesUploaded could be used to see the number of bytes received. Should you want to access the
SimpleXMLElement directly, just use $result->getSxml().


The most common response from Nirvanix is success (ResponseCode of zero). It is not normally necessary to check
ResponseCode because any non-zero result will throw a Zend_Service_Nirvanix_Exception. See the next section
on handling errors.





Handling Errors


When using Nirvanix, it’s important to anticipate errors that can be returned by the service and handle them
appropriately.


All operations against the REST service result in an XML return payload that contains a ResponseCode element,
such as the following example:


		1
2
3


		<Response>
   <ResponseCode>0</ResponseCode>
</Response>










When the ResponseCode is zero such as in the example above, the operation was successful. When the operation is
not successful, the ResponseCode is non-zero and an ErrorMessage element should be present.


To alleviate the need to repeatedly check if the ResponseCode is non-zero, Zend_Service_Nirvanix
automatically checks each response returned by Nirvanix. If the ResponseCode indicates an error, a
Zend_Service_Nirvanix_Exception will be thrown.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$auth = array('username' => 'your-username',
              'password' => 'your-password',
              'appKey'   => 'your-app-key');
$nirvanix = new Zend_Service_Nirvanix($auth);

try {

  $imfs = $nirvanix->getService('IMFS');
  $imfs->unlink('/a-nonexistant-path');

} catch (Zend_Service_Nirvanix_Exception $e) {
  echo $e->getMessage() . "\n";
  echo $e->getCode();
}










In the example above, unlink() is a convenience method that wraps the DeleteFiles command on the REST API.
The filePath parameter required by the DeleteFiles [http://developer.nirvanix.com/sitefiles/1000/API.html#_Toc175999918] command contains a path that does not exist. This will
result in a Zend_Service_Nirvanix exception being thrown with the message “Invalid path” and code 70005.


The Nirvanix API Documentation [http://developer.nirvanix.com/sitefiles/1000/API.html] describes the errors associated with each command. Depending on your needs, you
may wrap each command in a try block or wrap many commands in the same try block for convenience.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Nirvanix
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/paginator.together.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Putting it all Together


You have seen how to create a Paginator object, how to render the items on the current page, and how to render a
navigation element to browse through your pages. In this section you will see how Paginator fits in with the rest
of your MVC application.


In the following examples we will ignore the best practice implementation of using a Service Layer to keep the
example simple and easier to understand. Once you get familiar with using Service Layers, it should be easy to see
how Paginator can fit in with the best practice approach.


Lets start with the controller. The sample application is simple, and we’ll just put everything in the
IndexController and the IndexAction. Again, this is for demonstration purposes only. A real application should not
use controllers in this manner.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		class IndexController extends Zend_Controller_Action
{
    public function indexAction()
    {
        // Setup pagination control view script. See the pagation control tutorial page
        // for more information about this view script.
        Zend_View_Helper_PaginationControl::setDefaultViewPartial('controls.phtml');

        // Fetch an already instantiated database connection from the registry
        $db = Zend_Registry::get('db');

        // Create a select object which fetches blog posts, sorted decending by date of creation
        $select = $db->select()->from('posts')->order('date_created DESC');

        // Create a Paginator for the blog posts query
        $paginator = Zend_Paginator::factory($select);

        // Read the current page number from the request. Default to 1 if no explicit page number is provided.
        $paginator->setCurrentPageNumber($this->_getParam('page', 1));

        // Assign the Paginator object to the view
        $this->view->paginator = $paginator;
    }
}










The following view script is the index.phtml view script for the IndexController’s indexAction. The view script can
be kept simple. We’re assuming the use of the default ScrollingStyle.


		1
2
3
4
5
6
7
8
9


		<ul>
<?php
// Render each the title of each post for the current page in a list-item
foreach ($this->paginator as $item) {
    echo '<li>' . $item["title"] . '</li>';
}
?>
</ul>
<?php echo $this->paginator; ?>










Now navigate to your project’s index and see Paginator in action. What we have discussed in this tutorial is just
the tip of the iceberg. The reference manual and API documentation can tell you more about what you can do with
Zend_Paginator.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Putting it all Together
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.int.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Int


Zend_Filter_Int allows you to transform a sclar value which contains into an integer.



Supported options for Zend_Filter_Int


There are no additional options for Zend_Filter_Int.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Int();

print $filter->filter('-4 is less than 0');










This will return ‘-4’.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Int
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.prompts.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Console prompts


In addition to console abstraction layer Zend Framework 2 provides numerous convenience
classes for interacting with the user in console environment. This chapter describes available Zend\Console\Prompt
classes and their example usage.


All prompts can be instantiated as objects and provide show() method.


		1
2
3
4
5
6
7


		use Zend\Console\Prompt;

$confirm = new Prompt\Confirm('Are you sure you want to continue?');
$result = $confirm->show();
if ($result) {
    // the user chose to continue
}










There is also a shorter method of displaying prompts, using static prompt() method:


		1
2
3
4
5
6


		use Zend\Console\Prompt;

$result = Prompt\Confirm::prompt('Are you sure you want to continue?');
if ($result) {
    // the user chose to continue
}










Both of above examples will display something like this:


[image: ../_images/zend.console.prompt.png]

See also


Make sure to read about console MVC integration first, because it provides
a convenient way for running modular console applications without directly writing to or reading from console
window.





Confirm


This prompt is best used for a yes / no type of choices.


Confirm( string $text, string $yesChar = 'y', string $noChar = 'n' )







		$text


		(string) The text to show with the prompt


		$yesChar


		(string) The char that corresponds with YES choice. Defaults to y.


		$noChar


		(string) The char that corresponds with NO choice. Defaults to n.





Example usage:


use Zend\Console\Prompt\Confirm;

if ( Confirm::prompt('Is this the correct answer? [y/n]', 'y', 'n') ) {
    $console->write("You chose YES");
} else {
    $console->write("You chose NO");
}






[image: ../_images/zend.console.prompt2.png]



Line


This prompt asks for a line of text input.


Line(
    string $text = 'Please enter value',
    bool $allowEmpty = false,
    bool $maxLength = 2048
)







		$text


		(string) The text to show with the prompt


		$allowEmpty


		(boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)


		$maxLength


		(integer) Maximum length of the input. Anythin above this limit will be truncated.





Example usage:


use Zend\Console\Prompt\Line;

$name = Line::prompt(
    'What is your name?',
    false,
    100
);

$console->write("Good day to you $name!");






[image: ../_images/zend.console.prompt3.png]



Char


This prompt reads a single keystroke and optionally validates it against a list o allowed characters.


Char(
    string $text = 'Please hit a key',
    string $allowedChars = 'abc',
    bool   $ignoreCase = true,
    bool   $allowEmpty = false,
    bool   $echo = true
)







		$text


		(string) The text to show with the prompt


		$allowedChars


		(string) A list of allowed keys that can be pressed.


		$ignoreCase


		(boolean) Ignore the case of chars pressed (default to true)


		$allowEmpty


		(boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)


		$echo


		(boolean) Should the selection be displayed on the screen ?





Example usage:


use Zend\Console\Prompt\Char;

$answer = Char::prompt(
    'What is the correct answer? [a,b,c,d,e]',
    'abcde',
    true,
    false,
    true
);

if ($answer == 'b') {
    $console->write('Correct. This it the right answer');
} else {
    $console->write('Wrong ! Try again.');
}






[image: ../_images/zend.console.prompt4.png]



Select


This prompt displays a number of choices and asks the user to pick one.


Select(
    string $text = 'Please select one option',
    array  $options = array(),
    bool   $allowEmpty = false,
    bool   $echo = false
)







		$text


		(string) The text to show with the prompt


		$options


		(array) An associative array with keys strokes (chars) and their displayed values.


		$allowEmpty


		(boolean) Can this prompt be skipped, by pressing [ENTER] ? (default fo false)


		$echo


		(boolean) Should the selection be displayed on the screen ?





Example usage:


$options = array(
    'a' => 'Apples',
    'o' => 'Oranges',
    'p' => 'Pears',
    'b' => 'Bananas',
    'n' => 'none of the above...'
);

$answer = Select::prompt(
    'Which fruit do you like the best?',
    $options,
    false,
    false
);

$console->write("You told me that you like " . $options[$answer]);






[image: ../_images/zend.console.prompt5.png]

See also


To learn more about accessing console, writing to and reading from it, make sure to
read the following chapter: Console adapters.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Console prompts
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.styling-and-translations.poedit.png
Original string | Translation
*+ Skeleton Appliction Tutorial
Home
Al rights reserved.
Welcome to %sZend Framework 2%s

3% anslated, 31 strings 0 fuzzy, 0 bad tokens, 30 not wanslated)






modules/zend.form.view.helper.form-email.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormEmail


The FormEmail view helper can be used to render a <input type="email">
HTML5 form input. It is meant to work with the Zend\Form\Element\Email
element, which provides a default input specification with an email validator.


FormEmail extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Email('my-email');

// Within your view...

echo $this->formEmail($element);
// <input type="email" name="my-email" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormEmail
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.reserved-instance.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Reserved Instances


With Amazon EC2 Reserved Instances, you can make a low one-time payment for each instance to reserve and receive
a significant discount on the hourly usage charge for that instance.


Amazon EC2 Reserved Instances are based on instance type and location (region and Availability Zone) for a
specified period of time (e.g., 1 year or 3 years) and are only available for Linux or UNIX instances.



How Reserved Instances are Applied


Reserved Instances are applied to instances that meet the type/location criteria during the specified period. In
this example, a user is running the following instances:



		
		m1.small instances in Availability Zone us-east-1a








		
		c1.medium instances in Availability Zone us-east-1b








		
		c1.xlarge instances in Availability Zone us-east-1b











The user then purchases the following Reserved Instances.



		
		m1.small instances in Availability Zone us-east-1a








		
		c1.medium instances in Availability Zone us-east-1a








		
		m1.xlarge instances in Availability Zone us-east-1a











Amazon EC2 applies the two m1.small Reserved Instances to two of the instances in Availability Zone us-east-1a.
Amazon EC2 doesn’t apply the two c1.medium Reserved Instances because the c1.medium instances are in a different
Availability Zone and does not apply the m1.xlarge Reserved Instances because there are no running m1.xlarge
instances.





Reserved Instances Usage


Describes Reserved Instances that you purchased


describeInstances() will return information about a reserved instance or instances that you purchased.


describeInstances() returns a multi-demential array that contains reservedInstancesId, instanceType,
availabilityZone, duration, fixedPrice, usagePrice, productDescription, instanceCount and state.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Reserved('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->describeInstances('instanceId');










Describe current Reserved Instance Offerings available


describeOfferings() Describes Reserved Instance offerings that are available for purchase. With Amazon EC2
Reserved Instances, you purchase the right to launch Amazon EC2 instances for a period of time (without getting
insufficient capacity errors) and pay a lower usage rate for the actual time used.


describeOfferings() returns a multi-demential array that contains reservedInstancesId, instanceType,
availabilityZone, duration, fixedPrice, usagePrice and productDescription.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Reserved('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->describeOfferings();










Turn off CloudWatch Monitoring on an Instance(s)


purchaseOffering() Purchases a Reserved Instance for use with your account. With Amazon EC2 Reserved
Instances, you purchase the right to launch Amazon EC2 instances for a period of time (without getting
insufficient capacity errors) and pay a lower usage rate for the actual time used.


purchaseOffering() returns the reservedInstanceId.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Reserved('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->purchaseOffering('offeringId', 'instanceCount');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Reserved Instances
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.memory.memory-objects.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Memory Objects



Movable


Create movable memory objects using the create([$data]) method of the memory manager:


		1


		$memObject = $memoryManager->create($data);










“Movable” means that such objects may be swapped and unloaded from memory and then loaded when application code
accesses the object.





Locked


Create locked memory objects using the createLocked([$data]) method of the memory manager:


		1


		$memObject = $memoryManager->createLocked($data);










“Locked” means that such objects are never swapped and unloaded from memory.


Locked objects provides the same interface as movable objects (Zend_Memory_Container_Interface). So locked
object can be used in any place instead of movable objects.


It’s useful if an application or developer can decide, that some objects should never be swapped, based on
performance considerations.


Access to locked objects is faster, because the memory manager doesn’t need to track changes for these objects.


The locked objects class (Zend_Memory_Container_Locked) guarantees virtually the same performance as working
with a string variable. The overhead is a single dereference to get the class property.





Memory container ‘value’ property


Use the memory container (movable or locked) ‘value‘ property to operate with memory object data:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$memObject = $memoryManager->create($data);

echo $memObject->value;

$memObject->value = $newValue;

$memObject->value[$index] = '_';

echo ord($memObject->value[$index1]);

$memObject->value = substr($memObject->value, $start, $length);










An alternative way to access memory object data is to use the getRef() method. This method must be used for PHP versions before 5.2. It
also may have to be used in some other cases for performance reasons.





Memory container interface


Memory container provides the following methods:



getRef() method


		1


		public function &getRef();










The getRef() method returns reference to the object value.


Movable objects are loaded from the cache at this moment if the object is not already in memory. If the object is
loaded from the cache, this might cause swapping of other objects if the memory limit would be exceeded by having
all the managed objects in memory.


The getRef() method must be used to access memory object data for PHP versions before 5.2.


Tracking changes to data needs additional resources. The getRef() method returns reference to string, which is
changed directly by user application. So, it’s a good idea to use the getRef() method for value data
processing:


		1
2
3
4
5
6
7
8


		$memObject = $memoryManager->create($data);

$value = &$memObject->getRef();

for ($count = 0; $count < strlen($value); $count++) {
    $char = $value[$count];
    ...
}













touch() method


		1


		public function touch();










The touch() method should be used in common with getRef(). It signals that object value has been changed:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$memObject = $memoryManager->create($data);
...

$value = &$memObject->getRef();

for ($count = 0; $count < strlen($value); $count++) {
    ...
    if ($condition) {
        $value[$count] = $char;
    }
    ...
}

$memObject->touch();













lock() method


		1


		public function lock();










The lock() methods locks object in memory. It should be used to prevent swapping of some objects you choose.
Normally, this is not necessary, because the memory manager uses an intelligent algorithm to choose candidates for
swapping. But if you exactly know, that at this part of code some objects should not be swapped, you may lock them.


Locking objects in memory also guarantees that reference returned by the getRef() method is valid until you
unlock the object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$memObject1 = $memoryManager->create($data1);
$memObject2 = $memoryManager->create($data2);
...

$memObject1->lock();
$memObject2->lock();

$value1 = &$memObject1->getRef();
$value2 = &$memObject2->getRef();

for ($count = 0; $count < strlen($value2); $count++) {
    $value1 .= $value2[$count];
}

$memObject1->touch();
$memObject1->unlock();
$memObject2->unlock();













unlock() method


		1


		public function unlock();










unlock() method unlocks object when it’s no longer necessary to be locked. See the example above.





isLocked() method


		1


		public function isLocked();










The isLocked() method can be used to check if object is locked. It returns TRUE if the object is locked, or
FALSE if it is not locked. This is always TRUE for “locked” objects, and may be either TRUE or
FALSE for “movable” objects.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Memory Objects
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.strike-iron.advanced-uses.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_StrikeIron: Advanced Uses


This section describes the more advanced uses of Zend_Service_StrikeIron.



Using Services by WSDL


Some StrikeIron services may have a PHP wrapper class available, such as those described in Bundled
Services. However, StrikeIron offers hundreds of services and many of
these may be usable even without creating a special wrapper class.


To try a StrikeIron service that does not have a wrapper class available, give the wsdl option to
getService() instead of the class option:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

// Get a generic client to the Reverse Phone Lookup service
$phone = $strikeIron->getService(
    array('wsdl' => 'http://ws.strikeiron.com/ReversePhoneLookup?WSDL')
);

$result = $phone->lookup(array('Number' => '(408) 253-8800'));
echo $result->listingName;

// Zend Technologies USA Inc










Using StrikeIron services from the WSDL will require at least some understanding of the WSDL files. StrikeIron has
many resources on its site to help with this. Also, Jan Schneider [http://janschneider.de] from the Horde project [http://horde.org] has written a small
PHP routine [http://janschneider.de/news/25/268] that will format a WSDL file into more readable HTML.


Please note that only the services described in the Bundled Services section are officially supported.





Viewing SOAP Transactions


All communication with StrikeIron is done using the SOAP extension. It is sometimes useful to view the XML
exchanged with StrikeIron for debug purposes.


Every StrikeIron client (subclass of Zend_Service_StrikeIron_Base) contains a getSoapClient() method to
return the underlying instance of SOAPClient used to communicate with StrikeIron.


PHP‘SOAPClient [http://www.php.net/manual/en/function.soap-soapclient-construct.php] has a trace option that causes it to remember the XML exchanged during the last
transaction. Zend_Service_StrikeIron does not enable the trace option by default but this can easily by
changed by specifying the options that will be passed to the SOAPClient constructor.


To view a SOAP transaction, call the getSoapClient() method to get the SOAPClient instance and then call
the appropriate methods like __getLastRequest() [http://www.php.net/manual/en/function.soap-soapclient-getlastresponse.php] and __getLastRequest() [http://www.php.net/manual/en/function.soap-soapclient-getlastresponse.php]:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$strikeIron =
    new Zend_Service_StrikeIron(array('username' => 'your-username',
                                      'password' => 'your-password',
                                      'options'  => array('trace' => true)));

// Get a client for the Sales & Use Tax Basic service
$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));

// Perform a method call
$taxBasic->getTaxRateCanada(array('province' => 'ontario'));

// Get SOAPClient instance and view XML
$soapClient = $taxBasic->getSoapClient();
echo $soapClient->__getLastRequest();
echo $soapClient->__getLastResponse();
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_StrikeIron: Advanced Uses
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.19.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.9


When upgrading from a release of Zend Framework earlier than 1.9.0 to any 1.9 release, you should note the
following migration notes.



Zend_File_Transfer



MimeType validation


For security reasons we had to turn off the default fallback mechanism of the MimeType, ExcludeMimeType,
IsCompressed and IsImage validators. This means, that if the fileInfo or magicMime extensions can
not be found, the validation will always fail.


If you are in need of validation by using the HTTP fields which are provided by the user then you can turn on
this feature by using the enableHeaderCheck() method.



Note


Security hint


You should note that relying on the HTTP fields, which are provided by your user, is a security risk. They can
easily be changed and could allow your user to provide a malcious file.




Allow the usage of the HTTP fields


		1
2
3
4
5


		// at initiation
$valid = new Zend_File_Transfer_Adapter_Http(array('headerCheck' => true);

// or afterwards
$valid->enableHeaderCheck();















Zend_Filter


Prior to the 1.9 release, Zend_Filter allowed the usage of the static get() method. As with release 1.9
this method has been renamed to filterStatic() to be more descriptive. The old get() method is marked as
deprecated.





Zend_Http_Client



Changes to internal uploaded file information storage


In version 1.9 of Zend Framework, there has been a change in the way Zend_Http_Client internally stores
information about files to be uploaded, set using the Zend_Http_Client::setFileUpload() method.


This change was introduced in order to allow multiple files to be uploaded with the same form name, as an array of
files. More information about this issue can be found in this bug report [http://framework.zend.com/issues/browse/ZF-5744].


Internal storage of uploaded file information


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		// Upload two files with the same form element name, as an array
$client = new Zend_Http_Client();
$client->setFileUpload('file1.txt',
                       'userfile[]',
                       'some raw data',
                       'text/plain');
$client->setFileUpload('file2.txt',
                       'userfile[]',
                       'some other data',
                       'application/octet-stream');

// In Zend Framework 1.8 or older, the value of
// the protected member $client->files is:
// $client->files = array(
//     'userfile[]' => array('file2.txt',
                             'application/octet-stream',
                             'some other data')
// );

// In Zend Framework 1.9 or newer, the value of $client->files is:
// $client->files = array(
//     array(
//         'formname' => 'userfile[]',
//         'filename' => 'file1.txt,
//         'ctype'    => 'text/plain',
//         'data'     => 'some raw data'
//     ),
//     array(
//         'formname' => 'userfile[]',
//         'filename' => 'file2.txt',
//         'formname' => 'application/octet-stream',
//         'formname' => 'some other data'
//     )
// );










As you can see, this change permits the usage of the same form element name with more than one file - however, it
introduces a subtle backwards-compatibility change and as such should be noted.





Deprecation of Zend_Http_Client::_getParametersRecursive()


Starting from version 1.9, the protected method _getParametersRecursive() is no longer used by
Zend_Http_Client and is deprecated. Using it will cause an E_NOTICE message to be emitted by PHP.


If you subclass Zend_Http_Client and call this method, you should look into using the
Zend_Http_Client::_flattenParametersArray() static method instead.


Again, since this _getParametersRecursive() is a protected method, this change will only affect users who
subclass Zend_Http_Client.







Zend_Locale



Deprecated methods


Some specialized translation methods have been deprecated because they duplicate existing behaviour. Note that the
old methods will still work, but a user notice is triggered which describes the new call. The methods will be
erased with 2.0. See the following list for old and new method call.



List of measurement types





		Old call
		New call





		getLanguageTranslationList($locale)
		getTranslationList(‘language’, $locale)



		getScriptTranslationList($locale)
		getTranslationList(‘script’, $locale)



		getCountryTranslationList($locale)
		getTranslationList(‘territory’, $locale, 2)



		getTerritoryTranslationList($locale)
		getTranslationList(‘territory’, $locale, 1)



		getLanguageTranslation($value, $locale)
		getTranslation($value, ‘language’, $locale)



		getScriptTranslation($value, $locale)
		getTranslation($value, ‘script’, $locale)



		getCountryTranslation($value, $locale)
		getTranslation($value, ‘country’, $locale)



		getTerritoryTranslation($value, $locale)
		getTranslation($value, ‘territory’, $locale)












Zend_View_Helper_Navigation


Prior to the 1.9 release, the menu helper (Zend_View_Helper_Navigation_Menu) did not render sub menus
correctly. When onlyActiveBranch was TRUE and the option renderParents FALSE, nothing would be
rendered if the deepest active page was at a depth lower than the minDepth option.


In simpler words; if minDepth was set to ‘1’ and the active page was at one of the first level pages, nothing
would be rendered, as the following example shows.


Consider the following container setup:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		<?php
$container = new Zend_Navigation(array(
    array(
        'label' => 'Home',
        'uri'   => '#'
    ),
    array(
        'label'  => 'Products',
        'uri'    => '#',
        'active' => true,
        'pages'  => array(
            array(
                'label' => 'Server',
                'uri'   => '#'
            ),
            array(
                'label' => 'Studio',
                'uri'   => '#'
            )
        )
    ),
    array(
        'label' => 'Solutions',
        'uri'   => '#'
    )
));










The following code is used in a view script:


		1
2
3
4
5


		<?php echo $this->navigation()->menu()->renderMenu($container, array(
    'minDepth'         => 1,
    'onlyActiveBranch' => true,
    'renderParents'    => false
)); ?>










Before release 1.9, the code snippet above would output nothing.


Since release 1.9, the _renderDeepestMenu() method in Zend_View_Helper_Navigation_Menu will accept active
pages at one level below minDepth, as long as the page has children.


The same code snippet will now output the following:


		1
2
3
4
5
6
7
8


		<ul class="navigation">
    <li>
        <a href="#">Server</a>
    </li>
    <li>
        <a href="#">Studio</a>
    </li>
</ul>













Security fixes as with 1.9.7


Additionally, users of the 1.9 series may be affected by other changes starting in version 1.9.7. These are all
security fixes that also have potential backwards compatibility implications.



Zend_Filter_HtmlEntities


In order to default to a more secure character encoding, Zend_Filter_HtmlEntities now defaults to UTF-8
instead of ISO-8859-1.


Additionally, because the actual mechanism is dealing with character encodings and not character sets, two new
methods have been added, setEncoding() and getEncoding(). The previous methods setCharSet() and
setCharSet() are now deprecated and proxy to the new methods. Finally, instead of using the protected members
directly within the filter() method, these members are retrieved by their explicit accessors. If you were
extending the filter in the past, please check your code and unit tests to ensure everything still continues to
work.





Zend_Filter_StripTags


Zend_Filter_StripTags contains a flag, commentsAllowed, that, in previous versions, allowed you to
optionally whitelist HTML comments in HTML text filtered by the class. However, this opens code enabling the
flag to XSS attacks, particularly in Internet Explorer (which allows specifying conditional functionality via
HTML comments). Starting in version 1.9.7 (and backported to versions 1.8.5 and 1.7.9), the commentsAllowed
flag no longer has any meaning, and all HTML comments, including those containing other HTML tags or nested
commments, will be stripped from the final output of the filter.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.9
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.code25.png
18071087





_static/minus.png





_images/zend.console.prompt3.png





modules/zend.mvc.quick-start.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Quick Start


Now that you know the basics of how applications and modules are structured, we’ll show you the easy way to get
started.



Install the Zend Skeleton Application


The easiest way to get started is to grab the sample application and module repositories. This can be done in the
following ways.



Using Composer


Simply clone the ZendSkeletonApplication repository:


		1


		prompt> git clone git://github.com/zendframework/ZendSkeletonApplication.git my-application










Then run Composer [http://getcomposer.org/]‘s install command to install the ZF library and any other configured dependencies:


		1


		prompt> php ./composer.phar install













Using Git


Simply clone the ZendSkeletonApplication repository, using the --recursive option, which will also grab ZF.


		1


		prompt> git clone --recursive git://github.com/zendframework/ZendSkeletonApplication.git my-application













Manual installation



		Download a tarball of the ZendSkeletonApplication repository:
		Zip: https://github.com/zendframework/ZendSkeletonApplication/zipball/master


		Tarball: https://github.com/zendframework/ZendSkeletonApplication/tarball/master








		Deflate the archive you selected and rename the parent directory according to your project needs; we use
“my-application” throughout this document.


		Install Zend Framework, and either have its library on your PHP include_path, symlink the library into your
project’s “library”, or install it directly into your application using Pyrus.










Create a new module


By default, one module is provided with the ZendSkeletonApplication, named “Application”. It provides simply a
controller to handle the “home” page of the application, the layout template, and templates for 404 and error
pages.


Typically, you will not need to touch this other than to provide an alternate entry page for your site and/or
alternate error page.


Additional functionality will be provided by creating new modules.


To get you started with modules, we recommend using the ZendSkeletonModule as a base. Download it from here:



		Zip: https://github.com/zendframework/ZendSkeletonModule/zipball/master


		Tarball: https://github.com/zendframework/ZendSkeletonModule/tarball/master





Deflate the package, and rename the directory “ZendSkeletonModule” to reflect the name of the new module you want
to create; when done, move the module into your new project’s modules/ directory.


At this point, it’s time to create some functionality.





Update the Module class


Let’s update the module class. We’ll want to make sure the namespace is correct, configuration is enabled and
returned, and that we setup autoloading on initialization. Since we’re actively working on this module, the class
list will be in flux, we probably want to be pretty lenient in our autoloading approach, so let’s keep it flexible
by using the StandardAutoloader. Let’s begin.


First, let’s have autoload_classmap.php return an empty array:


		1
2
3


		<?php
// autoload_classmap.php
return array();










We’ll also edit our config/module.config.php file to read as follows:


		1
2
3
4
5
6
7


		return array(
    'view_manager' => array(
        'template_path_stack' => array(
            '<module-name>' => __DIR__ . '/../view'
        ),
    ),
);










Fill in “module-name” with a lowercased, dash-separated version of your module name – e.g., “ZendUser” would
become “zend-user”.


Next, edit the Module.php file to read as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		namespace <your module name here>;

use Zend\ModuleManager\Feature\AutoloaderProviderInterface;
use Zend\ModuleManager\Feature\ConfigProviderInterface;

class Module implements AutoloaderProviderInterface, ConfigProviderInterface
{
    public function getAutoloaderConfig()
    {
        return array(
            'Zend\Loader\ClassMapAutoloader' => array(
                __DIR__ . '/autoload_classmap.php',
            ),
            'Zend\Loader\StandardAutoloader' => array(
                'namespaces' => array(
                    __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
                ),
            ),
        );
    }

    public function getConfig()
    {
        return include __DIR__ . '/config/module.config.php';
    }
}










At this point, you now have your module configured properly. Let’s create a controller!





Create a Controller


Controllers are simply objects that implement Zend\Stdlib\DispatchableInterface. This means they simply need to
implement a dispatch() method that takes minimally a Response object as an argument.


In practice, though, this would mean writing logic to branch based on matched routing within every controller. As
such, we’ve created two base controller classes for you to start with:



		Zend\Mvc\Controller\AbstractActionController allows routes to match an “action”. When matched, a method named
after the action will be called by the controller. As an example, if you had a route that returned “foo” for the
“action” key, the “fooAction” method would be invoked.


		Zend\Mvc\Controller\AbstractRestfulController introspects the Request to determine what HTTP method was used,
and calls a method based on that accordingly.
		GET will call either the getList() method, or, if an “id” was matched during routing, the get()
method (with that identifer value).


		POST will call the create() method, passing in the $_POST values.


		PUT expects an “id” to be matched during routing, and will call the update() method, passing in the
identifier, and any data found in the raw post body.


		DELETE expects an “id” to be matched during routing, and will call the delete() method.











To get started, we’ll simply create a “hello world” style controller, with a single action. First, create the
directory src/<module name>/Controller, and then create the file HelloController.php inside it. Edit it in
your favorite text editor or IDE, and insert the following contents:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		<?php
namespace <module name>\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class HelloController extends AbstractActionController
{
    public function worldAction()
    {
        $message = $this->params()->fromQuery('message', 'foo');
        return new ViewModel(array('message' => $message));
    }
}










So, what are we doing here?



		We’re creating an action controller.


		We’re defining an action, “world”.


		We’re pulling a message from the query parameters (yes, this is a superbly bad idea in production! Always
sanitize your inputs!).


		We’re returning a ViewModel with an array of values that will get processed later.





We return a ViewModel. The view layer will use this when rendering the view, pulling variables and the template
name from it. By default, you can omit the template name, and it will resolve to
“lowercase-controller-name/lowercase-action-name”. However, you can override this to specify something different by
calling setTemplate() on the ViewModel instance. Typically, templates will resolve to files with a ”.phtml”
suffix in your module’s view directory.


So, with that in mind, let’s create a view script.





Create a view script


Create the directory view/<module-name>hello. Inside that directory, create a file named world.phtml.
Inside that, paste in the following:


		1
2
3


		<h1>Greetings!</h1>

<p>You said "<?php echo $this->escapeHtml($message) ?>".</p>










That’s it. Save the file.



Note


What is the method escapeHtml()? It’s actually a view helper, and it’s designed
to help mitigate XSS attacks. Never trust user input; if you are at all uncertain about the source of a given
variable in your view script, escape it using one of the provided escape view helper
depending on the type of data you have.







Create a route


Now that we have a controller and a view script, we need to create a route to it.



Note


ZendSkeletonApplication ships with a “default route” that will likely get you to this action. That route
basically expects “/{module}/{controller}/{action}”, which allows you to specify this: “/zend-user/hello/world”.
We’re going to create a route here mainly for illustration purposes, as creating explicit routes is a
recommended practice. The application will look for a Zend\Mvc\Router\RouteStack instance to setup routing.
The default generated router is a Zend\Mvc\Router\Http\TreeRouteStack.


To use the “default route” functionality, you will need to add the following route definition to your module.
Replace


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		return array(
    '<module-name>' => array(
        'type'    => 'Literal',
        'options' => array(
            'route'    => '/<module-name>',
            'defaults' => array(
                '__NAMESPACE__' => '<module-namespace>\Controller',
                'controller'    => '<module-name>-Index',
                'action'        => 'index',
            ),
        ),
        'may_terminate' => true,
        'child_routes' => array(
            'default' => array(
                'type'    => 'Segment',
                'options' => array(
                    'route'    => '/[:controller[/:action]]',
                    'constraints' => array(
                        'controller' => '[a-zA-Z][a-zA-Z0-9_-]*',
                        'action'     => '[a-zA-Z][a-zA-Z0-9_-]*',
                    ),
                    'defaults' => array(
                    ),
                ),
            ),
        ),
    ),
    'controller' => array(
        'classes' => array(
            '<module-name>-Index' => '<module-namespace>\Controller\IndexController',
            // Do similar for each other controller in your module
        ),
    ),
    // ... other configuration ...
);












Additionally, we need to tell the application we have a controller.



Note


We inform the application about controllers we expect to have in the application. This is to prevent somebody
requesting any service the ServiceManager knows about in an attempt to break the application. The dispatcher
uses a special, scoped container that will only pull controllers that are specifically registered with it,
either as invokable classes or via factories.




Open your config/module.config.php file, and modify it to add to the “routes” and “controller” parameters so it
reads as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		return array(
    'routes' => array(
        '<module name>-hello-world' => array(
            'type'    => 'Literal',
                'options' => array(
                'route' => '/hello/world',
                'defaults' => array(
                    'controller' => '<module namespace>-Hello',
                    'action'     => 'world',
                ),
            ),
        ),
    ),
    'controller' => array(
        'classes' => array(
            '<module namespace>-Hello' => '<module namespace>\Controller\HelloController',
        ),
    ),
    // ... other configuration ...
);













Tell the application about our module


One problem: we haven’t told our application about our new module!


By default, modules are not parsed unless we tell the module manager about them. As such, we need to notify the
application about them.


Remember the config/application.php file? Let’s modify it to add our new module. Once done, it should read as
follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<?php
return array(
    'modules' => array(
        'Application',
        '<module namespace>',
    ),
    'module_listener_options' => array(
        'module_paths' => array(
            './module',
            './vendor',
        ),
    ),
);










Replace <module namespace> with the namespace of your module.





Test it out!


Now we can test things out! Create a new vhost pointing its document root to the public directory of your
application, and fire it up in a browser. You should see the default homepage template of ZendSkeletonApplication.


Now alter the location in your URL to append the path “hello/world”, and load the page. You should now get the
following content:


		1
2
3


		<h1>Greetings!</h1>

<p>You said "foo".</p>










Now alter the location to append ”?message=bar” and load the page. You should now get:


		1
2
3


		<h1>Greetings!</h1>

<p>You said "bar".</p>










Congratulations! You’ve created your first ZF2 MVC module!








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Quick Start
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.styling-and-translations.translated-image.png
©.0 0/ 77y abums - 272 ol

€ C | © zf2-tutorial.localhost /album

Tu |

My albums

Add new album
Title
In My Dreams
2
Wrecking Bal (Deluxe)
Bom To Die

Making Mirrors

Artist
The Military Wives
Adele

Bruce Springsteen
Lana Del Rey

Gotye

Edit Delete

Edit Delete

Edit Delete

Edit Delete

Edit Delete

e @A






modules/zend.form.view.helpers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Form View Helpers



Introduction


Zend Framework comes with an initial set of helper classes related to Forms:
e.g., rendering a text input, selection box, or form labels.
You can use helper, or plugin, classes to perform these behaviors for you.


See the section on view helpers for more information.





Standard Helpers



Form


The Form view helper is used to render a <form> HTML element and its attributes.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...

$form = new Form();
// ...add elements and input filter to form...

// Set attributes
$form->setAttribute('action', $this->url('contact/process'));
$form->setAttribute('method', 'post');

// Prepare the form elements
$form->prepare();

// Render the opening tag
echo $this->form()->openTag($form);
// <form action="/contact/process" method="post">

// ...render the form elements...

// Render the closing tag
echo $this->form()->closeTag();
// </form>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
openTag(FormInterface $form = null)


		Renders the <form> open tag for the $form instance.






		Return type:		string














		
closeTag()


		Renders a </form> closing tag.






		Return type:		string
















FormButton


The FormButton view helper is used to render a <button> HTML element and its attributes.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		use Zend\Form\Element;

$element = new Element\Button('my-button');
$element->setLabel("Reset");

// Within your view...

/**
 * Example #1: Render entire button in one shot...
 */
echo $this->formButton($element);
// <button name="my-button" type="button">Reset</button>

/**
 * Example #2: Render button in 3 steps
 */
// Render the opening tag
echo $this->formButton()->openTag($element);
// <button name="my-button" type="button">

echo '<span class="inner">' . $element->getLabel() . '</span>';

// Render the closing tag
echo $this->formButton()->closeTag();
// </button>

/**
 * Example #3: Override the element label
 */
echo $this->formButton()->render($element, 'My Content');
// <button name="my-button" type="button">My Content</button>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\FormInput.



		
openTag($element = null)


		Renders the <button> open tag for the $element instance.






		Return type:		string














		
closeTag()


		Renders a </button> closing tag.






		Return type:		string














		
render(ElementInterface $element[, $buttonContent = null])


		Renders a button’s opening tag, inner content, and closing tag.






		Parameters:		
		$element – The button element.


		$buttonContent – (optional) The inner content to render. If null, will default to the $element‘s label.









		Return type:		string



















FormCheckbox


The FormCheckbox view helper can be used to render a <input type="checkbox"> HTML
form input. It is meant to work with the Zend\Form\Element\Checkbox
element, which provides a default input specification for validating the checkbox values.


FormCheckbox extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		use Zend\Form\Element;

$element = new Element\Checkbox('my-checkbox');

// Within your view...

/**
 * Example #1: Default options
 */
echo $this->formCheckbox($element);
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #2: Disable hidden element
 */
$element->setUseHiddenElement(false);
echo $this->formCheckbox($element);
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #3: Change checked/unchecked values
 */
$element->setUseHiddenElement(true)
        ->setUncheckedValue('no')
        ->setCheckedValue('yes');
echo $this->formCheckbox($element);
// <input type="hidden" name="my-checkbox" value="no">
// <input type="checkbox" name="my-checkbox" value="yes">













FormElement


The FormElement view helper proxies the rendering to specific form view helpers
depending on the type of the Zend\\Form\\Element that is passed in. For instance,
if the passed in element had a type of “text”, the FormElement helper will retrieve
and use the FormText helper to render the element.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


		use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...

/**
 * Example #1: Render different types of form elements
 */
$textElement     = new Element\Text('my-text');
$checkboxElement = new Element\Checkbox('my-checkbox');

echo $this->formElement($textElement);
// <input type="text" name="my-text" value="">

echo $this->formElement($checkboxElement);
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #2: Loop through form elements and render them
 */
$form = new Form();
// ...add elements and input filter to form...
$form->prepare();

// Render the opening tag
echo $this->form()->openTag($form);

// ...loop through and render the form elements...
foreach ($form as $element) {
    echo $this->formElement($element);       // <-- Magic!
    echo $this->formElementErrors($element);
}

// Render the closing tag
echo $this->form()->closeTag();













FormElementErrors


The FormElementErrors view helper is used to render the validation
error messages of an element.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		use Zend\Form\Form;
use Zend\Form\Element;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Input;

// Create a form
$form    = new Form();
$element = new Element\Text('my-text');
$form->add($element);

// Create a input
$input = new Input('my-text');
$input->setRequired(true);

$inputFilter = new InputFilter();
$inputFilter->add($input);
$form->setInputFilter($inputFilter);

// Force a failure
$form->setData(array()); // Empty data
$form->isValid();        // Not valid

// Within your view...

/**
 * Example #1: Default options
 */
echo $this->formElementErrors($element);
// <ul><li>Value is required and can&#039;t be empty</li></ul>

/**
 * Example #2: Add attributes to open format
 */
echo $this->formElementErrors($element, array('class' => 'help-inline'));
// <ul class="help-inline"><li>Value is required and can&#039;t be empty</li></ul>

/**
 * Example #3: Custom format
 */
echo $this->formElementErrors()
                ->setMessageOpenFormat('<div class="help-inline">')
                ->setMessageSeparatorString('</div><div class="help-inline">')
                ->setMessageCloseString('</div>')
                ->render($element);
// <div class="help-inline">Value is required and can&#039;t be empty</div>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
setMessageOpenFormat(string $messageOpenFormat)


		Set the formatted string used to open message representation.






		Parameters:		$messageOpenFormat – The formatted string to use to open the messages. Uses '<ul%s><li>' by default. Attributes are inserted here.














		
getMessageOpenFormat()


		Returns the formatted string used to open message representation.






		Return type:		string














		
setMessageSeparatorString(string $messageSeparatorString)


		Sets the string used to separate messages.






		Parameters:		$messageSeparatorString – The string to use to separate the messages. Uses '</li><li>' by default.














		
getMessageSeparatorString()


		Returns the string used to separate messages.






		Return type:		string














		
setMessageCloseString(string $messageCloseString)


		Sets the string used to close message representation.






		Parameters:		$messageCloseString – The string to use to close the messages. Uses '</li></ul>' by default.














		
getMessageCloseString()


		Returns the string used to close message representation.






		Return type:		string














		
setAttributes(array $attributes)


		Set the attributes that will go on the message open format.






		Parameters:		$attributes – Key value pairs of attributes.














		
getAttributes()


		Returns the attributes that will go on the message open format.






		Return type:		array














		
render(ElementInterface $element[, array $attributes = array()])


		Renders validation errors for the provided $element.






		Parameters:		
		$element – The element.


		$attributes – Additional attributes that will go on the message open format. These are merged with those set via setAttributes().









		Return type:		string



















FormHidden


The FormHidden view helper can be used to render a <input type="hidden">
HTML form input. It is meant to work with the Zend\Form\Element\Hidden
element.


FormHidden extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8
9


		use Zend\Form\Element;

$element = new Element\Hidden('my-hidden');
$element->setValue('foo');

// Within your view...

echo $this->formHidden($element);
// <input type="hidden" name="my-hidden" value="foo">













FormImage


The FormImage view helper can be used to render a <input type="image">
HTML form input. It is meant to work with the Zend\Form\Element\Image
element.


FormImage extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8
9


		use Zend\Form\Element;

$element = new Element\Image('my-image');
$element->setAttribute('src', '/img/my-pic.png');

// Within your view...

echo $this->formImage($element);
// <input type="image" name="my-image" src="/img/my-pic.png">













FormInput


The FormInput view helper is used to render a <input> HTML form input tag.
It acts as a base class for all of the specifically typed form input helpers
(FormText, FormCheckbox, FormSubmit, etc.), and is not suggested for direct use.


It contains a general map of valid tag attributes and types for attribute filtering.
Each subclass of FormInput implements it’s own specific map of valid tag attributes.


The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
render(ElementInterface $element)


		Renders the <input> tag for the $element.






		Return type:		string
















FormLabel


The FormLabel view helper is used to render a <label> HTML element and its attributes.
If you have a Zend\\I18n\\Translator\\Translator attached, FormLabel will translate
the label contents during it’s rendering.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		use Zend\Form\Element;

$element = new Element\Text('my-text');
$element->setLabel('Label')
        ->setAttribute('id', 'text-id')
        ->setLabelAttributes(array('class' => 'control-label'));

// Within your view...

/**
 * Example #1: Render label in one shot
 */
echo $this->formLabel($element);
// <label class="control-label" for="text-id">Label</label>

echo $this->formLabel($element, $this->formText($element));
// <label class="control-label" for="text-id">Label<input type="text" name="my-text"></label>

echo $this->formLabel($element, $this->formText($element), 'append');
// <label class="control-label" for="text-id"><input type="text" name="my-text">Label</label>

/**
 * Example #2: Render label in separate steps
 */
// Render the opening tag
echo $this->formLabel()->openTag($element);
// <label class="control-label" for="text-id">

// Render the closing tag
echo $this->formLabel()->closeTag();
// </label>










Attaching a translator and setting a text domain:


		1
2
3
4
5
6
7
8


		// Setting a translator
$this->formLabel()->setTranslator($translator);

// Setting a text domain
$this->formLabel()->setTranslatorTextDomain('my-text-domain');

// Setting both
$this->formLabel()->setTranslator($translator, 'my-text-domain');











Note


Note: If you have a translator in the Service Manager under the key, ‘translator’, the view helper plugin
manager will automatically attach the translator to the FormLabel view helper. See
Zend\\View\\HelperPluginManager::injectTranslator() for more information.




The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
__invoke(ElementInterface $element = null, string $labelContent = null, string $position = null)


		Render a form label, optionally with content.


Always generates a “for” statement, as we cannot assume the form input will be provided in the $labelContent.






		Parameters:		
		$element – A form element.


		$labelContent – If null, will attempt to use the element’s label value.


		$position – Append or prepend the element’s label value to the $labelContent. One of FormLabel::APPEND or FormLabel::PREPEND (default)









		Return type:		string

















		
openTag(array|ElementInterface $attributesOrElement = null)


		Renders the <label> open tag and attributes.






		Parameters:		$attributesOrElement – An array of key value attributes or a ElementInterface instance.



		Return type:		string














		
closeTag()


		Renders a </label> closing tag.






		Return type:		string
















AbstractHelper


The AbstractHelper is used as a base abstract class for Form view helpers, providing methods
for validating form HTML attributes, as well as controlling the doctype and character encoding.
AbstractHelper also extends from Zend\I18n\View\Helper\AbstractTranslatorHelper which
provides an implementation for the Zend\I18n\Translator\TranslatorAwareInterface
that allows setting a translator and text domain.


The following public methods are in addition to the inherited methods of Zend\I18n\View\Helper\AbstractTranslatorHelper.



		
setDoctype(string $doctype)


		Sets a doctype to use in the helper.









		
getDoctype()


		Returns the doctype used in the helper.






		Return type:		string














		
setEncoding(string $encoding)


		Set the translation text domain to use in helper when translating.









		
getEncoding()


		Returns the character encoding used in the helper.






		Return type:		string














		
getId()


		Returns the element id.
If no ID attribute present, attempts to use the name attribute.
If name attribute is also not present, returns null.






		Return type:		string or null


















HTML5 Helpers



FormColor


The FormColor view helper can be used to render a <input type="color"> HTML5 form input.
It is meant to work with the Zend\Form\Element\Color
element, which provides a default input specification for validating HTML5 color values.


FormColor extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Color('my-color');

// Within your view...

echo $this->formColor($element);
// <input type="color" name="my-color" value="">













FormDate


The FormDate view helper can be used to render a <input type="date">
HTML5 form input. It is meant to work with the Zend\Form\Element\Date
element, which provides a default input specification for validating HTML5 date values.


FormDate extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Date('my-date');

// Within your view...

echo $this->formDate($element);
// <input type="date" name="my-date" value="">













FormDateTime


The FormDateTime view helper can be used to render a <input type="datetime">
HTML5 form input. It is meant to work with the Zend\Form\Element\DateTime
element, which provides a default input specification for validating HTML5 datetime values.


FormDateTime extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\DateTime('my-datetime');

// Within your view...

echo $this->formDateTime($element);
// <input type="datetime" name="my-datetime" value="">













FormDateTimeLocal


The FormDateTimeLocal view helper can be used to render a <input type="datetime-local">
HTML5 form input. It is meant to work with the Zend\Form\Element\DateTimeLocal
element, which provides a default input specification for validating HTML5 datetime values.


FormDateTimeLocal extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\DateTimeLocal('my-datetime');

// Within your view...

echo $this->formDateTimeLocal($element);
// <input type="datetime-local" name="my-datetime" value="">













FormEmail


The FormEmail view helper can be used to render a <input type="email">
HTML5 form input. It is meant to work with the Zend\Form\Element\Email
element, which provides a default input specification with an email validator.


FormEmail extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Email('my-email');

// Within your view...

echo $this->formEmail($element);
// <input type="email" name="my-email" value="">













FormMonth


The FormMonth view helper can be used to render a <input type="month">
HTML5 form input. It is meant to work with the Zend\Form\Element\Month
element, which provides a default input specification for validating HTML5 date values.


FormMonth extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Month('my-month');

// Within your view...

echo $this->formMonth($element);
// <input type="month" name="my-month" value="">













FormTime


The FormTime view helper can be used to render a <input type="time">
HTML5 form input. It is meant to work with the Zend\Form\Element\Time
element, which provides a default input specification for validating HTML5 time values.


FormTime extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Time('my-time');

// Within your view...

echo $this->formTime($element);
// <input type="time" name="my-time" value="">













FormWeek


The FormWeek view helper can be used to render a <input type="week">
HTML5 form input. It is meant to work with the Zend\Form\Element\Week
element, which provides a default input specification for validating HTML5 week values.


FormWeek extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Week('my-week');

// Within your view...

echo $this->formWeek($element);
// <input type="week" name="my-week" value="">


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Form View Helpers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

search.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  









  

_images/zend.barcode.objects.details.code128.png





modules/zend.filter.string-trim.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
StringTrim


This filter modifies a given string such that certain characters are removed from the beginning and end.



Supported options for Zend_Filter_StringTrim


The following options are supported for Zend_Filter_StringTrim:



		charlist: List of characters to remove from the beginning and end of the string. If this is not set or is
null, the default behavior will be invoked, which is to remove only whitespace from the beginning and end of the
string.








Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_StringTrim();

print $filter->filter(' This is (my) content: ');










The above example returns ‘This is (my) content:’. Notice that the whitespace characters have been removed.





Default behaviour for Zend_Filter_StringTrim


		1
2
3
4


		$filter = new Zend_Filter_StringTrim(':');
// or new Zend_Filter_StringTrim(array('charlist' => ':'));

print $filter->filter(' This is (my) content:');










The above example returns ‘This is (my) content’. Notice that the whitespace characters and colon are removed. You
can also provide an instance of Zend_Config or an array with a ‘charlist’ key. To set the desired character
list after instantiation, use the setCharList() method. The getCharList() return the values set for
charlist.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                StringTrim
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/up-pressed.png





_images/zendservice.livedocx.mailmerge.templates-mswordtemplatecropped_zoom.png
License Agreement - { MERGEFIELD software }

This legal documentis an agreement between { MERGEFIELD licensee }, the Licensee and { MERGEFIELD
company }. By installing { MERGEFIELD software } on a computer, you are agreeing to be bound by the terms
of this agreement. If you do not agree to the terms of this agreement. promptly return the unopened package,
together with all the other material which comprises the product, respectively delete all { MERGEFIELD software
}related files. For questions regarding this agreement please contact us.





modules/zend.mail.adding-recipients.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Adding Recipients


Recipients can be added in three ways:



		addTo(): Adds a recipient to the mail with a “To” header


		addCc(): Adds a recipient to the mail with a “Cc” header


		addBcc(): Adds a recipient to the mail not visible in the header





getRecipients() serves list of the recipients. clearRecipients() clears the list.



Note


Additional parameter


addTo() and addCc() accept a second optional parameter that is used as a human-readable name of the
recipient for the header. Double quotation is changed to single quotation and angle brackets to square brackets
in the parameter.





Note


Optional Usage


All three of these methods can also accept an array of email addresses to add instead of one at a time. In the
case of addTo() and addCc(), they can be associative arrays where the key is the human readable name for
the recipient.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Adding Recipients
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/comment.png





modules/zend.validator.hex.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Hex


Zend\Validator\Hex allows you to validate if a given value contains only hexadecimal characters. These are all
characters from 0 to 9 and A to F case insensitive. There is no length limitation for the input you want to
validate.


		1
2
3
4
5
6


		$validator = new Zend\Validator\Hex();
if ($validator->isValid('123ABC')) {
    // value contains only hex chars
} else {
    // false
}











Note


Invalid characters


All other characters will return false, including whitespace and decimal point. Also unicode zeros and numbers
from other scripts than latin will not be treated as valid.





Supported options for Zend\Validator\Hex


There are no additional options for Zend\Validator\Hex:








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Hex
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.importing.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Importing Feeds


Zend_Feed enables developers to retrieve feeds very easily. If you know the URI of a feed, simply use the
Zend_Feed::import() method:


		1


		$feed = Zend_Feed::import('http://feeds.example.com/feedName');










You can also use Zend_Feed to fetch the contents of a feed from a file or the contents of a PHP string
variable:


		1
2
3
4
5


		// importing a feed from a text file
$feedFromFile = Zend_Feed::importFile('feed.xml');

// importing a feed from a PHP string variable
$feedFromPHP = Zend_Feed::importString($feedString);










In each of the examples above, an object of a class that extends Zend_Feed_Abstract is returned upon success,
depending on the type of the feed. If an RSS feed were retrieved via one of the import methods above, then a
Zend_Feed_Rss object would be returned. On the other hand, if an Atom feed were imported, then a
Zend_Feed_Atom object is returned. The import methods will also throw a Zend_Feed_Exception object upon
failure, such as an unreadable or malformed feed.



Custom feeds


Zend_Feed enables developers to create custom feeds very easily. You just have to create an array and to import
it with Zend_Feed. This array can be imported with Zend_Feed::importArray() or with
Zend_Feed::importBuilder(). In this last case the array will be computed on the fly by a custom data source
implementing Zend_Feed_Builder_Interface.



Importing a custom array


		1
2
3
4
5
6
7
8
9


		// importing a feed from an array
$atomFeedFromArray = Zend_Feed::importArray($array);

// the following line is equivalent to the above;
// by default a Zend_Feed_Atom instance is returned
$atomFeedFromArray = Zend_Feed::importArray($array, 'atom');

// importing a rss feed from an array
$rssFeedFromArray = Zend_Feed::importArray($array, 'rss');










The format of the array must conform to this structure:


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180


		array(
    //required
    'title' => 'title of the feed',
    'link'  => 'canonical url to the feed',

    // optional
    'lastUpdate' => 'timestamp of the update date',
    'published'  => 'timestamp of the publication date',

    // required
    'charset' => 'charset of the textual data',

    // optional
    'description' => 'short description of the feed',
    'author'      => 'author/publisher of the feed',
    'email'       => 'email of the author',

    // optional, ignored if atom is used
    'webmaster' => 'email address for person responsible '
                .  'for technical issues',

    // optional
    'copyright' => 'copyright notice',
    'image'     => 'url to image',
    'generator' => 'generator',
    'language'  => 'language the feed is written in',

    // optional, ignored if atom is used
    'ttl'    => 'how long in minutes a feed can be cached '
             .  'before refreshing',
    'rating' => 'The PICS rating for the channel.',

    // optional, ignored if atom is used
    // a cloud to be notified of updates
    'cloud'       => array(
        // required
        'domain' => 'domain of the cloud, e.g. rpc.sys.com',

        // optional, defaults to 80
        'port' => 'port to connect to',

        // required
        'path'              => 'path of the cloud, e.g. /RPC2',
        'registerProcedure' => 'procedure to call, e.g. myCloud.rssPlsNotify',
        'protocol'          => 'protocol to use, e.g. soap or xml-rpc'
    ),

    // optional, ignored if atom is used
    // a text input box that can be displayed with the feed
    'textInput'   => array(
        // required
        'title'       => 'label of the Submit button in the text input area',
        'description' => 'explains the text input area',
        'name'        => 'the name of the text object in the text input area',
        'link'        => 'URL of the CGI script processing text input requests'
    ),

    // optional, ignored if atom is used
    // Hint telling aggregators which hours they can skip
    'skipHours' => array(
        // up to 24 rows whose value is a number between 0 and 23
        // e.g 13 (1pm)
        'hour in 24 format'
    ),

    // optional, ignored if atom is used
    // Hint telling aggregators which days they can skip
    'skipDays ' => array(
        // up to 7 rows whose value is
        // Monday, Tuesday, Wednesday, Thursday, Friday, Saturday or Sunday
        // e.g Monday
        'a day to skip'
    ),

    // optional, ignored if atom is used
    // Itunes extension data
    'itunes' => array(
        // optional, default to the main author value
        'author' => 'Artist column',

        // optional, default to the main author value
        // Owner of the podcast
        'owner' => array(
            'name'  => 'name of the owner',
            'email' => 'email of the owner'
        ),

        // optional, default to the main image value
        'image' => 'album/podcast art',

        // optional, default to the main description value
        'subtitle' => 'short description',
        'summary'  => 'longer description',

        // optional
        'block' => 'Prevent an episode from appearing (yes|no)',

        // required, Category column and in iTunes Music Store Browse
        'category' => array(
            // up to 3 rows
            array(
                // required
                'main' => 'main category',

                // optional
                'sub'  => 'sub category'
            )
        ),

        // optional
        'explicit'     => 'parental advisory graphic (yes|no|clean)',
        'keywords'     => 'a comma separated list of 12 keywords maximum',
        'new-feed-url' => 'used to inform iTunes of new feed URL location'
    ),

    'entries' => array(
        array(
            //required
            'title' => 'title of the feed entry',
            'link'  => 'url to a feed entry',

            // required, only text, no html
            'description' => 'short version of a feed entry',

            // optional
            'guid' => 'id of the article, '
                   .  'if not given link value will used',

            // optional, can contain html
            'content' => 'long version',

            // optional
            'lastUpdate' => 'timestamp of the publication date',
            'comments'   => 'comments page of the feed entry',
            'commentRss' => 'the feed url of the associated comments',

            // optional, original source of the feed entry
            'source' => array(
                // required
                'title' => 'title of the original source',
                'url'   => 'url of the original source'
            ),

            // optional, list of the attached categories
            'category' => array(
                array(
                    // required
                    'term' => 'first category label',

                    // optional
                    'scheme' => 'url that identifies a categorization scheme'
                ),

                array(
                    // data for the second category and so on
                )
            ),

            // optional, list of the enclosures of the feed entry
            'enclosure'    => array(
                array(
                    // required
                    'url' => 'url of the linked enclosure',

                    // optional
                    'type' => 'mime type of the enclosure',
                    'length' => 'length of the linked content in octets'
                ),

                array(
                    //data for the second enclosure and so on
                )
            )
        ),

        array(
            //data for the second entry and so on
        )
    )
);










References:



		RSS 2.0 specification: RSS 2.0 [http://blogs.law.harvard.edu/tech/rss]


		Atom specification: RFC 4287 [http://tools.ietf.org/html/rfc4287]


		WFW specification: Well Formed Web [http://wellformedweb.org/news/wfw_namespace_elements]


		iTunes specification: iTunes Technical Specifications [http://www.apple.com/itunes/store/podcaststechspecs.html]








Importing a custom data source


You can create a Zeed_Feed instance from any data source implementing Zend_Feed_Builder_Interface. You just
have to implement the getHeader() and getEntries() methods to be able to use your object with
Zend_Feed::importBuilder(). As a simple reference implementation, you can use Zend_Feed_Builder, which
takes an array in its constructor, performs some minor validation, and then can be used in the importBuilder()
method. The getHeader() method must return an instance of Zend_Feed_Builder_Header, and getEntries()
must return an array of Zend_Feed_Builder_Entry instances.



Note


Zend_Feed_Builder serves as a concrete implementation to demonstrate the usage. Users are encouraged to make
their own classes to implement Zend_Feed_Builder_Interface.




Here is an example of Zend_Feed::importBuilder() usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// importing a feed from a custom builder source
$atomFeedFromArray =
    Zend_Feed::importBuilder(new Zend_Feed_Builder($array));

// the following line is equivalent to the above;
// by default a Zend_Feed_Atom instance is returned
$atomFeedFromArray =
    Zend_Feed::importBuilder(new Zend_Feed_Builder($array), 'atom');

// importing a rss feed from a custom builder array
$rssFeedFromArray =
    Zend_Feed::importBuilder(new Zend_Feed_Builder($array), 'rss');













Dumping the contents of a feed


To dump the contents of a Zend_Feed_Abstract instance, you may use send() or saveXml() methods.


		1
2
3
4
5
6
7


		assert($feed instanceof Zend_Feed_Abstract);

// dump the feed to standard output
print $feed->saveXML();

// send http headers and dump the feed
$feed->send();


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Importing Feeds
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.layering.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Layering Decorators


If you were following closely in the previous section, you may have
noticed that a decorator’s render() method takes a single argument, $content. This is expected to be a
string. render() will then take this string and decide to either replace it, append to it, or prepend it. This
allows you to have a chain of decorators – which allows you to create decorators that render only a subset of the
element’s metadata, and then layer these decorators to build the full markup for the element.


Let’s look at how this works in practice.


For most form element types, the following decorators are used:



		ViewHelper (render the form input using one of the standard form view helpers).


		Errors (render validation errors via an unordered list).


		Description (render any description attached to the element; often used for tooltips).


		HtmlTag (wrap all of the above in a <dd> tag.


		Label (render the label preceding the above, wrapped in a <dt> tag.





You’ll notice that each of these decorators does just one thing, and operates on one specific piece of metadata
stored in the form element: the Errors decorator pulls validation errors and renders them; the Label
decorator pulls just the label and renders it. This allows the individual decorators to be very succinct,
repeatable, and, more importantly, testable.


It’s also where that $content argument comes into play: each decorator’s render() method is designed to
accept content, and then either replace it (usually by wrapping it), prepend to it, or append to it.


So, it’s best to think of the process of decoration as one of building an onion from the inside out.


To simplify the process, we’ll take a look at the example from the previous section. Recall:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class My_Decorator_SimpleInput extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<label for="%s">%s</label>'
                       . '<input id="%s" name="%s" type="text" value="%s"/>';

    public function render($content)
    {
        $element = $this->getElement();
        $name    = htmlentities($element->getFullyQualifiedName());
        $label   = htmlentities($element->getLabel());
        $id      = htmlentities($element->getId());
        $value   = htmlentities($element->getValue());

        $markup  = sprintf($this->_format, $id, $label, $id, $name, $value);
        return $markup;
    }
}










Let’s now remove the label functionality, and build a separate decorator for that.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		class My_Decorator_SimpleInput extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<input id="%s" name="%s" type="text" value="%s"/>';

    public function render($content)
    {
        $element = $this->getElement();
        $name    = htmlentities($element->getFullyQualifiedName());
        $id      = htmlentities($element->getId());
        $value   = htmlentities($element->getValue());

        $markup  = sprintf($this->_format, $id, $name, $value);
        return $markup;
    }
}

class My_Decorator_SimpleLabel extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<label for="%s">%s</label>';

    public function render($content)
    {
        $element = $this->getElement();
        $id      = htmlentities($element->getId());
        $label   = htmlentities($element->getLabel());

        $markup = sprintf($this->_format, $id, $label);
        return $markup;
    }
}










Now, this may look all well and good, but here’s the problem: as written currently, the last decorator to run wins,
and overwrites everything. You’ll end up with just the input, or just the label, depending on which you register
last.


To overcome this, simply concatenate the passed in $content with the markup somehow:


		1


		return $content . $markup;










The problem with the above approach comes when you want to programmatically choose whether the original content
should precede or append the new markup. Fortunately, there’s a standard mechanism for this already;
Zend_Form_Decorator_Abstract has a concept of placement and defines some constants for matching it.
Additionally, it allows specifying a separator to place between the two. Let’s make use of those:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


		class My_Decorator_SimpleInput extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<input id="%s" name="%s" type="text" value="%s"/>';

    public function render($content)
    {
        $element = $this->getElement();
        $name    = htmlentities($element->getFullyQualifiedName());
        $id      = htmlentities($element->getId());
        $value   = htmlentities($element->getValue());

        $markup  = sprintf($this->_format, $id, $name, $value);

        $placement = $this->getPlacement();
        $separator = $this->getSeparator();
        switch ($placement) {
            case self::PREPEND:
                return $markup . $separator . $content;
            case self::APPEND:
            default:
                return $content . $separator . $markup;
        }
    }
}

class My_Decorator_SimpleLabel extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<label for="%s">%s</label>';

    public function render($content)
    {
        $element = $this->getElement();
        $id      = htmlentities($element->getId());
        $label   = htmlentities($element->getLabel());

        $markup = sprint($this->_format, $id, $label);

        $placement = $this->getPlacement();
        $separator = $this->getSeparator();
        switch ($placement) {
            case self::APPEND:
                return $markup . $separator . $content;
            case self::PREPEND:
            default:
                return $content . $separator . $markup;
        }
    }
}










Notice in the above that I’m switching the default case for each; the assumption will be that labels prepend
content, and input appends.


Now, let’s create a form element that uses these:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$element = new Zend_Form_Element('foo', array(
    'label'      => 'Foo',
    'belongsTo'  => 'bar',
    'value'      => 'test',
    'prefixPath' => array('decorator' => array(
        'My_Decorator' => 'path/to/decorators/',
    )),
    'decorators' => array(
        'SimpleInput',
        'SimpleLabel',
    ),
));










How will this work? When we call render(), the element will iterate through the various attached decorators,
calling render() on each. It will pass an empty string to the very first, and then whatever content is created
will be passed to the next, and so on:



		Initial content is an empty string: ‘’.


		‘’ is passed to the SimpleInput decorator, which then generates a form input that it appends to the empty
string: <input id=”bar-foo” name=”bar[foo]” type=”text” value=”test”/>.


		The input is then passed as content to the SimpleLabel decorator, which generates a label and prepends it to
the original content; the default separator is a PHP_EOL character, giving us this: <label
for=”bar-foo”>n<input id=”bar-foo” name=”bar[foo]” type=”text” value=”test”/>.





But wait a second! What if you wanted the label to come after the input for some reason? Remember that “placement”
flag? You can pass it as an option to the decorator. The easiest way to do this is to pass an array of options with
the decorator during element creation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$element = new Zend_Form_Element('foo', array(
    'label'      => 'Foo',
    'belongsTo'  => 'bar',
    'value'      => 'test',
    'prefixPath' => array('decorator' => array(
        'My_Decorator' => 'path/to/decorators/',
    )),
    'decorators' => array(
        'SimpleInput'
        array('SimpleLabel', array('placement' => 'append')),
    ),
));










Notice that when passing options, you must wrap the decorator within an array; this hints to the constructor that
options are available. The decorator name is the first element of the array, and options are passed in an array to
the second element of the array.


The above results in the markup <input id=”bar-foo” name=”bar[foo]” type=”text” value=”test”/>n<label
for=”bar-foo”>.


Using this technique, you can have decorators that target specific metadata of the element or form and create only
the markup relevant to that metadata; by using mulitiple decorators, you can then build up the complete element
markup. Our onion is the result.


There are pros and cons to this approach. First, the cons:



		More complex to implement. You have to pay careful attention to the decorators you use and what placement you
utilize in order to build up the markup in the correct sequence.


		More resource intensive. More decorators means more objects; multiply this by the number of elements you have in
a form, and you may end up with some serious resource usage. Caching can help here.





The advantages are compelling, though:



		Reusable decorators. You can create truly re-usable decorators with this technique, as you don’t have to worry
about the complete markup, but only markup for one or a few pieces of element or form metadata.


		Ultimate flexibility. You can theoretically generate any markup combination you want from a small number of
decorators.





While the above examples are the intended usage of decorators within Zend_Form, it’s often hard to wrap your
head around how the decorators interact with one another to build the final markup. For this reason, some
flexibility was added in the 1.7 series to make rendering individual decorators possible – which gives some
Rails-like simplicity to rendering forms. We’ll look at that in the next section.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Layering Decorators
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.regex.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Regex


This validator allows you to validate if a given string conforms a defined regular expression.



Supported options for Zend\Validator\Regex


The following options are supported for Zend\Validator\Regex:



		pattern: Sets the regular expression pattern for this validator.








Validation with Zend\Validator\Regex


Validation with regular expressions allows to have complicated validations being done without writing a own
validator. The usage of regular expression is quite common and simple. Let’s look at some examples:


		1
2
3
4
5


		$validator = new Zend\Validator\Regex(array('pattern' => '/^Test/');

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns true
$validator->isValid("Pest"); // returns false










As you can see, the pattern has to be given using the same syntax as for preg_match(). For details about
regular expressions take a look into PHP’s manual about PCRE pattern syntax [http://php.net/manual/en/reference.pcre.pattern.syntax.php].





Pattern handling


It is also possible to set a different pattern afterwards by using setPattern() and to get the actual set
pattern with getPattern().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Regex(array('pattern' => '/^Test/');
$validator->setPattern('ing$/');

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true
$validator->isValid("Pest"); // returns false
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Regex
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.node.root-dse.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Node\RootDse


The following methods are available on all vendor-specific subclasses.


Zend\Ldap\Node\RootDse includes the magic property accessors __get() and __isset() to access the
attributes by their name. They proxy to Zend\Ldap\Node\RootDse::getAttribute() and
Zend\Ldap\Node\RootDse::existsAttribute() respectively. __set() and __unset() are also implemented but
they throw a BadMethodCallException as modifications are not allowed on RootDSE nodes. Furthermore the class
implements ArrayAccess for array-style-access to the attributes. offsetSet() and offsetUnset() also throw
a BadMethodCallException due ro obvious reasons.



Zend\Ldap\Node\RootDse API





		Method
		Description





		Zend\Ldap\Dn getDn()
		Gets the DN of the current node as a Zend\Ldap\Dn.



		string getDnString(string $caseFold)
		Gets the DN of the current node as a string.



		array getDnArray(string $caseFold)
		Gets the DN of the current node as an array.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array.



		array getObjectClass()
		Returns the objectClass of the node.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node\RootDse::getAttributes() the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node\RootDse::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE, empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE, empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node\RootDse reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server.



		Zend\Ldap\Node\RootDse create(Zend\Ldap\Ldap $ldap)
		Factory method to create the RootDSE.



		array getNamingContexts()
		Gets the namingContexts.



		string|null getSubschemaSubentry()
		Gets the subschemaSubentry.



		boolean supportsVersion(string|int|array $versions)
		Determines if the LDAP version is supported.



		boolean supportsSaslMechanism(string|array $mechlist)
		Determines if the sasl mechanism is supported.



		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_GENERICfor unknown LDAP serversZend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAPfor OpenLDAP serversZend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORYfor Microsoft ActiveDirectory serversZend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORYFor Novell eDirectory servers



		Zend\Ldap\Dn getSchemaDn()
		Returns the schema DN.








OpenLDAP


Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\OpenLdap.



Note


Refer to LDAP Operational Attributes and Objects [http://www.zytrax.com/books/ldap/ch3/#operational] for information on the attributes of OpenLDAP RootDSE.





Zend\Ldap\Node\RootDse\OpenLdap API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAP



		string|null getConfigContext()
		Gets the configContext.



		string|null getMonitorContext()
		Gets the monitorContext.



		boolean supportsControl(string|array $oids)
		Determines if the control is supported.



		boolean supportsExtension(string|array $oids)
		Determines if the extension is supported.



		boolean supportsFeature(string|array $oids)
		Determines if the feature is supported.










ActiveDirectory


Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\ActiveDirectory.



Note


Refer to RootDSE [http://msdn.microsoft.com/en-us/library/ms684291(VS.85).aspx] for information on the attributes of Microsoft ActiveDirectory RootDSE.





Zend\Ldap\Node\RootDse\ActiveDirectory API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORY



		string|null getConfigurationNamingContext()
		Gets the configurationNamingContext.



		string|null getCurrentTime()
		Gets the currentTime.



		string|null getDefaultNamingContext()
		Gets the defaultNamingContext.



		string|null getDnsHostName()
		Gets the dnsHostName.



		string|null getDomainControllerFunctionality()
		Gets the domainControllerFunctionality.



		string|null getDomainFunctionality()
		Gets the domainFunctionality.



		string|null getDsServiceName()
		Gets the dsServiceName.



		string|null getForestFunctionality()
		Gets the forestFunctionality.



		string|null getHighestCommittedUSN()
		Gets the highestCommittedUSN.



		string|null getIsGlobalCatalogReady()
		Gets the isGlobalCatalogReady.



		string|null getIsSynchronized()
		Gets the isSynchronized.



		string|null getLdapServiceName()
		Gets the ldapServiceName.



		string|null getRootDomainNamingContext()
		Gets the rootDomainNamingContext.



		string|null getSchemaNamingContext()
		Gets the schemaNamingContext.



		string|null getServerName()
		Gets the serverName.



		boolean supportsCapability(string|array $oids)
		Determines if the capability is supported.



		boolean supportsControl(string|array $oids)
		Determines if the control is supported.



		boolean supportsPolicy(string|array $policies)
		Determines if the version is supported.










eDirectory


Additionally the common methods above apply to instances of ZendLdapNodeRootDseeDirectory.



Note


Refer to Getting Information about the LDAP Server [http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/ah59jqq.html] for information on the attributes of Novell eDirectory
RootDSE.





Zend\Ldap\Node\RootDse\eDirectory API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORY



		boolean supportsExtension(string|array $oids)
		Determines if the extension is supported.



		string|null getVendorName()
		Gets the vendorName.



		string|null getVendorVersion()
		Gets the vendorVersion.



		string|null getDsaName()
		Gets the dsaName.



		string|null getStatisticsErrors()
		Gets the server statistics “errors”.



		string|null getStatisticsSecurityErrors()
		Gets the server statistics “securityErrors”.



		string|null getStatisticsChainings()
		Gets the server statistics “chainings”.



		string|null getStatisticsReferralsReturned()
		Gets the server statistics “referralsReturned”.



		string|null getStatisticsExtendedOps()
		Gets the server statistics “extendedOps”.



		string|null getStatisticsAbandonOps()
		Gets the server statistics “abandonOps”.



		string|null getStatisticsWholeSubtreeSearchOps()
		Gets the server statistics “wholeSubtreeSearchOps”.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Node\RootDse
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.spl-autoloader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The SplAutoloader Interface



Overview


While any valid PHP callback may be registered with spl_autoload_register(), Zend Framework autoloaders often
provide more flexibility by being stateful and allowing configuration. To provide a common interface, Zend
Framework provides the SplAutoloader interface.


Objects implementing this interface provide a standard mechanism for configuration, a method that may be invoked to
attempt to load a class, and a method for registering with the SPL autoloading mechanism.





Quick Start


To create your own autoloading mechanism, simply create a class implementing the SplAutoloader interface (you
may review the methods defined in the Methods section). As a simple
example, consider the following autoloader, which will look for a class file named after the class within a list of
registered directories.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


		namespace Custom;

use Zend\Loader\SplAutoloader;

class ModifiedIncludePathAutoloader implements SplAutoloader
{
    protected $paths = array();

    public function __construct($options = null)
    {
        if (null !== $options) {
            $this->setOptions($options);
        }
    }

    public function setOptions($options)
    {
        if (!is_array($options) && !($options instanceof \Traversable)) {
            throw new \InvalidArgumentException();
        }

        foreach ($options as $path) {
            if (!in_array($path, $this->paths)) {
                $this->paths[] = $path;
            }
        }
        return $this;
    }

    public function autoload($classname)
    {
        $filename = $classname . '.php';
        foreach ($this->paths as $path) {
            $test = $path . DIRECTORY_SEPARATOR . $filename;
            if (file_exists($test)) {
                return include($test);
            }
        }
        return false;
    }

    public function register()
    {
        spl_autoload_register(array($this, 'autoload'));
    }
}













Configuration Options


This component defines no configuration options, as it is an interface.





Available Methods



		__construct


		Initialize and configure an autoloader
__construct($options = null)


Constructor
Autoloader constructors should optionally receive configuration options. Typically, if received, these will be
passed to the setOptions() method to process.









		setOptions


		Configure the autoloader state
setOptions($options)


setOptions()
Used to configure the autoloader. Typically, it should expect either an array or a Traversable object,
though validation of the options is left to implementation. Additionally, it is recommended that the method
return the autoloader instance in order to implement a fluent interface.









		autoload


		Attempt to resolve a class name to the file defining it
autoload($classname)


autoload()
This method should be used to resolve a class name to the file defining it. When a positive match is found,
return the class name; otherwise, return a boolean false.









		register


		Register the autoloader with the SPL autoloader
register()


register()
Should be used to register the autoloader instance with spl_autoload_register(). Invariably, the method
should look like the following:


		1
2
3
4


		public function register()
{
    spl_autoload_register(array($this, 'autoload'));
}



















Examples


Please see the Quick Start for a complete example.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The SplAutoloader Interface
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/view.placeholders.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


In the previous chapter, we looked at primarily the Two Step View pattern, which allows
you to embed individual application views within a sitewide layout. At the end of that chapter, however, we
discussed some limitations:



		How do you alter the page title?


		How would you inject conditional scripts or stylesheets into the sitewide layout?


		How would you create and render an optional sidebar? What if there was some content that was unconditional, and
other content that was conditional for the sidebar?





These questions are addressed in the Composite View [http://java.sun.com/blueprints/corej2eepatterns/Patterns/CompositeView.html] design pattern. One approach to that pattern is to provide
“hints” or content to the sitewide layout. In Zend Framework, this is achieved through specialized view helpers
called “placeholders.” Placeholders allow you to aggregate content, and then render that aggregate content
elsewhere.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage6.png
zf.php List hulammea] users [-w]  Show a list of users
2¢.php Find user [ [--name=]  Attempt to find a user by email or name

[allldisabled]  Display all users or only disabled accounts
Email of the user to find

Full name of the user to find.

Wide output - When listing users use the whole available screen width

Manipulation of user databas
zf.php delete user <userEmail> [--verbose|-v] [--quick]  Delete user with email <userEmail>
2f.php disable user <userEmail> [--verbose|-v] Disable user with email <userémail>

<userfmail>  user email Full email address of the user to change.
--verbose verbose mode Display additional information during processing

i ‘quick” operation Do not check integrity, just make changes and finish
Same as --verbose  Display additional information during processing






modules/zend.db.adapter.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\Adapter


The Adapter object is the most important sub-component of Zend\Db. It is responsible for adapting any code written
in or for Zend\Db to the targeted php extensions and vendor databases. In doing this, it creates an abstraction
layer for the PHP extensions, which is called the “Driver” portion of the Zend\Db adapter. It also creates a
lightweight abstraction layer for the various idiosyncrasies that each vendor specific platform might have in it’s
SQL/RDBMS implementation which is called the “Platform” portion of the adapter.



Creating an Adapter (Quickstart)


Creating an adapter can simply be done by instantiating the Zend\Db\Adapter\Adapter class. The most common use
case, while not the most explicit, is to pass an array of information to the Adapter.


		1


		$adapter = new Zend\Db\Adapter\Adapter($driverArray);










This driver array is an abstraction for the extension level required parameters. Here is a table for the



Connection Array Keys






		Name
		Required
		Notes





		driver
		required
		Mysqli, Sqlsrv, Pdo_Sqlite, Pdo_Mysql, Pdo=OtherPdoDriver



		database
		generally required
		the name of the database (schema)



		username
		generally required
		the connection username



		password
		generally required
		the connection password



		hostname
		not generally required
		the IP address or hostname to connect to



		port
		not generally required
		the port to connect to (if applicable)



		characterset
		not generally required
		the character set to use







* other names will work as well. Effectively, if the PHP manual uses a particular naming, this naming will be
supported by our Driver. For example, dbname in most cases will also work for ‘database’. Another example is that
in the case of Sqlsrv, UID will work in place of username. Which format you chose is up to you, but the above table
represents the official abstraction names.


So, for example, a MySQL connection using ext/mysqli:


		1
2
3
4
5
6


		 $adapter = new Zend\Db\Adapter\Adapter(array(
    'driver' => 'Mysqli',
    'database' => 'zend_db_example',
    'username' => 'developer',
    'password' => 'developer-password'
 ));










Another example, of a Sqlite connection via PDO:


		1
2
3
4


		 $adapter = new Zend\Db\Adapter\Adapter(array(
    'driver' => 'Pdo_Sqlite',
    'database' => 'path/to/sqlite.db'
 ));










It is important to know that by using this style of adapter creation, the Adapter will attempt to create any
dependencies that were not explicitly provided. A Driver object will be created from the contents of the $driver
array provided in the constructor. A Platform object will be created based off the type of Driver object that was
instantiated. And lastly, a default ResultSet object is created and utilized. Any of these objects can be injected,
to do this, see the next section.


The list of officially supported drivers:



		Mysqli: The ext/mysqli driver


		Pgsql: The ext/pgsql driver


		Sqlsrv: The ext/sqlsrv driver (from Microsoft)


		Pdo_Mysql: MySQL through the PDO extension


		Pdo_Sqlite: SQLite though the PDO extension


		Pdo_Pgsql: PostgreSQL through the PDO extension








Creating an Adapter (By Injecting Dependencies)


The more expressive and explicit way of creating an adapter is by injecting all your dependencies up front.
Zend\Db\Adapter\Adapter uses constructor injection, and all required dependencies are injected through the
constructor, which has the following signature (in pseudo-code):


		1
2
3
4
5
6


		use Zend\Db\Adapter\Platform\PlatformInterface;
use Zend\Db\ResultSet\ResultSet;

class Zend\Db\Adapter\Adapter {
    public function __construct($driver, PlatformInterface $platform = null, ResultSet $queryResultSetPrototype = null)
}










What can be injected:



		$driver - an array of connection parameters (see above) or an instance of Zend\Db\Adapter\Driver\DriverInterface


		$platform - (optional) an instance of Zend\Db\Platform\PlatformInterface, the default will be created based off the driver implementation


		$queryResultSetPrototype - (optional) an instance of Zend\Db\ResultSet\ResultSet, to understand this object’s role, see the section below on querying through the adapter








Query Preparation Through Zend\Db\Adapter\Adapter::query()


By default, query() prefers that you use “preparation” as a means for processing SQL statements. This generally
means that you will supply a SQL statement with the values substituted by placeholders, and then the parameters for
those placeholders are supplied separately. An example of this workflow with Zend\Db\Adapter\Adapter is:


		1


		$adapter->query('SELECT * FROM `artist` WHERE `id` = ?', array(5));










The above example will go through the following steps:



		create a new Statement object


		prepare an array into a ParameterContainer if necessary


		inject the ParameterContainer into the Statement object


		execute the Statement object, producing a Result object


		check the Result object to check if the supplied sql was a “query”, or a result set producing statement


		if it is a result set producing query, clone the ResultSet prototype, inject Result as datasource, return it


		else, return the Result








Query Execution Through Zend\Db\Adapter\Adapter::query()


In some cases, you have to execute statements directly. The primary purpose for needing to execute sql instead of
prepare and execute a sql statement, might be because you are attempting to execute a DDL statement (which in most
extensions and vendor platforms), are un-preparable. An example of executing:


		1


		$adapter->query('ALTER TABLE ADD INDEX(`foo_index`) ON (`foo_column`))', Adapter::QUERY_MODE_EXECUTE);










The primary difference to notice is that you must provide the Adapter::QUERY_MODE_EXECUTE (execute) as the second
parameter.





Creating Statements


While query() is highly useful for one-off and quick querying of a database through Adapter, it generally makes
more sense to create a statement and interact with it directly, so that you have greater control over the
prepare-then-execute workflow. To do this, Adapter gives you a routine called createStatement() that allows you to
create a Driver specific Statement to use so you can manage your own prepare-then-execute workflow.


		1
2
3


		// with optional parameters to bind up-front
$statement = $adapter->createStatement($sql, $optionalParameters);
$result = $statement->execute();













Using the Driver Object


The Driver object is the primary place where  Zend\Db\Adapter\Adapter implements the connection level
abstraction making it possible to use all of ZendDb’s interfaces via the various ext/mysqli, ext/sqlsrv,
PDO, and other PHP level drivers.  To make this possible, each driver is composed of 3 objects:



		A connection: Zend\Db\Adapter\Driver\ConnectionInterface


		A statement: Zend\Db\Adapter\Driver\StatementInterface


		A result: Zend\Db\Adapter\Driver\ResultInterface





Each of the built-in drivers practices “prytotyping” as a means of creating objects when new instances
are requested.  The workflow looks like this:



		An adapter is created with a set of connection parameters


		The adapter chooses the proper driver to instantiate, for example Zend\Db\Adapter\Driver\Mysqli


		That driver object is instantiated


		If no connection, statement or result objects are injected, defaults are instantiated





This driver is now ready to be called on when particular workflows are requested.  Here is what the
Driver API looks like:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		 interface DriverInterface
 {
     const PARAMETERIZATION_POSITIONAL = 'positional';
     const PARAMETERIZATION_NAMED = 'named';
     const NAME_FORMAT_CAMELCASE = 'camelCase';
     const NAME_FORMAT_NATURAL = 'natural';
     public function getDatabasePlatformName($nameFormat = self::NAME_FORMAT_CAMELCASE);
     public function checkEnvironment();
     public function getConnection();
     public function createStatement($sqlOrResource = null);
     public function createResult($resource);
     public function getPrepareType();
     public function formatParameterName($name, $type = null);
     public function getLastGeneratedValue();
 }










From this DriverInterface, you can



		Determine the name of the platform this driver supports (useful for choosing the proper platform object)


		Check that the environment can support this driver


		Return the Connnection object


		Create a Statement object which is optionally seeded by an SQL statement (this will generally be a clone of a prototypical statement object)


		Create a Result object which is optionally seeded by a statement resource (this will generally be a clone of a prototypical result object)


		Format parameter names, important to distinguish the difference between the various ways parameters are named between extensions


		Retrieve the overall last generated value (such as an auto-increment value)





Statement objects generally look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		interface StatementInterface extends StatementContainerInterface
{
    public function getResource();
    public function prepare($sql = null);
    public function isPrepared();
    public function execute($parameters = null);

    /** Inherited from StatementContainerInterface */
    public function setSql($sql);
    public function getSql();
    public function setParameterContainer(ParameterContainer $parameterContainer);
    public function getParameterContainer();
}










Result objects generally look like this:


		1
2
3
4
5
6
7
8
9


		interface ResultInterface extends \Countable, \Iterator
{
    public function buffer();
    public function isQueryResult();
    public function getAffectedRows();
    public function getGeneratedValue();
    public function getResource();
    public function getFieldCount();
}













Using The Platform Object


The Platform object provides an API to assist in crafting queries in a way that is specific to the SQL
implementation of a particular vendor. Nuances such as how identifiers or values are quoted, or what the identifier
separator character is are handled by this object. To get an idea of the capabilities, the interface for a platform
object looks like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		interface Zend\Db\Adapter\Platform\PlatformInterface
{
    public function getName();
    public function getQuoteIdentifierSymbol();
    public function quoteIdentifier($identifier);
    public function quoteIdentifierChain($identiferChain)
    public function getQuoteValueSymbol();
    public function quoteValue($value);
    public function quoteValueList($valueList);
    public function getIdentifierSeparator();
    public function quoteIdentifierInFragment($identifier, array $additionalSafeWords = array());
}










While one can instantiate your own Plaform object, generally speaking, it is easier to get the proper
Platform instance from the configured adapter (by default the Platform type will match the underlying
driver implementation):


		1
2
3


		$platform = $adapter->getPlatform();
// or
$platform = $adapter->platform; // magic property access










The following is a couple of example of Platform usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		/** @var $adapter Zend\Db\Adapter\Adapter */
/** @var $platform Zend\Db\Adapter\Platform\Sql92 */
$platform = $adapter->getPlatform();

// "first_name"
echo $platform->quoteIdentifier('first_name');

// "
echo $platform->getQuoteIdentifierSymbol();

// "schema"."mytable"
echo $platform->quoteIdentifierChain(array('schema','mytable')));

// '
echo $platform->getQuoteValueSymbol();

// 'myvalue'
echo $platform->quoteValue('myvalue');

// 'value', 'Foo O\\'Bar'
echo $platform->quoteValueList(array('value',"Foo O'Bar")));

// .
echo $platform->getIdentifierSeparator();

// "foo" as "bar"
echo $platform->quoteIdentifierInFragment('foo as bar');

// additionally, with some safe words:
// ("foo"."bar" = "boo"."baz")
echo $platform->quoteIdentifierInFragment('(foo.bar = boo.baz)', array('(', ')', '='));













Using The Parameter Container


The ParameterContainer object is a container for the various parameters that need to be passed into a Statement
object to fulfill all the various parameterized parts of the SQL statement. This object implements the ArrayAccess
interface.  Below is the ParameterContainer API:


class ParameterContainer implements \Iterator, \ArrayAccess, \Countable {
    public function __construct(array $data = array())

    /** methods to interact with values */
    public function offsetExists($name)
    public function offsetGet($name)
    public function offsetSetReference($name, $from)
    public function offsetSet($name, $value, $errata = null)
    public function offsetUnset($name)

    /** set values from array (will reset first) */
    public function setFromArray(Array $data)

    /** methods to interact with value errata */
    public function offsetSetErrata($name, $errata)
    public function offsetGetErrata($name)
    public function offsetHasErrata($name)
    public function offsetUnsetErrata($name)

    /** errata only iterator */
    public function getErrataIterator()

    /** get array with named keys */
    public function getNamedArray()

    /** get array with int keys, ordered by position */
    public function getPositionalArray()

    /** iterator: */
    public function count()
    public function current()
    public function next()
    public function key()
    public function valid()
    public function rewind()

    /** merge existing array of parameters with existing parameters */
    public function merge($parameters)
}






In addition to handling parameter names and values, the container will assist in tracking parameter
types for PHP type to SQL type handling.  For example, it might be important that:


$container->offsetSet('limit', 5);






be bound as an integer.  To achieve this, pass in the ParameterContainer::TYPE_INTEGER constant as the 3rd parameter:


$container->offsetSet('limit', 5, $container::TYPE_INTEGER);






This will ensure that if the underlying driver supports typing of bound parameters, that this translated
information will also be passed along to the actual php database driver.





Examples


Creating a Driver and Vendor portable Query, Preparing and Iterating Result


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		$adapter = new Zend\Db\Adapter\Adapter($driverConfig);

$qi = function($name) use ($adapter) { return $adapter->platform->quoteIdentifier($name); };
$fp = function($name) use ($adapter) { return $adapter->driver->formatParameterName($name); };

$sql = 'UPDATE ' . $qi('artist')
    . ' SET ' . $qi('name') . ' = ' . $fp('name')
    . ' WHERE ' . $qi('id') . ' = ' . $fp('id');

/** @var $statement Zend\Db\Adapter\Driver\StatementInterface */
$statement = $adapter->query($sql);

$parameters = array(
    'name' => 'Updated Artist',
    'id' => 1
);

$statement->execute($parameters);

// DATA INSERTED, NOW CHECK

/* @var $statement Zend\Db\Adapter\DriverStatementInterface */
$statement = $adapter->query('SELECT * FROM '
    . $qi('artist')
    . ' WHERE id = ' . $fp('id'));

/* @var $results Zend\Db\ResultSet\ResultSet */
$results = $statement->execute(array('id' => 1));

$row = $results->current();
$name = $row['name'];
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\Adapter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.session.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend Framework Auth team greatly appreciates your feedback and contributions on our email list:
fw-auth@lists.zend.com


With web applications written using PHP, a session represents a logical, one-to-one connection between
server-side, persistent state data and a particular user agent client (e.g., web browser). Zend_Session helps
manage and preserve session data, a logical complement of cookie data, across multiple page requests by the same
client. Unlike cookie data, session data are not stored on the client side and are only shared with the client when
server-side source code voluntarily makes the data available in response to a client request. For the purposes of
this component and documentation, the term “session data” refers to the server-side data stored in $_SESSION [http://www.php.net/manual/en/reserved.variables.php#reserved.variables.session],
managed by Zend_Session, and individually manipulated by Zend_Session_Namespace accessor objects. Session
namespaces provide access to session data using classic namespaces [http://en.wikipedia.org/wiki/Namespace_%28computer_science%29] implemented logically as named groups of
associative arrays, keyed by strings (similar to normal PHP arrays).


Zend_Session_Namespace instances are accessor objects for namespaced slices of $_SESSION. The
Zend_Session component wraps the existing PHP ext/session with an administration and management interface, as
well as providing an API for Zend_Session_Namespace to persist session namespaces. Zend_Session_Namespace
provides a standardized, object-oriented interface for working with namespaces persisted inside PHP‘s standard
session mechanism. Support exists for both anonymous and authenticated (e.g., “login”) session namespaces.
Zend_Auth, the authentication component of Zend Framework, uses Zend_Session_Namespace to store some
information associated with authenticated users. Since Zend_Session uses the normal PHP ext/session functions
internally, all the familiar configuration options and settings apply (see http://www.php.net/session), with
such bonuses as the convenience of an object-oriented interface and default behavior that provides both best
practices and smooth integration with Zend Framework. Thus, a standard PHP session identifier, whether conveyed
by cookie or within URLs, maintains the association between a client and session state data.


The default ext/session save handler [http://www.php.net/manual/en/function.session-set-save-handler.php] does not maintain this association for server clusters under certain
conditions because session data are stored to the filesystem of the server that responded to the request. If a
request may be processed by a different server than the one where the session data are located, then the responding
server has no access to the session data (if they are not available from a networked filesystem). A list of
additional, appropriate save handlers will be provided, when available. Community members are encouraged to suggest
and submit save handlers to the fw-auth@lists.zend.com list. A Zend_Db compatible save handler has been
posted to the list.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.you-tube.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using the YouTube Data API


The YouTube Data API offers read and write access to YouTube’s content. Users can perform unauthenticated
requests to Google Data feeds to retrieve feeds of popular videos, comments, public information about YouTube user
profiles, user playlists, favorites, subscriptions and so on.


For more information on the YouTube Data API, please refer to the official PHP Developer’s Guide [http://code.google.com/apis/youtube/developers_guide_php.html] on
code.google.com.



Authentication


The YouTube Data API allows read-only access to public data, which does not require authentication. For any write
requests, a user needs to authenticate either using ClientLogin or AuthSub authentication. Please refer to the
Authentication section in the PHP Developer’s Guide [http://code.google.com/apis/youtube/developers_guide_php.html#Authentication] for more detail.





Developer Keys and Client ID


A developer key identifies the YouTube developer that is submitting an API request. A client ID identifies your
application for logging and debugging purposes. Please visit http://code.google.com/apis/youtube/dashboard/ to
obtain a developer key and client ID. The example below demonstrates how to pass the developer key and client ID to
the Zend_Gdata_YouTube [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube.html] service object.


Passing a Developer Key and ClientID to Zend_Gdata_YouTube


		1
2
3
4


		$yt = new Zend_Gdata_YouTube($httpClient,
                             $applicationId,
                             $clientId,
                             $developerKey);













Retrieving public video feeds


The YouTube Data API provides numerous feeds that return a list of videos, such as standard feeds, related
videos, video responses, user’s uploads, and user’s favorites. For example, the user’s uploads feed returns all
videos uploaded by a specific user. See the YouTube API reference guide [http://code.google.com/apis/youtube/reference.html#Video_Feeds] for a detailed list of available feeds.



Searching for videos by metadata


You can retrieve a list of videos that match specified search criteria, using the YouTubeQuery class. The following
query looks for videos which contain the word “cat” in their metadata, starting with the 10th video and displaying
20 videos per page, ordered by the view count.


Searching for videos


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$yt = new Zend_Gdata_YouTube();
$query = $yt->newVideoQuery();
$query->videoQuery = 'cat';
$query->startIndex = 10;
$query->maxResults = 20;
$query->orderBy = 'viewCount';

echo $query->queryUrl . "\n";
$videoFeed = $yt->getVideoFeed($query);

foreach ($videoFeed as $videoEntry) {
    echo "---------VIDEO----------\n";
    echo "Title: " . $videoEntry->getVideoTitle() . "\n";
    echo "\nDescription:\n";
    echo $videoEntry->getVideoDescription();
    echo "\n\n\n";
}










For more details on the different query parameters, please refer to the Reference Guide [http://code.google.com/apis/youtube/reference.html#Searching_for_videos]. The available helper
functions in Zend_Gdata_YouTube_VideoQuery [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoQuery.html] for each of these parameters are described in more detail in the PHP
Developer’s Guide [http://code.google.com/apis/youtube/developers_guide_php.html].





Searching for videos by categories and tags/keywords


Searching for videos in specific categories is done by generating a specially formatted URL [http://code.google.com/apis/youtube/reference.html#Category_search]. For example, to
search for comedy videos which contain the keyword dog:


Searching for videos in specific categories


		1
2
3
4
5
6


		$yt = new Zend_Gdata_YouTube();
$query = $yt->newVideoQuery();
$query->category = 'Comedy/dog';

echo $query->queryUrl . "\n";
$videoFeed = $yt->getVideoFeed($query);













Retrieving standard feeds


The YouTube Data API has a number of standard feeds [http://code.google.com/apis/youtube/reference.html#Standard_feeds]. These standard feeds can be retrieved as
Zend_Gdata_YouTube_VideoFeed [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoFeed.html] objects using the specified URLs, using the predefined constants within the
Zend_Gdata_YouTube [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube.html] class (Zend_Gdata_YouTube::STANDARD_TOP_RATED_URI for example) or using the predefined helper
methods (see code listing below).


To retrieve the top rated videos using the helper method:


Retrieving a standard video feed


		1
2


		$yt = new Zend_Gdata_YouTube();
$videoFeed = $yt->getTopRatedVideoFeed();










There are also query parameters to specify the time period over which the standard feed is computed.


For example, to retrieve the top rated videos for today:


Using a Zend_Gdata_YouTube_VideoQuery to Retrieve Videos


		1
2
3
4


		$yt = new Zend_Gdata_YouTube();
$query = $yt->newVideoQuery();
$query->setTime('today');
$videoFeed = $yt->getTopRatedVideoFeed($query);










Alternatively, you could just retrieve the feed using the URL:


Retrieving a video feed by URL


		1
2
3


		$yt = new Zend_Gdata_YouTube();
$url = 'http://gdata.youtube.com/feeds/standardfeeds/top_rated?time=today'
$videoFeed = $yt->getVideoFeed($url);













Retrieving videos uploaded by a user


You can retrieve a list of videos uploaded by a particular user using a simple helper method. This example
retrieves videos uploaded by the user ‘liz’.


Retrieving videos uploaded by a specific user


		1
2


		$yt = new Zend_Gdata_YouTube();
$videoFeed = $yt->getUserUploads('liz');













Retrieving videos favorited by a user


You can retrieve a list of a user’s favorite videos using a simple helper method. This example retrieves videos
favorited by the user ‘liz’.


Retrieving a user’s favorite videos


		1
2


		$yt = new Zend_Gdata_YouTube();
$videoFeed = $yt->getUserFavorites('liz');













Retrieving video responses for a video


You can retrieve a list of a video’s video responses using a simple helper method. This example retrieves video
response for a video with the ID ‘abc123813abc’.


Retrieving a feed of video responses


		1
2


		$yt = new Zend_Gdata_YouTube();
$videoFeed = $yt->getVideoResponseFeed('abc123813abc');















Retrieving video comments


The comments for each YouTube video can be retrieved in several ways. To retrieve the comments for the video with
the ID ‘abc123813abc’, use the following code:


Retrieving a feed of video comments from a video ID


		1
2
3
4
5
6
7


		$yt = new Zend_Gdata_YouTube();
$commentFeed = $yt->getVideoCommentFeed('abc123813abc');

foreach ($commentFeed as $commentEntry) {
    echo $commentEntry->title->text . "\n";
    echo $commentEntry->content->text . "\n\n\n";
}










Comments can also be retrieved for a video if you have a copy of the Zend_Gdata_YouTube_VideoEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoEntry.html] object:


Retrieving a Feed of Video Comments from a Zend_Gdata_YouTube_VideoEntry


		1
2
3
4
5


		$yt = new Zend_Gdata_YouTube();
$videoEntry = $yt->getVideoEntry('abc123813abc');
// we don't know the video ID in this example, but we do have the URL
$commentFeed = $yt->getVideoCommentFeed(null,
                                        $videoEntry->comments->href);













Retrieving playlist feeds


The YouTube Data API provides information about users, including profiles, playlists, subscriptions, and more.



Retrieving the playlists of a user


The library provides a helper method to retrieve the playlists associated with a given user. To retrieve the
playlists for the user ‘liz’:


Retrieving the playlists of a user


		1
2
3
4
5
6
7
8


		$yt = new Zend_Gdata_YouTube();
$playlistListFeed = $yt->getPlaylistListFeed('liz');

foreach ($playlistListFeed as $playlistEntry) {
    echo $playlistEntry->title->text . "\n";
    echo $playlistEntry->description->text . "\n";
    echo $playlistEntry->getPlaylistVideoFeedUrl() . "\n\n\n";
}













Retrieving a specific playlist


The library provides a helper method to retrieve the videos associated with a given playlist. To retrieve the
playlists for a specific playlist entry:


Retrieving a specific playlist


		1
2


		$feedUrl = $playlistEntry->getPlaylistVideoFeedUrl();
$playlistVideoFeed = $yt->getPlaylistVideoFeed($feedUrl);















Retrieving a list of a user’s subscriptions


A user can have several types of subscriptions: channel subscription, tag subscription, or favorites subscription.
A Zend_Gdata_YouTube_SubscriptionEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_SubscriptionEntry.html] is used to represent individual subscriptions.


To retrieve all subscriptions for the user ‘liz’:


Retrieving all subscriptions for a user


		1
2
3
4
5
6


		$yt = new Zend_Gdata_YouTube();
$subscriptionFeed = $yt->getSubscriptionFeed('liz');

foreach ($subscriptionFeed as $subscriptionEntry) {
    echo $subscriptionEntry->title->text . "\n";
}













Retrieving a user’s profile


You can retrieve the public profile information for any YouTube user. To retrieve the profile for the user ‘liz’:


Retrieving a user’s profile


		1
2
3
4
5


		$yt = new Zend_Gdata_YouTube();
$userProfile = $yt->getUserProfile('liz');
echo "username: " . $userProfile->username->text . "\n";
echo "age: " . $userProfile->age->text . "\n";
echo "hometown: " . $userProfile->hometown->text . "\n";













Uploading Videos to YouTube


Please make sure to review the diagrams in the protocol guide [http://code.google.com/apis/youtube/developers_guide_protocol.html#Process_Flows_for_Uploading_Videos] on code.google.com for a high-level overview of
the upload process. Uploading videos can be done in one of two ways: either by uploading the video directly or by
sending just the video meta-data and having a user upload the video through an HTML form.


In order to upload a video directly, you must first construct a new Zend_Gdata_YouTube_VideoEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoEntry.html] object and
specify some required meta-data. The following example shows uploading the Quicktime video “mytestmovie.mov” to
YouTube with the following properties:



Metadata used in the code-sample below





		Property
		Value





		Title
		My Test Movie



		Category
		Autos



		Keywords
		cars, funny



		Description
		My description



		Filename
		mytestmovie.mov



		File MIME type
		video/quicktime



		Video private?
		FALSE



		Video location
		37, -122 (lat, long)



		Developer Tags
		mydevelopertag, anotherdevelopertag







The code below creates a blank Zend_Gdata_YouTube_VideoEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoEntry.html] to be uploaded. A Zend_Gdata_App_MediaFileSource [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_App_MediaFileSource.html]
object is then used to hold the actual video file. Under the hood, the Zend_Gdata_YouTube_Extension_MediaGroup [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_Extension_MediaGroup.html]
object is used to hold all of the video’s meta-data. Our helper methods detailed below allow you to just set the
video meta-data without having to worry about the media group object. The $uploadUrl is the location where the new
entry gets posted to. This can be specified either with the $userName of the currently authenticated user, or,
alternatively, you can simply use the string ‘default’ to refer to the currently authenticated user.


Uploading a video


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


		$yt = new Zend_Gdata_YouTube($httpClient);
$myVideoEntry = new Zend_Gdata_YouTube_VideoEntry();

$filesource = $yt->newMediaFileSource('mytestmovie.mov');
$filesource->setContentType('video/quicktime');
$filesource->setSlug('mytestmovie.mov');

$myVideoEntry->setMediaSource($filesource);

$myVideoEntry->setVideoTitle('My Test Movie');
$myVideoEntry->setVideoDescription('My Test Movie');
// Note that category must be a valid YouTube category !
$myVideoEntry->setVideoCategory('Comedy');

// Set keywords, note that this must be a comma separated string
// and that each keyword cannot contain whitespace
$myVideoEntry->SetVideoTags('cars, funny');

// Optionally set some developer tags
$myVideoEntry->setVideoDeveloperTags(array('mydevelopertag',
                                           'anotherdevelopertag'));

// Optionally set the video's location
$yt->registerPackage('Zend_Gdata_Geo');
$yt->registerPackage('Zend_Gdata_Geo_Extension');
$where = $yt->newGeoRssWhere();
$position = $yt->newGmlPos('37.0 -122.0');
$where->point = $yt->newGmlPoint($position);
$myVideoEntry->setWhere($where);

// Upload URI for the currently authenticated user
$uploadUrl =
    'http://uploads.gdata.youtube.com/feeds/users/default/uploads';

// Try to upload the video, catching a Zend_Gdata_App_HttpException
// if availableor just a regular Zend_Gdata_App_Exception

try {
    $newEntry = $yt->insertEntry($myVideoEntry,
                                 $uploadUrl,
                                 'Zend_Gdata_YouTube_VideoEntry');
} catch (Zend_Gdata_App_HttpException $httpException) {
    echo $httpException->getRawResponseBody();
} catch (Zend_Gdata_App_Exception $e) {
    echo $e->getMessage();
}










To upload a video as private, simply use: $myVideoEntry->setVideoPrivate(); prior to performing the upload.
$videoEntry->isVideoPrivate() can be used to check whether a video entry is private or not.





Browser-based upload


Browser-based uploading is performed almost identically to direct uploading, except that you do not attach a
Zend_Gdata_App_MediaFileSource [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_App_MediaFileSource.html] object to the Zend_Gdata_YouTube_VideoEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoEntry.html] you are constructing. Instead you
simply submit all of your video’s meta-data to receive back a token element which can be used to construct an
HTML upload form.


Browser-based upload


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$yt = new Zend_Gdata_YouTube($httpClient);

$myVideoEntry= new Zend_Gdata_YouTube_VideoEntry();
$myVideoEntry->setVideoTitle('My Test Movie');
$myVideoEntry->setVideoDescription('My Test Movie');

// Note that category must be a valid YouTube category
$myVideoEntry->setVideoCategory('Comedy');
$myVideoEntry->SetVideoTags('cars, funny');

$tokenHandlerUrl = 'http://gdata.youtube.com/action/GetUploadToken';
$tokenArray = $yt->getFormUploadToken($myVideoEntry, $tokenHandlerUrl);
$tokenValue = $tokenArray['token'];
$postUrl = $tokenArray['url'];










The above code prints out a link and a token that is used to construct an HTML form to display in the user’s
browser. A simple example form is shown below with $tokenValue representing the content of the returned token
element, as shown being retrieved from $myVideoEntry above. In order for the user to be redirected to your website
after submitting the form, make sure to append a $nextUrl parameter to the $postUrl above, which functions in the
same way as the $next parameter of an AuthSub link. The only difference is that here, instead of a single-use
token, a status and an id variable are returned in the URL.


Browser-based upload: Creating the HTML form


		1
2
3
4
5
6
7
8
9


		// place to redirect user after upload
$nextUrl = 'http://mysite.com/youtube_uploads';

$form = '<form action="'. $postUrl .'?nexturl='. $nextUrl .
        '" method="post" enctype="multipart/form-data">'.
        '<input name="file" type="file"/>'.
        '<input name="token" type="hidden" value="'. $tokenValue .'"/>'.
        '<input value="Upload Video File" type="submit" />'.
        '</form>';













Checking upload status


After uploading a video, it will immediately be visible in an authenticated user’s uploads feed. However, it will
not be public on the site until it has been processed. Videos that have been rejected or failed to upload
successfully will also only be in the authenticated user’s uploads feed. The following code checks the status of a
Zend_Gdata_YouTube_VideoEntry [http://framework.zend.com/apidoc/core/Zend_Gdata/Zend_Gdata_YouTube_VideoEntry.html] to see if it is not live yet or if it has been rejected.


Checking video upload status


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		try {
    $control = $videoEntry->getControl();
} catch (Zend_Gdata_App_Exception $e) {
    echo $e->getMessage();
}

if ($control instanceof Zend_Gdata_App_Extension_Control) {
    if ($control->getDraft() != null &&
        $control->getDraft()->getText() == 'yes') {
        $state = $videoEntry->getVideoState();

        if ($state instanceof Zend_Gdata_YouTube_Extension_State) {
            print 'Upload status: '
                  . $state->getName()
                  .' '. $state->getText();
        } else {
            print 'Not able to retrieve the video status information'
                  .' yet. ' . "Please try again shortly.\n";
        }
    }
}













Other Functions


In addition to the functionality described above, the YouTube API contains many other functions that allow you to
modify video meta-data, delete video entries and use the full range of community features on the site. Some of the
community features that can be modified through the API include: ratings, comments, playlists, subscriptions,
user profiles, contacts and messages.


Please refer to the full documentation available in the PHP Developer’s Guide [http://code.google.com/apis/youtube/developers_guide_php.html] on code.google.com.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using the YouTube Data API
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.read.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Reading Mail Messages


Zend_Mail can read mail messages from several local or remote mail storages. All of them have the same basic
API to count and fetch messages and some of them implement additional interfaces for not so common features. For
a feature overview of the implemented storages, see the following table.



Mail Read Feature Overview








		Feature
		Mbox
		Maildir
		Pop3
		IMAP





		Storage type
		local
		local
		remote
		remote



		Fetch message
		Yes
		Yes
		Yes
		Yes



		Fetch MIME-part
		emulated
		emulated
		emulated
		emulated



		Folders
		Yes
		Yes
		No
		Yes



		Create message/folder
		No
		todo
		No
		todo



		Flags
		No
		Yes
		No
		Yes



		Quota
		No
		Yes
		No
		No








Simple example using Pop3


		1
2
3
4
5
6
7
8


		$mail = new Zend_Mail_Storage_Pop3(array('host'     => 'localhost',
                                         'user'     => 'test',
                                         'password' => 'test'));

echo $mail->countMessages() . " messages found\n";
foreach ($mail as $message) {
    echo "Mail from '{$message->from}': {$message->subject}\n";
}













Opening a local storage


Mbox and Maildir are the two supported formats for local mail storages, both in their most simple formats.


If you want to read from a Mbox file you only need to give the filename to the constructor of
Zend_Mail_Storage_Mbox:


		1
2


		$mail = new Zend_Mail_Storage_Mbox(array('filename' =>
                                             '/home/test/mail/inbox'));










Maildir is very similar but needs a dirname:


		1
2


		$mail = new Zend_Mail_Storage_Maildir(array('dirname' =>
                                                '/home/test/mail/'));










Both constructors throw a Zend_Mail_Exception if the storage can’t be read.





Opening a remote storage


For remote storages the two most popular protocols are supported: Pop3 and Imap. Both need at least a host and a
user to connect and login. The default password is an empty string, the default port as given in the protocol
RFC.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// connecting with Pop3
$mail = new Zend_Mail_Storage_Pop3(array('host'     => 'example.com',
                                         'user'     => 'test',
                                         'password' => 'test'));

// connecting with Imap
$mail = new Zend_Mail_Storage_Imap(array('host'     => 'example.com',
                                         'user'     => 'test',
                                         'password' => 'test'));

// example for a none standard port
$mail = new Zend_Mail_Storage_Pop3(array('host'     => 'example.com',
                                         'port'     => 1120
                                         'user'     => 'test',
                                         'password' => 'test'));










For both storages SSL and TLS are supported. If you use SSL the default port changes as given in the RFC.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// examples for Zend_Mail_Storage_Pop3, same works for Zend_Mail_Storage_Imap

// use SSL on different port (default is 995 for Pop3 and 993 for Imap)
$mail = new Zend_Mail_Storage_Pop3(array('host'     => 'example.com',
                                         'user'     => 'test',
                                         'password' => 'test',
                                         'ssl'      => 'SSL'));

// use TLS
$mail = new Zend_Mail_Storage_Pop3(array('host'     => 'example.com',
                                         'user'     => 'test',
                                         'password' => 'test',
                                         'ssl'      => 'TLS'));










Both constructors can throw Zend_Mail_Exception or Zend_Mail_Protocol_Exception (extends
Zend_Mail_Exception), depending on the type of error.





Fetching messages and simple methods


Messages can be fetched after you’ve opened the storage . You need the message number, which is a counter starting
with 1 for the first message. To fetch the message, you use the method getMessage():


		1


		$message = $mail->getMessage($messageNum);










Array access is also supported, but this access method won’t supported any additional parameters that could be
added to getMessage(). As long as you don’t mind, and can live with the default values, you may use:


		1


		$message = $mail[$messageNum];










For iterating over all messages the Iterator interface is implemented:


		1
2
3


		foreach ($mail as $messageNum => $message) {
    // do stuff ...
}










To count the messages in the storage, you can either use the method countMessages() or use array access:


		1
2
3
4
5


		// method
$maxMessage = $mail->countMessages();

// array access
$maxMessage = count($mail);










To remove a mail, you use the method removeMessage() or again array access:


		1
2
3
4
5


		// method
$mail->removeMessage($messageNum);

// array access
unset($mail[$messageNum]);













Working with messages


After you fetch the messages with getMessage() you want to fetch headers, the content or single parts of a
multipart message. All headers can be accessed via properties or the method getHeader() if you want more
control or have unusual header names. The header names are lower-cased internally, thus the case of the header name
in the mail message doesn’t matter. Also headers with a dash can be written in camel-case. If no header is found
for both notations an exception is thrown. To encounter this the method headerExists() can be used to check the
existence of a header.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// get the message object
$message = $mail->getMessage(1);

// output subject of message
echo $message->subject . "\n";

// get content-type header
$type = $message->contentType;

// check if CC isset:
if( isset($message->cc) ) { // or $message->headerExists('cc');
    $cc = $message->cc;
}










If you have multiple headers with the same name- i.e. the Received headers- you might want an array instead of a
string. In this case, use the getHeader() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// get header as property - the result is always a string,
// with new lines between the single occurrences in the message
$received = $message->received;

// the same via getHeader() method
$received = $message->getHeader('received', 'string');

// better an array with a single entry for every occurrences
$received = $message->getHeader('received', 'array');
foreach ($received as $line) {
    // do stuff
}

// if you don't define a format you'll get the internal representation
// (string for single headers, array for multiple)
$received = $message->getHeader('received');
if (is_string($received)) {
    // only one received header found in message
}










The method getHeaders() returns all headers as array with the lower-cased name as key and the value as and
array for multiple headers or as string for single headers.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// dump all headers
foreach ($message->getHeaders() as $name => $value) {
    if (is_string($value)) {
        echo "$name: $value\n";
        continue;
    }
    foreach ($value as $entry) {
        echo "$name: $entry\n";
    }
}










If you don’t have a multipart message, fetching the content is easily done via getContent(). Unlike the
headers, the content is only fetched when needed (aka late-fetch).


		1
2
3
4


		// output message content for HTML
echo '<pre>';
echo $message->getContent();
echo '</pre>';










Checking for multipart messages is done with the method isMultipart(). If you have multipart message you can
get an instance of Zend_Mail_Part with the method getPart(). Zend_Mail_Part is the base class of
Zend_Mail_Message, so you have the same methods: getHeader(), getHeaders(), getContent(),
getPart(), isMultipart() and the properties for headers.


		1
2
3
4
5
6
7
8


		// get the first none multipart part
$part = $message;
while ($part->isMultipart()) {
    $part = $message->getPart(1);
}
echo 'Type of this part is ' . strtok($part->contentType, ';') . "\n";
echo "Content:\n";
echo $part->getContent();










Zend_Mail_Part also implements RecursiveIterator, which makes it easy to scan through all parts. And for
easy output, it also implements the magic method __toString(), which returns the content.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		// output first text/plain part
$foundPart = null;
foreach (new RecursiveIteratorIterator($mail->getMessage(1)) as $part) {
    try {
        if (strtok($part->contentType, ';') == 'text/plain') {
            $foundPart = $part;
            break;
        }
    } catch (Zend_Mail_Exception $e) {
        // ignore
    }
}
if (!$foundPart) {
    echo 'no plain text part found';
} else {
    echo "plain text part: \n" . $foundPart;
}













Checking for flags


Maildir and IMAP support storing flags. The class Zend_Mail_Storage has constants for all known maildir and
IMAP system flags, named Zend_Mail_Storage::FLAG_<flagname>. To check for flags Zend_Mail_Message has a
method called hasFlag(). With getFlags() you’ll get all set flags.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		// find unread messages
echo "Unread mails:\n";
foreach ($mail as $message) {
    if ($message->hasFlag(Zend_Mail_Storage::FLAG_SEEN)) {
        continue;
    }
    // mark recent/new mails
    if ($message->hasFlag(Zend_Mail_Storage::FLAG_RECENT)) {
        echo '! ';
    } else {
        echo '  ';
    }
    echo $message->subject . "\n";
}

// check for known flags
$flags = $message->getFlags();
echo "Message is flagged as: ";
foreach ($flags as $flag) {
    switch ($flag) {
        case Zend_Mail_Storage::FLAG_ANSWERED:
            echo 'Answered ';
            break;
        case Zend_Mail_Storage::FLAG_FLAGGED:
            echo 'Flagged ';
            break;

        // ...
        // check for other flags
        // ...

        default:
            echo $flag . '(unknown flag) ';
    }
}










As IMAP allows user or client defined flags, you could get flags that don’t have a constant in
Zend_Mail_Storage. Instead, they are returned as strings and can be checked the same way with hasFlag().


		1
2
3
4
5
6
7
8


		// check message for client defined flags $IsSpam, $SpamTested
if (!$message->hasFlag('$SpamTested')) {
    echo 'message has not been tested for spam';
} else if ($message->hasFlag('$IsSpam')) {
    echo 'this message is spam';
} else {
    echo 'this message is ham';
}













Using folders


All storages, except Pop3, support folders, also called mailboxes. The interface implemented by all storages
supporting folders is called Zend_Mail_Storage_Folder_Interface. Also all of these classes have an additional
optional parameter called folder, which is the folder selected after login, in the constructor.


For the local storages you need to use separate classes called Zend_Mail_Storage_Folder_Mbox or
Zend_Mail_Storage_Folder_Maildir. Both need one parameter called dirname with the name of the base dir. The
format for maildir is as defined in maildir++ (with a dot as default delimiter), Mbox is a directory hierarchy with
Mbox files. If you don’t have a Mbox file called INBOX in your Mbox base dir you need to set another folder in the
constructor.


Zend_Mail_Storage_Imap already supports folders by default. Examples for opening these storages:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		// mbox with folders
$mail = new Zend_Mail_Storage_Folder_Mbox(array('dirname' =>
                                                    '/home/test/mail/'));

// mbox with a default folder not called INBOX, also works
// with Zend_Mail_Storage_Folder_Maildir and Zend_Mail_Storage_Imap
$mail = new Zend_Mail_Storage_Folder_Mbox(array('dirname' =>
                                                    '/home/test/mail/',
                                                'folder'  =>
                                                    'Archive'));

// maildir with folders
$mail = new Zend_Mail_Storage_Folder_Maildir(array('dirname' =>
                                                       '/home/test/mail/'));

// maildir with colon as delimiter, as suggested in Maildir++
$mail = new Zend_Mail_Storage_Folder_Maildir(array('dirname' =>
                                                       '/home/test/mail/',
                                                   'delim'   => ':'));

// imap is the same with and without folders
$mail = new Zend_Mail_Storage_Imap(array('host'     => 'example.com',
                                         'user'     => 'test',
                                         'password' => 'test'));










With the method getFolders($root = null) you can get the folder hierarchy starting with the root folder or the
given folder. It’s returned as an instance of Zend_Mail_Storage_Folder, which implements RecursiveIterator
and all children are also instances of Zend_Mail_Storage_Folder. Each of these instances has a local and a
global name returned by the methods getLocalName() and getGlobalName(). The global name is the absolute
name from the root folder (including delimiters), the local name is the name in the parent folder.



Mail Folder Names





		Global Name
		Local Name





		/INBOX
		INBOX



		/Archive/2005
		2005



		List.ZF.General
		General







If you use the iterator, the key of the current element is the local name. The global name is also returned by the
magic method __toString(). Some folders may not be selectable, which means they can’t store messages and
selecting them results in an error. This can be checked with the method isSelectable(). So it’s very easy to
output the whole tree in a view:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$folders = new RecursiveIteratorIterator($this->mail->getFolders(),
                                         RecursiveIteratorIterator::SELF_FIRST);
echo '<select name="folder">';
foreach ($folders as $localName => $folder) {
    $localName = str_pad('', $folders->getDepth(), '-', STR_PAD_LEFT) .
                 $localName;
    echo '<option';
    if (!$folder->isSelectable()) {
        echo ' disabled="disabled"';
    }
    echo ' value="' . htmlspecialchars($folder) . '">'
        . htmlspecialchars($localName) . '</option>';
}
echo '</select>';










The current selected folder is returned by the method getSelectedFolder(). Changing the folder is done with the
method selectFolder(), which needs the global name as parameter. If you want to avoid to write delimiters you
can also use the properties of a Zend_Mail_Storage_Folder instance:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// depending on your mail storage and its settings $rootFolder->Archive->2005
// is the same as:
//   /Archive/2005
//  Archive:2005
//  INBOX.Archive.2005
//  ...
$folder = $mail->getFolders()->Archive->2005;
echo 'Last folder was '
   . $mail->getSelectedFolder()
   . "new folder is $folder\n";
$mail->selectFolder($folder);













Advanced Use



Using NOOP


If you’re using a remote storage and have some long tasks you might need to keep the connection alive via noop:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		foreach ($mail as $message) {

    // do some calculations ...

    $mail->noop(); // keep alive

    // do something else ...

    $mail->noop(); // keep alive
}













Caching instances


Zend_Mail_Storage_Mbox, Zend_Mail_Storage_Folder_Mbox, Zend_Mail_Storage_Maildir and
Zend_Mail_Storage_Folder_Maildir implement the magic methods __sleep() and __wakeup(), which means they
are serializable. This avoids parsing the files or directory tree more than once. The disadvantage is that your
Mbox or Maildir storage should not change. Some easy checks may be done, like reparsing the current Mbox file if
the modification time changes, or reparsing the folder structure if a folder has vanished (which still results in
an error, but you can search for another folder afterwards). It’s better if you have something like a signal file
for changes and check it before using the cached instance.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// there's no specific cache handler/class used here,
// change the code to match your cache handler
$signal_file = '/home/test/.mail.last_change';
$mbox_basedir = '/home/test/mail/';
$cache_id = 'example mail cache ' . $mbox_basedir . $signal_file;

$cache = new Your_Cache_Class();
if (!$cache->isCached($cache_id) ||
    filemtime($signal_file) > $cache->getMTime($cache_id)) {
    $mail = new Zend_Mail_Storage_Folder_Pop3(array('dirname' =>
                                                        $mbox_basedir));
} else {
    $mail = $cache->get($cache_id);
}

// do stuff ...

$cache->set($cache_id, $mail);













Extending Protocol Classes


Remote storages use two classes: Zend_Mail_Storage_<Name> and Zend_Mail_Protocol_<Name>. The protocol class
translates the protocol commands and responses from and to PHP, like methods for the commands or variables with
different structures for data. The other/main class implements the common interface.


If you need additional protocol features, you can extend the protocol class and use it in the constructor of the
main class. As an example, assume we need to knock different ports before we can connect to POP3.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


		class Example_Mail_Exception extends Zend_Mail_Exception
{
}

class Example_Mail_Protocol_Exception extends Zend_Mail_Protocol_Exception
{
}

class Example_Mail_Protocol_Pop3_Knock extends Zend_Mail_Protocol_Pop3
{
    private $host, $port;

    public function __construct($host, $port = null)
    {
        // no auto connect in this class
        $this->host = $host;
        $this->port = $port;
    }

    public function knock($port)
    {
        $sock = @fsockopen($this->host, $port);
        if ($sock) {
            fclose($sock);
        }
    }

    public function connect($host = null, $port = null, $ssl = false)
    {
        if ($host === null) {
            $host = $this->host;
        }
        if ($port === null) {
            $port = $this->port;
        }
        parent::connect($host, $port);
    }
}

class Example_Mail_Pop3_Knock extends Zend_Mail_Storage_Pop3
{
    public function __construct(array $params)
    {
        // ... check $params here! ...
        $protocol = new Example_Mail_Protocol_Pop3_Knock($params['host']);

        // do our "special" thing
        foreach ((array)$params['knock_ports'] as $port) {
            $protocol->knock($port);
        }

        // get to correct state
        $protocol->connect($params['host'], $params['port']);
        $protocol->login($params['user'], $params['password']);

        // initialize parent
        parent::__construct($protocol);
    }
}

$mail = new Example_Mail_Pop3_Knock(array('host'        => 'localhost',
                                          'user'        => 'test',
                                          'password'    => 'test',
                                          'knock_ports' =>
                                              array(1101, 1105, 1111)));










As you see, we always assume we’re connected, logged in and, if supported, a folder is selected in the constructor
of the main class. Thus if you assign your own protocol class, you always need to make sure that’s done or the next
method will fail if the server doesn’t allow it in the current state.





Using Quota (since 1.5)


Zend_Mail_Storage_Writable_Maildir has support for Maildir++ quotas. It’s disabled by default, but it’s
possible to use it manually, if the automatic checks are not desired (this means appendMessage(),
removeMessage() and copyMessage() do no checks and do not add entries to the maildirsize file). If enabled,
an exception is thrown if you try to write to the maildir and it’s already over quota.


There are three methods used for quotas: getQuota(), setQuota() and checkQuota():


		1
2
3
4
5
6


		$mail = new Zend_Mail_Storage_Writable_Maildir(array('dirname' =>
                                                   '/home/test/mail/'));
$mail->setQuota(true); // true to enable, false to disable
echo 'Quota check is now ', $mail->getQuota() ? 'enabled' : 'disabled', "\n";
// check quota can be used even if quota checks are disabled
echo 'You are ', $mail->checkQuota() ? 'over quota' : 'not over quota', "\n";










checkQuota() can also return a more detailed response:


		1
2
3
4
5
6
7
8


		$quota = $mail->checkQuota(true);
echo 'You are ', $quota['over_quota'] ? 'over quota' : 'not over quota', "\n";
echo 'You have ',
     $quota['count'],
     ' of ',
     $quota['quota']['count'],
     ' messages and use ';
echo $quota['size'], ' of ', $quota['quota']['size'], ' octets';










If you want to specify your own quota instead of using the one specified in the maildirsize file you can do with
setQuota():


		1
2


		// message count and octet size supported, order does matter
$quota = $mail->setQuota(array('size' => 10000, 'count' => 100));










To add your own quota checks use single letters as keys, and they will be preserved (but obviously not checked).
It’s also possible to extend Zend_Mail_Storage_Writable_Maildir to define your own quota only if the
maildirsize file is missing (which can happen in Maildir++):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class Example_Mail_Storage_Maildir extends Zend_Mail_Storage_Writable_Maildir {
    // getQuota is called with $fromStorage = true by quota checks
    public function getQuota($fromStorage = false) {
        try {
            return parent::getQuota($fromStorage);
        } catch (Zend_Mail_Storage_Exception $e) {
            if (!$fromStorage) {
                // unknown error:
                throw $e;
            }
            // maildirsize file must be missing

            list($count, $size) = get_quota_from_somewhere_else();
            return array('count' => $count, 'size' => $size);
        }
    }
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Reading Mail Messages
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.di.configuration.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Di Configuration


Most of the configuration for both the setup of Definitions as well as the setup of the Instance Manager can be
attained by a configuration file. This file will produce an array (typically) and have a particular iterable
structure.


The top two keys are ‘definition’ and ‘instance’, each specifying values for respectively, definition setup and
instance manager setup.


The definition section expects the following information expressed as a PHP array:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$config = array(
    'definition' => array(
        'compiler' => array(/* @todo compiler information */),
        'runtime'  => array(/* @todo runtime information */),
        'class' => array(
            'instantiator' => '', // the name of the instantiator, by default this is __construct
            'supertypes'   => array(), // an array of supertypes the class implements
            'methods'      => array(
                'setSomeParameter' => array( // a method name
                    'parameterName' => array(
                        'name',       // string parameter name
                        'type',       // type or null
                        'is-required' // bool
                    )
                )

            )
        )
    )
);














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Di Configuration
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.form.collections.dynamic-elements.result.png
object (Application\Entity\Product)(622]
protected 'mame’ -> string 'Zend Framework' (length=14)
protected 'price’ -> string '0' (length=1)
protected 'brand’ ->
object (Application\Entity\Brand)(597]
protected 'name’' > string 'Zend' (length=d)
protected 'url' => string 'http://www.zend.con' (length=19)
protected 'categories’ ->
array (size=3)
0=
object (Application\Entity\Category)[615]
protected 'name’ -> string 'Awesome' (length=7)
1=
object (Application\Entity\Category)(621]
Pprotected 'name’' -> string 'PEP' (length=3)
2 =
object (Application\Entity\Category)(628]
protected 'name' -> string 'Framework' (length=9)






modules/zend.feed.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Feed provides functionality for consuming RSS and Atom feeds. It provides a natural syntax for accessing
elements of feeds, feed attributes, and entry attributes. Zend_Feed also has extensive support for modifying
feed and entry structure with the same natural syntax, and turning the result back into XML. In the future, this
modification support could provide support for the Atom Publishing Protocol.


Programmatically, Zend_Feed consists of a base Zend_Feed class, abstract Zend_Feed_Abstract and
Zend_Feed_Entry_Abstract base classes for representing Feeds and Entries, specific implementations of feeds and
entries for RSS and Atom, and a behind-the-scenes helper for making the natural syntax magic work.


In the example below, we demonstrate a simple use case of retrieving an RSS feed and saving relevant portions of
the feed data to a simple PHP array, which could then be used for printing the data, storing to a database, etc.



Note


Be aware


Many RSS feeds have different channel and item properties available. The RSS specification provides for many
optional properties, so be aware of this when writing code to work with RSS data.




Putting Zend_Feed to Work on RSS Feed Data


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// Fetch the latest Slashdot headlines
try {
    $slashdotRss =
        Zend_Feed::import('http://rss.slashdot.org/Slashdot/slashdot');
} catch (Zend_Feed_Exception $e) {
    // feed import failed
    echo "Exception caught importing feed: {$e->getMessage()}\n";
    exit;
}

// Initialize the channel data array
$channel = array(
    'title'       => $slashdotRss->title(),
    'link'        => $slashdotRss->link(),
    'description' => $slashdotRss->description(),
    'items'       => array()
    );

// Loop over each channel item and store relevant data
foreach ($slashdotRss as $item) {
    $channel['items'][] = array(
        'title'       => $item->title(),
        'link'        => $item->link(),
        'description' => $item->description()
        );
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.client.advanced.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Http_Client - Advanced Usage



HTTP Redirections


By default, Zend_Http_Client automatically handles HTTP redirections, and will follow up to 5 redirections.
This can be changed by setting the ‘maxredirects’ configuration parameter.


According to the HTTP/1.1 RFC, HTTP 301 and 302 responses should be treated by the client by resending the same
request to the specified location - using the same request method. However, most clients to not implement this and
always use a GET request when redirecting. By default, Zend_Http_Client does the same - when redirecting on
a 301 or 302 response, all GET and POST parameters are reset, and a GET request is sent to the new
location. This behavior can be changed by setting the ‘strictredirects’ configuration parameter to boolean
TRUE:



Forcing RFC 2616 Strict Redirections on 301 and 302 Responses


		1
2
3
4
5


		// Strict Redirections
$client->setConfig(array('strictredirects' => true));

// Non-strict Redirections
$client->setConfig(array('strictredirects' => false));














You can always get the number of redirections done after sending a request using the getRedirectionsCount() method.





Adding Cookies and Using Cookie Persistence


Zend_Http_Client provides an easy interface for adding cookies to your request, so that no direct header
modification is required. This is done using the setCookie() method. This method can be used in several ways:



Setting Cookies Using setCookie()


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Easy and simple: by providing a cookie name and cookie value
$client->setCookie('flavor', 'chocolate chips');

// By directly providing a raw cookie string (name=value)
// Note that the value must be already URL encoded
$client->setCookie('flavor=chocolate%20chips');

// By providing a Zend_Http_Cookie object
$cookie = Zend_Http_Cookie::fromString('flavor=chocolate%20chips');
$client->setCookie($cookie);














For more information about Zend_Http_Cookie objects, see this section.


Zend_Http_Client also provides the means for cookie stickiness - that is having the client internally store all
sent and received cookies, and resend them automatically on subsequent requests. This is useful, for example when
you need to log in to a remote site first and receive and authentication or session ID cookie before sending
further requests.



Enabling Cookie Stickiness


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// To turn cookie stickiness on, set a Cookie Jar
$client->setCookieJar();

// First request: log in and start a session
$client->setUri('http://example.com/login.php');
$client->setParameterPost('user', 'h4x0r');
$client->setParameterPost('password', '1337');
$client->request('POST');

// The Cookie Jar automatically stores the cookies set
// in the response, like a session ID cookie.

// Now we can send our next request - the stored cookies
// will be automatically sent.
$client->setUri('http://example.com/read_member_news.php');
$client->request('GET');














For more information about the Zend_Http_CookieJar class, see this section.





Setting Custom Request Headers


Setting custom headers can be done by using the setHeaders() method. This method is quite diverse and can be used
in several ways, as the following example shows:



Setting A Single Custom Request Header


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Setting a single header, overwriting any previous value
$client->setHeaders('Host', 'www.example.com');

// Another way of doing the exact same thing
$client->setHeaders('Host: www.example.com');

// Setting several values for the same header
// (useful mostly for Cookie headers):
$client->setHeaders('Cookie', array(
    'PHPSESSID=1234567890abcdef1234567890abcdef',
    'language=he'
));














setHeader() can also be easily used to set multiple headers in one call, by providing an array of headers as a
single parameter:



Setting Multiple Custom Request Headers


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Setting multiple headers, overwriting any previous value
$client->setHeaders(array(
    'Host' => 'www.example.com',
    'Accept-encoding' => 'gzip,deflate',
    'X-Powered-By' => 'Zend Framework'));

// The array can also contain full array strings:
$client->setHeaders(array(
    'Host: www.example.com',
    'Accept-encoding: gzip,deflate',
    'X-Powered-By: Zend Framework'));

















File Uploads


You can upload files through HTTP using the setFileUpload method. This method takes a file name as the first
parameter, a form name as the second parameter, and data as a third optional parameter. If the third data parameter
is NULL, the first file name parameter is considered to be a real file on disk, and Zend_Http_Client will
try to read this file and upload it. If the data parameter is not NULL, the first file name parameter will be
sent as the file name, but no actual file needs to exist on the disk. The second form name parameter is always
required, and is equivalent to the “name” attribute of an >input< tag, if the file was to be uploaded through an
HTML form. A fourth optional parameter provides the file’s content-type. If not specified, and
Zend_Http_Client reads the file from the disk, the mime_content_type function will be used to guess the file’s
content type, if it is available. In any case, the default MIME type will be application/octet-stream.



Using setFileUpload to Upload Files


		1
2
3
4
5
6
7
8
9


		// Uploading arbitrary data as a file
$text = 'this is some plain text';
$client->setFileUpload('some_text.txt', 'upload', $text, 'text/plain');

// Uploading an existing file
$client->setFileUpload('/tmp/Backup.tar.gz', 'bufile');

// Send the files
$client->request('POST');














In the first example, the $text variable is uploaded and will be available as $_FILES[‘upload’] on the server side.
In the second example, the existing file /tmp/Backup.tar.gz is uploaded to the server and will be available as
$_FILES[‘bufile’]. The content type will be guesses automatically if possible - and if not, the content type will
be set to ‘application/octet-stream’.



Note


Uploading files


When uploading files, the HTTP request content-type is automatically set to multipart/form-data. Keep in mind
that you must send a POST or PUT request in order to upload files. Most servers will ignore the requests body on
other request methods.







Sending Raw POST Data


You can use a Zend_Http_Client to send raw POST data using the setRawData() method. This method takes two
parameters: the first is the data to send in the request body. The second optional parameter is the content-type of
the data. While this parameter is optional, you should usually set it before sending the request - either using
setRawData(), or with another method: setEncType().



Sending Raw POST Data


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$xml = '<book>' .
       '  <title>Islands in the Stream</title>' .
       '  <author>Ernest Hemingway</author>' .
       '  <year>1970</year>' .
       '</book>';

$client->setRawData($xml, 'text/xml')->request('POST');

// Another way to do the same thing:
$client->setRawData($xml)->setEncType('text/xml')->request('POST');














The data should be available on the server side through PHP‘s $HTTP_RAW_POST_DATA variable or through the
php://input stream.



Note


Using raw POST data


Setting raw POST data for a request will override any POST parameters or file uploads. You should not try to use
both on the same request. Keep in mind that most servers will ignore the request body unless you send a POST
request.







HTTP Authentication


Currently, Zend_Http_Client only supports basic HTTP authentication. This feature is utilized using the
setAuth() method, or by specifying a username and a password in the URI. The setAuth() method takes 3
parameters: The user name, the password and an optional authentication type parameter. As mentioned, currently only
basic authentication is supported (digest authentication support is planned).



Setting HTTP Authentication User and Password


		1
2
3
4
5
6
7
8


		// Using basic authentication
$client->setAuth('shahar', 'myPassword!', Zend_Http_Client::AUTH_BASIC);

// Since basic auth is default, you can just do this:
$client->setAuth('shahar', 'myPassword!');

// You can also specify username and password in the URI
$client->setUri('http://christer:secret@example.com');

















Sending Multiple Requests With the Same Client


Zend_Http_Client was also designed specifically to handle several consecutive requests with the same object.
This is useful in cases where a script requires data to be fetched from several places, or when accessing a
specific HTTP resource requires logging in and obtaining a session cookie, for example.


When performing several requests to the same host, it is highly recommended to enable the ‘keepalive’ configuration
flag. This way, if the server supports keep-alive connections, the connection to the server will only be closed
once all requests are done and the Client object is destroyed. This prevents the overhead of opening and closing
TCP connections to the server.


When you perform several requests with the same client, but want to make sure all the request-specific parameters
are cleared, you should use the resetParameters() method. This ensures that GET and POST parameters, request
body and request-specific headers are reset and are not reused in the next request.



Note


Resetting parameters


Note that non-request specific headers are not reset by default when the resetParameters() method is used.
Only the ‘Content-length’ and ‘Content-type’ headers are reset. This allows you to set-and-forget headers like
‘Accept-language’ and ‘Accept-encoding’


To clean all headers and other data except for URI and method, use resetParameters(true).




Another feature designed specifically for consecutive requests is the Cookie Jar object. Cookie Jars allow you to
automatically save cookies set by the server in the first request, and send them on consecutive requests
transparently. This allows, for example, going through an authentication request before sending the actual data
fetching request.


If your application requires one authentication request per user, and consecutive requests might be performed in
more than one script in your application, it might be a good idea to store the Cookie Jar object in the user’s
session. This way, you will only need to authenticate the user once every session.


Performing consecutive requests with one client


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		// First, instantiate the client
$client = new Zend_Http_Client('http://www.example.com/fetchdata.php', array(
    'keepalive' => true
));

// Do we have the cookies stored in our session?
if (isset($_SESSION['cookiejar']) &&
    $_SESSION['cookiejar'] instanceof Zend_Http_CookieJar) {

    $client->setCookieJar($_SESSION['cookiejar']);
} else {
    // If we don't, authenticate and store cookies
    $client->setCookieJar();
    $client->setUri('http://www.example.com/login.php');
    $client->setParameterPost(array(
        'user' => 'shahar',
        'pass' => 'somesecret'
    ));
    $client->request(Zend_Http_Client::POST);

    // Now, clear parameters and set the URI to the original one
    // (note that the cookies that were set by the server are now
    // stored in the jar)
    $client->resetParameters();
    $client->setUri('http://www.example.com/fetchdata.php');
}

$response = $client->request(Zend_Http_Client::GET);

// Store cookies in session, for next page
$_SESSION['cookiejar'] = $client->getCookieJar();













Data Streaming


By default, Zend_Http_Client accepts and returns data as PHP strings. However, in many cases there are big
files to be sent or received, thus keeping them in memory might be unnecessary or too expensive. For these cases,
Zend_Http_Client supports reading data from files (and in general, PHP streams) and writing data to files
(streams).


In order to use stream to pass data to Zend_Http_Client, use setRawData() method with data argument being
stream resource (e.g., result of fopen()).



Sending file to HTTP server with streaming


		1
2


		$fp = fopen("mybigfile.zip", "r");
$client->setRawData($fp, 'application/zip')->request('PUT');














Only PUT requests currently support sending streams to HTTP server.


In order to receive data from the server as stream, use setStream(). Optional argument specifies the filename
where the data will be stored. If the argument is just TRUE (default), temporary file will be used and will be
deleted once response object is destroyed. Setting argument to FALSE disables the streaming functionality.


When using streaming, request() method will return object of class Zend_Http_Client_Response_Stream, which
has two useful methods: getStreamName() will return the name of the file where the response is stored, and
getStream() will return stream from which the response could be read.


You can either write the response to pre-defined file, or use temporary file for storing it and send it out or
write it to another file using regular stream functions.



Receiving file from HTTP server with streaming


		1
2
3
4
5
6
7
8
9


		$client->setStream(); // will use temp file
$response = $client->request('GET');
// copy file
copy($response->getStreamName(), "my/downloads/file");
// use stream
$fp = fopen("my/downloads/file2", "w");
stream_copy_to_stream($response->getStream(), $fp);
// Also can write to known file
$client->setStream("my/downloads/myfile)->request('GET');




















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Http_Client - Advanced Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.docs.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Google Documents List Data API


The Google Documents List Data API allows client applications to upload documents to Google Documents and list
them in the form of Google Data API (“GData”) feeds. Your client application can request a list of a user’s
documents, and query the content in an existing document.


See http://code.google.com/apis/documents/overview.html for more information about the Google Documents List
API.



Get a List of Documents


You can get a list of the Google Documents for a particular user by using the getDocumentListFeed() method of
the docs service. The service will return a Zend_Gdata_Docs_DocumentListFeed object containing a list of
documents associated with the authenticated user.


		1
2
3
4


		$service = Zend_Gdata_Docs::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$docs = new Zend_Gdata_Docs($client);
$feed = $docs->getDocumentListFeed();










The resulting Zend_Gdata_Docs_DocumentListFeed object represents the response from the server. This feed
contains a list of Zend_Gdata_Docs_DocumentListEntry objects ($feed->entries), each of which represents a
single Google Document.





Upload a Document


You can create a new Google Document by uploading a word processing document, spreadsheet, or presentation. This
example is from the interactive Docs.php sample which comes with the library. It demonstrates uploading a file and
printing information about the result from the server.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


		/**
 * Upload the specified document
 *
 * @param Zend_Gdata_Docs $docs The service object to use for communicating
 *     with the Google Documents server.
 * @param boolean $html True if output should be formatted for display in a
 *     web browser.
 * @param string $originalFileName The name of the file to be uploaded. The
 *     MIME type of the file is determined from the extension on this file
 *     name. For example, test.csv is uploaded as a comma separated volume
 *     and converted into a spreadsheet.
 * @param string $temporaryFileLocation (optional) The file in which the
 *     data for the document is stored. This is used when the file has been
 *     uploaded from the client's machine to the server and is stored in
 *     a temporary file which does not have an extension. If this parameter
 *     is null, the file is read from the originalFileName.
 */
function uploadDocument($docs, $html, $originalFileName,
                        $temporaryFileLocation) {
  $fileToUpload = $originalFileName;
  if ($temporaryFileLocation) {
    $fileToUpload = $temporaryFileLocation;
  }

  // Upload the file and convert it into a Google Document. The original
  // file name is used as the title of the document and the MIME type
  // is determined based on the extension on the original file name.
  $newDocumentEntry = $docs->uploadFile($fileToUpload, $originalFileName,
      null, Zend_Gdata_Docs::DOCUMENTS_LIST_FEED_URI);

  echo "New Document Title: ";

  if ($html) {
      // Find the URL of the HTML view of this document.
      $alternateLink = '';
      foreach ($newDocumentEntry->link as $link) {
          if ($link->getRel() === 'alternate') {
              $alternateLink = $link->getHref();
          }
      }
      // Make the title link to the document on docs.google.com.
      echo "<a href=\"$alternateLink\">\n";
  }
  echo $newDocumentEntry->title."\n";
  if ($html) {echo "</a>\n";}
}













Searching the documents feed


You can search the Document List using some of the standard Google Data API query parameters [http://code.google.com/apis/gdata/reference.html#Queries]. Categories are
used to restrict the type of document (word processor document, spreadsheet) returned. The full-text query string
is used to search the content of all the documents. More detailed information on parameters specific to the
Documents List can be found in the Documents List Data API Reference Guide [http://code.google.com/apis/documents/reference.html#Parameters].



Get a List of Word Processing Documents


You can also request a feed containing all of your documents of a specific type. For example, to see a list of your
work processing documents, you would perform a category query as follows.


		1
2


		$feed = $docs->getDocumentListFeed(
    'http://docs.google.com/feeds/documents/private/full/-/document');













Get a List of Spreadsheets


To request a list of your Google Spreadsheets, use the following category query:


		1
2


		$feed = $docs->getDocumentListFeed(
    'http://docs.google.com/feeds/documents/private/full/-/spreadsheet');













Performing a text query


You can search the content of documents by using a Zend_Gdata_Docs_Query in your request. A Query object can be
used to construct the query URI, with the search term being passed in as a parameter. Here is an example method
which queries the documents list for documents which contain the search string:


		1
2
3


		$docsQuery = new Zend_Gdata_Docs_Query();
$docsQuery->setQuery($query);
$feed = $client->getDocumentListFeed($docsQuery);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Google Documents List Data API
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.hostname.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Hostname


Zend\Validator\Hostname allows you to validate a hostname against a set of known specifications. It is possible
to check for three different types of hostnames: a DNS Hostname (i.e. domain.com), IP address (i.e. 1.2.3.4),
and Local hostnames (i.e. localhost). By default only DNS hostnames are matched.



Supported options for Zend\Validator\Hostname


The following options are supported for Zend\Validator\Hostname:



		allow: Defines the sort of hostname which is allowed to be used. See Hostname types for details.


		idn: Defines if IDN domains are allowed or not. This option defaults to TRUE.


		ip: Allows to define a own IP validator. This option defaults to a new instance of Zend\Validator\Ip.


		tld: Defines if TLDs are validated. This option defaults to TRUE.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\Hostname();
if ($validator->isValid($hostname)) {
    // hostname appears to be valid
} else {
    // hostname is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










This will match the hostname $hostname and on failure populate getMessages() with useful error messages.





Validating different types of hostnames


You may find you also want to match IP addresses, Local hostnames, or a combination of all allowed types. This can
be done by passing a parameter to Zend\Validator\Hostname when you instantiate it. The parameter should be an
integer which determines what types of hostnames are allowed. You are encouraged to use the
Zend\Validator\Hostname constants to do this.


The Zend\Validator\Hostname constants are: ALLOW_DNS to allow only DNS hostnames, ALLOW_IP to allow
IP addresses, ALLOW_LOCAL to allow local network names, ALLOW_URI to allow RFC3986 [http://tools.ietf.org/html/rfc3986]-compliant addresses,
and ALLOW_ALL to allow all four above types.



Note


Additional Information on ALLOW_URI


ALLOW_URI allows to check hostnames according to RFC3986 [http://tools.ietf.org/html/rfc3986]. These are registered names which are used by
WINS, NetInfo and also local hostnames like those defined within your .hosts file.




To just check for IP addresses you can use the example below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_IP);
if ($validator->isValid($hostname)) {
    // hostname appears to be valid
} else {
    // hostname is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










As well as using ALLOW_ALL to accept all common hostnames types you can combine these types to allow for
combinations. For example, to accept DNS and Local hostnames instantiate your Zend\Validator\Hostname object
as so:


		1
2


		$validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_DNS |
                                        Zend\Validator\Hostname::ALLOW_IP);













Validating International Domains Names


Some Country Code Top Level Domains (ccTLDs), such as ‘de’ (Germany), support international characters in domain
names. These are known as International Domain Names (IDN). These domains can be matched by
Zend\Validator\Hostname via extended characters that are used in the validation process.



Note


IDN domains


Until now more than 50 ccTLDs support IDN domains.




To match an IDN domain it’s as simple as just using the standard Hostname validator since IDN matching is
enabled by default. If you wish to disable IDN validation this can be done by either passing a parameter to the
Zend\Validator\Hostname constructor or via the setValidateIdn() method.


You can disable IDN validation by passing a second parameter to the Zend\Validator\Hostname constructor in
the following way.


		1
2
3
4
5
6
7


		$validator =
    new Zend\Validator\Hostname(
        array(
            'allow' => Zend\Validator\Hostname::ALLOW_DNS,
            'idn'   => false
        )
    );










Alternatively you can either pass TRUE or FALSE to setValidateIdn() to enable or disable IDN
validation. If you are trying to match an IDN hostname which isn’t currently supported it is likely it will fail
validation if it has any international characters in it. Where a ccTLD file doesn’t exist in
Zend/Validator/Hostname specifying the additional characters a normal hostname validation is performed.



Note


IDN validation


Please note that IDNs are only validated if you allow DNS hostnames to be validated.







Validating Top Level Domains


By default a hostname will be checked against a list of known TLDs. If this functionality is not required it
can be disabled in much the same way as disabling IDN support. You can disable TLD validation by passing a
third parameter to the Zend\Validator\Hostname constructor. In the example below we are supporting IDN
validation via the second parameter.


		1
2
3
4
5
6
7
8


		$validator =
    new Zend\Validator\Hostname(
        array(
            'allow' => Zend\Validator\Hostname::ALLOW_DNS,
            'idn'   => true,
            'tld'   => false
        )
    );










Alternatively you can either pass TRUE or FALSE to setValidateTld() to enable or disable TLD
validation.



Note


TLD validation


Please note TLDs are only validated if you allow DNS hostnames to be validated.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Hostname
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.stdlib.hydrator.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Stdlib\Hydrator


Hydration is the act of populating an object from a set of data.


The Hydrator is a simple component to provide mechanisms both for hydrating objects, as well as extracting data
sets from them.


The component consists of an interface, and several implementations for common use cases.



HydratorInterface


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		namespace Zend\Stdlib\Hydrator;

interface HydratorInterface
{
    /**
     * Extract values from an object
     *
     * @param  object $object
     * @return array
     */
    public function extract($object);

    /**
     * Hydrate $object with the provided $data.
     *
     * @param  array $data
     * @param  object $object
     * @return void
     */
    public function hydrate(array $data, $object);
}













Usage


Usage is quite simple: simply instantiate the hydrator, and then pass information to it.


		1
2
3
4
5
6
7
8
9


		use Zend\Stdlib\Hydrator;
$hydrator = new Hydrator\ArraySerializable();

$object = new ArrayObject(array());

$hydrator->hydrate($someData, $object);

// or, if the object has data we want as an array:
$data = $hydrator->extract($object);













Available Implementations



		Zend\Stdlib\Hydrator\ArraySerializable


Follows the definition of ArrayObject. Objects must implement either the the exchangeArray() or
populate() methods to support hydration, and the getArrayCopy() method to support extraction.





		Zend\Stdlib\Hydrator\ClassMethods


Any data key matching a setter method will be called in order to hydrate; any method matching a getter method
will be called for extraction.





		Zend\Stdlib\Hydrator\ObjectProperty


Any data key matching a publically accessible property will be hydrated; any public properties will be used for
extration.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Stdlib\Hydrator
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.custom.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Creating custom page types


When extending Zend\Navigation\Page, there is usually no need to override the constructor or the methods
setOptions() or setConfig(). The page constructor takes a single parameter, an Array or a
Zend\Config object, which is passed to setOptions() or setConfig() respectively. Those methods will in
turn call set() method, which will map options to native or custom properties. If the option internal_id is
given, the method will first look for a method named setInternalId(), and pass the option to this method if it
exists. If the method does not exist, the option will be set as a custom property of the page, and be accessible
via $internalId = $page->internal_id; or $internalId = $page->get('internal_id');.


The most simple custom page


The only thing a custom page class needs to implement is the getHref() method.


		1
2
3
4
5
6
7


		class My\Simple\Page extends Zend\Navigation\Page
{
    public function getHref()
    {
        return 'something-completely-different';
    }
}










A custom page with properties


When adding properties to an extended page, there is no need to override/modify setOptions() or
setConfig().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		class My\Navigation\Page extends Zend\Navigation\Page
{
    protected $foo;
    protected $fooBar;

    public function setFoo($foo)
    {
        $this->foo = $foo;
    }

    public function getFoo()
    {
        return $this->oo;
    }

    public function setFooBar($fooBar)
    {
        $this->fooBar = $fooBar;
    }

    public function getFooBar()
    {
        return $this->fooBar;
    }

    public function getHref()
    {
        return $this->foo . '/' . $this->fooBar;
    }
}

// can now construct using
$page = new My\Navigation\Page(array(
    'label'   => 'Property names are mapped to setters',
    'foo'     => 'bar',
    'foo_bar' => 'baz'
));

// ...or
$page = Zend\Navigation\Page::factory(array(
    'type'    => 'My\Navigation\Page',
    'label'   => 'Property names are mapped to setters',
    'foo'     => 'bar',
    'foo_bar' => 'baz'
));














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Creating custom page types
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.short-name-locator.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The ShortNameLocator Interface



Overview


Within Zend Framework applications, it’s often expedient to provide a mechanism for using class aliases instead of
full class names to load adapters and plugins, or to allow using aliases for the purposes of slipstreaming
alternate implementations into the framework.


In the first case, consider the adapter pattern. It’s often unwieldy to utilize a full class name (e.g.,
Zend\Cloud\DocumentService\Adapter\SimpleDb); using the short name of the adapter, SimpleDb, would be much
simpler.


In the second case, consider the case of helpers. Let us assume we have a “url” helper; you may find that while the
shipped helper does 90% of what you need, you’d like to extend it or provide an alternate implementation. At the
same time, you don’t want to change your code to reflect the new helper. In this case, a short name allows you to
alias an alternate class to utilize.


Classes implementing the ShortNameLocator interface provide a mechanism for resolving a short name to a fully
qualified class name; how they do so is left to the implementers, and may combine strategies defined by other
interfaces, such as PluginClassLocator or PrefixPathMapper.





Quick Start


Implementing a ShortNameLocator is trivial, and requires only three methods, as shown below.


		1
2
3
4
5
6
7
8


		namespace Zend\Loader;

interface ShortNameLocator
{
    public function isLoaded($name);
    public function getClassName($name);
    public function load($name);
}













Configuration Options


This component defines no configuration options, as it is an interface.





Available Methods



		isLoaded


		Is the requested plugin loaded?
isLoaded($name)


isLoaded()
Implement this method to return a boolean indicating whether or not the class has been able to resolve the
plugin name to a class.









		getClassName


		Get the class name associated with a plugin name
getClassName($name)


getClassName()
Implement this method to return the class name associated with a plugin name.









		load


		Resolve a plugin to a class name
load($name)


load()
This method should resolve a plugin name to a class name.











Examples


Please see the Quick Start for the interface specification.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The ShortNameLocator Interface
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.usage.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Pdf module usage example


This section provides an example of module usage.


This example can be found in a demos/Zend/Pdf/demo.php file.


There are also test.pdf file, which can be used with this demo for test purposes.


Zend_Pdf module usage demo


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244


		/**
 * @package Zend_Pdf
 * @subpackage demo
 */

if (!isset($argv[1])) {
    echo "USAGE: php demo.php <pdf_file> [<output_pdf_file>]\n";
    exit;
}

try {
    $pdf = Zend_Pdf::load($argv[1]);
} catch (Zend_Pdf_Exception $e) {
    if ($e->getMessage() == 'Can not open \'' . $argv[1] .
                            '\' file for reading.') {
        // Create new PDF if file doesn't exist
        $pdf = new Zend_Pdf();

        if (!isset($argv[2])) {
            // force complete file rewriting (instead of updating)
            $argv[2] = $argv[1];
        }
    } else {
        // Throw an exception if it's not the "Can't open file
        // exception
        throw $e;
    }
}

//------------------------------------------------------------------------
// Reverse page order
$pdf->pages = array_reverse($pdf->pages);

// Create new Style
$style = new Zend_Pdf_Style();
$style->setFillColor(new Zend_Pdf_Color_Rgb(0, 0, 0.9));
$style->setLineColor(new Zend_Pdf_Color_GrayScale(0.2));
$style->setLineWidth(3);
$style->setLineDashingPattern(array(3, 2, 3, 4), 1.6);
$fontH = Zend_Pdf_Font::fontWithName(Zend_Pdf_Font::FONT_HELVETICA_BOLD);
$style->setFont($fontH, 32);

try {
    // Create new image object
    $imageFile = dirname(__FILE__) . '/stamp.jpg';
    $stampImage = Zend_Pdf_Image::imageWithPath($imageFile);
} catch (Zend_Pdf_Exception $e) {
    // Example of operating with image loading exceptions.
    if ($e->getMessage() != 'Image extension is not installed.' &&
        $e->getMessage() != 'JPG support is not configured properly.') {
        throw $e;
    }
    $stampImage = null;
}

// Mark page as modified
foreach ($pdf->pages as $page){
    $page->saveGS()
         ->setAlpha(0.25)
         ->setStyle($style)
         ->rotate(0, 0, M_PI_2/3);

    $page->saveGS();
    $page->clipCircle(550, -10, 50);
    if ($stampImage != null) {
        $page->drawImage($stampImage, 500, -60, 600, 40);
    }
    $page->restoreGS();

    $page->drawText('Modified by Zend Framework!', 150, 0)
         ->restoreGS();
}

// Add new page generated by Zend_Pdf object
// (page is attached to the specified the document)
$pdf->pages[] = ($page1 = $pdf->newPage('A4'));

// Add new page generated by Zend_Pdf_Page object
// (page is not attached to the document)
$page2 = new Zend_Pdf_Page(Zend_Pdf_Page::SIZE_LETTER_LANDSCAPE);
$pdf->pages[] = $page2;

// Create new font
$font = Zend_Pdf_Font::fontWithName(Zend_Pdf_Font::FONT_HELVETICA);

// Apply font and draw text
$page1->setFont($font, 36)
      ->setFillColor(Zend_Pdf_Color_Html::color('#9999cc'))
      ->drawText('Helvetica 36 text string', 60, 500);

// Use font object for another page
$page2->setFont($font, 24)
      ->drawText('Helvetica 24 text string', 60, 500);

// Use another font
$fontT = Zend_Pdf_Font::fontWithName(Zend_Pdf_Font::FONT_TIMES);
$page2->setFont($fontT, 32)
      ->drawText('Times-Roman 32 text string', 60, 450);

// Draw rectangle
$page2->setFillColor(new Zend_Pdf_Color_GrayScale(0.8))
      ->setLineColor(new Zend_Pdf_Color_GrayScale(0.2))
      ->setLineDashingPattern(array(3, 2, 3, 4), 1.6)
      ->drawRectangle(60, 400, 400, 350);

// Draw circle
$page2->setLineDashingPattern(Zend_Pdf_Page::LINE_DASHING_SOLID)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawCircle(85, 375, 25);

// Draw sectors
$page2->drawCircle(200, 375, 25, 2*M_PI/3, -M_PI/6)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawCircle(200, 375, 25, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawCircle(200, 375, 25, -M_PI/6, M_PI/6);

// Draw ellipse
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawEllipse(250, 400, 400, 350)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawEllipse(250, 400, 400, 350, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawEllipse(250, 400, 400, 350, -M_PI/6, M_PI/6);

// Draw and fill polygon
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 1));
$x = array();
$y = array();
for ($count = 0; $count < 8; $count++) {
    $x[] = 140 + 25*cos(3*M_PI_4*$count);
    $y[] = 375 + 25*sin(3*M_PI_4*$count);
}
$page2->drawPolygon($x, $y,
                    Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE,
                    Zend_Pdf_Page::FILL_METHOD_EVEN_ODD);

// ----------- Draw figures in modified coordination system --------------

// Coordination system movement
$page2->saveGS();
$page2->translate(60, 250); // Shift coordination system

// Draw rectangle
$page2->setFillColor(new Zend_Pdf_Color_GrayScale(0.8))
      ->setLineColor(new Zend_Pdf_Color_GrayScale(0.2))
      ->setLineDashingPattern(array(3, 2, 3, 4), 1.6)
      ->drawRectangle(0, 50, 340, 0);

// Draw circle
$page2->setLineDashingPattern(Zend_Pdf_Page::LINE_DASHING_SOLID)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawCircle(25, 25, 25);

// Draw sectors
$page2->drawCircle(140, 25, 25, 2*M_PI/3, -M_PI/6)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawCircle(140, 25, 25, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawCircle(140, 25, 25, -M_PI/6, M_PI/6);

// Draw ellipse
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawEllipse(190, 50, 340, 0)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawEllipse(190, 50, 340, 0, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawEllipse(190, 50, 340, 0, -M_PI/6, M_PI/6);

// Draw and fill polygon
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 1));
$x = array();
$y = array();
for ($count = 0; $count < 8; $count++) {
    $x[] = 80 + 25*cos(3*M_PI_4*$count);
    $y[] = 25 + 25*sin(3*M_PI_4*$count);
}
$page2->drawPolygon($x, $y,
                    Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE,
                    Zend_Pdf_Page::FILL_METHOD_EVEN_ODD);

// Draw line
$page2->setLineWidth(0.5)
      ->drawLine(0, 25, 340, 25);

$page2->restoreGS();

// Coordination system movement, skewing and scaling
$page2->saveGS();
$page2->translate(60, 150)     // Shift coordination system
      ->skew(0, 0, 0, -M_PI/9) // Skew coordination system
      ->scale(0.9, 0.9);       // Scale coordination system

// Draw rectangle
$page2->setFillColor(new Zend_Pdf_Color_GrayScale(0.8))
      ->setLineColor(new Zend_Pdf_Color_GrayScale(0.2))
      ->setLineDashingPattern(array(3, 2, 3, 4), 1.6)
      ->drawRectangle(0, 50, 340, 0);

// Draw circle
$page2->setLineDashingPattern(Zend_Pdf_Page::LINE_DASHING_SOLID)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawCircle(25, 25, 25);

// Draw sectors
$page2->drawCircle(140, 25, 25, 2*M_PI/3, -M_PI/6)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawCircle(140, 25, 25, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawCircle(140, 25, 25, -M_PI/6, M_PI/6);

// Draw ellipse
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 0))
      ->drawEllipse(190, 50, 340, 0)
      ->setFillColor(new Zend_Pdf_Color_Cmyk(1, 0, 0, 0))
      ->drawEllipse(190, 50, 340, 0, M_PI/6, 2*M_PI/3)
      ->setFillColor(new Zend_Pdf_Color_Rgb(1, 1, 0))
      ->drawEllipse(190, 50, 340, 0, -M_PI/6, M_PI/6);

// Draw and fill polygon
$page2->setFillColor(new Zend_Pdf_Color_Rgb(1, 0, 1));
$x = array();
$y = array();
for ($count = 0; $count < 8; $count++) {
    $x[] = 80 + 25*cos(3*M_PI_4*$count);
    $y[] = 25 + 25*sin(3*M_PI_4*$count);
}
$page2->drawPolygon($x, $y,
                    Zend_Pdf_Page::SHAPE_DRAW_FILL_AND_STROKE,
                    Zend_Pdf_Page::FILL_METHOD_EVEN_ODD);

// Draw line
$page2->setLineWidth(0.5)
      ->drawLine(0, 25, 340, 25);

$page2->restoreGS();

//------------------------------------------------------------------------

if (isset($argv[2])) {
    $pdf->save($argv[2]);
} else {
    $pdf->save($argv[1], true /* update */);
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Pdf module usage example
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.boolean.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Boolean


This filter changes a given input to be a BOOLEAN value. This is often useful when working with databases or
when processing form values.



Supported options for Zend_Filter_Boolean


The following options are supported for Zend_Filter_Boolean:



		casting: When this option is set to TRUE then any given input will be casted to boolean. This option
defaults to TRUE.


		locale: This option sets the locale which will be used to detect localized input.


		type: The type option sets the boolean type which should be used. Read the following for details.








Default behaviour for Zend_Filter_Boolean


By default, this filter works by casting the input to a BOOLEAN value; in other words, it operates in a similar
fashion to calling (boolean) $value.


		1
2
3
4


		$filter = new Zend_Filter_Boolean();
$value  = '';
$result = $filter->filter($value);
// returns false










This means that without providing any configuration, Zend_Filter_Boolean accepts all input types and returns a
BOOLEAN just as you would get by type casting to BOOLEAN.





Changing behaviour for Zend_Filter_Boolean


Sometimes casting with (boolean) will not suffice. Zend_Filter_Boolean allows you to configure specific
types to convert, as well as which to omit.


The following types can be handled:



		boolean: Returns a boolean value as is.


		integer: Converts an integer 0 value to FALSE.


		float: Converts a float 0.0 value to FALSE.


		string: Converts an empty string ‘’ to FALSE.


		zero: Converts a string containing the single character zero (‘0’) to FALSE.


		empty_array: Converts an empty array to FALSE.


		null: Converts a NULL value to FALSE.


		php: Converts values according to PHP when casting them to BOOLEAN.


		false_string: Converts a string containing the word “false” to a boolean FALSE.


		yes: Converts a localized string which contains the word “no” to FALSE.


		all: Converts all above types to BOOLEAN.





All other given values will return TRUE by default.


There are several ways to select which of the above types are filtered. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// converts 0 to false
$filter = new Zend_Filter_Boolean(Zend_Filter_Boolean::INTEGER);

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(
    Zend_Filter_Boolean::INTEGER + Zend_Filter_Boolean::ZERO
);

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(array(
    'type' => array(
        Zend_Filter_Boolean::INTEGER,
        Zend_Filter_Boolean::ZERO,
    ),
));

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(array(
    'type' => array(
        'integer',
        'zero',
    ),
));










You can also give an instance of Zend_Config to set the desired types. To set types after instantiation, use
the setType() method.





Localized booleans


As mentioned previously, Zend_Filter_Boolean can also recognise localized “yes” and “no” strings. This means
that you can ask your customer in a form for “yes” or “no” within his native language and Zend_Filter_Boolean
will convert the response to the appropriate boolean value.


To set the desired locale, you can either use the locale option, or the method setLocale().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$filter = new Zend_Filter_Boolean(array(
    'type'   => Zend_Filter_Boolean::ALL,
    'locale' => 'de',
));

// returns false
echo $filter->filter('nein');

$filter->setLocale('en');

// returns true
$filter->filter('yes');













Disable casting


Sometimes it is necessary to recognise only TRUE or FALSE and return all other values without changes.
Zend_Filter_Boolean allows you to do this by setting the casting option to FALSE.


In this case Zend_Filter_Boolean will work as described in the following table, which shows which values return
TRUE or FALSE. All other given values are returned without change when casting is set to FALSE



Usage without casting






		Type
		True
		False





		Zend_Filter_Boolean::BOOLEAN
		TRUE
		FALSE



		Zend_Filter_Boolean::INTEGER
		0
		1



		Zend_Filter_Boolean::FLOAT
		0.0
		1.0



		Zend_Filter_Boolean::STRING
		“”
		 



		Zend_Filter_Boolean::ZERO
		“0”
		“1”



		Zend_Filter_Boolean::EMPTY_ARRAY
		array()
		 



		Zend_Filter_Boolean::NULL
		NULL
		 



		Zend_Filter_Boolean::FALSE_STRING
		“false” (case independently)
		“true” (case independently)



		Zend_Filter_Boolean::YES
		localized “yes” (case independently)
		localized “no” (case independently)







The following example shows the behaviour when changing the casting option:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$filter = new Zend_Filter_Boolean(array(
    'type'    => Zend_Filter_Boolean::ALL,
    'casting' => false,
));

// returns false
echo $filter->filter(0);

// returns true
echo $filter->filter(1);

// returns the value
echo $filter->filter(2);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Boolean
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-color.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormColor


The FormColor view helper can be used to render a <input type="color"> HTML5 form input.
It is meant to work with the Zend\Form\Element\Color
element, which provides a default input specification for validating HTML5 color values.


FormColor extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Color('my-color');

// Within your view...

echo $this->formColor($element);
// <input type="color" name="my-color" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormColor
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.cloud-watch.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: CloudWatch Monitoring


Amazon CloudWatch is an easy-to-use web service that provides comprehensive monitoring for Amazon Elastic Compute
Cloud (Amazon EC2) and Elastic Load Balancing. For more details information check out the Amazon CloudWatch
Developers Guide [http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/Welcome.html]



CloudWatch Usage


Listing Aviable Metrics


listMetrics() returns a list of up to 500 valid metrics for which there is recorded data available to a you and
a NextToken string that can be used to query for the next set of results.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_CloudWatch('aws_key','aws_secret_key');
$return = $ec2_ebs->listMetrics();










Return Statistics for a given metric


getMetricStatistics() Returns data for one or more statistics of given a metric.



Note


The maximum number of datapoints that the Amazon CloudWatch service will return in a single GetMetricStatistics
request is 1,440. If a request is made that would generate more datapoints than this amount, Amazon CloudWatch
will return an error. You can alter your request by narrowing the time range (StartTime, EndTime) or increasing
the Period in your single request. You may also get all of the data at the granularity you originally asked for
by making multiple requests with adjacent time ranges.




getMetricStatistics() only requires two parameters but it also has four additional parameters that are
optional.



		Required:


		MeasureName The measure name that corresponds to the measure for the gathered metric. Valid EC2 Values are
CPUUtilization, NetworkIn, NetworkOut, DiskWriteOps DiskReadBytes, DiskReadOps, DiskWriteBytes. Valid Elastic
Load Balancing Metrics are Latency, RequestCount, HealthyHostCount UnHealthyHostCount. For more information
click here [http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/US_GetStatistics.html]


		Statistics The statistics to be returned for the given metric. Valid values are Average, Maximum, Minimum,
Samples, Sum. You can specify this as a string or as an array of values. If you don’t specify one it will default
to Average instead of failing out. If you specify an incorrect option it will just skip it. For more information
click here [http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/US_GetStatistics.html]


		Optional:


		Dimensions Amazon CloudWatch allows you to specify one Dimension to further filter metric data on. If you
don’t specify a dimension, the service returns the aggregate of all the measures with the given measure name and
time range.


		Unit The standard unit of Measurement for a given Measure. Valid Values: Seconds, Percent, Bytes, Bits,
Count, Bytes/Second, Bits/Second, Count/Second, and None. Constraints: When using count/second as the unit, you
should use Sum as the statistic instead of Average. Otherwise, the sample returns as equal to the number of
requests instead of the number of 60-second intervals. This will cause the Average to always equals one when the
unit is count/second.


		StartTime The timestamp of the first datapoint to return, inclusive. For example, 2008-02-26T19:00:00+00:00.
We round your value down to the nearest minute. You can set your start time for more than two weeks in the past.
However, you will only get data for the past two weeks. (in ISO 8601 format). Constraints: Must be before
EndTime.


		EndTime The timestamp to use for determining the last datapoint to return. This is the last datapoint to
fetch, exclusive. For example, 2008-02-26T20:00:00+00:00 (in ISO 8601 format).





		1
2
3
4


		$ec2_ebs = new Zend_Service_Amazon_Ec2_CloudWatch('aws_key','aws_secret_key');
$return = $ec2_ebs->getMetricStatistics(
                                     array('MeasureName' => 'NetworkIn',
                                           'Statistics' => array('Average')));
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: CloudWatch Monitoring
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.request.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Http\Request



Overview


The Zend\Http\Request object is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP request.


A typical HTTP request looks like this:


--------------------------
| METHOD | URI | VERSION |
--------------------------
|        HEADERS         |
--------------------------
|         BODY           |
--------------------------




In simplified terms, the request consist of a method, URI and the HTTP version number which all make up the
“Request Line.” Next is a set of headers; there can be 0 or an unlimited number of headers. After that is the
request body, which is typically used when a client wishes to send data to the server in the form of an encoded
file, or include a set of POST parameters, for example. More information on the structure and specification of an
HTTP request can be found in RFC-2616 on the W3.org site [http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html].





Quick Start


Request objects can either be created from the provided fromString() factory, or, if you wish to have a
completely empty object to start with, by simply instantiating the Zend\Http\Request class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		use Zend\Http\Request;
$request = Request::fromString(<<<EOS
POST /foo HTTP/1.1
HeaderField1: header-field-value
HeaderField2: header-field-value2

foo=bar&
EOS);

// OR, the completely equivalent

$request = new Request();
$request->setMethod(Request::METHOD_POST);
$request->setUri('/foo');
$request->header()->addHeaders(array(
    'HeaderField1' => 'header-field-value',
    'HeaderField2' => 'header-field-value2',
);
$request->post()->set('foo', 'bar');













Configuration Options


None currently





Available Methods



		Request::fromString


		Request::fromString(string $string)


A factory that produces a Request object from a well-formed Http Request string


Returns Zend\Http\Request









		setMethod


		setMethod(string $method)


Set the method for this request.


Returns Zend\Http\Request









		getMethod


		getMethod()


Return the method for this request.


Returns string.









		setUri


		setUri(string|\Zend\Stdlib\RequestInterface|\Zend\Stdlib\Message|\Zend\Stdlib\ParametersInterface|\Zend\Stdlib\Parameters|\Zend\Uri\Http $uri)


Set the URI/URL for this request; this can be a string or an instance of Zend\Uri\Http.


Returns Zend\Http\Request









		getUri


		getUri()


Return the URI for this request object.


Returns string.









		uri


		uri()


Return the URI for this request object as an instance of Zend\Uri\Http.


Returns Zend\Uri\Http.









		setVersion


		setVersion(string $version)


Set the HTTP version for this object, one of 1.0 or 1.1 (Request::VERSION_10, Request::VERSION_11).


Returns Zend\Http\Request.









		setVersion


		getVersion()


Return the HTTP version for this request


Returns string









		setQuery


		setQuery(Zend\Stdlib\ParametersInterface $query)


Provide an alternate Parameter Container implementation for query parameters in this object. (This is NOT the
primary API for value setting; for that, see query().)


Returns Zend\Http\Request









		setQuery


		query()


Return the parameter container responsible for query parameters.


Returns Zend\Stdlib\ParametersInterface









		setPost


		setPost(Zend\Stdlib\ParametersInterface $post)


Provide an alternate Parameter Container implementation for post parameters in this object. (This is NOT the
primary API for value setting; for that, see post().)


Returns Zend\Http\Request









		post


		post()


Return the parameter container responsible for post parameters.


Returns Zend\Stdlib\ParametersInterface









		cookie


		cookie()


Return the Cookie header, this is the same as calling $request->header()->get(‘Cookie’);.


Returns Zend\Http\Header\Cookie









		setFile


		setFile(Zend\Stdlib\ParametersInterface $files)


Provide an alternate Parameter Container implementation for file parameters in this object. (This is NOT the
primary API for value setting; for that, see file().)


Returns Zend\Http\Request









		file


		file()


Return the parameter container responsible for file parameters


Returns Zend\Stdlib\ParametersInterface









		setServer


		setServer(Zend\Stdlib\ParametersInterface $server)


Provide an alternate Parameter Container implementation for server parameters in this object. (This is NOT the
primary API for value setting; for that, see server().)


Returns Zend\Http\Request









		server


		server()


Return the parameter container responsible for server parameters


Returns Zend\Stdlib\ParametersInterface









		setEnv


		setEnv(Zend\Stdlib\ParametersInterface $env)


Provide an alternate Parameter Container implementation for env parameters in this object. (This is NOT the
primary API for value setting; for that, see env().)


Returns Zend\Http\Request









		env


		env()


Return the parameter container responsible for env parameters


Returns Zend\Stdlib\ParametersInterface









		setHeader


		setHeader(Zend\Http\Headers $headers)


Provide an alternate Parameter Container implementation for headers in this object. (This is NOT the primary API
for value setting; for that, see header().)


Returns Zend\Http\Request









		header


		header()


Return the header container responsible for headers


Returns Zend\Http\Headers









		setRawBody


		setRawBody(string $string)


Set the raw body for the request


Returns Zend\Http\Request









		getRawBody


		getRawBody()


Get the raw body for the request


Returns string









		isOptions


		isOptions()


Is this an OPTIONS method request?


Returns bool









		isGet


		isGet()


Is this a GET method request?


Returns bool









		isHead


		isHead()


Is this a HEAD method request?


Returns bool









		isPost


		isPost()


Is this a POST method request?


Returns bool









		isPut


		isPut()


Is this a PUT method request?


Returns bool









		isDelete


		isDelete()


Is this a DELETE method request?


Returns bool









		isTrace


		isTrace()


Is this a TRACE method request?


Returns bool









		isConnect


		isConnect()


Is this a CONNECT method request?


Returns bool









		renderRequestLine


		renderRequestLine()


Return the formatted request line (first line) for this HTTP request


Returns string









		toString


		toString()


Returns string









		__toString


		__toString()


Allow PHP casting of this object


Returns string









		setMetadata


		setMetadata(string|int|array|Traversable $spec, mixed $value)


Set message metadata


Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata
container.


Returns Zend\Stdlib\Message









		getMetadata


		getMetadata(null|string|int $key, null|mixed $default)


Retrieve all metadata or a single metadatum as specified by key


Returns mixed









		setContent


		setContent(mixed $value)


Set message content


Returns Zend\Stdlib\Message









		getContent


		getContent()


Get message content


Returns mixed











Examples


Generating a Request object from a string


		1
2
3
4
5
6
7
8


		use Zend\Http\Request;
$string = "GET /foo HTTP/1.1\r\n\r\nSome Content";
$request = Request::fromString($string);

$request->getMethod();  // returns Request::METHOD_GET
$request->getUri();     // returns '/foo'
$request->getVersion(); // returns Request::VERSION_11 or '1.1'
$request->getRawBody(); // returns 'Some Content'










Generating a Request object from an array


		1


		N/A










Retrieving and setting headers


		1
2
3
4
5
6
7


		use Zend\Http\Request;
$request = new Request();
$request->getHeaders()->get('Content-Type'); // return content type
$request->getHeaders()->addHeader(new Cookie('foo' => 'bar'));
foreach ($request->getHeaders() as $header) {
    echo $header->getFieldName() . ' with value ' . $header->getFieldValue();
}










Retrieving and setting GET and POST values


		1
2
3
4
5
6
7


		use Zend\Http\Request;
$request = new Request();

// post() and get() both return, by default, a Parameters object, which extends ArrayObject
$request->post()->foo = 'value';
echo $request->get()->myVar;
echo $request->get()->offsetGet('myVar');










Generating a formatted HTTP Request from a Request object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\Http\Request;
$request = new Request();
$request->setMethod(Request::METHOD_POST);
$request->setUri('/foo');
$request->header()->addHeaders(array(
    'HeaderField1' => 'header-field-value',
    'HeaderField2' => 'header-field-value2',
);
$request->post()->set('foo', 'bar');
echo $request->toString();

/** Will produce:
POST /foo HTTP/1.1
HeaderField1: header-field-value
HeaderField2: header-field-value2

foo=bar
*/
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Http\Request
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/requirements.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework Requirements



Introduction


Zend Framework requires a PHP 5 interpreter with a web server configured to handle PHP scripts correctly. Some
features require additional extensions or web server features; in most cases the framework can be used without
them, although performance may suffer or ancillary features may not be fully functional. An example of such a
dependency is mod_rewrite in an Apache environment, which can be used to implement “pretty URL‘s” like
“http://www.example.com/user/edit”. If mod_rewrite is not enabled, Zend Framework can be configured to support
URL‘s such as “http://www.example.com?controller=user&action=edit”. Pretty URL‘s may be used to shorten
URL‘s for textual representation or search engine optimization (SEO), but they do not directly affect the
functionality of the application.



PHP Version


Zend recommends the most current release of PHP for critical security and performance enhancements, and currently
supports PHP 5.2.4 or later.


Zend Framework has an extensive collection of unit tests, which you can run using PHPUnit 3.3.0 or later.





PHP Extensions


You will find a table listing all extensions typically found in PHP and how they are used in Zend Framework
below. You should verify that the extensions on which Zend Framework components you’ll be using in your application
are available in your PHP environments. Many applications will not require every extension listed below.


A dependency of type “hard” indicates that the components or classes cannot function properly if the respective
extension is not available, while a dependency of type “soft” indicates that the component may use the extension if
it is available but will function properly if it is not. Many components will automatically use certain extensions
if they are available to optimize performance but will execute code with similar functionality in the component
itself if the extensions are unavailable.



PHP Extensions Used in Zend Framework by Component





		PHP Extension
		 





		apc
		 



		Soft
		 



		bcmath
		 



		bitset
		 



		bz2
		 



		calendar
		 



		com_dotnet
		 



		ctype
		 



		Zend_Gdata
		 



		Zend_Http_Client
		 



		Zend_Pdf
		 



		Zend_Rest_Client
		 



		Zend_Rest_Server
		 



		Zend_Search_Lucene
		 



		Zend_Uri
		 



		Zend_Validate
		 



		curl
		 



		date
		 



		dba
		 



		dbase
		 



		dom
		 



		Zend_Dom
		 



		Zend_Feed
		 



		Zend_Gdata
		 



		Zend_Log_Formatter_Xml
		 



		Zend_Rest_Server
		 



		Zend_Soap
		 



		Zend_Search_Lucene
		 



		Zend_Service_Amazon
		 



		Zend_Service_Delicious
		 



		Zend_Service_Flickr
		 



		Zend_XmlRpc
		 



		exif
		 



		fbsql
		 



		fdf
		 



		filter
		 



		ftp
		 



		gd
		 



		Zend_Pdf
		 



		gettext
		 



		gmp
		 



		hash
		 



		ibm_db2
		 



		iconv
		 



		Zend_Locale_Format
		 



		Zend_Mime
		 



		Zend_Pdf
		 



		Zend_Search_Lucene
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Service_Flickr
		 



		Zend_Validate_Hostname
		 



		Zend_Validate_StringLength
		 



		Zend_XmlRpc_Client
		 



		igbinary
		 



		imap
		 



		informix
		 



		interbase
		 



		json
		 



		Zend_Serializer_Adapter_Json
		 



		ldap
		 



		libxml
		 



		mbstring
		 



		mcrypt
		 



		memcache
		 



		mhash
		 



		mime_magic
		 



		ming
		 



		msql
		 



		mssql
		 



		mysql
		 



		mysqli
		 



		ncurses
		 



		oci8
		 



		odbc
		 



		openssl
		 



		pcntl
		 



		pcre
		 



		pdo
		 



		pdo_dblib
		 



		pdo_firebird
		 



		pdo_mssql
		 



		pdo_mysql
		 



		pdo_oci
		 



		pdo_pgsql
		 



		pdo_sqlite
		 



		pgsql
		 



		posix
		 



		pspell
		 



		readline
		 



		recode
		 



		Reflection
		 



		Zend_Filter
		 



		Zend_Filter_Input
		 



		Zend_Json
		 



		Zend_Log
		 



		Zend_Rest_Server
		 



		Zend_Server_Reflection
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_XmlRpc_Server
		 



		session
		 



		Zend_Session
		 



		shmop
		 



		SimpleXML
		 



		Zend_Feed
		 



		Zend_Rest_Client
		 



		Zend_Serializer_Adapter_Wddx
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Soap
		 



		Zend_XmlRpc
		 



		Soft
		 



		soap
		 



		Zend_Soap
		 



		sockets
		 



		SPL
		 



		SQLite
		 



		standard
		 



		sybase
		 



		sysvmsg
		 



		sysvsem
		 



		sysvshm
		 



		tidy
		 



		tokenizer
		 



		wddx
		 



		xml
		 



		Zend_Translator_Adapter_Tmx
		 



		Zend_Translator_Adapter_Xliff
		 



		XMLReader
		 



		xmlrpc
		 



		XMLWriter
		 



		xsl
		 



		zip
		 



		zlib
		 



		Zend_Filter_Compress
		 










Zend Framework Components


Below is a table that lists all available Zend Framework Components and which PHP extension they need. This can
help guide you to know which extensions are required for your application. Not all extensions used by Zend
Framework are required for every application.


A dependency of type “hard” indicates that the components or classes cannot function properly if the respective
extension is not available, while a dependency of type “soft” indicates that the component may use the extension if
it is available but will function properly if it is not. Many components will automatically use certain extensions
if they are available to optimize performance but will execute code with similar functionality in the component
itself if the extensions are unavailable.



Zend Framework Components and the PHP Extensions they use





		Zend Framework Components and the PHP Extensions they use
		 





		All Components
		 



		SPL
		 



		standard
		 



		ZendPermissionsAcl
		 



		Zend_Amf
		 



		Soft
		 



		SimpleXML
		 



		Zend_Auth
		 



		hash
		 



		Zend_Cache
		 



		memcache
		 



		sqlite
		 



		zlib
		 



		Zend_Captcha
		 



		Zend_Config
		 



		SimpleXML
		 



		Zend_Console_Getopt
		 



		Zend_Controller
		 



		session
		 



		Zend_Currency
		 



		Zend_Db
		 



		mysqli
		 



		oci8
		 



		pdo
		 



		pdo_mssql
		 



		pdo_mysql
		 



		pdo_oci
		 



		pdo_pgsql
		 



		pdo_sqlite
		 



		Zend_Debug
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Feed
		 



		libxml
		 



		mbstring
		 



		SimpleXML
		 



		Zend_File_Transfer
		 



		upload_extension
		 



		Zend_Filter
		 



		Soft
		 



		Zend_Form
		 



		Zend_Gdata
		 



		dom
		 



		libxml
		 



		Zend_Http
		 



		curl
		 



		mime_magic
		 



		Zend_InfoCard
		 



		Zend_Json
		 



		Hard
		 



		Zend_Layout
		 



		Zend_Ldap
		 



		Zend_Loader
		 



		Zend_Log
		 



		libxml
		 



		Reflection
		 



		Zend_Mail
		 



		Zend_Measure
		 



		Zend_Memory
		 



		Zend_Mime
		 



		Zend_OpenId
		 



		Zend_Paginator
		 



		Zend_Pdf
		 



		gd
		 



		iconv
		 



		zlib
		 



		Zend_ProgressBar
		 



		Zend_Request
		 



		Zend_Rest
		 



		dom
		 



		libxml
		 



		Reflection
		 



		SimpleXML
		 



		Zend_Search_Lucene
		 



		Hard
		 



		dom
		 



		iconv
		 



		libxml
		 



		Zend_Serializer
		 



		SimpleXml
		 



		igbinary
		 



		Soft
		 



		Zend_Server_Reflection
		 



		Zend_Service_Akismet
		 



		Zend_Service_Amazon
		 



		libxml
		 



		Zend_Service_Audioscrobbler
		 



		libxml
		 



		SimpleXML
		 



		Zend_Service_Delicious
		 



		libxml
		 



		Zend_Service_Flickr
		 



		iconv
		 



		libxml
		 



		Zend_Service_Nirvanix
		 



		Zend_Service_ReCaptcha
		 



		libxml
		 



		Zend_Service_SlideShare
		 



		Zend_Service_StrikeIron
		 



		Zend_Service_Technorati
		 



		Zend_Service_Twitter
		 



		libxml
		 



		Zend_Session
		 



		Zend_Soap
		 



		SimpleXML
		 



		soap
		 



		Zend_Text
		 



		Zend_TimeSync
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Reflection
		 



		Zend_Validate_Hostname
		 



		Zend_Validate_StringLength
		 



		Zend_Version
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_XmlRpc
		 



		iconv
		 



		libxml
		 



		Reflection
		 



		SimpleXML
		 










Zend Framework Dependencies


Below you can find a table listing Zend Framework Components and their dependencies to other Zend Framework
Components. This can help you if you need to have only single components instead of the complete Zend Framework.


A dependency of type “hard” indicates that the components or classes cannot function properly if the respective
dependent component is not available, while a dependency of type “soft” indicates that the component may need the
dependent component in special situations or with special adapters. At last a dependency of type “fix” indicated
that these components or classes are in any case used by subcomponents, and a dependency of type “sub” indicates
that these components can be used by subcomponents in special situations or with special adapters.



Note


Even if it’s possible to separate single components for usage from the complete Zend Framework you should keep
in mind that this can lead to problems when files are missed or components are used dynamically.





Zend Framework Components and their dependency to other Zend Framework Components





		Zend Framework Component
		 





		ZendPermissionsAcl
		 



		Zend_Amf
		 



		Zend_Server
		 



		Soft
		 



		Zend_Loader
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Auth
		 



		Soft
		 



		Zend_InfoCard
		 



		Zend_Ldap
		 



		Zend_OpenId
		 



		Zend_Session
		 



		Fix
		 



		Zend_Http
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_View
		 



		Sub
		 



		Zend_Config
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_Cache
		 



		Soft
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Captcha
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_ReLoader
		 



		Zend_Config
		 



		Zend_Console_Getopt
		 



		Soft
		 



		Sub
		 



		Zend_Server
		 



		Zend_Controller
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_View
		 



		Soft
		 



		Zend_Json
		 



		Zend_Layout
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Currency
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Date
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Db
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Wildfire
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Debug
		 



		Hard
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Registry
		 



		Zend_View
		 



		Soft
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Feed
		 



		Zend_Loader
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Http
		 



		Zend_Registry
		 



		Zend_File_Transfer
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Loader
		 



		Zend_Validate
		 



		Soft
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Form
		 



		Zend_Filter
		 



		Zend_Validate
		 



		Soft
		 



		Zend_Controller
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Session
		 



		Fix
		 



		Zend_Http
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_View
		 



		Sub
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Layout
		 



		Zend_Wildfire
		 



		Zend_Gdata
		 



		Zend_Http
		 



		Zend_Mime
		 



		Zend_Version
		 



		Soft
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Loader
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_InfoCard
		 



		Zend_Loader
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Server
		 



		Zend_Layout
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Loader
		 



		Zend_View
		 



		Fix
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Ldap
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Soft
		 



		Sub
		 



		Zend_Log
		 



		Soft
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Mail
		 



		Zend_Loader
		 



		Zend_Mime
		 



		Zend_Validate
		 



		Fix
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Measure
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Sub
		 



		Zend_Memory
		 



		Zend_Exception
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Log
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Mime
		 



		Zend_OpenId
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Session
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Paginator
		 



		Zend_Json
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Db
		 



		Zend_View
		 



		Fix
		 



		Sub
		 



		Zend_Config
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_Pdf
		 



		Zend_Log
		 



		Zend_Memory
		 



		Fix
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Progressbar
		 



		Zend_Exception
		 



		Zend_Json
		 



		Soft
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Server
		 



		Sub
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Registry
		 



		Soft
		 



		Zend_Request
		 



		Zend_Rest
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Search_Lucene
		 



		Zend_Serializer
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Amf
		 



		Zend_Server
		 



		Zend_Service_Akismet
		 



		Zend_Http
		 



		Zend_Uri
		 



		Zend_Version
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Amazon
		 



		Zend_Http
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Http
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Delicious
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Service_Flickr
		 



		Zend_Http
		 



		Soft
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Nirvanix
		 



		Zend_Http
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Http
		 



		Zend_Json
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_SlideShare
		 



		Zend_Exception
		 



		Zend_Http
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Log
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Service_StrikeIron
		 



		Zend_Http
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Technorati
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Uri
		 



		Zend_Locale
		 



		Soft
		 



		Fix
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Service_Twitter
		 



		Zend_Feed
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Rest
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Rest
		 



		Soft
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Session
		 



		Soft
		 



		Zend_Db
		 



		Zend_Loader
		 



		Sub
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Soap
		 



		Zend_Server
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Session
		 



		Soft
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Text
		 



		Soft
		 



		Zend_TimeSync
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Fix
		 



		Sub
		 



		Zend_Translator
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Uri
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Validate
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Version
		 



		Zend_View
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Soft
		 



		Zend_Layout
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Wildfire
		 



		Zend_Exception
		 



		Zend_Json
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_XmlRpc
		 



		Zend_Http
		 



		Zend_Server
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework Requirements
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.sitemap.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Sitemap Validators


The following validators conform to the Sitemap XML protocol [http://www.sitemaps.org/protocol.php].



Sitemap\Changefreq


Validates whether a string is valid for using as a ‘changefreq’ element in a Sitemap XML document. Valid values
are: ‘always’, ‘hourly’, ‘daily’, ‘weekly’, ‘monthly’, ‘yearly’, or ‘never’.


Returns TRUE if and only if the value is a string and is equal to one of the frequencies specified above.





Sitemap\Lastmod


Validates whether a string is valid for using as a ‘lastmod’ element in a Sitemap XML document. The lastmod
element should contain a W3C date string, optionally discarding information about time.


Returns TRUE if and only if the given value is a string and is valid according to the protocol.


Sitemap Lastmod Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Sitemap\Lastmod();

$validator->isValid('1999-11-11T22:23:52-02:00'); // true
$validator->isValid('2008-05-12T00:42:52+02:00'); // true
$validator->isValid('1999-11-11'); // true
$validator->isValid('2008-05-12'); // true

$validator->isValid('1999-11-11t22:23:52-02:00'); // false
$validator->isValid('2008-05-12T00:42:60+02:00'); // false
$validator->isValid('1999-13-11'); // false
$validator->isValid('2008-05-32'); // false
$validator->isValid('yesterday'); // false













Sitemap\Loc


Validates whether a string is valid for using as a ‘loc’ element in a Sitemap XML document. This uses
Zend\Uri\Uri::isValid() internally. Read more at URI Validation.





Sitemap\Priority


Validates whether a value is valid for using as a ‘priority’ element in a Sitemap XML document. The value should
be a decimal between 0.0 and 1.0. This validator accepts both numeric values and string values.


Sitemap Priority Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Sitemap\Priority();

$validator->isValid('0.1'); // true
$validator->isValid('0.789'); // true
$validator->isValid(0.8); // true
$validator->isValid(1.0); // true

$validator->isValid('1.1'); // false
$validator->isValid('-0.4'); // false
$validator->isValid(1.00001); // false
$validator->isValid(0xFF); // false
$validator->isValid('foo'); // false













Supported options for Zend\Validator\Sitemap_*


There are no supported options for any of the Sitemap validators.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Sitemap Validators
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/view.placeholders.standard.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Standard Placeholders


In the previous section, we learned about the placeholder() view
helper, and how it can be used to aggregate custom content. In this section, we’ll look at some of the concrete
placeholders shipped with Zend Framework, and how you can use them to your advantage when creating complex
composite layouts.


Most of the shipped placeholders are for generating content for the <head> section of your layout content – an
area you typically cannot manipulate directly via your application view scripts, but one you may want to influence.
As examples: you may want your title to contain certain content on every page, but specific content based on the
controller and/or action; you may want to specify CSS files to load based on what section of the application
you’re in; you may need specific JavaScript scripts loaded at different times; or you may want to set the
DocType declaration.


Zend Framework ships with placeholder implementations for each of these situations, and several more.



Setting the DocType


DocType declarations are troublesome to memorize, and often essential to include in your document to ensure the
browser properly renders your content. The doctype() view helper allows you to use simple string mnemonics to
specify the desired DocType; additionally, other helpers will query the doctype() helper to ensure the
output generated conforms with the requested DocType.


As an example, if you want to use the XHTML1 Strict DTD, you can simply specify:


		1


		$this->doctype('XHTML1_STRICT');










Among the other available mnemonics, you’ll find these common types:



		XHTML1_STRICT


		XHTML 1.0 Strict


		XHTML1_TRANSITIONAL


		XHTML 1.0 Transitional


		HTML4_STRICT


		HTML 4.01 Strict


		HTML4_Loose


		HTML 4.01 Loose


		HTML5


		HTML 5





You can assign the type and render the declaration in a single call:


		1


		echo $this->doctype('XHTML1_STRICT');










However, the better approach is to assign the type in your bootstrap, and then render it in your layout. Try adding
the following to your bootstrap class:


		1
2
3
4
5
6
7
8
9


		class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    protected function _initDocType()
    {
        $this->bootstrap('View');
        $view = $this->getResource('View');
        $view->doctype('XHTML1_STRICT');
    }
}










Then, in your layout script, simply echo() the helper at the top of the file:


		1
2
3


		<?php echo $this->doctype() ?>
<html>
    <!-- ... -->










This will ensure that your DocType-aware view helpers render the appropriate markup, ensure that the type is set
well before the layout is rendered, and provide a single location to change the DocType.





Specifying the Page Title


Often, a site will include the site or business name as part of the page title, and then add additional information
based on the location within the site. As an example, the zend.com website includes the string “Zend.com”
on all pages, and the prepends information based on the page: “Zend Server -Zend.com”. Within Zend Framework,
the headTitle() view helper can help simplify this task.


At its simplest, the headTitle() helper allows you to aggregate content for the <title> tag; when you echo
it, it then assembles it based on the order in which segments are added. You can control the order using
prepend() and append(), and provide a separator to use between segments using the setSeparator()
method.


Typically, you should specify any segments common to all pages in your bootstrap, similar to how we define the
doctype. In this case, we’ll define a _initPlaceholders() method for operating on all the various placeholders,
and specify an initial title as well as a separator.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    // ...

    protected function _initPlaceholders()
    {
        $this->bootstrap('View');
        $view = $this->getResource('View');
        $view->doctype('XHTML1_STRICT');

        // Set the initial title and separator:
        $view->headTitle('My Site')
             ->setSeparator(' :: ');
    }

    // ...
}










Within a view script, we might want to add another segment:


		1
2


		<?php $this->headTitle()->append('Some Page'); // place after other segments ?>
<?php $this->headTitle()->prepend('Some Page'); // place before ?>










In our layout, we will simply echo the headTitle() helper:


		1
2
3
4


		<?php echo $this->doctype() ?>
<html>
    <?php echo $this->headTitle() ?>
    <!-- ... -->










This will generate the following output:


		1
2
3
4
5


		<!-- If append() was used: -->
<title>My Site :: Some Page</title>

<!-- If prepend() was used: -->
<title>Some Page :: My Site</title>













Specifying Stylesheets with HeadLink


Good CSS developers will often create a general stylesheet for sitewide styles, and individual stylesheets for
specific sections or pages of the website, and load these latter conditionally so as to decrease the amount of data
needing to be transferred on each request. The headLink() placeholder makes such conditional aggregation of
stylesheets trivial within your application.


To accomplish this, headLink() defines a number of “virtual” methods (via overloading) to make the process
trivial. The ones we will be concerned with are appendStylesheet() and prependStylesheet(). Each takes up
to four arguments, $href (the relative path to the stylesheet), $media (the MIME type, which defaults to
“text/css”), $conditionalStylesheet (which can be used to specify a “condition” under which the stylesheet will
be evaluated), and $extras (an associative array of key and value pairs, commonly used to specify a key for
“media”). In most cases, you will only need to specify the first argument, the relative path to the stylesheet.


In our example, we’ll assume that all pages need to load the stylesheet located in “/styles/site.css” (relative
to the document root); we’ll specify this in our _initPlaceholders() bootstrap method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    // ...

    protected function _initPlaceholders()
    {
        $this->bootstrap('View');
        $view = $this->getResource('View');
        $view->doctype('XHTML1_STRICT');

        // Set the initial title and separator:
        $view->headTitle('My Site')
             ->setSeparator(' :: ');

        // Set the initial stylesheet:
        $view->headLink()->prependStylesheet('/styles/site.css');
    }

    // ...
}










Later, in a controller or action-specific view script, we can add more stylesheets:


		1


		<?php $this->headLink()->appendStylesheet('/styles/user-list.css') ?>










Within our layout view script, once again, we simply echo the placeholder:


		1
2
3
4
5


		<?php echo $this->doctype() ?>
<html>
    <?php echo $this->headTitle() ?>
    <?php echo $this->headLink() ?>
    <!-- ... -->










This will generate the following output:


		1
2


		<link rel="stylesheet" type="text/css" href="/styles/site.css" />
<link rel="stylesheet" type="text/css" href="/styles/user-list.css" />













Aggregating Scripts Using HeadScript


Another common tactic to prevent long page load times is to only load JavaScript when necessary. That said, you may
need several layers of scripts: perhaps one for progressively enhancing menus on the site, and another for
page-specific content. In these situations, the headScript() helper presents a solution.


Similar to the headLink() helper, headScript() provides the ability to append or prepend scripts to the
collection, and then echo the entire set. It provides the flexibility to specify either script files themselves to
load, or explicit JavaScript. You also have the option of capturing JavaScript via
captureStart()/captureEnd(), which allows you to simply inline the JavaScript instead of requiring an
additional call to your server.


Also like headLink(), headScript() provides “virtual” methods via overloading as a convenience when
specifying items to aggregate; common methods include prependFile(), appendFile(), prependScript(), and
appendScript(). The first two allow you to specify files that will be referenced in a <script> tag’s
$src attribute; the latter two will take the content provided and render it as literal JavaScript within a
<script> tag.


In this example, we’ll specify that a script, “/js/site.js” needs to be loaded on every page; we’ll update our
_initPlaceholders() bootstrap method to do this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    // ...

    protected function _initPlaceholders()
    {
        $this->bootstrap('View');
        $view = $this->getResource('View');
        $view->doctype('XHTML1_STRICT');

        // Set the initial title and separator:
        $view->headTitle('My Site')
             ->setSeparator(' :: ');

        // Set the initial stylesheet:
        $view->headLink()->prependStylesheet('/styles/site.css');

        // Set the initial JS to load:
        $view->headScript()->prependFile('/js/site.js');
    }

    // ...
}










Within a view script, we might then add an extra script file to source, or capture some JavaScript to include in
our document.


		1
2
3
4
5
6


		<?php $this->headScript()->appendFile('/js/user-list.js') ?>
<?php $this->headScript()->captureStart() ?>
site = {
    baseUrl: "<?php echo $this->baseUrl() ?>"
};
<?php $this->headScript()->captureEnd() ?>










Within our layout script, we then simply echo the placeholder, just as we have all the others:


		1
2
3
4
5
6


		<?php echo $this->doctype() ?>
<html>
    <?php echo $this->headTitle() ?>
    <?php echo $this->headLink() ?>
    <?php echo $this->headScript() ?>
    <!-- ... -->










This will generate the following output:


		1
2
3
4
5
6
7


		<script type="text/javascript" src="/js/site.js"></script>
<script type="text/javascript" src="/js/user-list.js"></script>
<script type="text/javascript">
site = {
    baseUrl: "<?php echo $this->baseUrl() ?>"
};
</script>











Note


InlineScript Variant


Many browsers will often block display of a page until all scripts and stylesheets referenced in the <head>
section have loaded. If you have a number of such directives, this can impact how soon somebody can start
actually viewing the page.


One way around this is to emit your <script> tags just prior to closing the <body> of your document.
(This is a practice specifically recommend by the Y! Slow project [http://developer.yahoo.com/yslow/].)


Zend Framework supports this in two different ways:



		You can render your headScript() tag wherever you like in your layout script; just because the title
references “head” does not mean it needs to be rendered in that location.


		Alternately, you may use the inlineScript() helper, which is simply a variant on headScript(), and
retains the same behavior, but uses a separate registry.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Standard Placeholders
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.09.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 0.9


When upgrading from a previous release to Zend Framework 0.9 or higher you should note the following migration
notes.



Zend_Controller


0.9.3 introduces action helpers. As part of this change, the following
methods have been removed as they are now encapsulated in the redirector action helper:



		setRedirectCode(); use Zend_Controller_Action_Helper_Redirector::setCode().


		setRedirectPrependBase(); use Zend_Controller_Action_Helper_Redirector::setPrependBase().


		setRedirectExit(); use Zend_Controller_Action_Helper_Redirector::setExit().





Read the action helpers documentation for more information on how to
retrieve and manipulate helper objects, and the redirector helper documentation for more information on setting redirect options (as well as alternate
methods for redirecting).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 0.9
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.message.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Mail\Message



Overview


The Message class encapsulates a single email message as described in RFCs 822 [http://www.w3.org/Protocols/rfc822/] and 2822 [http://www.ietf.org/rfc/rfc2822.txt]. It acts
basically as a value object for setting mail headers and content.


If desired, multi-part email messages may also be created. This is as trivial as creating the message body using
the Zend\Mime component, assigning it to the mail message body.


The Message class is simply a value object. It is not capable of sending or storing itself; for those purposes,
you will need to use, respectively, a Storage adapter or Transport adapter.





Quick Start


Creating a Message is simple: simply instantiate it.


		1
2
3


		use Zend\Mail\Message;

$message = new Message();










Once you have your Message instance, you can start adding content or headers. Let’s set who the mail is from,
who it’s addressed to, a subject, and some content:


		1
2
3
4


		$message->addFrom("matthew@zend.com", "Matthew Weier O'Phinney")
        ->addTo("foobar@example.com")
        ->setSubject("Sending an email from Zend\Mail!");
$message->setBody("This is the message body.");










You can also add recipients to carbon-copy (“Cc:”) or blind carbon-copy (“Bcc:”).


		1
2


		$message->addCc("ralph.schindler@zend.com")
        ->addBcc("enrico.z@zend.com");










If you want to specify an alternate address to which replies may be sent, that can be done, too.


		1


		$message->addReplyTo("matthew@weierophinney.net", "Matthew");










Interestingly, RFC822 allows for multiple “From:” addresses. When you do this, the first one will be used as the
sender, unless you specify a “Sender:” header. The Message class allows for this.


		1
2
3
4
5
6
7
8


		/*
 * Mail headers created:
 * From: Ralph Schindler <ralph.schindler@zend.com>, Enrico Zimuel <enrico.z@zend.com>
 * Sender: Matthew Weier O'Phinney <matthew@zend.com></matthew>
 */
$message->addFrom("ralph.schindler@zend.com", "Ralph Schindler")
        ->addFrom("enrico.z@zend.com", "Enrico Zimuel")
        ->setSender("matthew@zend.com", "Matthew Weier O'Phinney");










By default, the Message class assumes ASCII encoding for your email. If you wish to use another encoding, you
can do so; setting this will ensure all headers and body content are properly encoded using quoted-printable
encoding.


		1


		$message->setEncoding("UTF-8");










If you wish to set other headers, you can do that as well.


		1
2
3
4
5


		/*
 * Mail headers created:
 * X-API-Key: FOO-BAR-BAZ-BAT
 */
$message->getHeaders()->addHeaderLine('X-API-Key', 'FOO-BAR-BAZ-BAT');










Sometimes you may want to provide HTML content, or multi-part content. To do that, you’ll first create a MIME
message object, and then set it as the body of your mail message object. When you do so, the Message class will
automatically set a “MIME-Version” header, as well as an appropriate “Content-Type” header.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\Mail\Message;
use Zend\Mime\Message as MimeMessage;
use Zend\Mime\Part as MimePart;

$text = new MimePart($textContent);
$text->type = "text/plain";

$html = new MimePart($htmlMarkup);
$html->type = "text/html";

$image = new MimePart(fopen($pathToImage));
$image->type = "image/jpeg";

$body = new MimeMessage();
$body->setParts(array($text, $html, $image));

$message = new Message();
$message->setBody($body);










If you want a string representation of your email, you can get that:


		1


		echo $message->toString();










Finally, you can fully introspect the message – including getting all addresses of recipients and senders, all
ehaders, and the message body.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// Headers
// Note: this will also grab all headers for which accessors/mutators exist in
// the Message object itself.
foreach ($message->getHeaders() as $header) {
    echo $header->toString();
    // or grab values: $header->getFieldName(), $header->getFieldValue()
}

// The logic below also works for the methods cc(), bcc(), to(), and replyTo()
foreach ($message->from() as $address) {
    printf("%s: %s\n", $address->getEmail(), $address->getName());
}

// Sender
$address = $message->getSender();
printf("%s: %s\n", $address->getEmail(), $address->getName());

// Subject
echo "Subject: ", $message->getSubject(), "\n";

// Encoding
echo "Encoding: ", $message->getEncoding(), "\n";

// Message body:
echo $message->getBody();     // raw body, or MIME object
echo $message->getBodyText(); // body as it will be sent










Once your message is shaped to your liking, pass it to a mail transport in order to
send it!


		1


		$transport->send($message);













Configuration Options


The Message class has no configuration options, and is instead a value object.





Available Methods



		isValid


		isValid()


Is the message valid?


If we don’t have any From addresses, we’re invalid, according to RFC2822.


Returns bool









		setEncoding


		setEncoding(string $encoding)


Set the message encoding.


Implements a fluent interface.









		getEncoding


		getEncoding()


Get the message encoding.


Returns string.









		setHeaders


		setHeaders(Zend\Mail\Headers $headers)


Compose headers.


Implements a fluent interface.









		getHeaders


		getHeaders()


Access headers collection.


Lazy-loads a Zend\Mail\Headers instance if none is already attached.


Returns a Zend\Mail\Headers instance.









		setFrom


		setFrom(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressList, string|null $name)


Set (overwrite) From addresses.


Implements a fluent interface.









		addFrom


		addFrom(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable $emailOrAddressOrList, string|null $name)


Add a “From” address.


Implements a fluent interface.









		from


		from()


Retrieve list of From senders


Returns Zend\Mail\AddressList instance.









		setTo


		setTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressList, null|string $name)


Overwrite the address list in the To recipients.


Implements a fluent interface.









		addTo


		addTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressOrList, null|string $name)


Add one or more addresses to the To recipients.


Appends to the list.


Implements a fluent interface.









		to


		to()


Access the address list of the To header.


Lazy-loads a Zend\Mail\AddressList and populates the To header if not previously done.


Returns a Zend\Mail\AddressList instance.









		setCc


		setCc(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressList, string|null $name)


Set (overwrite) CC addresses.


Implements a fluent interface.









		addCc


		addCc(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable $emailOrAddressOrList, string|null $name)


Add a “Cc” address.


Implements a fluent interface.









		cc


		cc()


Retrieve list of CC recipients


Lazy-loads a Zend\Mail\AddressList and populates the Cc header if not previously done.


Returns a Zend\Mail\AddressList instance.









		setBcc


		setBcc(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressList, string|null $name)


Set (overwrite) BCC addresses.


Implements a fluent interface.









		addBcc


		addBcc(string|Zend\Mail\Address|array|Zend\Mail\AddressList|Traversable $emailOrAddressOrList, string|null $name)


Add a “Bcc” address.


Implements a fluent interface.









		bcc


		bcc()


Retrieve list of BCC recipients.


Lazy-loads a Zend\Mail\AddressList and populates the Bcc header if not previously done.


Returns a Zend\Mail\AddressList instance.









		setReplyTo


		setReplyTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressList, null|string $name)


Overwrite the address list in the Reply-To recipients.


Implements a fluent interface.









		addReplyTo


		addReplyTo(string|AddressDescription|array|Zend\Mail\AddressList|Traversable $emailOrAddressOrList, null|string $name)


Add one or more addresses to the Reply-To recipients.


Implements a fluent interface.









		replyTo


		replyTo()


Access the address list of the Reply-To header


Lazy-loads a Zend\Mail\AddressList and populates the Reply-To header if not previously done.


Returns a Zend\Mail\AddressList instance.









		setSender


		setSender(mixed $emailOrAddress, mixed $name)


Set the message envelope Sender header.


Implements a fluent interface.









		getSender


		getSender()


Retrieve the sender address, if any.


Returns null or a Zend\Mail\AddressDescription instance.









		setSubject


		setSubject(string $subject)


Set the message subject header value.


Implements a fluent interface.









		getSubject


		getSubject()


Get the message subject header value.


Returns null or a string.









		setBody


		setBody(null|string|Zend\Mime\Message|object $body)


Set the message body.


Implements a fluent interface.









		getBody


		getBody()


Return the currently set message body.


Returns null, a string, or an object.









		getBodyText


		getBodyText()


Get the string-serialized message body text.


Returns null or a string.









		toString


		toString()


Serialize to string.


Returns string.











Examples


Please see the Quick Start section.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Mail\Message
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.filter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Filter



Zend\Ldap\Filter API





		Method
		Description





		Zend\Ldap\Filter equals(string $attr, string $value)
		Creates an ‘equals’ filter: (attr=value).



		Zend\Ldap\Filter begins(string $attr, string $value)
		Creates an ‘begins with’ filter: (attr=value*).



		Zend\Ldap\Filter ends(string $attr, string $value)
		Creates an ‘ends with’ filter: (attr=*value).



		Zend\Ldap\Filter contains(string $attr, string $value)
		Creates an ‘contains’ filter: (attr=*value*).



		Zend\Ldap\Filter greater(string $attr, string $value)
		Creates an ‘greater’ filter: (attr>value).



		Zend\Ldap\Filter greaterOrEqual(string $attr, string $value)
		Creates an ‘greater or equal’ filter: (attr>=value).



		Zend\Ldap\Filter less(string $attr, string $value)
		Creates an ‘less’ filter: (attr<value).



		Zend\Ldap\Filter lessOrEqual(string $attr, string $value)
		Creates an ‘less or equal’ filter: (attr<=value).



		Zend\Ldap\Filter approx(string $attr, string $value)
		Creates an ‘approx’ filter: (attr~=value).



		Zend\Ldap\Filter any(string $attr)
		Creates an ‘any’ filter: (attr=*).



		Zend\Ldap\Filter string(string $filter)
		Creates a simple custom string filter. The user is responsible for all value-escaping as the filter is used as is.



		Zend\Ldap\Filter mask(string $mask, string $value,...)
		Creates a filter from a string mask. All $value parameters will be escaped and substituted into $mask by using sprintf()



		Zend\Ldap\Filter andFilter(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘and’ filter from all arguments given.



		Zend\Ldap\Filter orFilter(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘or’ filter from all arguments given.



		__construct(string $attr, string $value, string $filtertype, string|null $prepend, string|null $append)
		Constructor. Creates an arbitrary filter according to the parameters supplied. The resulting filter will be a concatenation $attr . $filtertype . $prepend . $value . $append. Normally this constructor is not needed as all filters can be created by using the appropriate factory methods.



		string toString()
		Returns a string representation of the filter.



		string __toString()
		Returns a string representation of the filter. Proxies to Zend\Ldap\Filter::toString().



		Zend\Ldap\Filter\AbstractFilter negate()
		Negates the current filter.



		Zend\Ldap\Filter\AbstractFilter addAnd(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘and’ filter from the current filter and all filters passed in as the arguments.



		Zend\Ldap\Filter\AbstractFilter addOr(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘or’ filter from the current filter and all filters passed in as the arguments.



		string|array escapeValue(string|array $values)
		Escapes the given $values according to RFC 2254 so that they can be safely used in LDAP filters. If a single string is given, a string is returned - otherwise an array is returned. Any control characters with an ASCII code < 32 as well as the characters with special meaning in LDAP filters “*”, “(”, ”)”, and “\” (the backslash) are converted into the representation of a backslash followed by two hex digits representing the hexadecimal value of the character.



		string|array unescapeValue(string|array $values)
		Undoes the conversion done by Zend\Ldap\Filter::escapeValue(). Converts any sequences of a backslash followed by two hex digits into the corresponding character.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Filter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.soap.client.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Soap_Client


The Zend_Soap_Client class simplifies SOAP client development for PHP programmers.


It may be used in WSDL or non-WSDL mode.


Under the WSDL mode, the Zend_Soap_Client component uses a WSDL document to define transport layer options.


The WSDL description is usually provided by the web service the client will access. If the WSDL description is not
made available, you may want to use Zend_Soap_Client in non-WSDL mode. Under this mode, all SOAP protocol
options have to be set explicitly on the Zend_Soap_Client class.



Zend_Soap_Client Constructor


The Zend_Soap_Client constructor takes two parameters:




		$wsdl- the URI of a WSDL file.


		$options- options to create SOAP client object.









Both of these parameters may be set later using setWsdl($wsdl) and setOptions($options) methods
respectively.



Note


Important!


If you use Zend_Soap_Client component in non-WSDL mode, you must set the ‘location’ and ‘uri’ options.




The following options are recognized:




		‘soap_version’ (‘soapVersion’) - soap version to use (SOAP_1_1 or SOAP_1_2).





		‘classmap’ (‘classMap’) - can be used to map some WSDL types to PHP classes.


The option must be an array with WSDL types as keys and names of PHP classes as values.





		‘encoding’ - internal character encoding (UTF-8 is always used as an external encoding).





		‘wsdl’ which is equivalent to setWsdl($wsdlValue) call.


Changing this option may switch Zend_Soap_Client object to or from WSDL mode.





		‘uri’ - target namespace for the SOAP service (required for non-WSDL-mode, doesn’t work for WSDL mode).





		‘location’ - the URL to request (required for non-WSDL-mode, doesn’t work for WSDL mode).





		‘style’ - request style (doesn’t work for WSDL mode): SOAP_RPC or SOAP_DOCUMENT.





		‘use’ - method to encode messages (doesn’t work for WSDL mode): SOAP_ENCODED or SOAP_LITERAL.





		‘login’ and ‘password’ - login and password for an HTTP authentication.





		‘proxy_host’, ‘proxy_port’, ‘proxy_login’, and ‘proxy_password’ - an HTTP connection through a proxy server.





		‘local_cert’ and ‘passphrase’ -HTTPS client certificate authentication options.





		‘compression’ - compression options; it’s a combination of SOAP_COMPRESSION_ACCEPT,
SOAP_COMPRESSION_GZIP and SOAP_COMPRESSION_DEFLATE options which may be used like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Accept response compression
$client = new Zend_Soap_Client("some.wsdl",
  array('compression' => SOAP_COMPRESSION_ACCEPT));
...

// Compress requests using gzip with compression level 5
$client = new Zend_Soap_Client("some.wsdl",
  array('compression' => SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_GZIP | 5));
...

// Compress requests using deflate compression
$client = new Zend_Soap_Client("some.wsdl",
  array('compression' => SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_DEFLATE));























Performing SOAP Requests


After we’ve created a Zend_Soap_Client object we are ready to perform SOAP requests.


Each web service method is mapped to the virtual Zend_Soap_Client object method which takes parameters with
common PHP types.


Use it like in the following example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


		//****************************************************************
//                Server code
//****************************************************************
// class MyClass {
//     /**
//      * This method takes ...
//      *
//      * @param integer $inputParam
//      * @return string
//      */
//     public function method1($inputParam) {
//         ...
//     }
//
//     /**
//      * This method takes ...
//      *
//      * @param integer $inputParam1
//      * @param string  $inputParam2
//      * @return float
//      */
//     public function method2($inputParam1, $inputParam2) {
//         ...
//     }
//
//     ...
// }
// ...
// $server = new Zend_Soap_Server(null, $options);
// $server->setClass('MyClass');
// ...
// $server->handle();
//
//****************************************************************
//                End of server code
//****************************************************************

$client = new Zend_Soap_Client("MyService.wsdl");
...

// $result1 is a string
$result1 = $client->method1(10);
...

// $result2 is a float
$result2 = $client->method2(22, 'some string');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Soap_Client
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/project.structure.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Recommended Project Structure for Zend Framework MVC Applications



Overview


Many developers seek guidance on the best project structure for a Zend Framework project in a relatively flexible
environment. A “flexible” environment is one in which the developer can manipulate their file systems and web
server configurations as needed to achieve the most ideal project structure to run and secure their application.
The default project structure will assume that the developer has such flexibility at their disposal.


The following directory structure is designed to be maximally extensible for complex projects, while providing a
simple subset of folder and files for project with simpler requirements. This structure also works without
alteration for both modular and non-modular Zend Framework applications. The .htaccess files require URL
rewrite functionality in the web server as described in the Rewrite Configuration Guide, also included in this appendix.


It is not the intention that this project structure will support all possible Zend Framework project requirements.
The default project profile used by Zend_Tool reflect this project structure, but applications with
requirements not supported by this structure should use a custom project profile.





Recommended Project Directory Structure


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


		<project name>/
    application/
        configs/
            application.ini
        controllers/
            helpers/
        forms/
        layouts/
            filters/
            helpers/
            scripts/
        models/
        modules/
        services/
        views/
            filters/
            helpers/
            scripts/
        Bootstrap.php
    data/
        cache/
        indexes/
        locales/
        logs/
        sessions/
        uploads/
    docs/
    library/
    public/
        css/
        images/
        js/
        .htaccess
        index.php
    scripts/
        jobs/
        build/
    temp/
    tests/










The following describes the use cases for each directory as listed.



		application/: This directory contains your application. It will house the MVC system, as well as
configurations, services used, and your bootstrap file.
		configs/: The application-wide configuration directory.


		controllers/, models/, and views/: These directories serve as the default controller, model or view
directories. Having these three directories inside the application directory provides the best layout for
starting a simple project as well as starting a modular project that has global controllers/models/views.


		controllers/helpers/: These directories will contain action helpers. Action helpers will be namespaced
either as “Controller_Helper_” for the default module or “<Module>_Controller_Helper” in other modules.


		layouts/: This layout directory is for MVC-based layouts. Since Zend_Layout is capable of MVC- and
non-MVC-based layouts, the location of this directory reflects that layouts are not on a 1-to-1 relationship
with controllers and are independent of templates within views/.


		modules/: Modules allow a developer to group a set of related controllers into a logically organized group.
The structure under the modules directory would resemble the structure under the application directory.


		services/: This directory is for your application specific web-service files that are provided by your
application, or for implementing a Service Layer [http://www.martinfowler.com/eaaCatalog/serviceLayer.html] for your models.


		Bootstrap.php: This file is the entry point for your application, and should implement
Zend_Application_Bootstrap_Bootstrapper. The purpose for this file is to bootstrap the application and make
components available to the application by initializing them.








		data/: This directory provides a place to store application data that is volatile and possibly temporary. The
disturbance of data in this directory might cause the application to fail. Also, the information in this
directory may or may not be committed to a subversion repository. Examples of things in this directory are
session files, cache files, sqlite databases, logs and indexes.


		docs/: This directory contains documentation, either generated or directly authored.


		library/: This directory is for common libraries on which the application depends, and should be on the PHP
include_path. Developers should place their application’s library code under this directory in a unique
namespace, following the guidelines established in the PHP manual’s Userland Naming Guide [http://www.php.net/manual/en/userlandnaming.php], as well as those
established by Zend itself. This directory may also include Zend Framework itself; if so, you would house it in
library/Zend/.


		public/: This directory contains all public files for your application. index.php sets up and invokes
Zend_Application, which in turn invokes the application/Bootstrap.php file, resulting in dispatching the
front controller. The web root of your web server would typically be set to this directory.


		scripts/: This directory contains maintenance and/or build scripts. Such scripts might include command line,
cron, or phing build scripts that are not executed at runtime but are part of the correct functioning of the
application.


		temp/: The temp/ folder is set aside for transient application data. This information would not typically
be committed to the applications svn repository. If data under the temp/ directory were deleted, the
application should be able to continue running with a possible decrease in performance until data is once again
restored or recached.


		tests/: This directory contains application tests. These could be hand-written, PHPUnit tests, Selenium-RC
based tests or based on some other testing framework. By default, library code can be tested by mimicing the
directory structure of your library/ directory. Additionally, functional tests for your application could be
written mimicing the application/ directory structure (including the application subdirectory).








Module Structure


The directory structure for modules should mimic that of the application/ directory in the recommended project
structure:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		<modulename>
    configs/
        application.ini
    controllers/
        helpers/
    forms/
    layouts/
        filters/
        helpers/
        scripts/
    models/
    services/
    views/
        filters/
        helpers/
        scripts/
    Bootstrap.php










The purpose of these directories remains exactly the same as for the recommended project directory structure.





Rewrite Configuration Guide


URL rewriting is a common function of HTTP servers. However, the rules and configuration differ widely between
them. Below are some common approaches across a variety of popular web servers available at the time of writing.



Apache HTTP Server


All examples that follow use mod_rewrite, an official module that comes bundled with Apache. To use it,
mod_rewrite must either be included at compile time or enabled as a Dynamic Shared Object (DSO). Please
consult the Apache documentation [http://httpd.apache.org/docs/] for your version for more information.





Rewriting inside a VirtualHost


Here is a very basic virtual host definition. These rules direct all requests to index.php, except when a
matching file is found under the document_root.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		<VirtualHost my.domain.com:80>
    ServerName   my.domain.com
    DocumentRoot /path/to/server/root/my.domain.com/public

    RewriteEngine off

    <Location />
        RewriteEngine On
        RewriteCond %{REQUEST_FILENAME} -s [OR]
        RewriteCond %{REQUEST_FILENAME} -l [OR]
        RewriteCond %{REQUEST_FILENAME} -d
        RewriteRule ^.*$ - [NC,L]
        RewriteRule ^.*$ /index.php [NC,L]
    </Location>
</VirtualHost>










Note the slash (“/”) prefixing index.php; the rules for .htaccess differ in this regard.





Rewriting within a .htaccess file


Below is a sample .htaccess file that utilizes mod_rewrite. It is similar to the virtual host
configuration, except that it specifies only the rewrite rules, and the leading slash is omitted from
index.php.


		1
2
3
4
5
6


		RewriteEngine On
RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^.*$ - [NC,L]
RewriteRule ^.*$ index.php [NC,L]










There are many ways to configure mod_rewrite; if you would like more information, see Jayson Minard’s
Blueprint for PHP Applications: Bootstrapping [http://devzone.zend.com/a/70].





Microsoft Internet Information Server


As of version 7.0, IIS now ships with a standard rewrite engine. You may use the following configuration to
create the appropriate rewrite rules.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <system.webServer>
        <rewrite>
            <rules>
                <rule name="Imported Rule 1" stopProcessing="true">
                    <match url="^.*$" />
                    <conditions logicalGrouping="MatchAny">
                        <add input="{REQUEST_FILENAME}"
                             matchType="IsFile" pattern=""
                             ignoreCase="false" />
                        <add input="{REQUEST_FILENAME}"
                             matchType="IsDirectory"
                             pattern=""
                             ignoreCase="false" />
                    </conditions>
                    <action type="None" />
                </rule>
                <rule name="Imported Rule 2" stopProcessing="true">
                    <match url="^.*$" />
                    <action type="Rewrite" url="index.php" />
                </rule>
            </rules>
        </rewrite>
    </system.webServer>
</configuration>


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Recommended Project Structure for Zend Framework MVC Applications
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/learning.quickstart.create-model.png
ZF Quickstart Application Guestbook

Sign Our Guestbook

Guestbook Entries:

ralph.schindler@zend com
Hellol Hope you enjoy this sample zf application!
foo@bar.com
Baz baz baz, baz baz Baz baz baz - baz baz baz






modules/zend.module-manager.best-practices.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Best Practices when Creating Modules


When creating a ZF2 module, there are some best practices you should keep in mind.



		Keep the init() method lightweight. Be conservative with the actions you perform in the init() and
onBootstrap() methods of your Module class. These methods are run for every page request, and should
not perform anything heavy. As a rule of thumb, registering event listeners is an appropriate task to perform in
these methods. Such lightweight tasks will generally not have a measurable impact on the performance of your
application, even with many modules enabled. It is considered bad practice to utilize these methods for setting
up or configuring instances of application resources such as a database connection, application logger, or
mailer. Tasks such as these are better served through the service manager capabilities of Zend Framework 2.





		Do not perform writes within a module. You should never code your module to perform or expect any writes
within the module’s directory. Once installed, the files within a module’s directory should always match the
distribution verbatim. Any user-provided configuration should be performed via overrides in the Application
module or via application-level configuration files. Any other required filesystem writes should be performed in
some writeable path that is outside of the module’s directory.


There are two primary advantages to following this rule. First, any modules which attempt to write within
themselves will not be compatible with phar packaging. Second, by keeping the module in sync with the upstream
distribution, updates via mechanisms such as Git will be simple and trouble-free. Of course, the Application
module is a special exception to this rule, as there is typically no upstream distribution for this module, and
it’s unlikely you would want to run this package from within a phar archive.





		Utilize a vendor prefix for module names. To avoid module naming conflicts, you are encouraged to prefix your
module namespace with a vendor prefix. As an example, the (incomplete) developer tools module distributed by Zend
is named “ZendDeveloperTools” instead of simply “DeveloperTools”.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Best Practices when Creating Modules
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.inflector.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Filter_Inflector


Zend_Filter_Inflector is a general purpose tool for rules-based inflection of strings to a given target.


As an example, you may find you need to transform MixedCase or camelCasedWords into a path; for readability, OS
policies, or other reasons, you also need to lower case this, and you want to separate the words using a dash
(‘-‘). An inflector can do this for you.


Zend_Filter_Inflector implements Zend_Filter_Interface; you perform inflection by calling filter() on
the object instance.


Transforming MixedCase and camelCaseText to another format


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$inflector = new Zend_Filter_Inflector('pages/:page.:suffix');
$inflector->setRules(array(
    ':page'  => array('Word_CamelCaseToDash', 'StringToLower'),
    'suffix' => 'html'
));

$string   = 'camelCasedWords';
$filtered = $inflector->filter(array('page' => $string));
// pages/camel-cased-words.html

$string   = 'this_is_not_camel_cased';
$filtered = $inflector->filter(array('page' => $string));
// pages/this_is_not_camel_cased.html











Operation


An inflector requires a target and one or more rules. A target is basically a string that defines
placeholders for variables you wish to substitute. These are specified by prefixing with a ‘:’: :script.


When calling filter(), you then pass in an array of key and value pairs corresponding to the variables in the
target.


Each variable in the target can have zero or more rules associated with them. Rules may be either static or
refer to a Zend_Filter class. Static rules will replace with the text provided. Otherwise, a class matching the
rule provided will be used to inflect the text. Classes are typically specified using a short name indicating the
filter name stripped of any common prefix.


As an example, you can use any Zend_Filter concrete implementations; however, instead of referring to them as
‘Zend_Filter_Alpha‘ or ‘Zend_Filter_StringToLower‘, you’d specify only ‘Alpha‘ or ‘StringToLower‘.





Setting Paths To Alternate Filters


Zend_Filter_Inflector uses Zend_Loader_PluginLoader to manage loading filters to use with inflection. By
default, any filter prefixed with Zend_Filter will be available. To access filters with that prefix but which
occur deeper in the hierarchy, such as the various Word filters, simply strip off the Zend_Filter prefix:


		1
2


		// use Zend_Filter_Word_CamelCaseToDash as a rule
$inflector->addRules(array('script' => 'Word_CamelCaseToDash'));










To set alternate paths, Zend_Filter_Inflector has a utility method that proxies to the plugin loader,
addFilterPrefixPath():


		1


		$inflector->addFilterPrefixPath('My_Filter', 'My/Filter/');










Alternatively, you can retrieve the plugin loader from the inflector, and interact with it directly:


		1
2


		$loader = $inflector->getPluginLoader();
$loader->addPrefixPath('My_Filter', 'My/Filter/');










For more options on modifying the paths to filters, please see the PluginLoader documentation.





Setting the Inflector Target


The inflector target is a string with some placeholders for variables. Placeholders take the form of an identifier,
a colon (‘:’) by default, followed by a variable name: ‘:script’, ‘:path’, etc. The filter() method looks for
the identifier followed by the variable name being replaced.


You can change the identifier using the setTargetReplacementIdentifier() method, or passing it as the third
argument to the constructor:


		1
2
3
4
5


		// Via constructor:
$inflector = new Zend_Filter_Inflector('#foo/#bar.#sfx', null, '#');

// Via accessor:
$inflector->setTargetReplacementIdentifier('#');










Typically, you will set the target via the constructor. However, you may want to re-set the target later (for
instance, to modify the default inflector in core components, such as the ViewRenderer or Zend_Layout).
setTarget() can be used for this purpose:


		1
2


		$inflector = $layout->getInflector();
$inflector->setTarget('layouts/:script.phtml');










Additionally, you may wish to have a class member for your class that you can use to keep the inflector target
updated – without needing to directly update the target each time (thus saving on method calls).
setTargetReference() allows you to do this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		class Foo
{
    /**
     * @var string Inflector target
     */
    protected $_target = 'foo/:bar/:baz.:suffix';

    /**
     * Constructor
     * @return void
     */
    public function __construct()
    {
        $this->_inflector = new Zend_Filter_Inflector();
        $this->_inflector->setTargetReference($this->_target);
    }

    /**
     * Set target; updates target in inflector
     *
     * @param  string $target
     * @return Foo
     */
    public function setTarget($target)
    {
        $this->_target = $target;
        return $this;
    }
}













Inflection Rules


As mentioned in the introduction, there are two types of rules: static and filter-based.



Note


It is important to note that regardless of the method in which you add rules to the inflector, either
one-by-one, or all-at-once; the order is very important. More specific names, or names that might contain other
rule names, must be added before least specific names. For example, assuming the two rule names ‘moduleDir’ and
‘module’, the ‘moduleDir’ rule should appear before module since ‘module’ is contained within ‘moduleDir’. If
‘module’ were added before ‘moduleDir’, ‘module’ will match part of ‘moduleDir’ and process it leaving ‘Dir’
inside of the target uninflected.





Static Rules


Static rules do simple string substitution; use them when you have a segment in the target that will typically be
static, but which you want to allow the developer to modify. Use the setStaticRule() method to set or modify
the rule:


		1
2
3
4
5


		$inflector = new Zend_Filter_Inflector(':script.:suffix');
$inflector->setStaticRule('suffix', 'phtml');

// change it later:
$inflector->setStaticRule('suffix', 'php');










Much like the target itself, you can also bind a static rule to a reference, allowing you to update a single
variable instead of require a method call; this is often useful when your class uses an inflector internally, and
you don’t want your users to need to fetch the inflector in order to update it. The setStaticRuleReference()
method is used to accomplish this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		class Foo
{
    /**
     * @var string Suffix
     */
    protected $_suffix = 'phtml';

    /**
     * Constructor
     * @return void
     */
    public function __construct()
    {
        $this->_inflector = new Zend_Filter_Inflector(':script.:suffix');
        $this->_inflector->setStaticRuleReference('suffix', $this->_suffix);
    }

    /**
     * Set suffix; updates suffix static rule in inflector
     *
     * @param  string $suffix
     * @return Foo
     */
    public function setSuffix($suffix)
    {
        $this->_suffix = $suffix;
        return $this;
    }
}













Filter Inflector Rules


Zend_Filter filters may be used as inflector rules as well. Just like static rules, these are bound to a target
variable; unlike static rules, you may define multiple filters to use when inflecting. These filters are processed
in order, so be careful to register them in an order that makes sense for the data you receive.


Rules may be added using setFilterRule() (which overwrites any previous rules for that variable) or
addFilterRule() (which appends the new rule to any existing rule for that variable). Filters are specified in
one of the following ways:



		String. The string may be a filter class name, or a class name segment minus any prefix set in the
inflector’s plugin loader (by default, minus the ‘Zend_Filter‘ prefix).


		Filter object. Any object instance implementing Zend_Filter_Interface may be passed as a filter.


		Array. An array of one or more strings or filter objects as defined above.





		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$inflector = new Zend_Filter_Inflector(':script.:suffix');

// Set rule to use Zend_Filter_Word_CamelCaseToDash filter
$inflector->setFilterRule('script', 'Word_CamelCaseToDash');

// Add rule to lowercase string
$inflector->addFilterRule('script', new Zend_Filter_StringToLower());

// Set rules en-masse
$inflector->setFilterRule('script', array(
    'Word_CamelCaseToDash',
    new Zend_Filter_StringToLower()
));













Setting Many Rules At Once


Typically, it’s easier to set many rules at once than to configure a single variable and its inflection rules at a
time. Zend_Filter_Inflector‘s addRules() and setRules() method allow this.


Each method takes an array of variable and rule pairs, where the rule may be whatever the type of rule accepts
(string, filter object, or array). Variable names accept a special notation to allow setting static rules and
filter rules, according to the following notation:



		‘:’ prefix: filter rules.


		No prefix: static rule.





Setting Multiple Rules at Once


		1
2
3
4
5
6
7
8
9


		// Could also use setRules() with this notation:
$inflector->addRules(array(
    // filter rules:
    ':controller' => array('CamelCaseToUnderscore','StringToLower'),
    ':action'     => array('CamelCaseToUnderscore','StringToLower'),

    // Static rule:
    'suffix'      => 'phtml'
));















Utility Methods


Zend_Filter_Inflector has a number of utility methods for retrieving and setting the plugin loader,
manipulating and retrieving rules, and controlling if and when exceptions are thrown.



		setPluginLoader() can be used when you have configured your own plugin loader and wish to use it with
Zend_Filter_Inflector; getPluginLoader() retrieves the currently set one.


		setThrowTargetExceptionsOn() can be used to control whether or not filter() throws an exception when a
given replacement identifier passed to it is not found in the target. By default, no exceptions are thrown.
isThrowTargetExceptionsOn() will tell you what the current value is.


		getRules($spec = null) can be used to retrieve all registered rules for all variables, or just the rules for
a single variable.


		getRule($spec, $index) fetches a single rule for a given variable; this can be useful for fetching a specific
filter rule for a variable that has a filter chain. $index must be passed.


		clearRules() will clear all currently registered rules.








Using Zend_Config with Zend_Filter_Inflector


You can use Zend_Config to set rules, filter prefix paths, and other object state in your inflectors, either by
passing a Zend_Config object to the constructor or setOptions(). The following settings may be specified:



		target specifies the inflection target.


		filterPrefixPath specifies one or more filter prefix and path pairs for use with the inflector.


		throwTargetExceptionsOn should be a boolean indicating whether or not to throw exceptions when a replacement
identifier is still present after inflection.


		targetReplacementIdentifier specifies the character to use when identifying replacement variables in the
target string.


		rules specifies an array of inflection rules; it should consist of keys that specify either values or arrays
of values, consistent with addRules().





Using Zend_Config with Zend_Filter_Inflector


		1
2
3
4
5
6
7


		// With the constructor:
$config    = new Zend_Config($options);
$inflector = new Zend_Filter_Inflector($config);

// Or with setOptions():
$inflector = new Zend_Filter_Inflector();
$inflector->setOptions($config);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Filter_Inflector
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/user-guide.skeleton-application.hello-world.png
Z7 272 Skeleton Application

€« C | ® zf2-tutorial localhost,

Welcome to Zend Framework 2

Congratulations! You have successfully installed the ZF2 Skeleton Application. You are currently running Zend Framework version
2.0.0beta4. This skeleton can serve as a simple starting point for you to begin building your application on ZF2,

Follow Development

Zend Framework 2 is under active development. If you are
interested in following the development of ZF2, there is a
special ZF2 portal on the official Zend Framework webiste
‘which provides links to the ZF2 wiki, dev blog, issue tracker,
‘and much more. This is a great resource for staying up to date
with the latest developments!

© 2006 - 2012 by Zend Technologies Ltd. Al rights reserved,

Discover Modules

“The community is working on developing a community site to
serve as a repository and gallery for ZF2 modules. The project
is available on GitHub. The site Is curenty live and currently
contains a list of some of the modules already available for
22

Help & Support

Ifyou need any help or support while developing with ZF2, you
may reach us via IRC: #zftalk.2 on Freenode. We'd love to hear
any questions or feedback you may have regarding the beta
releases. Altemativel, you may subscribe and post questions
tothe maiing lsts






modules/zend.feed.consuming-rss.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Consuming an RSS Feed


Reading an RSS feed is as simple as instantiating a Zend_Feed_Rss object with the URL of the feed:


		1


		$channel = new Zend_Feed_Rss('http://rss.example.com/channelName');










If any errors occur fetching the feed, a Zend_Feed_Exception will be thrown.


Once you have a feed object, you can access any of the standard RSS“channel” properties directly on the object:


		1


		echo $channel->title();










Note the function syntax. Zend_Feed uses a convention of treating properties as XML object if they are
requested with variable “getter” syntax ($obj->property) and as strings if they are access with method syntax
($obj->property()). This enables access to the full text of any individual node while still allowing full
access to all children.


If channel properties have attributes, they are accessible using PHP‘s array syntax:


		1


		echo $channel->category['domain'];










Since XML attributes cannot have children, method syntax is not necessary for accessing attribute values.


Most commonly you’ll want to loop through the feed and do something with its entries. Zend_Feed_Abstract
implements PHP‘s Iterator interface, so printing all titles of articles in a channel is just a matter of:


		1
2
3


		foreach ($channel as $item) {
    echo $item->title() . "\n";
}










If you are not familiar with RSS, here are the standard elements you can expect to be available in an RSS
channel and in individual RSS items (entries).


Required channel elements:



		title- The name of the channel


		link- The URL of the web site corresponding to the channel


		description- A sentence or several describing the channel





Common optional channel elements:



		pubDate- The publication date of this set of content, in RFC 822 date format


		language- The language the channel is written in


		category- One or more (specified by multiple tags) categories the channel belongs to





RSS <item> elements do not have any strictly required elements. However, either title or description
must be present.


Common item elements:



		title- The title of the item


		link- The URL of the item


		description- A synopsis of the item


		author- The author’s email address


		category- One more categories that the item belongs to


		comments-URL of comments relating to this item


		pubDate- The date the item was published, in RFC 822 date format





In your code you can always test to see if an element is non-empty with:


		1
2
3


		if ($item->propname()) {
    // ... proceed.
}










If you use $item->propname instead, you will always get an empty object which will evaluate to TRUE, so
your check will fail.


For further information, the official RSS 2.0 specification is available at:
http://blogs.law.harvard.edu/tech/rss






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Consuming an RSS Feed
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.json.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
JSON Helper


When creating views that return JSON, it’s important to also set the appropriate response header. The JSON view
helper does exactly that. In addition, by default, it disables layouts (if currently enabled), as layouts generally
aren’t used with JSON responses.


The JSON helper sets the following header:


		1


		Content-Type: application/json










Most AJAX libraries look for this header when parsing responses to determine how to handle the content.


Usage of the JSON helper is very straightforward:


		1


		<?php echo $this->json($this->data) ?>











Note


Keeping layouts and enabling encoding using Zend_Json_Expr


Each method in the JSON helper accepts a second, optional argument. This second argument can be a boolean flag
to enable or disable layouts, or an array of options that will be passed to Zend_Json::encode() and used
internally to encode data.


To keep layouts, the second parameter needs to be boolean TRUE. When the second parameter is an array,
keeping layouts can be achieved by including a keepLayouts key with a value of a boolean TRUE.


		1
2
3
4
5


		// Boolean true as second argument enables layouts:
echo $this->json($this->data, true);

// Or boolean true as "keepLayouts" key:
echo $this->json($this->data, array('keepLayouts' => true));










Zend_Json::encode allows the encoding of native JSON expressions using Zend_Json_Expr objects. This
option is disabled by default. To enable this option, pass a boolean TRUE to the enableJsonExprFinder
key of the options array:


		1
2
3
4


		<?php echo $this->json($this->data, array(
    'enableJsonExprFinder' => true,
    'keepLayouts'          => true,
)) ?>
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                JSON Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend_Pdf component is a PDF (Portable Document Format) manipulation engine. It can load, create, modify
and save documents. Thus it can help any PHP application dynamically create PDF documents by modifying existing
documents or generating new ones from scratch. Zend_Pdf offers the following features:




		Create a new document or load existing one. [1]


		Retrieve a specified revision of the document.


		Manipulate pages within a document. Change page order, add new pages, remove pages from a document.


		Different drawing primitives (lines, rectangles, polygons, circles, ellipses and sectors).


		Text drawing using any of the 14 standard (built-in) fonts or your own custom TrueType fonts.


		Rotations.


		Image drawing. [2]


		Incremental PDF file update.












		[1]		Loading PDF V1.4 (Acrobat 5) documents is now supported.









		[2]		JPG, PNG [Up to 8bit per channel+Alpha] and TIFF images are supported.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.15.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.5


When upgrading from a previous release to Zend Framework 1.5 or higher you should note the following migration
notes.



Zend_Controller


Though most basic functionality remains the same, and all documented functionality remains the same, there is one
particular undocumented“feature” that has changed.


When writing URLs, the documented way to write camelCased action names is to use a word separator; these are
‘.’ or ‘-‘ by default, but may be configured in the dispatcher. The dispatcher internally lowercases the action
name, and uses these word separators to re-assemble the action method using camelCasing. However, because PHP
functions are not case sensitive, you could still write URLs using camelCasing, and the dispatcher would
resolve these to the same location. For example, ‘camel-cased’ would become ‘camelCasedAction’ by the dispatcher,
whereas ‘camelCased’ would become ‘camelcasedAction’; however, due to the case insensitivity of PHP, both will
execute the same method.


This causes issues with the ViewRenderer when resolving view scripts. The canonical, documented way is that all
word separators are converted to dashes, and the words lowercased. This creates a semantic tie between the actions
and view scripts, and the normalization ensures that the scripts can be found. However, if the action ‘camelCased’
is called and actually resolves, the word separator is no longer present, and the ViewRenderer attempts to resolve
to a different location –camelcased.phtml instead of camel-cased.phtml.


Some developers relied on this “feature”, which was never intended. Several changes in the 1.5.0 tree, however,
made it so that the ViewRenderer no longer resolves these paths; the semantic tie is now enforced. First among
these, the dispatcher now enforces case sensitivity in action names. What this means is that referring to your
actions on the url using camelCasing will no longer resolve to the same method as using word separators (i.e.,
‘camel-casing’). This leads to the ViewRenderer now only honoring the word-separated actions when resolving view
scripts.


If you find that you were relying on this “feature”, you have several options:



		Best option: rename your view scripts. Pros: forward compatibility. Cons: if you have many view scripts that
relied on the former, unintended behavior, you will have a lot of renaming to do.





		Second best option: The ViewRenderer now delegates view script resolution to Zend_Filter_Inflector; you can
modify the rules of the inflector to no longer separate the words of an action with a dash:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$viewRenderer =
    Zend_Controller_Action_HelperBroker::getStaticHelper('viewRenderer');
$inflector = $viewRenderer->getInflector();
$inflector->setFilterRule(':action', array(
    new Zend_Filter_PregReplace(
        '#[^a-z0-9' . preg_quote(DIRECTORY_SEPARATOR, '#') . ']+#i',
        ''
    ),
    'StringToLower'
));










The above code will modify the inflector to no longer separate the words with dash; you may also want to remove
the ‘StringToLower’ filter if you do want the actual view script names camelCased as well.


If renaming your view scripts would be too tedious or time consuming, this is your best option until you can find
the time to do so.





		Least desirable option: You can force the dispatcher to dispatch camelCased action names with a new front
controller flag, useCaseSensitiveActions:


		1


		$front->setParam('useCaseSensitiveActions', true);










This will allow you to use camelCasing on the url and still have it resolve to the same action as when you use
word separators. However, this will mean that the original issues will cascade on through; you will likely need
to use the second option above in addition to this for things to work at all reliably.


Note, also, that usage of this flag will raise a notice that this usage is deprecated.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.5
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.digits.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Digits


Returns the string $value, removing all but digits.



Supported options for Zend_Filter_Digits


There are no additional options for Zend_Filter_Digits.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Digits();

print $filter->filter('October 2009');










This returns “2009”.


		1
2
3


		$filter = new Zend_Filter_Digits();

print $filter->filter('HTML 5 for Dummies');










This returns “5”.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Digits
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.s3.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_S3



Introduction


Amazon S3 provides a simple web services interface that can be used to store and retrieve any amount of data, at
any time, from anywhere on the web. It gives any developer access to the same highly scalable, reliable, fast,
inexpensive data storage infrastructure that Amazon uses to run its own global network of web sites. The service
aims to maximize benefits of scale and to pass those benefits on to developers.





Registering with Amazon S3


Before you can get started with Zend_Service_Amazon_S3, you must first register for an account. Please see the
S3 FAQ [http://aws.amazon.com/s3/faqs/] page on the Amazon website for more information.


After registering, you will receive an application key and a secret key. You will need both to access the S3
service.





API Documentation


The Zend_Service_Amazon_S3 class provides the PHP wrapper to the Amazon S3 REST interface. Please consult the
Amazon S3 documentation [http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=48] for detailed description of the service. You will need to be familiar with basic
concepts in order to use this service.





Features


Zend_Service_Amazon_S3 provides the following functionality:




		A single point for configuring your amazon.s3 authentication credentials that can be used across the amazon.s3
namespaces.


		A proxy object that is more convenient to use than an HTTP client alone, mostly removing the need to
manually construct HTTP POST requests to access the REST service.


		A response wrapper that parses each response body and throws an exception if an error occurred, alleviating
the need to repeatedly check the success of many commands.


		Additional convenience methods for some of the more common operations.












Getting Started


Once you have registered with Amazon S3, you’re ready to store your first data object on the S3. The objects on S3
are stored in containers, called “buckets”. Bucket names are unique on S3, and each user can have no more than 100
buckets simultaneously. Each bucket can contain unlimited amount of objects, identified by name.


The following example demonstrates creating a bucket, storing and retrieving the data.


Zend_Service_Amazon_S3 Usage Example


		1
2
3
4
5
6
7
8
9


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$s3->createBucket("my-own-bucket");

$s3->putObject("my-own-bucket/myobject", "somedata");

echo $s3->getObject("my-own-bucket/myobject");










Since Zend_Service_Amazon_S3 service requires authentication, you should pass your credentials (AWS key and
secret key) to the constructor. If you only use one account, you can set default credentials for the service:


		1
2
3
4


		require_once 'Zend/Service/Amazon/S3.php';

Zend_Service_Amazon_S3::setKeys($my_aws_key, $my_aws_secret_key);
$s3 = new Zend_Service_Amazon_S3();













Bucket operations


All objects in S3 system are stored in buckets. Bucket has to be created before any storage operation. Bucket name
is unique in the system, so you can not have bucket named the same as someone else’s bucket.


Bucket name can contain lowercase letters, digits, periods (.), underscores (_), and dashes (-). No other symbols
allowed. Bucket name should start with letter or digit, and be 3 to 255 characters long. Names looking like an IP
address (e.g. “192.168.16.255”) are not allowed.



		createBucket() creates a new bucket.





		cleanBucket() removes all objects that are contained in a bucket.





		removeBucket() removes the bucket from the system. The bucket should be empty to be removed.


Zend_Service_Amazon_S3 Bucket Removal Example


		1
2
3
4
5
6


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$s3->cleanBucket("my-own-bucket");
$s3->removeBucket("my-own-bucket");













		getBuckets() returns the list of the names of all buckets belonging to the user.


Zend_Service_Amazon_S3 Bucket Listing Example


		1
2
3
4
5
6
7
8


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$list = $s3->getBuckets();
foreach($list as $bucket) {
  echo "I have bucket $bucket\n";
}













		isBucketAvailable() check if the bucket exists and returns TRUE if it does.











Object operations


The object is the basic storage unit in S3. Object stores unstructured data, which can be any size up to 4
gigabytes. There’s no limit on how many objects can be stored on the system.


The object are contained in buckets. Object is identified by name, which can be any utf-8 string. It is common to
use hierarchical names (such as Pictures/Myself/CodingInPHP.jpg) to organise object names. Object name is
prefixed with bucket name when using object functions, so for object “mydata” in bucket “my-own-bucket” the name
would be my-own-bucket/mydata.


Objects can be replaced (by rewriting new data with the same key) or deleted, but not modified, appended, etc.
Object is always stored whole.


By default, all objects are private and can be accessed only by their owner. However, it is possible to specify
object with public access, in which case it will be available through the URL:
http://s3.amazonaws.com/[bucket-name]/[object-name].



		putObject($object, $data, $meta) created an object with name $object (should contain the bucket name as
prefix!) having $data as its content.


Optional $meta parameter is the array of metadata, which currently supports the following parameters as keys:



		S3_CONTENT_TYPE_HEADER


		MIME content type of the data. If not specified, the type will be guessed according to the file extension of
the object name.





		S3_ACL_HEADER


		The access to the item. Following access constants can be used:




		S3_ACL_PRIVATE


		Only the owner has access to the item.





		S3_ACL_PUBLIC_READ


		Anybody can read the object, but only owner can write. This is setting may be used to store publicly
accessible content.





		S3_ACL_PUBLIC_WRITE


		Anybody can read or write the object. This policy is rarely useful.





		S3_ACL_AUTH_READ


		Only the owner has write access to the item, and other authenticated S3 users have read access. This is
useful for sharing data between S3 accounts without exposing them to the public.












By default, all the items are private.


Zend_Service_Amazon_S3 Public Object Example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$s3->putObject("my-own-bucket/Pictures/Me.png", file_get_contents("me.png"),
    array(Zend_Service_Amazon_S3::S3_ACL_HEADER =>
          Zend_Service_Amazon_S3::S3_ACL_PUBLIC_READ));
// or:
$s3->putFile("me.png", "my-own-bucket/Pictures/Me.png",
    array(Zend_Service_Amazon_S3::S3_ACL_HEADER =>
          Zend_Service_Amazon_S3::S3_ACL_PUBLIC_READ));
echo "Go to http://s3.amazonaws.com/my-own-bucket/Pictures/Me.png to see me!\n";



















		getObject($object) retrieves object data from the storage by name.





		removeObject($object) removes the object from the storage.





		getInfo($object) retrieves the metadata information about the object. The function will return array with
metadata information. Some of the useful keys are:




		type


		The MIME type of the item.





		size


		The size of the object data.





		mtime


		UNIX-type timestamp of the last modification for the object.





		etag


		The ETag of the data, which is the MD5 hash of the data, surrounded by quotes (”).












The function will return FALSE if the key does not correspond to any existing object.





		getObjectsByBucket($bucket) returns the list of the object keys, contained in the bucket.


Zend_Service_Amazon_S3 Object Listing Example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$list = $s3->getObjectsByBucket("my-own-bucket");
foreach($list as $name) {
  echo "I have $name key:\n";
  $data = $s3->getObject("my-own-bucket/$name");
  echo "with data: $data\n";
}













		isObjectAvailable($object) checks if the object with given name exists.





		putFile($path, $object, $meta) puts the content of the file in $path into the object named $object.


The optional $meta argument is the same as for putObject. If the content type is omitted, it will be
guessed basing on the source file name.











Data Streaming


It is possible to get and put objects using not stream data held in memory but files or PHP streams. This is
especially useful when file sizes are large in order not to overcome memory limits.


To receive object using streaming, use method getObjectStream($object, $filename). This method will return
Zend_Http_Response_Stream, which can be used as described in HTTP Client Data Streaming section.



Zend_Service_Amazon_S3 Data Streaming Example


		1
2
3
4
5
6


		$response = $amazon->getObjectStream("mybycket/zftest");
// copy file
copy($response->getStreamName(), "my/downloads/file");
// use stream
$fp = fopen("my/downloads/file2", "w");
stream_copy_to_stream($response->getStream(), $fp);














Second parameter for getObjectStream() is optional and specifies target file to write the data. If not
specified, temporary file is used, which will be deleted after the response object is destroyed.


To send object using streaming, use putFileStream() which has the same signature as putFile() but will use
streaming and not read the file into memory.


Also, you can pass stream resource to putObject() method data parameter, in which case the data will be read
from the stream when sending the request to the server.





Stream wrapper


In addition to the interfaces described above, Zend_Service_Amazon_S3 also supports operating as a stream
wrapper. For this, you need to register the client object as the stream wrapper:


Zend_Service_Amazon_S3 Streams Example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		require_once 'Zend/Service/Amazon/S3.php';

$s3 = new Zend_Service_Amazon_S3($my_aws_key, $my_aws_secret_key);

$s3->registerStreamWrapper("s3");

mkdir("s3://my-own-bucket");
file_put_contents("s3://my-own-bucket/testdata", "mydata");

echo file_get_contents("s3://my-own-bucket/testdata");










Directory operations (mkdir, rmdir, opendir, etc.) will operate on buckets and thus their arguments should be
of the form of s3://bucketname. File operations operate on objects. Object creation, reading, writing, deletion,
stat and directory listing is supported.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_S3
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.head-meta.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HeadMeta Helper


The HTML <meta> element is used to provide meta information about your HTML document – typically keywords,
document character set, caching pragmas, etc. Meta tags may be either of the ‘http-equiv’ or ‘name’ types, must
contain a ‘content’ attribute, and can also have either of the ‘lang’ or ‘scheme’ modifier attributes.


The HeadMeta helper supports the following methods for setting and adding meta tags:



		appendName($keyValue, $content, $conditionalName)


		offsetSetName($index, $keyValue, $content, $conditionalName)


		prependName($keyValue, $content, $conditionalName)


		setName($keyValue, $content, $modifiers)


		appendHttpEquiv($keyValue, $content, $conditionalHttpEquiv)


		offsetSetHttpEquiv($index, $keyValue, $content, $conditionalHttpEquiv)


		prependHttpEquiv($keyValue, $content, $conditionalHttpEquiv)


		setHttpEquiv($keyValue, $content, $modifiers)


		setCharset($charset)





The following methods are also supported with XHTML1_RDFA doctype set with the Doctype helper:



		appendProperty($property, $content, $modifiers)


		offsetSetProperty($index, $property, $content, $modifiers)


		prependProperty($property, $content, $modifiers)


		setProperty($property, $content, $modifiers)





The $keyValue item is used to define a value for the ‘name’ or ‘http-equiv’ key; $content is the value for
the ‘content’ key, and $modifiers is an optional associative array that can contain keys for ‘lang’ and/or
‘scheme’.


You may also set meta tags using the headMeta() helper method, which has the following signature:
headMeta($content, $keyValue, $keyType = 'name', $modifiers = array(), $placement = 'APPEND'). $keyValue is
the content for the key specified in $keyType, which should be either ‘name’ or ‘http-equiv’. $keyType may
also be specified as ‘property’ if the doctype has been set to XHTML1_RDFA. $placement can be ‘SET’ (overwrites
all previously stored values), ‘APPEND’ (added to end of stack), or ‘PREPEND’ (added to top of stack).


HeadMeta overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes
using the itemToString() method. This allows you to perform checks on the items in the stack, and optionally
modify these items by simply modifying the object returned.


The HeadMeta helper is a concrete implementation of the Placeholder helper.


HeadMeta Helper Basic Usage


You may specify a new meta tag at any time. Typically, you will specify client-side caching rules or SEO keywords.


For instance, if you wish to specify SEO keywords, you’d be creating a meta name tag with the name ‘keywords’ and
the content the keywords you wish to associate with your page:


		1
2


		// setting meta keywords
$this->headMeta()->appendName('keywords', 'framework, PHP, productivity');










If you wished to set some client-side caching rules, you’d set http-equiv tags with the rules you wish to enforce:


		1
2
3
4
5


		// disabling client-side cache
$this->headMeta()->appendHttpEquiv('expires',
                                   'Wed, 26 Feb 1997 08:21:57 GMT')
                 ->appendHttpEquiv('pragma', 'no-cache')
                 ->appendHttpEquiv('Cache-Control', 'no-cache');










Another popular use for meta tags is setting the content type, character set, and language:


		1
2
3
4


		// setting content type and character set
$this->headMeta()->appendHttpEquiv('Content-Type',
                                   'text/html; charset=UTF-8')
                 ->appendHttpEquiv('Content-Language', 'en-US');










If you are serving an HTML5 document, you should provide the character set like this:


		1
2


		// setting character set in HTML5
$this->headMeta()->setCharset('UTF-8'); // Will look like <meta charset="UTF-8">










As a final example, an easy way to display a transitional message before a redirect is using a “meta refresh”:


		1
2
3


		// setting a meta refresh for 3 seconds to a new url:
$this->headMeta()->appendHttpEquiv('Refresh',
                                   '3;URL=http://www.some.org/some.html');










When you’re ready to place your meta tags in the layout, simply echo the helper:


		1


		<?php echo $this->headMeta() ?>










HeadMeta Usage with XHTML1_RDFA doctype


Enabling the RDFa doctype with the Doctype helper enables the use of the
‘property’ attribute (in addition to the standard ‘name’ and ‘http-equiv’) with HeadMeta. This is commonly used
with the Facebook Open Graph Protocol [http://opengraphprotocol.org/].


For instance, you may specify an open graph page title and type as follows:


		1
2
3
4
5
6
7
8


		$this->doctype(Zend_View_Helper_Doctype::XHTML_RDFA);
$this->headMeta()->setProperty('og:title', 'my article title');
$this->headMeta()->setProperty('og:type', 'article');
echo $this->headMeta();

// output is:
//   <meta property="og:title" content="my article title" />
//   <meta property="og:type" content="article" />














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HeadMeta Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/plugins.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend Framework makes heavy use of plugin architectures. Plugins allow for easy extensibility and customization of
the framework while keeping your code separate from Zend Framework’s code.


Typically, plugins in Zend Framework work as follows:



		Plugins are classes. The actual class definition will vary based on the component – you may need to extend an
abstract class or implement an interface, but the fact remains that the plugin is itself a class.


		Related plugins will share a common class prefix. For instance, if you have created a number of view helpers,
they might all share the class prefix “Foo_View_Helper_”.


		Everything after the common prefix will be considered the plugin name or short name (versus the “long
name”, which is the full classname). For example, if the plugin prefix is “Foo_View_Helper_”, and the class
name is “Foo_View_Helper_Bar”, the plugin name will be simply “Bar”.


		Plugin names are typically case sensitive. The one caveat is that the initial letter can often be either lower or
uppercase; in our previous example, both “bar” and “Bar” would refer to the same plugin.





Now let’s turn to using plugins.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.placeholder.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Placeholder Helper


The Placeholder view helper is used to persist content between view scripts and view instances. It also offers
some useful features such as aggregating content, capturing view script content for later use, and adding pre- and
post-text to content (and custom separators for aggregated content).


Basic Usage of Placeholders


Basic usage of placeholders is to persist view data. Each invocation of the Placeholder helper expects a
placeholder name; the helper then returns a placeholder container object that you can either manipulate or simply
echo out.


		1
2
3
4
5
6


		<?php $this->placeholder('foo')->set("Some text for later") ?>

<?php
    echo $this->placeholder('foo');
    // outputs "Some text for later"
?>










Using Placeholders to Aggregate Content


Aggregating content via placeholders can be useful at times as well. For instance, your view script may have a
variable array from which you wish to retrieve messages to display later; a later view script can then determine
how those will be rendered.


The Placeholder view helper uses containers that extend ArrayObject, providing a rich featureset for
manipulating arrays. In addition, it offers a variety of methods for formatting the content stored in the
container:



		setPrefix($prefix) sets text with which to prefix the content. Use getPrefix() at any time to determine
what the current setting is.


		setPostfix($prefix) sets text with which to append the content. Use getPostfix() at any time to determine
what the current setting is.


		setSeparator($prefix) sets text with which to separate aggregated content. Use getSeparator() at any time
to determine what the current setting is.


		setIndent($prefix) can be used to set an indentation value for content. If an integer is passed, that number
of spaces will be used; if a string is passed, the string will be used. Use getIndent() at any time to
determine what the current setting is.





		1
2


		<!-- first view script -->
<?php $this->placeholder('foo')->exchangeArray($this->data) ?>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<!-- later view script -->
<?php
$this->placeholder('foo')->setPrefix("<ul>\n    <li>")
                         ->setSeparator("</li><li>\n")
                         ->setIndent(4)
                         ->setPostfix("</li></ul>\n");
?>

<?php
    echo $this->placeholder('foo');
    // outputs as unordered list with pretty indentation
?>










Because the Placeholder container objects extend ArrayObject, you can also assign content to a specific key
in the container easily, instead of simply pushing it into the container. Keys may be accessed either as object
properties or as array keys.


		1
2
3
4
5
6
7


		<?php $this->placeholder('foo')->bar = $this->data ?>
<?php echo $this->placeholder('foo')->bar ?>

<?php
$foo = $this->placeholder('foo');
echo $foo['bar'];
?>










Using Placeholders to Capture Content


Occasionally you may have content for a placeholder in a view script that is easiest to template; the
Placeholder view helper allows you to capture arbitrary content for later rendering using the following API.



		captureStart($type, $key) begins capturing content.


$type should be one of the Placeholder constants APPEND or SET. If APPEND, captured content
is appended to the list of current content in the placeholder; if SET, captured content is used as the sole
value of the placeholder (potentially replacing any previous content). By default, $type is APPEND.


$key can be used to specify a specific key in the placeholder container to which you want content captured.


captureStart() locks capturing until captureEnd() is called; you cannot nest capturing with the same
placeholder container. Doing so will raise an exception.





		captureEnd() stops capturing content, and places it in the container object according to how
captureStart() was called.








		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<!-- Default capture: append -->
<?php $this->placeholder('foo')->captureStart();
foreach ($this->data as $datum): ?>
<div class="foo">
    <h2><?php echo $datum->title ?></h2>
    <p><?php echo $datum->content ?></p>
</div>
<?php endforeach; ?>
<?php $this->placeholder('foo')->captureEnd() ?>

<?php echo $this->placeholder('foo') ?>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<!-- Capture to key -->
<?php $this->placeholder('foo')->captureStart('SET', 'data');
foreach ($this->data as $datum): ?>
<div class="foo">
    <h2><?php echo $datum->title ?></h2>
    <p><?php echo $datum->content ?></p>
</div>
 <?php endforeach; ?>
<?php $this->placeholder('foo')->captureEnd() ?>

<?php echo $this->placeholder('foo')->data ?>











Concrete Placeholder Implementations


Zend Framework ships with a number of “concrete” placeholder implementations. These are for commonly used
placeholders: doctype, page title, and various <head> elements. In all cases, calling the placeholder with no
arguments returns the element itself.


Documentation for each element is covered separately, as linked below:



		Doctype


		HeadLink


		HeadMeta


		HeadScript


		HeadStyle


		HeadTitle


		InlineScript











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Placeholder Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.file.transfer.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_File_Transfer


Zend_File_Transfer provides extensive support for file uploads and downloads. It comes with built-in validators
for files plus functionality to change files with filters. Protocol adapters allow Zend_File_Transfer to expose
the same API for transport protocols like HTTP, FTP, WEBDAV and more.



Note


Limitation


The current implementation of Zend_File_Transfer is limited to HTTP Post Uploads. Other adapters
supporting downloads and other protocols will be added in future releases. Unimplemented methods will throw an
exception. For now, you should use Zend_File_Transfer_Adapter_Http directly. As soon as there are multiple
adapters available you can use a common interface.





Note


Forms


When you are using Zend_Form you should use the APIs provided by Zend_Form and not
Zend_File_Transfer directly. The file transfer support in Zend_Form is implemented with
Zend_File_Transfer, so the information in this chapter may be useful for advanced users of Zend_Form.




The usage of Zend_File_Transfer is relatively simple. It consists of two parts. The HTTP form does the
upload, while the Zend_File_Transfer handles the uploaded files. See the following example:


Simple Form for Uploading Files


This example illustrates basic file uploading. The first part is the file form. In our example there is one file to
upload.


		1
2
3
4
5
6


		<form enctype="multipart/form-data" action="/file/upload" method="POST">
    <input type="hidden" name="MAX_FILE_SIZE" value="100000" />
        Choose a file to upload: <input name="uploadedfile" type="file" />
    <br />
    <input type="submit" value="Upload File" />
</form>










For convenience, you can use Zend_Form_Element_File instead of building
the HTML manually.


The next step is to create the receiver of the upload. In our example the receiver is located at /file/upload.
So next we will create the ‘file’ controller and the upload() action.


		1
2
3
4
5
6
7
8


		$adapter = new Zend_File_Transfer_Adapter_Http();

$adapter->setDestination('C:\temp');

if (!$adapter->receive()) {
    $messages = $adapter->getMessages();
    echo implode("\n", $messages);
}










This code listing demonstrates the simplest usage of Zend_File_Transfer. A local destination is set with the
setDestination() method, then the receive() method is called. if there are any upload errors, an error will
be returned.



Note


Attention


This example is suitable only for demonstrating the basic API of Zend_File_Transfer. You should never
use this code listing in a production environment, because severe security issues may be introduced. You should
always use validators to increase security.





Supported Adapters for Zend_File_Transfer


Zend_File_Transfer is designed to support a variety of adapters and transfer directions. With
Zend_File_Transfer you can upload, download and even forward (upload one adapter and download with another
adapter at the same time) files.





Options for Zend_File_Transfer


Zend_File_Transfer and its adapters support different options. You can set all options either by passing them
to the constructor or by calling setOptions($options). getOptions() will return the options that are
currently set. The following is a list of all supported options.



		ignoreNoFile: If this option is set to TRUE, all validators will ignore files that have not been uploaded
by the form. The default value is FALSE which results in an error if no files were specified.








Checking Files


Zend_File_Transfer has several methods that check for various states of the specified file. These are useful if
you must process files after they have been uploaded. These methods include:



		isValid($files = null): This method will check if the given files are valid, based on the validators that are
attached to the files. If no files are specified, all files will be checked. You can call isValid() before
calling receive(); in this case, receive() will not call isValid() internally again when receiving
the file.


		isUploaded($files = null): This method will check if the specified files have been uploaded by the user. This
is useful when you have defined one or more optional files. When no files are specified, all files will be
checked.


		isReceived($files = null): This method will check if the given files have already been received. When no
files are specified, all files will be checked.





Checking Files


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$upload = new Zend_File_Transfer();

// Returns all known internal file information
$files = $upload->getFileInfo();

foreach ($files as $file => $info) {
    // file uploaded ?
    if (!$upload->isUploaded($file)) {
        print "Why havn't you uploaded the file ?";
        continue;
    }

    // validators are ok ?
    if (!$upload->isValid($file)) {
        print "Sorry but $file is not what we wanted";
        continue;
    }
}

$upload->receive();













Additional File Informations


Zend_File_Transfer can return additional information on files. The following methods are available:



		getFileName($file = null, $path = true): This method will return the real file name of a transferred file.


		getFileInfo($file = null): This method will return all internal information for the given file.


		getFileSize($file = null): This method will return the real filesize for the given file.


		getHash($hash = ‘crc32’, $files = null): This method returns a hash of the content of a given transferred
file.


		getMimeType($files = null): This method returns the mimetype of a given transferred file.





getFileName() accepts the name of the element as first parameter. If no name is given, all known filenames will
be returned in an array. If the file is a multifile, you will also get an array. If there is only a single file a
string will be returned.


By default file names will be returned with the complete path. If you only need the file name without path, you can
set the second parameter, $path, which will truncate the file path when set to FALSE.


Getting the Filename


		1
2
3
4
5
6
7
8


		$upload = new Zend_File_Transfer();
$upload->receive();

// Returns the file names from all files
$names = $upload->getFileName();

// Returns the file names from the 'foo' form element
$names = $upload->getFileName('foo');











Note


Note that the file name can change after you receive the file, because all filters will be applied once the file
is received. So you should always call getFileName() after the files have been received.




getFileSize() returns per default the real filesize in SI notation which means you will get 2kB instead of
2048. If you need only the plain size set the useByteString option to FALSE.


Getting the size of a file


		1
2
3
4
5
6
7
8
9


		$upload = new Zend_File_Transfer();
$upload->receive();

// Returns the sizes from all files as array if more than one file was uploaded
$size = $upload->getFileSize();

// Switches of the SI notation to return plain numbers
$upload->setOption(array('useByteString' => false));
$size = $upload->getFileSize();











Note


Client given filesize


Note that the filesize which is given by the client is not seen as save input. Therefor the real size of the
file will be detected and returned instead of the filesize sent by the client.




getHash() accepts the name of a hash algorithm as first parameter. For a list of known algorithms refer to
PHP’s hash_algos method [http://php.net/hash_algos]. If you don’t specify an algorithm, the crc32 algorithm will be used by default.


Getting the hash of a file


		1
2
3
4
5
6
7
8


		$upload = new Zend_File_Transfer();
$upload->receive();

// Returns the hashes from all files as array if more than one file was uploaded
$hash = $upload->getHash('md5');

// Returns the hash for the 'foo' form element
$names = $upload->getHash('crc32', 'foo');











Note


Return value


Note that if the given file or form name contains more than one file, the returned value will be an array.




getMimeType() returns the mimetype of a file. If more than one file was uploaded it returns an array, otherwise
a string.


Getting the mimetype of a file


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer();
$upload->receive();

$mime = $upload->getMimeType();

// Returns the mimetype for the 'foo' form element
$names = $upload->getMimeType('foo');











Note


Client given mimetype


Note that the mimetype which is given by the client is not seen as save input. Therefor the real mimetype of the
file will be detected and returned instead of the mimetype sent by the client.





Warning


Possible exception


Note that this method uses the fileinfo extension if it is available. If this extension can not be found, it
uses the mimemagic extension. When no extension was found it raises an exception.





Warning


Original data within $_FILES


Due to security reasons also the original data within $_FILES will be overridden as soon as
Zend_File_Transfer is initiated. When you want to omit this behaviour and have the original data simply set
the detectInfos option to FALSE at initiation.


This option will have no effect after you initiated Zend_File_Transfer.







Progress for file uploads


Zend_File_Transfer can give you the actual state of a fileupload in progress. To use this feature you need
either the APC extension which is provided with most default PHP installations, or the UploadProgress
extension. Both extensions are detected and used automatically. To be able to get the progress you need to meet
some prerequisites.


First, you need to have either APC or UploadProgress to be enabled. Note that you can disable this feature of
APC within your php.ini.


Second, you need to have the proper hidden fields added in the form which sends the files. When you use
Zend_Form_Element_File this hidden fields are automatically added by Zend_Form.


When the above two points are provided then you are able to get the actual progress of the file upload by using the
getProgress() method. Actually there are 2 official ways to handle this.



Using a progressbar adapter


You can use the convinient Zend_ProgressBar to get the actual progress and can display it in a simple manner to
your user.


To archive this, you have to add the wished Zend_ProgressBar_Adapter to getProgress() when you are calling
it the first time. For details about the right adapter to use, look into the chapter Zend_ProgressBar
Standard Adapters.


Using the progressbar adapter to retrieve the actual state


		1
2
3
4
5
6
7


		$adapter = new Zend_ProgressBar_Adapter_Console();
$upload  = Zend_File_Transfer_Adapter_Http::getProgress($adapter);

$upload = null;
while (!$upload['done']) {
    $upload = Zend_File_Transfer_Adapter_Http:getProgress($upload);
}










The complete handling is done by getProgress() for you in the background.





Using getProgress() manually


You can also work manually with getProgress() without the usage of Zend_ProgressBar.


Call getProgress() without settings. It will return you an array with several keys. They differ according to
the used PHP extension. But the following keys are given independently of the extension:



		id: The ID of this upload. This ID identifies the upload within the extension. You can set it to the value of
the hidden key which identified the upload when initially calling getProgress(). Per default it is set to
progress_key. You must not change the ID afterwards.


		total: The total filesize of the uploaded files in bytes as integer.


		current: The current uploaded filesize in bytes as integer.


		rate: The average upload speed in bytes per second as integer.


		done: Returns TRUE when the upload is finished and FALSE otherwise.


		message: The actual message. Either the progress as text in the form 10kB / 200kB, or a helpful message
in the case of a problem. Problems could be, that there is no upload in progress, that there was a failure while
retrieving the data for the progress, or that the upload has been canceled.


		progress: This optional key takes a instance of Zend_ProgressBar_Adapter or Zend_ProgressBar and
allows to get the actual upload state within a progressbar.


		session: This optional key takes the name of a session namespace which will be used within
Zend_ProgressBar. When this key is not given it defaults to Zend_File_Transfer_Adapter_Http_ProgressBar.





All other returned keys are provided directly from the extensions and will not be checked.


The following example shows a possible manual usage:


Manual usage of the file progress


		1
2
3
4
5
6
7


		$upload  = Zend_File_Transfer_Adapter_Http::getProgress();

while (!$upload['done']) {
    $upload = Zend_File_Transfer_Adapter_Http:getProgress($upload);
    print "\nActual progress:".$upload['message'];
    // do whatever you need
}











Note


Knowing the file to get the progress from


The above example works when your upload identified is set to ‘progress_key’. When you are using another
identifier within your form you must give the used identifier as first parameter to getProgress() on the
initial call.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_File_Transfer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.date.time.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
DateTime Element


Zend\Form\Element\DateTime is meant to be paired with the Zend/Form/View/Helper/FormDateTime for HTML5 inputs
with type datetime [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-and-time-state-(type=datetime)]. This element adds filters and validators to it’s input filter specification in order to
validate HTML5 datetime input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "datetime".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$dateTime = new Element\DateTime('appointment-date-time');
$dateTime
    ->setLabel('Appointment Date/Time')
    ->setAttributes(array(
        'min'  => '2010-01-01T00:00:00Z',
        'max'  => '2020-01-01T00:00:00Z',
        'step' => '1', // minutes; default step interval is 1 min
    ));

$form = new Form('my-form');
$form->add($dateTime);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.


If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the date
value is greater than the minimum value.


If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure the
date value is less than the maximum value.


If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\DateStep validator will be added to ensure the date value is within a certain interval of
minutes (default is 1 minute).






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                DateTime Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Navigation is a component for managing trees of pointers to web pages. Simply put: It can be used for
creating menus, breadcrumbs, links, and sitemaps, or serve as a model for other navigation related purposes.



Pages and Containers


There are two main concepts in Zend\Navigation:



Pages


A page (Zend\Navigation\AbstractPage) in Zend\Navigation – in its most basic form – is an object that
holds a pointer to a web page. In addition to the pointer itself, the page object contains a number of other
properties that are typically relevant for navigation, such as label, title, etc.


Read more about pages in the pages section.





Containers


A navigation container (Zend\Navigation\AbstractContainer) is a container class for pages. It has methods
for adding, retrieving, deleting and iterating pages. It implements the SPL [http://php.net/spl] interfaces RecursiveIterator
and Countable, and can thus be iterated with SPL iterators such as RecursiveIteratorIterator.


Read more about containers in the containers section.



Note


Zend\Navigation\AbstractPage extends Zend\Navigation\AbstractContainer, which means that a page
can have sub pages.









Separation of data (model) and rendering (view)


Classes in the Zend\Navigation namespace do not deal with rendering of navigational elements. Rendering is done
with navigational view helpers. However, pages contain information that is used by view helpers when rendering,
such as; label, class (CSS), title, lastmod and priority properties for sitemaps, etc.


Read more about rendering navigational elements in the manual section on navigation helpers.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.progress-bar.adapter.js-push.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_ProgressBar_Adapter_JsPush


Zend_ProgressBar_Adapter_JsPush is an adapter which let’s you update a progressbar in a browser via Javascript
Push. This means that no second connection is required to gather the status about a running process, but that the
process itself sends its status directly to the browser.


You can set the adapter options either via the set* methods or give an array or a Zend_Config instance with
options as first parameter to the constructor. The available options are:



		updateMethodName: The javascript method which should be called on every update. Default value is
Zend_ProgressBar_Update.


		finishMethodName: The javascript method which should be called after finish status was set. Default value is
NULL, which means nothing is done.





The usage of this adapter is quite simple. First you create a progressbar in your browser, either with JavaScript
or previously created with plain HTML. Then you define the update method and optionally the finish method in
JavaScript, both taking a json object as single argument. Then you call a webpage with the long-running process in
a hidden iframe or object tag. While the process is running, the adapter will call the update method on every
update with a json object, containing the following parameters:



		current: The current absolute value


		max: The max absolute value


		percent: The calculated percentage


		timeTaken: The time how long the process ran yet


		timeRemaining: The expected time for the process to finish


		text: The optional status message, if given





Basic example for the client-side stuff


This example illustrates a basic setup of HTML, CSS and JavaScript for the JsPush adapter


		1
2
3
4
5


		<div id="zend-progressbar-container">
    <div id="zend-progressbar-done"></div>
</div>

<iframe src="long-running-process.php" id="long-running-process"></iframe>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		#long-running-process {
    position: absolute;
    left: -100px;
    top: -100px;

    width: 1px;
    height: 1px;
}

#zend-progressbar-container {
    width: 100px;
    height: 30px;

    border: 1px solid #000000;
    background-color: #ffffff;
}

#zend-progressbar-done {
    width: 0;
    height: 30px;

    background-color: #000000;
}










		1
2
3
4
5


		function Zend_ProgressBar_Update(data)
{
    document.getElementById('zend-progressbar-done').style.width =
         data.percent + '%';
}










This will create a simple container with a black border and a block which indicates the current process. You should
not hide the iframe or object by display: none;, as some browsers like Safari 2 will not load the actual
content then.


Instead of creating your custom progressbar, you may want to use one of the available JavaScript libraries like
Dojo, jQuery etc. For example, there are:



		Dojo: http://dojotoolkit.org/reference-guide/dijit/ProgressBar.html


		jQuery: http://t.wits.sg/2008/06/20/jquery-progress-bar-11/


		MooTools: http://davidwalsh.name/dw-content/progress-bar.php


		Prototype: http://livepipe.net/control/progressbar






Note


Interval of updates


You should take care of not sending too many updates, as every update has a min-size of 1kb. This is a
requirement for the Safari browser to actually render and execute the function call. Internet Explorer has a
similar limitation of 256 bytes.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_ProgressBar_Adapter_JsPush
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

snippets.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  

          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                <no title>
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.empty.png





modules/zend.form.view.helper.form-time.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormTime


The FormTime view helper can be used to render a <input type="time">
HTML5 form input. It is meant to work with the Zend\Form\Element\Time
element, which provides a default input specification for validating HTML5 time values.


FormTime extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Time('my-time');

// Within your view...

echo $this->formTime($element);
// <input type="time" name="my-time" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormTime
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.html-entities.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HtmlEntities


Returns the string $value, converting characters to their corresponding HTML entity equivalents where they
exist.



Supported options for Zend_Filter_HtmlEntities


The following options are supported for Zend_Filter_HtmlEntities:



		quotestyle: Equivalent to the PHP htmlentities native function parameter quote_style. This allows you
to define what will be done with ‘single’ and “double” quotes. The following constants are accepted:
ENT_COMPAT, ENT_QUOTES ENT_NOQUOTES with the default being ENT_COMPAT.





		charset: Equivalent to the PHP htmlentities native function parameter charset. This defines the
character set to be used in filtering. Unlike the PHP native function the default is ‘UTF-8’. See
“http://php.net/htmlentities” for a list of supported character sets.



Note


This option can also be set via the $options parameter as a Zend_Config object or array. The option
key will be accepted as either charset or encoding.







		doublequote: Equivalent to the PHP htmlentities native function parameter double_encode. If set to
false existing html entities will not be encoded. The default is to convert everything (true).



Note


This option must be set via the $options parameter or the setDoubleEncode() method.













Basic usage


See the following example for the default behaviour of this filter.


		1
2
3


		$filter = new Zend_Filter_HtmlEntities();

print $filter->filter('<');













Quote Style


Zend_Filter_HtmlEntities allows changing the quote style used. This can be useful when you want to leave
double, single, or both types of quotes un-filtered. See the following example:


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_QUOTES));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that ‘single’ as well as “double” quotes are
filtered.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_COMPAT));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that “double” quotes are filtered while ‘single’
quotes are not altered.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_NOQUOTES));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that neither “double” or ‘single’ quotes are altered.





Helper Methods


To change or retrieve the quotestyle after instantiation, the two methods setQuoteStyle() and
getQuoteStyle() may be used respectively. setQuoteStyle() accepts one parameter $quoteStyle. The
following constants are accepted: ENT_COMPAT, ENT_QUOTES, ENT_NOQUOTES


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);










To change or retrieve the charset after instantiation, the two methods setCharSet() and getCharSet()
may be used respectively. setCharSet() accepts one parameter $charSet. See “http://php.net/htmlentities”
for a list of supported character sets.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);










To change or retrieve the doublequote option after instantiation, the two methods setDoubleQuote() and
getDoubleQuote() may be used respectively. setDoubleQuote() accepts one boolean parameter $doubleQuote.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HtmlEntities
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.headers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Http\Headers And The Various Header Classes



Overview


The Zend\Http\Headers class is a container for HTTP headers. It is typically accessed as part of a
Zend\Http\Request or Zend\Http\Response header() call. The Headers container will lazily load actual
Header objects as to reduce the overhead of header specific parsing.


The Zend\Http\Header\* classes are the domain specific implementations for the various types of Headers that
one might encounter during the typical HTTP request. If a header of unknown type is encountered, it will be
implemented as a Zend\Http\Header\GenericHeader instance. See the below table for a list of the various HTTP
headers and the API that is specific to each header type.





Quick Start


The quickest way to get started interacting with header objects is by getting an already populated Headers
container from a request or response object.





Configuration Options


None currently available.





Available Methods



		Headers::fromString


		Headers::fromString(string $string)


Populates headers from string representation


Parses a string for headers, and aggregates them, in order, in the current instance, primarily as strings until
they are needed (they will be lazy loaded).


Returns Zend\Http\Headers









		setPluginClassLoader


		setPluginClassLoader(Zend\Loader\PluginClassLocator $pluginClassLoader)


Set an alternate implementation for the plugin class loader


Returns Zend\Http\Headers









		getPluginClassLoader


		getPluginClassLoader()


Return an instance of a Zend\Loader\PluginClassLocator, lazyload and inject map if necessary.


Returns Zend\Loader\PluginClassLocator









		addHeaders


		addHeaders(array|Traversable $headers)


Add many headers at once


Expects an array (or Traversable object) of type/value pairs.


Returns Zend\Http\Headers









		addHeaders


		addHeaderLine(string $headerFieldNameOrLine, string $fieldValue)


Add a raw header line, either in name => value, or as a single string ‘name: value’


This method allows for lazy-loading in that the parsing and instantiation of Header object will be delayed until
they are retrieved by either get() or current().


Returns Zend\Http\Headers









		addHeader


		addHeader(Zend\Http\Header\HeaderInterface $header)


Add a Header to this container, for raw values see addHeaderLine() and addHeaders().


Returns Zend\Http\Headers









		removeHeader


		removeHeader(Zend\Http\Header\HeaderInterface $header)


Remove a Header from the container


Returns bool









		clearHeaders


		clearHeaders()


Clear all headers


Removes all headers from queue


Returns Zend\Http\Headers









		get


		get(string $name)


Get all headers of a certain name/type


Returns false| Zend\Http\Header\HeaderInterface| ArrayIterator









		has


		has(string $name)


Test for existence of a type of header


Returns bool









		next


		next()


Advance the pointer for this object as an interator


Returns void









		key


		key()


Return the current key for this object as an interator


Returns mixed









		valid


		valid()


Is this iterator still valid?


Returns bool









		rewind


		rewind()


Reset the internal pointer for this object as an iterator


Returns void









		current


		current()


Return the current value for this iterator, lazy loading it if need be


Returns Zend\Http\Header\HeaderInterface









		count


		count()


Return the number of headers in this container. If all headers have not been parsed, actual count could increase
if MultipleHeader objects exist in the Request/Response. If you need an exact count, iterate.


Returns int









		toString


		toString()


Render all headers at once


This method handles the normal iteration of headers; it is up to the concrete classes to prepend with the
appropriate status/request line.


Returns string









		toArray


		toArray()


Return the headers container as an array


Returns array









		forceLoading


		forceLoading()


By calling this, it will force parsing and loading of all headers, after this count() will be accurate


Returns bool











Examples





Zend\Http\Header\* Base Methods



		fromString


		fromString(string $headerLine)


Factory to generate a header object from a string


Returns Zend\Http\Header\GenericHeader









		getFieldName


		getFieldName()


Retrieve header field name


Returns string









		getFieldValue


		getFieldValue()


Retrieve header field value


Returns string









		toString


		toString()


Cast to string as a well formed HTTP header line


Returns in form of “NAME: VALUE\r\n”


Returns string











List of Http Header Types



Zend\Http\Header\* Classes





		Class Name
		Additional Methods





		Accept
		N/A



		AcceptCharset
		N/A



		AcceptEncoding
		N/A



		AcceptLanguage
		N/A



		AcceptRanges
		getRangeUnit() / setRangeUnit() - The range unit of the accept ranges header



		Age
		getDeltaSeconds() / setDeltaSeconds() - The age in delta seconds



		Allow
		getAllowedMethods() / setAllowedMethods() - An array of allowed methods



		AuthenticationInfo
		N/A



		Authorization
		N/A



		CacheControl
		N/A



		Connection
		N/A



		ContentDisposition
		N/A



		ContentEncoding
		N/A



		ContentLanguage
		N/A



		ContentLength
		N/A



		ContentLocation
		N/A



		ContentMD5
		N/A



		ContentRange
		N/A



		ContentType
		N/A



		Cookie
		Extends \ArrayObjectsetEncodeValue() / getEncodeValue() - Whether or not to encode values



		Date
		N/A



		Etag
		N/A



		Expect
		N/A



		Expires
		N/A



		From
		N/A



		Host
		N/A



		IfMatch
		N/A



		IfModifiedSince
		N/A



		IfNoneMatch
		N/A



		IfRange
		N/A



		IfUnmodifiedSince
		N/A



		KeepAlive
		N/A



		LastModified
		N/A



		Location
		N/A



		MaxForwards
		N/A



		Pragma
		N/A



		ProxyAuthenticate
		N/A



		ProxyAuthorization
		N/A



		Range
		N/A



		Referer
		N/A



		Refresh
		N/A



		RetryAfter
		N/A



		Server
		N/A



		SetCookie
		getName() / setName() - The cookies namegetValue() / setValue() - The cookie valuegetDomain() / setDomain() - The domain the cookie applies togetExpires() / setExpires() - The time frame the cookie is valid for, null is a session cookiegetPath() / setPath() - The uri path the cookie is bound toisSecure() / setSecure() - Whether the cookies contains the Secure flagisHttponly() / setHttponly() - Whether the cookies can be accessed via HTTP only



		TE
		N/A



		Trailer
		N/A



		TransferEncoding
		N/A



		Upgrade
		N/A



		UserAgent
		N/A



		Vary
		N/A



		Via
		N/A



		Warning
		N/A



		WWWAuthenticate
		N/A













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Http\Headers And The Various Header Classes
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.xmlrpc.server.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\XmlRpc\Server



Introduction


Zend\XmlRpc\Server is intended as a fully-featured XML-RPC server, following the specifications outlined at
www.xmlrpc.com [http://www.xmlrpc.com/spec]. Additionally, it implements the system.multicall() method, allowing boxcarring of requests.





Basic Usage


An example of the most basic use case:


		1
2
3


		$server = new Zend\XmlRpc\Server();
$server->setClass('My\Service\Class');
echo $server->handle();













Server Structure


Zend\XmlRpc\Server is composed of a variety of components, ranging from the server itself to request, response,
and fault objects.


To bootstrap Zend\XmlRpc\Server, the developer must attach one or more classes or functions to the server, via
the setClass() and addFunction() methods.


Once done, you may either pass a Zend\XmlRpc\Request object to Zend\XmlRpc\Server::handle(), or it will
instantiate a Zend\XmlRpc\Request\Http object if none is provided – thus grabbing the request from
php://input.


Zend\XmlRpc\Server::handle() then attempts to dispatch to the appropriate handler based on the method
requested. It then returns either a Zend\XmlRpc\Response-based object or a Zend\XmlRpc\Server\Faultobject. These objects both have __toString() methods that create valid XML-RPC XML responses, allowing them
to be directly echoed.





Anatomy of a webservice



General considerations


For maximum performance it is recommended to use a simple bootstrap file for the server component. Using
Zend\XmlRpc\Server inside a Zend\Controller is strongly discouraged to avoid the
overhead.


Services change over time and while webservices are generally less change intense as code-native APIs, it is
recommended to version your service. Do so to lay grounds to provide compatibility for clients using older versions
of your service and manage your service lifecycle including deprecation timeframes.To do so just include a version
number into your URI. It is also recommended to include the remote protocol name in the URI to allow easy
integration of upcoming remoting technologies. http://myservice.ws/1.0/XMLRPC/.





What to expose?


Most of the time it is not sensible to expose business objects directly. Business objects are usually small and
under heavy change, because change is cheap in this layer of your application. Once deployed and adopted, web
services are hard to change. Another concern is I/O and latency: the best webservice calls are those not
happening. Therefore service calls need to be more coarse-grained than usual business logic is. Often an additional
layer in front of your business objects makes sense. This layer is sometimes referred to as Remote Facade [http://martinfowler.com/eaaCatalog/remoteFacade.html]. Such
a service layer adds a coarse grained interface on top of your business logic and groups verbose operations into
smaller ones.







Conventions


Zend\XmlRpc\Server allows the developer to attach functions and class method calls as dispatchable XML-RPC
methods. Via Zend\Server\Reflection, it does introspection on all attached methods, using the function and
method docblocks to determine the method help text and method signatures.


XML-RPC types do not necessarily map one-to-one to PHP types. However, the code will do its best to guess the
appropriate type based on the values listed in @param and @return lines. Some XML-RPC types have no immediate
PHP equivalent, however, and should be hinted using the XML-RPC type in the PHPDoc. These include:



		dateTime.iso8601, a string formatted as ‘YYYYMMDDTHH:mm:ss‘


		base64, base64 encoded data


		struct, any associative array





An example of how to hint follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		/**
* This is a sample function
*
* @param base64 $val1 Base64-encoded data
* @param dateTime.iso8601 $val2 An ISO date
* @param struct $val3 An associative array
* @return struct
*/
function myFunc($val1, $val2, $val3)
{
}










PhpDocumentor does no validation of the types specified for params or return values, so this will have no impact on
your API documentation. Providing the hinting is necessary, however, when the server is validating the parameters
provided to the method call.


It is perfectly valid to specify multiple types for both params and return values; the XML-RPC specification even
suggests that system.methodSignature should return an array of all possible method signatures (i.e., all possible
combinations of param and return values). You may do so just as you normally would with PhpDocumentor, using the
‘|’ operator:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		/**
* This is a sample function
*
* @param string|base64 $val1 String or base64-encoded data
* @param string|dateTime.iso8601 $val2 String or an ISO date
* @param array|struct $val3 Normal indexed array or an associative array
* @return boolean|struct
*/
function myFunc($val1, $val2, $val3)
{
}











Note


Allowing multiple signatures can lead to confusion for developers using the services; to keep things simple, a
XML-RPC service method should only have a single signature.







Utilizing Namespaces


XML-RPC has a concept of namespacing; basically, it allows grouping XML-RPC methods by dot-delimited
namespaces. This helps prevent naming collisions between methods served by different classes. As an example, the
XML-RPC server is expected to server several methods in the ‘system’ namespace:



		system.listMethods


		system.methodHelp


		system.methodSignature





Internally, these map to the methods of the same name in Zend\XmlRpc\Server.


If you want to add namespaces to the methods you serve, simply provide a namespace to the appropriate method when
attaching a function or class:


		1
2
3
4
5
6


		// All public methods in My_Service_Class will be accessible as
// myservice.METHODNAME
$server->setClass('My\Service\Class', 'myservice');

// Function 'somefunc' will be accessible as funcs.somefunc
$server->addFunction('somefunc', 'funcs');













Custom Request Objects


Most of the time, you’ll simply use the default request type included with Zend\XmlRpc\Server,
Zend\XmlRpc\Request\Http. However, there may be times when you need XML-RPC to be available via the CLI, a
GUI, or other environment, or want to log incoming requests. To do so, you may create a custom request object
that extends Zend\XmlRpc\Request. The most important thing to remember is to ensure that the getMethod()
and getParams() methods are implemented so that the XML-RPC server can retrieve that information in order to
dispatch the request.





Custom Responses


Similar to request objects, Zend\XmlRpc\Server can return custom response objects; by default, a
Zend_XmlRpc_Response_Http object is returned, which sends an appropriate Content-Type HTTP header for use
with XML-RPC. Possible uses of a custom object would be to log responses, or to send responses back to
STDOUT.


To use a custom response class, use Zend\XmlRpc\Server::setResponseClass() prior to calling handle().





Handling Exceptions via Faults


Zend_XmlRpc_Server catches Exceptions generated by a dispatched method, and generates an XML-RPC fault
response when such an exception is caught. By default, however, the exception messages and codes are not used in a
fault response. This is an intentional decision to protect your code; many exceptions expose more information about
the code or environment than a developer would necessarily intend (a prime example includes database abstraction or
access layer exceptions).


Exception classes can be whitelisted to be used as fault responses, however. To do so, simply utilize
Zend\XmlRpc\Server\Fault::attachFaultException() to pass an exception class to whitelist:


		1


		Zend\XmlRpc\Server\Fault::attachFaultException('My\Project\Exception');










If you utilize an exception class that your other project exceptions inherit, you can then whitelist a whole family
of exceptions at a time. Zend\XmlRpc\Server\Exceptions are always whitelisted, to allow reporting specific
internal errors (undefined methods, etc.).


Any exception not specifically whitelisted will generate a fault response with a code of ‘404’ and a message of
‘Unknown error’.





Caching Server Definitions Between Requests


Attaching many classes to an XML-RPC server instance can utilize a lot of resources; each class must introspect
using the Reflection API (via Zend_Server_Reflection), which in turn generates a list of all possible method
signatures to provide to the server class.


To reduce this performance hit somewhat, Zend\XmlRpc\Server\Cache can be used to cache the server definition
between requests. When combined with __autoload(), this can greatly increase performance.


An sample usage follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\XmlRpc\Server as XmlRpcServer;

// Register the "My\Services" namespace
$loader = new Zend\Loader\StandardAutoloader();
$loader->registerNamespace('My\Services', 'path to My/Services');
$loader->register();

$cacheFile = dirname(__FILE__) . '/xmlrpc.cache';
$server = new XmlRpcServer();

if (!XmlRpcServer\Cache::get($cacheFile, $server)) {

    $server->setClass('My\Services\Glue', 'glue');   // glue. namespace
    $server->setClass('My\Services\Paste', 'paste'); // paste. namespace
    $server->setClass('My\Services\Tape', 'tape');   // tape. namespace

    XmlRpcServer\Cache::save($cacheFile, $server);
}

echo $server->handle();










The above example attempts to retrieve a server definition from xmlrpc.cache in the same directory as the
script. If unsuccessful, it loads the service classes it needs, attaches them to the server instance, and then
attempts to create a new cache file with the server definition.





Usage Examples


Below are several usage examples, showing the full spectrum of options available to developers. Usage examples will
each build on the previous example provided.


Basic Usage


The example below attaches a function as a dispatchable XML-RPC method and handles incoming calls.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		/**
 * Return the MD5 sum of a value
 *
 * @param string $value Value to md5sum
 * @return string MD5 sum of value
 */
function md5Value($value)
{
    return md5($value);
}

$server = new Zend\XmlRpc\Server();
$server->addFunction('md5Value');
echo $server->handle();










Attaching a class


The example below illustrates attaching a class’ public methods as dispatchable XML-RPC methods.


		1
2
3
4
5


		require_once 'Services/Comb.php';

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\Comb');
echo $server->handle();










Attaching a class with arguments


The following example illustrates how to attach a class’ public methods and passing arguments to its methods. This
can be used to specify certain defaults when registering service classes.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		class Services_PricingService
{
    /**
     * Calculate current price of product with $productId
     *
     * @param ProductRepository $productRepository
     * @param PurchaseRepository $purchaseRepository
     * @param integer $productId
     */
    public function calculate(ProductRepository $productRepository,
                              PurchaseRepository $purchaseRepository,
                              $productId)
    {
        ...
    }
}

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\PricingService',
                  'pricing',
                  new ProductRepository(),
                  new PurchaseRepository());










The arguments passed at setClass() at server construction time are injected into the method call
pricing.calculate() on remote invokation. In the example above, only the argument $purchaseId is expected
from the client.


Passing arguments only to constructor


Zend\XmlRpc\Server allows to restrict argument passing to constructors only. This can be used for constructor
dependency injection. To limit injection to constructors, call sendArgumentsToAllMethods and pass FALSE as
an argument. This disables the default behavior of all arguments being injected into the remote method. In the
example below the instance of ProductRepository and PurchaseRepository is only injected into the
constructor of Services_PricingService2.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		class Services\PricingService2
{
    /**
     * @param ProductRepository $productRepository
     * @param PurchaseRepository $purchaseRepository
     */
    public function __construct(ProductRepository $productRepository,
                                PurchaseRepository $purchaseRepository)
    {
        ...
    }

    /**
     * Calculate current price of product with $productId
     *
     * @param integer $productId
     * @return double
     */
    public function calculate($productId)
    {
        ...
    }
}

$server = new Zend\XmlRpc\Server();
$server->sendArgumentsToAllMethods(false);
$server->setClass('Services\PricingService2',
                  'pricing',
                  new ProductRepository(),
                  new PurchaseRepository());










Attaching a class instance


setClass() allows to register a previously instantiated object at the server. Just pass an instance instead of
the class name. Obviously passing arguments to the constructor is not possible with pre-instantiated objects.


Attaching several classes using namespaces


The example below illustrates attaching several classes, each with their own namespace.


		1
2
3
4
5
6
7
8
9


		require_once 'Services/Comb.php';
require_once 'Services/Brush.php';
require_once 'Services/Pick.php';

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\Comb', 'comb');   // methods called as comb.*
$server->setClass('Services\Brush', 'brush'); // methods called as brush.*
$server->setClass('Services\Pick', 'pick');   // methods called as pick.*
echo $server->handle();










Specifying exceptions to use as valid fault responses


The example below allows any Services\Exception-derived class to report its code and message in the fault
response.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		require_once 'Services/Exception.php';
require_once 'Services/Comb.php';
require_once 'Services/Brush.php';
require_once 'Services/Pick.php';

// Allow Services_Exceptions to report as fault responses
Zend\XmlRpc\Server\Fault::attachFaultException('Services\Exception');

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\Comb', 'comb');   // methods called as comb.*
$server->setClass('Services\Brush', 'brush'); // methods called as brush.*
$server->setClass('Services\Pick', 'pick');   // methods called as pick.*
echo $server->handle();










Utilizing custom request and response objects


Some use cases require to utilize a custom request object. For example, XML/RPC is not bound to HTTP as a
transfer protocol. It is possible to use other transfer protocols like SSH or telnet to send the request and
response data over the wire. Another use case is authentication and authorization. In case of a different transfer
protocol, one need to change the implementation to read request data.


The example below instantiates a custom request object and passes it to the server to handle.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		require_once 'Services/Request.php';
require_once 'Services/Exception.php';
require_once 'Services/Comb.php';
require_once 'Services/Brush.php';
require_once 'Services/Pick.php';

// Allow Services_Exceptions to report as fault responses
Zend\XmlRpc\Server\Fault::attachFaultException('Services\Exception');

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\Comb', 'comb');   // methods called as comb.*
$server->setClass('Services\Brush', 'brush'); // methods called as brush.*
$server->setClass('Services\Pick', 'pick');   // methods called as pick.*

// Create a request object
$request = new Services\Request();

echo $server->handle($request);










Specifying a custom response class


The example below illustrates specifying a custom response class for the returned response.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		require_once 'Services/Request.php';
require_once 'Services/Response.php';
require_once 'Services/Exception.php';
require_once 'Services/Comb.php';
require_once 'Services/Brush.php';
require_once 'Services/Pick.php';

// Allow Services_Exceptions to report as fault responses
Zend\XmlRpc\Server\Fault::attachFaultException('Services\Exception');

$server = new Zend\XmlRpc\Server();
$server->setClass('Services\Comb', 'comb');   // methods called as comb.*
$server->setClass('Services\Brush', 'brush'); // methods called as brush.*
$server->setClass('Services\Pick', 'pick');   // methods called as pick.*

// Create a request object
$request = new Services\Request();

// Utilize a custom response
$server->setResponseClass('Services\Response');

echo $server->handle($request);













Performance optimization


Cache server definitions between requests


The example below illustrates caching server definitions between requests.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		use Zend\XmlRpc\Server as XmlRpcServer;

// Register the "Services" namespace
$loader = new Zend\Loader\StandardAutoloader();
$loader->registerNamespace('Services', 'path to Services');
$loader->register();

// Specify a cache file
$cacheFile = dirname(__FILE__) . '/xmlrpc.cache';

// Allow Services\Exceptions to report as fault responses
XmlRpcServer\Fault::attachFaultException('Services\Exception');

$server = new XmlRpcServer();

// Attempt to retrieve server definition from cache
if (!XmlRpcServer\Cache::get($cacheFile, $server)) {
    $server->setClass('Services\Comb', 'comb');   // methods called as comb.*
    $server->setClass('Services\Brush', 'brush'); // methods called as brush.*
    $server->setClass('Services\Pick', 'pick');   // methods called as pick.*

    // Save cache
    XmlRpcServer\Cache::save($cacheFile, $server);
}

// Create a request object
$request = new Services\Request();

// Utilize a custom response
$server->setResponseClass('Services\Response');

echo $server->handle($request);











Note


The server cache file should be located outside the document root.




Optimizing XML generation


Zend\XmlRpc\Server uses DOMDocument of PHP extension ext/dom to generate it’s XML output. While
ext/dom is available on a lot of hosts it is not exactly the fastest. Benchmarks have shown, that XmlWriter
from ext/xmlwriter performs better.


If ext/xmlwriter is available on your host, you can select a the XmlWriter-based generator to leaverage the
performance differences.


		1
2
3
4
5
6


		use Zend\XmlRpc;

XmlRpc\Value::setGenerator(new XmlRpc\Generator\XmlWriter());

$server = new XmlRpc\Server();
...











Note


Benchmark your application


Performance is determined by a lot of parameters and benchmarks only apply for the specific test case.
Differences come from PHP version, installed extensions, webserver and operating system just to name a few.
Please make sure to benchmark your application on your own and decide which generator to use based on your
numbers.





Note


Benchmark your client


This optimization makes sense for the client side too. Just select the alternate XML generator before doing
any work with Zend\XmlRpc\Client.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\XmlRpc\Server
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.alnum.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alnum


Zend\Validator\Alnum allows you to validate if a given value contains only alphabetical characters and digits.
There is no length limitation for the input you want to validate.



Supported options for Zend\Validator\Alnum


The following options are supported for Zend\Validator\Alnum:



		allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alnum();
if ($validator->isValid('Abcd12')) {
    // value contains only allowed chars
} else {
    // false
}













Using whitespaces


Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept
them as input. This allows to validate complete sentences or phrases.


To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alnum(array('allowWhiteSpace' => true));
if ($validator->isValid('Abcd and 12')) {
    // value contains only allowed chars
} else {
    // false
}













Using different languages


When using Zend\Validator\Alnum then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like
ä, ö and ü additionally to the characters from the english alphabet.


Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.


There are actually 3 languages which are not accepted in their own script. These languages are korean,
japanese and chinese because this languages are using an alphabet where a single character is build by
using multiple characters.


In the case you are using these languages, the input will only be validated by using the english alphabet.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alnum
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.consuming-atom-single.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Consuming a Single Atom Entry


Single Atom <entry> elements are also valid by themselves. Usually the URL for an entry is the feed’s URL
followed by /<entryId>, such as http://atom.example.com/feed/1, using the example URL we used above.


If you read a single entry, you will still have a Zend_Feed_Atom object, but it will automatically create an
“anonymous” feed to contain the entry.


Reading a Single-Entry Atom Feed


		1
2
3
4


		$feed = new Zend_Feed_Atom('http://atom.example.com/feed/1');
echo 'The feed has: ' . $feed->count() . ' entry.';

$entry = $feed->current();










Alternatively, you could instantiate the entry object directly if you know you are accessing an <entry>-only
document:


Using the Entry Object Directly for a Single-Entry Atom Feed


		1
2


		$entry = new Zend_Feed_Entry_Atom('http://atom.example.com/feed/1');
echo $entry->title();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Consuming a Single Atom Entry
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/zf2_logo.png
o 2





modules/zend.gdata.client-login.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Authenticating with ClientLogin


The ClientLogin mechanism enables you to write PHP application that acquire authenticated access to Google
Services, specifying a user’s credentials in the HTTP Client.


See http://code.google.com/apis/accounts/AuthForInstalledApps.html for more information about Google Data
ClientLogin authentication.


The Google documentation says the ClientLogin mechanism is appropriate for “installed applications” whereas the
AuthSub mechanism is for “web applications.” The difference is that AuthSub requires interaction from the user, and
a browser interface that can react to redirection requests. The ClientLogin solution uses PHP code to supply the
account credentials; the user is not required to enter her credentials interactively.


The account credentials supplied via the ClientLogin mechanism must be valid credentials for Google services, but
they are not required to be those of the user who is using the PHP application.



Creating a ClientLogin authenticated Http Client


The process of creating an authenticated HTTP client using the ClientLogin mechanism is to call the static
function Zend_Gdata_ClientLogin::getHttpClient() and pass the Google account credentials in plain text. The
return value of this function is an object of class Zend_Http_Client.


The optional third parameter is the name of the Google Data service. For instance, this can be ‘cl’ for Google
Calendar. The default is “xapi”, which is recognized by Google Data servers as a generic service name.


The optional fourth parameter is an instance of Zend_Http_Client. This allows you to set options in the client,
such as proxy server settings. If you pass NULL for this parameter, a generic Zend_Http_Client object is
created.


The optional fifth parameter is a short string that Google Data servers use to identify the client application for
logging purposes. By default this is string “Zend-ZendFramework”;


The optional sixth parameter is a string ID for a CAPTCHA(tm) challenge that has been issued by the server. It is
only necessary when logging in after receiving a CAPTCHA(tm) challenge from a previous login attempt.


The optional seventh parameter is a user’s response to a CAPTCHA(tm) challenge that has been issued by the server.
It is only necessary when logging in after receiving a CAPTCHA(tm) challenge from a previous login attempt.


Below is an example of PHP code for a web application to acquire authentication to use the Google Calendar
service and create a Zend_Gdata client object using that authenticated Zend_Http_Client.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Enter your Google account credentials
$email = 'johndoe@gmail.com';
$passwd = 'xxxxxxxx';
try {
   $client = Zend_Gdata_ClientLogin::getHttpClient($email, $passwd, 'cl');
} catch (Zend_Gdata_App_CaptchaRequiredException $cre) {
    echo 'URL of CAPTCHA image: ' . $cre->getCaptchaUrl() . "\n";
    echo 'Token ID: ' . $cre->getCaptchaToken() . "\n";
} catch (Zend_Gdata_App_AuthException $ae) {
   echo 'Problem authenticating: ' . $ae->exception() . "\n";
}

$cal = new Zend_Gdata_Calendar($client);













Terminating a ClientLogin authenticated Http Client


There is no method to revoke ClientLogin authentication as there is in the AuthSub token-based solution. The
credentials used in the ClientLogin authentication are the login and password to a Google account, and therefore
these can be used repeatedly in the future.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Authenticating with ClientLogin
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.set.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Standard Validation Classes


Zend Framework comes with a standard set of validation classes, which are ready for you to use.





Alnum


Zend\Validator\Alnum allows you to validate if a given value contains only alphabetical characters and digits.
There is no length limitation for the input you want to validate.



Supported options for Zend\Validator\Alnum


The following options are supported for Zend\Validator\Alnum:



		allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alnum();
if ($validator->isValid('Abcd12')) {
    // value contains only allowed chars
} else {
    // false
}













Using whitespaces


Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept
them as input. This allows to validate complete sentences or phrases.


To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alnum(array('allowWhiteSpace' => true));
if ($validator->isValid('Abcd and 12')) {
    // value contains only allowed chars
} else {
    // false
}













Using different languages


When using Zend\Validator\Alnum then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like
ä, ö and ü additionally to the characters from the english alphabet.


Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.


There are actually 3 languages which are not accepted in their own script. These languages are korean,
japanese and chinese because this languages are using an alphabet where a single character is build by
using multiple characters.


In the case you are using these languages, the input will only be validated by using the english alphabet.







Alpha


Zend\Validator\Alpha allows you to validate if a given value contains only alphabetical characters. There is no
length limitation for the input you want to validate. This validator is related to the Zend\Validator\Alnum
validator with the exception that it does not accept digits.



Supported options for Zend\Validator\Alpha


The following options are supported for Zend\Validator\Alpha:



		allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alpha();
if ($validator->isValid('Abcd')) {
    // value contains only allowed chars
} else {
    // false
}













Using whitespaces


Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept
them as input. This allows to validate complete sentences or phrases.


To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alpha(array('allowWhiteSpace' => true));
if ($validator->isValid('Abcd and efg')) {
    // value contains only allowed chars
} else {
    // false
}













Using different languages


When using Zend\Validator\Alpha then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like
ä, ö and ü additionally to the characters from the english alphabet.


Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.


There are actually 3 languages which are not accepted in their own script. These languages are korean,
japanese and chinese because this languages are using an alphabet where a single character is build by
using multiple characters.


In the case you are using these languages, the input will only be validated by using the english alphabet.







Barcode


Zend\Validator\Barcode allows you to check if a given value can be represented as barcode.


Zend\Validator\Barcode supports multiple barcode standards and can be extended with proprietary barcode
implementations very easily. The following barcode standards are supported:



		CODABAR: Also known as Code-a-bar.


This barcode has no length limitation. It supports only digits, and 6 special chars. Codabar is a self-checking
barcode. This standard is very old. Common use cases are within airbills or photo labs where multi-part forms are
used with dot-matrix printers.





		CODE128: CODE128 is a high density barcode.


This barcode has no length limitation. It supports the first 128 ascii characters. When used with printing
characters it has an checksum which is calculated modulo 103. This standard is used worldwide as it supports
upper and lowercase characters.





		CODE25: Often called “two of five” or “Code25 Industrial”.


This barcode has no length limitation. It supports only digits, and the last digit can be an optional checksum
which is calculated with modulo 10. This standard is very old and nowadays not often used. Common use cases are
within the industry.





		CODE25INTERLEAVED: Often called “Code 2 of 5 Interleaved”.


This standard is a variant of CODE25. It has no length limitation, but it must contain an even amount of
characters. It supports only digits, and the last digit can be an optional checksum which is calculated with
modulo 10. It is used worldwide and common on the market.





		CODE39: CODE39 is one of the oldest available codes.


This barcode has a variable length. It supports digits, upper cased alphabetical characters and 7 special
characters like whitespace, point and dollar sign. It can have an optional checksum which is calculated with
modulo 43. This standard is used worldwide and common within the industry.





		CODE39EXT: CODE39EXT is an extension of CODE39.


This barcode has the same properties as CODE39. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.





		CODE93: CODE93 is the successor of CODE39.


This barcode has a variable length. It supports digits, alphabetical characters and 7 special characters. It has
an optional checksum which is calculated with modulo 47 and contains 2 characters. This standard produces a
denser code than CODE39 and is more secure.





		CODE93EXT: CODE93EXT is an extension of CODE93.


This barcode has the same properties as CODE93. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.





		EAN2: EAN is the shortcut for “European Article Number”.


These barcode must have 2 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.





		EAN5: EAN is the shortcut for “European Article Number”.


These barcode must have 5 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.





		EAN8: EAN is the shortcut for “European Article Number”.


These barcode can have 7 or 8 characters. It supports only digits. When it has a length of 8 characters it
includes a checksum. This standard is used worldwide but has a very limited range. It can be found on small
articles where a longer barcode could not be printed.





		EAN12: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used within the USA and common on the market. It
has been superseded by EAN13.





		EAN13: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 13 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used worldwide and common on the market.





		EAN14: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used worldwide and common on the market. It is the
successor for EAN13.





		EAN18: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 18 characters. It support only digits. The last digit is always a checksum
digit which is calculated with modulo 10. This code is often used for the identification of shipping containers.





		GTIN12: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN12 and is its successor. It’s commonly used within the USA.





		GTIN13: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN13 and is its successor. It is used worldwide by industry.





		GTIN14: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN14 and is its successor. It is used worldwide and common on the market.





		IDENTCODE: Identcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.


This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.





		INTELLIGENTMAIL: Intelligent Mail is a postal barcode.


This barcode can have a length of 20, 25, 29 or 31 characters. It supports only digits, and contains no checksum.
This standard is the successor of PLANET and POSTNET. It is mainly used by the United States Postal Services.





		ISSN: ISSN is the abbreviation for International Standard Serial Number.


This barcode can have a length of 8 or 13 characters. It supports only digits, and the last digit must be a
checksum digit which is calculated with modulo 11. It is used worldwide for printed publications.





		ITF14: ITF14 is the GS1 implementation of an Interleaved Two of Five bar code.


This barcode is a special variant of Interleaved 2 of 5. It must have a length of 14 characters and is based on
GTIN14. It supports only digits, and the last digit must be a checksum digit which is calculated with modulo 10.
It is used worldwide and common within the market.





		LEITCODE: Leitcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.


This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.





		PLANET: Planet is the abbreviation for Postal Alpha Numeric Encoding Technique.


This barcode can have a length of 12 or 14 characters. It supports only digits, and the last digit is always a
checksum. This standard is mainly used by the United States Postal Services.





		POSTNET: Postnet is used by the US Postal Service.


This barcode can have a length of 6, 7, 10 or 12 characters. It supports only digits, and the last digit is
always a checksum. This standard is mainly used by the United States Postal Services.





		ROYALMAIL: Royalmail is used by Royal Mail.


This barcode has no defined length. It supports digits, uppercase letters, and the last digit is always a
checksum. This standard is mainly used by Royal Mail for their Cleanmail Service. It is also called RM4SCC.





		SSCC: SSCC is the shortcut for “Serial Shipping Container Code”.


This barcode is a variant of EAN barcode. It must have a length of 18 characters and supports only digits. The
last digit must be a checksum digit which is calculated with modulo 10. It is commonly used by the transport
industry.





		UPCA: UPC is the shortcut for “Universal Product Code”.


This barcode preceded EAN13. It must have a length of 12 characters and supports only digits. The last digit must
be a checksum digit which is calculated with modulo 10. It is commonly used within the USA.





		UPCE: UPCE is the short variant from UPCA.


This barcode is a smaller variant of UPCA. It can have a length of 6, 7 or 8 characters and supports only digits.
When the barcode is 8 chars long it includes a checksum which is calculated with modulo 10. It is commonly used
with small products where a UPCA barcode would not fit.









Supported options for Zend\Validator\Barcode


The following options are supported for Zend\Validator\Barcode:



		adapter: Sets the barcode adapter which will be used. Supported are all above noted adapters. When using a
self defined adapter, then you have to set the complete class name.


		checksum: TRUE when the barcode should contain a checksum. The default value depends on the used adapter.
Note that some adapters don’t allow to set this option.


		options: Defines optional options for a self written adapters.








Basic usage


To validate if a given string is a barcode you just need to know its type. See the following example for an EAN13
barcode:


		1
2
3
4
5
6


		$valid = new Zend\Validator\Barcode('EAN13');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Optional checksum


Some barcodes can be provided with an optional checksum. These barcodes would be valid even without checksum.
Still, when you provide a checksum, then you should also validate it. By default, these barcode types perform no
checksum validation. By using the checksum option you can define if the checksum will be validated or ignored.


		1
2
3
4
5
6
7
8
9


		$valid = new Zend\Validator\Barcode(array(
    'adapter'  => 'EAN13',
    'checksum' => false,
));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}











Note


Reduced security by disabling checksum validation


By switching off checksum validation you will also reduce the security of the used barcodes. Additionally you
should note that you can also turn off the checksum validation for those barcode types which must contain a
checksum value. Barcodes which would not be valid could then be returned as valid even if they are not.







Writing custom adapters


You may write custom barcode validators for usage with Zend\Validator\Barcode; this is often necessary when
dealing with proprietary barcode types. To write your own barcode validator, you need the following information.



		Length: The length your barcode must have. It can have one of the following values:
		Integer: A value greater 0, which means that the barcode must have this length.


		-1: There is no limitation for the length of this barcode.


		“even”: The length of this barcode must have a even amount of digits.


		“odd”: The length of this barcode must have a odd amount of digits.


		array: An array of integer values. The length of this barcode must have one of the set array values.








		Characters: A string which contains all allowed characters for this barcode. Also the integer value 128 is
allowed, which means the first 128 characters of the ASCII table.


		Checksum: A string which will be used as callback for a method which does the checksum validation.





Your custom barcode validator must extend Zend\Validator\Barcode\AbstractAdapter or implement
Zend\Validator\Barcode\AdapterInterface.


As an example, let’s create a validator that expects an even number of characters that include all digits and the
letters ‘ABCDE’, and which requires a checksum.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		class My\Barcode\MyBar extends Zend\Validator\Barcode\AbstractAdapter
{
    protected $length     = 'even';
    protected $characters = '0123456789ABCDE';
    protected $checksum   = 'mod66';

    protected function mod66($barcode)
    {
        // do some validations and return a boolean
    }
}

$valid = new Zend\Validator\Barcode('My\Barcode\MyBar');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}















Between


Zend\Validator\Between allows you to validate if a given value is between two other values.



Note


ZendValidatorBetween supports only number validation


It should be noted that Zend\Validator\Between supports only the validation of numbers. Strings or dates can
not be validated with this validator.





Supported options for Zend\Validator\Between


The following options are supported for Zend\Validator\Between:



		inclusive: Defines if the validation is inclusive the minimum and maximum border values or exclusive. It
defaults to TRUE.


		max: Sets the maximum border for the validation.


		min: Sets the minimum border for the validation.








Default behaviour for Zend\Validator\Between


Per default this validator checks if a value is between min and max where both border values are allowed as
value.


		1
2
3
4


		$valid  = new Zend\Validator\Between(array('min' => 0, 'max' => 10));
$value  = 10;
$result = $valid->isValid($value);
// returns true










In the above example the result is TRUE due to the reason that per default the search is inclusively the border
values. This means in our case that any value from ‘0’ to ‘10’ is allowed. And values like ‘-1’ and ‘11’ will
return FALSE.





Validation exclusive the border values


Sometimes it is useful to validate a value by excluding the border values. See the following example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid  = new Zend\Validator\Between(
    array(
        'min' => 0,
        'max' => 10,
        'inclusive' => false
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns false










The example is almost equal to our first example but we excluded the border value. Now the values ‘0’ and ‘10’ are
no longer allowed and will return FALSE.







Callback


Zend\Validator\Callback allows you to provide a callback with which to validate a given value.



Supported options for Zend\Validator\Callback


The following options are supported for Zend\Validator\Callback:



		callback: Sets the callback which will be called for the validation.


		options: Sets the additional options which will be given to the callback.








Basic usage


The simplest usecase is to have a single function and use it as a callback. Let’s expect we have the following
function.


		1
2
3
4
5


		function myMethod($value)
{
    // some validation
    return true;
}










To use it within Zend\Validator\Callback you just have to call it this way:


		1
2
3
4
5
6


		$valid = new Zend\Validator\Callback('myMethod');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Usage with closures


PHP 5.3 introduces closures [http://php.net/functions.anonymous], which are basically self-contained or anonymous functions. PHP considers
closures another form of callback, and, as such, may be used with Zend\Validator\Callback. As an example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid = new Zend\Validator\Callback(function($value){
    // some validation
    return true;
});

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Usage with class-based callbacks


Of course it’s also possible to use a class method as callback. Let’s expect we have the following class method:


		1
2
3
4
5
6
7
8


		class MyClass
{
    public function myMethod($value)
    {
        // some validation
        return true;
    }
}










The definition of the callback is in this case almost the same. You have just to create an instance of the class
before the method and create an array describing the callback:


		1
2
3
4
5
6
7


		$object = new MyClass;
$valid = new Zend\Validator\Callback(array($object, 'myMethod'));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










You may also define a static method as a callback. Consider the following class definition and validator usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class MyClass
{
    public static function test($value)
    {
        // some validation
        return true;
    }
}

$valid = new Zend\Validator\Callback(array('MyClass', 'test'));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










Finally, if you are using PHP 5.3, you may define the magic method __invoke() in your class. If you do so,
simply providing an instance of the class as the callback will also work:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class MyClass
{
    public function __invoke($value)
    {
        // some validation
        return true;
    }
}

$object = new MyClass();
$valid = new Zend\Validator\Callback($object);
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Adding options


Zend\Validator\Callback also allows the usage of options which are provided as additional arguments to the
callback.


Consider the following class and method definition:


		1
2
3
4
5
6
7
8


		class MyClass
{
    function myMethod($value, $option)
    {
        // some validation
        return true;
    }
}










There are two ways to inform the validator of additional options: pass them in the constructor, or pass them to the
setOptions() method.


To pass them to the constructor, you would need to pass an array containing two keys, “callback” and “options”:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$valid = new Zend\Validator\Callback(array(
    'callback' => array('MyClass', 'myMethod'),
    'options'  => $option,
));

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










Otherwise, you may pass them to the validator after instantiation:


		1
2
3
4
5
6
7
8


		$valid = new Zend\Validator\Callback(array('MyClass', 'myMethod'));
$valid->setOptions($option);

if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










When there are additional values given to isValid() then these values will be added immediately after
$value.


		1
2
3
4
5
6
7
8


		$valid = new Zend\Validator\Callback(array('MyClass', 'myMethod'));
$valid->setOptions($option);

if ($valid->isValid($input, $additional)) {
    // input appears to be valid
} else {
    // input is invalid
}










When making the call to the callback, the value to be validated will always be passed as the first argument to the
callback followed by all other values given to isValid(); all other options will follow it. The amount and type
of options which can be used is not limited.







CreditCard


Zend\Validator\CreditCard allows you to validate if a given value could be a credit card number.


A credit card contains several items of metadata, including a hologram, account number, logo, expiration date,
security code and the card holder name. The algorithms for verifying the combination of metadata are only known to
the issuing company, and should be verified with them for purposes of payment. However, it’s often useful to know
whether or not a given number actually falls within the ranges of possible numbers prior to performing such
verification, and, as such, Zend\Validator\CreditCard simply verifies that the credit card number provided is
well-formed.


For those cases where you have a service that can perform comprehensive verification, Zend\Validator\CreditCard
also provides the ability to attach a service callback to trigger once the credit card number has been deemed
valid; this callback will then be triggered, and its return value will determine overall validity.


The following issuing institutes are accepted:



		American Express


China UnionPay


Diners Club Card Blanche


Diners Club International


Diners Club US & Canada


Discover Card


JCB


Laser


Maestro


MasterCard


Solo


Visa


Visa Electron









Note


Invalid institutes


The institutes Bankcard and Diners Club enRoute do not exist anymore. Therefore they are treated as
invalid.


Switch has been rebranded to Visa and is therefore also treated as invalid.





Supported options for Zend\Validator\CreditCard


The following options are supported for Zend\Validator\CreditCard:



		service: A callback to an online service which will additionally be used for the validation.


		type: The type of credit card which will be validated. See the below list of institutes for details.








Basic usage


There are several credit card institutes which can be validated by Zend\Validator\CreditCard. Per default, all
known institutes will be accepted. See the following example:


		1
2
3
4
5
6


		$valid = new Zend\Validator\CreditCard();
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The above example would validate against all known credit card institutes.





Accepting defined credit cards


Sometimes it is necessary to accept only defined credit card institutes instead of all; e.g., when you have a
webshop which accepts only Visa and American Express cards. Zend\Validator\CreditCard allows you to do exactly
this by limiting it to exactly these institutes.


To use a limitation you can either provide specific institutes at initiation, or afterwards by using setType().
Each can take several arguments.


You can provide a single institute:


		1
2
3


		$valid = new Zend\Validator\CreditCard(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS
);










When you want to allow multiple institutes, then you can provide them as array:


		1
2
3
4


		$valid = new Zend\Validator\CreditCard(array(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS,
    Zend\Validator\CreditCard::VISA
));










And as with all validators, you can also pass an associative array of options or an instance of Traversable. In
this case you have to provide the institutes with the type array key as simulated here:


		1
2
3


		$valid = new Zend\Validator\CreditCard(array(
    'type' => array(Zend\Validator\CreditCard::AMERICAN_EXPRESS)
));











Constants for credit card institutes





		Institute
		Constant





		American Express
		AMERICAN_EXPRESS



		China UnionPay
		UNIONPAY



		Diners Club Card Blanche
		DINERS_CLUB



		Diners Club International
		DINERS_CLUB



		Diners Club US & Canada
		DINERS_CLUB_US



		Discover Card
		DISCOVER



		JCB
		JCB



		Laser
		LASER



		Maestro
		MAESTRO



		MasterCard
		MASTERCARD



		Solo
		SOLO



		Visa
		VISA



		Visa Electron
		VISA







You can also set or add institutes afterward instantiation by using the methods setType(), addType() and
getType().


		1
2
3
4
5


		$valid = new Zend\Validator\CreditCard();
$valid->setType(array(
    Zend\Validator\CreditCard::AMERICAN_EXPRESS,
    Zend\Validator\CreditCard::VISA
));











Note


Default institute


When no institute is given at initiation then ALL will be used, which sets all institutes at once.


In this case the usage of addType() is useless because all institutes are already added.







Validation by using foreign APIs


As said before Zend\Validator\CreditCard will only validate the credit card number. Fortunately, some
institutes provide online APIs which can validate a credit card number by using algorithms which are not
available to the public. Most of these services are paid services. Therefore, this check is deactivated per
default.


When you have access to such an API, then you can use it as an add on for Zend\Validator\CreditCard and
increase the security of the validation.


To do so, you simply need to give a callback which will be called when the generic validation has passed. This
prevents the API from being called for invalid numbers, which increases the performance of the application.


setService() sets a new service, and getService() returns the set service. As a configuration option, you
can give the array key ‘service‘ at initiation. For details about possible options take a look into
Callback.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Your service class
class CcService
{
    public function checkOnline($cardnumber, $types)
    {
        // some online validation
    }
}

// The validation
$service = new CcService();
$valid   = new Zend\Validator\CreditCard(Zend\Validator\CreditCard::VISA);
$valid->setService(array($service, 'checkOnline'));










As you can see the callback method will be called with the credit card number as the first parameter, and the
accepted types as the second parameter.





Ccnum



Note


The Ccnum validator has been deprecated in favor of the CreditCard validator. For security reasons you
should use CreditCard instead of Ccnum.









Date


Zend\Validator\Date allows you to validate if a given value contains a date. This validator validates also
localized input.



Supported options for Zend\Validator\Date


The following options are supported for Zend\Validator\Date:



		format: Sets the format which is used to write the date.


		locale: Sets the locale which will be used to validate date values.








Default date validation


The easiest way to validate a date is by using the default date format. It is used when no locale and no format has
been given.


		1
2
3
4


		$validator = new Zend\Validator\Date();

$validator->isValid('2000-10-10');   // returns true
$validator->isValid('10.10.2000'); // returns false










The default date format for Zend\Validator\Date is ‘yyyy-MM-dd’.





Localized date validation


Zend\Validator\Date validates also dates which are given in a localized format. By using the locale option
you can define the locale which the date format should use for validation.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('locale' => 'de'));

$validator->isValid('10.Feb.2010'); // returns true
$validator->isValid('10.May.2010'); // returns false










The locale option sets the default date format. In the above example this is ‘dd.MM.yyyy’ which is defined as
default date format for ‘de’.





Self defined date validation


Zend\Validator\Date supports also self defined date formats. When you want to validate such a date you can use
the format option.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('format' => 'yyyy'));

$validator->isValid('2010'); // returns true
$validator->isValid('May');  // returns false










Of course you can combine format and locale. In this case you can also use localized month or day names.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('format' => 'yyyy MMMM', 'locale' => 'de));

$validator->isValid('2010 Dezember'); // returns true
$validator->isValid('2010 June');     // returns false















Db\RecordExists and Db\NoRecordExists


Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists provide a means to test whether a
record exists in a given table of a database, with a given value.



Supported options for Zend\Validator\Db_*


The following options are supported for Zend\Validator\Db\NoRecordExists and
Zend\Validator\Db\RecordExists:



		adapter: The database adapter which will be used for the search.


		exclude: Sets records which will be excluded from the search.


		field: The database field within this table which will be searched for the record.


		schema: Sets the schema which will be used for the search.


		table: The table which will be searched for the record.








Basic usage


An example of basic usage of the validators:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		//Check that the email address exists in the database
$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table' => 'users',
        'field' => 'emailaddress'
    )
);

if ($validator->isValid($emailaddress)) {
    // email address appears to be valid
} else {
    // email address is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










The above will test that a given email address is in the database table. If no record is found containing the value
of $emailaddress in the specified column, then an error message is displayed.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		//Check that the username is not present in the database
$validator = new Zend\Validator\Db\NoRecordExists(
    array(
        'table' => 'users',
        'field' => 'username'
    )
);
if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above will test that a given username is not in the database table. If a record is found containing the value
of $username in the specified column, then an error message is displayed.





Excluding records


Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists also provide a means to test the
database, excluding a part of the table, either by providing a where clause as a string, or an array with the keys
“field” and “value”.


When providing an array for the exclude clause, the != operator is used, so you can check the rest of a table
for a value before altering a record (for example on a user profile form)


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		//Check no other users have the username
$user_id   = $user->getId();
$validator = new Zend\Validator\Db\NoRecordExists(
    array(
        'table' => 'users',
        'field' => 'username',
        'exclude' => array(
            'field' => 'id',
            'value' => $user_id
        )
    )
);

if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above example will check the table to ensure no records other than the one where id = $user_id contains the
value $username.


You can also provide a string to the exclude clause so you can use an operator other than !=. This can be
useful for testing against composite keys.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		$email     = 'user@example.com';
$clause    = $db->quoteInto('email = ?', $email);
$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table'   => 'users',
        'field'   => 'username',
        'exclude' => $clause
    )
);

if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above example will check the ‘users’ table to ensure that only a record with both the username $username
and with the email $email is valid.





Database Adapters


You can also specify an adapter. This will allow you to work with applications using multiple database adapters, or
where you have not set a default adapter. As in the example below:


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table' => 'users',
        'field' => 'id',
        'adapter' => $dbAdapter
    )
);













Database Schemas


You can specify a schema within your database for adapters such as PostgreSQL and DB/2 by simply supplying an array
with table and schema keys. As in the example below:


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table'  => 'users',
        'schema' => 'my',
        'field'  => 'id'
    )
);















Digits


Zend\Validator\Digits validates if a given value contains only digits.



Supported options for Zend\Validator\Digits


There are no additional options for Zend\Validator\Digits:





Validating digits


To validate if a given value contains only digits and no other characters, simply call the validator like shown in
this example:


		1
2
3
4
5


		$validator = new Zend\Validator\Digits();

$validator->isValid("1234567890"); // returns true
$validator->isValid(1234);         // returns true
$validator->isValid('1a234');      // returns false











Note


Validating numbers


When you want to validate numbers or numeric values, be aware that this validator only validates digits. This
means that any other sign like a thousand separator or a comma will not pass this validator. In this case you
should use Zend\Validator\Int or Zend\Validator\Float.









EmailAddress


Zend\Validator\EmailAddress allows you to validate an email address. The validator first splits the email
address on local-part @ hostname and attempts to match these against known specifications for email addresses and
hostnames.



Basic usage


A basic example of usage is below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\EmailAddress();
if ($validator->isValid($email)) {
    // email appears to be valid
} else {
    // email is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










This will match the email address $email and on failure populate getMessages() with useful error messages.





Options for validating Email Addresses


Zend\Validator\EmailAddress supports several options which can either be set at initiation, by giving an array
with the related options, or afterwards, by using setOptions(). The following options are supported:



		allow: Defines which type of domain names are accepted. This option is used in conjunction with the hostname
option to set the hostname validator. For more information about possible values of this option, look at
Hostname and possible ALLOW* constants. This option defaults to
ALLOW_DNS.


		deep: Defines if the servers MX records should be verified by a deep check. When this option is set to
TRUE then additionally to MX records also the A, A6 and AAAA records are used to verify if the server
accepts emails. This option defaults to FALSE.


		domain: Defines if the domain part should be checked. When this option is set to FALSE, then only the
local part of the email address will be checked. In this case the hostname validator will not be called. This
option defaults to TRUE.


		hostname: Sets the hostname validator with which the domain part of the email address will be validated.


		mx: Defines if the MX records from the server should be detected. If this option is defined to TRUE then
the MX records are used to verify if the server accepts emails. This option defaults to FALSE.





		1
2


		$validator = new Zend\Validator\EmailAddress();
$validator->setOptions(array('domain' => false));













Complex local parts


Zend\Validator\EmailAddress will match any valid email address according to RFC2822. For example, valid emails
include bob@domain.com, bob+jones@domain.us, “bob@jones”@domain.com and “bob jones”@domain.com


Some obsolete email formats will not currently validate (e.g. carriage returns or a “\” character in an email
address).





Validating only the local part


If you need Zend\Validator\EmailAddress to check only the local part of an email address, and want to disable
validation of the hostname, you can set the domain option to FALSE. This forces
Zend\Validator\EmailAddress not to validate the hostname part of the email address.


		1
2


		$validator = new Zend\Validator\EmailAddress();
$validator->setOptions(array('domain' => FALSE));













Validating different types of hostnames


The hostname part of an email address is validated against Zend\Validator\Hostname. By default only DNS hostnames of the form domain.com are accepted, though if
you wish you can accept IP addresses and Local hostnames too.


To do this you need to instantiate Zend\Validator\EmailAddress passing a parameter to indicate the type of
hostnames you want to accept. More details are included in Zend\Validator\Hostname, though an example of how to
accept both DNS and Local hostnames appears below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$validator = new Zend\Validator\EmailAddress(
                    Zend\Validator\Hostname::ALLOW_DNS |
                    Zend\Validator\Hostname::ALLOW_LOCAL);
if ($validator->isValid($email)) {
    // email appears to be valid
} else {
    // email is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}













Checking if the hostname actually accepts email


Just because an email address is in the correct format, it doesn’t necessarily mean that email address actually
exists. To help solve this problem, you can use MX validation to check whether an MX (email) entry exists in the
DNS record for the email’s hostname. This tells you that the hostname accepts email, but doesn’t tell you the exact
email address itself is valid.


MX checking is not enabled by default. To enable MX checking you can pass a second parameter to the
Zend\Validator\EmailAddress constructor.


		1
2
3
4
5
6


		$validator = new Zend\Validator\EmailAddress(
    array(
        'allow' => Zend\Validator\Hostname::ALLOW_DNS,
        'mx'    => true
    )
);











Note


MX Check under Windows


Within Windows environments MX checking is only available when PHP 5.3 or above is used. Below PHP 5.3 MX
checking will not be used even if it’s activated within the options.




Alternatively you can either pass TRUE or FALSE to setValidateMx() to enable or disable MX validation.


By enabling this setting network functions will be used to check for the presence of an MX record on the hostname
of the email address you wish to validate. Please be aware this will likely slow your script down.


Sometimes validation for MX records returns FALSE, even if emails are accepted. The reason behind this
behaviour is, that servers can accept emails even if they do not provide a MX record. In this case they can provide
A, A6 or AAAA records. To allow Zend\Validator\EmailAddress to check also for these other records, you need
to set deep MX validation. This can be done at initiation by setting the deep option or by using
setOptions().


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\EmailAddress(
    array(
        'allow' => Zend\Validator\Hostname::ALLOW_DNS,
        'mx'    => true,
        'deep'  => true
    )
);










Sometimes it can be useful to get the server’s MX information which have been used to do further processing. Simply
use getMXRecord() after validation. This method returns the received MX record including weight and sorted by
it.



Warning


Performance warning


You should be aware that enabling MX check will slow down you script because of the used network functions.
Enabling deep check will slow down your script even more as it searches the given server for 3 additional types.





Note


Disallowed IP addresses


You should note that MX validation is only accepted for external servers. When deep MX validation is enabled,
then local IP addresses like 192.168.* or 169.254.* are not accepted.







Validating International Domains Names


Zend\Validator\EmailAddress will also match international characters that exist in some domains. This is known
as International Domain Name (IDN) support. This is enabled by default, though you can disable this by changing the
setting via the internal Zend\Validator\Hostname object that exists within Zend\Validator\EmailAddress.


		1


		$validator->getHostnameValidator()->setValidateIdn(false);










More information on the usage of setValidateIdn() appears in the Zend\Validator\Hostname documentation.


Please note IDNs are only validated if you allow DNS hostnames to be validated.





Validating Top Level Domains


By default a hostname will be checked against a list of known TLDs. This is enabled by default, though you can
disable this by changing the setting via the internal Zend\Validator\Hostname object that exists within
Zend\Validator\EmailAddress.


		1


		$validator->getHostnameValidator()->setValidateTld(false);










More information on the usage of setValidateTld() appears in the Zend\Validator\Hostname documentation.


Please note TLDs are only validated if you allow DNS hostnames to be validated.





Setting messages


Zend\Validator\EmailAddress makes also use of Zend\Validator\Hostname to check the hostname part of a given
email address. As with Zend Framework 1.10 you can simply set messages for Zend\Validator\Hostname from within
Zend\Validator\EmailAddress.


		1
2
3
4
5
6


		$validator = new Zend\Validator\EmailAddress();
$validator->setMessages(
    array(
        Zend\Validator\Hostname::UNKNOWN_TLD => 'I don't know the TLD you gave'
    )
);










Before Zend Framework 1.10 you had to attach the messages to your own Zend\Validator\Hostname, and then set
this validator within Zend\Validator\EmailAddress to get your own messages returned.







Float


Zend\Validator\Float allows you to validate if a given value contains a floating-point value. This validator
validates also localized input.



Supported options for Zend\Validator\Float


The following options are supported for Zend\Validator\Float:



		locale: Sets the locale which will be used to validate localized float values.








Simple float validation


The simplest way to validate a float is by using the system settings. When no option is used, the environment
locale is used for validation:


		1
2
3
4
5


		$validator = new Zend\Validator\Float();

$validator->isValid(1234.5);   // returns true
$validator->isValid('10a01'); // returns false
$validator->isValid('1,234.5'); // returns true










In the above example we expected that our environment is set to “en” as locale.





Localized float validation


Often it’s useful to be able to validate also localized values. Float values are often written different in other
countries. For example using english you will write “1.5”. In german you may write “1,5” and in other languages you
may use grouping.


Zend\Validator\Float is able to validate such notations. But it is limited to the locale you set. See the
following code:


		1
2
3
4
5


		$validator = new Zend\Validator\Float(array('locale' => 'de'));

$validator->isValid(1234.5); // returns true
$validator->isValid("1 234,5"); // returns false
$validator->isValid("1.234"); // returns true










As you can see, by using a locale, your input is validated localized. Using a different notation you get a
FALSE when the locale forces a different notation.


The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().







GreaterThan


Zend\Validator\GreaterThan allows you to validate if a given value is greater than a minimum border value.



Note


ZendValidatorGreaterThan supports only number validation


It should be noted that Zend\Validator\GreaterThan supports only the validation of numbers. Strings or dates
can not be validated with this validator.





Supported options for Zend\Validator\GreaterThan


The following options are supported for Zend\Validator\GreaterThan:



		inclusive: Defines if the validation is inclusive the minimum border value or exclusive. It defaults to
FALSE.


		min: Sets the minimum allowed value.








Basic usage


To validate if a given value is greater than a defined border simply use the following example.


		1
2
3
4


		$valid  = new Zend\Validator\GreaterThan(array('min' => 10));
$value  = 8;
$return = $valid->isValid($value);
// returns false










The above example returns TRUE for all values which are greater than 10.





Validation inclusive the border value


Sometimes it is useful to validate a value by including the border value. See the following example:


		1
2
3
4
5
6
7
8
9


		$valid  = new Zend\Validator\GreaterThan(
    array(
        'min' => 10,
        'inclusive' => true
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns true










The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed
and will return TRUE.







Hex


Zend\Validator\Hex allows you to validate if a given value contains only hexadecimal characters. These are all
characters from 0 to 9 and A to F case insensitive. There is no length limitation for the input you want to
validate.


		1
2
3
4
5
6


		$validator = new Zend\Validator\Hex();
if ($validator->isValid('123ABC')) {
    // value contains only hex chars
} else {
    // false
}











Note


Invalid characters


All other characters will return false, including whitespace and decimal point. Also unicode zeros and numbers
from other scripts than latin will not be treated as valid.





Supported options for Zend\Validator\Hex


There are no additional options for Zend\Validator\Hex:







Hostname


Zend\Validator\Hostname allows you to validate a hostname against a set of known specifications. It is possible
to check for three different types of hostnames: a DNS Hostname (i.e. domain.com), IP address (i.e. 1.2.3.4),
and Local hostnames (i.e. localhost). By default only DNS hostnames are matched.



Supported options for Zend\Validator\Hostname


The following options are supported for Zend\Validator\Hostname:



		allow: Defines the sort of hostname which is allowed to be used. See Hostname types for details.


		idn: Defines if IDN domains are allowed or not. This option defaults to TRUE.


		ip: Allows to define a own IP validator. This option defaults to a new instance of Zend\Validator\Ip.


		tld: Defines if TLDs are validated. This option defaults to TRUE.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\Hostname();
if ($validator->isValid($hostname)) {
    // hostname appears to be valid
} else {
    // hostname is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










This will match the hostname $hostname and on failure populate getMessages() with useful error messages.





Validating different types of hostnames


You may find you also want to match IP addresses, Local hostnames, or a combination of all allowed types. This can
be done by passing a parameter to Zend\Validator\Hostname when you instantiate it. The parameter should be an
integer which determines what types of hostnames are allowed. You are encouraged to use the
Zend\Validator\Hostname constants to do this.


The Zend\Validator\Hostname constants are: ALLOW_DNS to allow only DNS hostnames, ALLOW_IP to allow
IP addresses, ALLOW_LOCAL to allow local network names, ALLOW_URI to allow RFC3986 [http://tools.ietf.org/html/rfc3986]-compliant addresses,
and ALLOW_ALL to allow all four above types.



Note


Additional Information on ALLOW_URI


ALLOW_URI allows to check hostnames according to RFC3986 [http://tools.ietf.org/html/rfc3986]. These are registered names which are used by
WINS, NetInfo and also local hostnames like those defined within your .hosts file.




To just check for IP addresses you can use the example below:


		1
2
3
4
5
6
7
8
9


		$validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_IP);
if ($validator->isValid($hostname)) {
    // hostname appears to be valid
} else {
    // hostname is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










As well as using ALLOW_ALL to accept all common hostnames types you can combine these types to allow for
combinations. For example, to accept DNS and Local hostnames instantiate your Zend\Validator\Hostname object
as so:


		1
2


		$validator = new Zend\Validator\Hostname(Zend\Validator\Hostname::ALLOW_DNS |
                                        Zend\Validator\Hostname::ALLOW_IP);













Validating International Domains Names


Some Country Code Top Level Domains (ccTLDs), such as ‘de’ (Germany), support international characters in domain
names. These are known as International Domain Names (IDN). These domains can be matched by
Zend\Validator\Hostname via extended characters that are used in the validation process.



Note


IDN domains


Until now more than 50 ccTLDs support IDN domains.




To match an IDN domain it’s as simple as just using the standard Hostname validator since IDN matching is
enabled by default. If you wish to disable IDN validation this can be done by either passing a parameter to the
Zend\Validator\Hostname constructor or via the setValidateIdn() method.


You can disable IDN validation by passing a second parameter to the Zend\Validator\Hostname constructor in
the following way.


		1
2
3
4
5
6
7


		$validator =
    new Zend\Validator\Hostname(
        array(
            'allow' => Zend\Validator\Hostname::ALLOW_DNS,
            'idn'   => false
        )
    );










Alternatively you can either pass TRUE or FALSE to setValidateIdn() to enable or disable IDN
validation. If you are trying to match an IDN hostname which isn’t currently supported it is likely it will fail
validation if it has any international characters in it. Where a ccTLD file doesn’t exist in
Zend/Validator/Hostname specifying the additional characters a normal hostname validation is performed.



Note


IDN validation


Please note that IDNs are only validated if you allow DNS hostnames to be validated.







Validating Top Level Domains


By default a hostname will be checked against a list of known TLDs. If this functionality is not required it
can be disabled in much the same way as disabling IDN support. You can disable TLD validation by passing a
third parameter to the Zend\Validator\Hostname constructor. In the example below we are supporting IDN
validation via the second parameter.


		1
2
3
4
5
6
7
8


		$validator =
    new Zend\Validator\Hostname(
        array(
            'allow' => Zend\Validator\Hostname::ALLOW_DNS,
            'idn'   => true,
            'tld'   => false
        )
    );










Alternatively you can either pass TRUE or FALSE to setValidateTld() to enable or disable TLD
validation.



Note


TLD validation


Please note TLDs are only validated if you allow DNS hostnames to be validated.









Iban


Zend\Validator\Iban validates if a given value could be a IBAN number. IBAN is the abbreviation for
“International Bank Account Number”.



Supported options for Zend\Validator\Iban


The following options are supported for Zend\Validator\Iban:



		locale: Sets the locale which is used to get the IBAN format for validation.








IBAN validation


IBAN numbers are always related to a country. This means that different countries use different formats for their
IBAN numbers. This is the reason why IBAN numbers always need a locale. By knowing this we already know how to
use Zend\Validator\Iban.



Application wide locale


We could use the application wide locale. This means that when no option is given at initiation,
Zend\Validator\Iban searches for the application wide locale. See the following code snippet:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// within bootstrap
Locale::setDefault('de_AT');

// within the module
$validator = new Zend\Validator\Iban();

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}











Note


Application wide locale


Of course this works only when an application wide locale was set within the registry previously. Otherwise
Locale will try to use the locale which the client sends or, when non has been send, it uses the environment
locale. Be aware that this can lead to unwanted behaviour within the validation.







Ungreedy IBAN validation


Sometime it is useful, just to validate if the given value is a IBAN number or not. This means that you don’t
want to validate it against a defined country. This can be done by using a FALSE as locale.


		1
2
3
4
5
6
7
8


		$validator = new Zend\Validator\Iban(array('locale' => false));
// Note: you can also set a FALSE as single parameter

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}










So any IBAN number will be valid. Note that this should not be done when you accept only accounts from a
single country.





Region aware IBAN validation


To validate against a defined country, you just need to give the wished locale. You can do this by the option
locale and also afterwards by using setLocale().


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Iban(array('locale' => 'de_AT'));

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}











Note


Use full qualified locales


You must give a full qualified locale, otherwise the country could not be detected correct because languages are
spoken in multiple countries.











Identical


Zend\Validator\Identical allows you to validate if a given value is identical with an set haystack.



Supported options for Zend\Validator\Identical


The following options are supported for Zend\Validator\Identical:



		strict: Defines if the validation should be done strict. The default value is TRUE.


		token: Sets the token with which the input will be validated against.








Basic usage


To validate if two values are identical you need to set the origin value as haystack. See the following example
which validates two strings.


		1
2
3
4


		$valid = new Zend\Validator\Identical('origin');
if ($valid->isValid($value) {
    return true;
}










The validation will only then return TRUE when both values are 100% identical. In our example, when $value
is ‘origin’.


You can set the wished token also afterwards by using the method setToken() and getToken() to get the
actual set token.





Identical objects


Of course Zend\Validator\Identical can not only validate strings, but also any other variable type like
Boolean, Integer, Float, Array or even Objects. As already noted Haystack and Value must be identical.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(123);
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}











Note


Type comparison


You should be aware that also the type of a variable is used for validation. This means that the string ‘3’
is not identical with the integer 3. When you want such a non strict validation you must set the strict
option.







Form elements


Zend\Validator\Identical supports also the comparison of form elements. This can be done by using the element’s
name as token. See the following example:


		1
2
3
4
5
6


		$form->addElement('password', 'elementOne');
$form->addElement('password', 'elementTwo', array(
    'validators' => array(
        array('identical', false, array('token' => 'elementOne'))
    )
));










By using the elements name from the first element as token for the second element, the validator validates if
the second element is equal with the first element. In the case your user does not enter two identical values, you
will get an validation error.





Strict validation


As mentioned before Zend\Validator\Identical validates tokens strict. You can change this behaviour by using
the strict option. The default value for this property is TRUE.


		1
2
3
4
5
6
7


		$valid = new Zend\Validator\Identical(array('token' => 123, 'strict' => FALSE));
$input = '123';
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The difference to the previous example is that the validation returns in this case TRUE, even if you compare a
integer with string value as long as the content is identical but not the type.


For convenience you can also use setStrict() and getStrict().





Configuration


As all other validators also Zend\Validator\Identical supports the usage of configuration settings as input
parameter. This means that you can configure this validator with an Traversable instance.


But this adds one case which you have to be aware. When you are using an array as haystack then you should wrap it
within an ‘token‘ key when it could contain only one element.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(array('token' => 123));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The above example validates the integer 123. The reason for this special case is, that you can configure the token
which has to be used by giving the ‘token‘ key.


So, when your haystack contains one element and this element is named ‘token‘ then you have to wrap it like
shown in the example below.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(array('token' => array('token' => 123)));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}















InArray


Zend\Validator\InArray allows you to validate if a given value is contained within an array. It is also able to validate multidimensional arrays.



Supported options for Zend\Validator\InArray


The following options are supported for Zend\Validator\InArray:



		haystack: Sets the haystack for the validation.





		recursive: Defines if the validation should be done recursive. This option defaults to FALSE.





		strict: Three modes of comparison are offered owing to an often overlooked, and potentially dangerous security issue when validating string input from user input.



		InArray::COMPARE_STRICT



This is a normal in_array strict comparison that checks value and type.









		InArray::COMPARE_NOT_STRICT



This is a normal in_array non-strict comparison that checks value only.



















Warning


This mode may give false positives when strings are compared against ints or floats owing to in_array’s behaviour of converting strings to int in such cases. Therefore, “foo” would become 0, “43foo” would become 43, while “foo43” would also become 0.






		InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY



To remedy the above warning, this mode offers a middle-ground which allows string representations of numbers to be successfully matched against either their string or int counterpart and vice versa. For example: “0” will successfully match against 0, but “foo” would not match against 0 as would be true in the *COMPARE_NOT_STRICT* mode. This is the safest option to use when validating web input, and is the default.
















Defines if the validation should be done strict. This option defaults to FALSE.





Simple array validation


The simplest way, is just to give the array which should be searched against at initiation:


		1
2
3
4
5
6


		$validator = new Zend\Validator\InArray(array('value1', 'value2',...'valueN'));
if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}










This will behave exactly like PHP‘s in_array() method.



Note


Per default this validation is not strict nor can it validate multidimensional arrays.




Alternatively, you can define the array to validate against after object construction by using the setHaystack() method.
getHaystack() returns the actual set haystack array.


		1
2
3
4
5
6
7
8


		$validator = new Zend\Validator\InArray();
$validator->setHaystack(array('value1', 'value2',...'valueN'));

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}













Array validation modes


As previously mentioned, there are possible security issues when using the default non-strict comparison mode, so rather than restricting the developer, we’ve chosen to offer both strict and non-strict comparisons and adding a safer middle-ground.


It’s possible to set the strict mode at initialisation and afterwards with the setStrict method. InArray::COMPARE_STRICT equates to true and InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY equates to false.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// defaults to InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
    )
);

// set strict mode
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
         'strict'   => InArray::COMPARE_STRICT  // equates to ``true``
    )
);

// set non-strict mode
$validator = new Zend\Validator\InArray(
    array(
         'haystack' => array('value1', 'value2',...'valueN'),
         'strict'   => InArray:COMPARE_NOT_STRICT  // equates to ``false``
    )
);

// or

$validator->setStrict(InArray::COMPARE_STRICT);
$validator->setStrict(InArray::COMPARE_NOT_STRICT);
$validator->setStrict(InArray::COMPARE_NOT_STRICT_AND_PREVENT_STR_TO_INT_VULNERABILITY);











Note


Note that the strict setting is per default FALSE.







Recursive array validation


In addition to PHP‘s in_array() method this validator can also be used to validate multidimensional arrays.


To validate multidimensional arrays you have to set the recursive option.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$validator = new Zend\Validator\InArray(
    array(
        'haystack' => array(
            'firstDimension' => array('value1', 'value2',...'valueN'),
            'secondDimension' => array('foo1', 'foo2',...'fooN')),
        'recursive' => true
    )
);

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}










Your array will then be validated recursively to see if the given value is contained. Additionally you could use
setRecursive() to set this option afterwards and getRecursive() to retrieve it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$validator = new Zend\Validator\InArray(
    array(
        'firstDimension' => array('value1', 'value2',...'valueN'),
        'secondDimension' => array('foo1', 'foo2',...'fooN')
    )
);

$validator->setRecursive(true);

if ($validator->isValid('value')) {
    // value found
} else {
    // no value found
}











Note


Default setting for recursion


Per default the recursive validation is turned off.





Note


Option keys within the haystack


When you are using the keys ‘haystack‘, ‘strict‘ or ‘recursive‘ within your haystack, then you must
wrap the haystack key.









Int


Zend\Validator\Int validates if a given value is an integer. Also localized integer values are recognised and
can be validated.



Supported options for Zend\Validator\Int


The following options are supported for Zend\Validator\Int:



		locale: Sets the locale which will be used to validate localized integers.








Simple integer validation


The simplest way to validate an integer is by using the system settings. When no option is used, the environment
locale is used for validation:


		1
2
3
4
5


		$validator = new Zend\Validator\Int();

$validator->isValid(1234);   // returns true
$validator->isValid(1234.5); // returns false
$validator->isValid('1,234'); // returns true










In the above example we expected that our environment is set to “en” as locale. As you can see in the third example
also grouping is recognised.





Localized integer validation


Often it’s useful to be able to validate also localized values. Integer values are often written different in other
countries. For example using english you can write “1234” or “1,234”. Both are integer values but the grouping is
optional. In german for example you may write “1.234” and in french “1 234”.


Zend\Validator\Int is able to validate such notations. But it is limited to the locale you set. This means that
it not simply strips off the separator, it validates if the correct separator is used. See the following code:


		1
2
3
4
5


		$validator = new Zend\Validator\Int(array('locale' => 'de'));

$validator->isValid(1234); // returns true
$validator->isValid("1,234"); // returns false
$validator->isValid("1.234"); // returns true










As you can see, by using a locale, your input is validated localized. Using the english notation you get a
FALSE when the locale forces a different notation.


The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().







Ip


Zend\Validator\Ip allows you to validate if a given value is an IP address. It supports the IPv4, IPv6 and
IPvFeature definitions.



Supported options for Zend\Validator\Ip


The following options are supported for Zend\Validator\Ip:



		allowipv4: Defines if the validator allows IPv4 addresses. This option defaults to TRUE.


		allowipv6: Defines if the validator allows IPv6 addresses. This option defaults to TRUE.


		allowipvfuture: Defines if the validator allows IPvFuture addresses. This option defaults to false.


		allowliteral: Defines if the validator allows IPv6 or IPvFuture with URI literal style (the IP surrounded by
brackets). This option defaults to true.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Ip();
if ($validator->isValid($ip)) {
    // ip appears to be valid
} else {
    // ip is invalid; print the reasons
}











Note


Invalid IP addresses


Keep in mind that Zend\Validator\Ip only validates IP addresses. Addresses like ‘mydomain.com‘ or
‘192.168.50.1/index.html‘ are no valid IP addresses. They are either hostnames or valid URLs but not IP
addresses.





Note


IPv6/IPvFuture validation


Zend\Validator\Ip validates IPv6/IPvFuture addresses with regex. The reason is that the filters and methods
from PHP itself don’t follow the RFC. Many other available classes also don’t follow it.







Validate IPv4 or IPV6 alone


Sometimes it’s useful to validate only one of the supported formats. For example when your network only supports
IPv4. In this case it would be useless to allow IPv6 within this validator.


To limit Zend\Validator\Ip to one protocol you can set the options allowipv4 or allowipv6 to FALSE.
You can do this either by giving the option to the constructor or by using setOptions() afterwards.


		1
2
3
4
5
6


		$validator = new Zend\Validator\Ip(array('allowipv6' => false));
if ($validator->isValid($ip)) {
    // ip appears to be valid ipv4 address
} else {
    // ip is no ipv4 address
}











Note


Default behaviour


The default behaviour which Zend\Validator\Ip follows is to allow both standards.









Isbn


Zend\Validator\Isbn allows you to validate an ISBN-10 or ISBN-13 value.



Supported options for Zend\Validator\Isbn


The following options are supported for Zend\Validator\Isbn:



		separator: Defines the allowed separator for the ISBN number. It defaults to an empty string.


		type: Defines the allowed type of ISBN numbers. It defaults to Zend\Validator\Isbn::AUTO. For details
take a look at this section.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Isbn();
if ($validator->isValid($isbn)) {
    // isbn is valid
} else {
    // isbn is not valid
}










This will validate any ISBN-10 and ISBN-13 without separator.





Setting an explicit ISBN validation type


An example of an ISBN type restriction is below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Isbn();
$validator->setType(Zend\Validator\Isbn::ISBN13);
// OR
$validator = new Zend\Validator\Isbn(array(
    'type' => Zend\Validator\Isbn::ISBN13,
));

if ($validator->isValid($isbn)) {
    // this is a valid ISBN-13 value
} else {
    // this is an invalid ISBN-13 value
}










The above will validate only ISBN-13 values.


Valid types include:



		Zend\Validator\Isbn::AUTO (default)


		Zend\Validator\Isbn::ISBN10


		Zend\Validator\Isbn::ISBN13








Specifying a separator restriction


An example of separator restriction is below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Isbn();
$validator->setSeparator('-');
// OR
$validator = new Zend\Validator\Isbn(array(
    'separator' => '-',
));

if ($validator->isValid($isbn)) {
    // this is a valid ISBN with separator
} else {
    // this is an invalid ISBN with separator
}











Note


Values without separator


This will return FALSE if $isbn doesn’t contain a separator or if it’s an invalid ISBN value.




Valid separators include:



		“” (empty) (default)


		“-” (hyphen)


		” ” (space)










LessThan


Zend\Validator\LessThan allows you to validate if a given value is less than a maximum border value.



Note


ZendValidatorLessThan supports only number validation


It should be noted that Zend\Validator\LessThan supports only the validation of numbers. Strings or dates
can not be validated with this validator.





Supported options for Zend\Validator\LessThan


The following options are supported for Zend\Validator\LessThan:



		inclusive: Defines if the validation is inclusive the maximum border value or exclusive. It defaults to
FALSE.


		max: Sets the maximum allowed value.








Basic usage


To validate if a given value is less than a defined border simply use the following example.


		1
2
3
4


		$valid  = new Zend\Validator\LessThan(array('max' => 10));
$value  = 12;
$return = $valid->isValid($value);
// returns false










The above example returns TRUE for all values which are lower than 10.





Validation inclusive the border value


Sometimes it is useful to validate a value by including the border value. See the following example:


		1
2
3
4
5
6
7
8
9


		$valid  = new Zend\Validator\LessThan(
    array(
        'max' => 10,
        'inclusive' => true
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns true










The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed
and will return TRUE.







NotEmpty


This validator allows you to validate if a given value is not empty. This is often useful when working with form
elements or other user input, where you can use it to ensure required elements have values associated with them.



Supported options for Zend\Validator\NotEmpty


The following options are supported for Zend\Validator\NotEmpty:



		type: Sets the type of validation which will be processed. For details take a look into this section.








Default behaviour for Zend\Validator\NotEmpty


By default, this validator works differently than you would expect when you’ve worked with PHP‘s empty()
function. In particular, this validator will evaluate both the integer 0 and string ‘0‘ as empty.


		1
2
3
4


		$valid = new Zend\Validator\NotEmpty();
$value  = '';
$result = $valid->isValid($value);
// returns false











Note


Default behaviour differs from PHP


Without providing configuration, Zend\Validator\NotEmpty‘s behaviour differs from PHP.







Changing behaviour for Zend\Validator\NotEmpty


Some projects have differing opinions of what is considered an “empty” value: a string with only whitespace might
be considered empty, or 0 may be considered non-empty (particularly for boolean sequences). To accommodate
differing needs, Zend\Validator\NotEmpty allows you to configure which types should be validated as empty and
which not.


The following types can be handled:



		boolean: Returns FALSE when the boolean value is FALSE.


		integer: Returns FALSE when an integer 0 value is given. Per default this validation is not activated
and returns TRUE on any integer values.


		float: Returns FALSE when an float 0.0 value is given. Per default this validation is not activated
and returns TRUE on any float values.


		string: Returns FALSE when an empty string ‘’ is given.


		zero: Returns FALSE when the single character zero (‘0’) is given.


		empty_array: Returns FALSE when an empty array is given.


		null: Returns FALSE when an NULL value is given.


		php: Returns FALSE on the same reasons where PHP method empty() would return TRUE.


		space: Returns FALSE when an string is given which contains only whitespaces.


		object: Returns TRUE. FALSE will be returned when object is not allowed but an object is given.


		object_string: Returns FALSE when an object is given and it’s __toString() method returns an empty
string.


		object_count: Returns FALSE when an object is given, it has an Countable interface and it’s count is
0.


		all: Returns FALSE on all above types.





All other given values will return TRUE per default.


There are several ways to select which of the above types are validated. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// Returns false on 0
$validator = new Zend\Validator\NotEmpty(Zend\Validator\NotEmpty::INTEGER);

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(
    Zend\Validator\NotEmpty::INTEGER + Zend\Validator\NotEmpty::ZERO
);

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(array(
    Zend\Validator\NotEmpty::INTEGER,
    Zend\Validator\NotEmpty::ZERO
));

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(array(
    'integer',
    'zero',
));










You can also provide an instance of Traversable to set the desired types. To set types after instantiation, use
the setType() method.







PostCode


Zend\Validator\PostCode allows you to determine if a given value is a valid postal code. Postal codes are
specific to cities, and in some locales termed ZIP codes.


Zend\Validator\PostCode knows more than 160 different postal code formats. To select the correct format there
are 2 ways. You can either use a fully qualified locale or you can set your own format manually.


Using a locale is more convenient as Zend Framework already knows the appropriate postal code format for each
locale; however, you need to use the fully qualified locale (one containing a region specifier) to do so. For
instance, the locale “de” is a locale but could not be used with Zend\Validator\PostCode as it does not include
the region; “de_AT”, however, would be a valid locale, as it specifies the region code (“AT”, for Austria).


		1


		$validator = new Zend\Validator\PostCode('de_AT');










When you don’t set a locale yourself, then Zend\Validator\PostCode will use the application wide set locale,
or, when there is none, the locale returned by Locale.


		1
2
3
4


		// application wide locale within your bootstrap
Locale::setDefault('de_AT');

$validator = new Zend\Validator\PostCode();










You can also change the locale afterwards by calling setLocale(). And of course you can get the actual used
locale by calling getLocale().


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator->setLocale('en_GB');










Postal code formats are simply regular expression strings. When the international postal code format, which is used
by setting the locale, does not fit your needs, then you can also manually set a format by calling setFormat().


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator->setFormat('AT-\d{5}');











Note


Conventions for self defined formats


When using self defined formats you should omit the starting ('/^') and ending tags ('$/'). They are
attached automatically.


You should also be aware that postcode values are always be validated in a strict way. This means that they have
to be written standalone without additional characters when they are not covered by the format.





Constructor options


At it’s most basic, you may pass a string representing a fully qualified locale to the constructor of
Zend\Validator\PostCode.


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator = new Zend\Validator\PostCode($locale);










Additionally, you may pass either an array or a Traversable instance to the constructor. When you do so, you
must include either the key “locale” or “format”; these will be used to set the appropriate values in the validator
object.


		1
2
3
4


		$validator = new Zend\Validator\PostCode(array(
    'locale' => 'de_AT',
    'format' => 'AT_\d+'
));













Supported options for Zend\Validator\PostCode


The following options are supported for Zend\Validator\PostCode:



		format: Sets a postcode format which will be used for validation of the input.


		locale: Sets a locale from which the postcode will be taken from.










Regex


This validator allows you to validate if a given string conforms a defined regular expression.



Supported options for Zend\Validator\Regex


The following options are supported for Zend\Validator\Regex:



		pattern: Sets the regular expression pattern for this validator.








Validation with Zend\Validator\Regex


Validation with regular expressions allows to have complicated validations being done without writing a own
validator. The usage of regular expression is quite common and simple. Let’s look at some examples:


		1
2
3
4
5


		$validator = new Zend\Validator\Regex(array('pattern' => '/^Test/');

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns true
$validator->isValid("Pest"); // returns false










As you can see, the pattern has to be given using the same syntax as for preg_match(). For details about
regular expressions take a look into PHP’s manual about PCRE pattern syntax [http://php.net/manual/en/reference.pcre.pattern.syntax.php].





Pattern handling


It is also possible to set a different pattern afterwards by using setPattern() and to get the actual set
pattern with getPattern().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Regex(array('pattern' => '/^Test/');
$validator->setPattern('ing$/');

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true
$validator->isValid("Pest"); // returns false















Sitemap Validators


The following validators conform to the Sitemap XML protocol [http://www.sitemaps.org/protocol.php].



Sitemap\Changefreq


Validates whether a string is valid for using as a ‘changefreq’ element in a Sitemap XML document. Valid values
are: ‘always’, ‘hourly’, ‘daily’, ‘weekly’, ‘monthly’, ‘yearly’, or ‘never’.


Returns TRUE if and only if the value is a string and is equal to one of the frequencies specified above.





Sitemap\Lastmod


Validates whether a string is valid for using as a ‘lastmod’ element in a Sitemap XML document. The lastmod
element should contain a W3C date string, optionally discarding information about time.


Returns TRUE if and only if the given value is a string and is valid according to the protocol.


Sitemap Lastmod Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Sitemap\Lastmod();

$validator->isValid('1999-11-11T22:23:52-02:00'); // true
$validator->isValid('2008-05-12T00:42:52+02:00'); // true
$validator->isValid('1999-11-11'); // true
$validator->isValid('2008-05-12'); // true

$validator->isValid('1999-11-11t22:23:52-02:00'); // false
$validator->isValid('2008-05-12T00:42:60+02:00'); // false
$validator->isValid('1999-13-11'); // false
$validator->isValid('2008-05-32'); // false
$validator->isValid('yesterday'); // false













Sitemap\Loc


Validates whether a string is valid for using as a ‘loc’ element in a Sitemap XML document. This uses
Zend\Uri\Uri::isValid() internally. Read more at URI Validation.





Sitemap\Priority


Validates whether a value is valid for using as a ‘priority’ element in a Sitemap XML document. The value should
be a decimal between 0.0 and 1.0. This validator accepts both numeric values and string values.


Sitemap Priority Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Sitemap\Priority();

$validator->isValid('0.1'); // true
$validator->isValid('0.789'); // true
$validator->isValid(0.8); // true
$validator->isValid(1.0); // true

$validator->isValid('1.1'); // false
$validator->isValid('-0.4'); // false
$validator->isValid(1.00001); // false
$validator->isValid(0xFF); // false
$validator->isValid('foo'); // false













Supported options for Zend\Validator\Sitemap_*


There are no supported options for any of the Sitemap validators.







Step


Zend\Validator\Step allows you to validate if a given value is a valid step value. This validator requires the
value to be a numeric value (either string, int or float).



Supported options for Zend\Validator\Step


The following options are supported for Zend\Validator\Step:



		baseValue: This is the base value from which the step should be computed. This option defaults to 0


		step: This is the step value. This option defaults to 1








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		            $validator = new Zend\Validator\Step();
            if ($validator->isValid(1)) {
            // value is a valid step value
            } else {
            // false
            }













Using floating-point values


This validator also supports floating-point base value and step value. Here is a basic example of this feature:


		1
2
3
4
5
6
7
8
9


		            $validator = new Zend\Validator\Step(array(
            'baseValue' => 1.1,
            'step' => 2.2
            ));

            echo $validator->isValid(1.1); // prints true
            echo $validator->isValid(3.3); // prints true
            echo $validator->isValid(3.35); // prints false
            echo $validator->isValid(2.2); // prints false















StringLength


This validator allows you to validate if a given string is between a defined length.



Note


ZendValidatorStringLength supports only string validation


It should be noted that Zend\Validator\StringLength supports only the validation of strings. Integers,
floats, dates or objects can not be validated with this validator.





Supported options for Zend\Validator\StringLength


The following options are supported for Zend\Validator\StringLength:



		encoding: Sets the ICONV encoding which has to be used for this string.


		min: Sets the minimum allowed length for a string.


		max: Sets the maximum allowed length for a string.








Default behaviour for Zend\Validator\StringLength


Per default this validator checks if a value is between min and max. But for min the default value is
0 and for max it is NULL which means unlimited.


So per default, without giving any options, this validator only checks if the input is a string.





Limiting the maximum allowed length of a string


To limit the maximum allowed length of a string you need to set the max property. It accepts an integer value
as input.


		1
2
3
4


		$validator = new Zend\Validator\StringLength(array('max' => 6));

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns false










You can set the maximum allowed length also afterwards by using the setMax() method. And getMax() to
retrieve the actual maximum border.


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength();
$validator->setMax(6);

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns false













Limiting the minimal required length of a string


To limit the minimal required length of a string you need to set the min property. It accepts also an integer
value as input.


		1
2
3
4


		$validator = new Zend\Validator\StringLength(array('min' => 5));

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true










You can set the minimal requested length also afterwards by using the setMin() method. And getMin() to
retrieve the actual minimum border.


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength();
$validator->setMin(5);

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true













Limiting a string on both sides


Sometimes it is required to get a string which has a maximal defined length but which is also minimal chars long.
For example when you have a textbox where a user can enter his name, then you may want to limit the name to maximum
30 chars but want to get sure that he entered his name. So you limit the minimum required length to 3 chars. See
the following example:


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength(array('min' => 3, 'max' => 30));

$validator->isValid("."); // returns false
$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns true











Note


Setting a lower maximum border than the minimum border


When you try to set a lower maximum value as the actual minimum value, or a higher minimum value as the actual
maximum value, then an exception will be raised.







Encoding of values


Strings are always using a encoding. Even when you don’t set the encoding explicit, PHP uses one. When your
application is using a different encoding than PHP itself then you should set an encoding yourself.


You can set your own encoding at initiation with the encoding option, or by using the setEncoding() method.
We assume that your installation uses ISO and your application it set to ISO. In this case you will see the
below behaviour.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\StringLength(
    array('min' => 6)
);
$validator->isValid("Ärger"); // returns false

$validator->setEncoding("UTF-8");
$validator->isValid("Ärger"); // returns true

$validator2 = new Zend\Validator\StringLength(
    array('min' => 6, 'encoding' => 'UTF-8')
);
$validator2->isValid("Ärger"); // returns true










So when your installation and your application are using different encodings, then you should always set an
encoding yourself.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Standard Validation Classes
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.progress-bar.adapter.js-pull.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_ProgressBar_Adapter_JsPull


Zend_ProgressBar_Adapter_JsPull is the opposite of jsPush, as it requires to pull for new updates, instead of
pushing updates out to the browsers. Generally you should use the adapter with the persistence option of the
Zend_ProgressBar. On notify, the adapter sends a JSON string to the browser, which looks exactly like the
JSON string which is send by the jsPush adapter. The only difference is, that it contains an additional
parameter, finished, which is either FALSE when update() is called or TRUE, when finish() is
called.


You can set the adapter options either via the set*() methods or give an array or a Zend_Config instance
with options as first parameter to the constructor. The available options are:



		exitAfterSend: Exits the current request after the data were send to the browser. Default is TRUE.









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_ProgressBar_Adapter_JsPull
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.dom.query.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Dom\Query


Zend\Dom\Query provides mechanisms for querying XML and (X) HTML documents utilizing either XPath or CSS
selectors. It was developed to aid with functional testing of MVC applications, but could also be used for rapid
development of screen scrapers.


CSS selector notation is provided as a simpler and more familiar notation for web developers to utilize when
querying documents with XML structures. The notation should be familiar to anybody who has developed Cascading
Style Sheets or who utilizes Javascript toolkits that provide functionality for selecting nodes utilizing CSS
selectors (Prototype’s $$() [http://prototypejs.org/api/utility/dollar-dollar] and Dojo’s dojo.query [http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query] were both inspirations for the component).



Theory of Operation


To use Zend\Dom\Query, you instantiate a Zend\Dom\Query object, optionally passing a document to query (a
string). Once you have a document, you can use either the query() or queryXpath() methods; each method will
return a Zend\Dom\NodeList object with any matching nodes.


The primary difference between Zend\Dom\Query and using DOMDocument [http://php.net/domdocument] + DOMXPath [http://php.net/domxpath] is the ability to select
against CSS selectors. You can utilize any of the following, in any combination:



		element types: provide an element type to match: ‘div’, ‘a’, ‘span’, ‘h2’, etc.





		style attributes: CSS style attributes to match: ‘.error‘, ‘div.error‘, ‘label.required‘, etc.
If an element defines more than one style, this will match as long as the named style is present anywhere in the
style declaration.





		id attributes: element ID attributes to match: ‘#content’, ‘div#nav’, etc.





		arbitrary attributes: arbitrary element attributes to match. Three different types of matching are provided:



		exact match: the attribute exactly matches the string: ‘div[bar=”baz”]’ would match a div element with a
“bar” attribute that exactly matches the value “baz”.


		word match: the attribute contains a word matching the string: ‘div[bar~=”baz”]’ would match a div element
with a “bar” attribute that contains the word “baz”. ‘<div bar=”foo baz”>’ would match, but ‘<div bar=”foo
bazbat”>’ would not.


		substring match: the attribute contains the string: ‘div[bar*=”baz”]’ would match a div element with a
“bar” attribute that contains the string “baz” anywhere within it.








		direct descendents: utilize ‘>’ between selectors to denote direct descendents. ‘div > span’ would select
only ‘span’ elements that are direct descendents of a ‘div’. Can also be used with any of the selectors above.





		descendents: string together multiple selectors to indicate a hierarchy along which to search. ‘div .foo
span #one‘ would select an element of id ‘one’ that is a descendent of arbitrary depth beneath a ‘span’
element, which is in turn a descendent of arbitrary depth beneath an element with a class of ‘foo’, that is an
descendent of arbitrary depth beneath a ‘div’ element. For example, it would match the link to the word ‘One’ in
the listing below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		<div>
<table>
    <tr>
        <td class="foo">
            <div>
                Lorem ipsum <span class="bar">
                    <a href="/foo/bar" id="one">One</a>
                    <a href="/foo/baz" id="two">Two</a>
                    <a href="/foo/bat" id="three">Three</a>
                    <a href="/foo/bla" id="four">Four</a>
                </span>
            </div>
        </td>
    </tr>
</table>
</div>
















Once you’ve performed your query, you can then work with the result object to determine information about the
nodes, as well as to pull them and/or their content directly for examination and manipulation.
Zend\Dom\NodeList implements Countable and Iterator, and stores the results internally as a
DOMDocument [http://php.net/domdocument] and DOMNodeList [http://php.net/domnodelist]. As an example, consider the following call, that selects against the HTML
above:


		1
2
3
4
5
6
7
8
9


		use Zend\Dom\Query;

$dom = new Query($html);
$results = $dom->query('.foo .bar a');

$count = count($results); // get number of matches: 4
foreach ($results as $result) {
    // $result is a DOMElement
}










Zend\Dom\Query also allows straight XPath queries utilizing the queryXpath() method; you can pass any valid
XPath query to this method, and it will return a Zend\Dom\NodeList object.





Methods Available


The Zend\Dom\Query family of classes have the following methods available.



Zend\Dom\Query


The following methods are available to Zend\Dom\Query:



		setDocumentXml($document, $encoding = null): specify an XML string to query against.


		setDocumentXhtml($document, $encoding = null): specify an XHTML string to query against.


		setDocumentHtml($document, $encoding = null): specify an HTML string to query against.


		setDocument($document, $encoding = null): specify a string to query against; Zend\Dom\Query will then
attempt to autodetect the document type.


		setEncoding($encoding): specify an encoding string to use. This encoding will be passed to DOMDocument’s
constructor [http://php.net/domdocument.construct] if specified.


		getDocument(): retrieve the original document string provided to the object.


		getDocumentType(): retrieve the document type of the document provided to the object; will be one of the
DOC_XML, DOC_XHTML, or DOC_HTML class constants.


		getEncoding(): retrieves the specified encoding.


		execute($query): query the document using CSS selector notation.


		queryXpath($xPathQuery): query the document using XPath notation.








Zend\Dom\NodeList


As mentioned previously, Zend\Dom\NodeList implements both Iterator and Countable, and as such can be
used in a foreach() loop as well as with the count() function. Additionally, it exposes the following
methods:



		getCssQuery(): return the CSS selector query used to produce the result (if any).


		getXpathQuery(): return the XPath query used to produce the result. Internally, Zend\Dom\Query converts
CSS selector queries to XPath, so this value will always be populated.


		getDocument(): retrieve the DOMDocument the selection was made against.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Dom\Query
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.string-to-upper.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
StringToUpper


This filter converts any input to be uppercased.



Supported options for Zend_Filter_StringToUpper


The following options are supported for Zend_Filter_StringToUpper:



		encoding: This option can be used to set an encoding which has to be used.








Basic usage


This is a basic example for using the StringToUpper filter:


		1
2
3
4


		$filter = new Zend_Filter_StringToUpper();

print $filter->filter('Sample');
// returns "SAMPLE"













Different encoded strings


Like the StringToLower filter, this filter handles only characters from the actual locale of your server. Using
different character sets works the same as with StringToLower.


		1
2
3
4


		$filter = new Zend_Filter_StringToUpper(array('encoding' => 'UTF-8'));

// or do this afterwards
$filter->setEncoding('ISO-8859-1');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                StringToUpper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.usage.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Usage Scenarios



Authentication scenarios



OpenLDAP





ActiveDirectory







Basic CRUD operations



Retrieving data from the LDAP


Getting an entry by its DN


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$hm = $ldap->getEntry('cn=Hugo Müller,ou=People,dc=my,dc=local');
/*
$hm is an array of the following structure
array(
    'dn'          => 'cn=Hugo Müller,ou=People,dc=my,dc=local',
    'cn'          => array('Hugo Müller'),
    'sn'          => array('Müller'),
    'objectclass' => array('inetOrgPerson', 'top'),
    ...
)
*/










Check for the existence of a given DN


		1
2
3
4


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$isThere = $ldap->exists('cn=Hugo Müller,ou=People,dc=my,dc=local');










Count children of a given DN


		1
2
3
4
5


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$childrenCount = $ldap->countChildren(
                            'cn=Hugo Müller,ou=People,dc=my,dc=local');










Searching the LDAP tree


		1
2
3
4
5
6
7
8
9


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$result = $ldap->search('(objectclass=*)',
                        'ou=People,dc=my,dc=local',
                        Zend\Ldap\Ldap::SEARCH_SCOPE_ONE);
foreach ($result as $item) {
    echo $item["dn"] . ': ' . $item['cn'][0] . PHP_EOL;
}













Adding data to the LDAP


Add a new entry to the LDAP


		1
2
3
4
5
6
7
8


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$entry = array();
Zend\Ldap\Attribute::setAttribute($entry, 'cn', 'Hans Meier');
Zend\Ldap\Attribute::setAttribute($entry, 'sn', 'Meier');
Zend\Ldap\Attribute::setAttribute($entry, 'objectClass', 'inetOrgPerson');
$ldap->add('cn=Hans Meier,ou=People,dc=my,dc=local', $entry);













Deleting from the LDAP


Delete an existing entry from the LDAP


		1
2
3
4


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$ldap->delete('cn=Hans Meier,ou=People,dc=my,dc=local');













Updating the LDAP


Update an existing entry on the LDAP


		1
2
3
4
5
6
7
8
9


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$hm = $ldap->getEntry('cn=Hugo Müller,ou=People,dc=my,dc=local');
Zend\Ldap\Attribute::setAttribute($hm, 'mail', 'mueller@my.local');
Zend\Ldap\Attribute::setPassword($hm,
                                 'newPa$$w0rd',
                                 Zend\Ldap\Attribute::PASSWORD_HASH_SHA1);
$ldap->update('cn=Hugo Müller,ou=People,dc=my,dc=local', $hm);















Extended operations



Copy and move entries in the LDAP


Copy a LDAP entry recursively with all its descendants


		1
2
3
4
5
6


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$ldap->copy('cn=Hugo Müller,ou=People,dc=my,dc=local',
            'cn=Hans Meier,ou=People,dc=my,dc=local',
            true);










Move a LDAP entry recursively with all its descendants to a different subtree


		1
2
3
4
5
6


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$ldap->moveToSubtree('cn=Hugo Müller,ou=People,dc=my,dc=local',
                     'ou=Dismissed,dc=my,dc=local',
                     true);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Usage Scenarios
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.authentication.adapter.digest.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Digest Authentication



Introduction


Digest authentication [http://en.wikipedia.org/wiki/Digest_access_authentication] is a method of HTTP authentication that improves upon Basic authentication [http://en.wikipedia.org/wiki/Basic_authentication_scheme] by
providing a way to authenticate without having to transmit the password in clear text across the network.


This adapter allows authentication against text files containing lines having the basic elements of Digest
authentication:



		username, such as “joe.user“


		realm, such as “Administrative Area“


		MD5 hash of the username, realm, and password, separated by colons





The above elements are separated by colons, as in the following example (in which the password is
“somePassword”):


		1


		someUser:Some Realm:fde17b91c3a510ecbaf7dbd37f59d4f8













Specifics


The digest authentication adapter, Zend\Authentication\Adapter\Digest, requires several input parameters:



		filename - Filename against which authentication queries are performed


		realm - Digest authentication realm


		username - Digest authentication user


		password - Password for the user of the realm





These parameters must be set prior to calling authenticate().





Identity


The digest authentication adapter returns a Zend\Authentication\Result object, which has been populated with
the identity as an array having keys of realm and username. The respective array values associated with
these keys correspond to the values set before authenticate() is called.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\Authentication\Adapter\Digest as AuthAdapter;

$adapter = new AuthAdapter($filename,
                           $realm,
                           $username,
                           $password);

$result = $adapter->authenticate();

$identity = $result->getIdentity();

print_r($identity);

/*
Array
(
    [realm] => Some Realm
    [username] => someUser
)
*/
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Digest Authentication
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.authentication.adapter.dbtable.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Database Table Authentication



Introduction


Zend\Authentication\Adapter\DbTable provides the ability to authenticate against credentials stored in a
database table. Because Zend\Authentication\Adapter\DbTable requires an instance of Zend\Db\Adapter\Adapter
to be passed to its constructor, each instance is bound to a particular database connection. Other configuration
options may be set through the constructor and through instance methods, one for each option.


The available configuration options include:



		tableName: This is the name of the database table that contains the authentication credentials, and against
which the database authentication query is performed.


		identityColumn: This is the name of the database table column used to represent the identity. The identity
column must contain unique values, such as a username or e-mail address.


		credentialColumn: This is the name of the database table column used to represent the credential. Under a
simple identity and password authentication scheme, the credential value corresponds to the password. See also
the credentialTreatment option.


		credentialTreatment: In many cases, passwords and other sensitive data are encrypted, hashed, encoded,
obscured, salted or otherwise treated through some function or algorithm. By specifying a parameterized treatment
string with this method, such as ‘MD5(?)‘ or ‘PASSWORD(?)‘, a developer may apply such arbitrary SQL
upon input credential data. Since these functions are specific to the underlying RDBMS, check the database
manual for the availability of such functions for your database system.





Basic Usage


As explained in the introduction, the Zend\Authentication\Adapter\DbTable constructor requires an instance of
Zend\Db\Adapter\Adapter that serves as the database connection to which the authentication adapter instance is
bound. First, the database connection should be created.


The following code creates an adapter for an in-memory database, creates a simple table schema, and inserts a row
against which we can perform an authentication query later. This example requires the PDO SQLite extension to be
available:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		use Zend\Db\Adapter\Adapter as DbAdapter;

// Create a SQLite database connection
$dbAdapter = new DbAdapter(array(
                'driver' => 'Pdo_Sqlite',
                'database' => 'path/to/sqlite.db'
            ));

// Build a simple table creation query
$sqlCreate = 'CREATE TABLE [users] ('
           . '[id] INTEGER  NOT NULL PRIMARY KEY, '
           . '[username] VARCHAR(50) UNIQUE NOT NULL, '
           . '[password] VARCHAR(32) NULL, '
           . '[real_name] VARCHAR(150) NULL)';

// Create the authentication credentials table
$dbAdapter->query($sqlCreate);

// Build a query to insert a row for which authentication may succeed
$sqlInsert = "INSERT INTO users (username, password, real_name) "
           . "VALUES ('my_username', 'my_password', 'My Real Name')";

// Insert the data
$dbAdapter->query($sqlInsert);










With the database connection and table data available, an instance of Zend\Authentication\Adapter\DbTable may
be created. Configuration option values may be passed to the constructor or deferred as parameters to setter
methods after instantiation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// Configure the instance with constructor parameters...
$authAdapter = new AuthAdapter($dbAdapter,
                               'users',
                               'username',
                               'password'
                               );

// ...or configure the instance with setter methods
$authAdapter = new AuthAdapter($dbAdapter);

$authAdapter
    ->setTableName('users')
    ->setIdentityColumn('username')
    ->setCredentialColumn('password')
;










At this point, the authentication adapter instance is ready to accept authentication queries. In order to formulate
an authentication query, the input credential values are passed to the adapter prior to calling the
authenticate() method:


		1
2
3
4
5
6
7


		// Set the input credential values (e.g., from a login form)
$authAdapter
    ->setIdentity('my_username')
    ->setCredential('my_password')
;

// Perform the authentication query, saving the result










In addition to the availability of the getIdentity() method upon the authentication result object,
Zend\Authentication\Adapter\DbTable also supports retrieving the table row upon authentication success:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// Print the identity
echo $result->getIdentity() . "\n\n";

// Print the result row
print_r($authAdapter->getResultRowObject());

/* Output:
my_username

Array
(
    [id] => 1
    [username] => my_username
    [password] => my_password
    [real_name] => My Real Name
)










Since the table row contains the credential value, it is important to secure the values against unintended access.





Advanced Usage: Persisting a DbTable Result Object


By default, Zend\Authentication\Adapter\DbTable returns the identity supplied back to the auth object upon
successful authentication. Another use case scenario, where developers want to store to the persistent storage
mechanism of Zend\Authentication an identity object containing other useful information, is solved by using the
getResultRowObject() method to return a stdClass object. The following code snippet illustrates its use:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// authenticate with Zend\Authentication\Adapter\DbTable
$result = $this->_auth->authenticate($adapter);

if ($result->isValid()) {
    // store the identity as an object where only the username and
    // real_name have been returned
    $storage = $this->_auth->getStorage();
    $storage->write($adapter->getResultRowObject(array(
        'username',
        'real_name',
    )));

    // store the identity as an object where the password column has
    // been omitted
    $storage->write($adapter->getResultRowObject(
        null,
        'password'
    ));

    /* ... */

} else {

    /* ... */

}













Advanced Usage By Example


While the primary purpose of the Zend\Authentication component (and consequently
Zend\Authentication\Adapter\DbTable) is primarily authentication and not authorization, there are a few
instances and problems that toe the line between which domain they fit within. Depending on how you’ve decided to
explain your problem, it sometimes makes sense to solve what could look like an authorization problem within the
authentication adapter.


With that disclaimer out of the way, Zend\Authentication\Adapter\DbTable has some built in mechanisms that can
be leveraged for additional checks at authentication time to solve some common user problems.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		use Zend\Authentication\Adapter\DbTable as AuthAdapter;

// The status field value of an account is not equal to "compromised"
$adapter = new AuthAdapter($db,
                           'users',
                           'username',
                           'password',
                           'MD5(?) AND status != "compromised"'
                           );

// The active field value of an account is equal to "TRUE"
$adapter = new AuthAdapter($db,
                           'users',
                           'username',
                           'password',
                           'MD5(?) AND active = "TRUE"'
                           );










Another scenario can be the implementation of a salting mechanism. Salting is a term referring to a technique which
can highly improve your application’s security. It’s based on the idea that concatenating a random string to every
password makes it impossible to accomplish a successful brute force attack on the database using pre-computed hash
values from a dictionary.


Therefore, we need to modify our table to store our salt string:


		1
2
3


		$sqlAlter = "ALTER TABLE [users] "
          . "ADD COLUMN [password_salt] "
          . "AFTER [password]";










Here’s a simple way to generate a salt string for every user at registration:


		1
2


		for ($i = 0; $i < 50; $i++) {
    $dynamicSalt .= chr(rand(33, 126));










And now let’s build the adapter:


		1
2
3
4
5
6


		$adapter = new AuthAdapter($db,
                           'users',
                           'username',
                           'password',
                           "MD5(CONCAT('staticSalt', ?, password_salt))"
                          );











Note


You can improve security even more by using a static salt value hard coded into your application. In the case
that your database is compromised (e. g. by an SQL injection attack) but your web server is intact your data
is still unusable for the attacker.




Another alternative is to use the getDbSelect() method of the Zend\Authentication\Adapter\DbTable after the
adapter has been constructed. This method will return the Zend\Db\Sql\Select object instance it will use to
complete the authenticate() routine. It is important to note that this method will always return the same
object regardless if authenticate() has been called or not. This object will not have any of the identity
or credential information in it as those values are placed into the select object at authenticate() time.


An example of a situation where one might want to use the getDbSelect() method would check the status of a
user, in other words to see if that user’s account is enabled.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Continuing with the example from above
$adapter = new AuthAdapter($db,
                           'users',
                           'username',
                           'password',
                           'MD5(?)'
                           );

// get select object (by reference)
$select = $adapter->getDbSelect();
$select->where('active = "TRUE"');

// authenticate, this ensures that users.active = TRUE
$adapter->authenticate();
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Database Table Authentication
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.static-filter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using the StaticFilter


If it is inconvenient to load a given filter class and create an instance of the filter, you can use
StaticFilter with it’s method execute() as an alternative invocation style. The first argument of this
method is a data input value, that you would pass to the filter() method. The second argument is a string,
which corresponds to the basename of the filter class, relative to the Zend_Filter namespace. The execute()
method automatically loads the class, creates an instance, and applies the filter() method to the data input.


		1


		echo StaticFilter::execute('&', 'HtmlEntities');










You can also pass an array of constructor arguments, if they are needed for the filter class.


		1
2
3


		echo StaticFilter::execute('"',
                           'HtmlEntities',
                           array('quotestyle' => ENT_QUOTES));










The static usage can be convenient for invoking a filter ad hoc, but if you have the need to run a filter for
multiple inputs, it’s more efficient to follow the first example above, creating an instance of the filter object
and calling its filter() method.


Also, the FilterChain class allows you to instantiate and run multiple filter and validator classes on demand
to process sets of input data. See FilterChain.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using the StaticFilter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.di.quick-start.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Di Quickstart


This QuickStart is intended to get developers familiar with the concepts of the Zend\Di DiC. Generally speaking,
code is never as simple as it is inside this example, so working knowledge of the other sections of the manual is
suggested.


Assume for a moment, you have the following code as part of your application that you feel is a good candidate for
being managed by a DiC, after all, you are already injecting all your dependencies:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		namespace MyLibrary
{
    class DbAdapter
    {
        protected $username = null;
        protected $password = null;
        public function __construct($username, $password)
        {
            $this->username = $username;
            $this->password = $password;
        }
    }
}

namespace MyMovieApp
{
    class MovieFinder
    {
        protected $dbAdapter = null;
        public function __construct(\MyLibrary\DbAdapter $dbAdapter)
        {
            $this->dbAdapter = $dbAdapter;
        }
    }

    class MovieLister
    {
        protected $movieFinder = null;
        public function __construct(MovieFinder $movieFinder)
        {
            $this->movieFinder = $movieFinder;
        }
    }
}










With the above code, you find yourself writing the following to wire and utilize this code:


		1
2
3
4
5
6
7
8


		// $config object is assumed

$dbAdapter = new MyLibrary\DbAdapter($config->username, $config->password);
$movieFinder = new MyMovieApp\MovieFinder($dbAdapter);
$movieLister = new MyMovieApp\MovieLister($movieFinder);
foreach ($movieLister as $movie) {
    // iterate and display $movie
}










If you are doing this above wiring in each controller or view that wants to list movies, not only can this become
repetitive and boring to write, but also unmaintainable if for example you want to swap out one of these
dependencies on a wholesale scale.


Since this example of code already practices good dependency injection, with constructor injection, it is a great
candidate for using Zend\Di. The usage is as simple as:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		    // inside a bootstrap somewhere
    $di = new Zend\Di\Di();
    $di->instanceManager()->setParameters('MyLibrary\DbAdapter', array(
        'username' => $config->username,
        'password' => $config->password
    ));

    // inside each controller
    $movieLister = $di->get('MyMovieApp\MovieLister');
    foreach ($movieLister as $movie) {
        // iterate and display $movie
    }










In the above example, we are obtaining a default instance of Zend\Di\Di. By ‘default’, we mean that Zend\Di\Di
is constructed with a DefinitionList seeded with a RuntimeDefinition (uses Reflection) and an empty instance
manager and no configuration. Here is the Zend\Di\Di constructor:


		1
2
3
4
5
6
7
8
9


		    public function __construct(DefinitionList $definitions = null, InstanceManager $instanceManager = null, Configuration $config = null)
    {
        $this->definitions = ($definitions) ?: new DefinitionList(new Definition\RuntimeDefinition());
        $this->instanceManager = ($instanceManager) ?: new InstanceManager();

        if ($config) {
            $this->configure($config);
        }
    }










This means that when $di->get() is called, it will be consulting the RuntimeDefinition, which uses reflection to
understand the structure of the code. Once it knows the structure of the code, it can then know how the
dependencies fit together and how to go about wiring your objects for you. Zend\Di\Definition\RuntimeDefinition
will utilize the names of the parameters in the methods as the class parameter names. This is how both username and
password key are mapped to the first and second parameter, respectively, of the constructor consuming these named
parameters.


If you were to want to pass in the username and password at call time, this is achieved by passing them as the
second argument of get():


		1
2
3
4
5
6
7
8
9


		    // inside each controller
    $di = new Zend\Di\Di();
    $movieLister = $di->get('MyMovieApp\MovieLister', array(
        'username' => $config->username,
        'password' => $config->password
    ));
    foreach ($movieLister as $movie) {
        // iterate and display $movie
    }










It is important to note that when using call time parameters, these parameter names will be applied to any class
that accepts a parameter of such name.


By calling $di->get(), this instance of MovieLister will be automatically shared. This means subsequent calls to
get() will return the same instance as previous calls. If you wish to have completely new instances of MovieLister,
you can utilize $di->newInstance().






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Di Quickstart
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.server.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Getting information from the LDAP server



RootDSE


See the following documents for more information on the attributes contained within the RootDSE for a given LDAP
server.



		OpenLDAP [http://www.zytrax.com/books/ldap/ch3/#operational]


		Microsoft ActiveDirectory [http://msdn.microsoft.com/en-us/library/ms684291(VS.85).aspx]


		Novell eDirectory [http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/ah59jqq.html]





Getting hands on the RootDSE


		1
2
3
4


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$rootdse = $ldap->getRootDse();
$serverType = $rootdse->getServerType();













Schema Browsing


Getting hands on the server schema


		1
2
3
4


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$schema = $ldap->getSchema();
$classes = $schema->getObjectClasses();











OpenLDAP





ActiveDirectory



Note


Schema browsing on ActiveDirectory servers


Due to restrictions on Microsoft ActiveDirectory servers regarding the number of entries returned by generic
search routines and due to the structure of the ActiveDirectory schema repository, schema browsing is currently
not available for Microsoft ActiveDirectory servers.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Getting information from the LDAP server
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.oauth.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction to OAuth


OAuth allows you to approve access by any application to your private data stored a website without being forced to
disclose your username or password. If you think about it, the practice of handing over your username and password
for sites like Yahoo Mail or Twitter has been endemic for quite a while. This has raised some serious concerns
because there’s nothing to prevent other applications from misusing this data. Yes, some services may appear
trustworthy but that is never guaranteed. OAuth resolves this problem by eliminating the need for any username and
password sharing, replacing it with a user controlled authorization process.


This authorization process is token based. If you authorize an application (and by application we can include any
web based or desktop application) to access your data, it will be in receipt of an Access Token associated with
your account. Using this Access Token, the application can access your private data without continually requiring
your credentials. In all this authorization delegation style of protocol is simply a more secure solution to the
problem of accessing private data via any web service API.


OAuth is not a completely new idea, rather it is a standardized protocol building on the existing properties of
protocols such as Google AuthSub, Yahoo BBAuth, Flickr API, etc. These all to some extent operate on the basis of
exchanging user credentials for an Access Token of some description. The power of a standardized specification like
OAuth is that it only requires a single implementation as opposed to many disparate ones depending on the web
service. This standardization has not occurred independently of the major players, and indeed many now support
OAuth as an alternative and future replacement for their own solutions.


Zend Framework’s Zend_Oauth currently implements a full OAuth Consumer conforming to the OAuth Core 1.0
Revision A Specification (24 June 2009) via the Zend_Oauth_Consumer class.





Protocol Workflow


Before implementing OAuth it makes sense to understand how the protocol operates. To do so we’ll take the example
of Twitter which currently implements OAuth based on the OAuth Core 1.0 Revision A Specification. This example
looks at the protocol from the perspectives of the User (who will approve access), the Consumer (who is seeking
access) and the Provider (who holds the User’s private data). Access may be read-only or read and write.


By chance, our User has decided that they want to utilise a new service called TweetExpress which claims to be
capable of reposting your blog posts to Twitter in a manner of seconds. TweetExpress is a registered application on
Twitter meaning that it has access to a Consumer Key and a Consumer Secret (all OAuth applications must have these
from the Provider they will be accessing) which identify its requests to Twitter and that ensure all requests can
be signed using the Consumer Secret to verify their origin.


To use TweetExpress you are asked to register for a new account, and after your registration is confirmed you are
informed that TweetExpress will seek to associate your Twitter account with the service.


In the meantime TweetExpress has been busy. Before gaining your approval from Twitter, it has sent a HTTP request
to Twitter’s service asking for a new unauthorized Request Token. This token is not User specific from Twitter’s
perspective, but TweetExpress may use it specifically for the current User and should associate it with their
account and store it for future use. TweetExpress now redirects the User to Twitter so they can approve
TweetExpress’ access. The URL for this redirect will be signed using TweetExpress’ Consumer Secret and it will
contain the unauthorized Request Token as a parameter.


At this point the User may be asked to log into Twitter and will now be faced with a Twitter screen asking if they
approve this request by TweetExpress to access Twitter’s API on the User’s behalf. Twitter will record the
response which we’ll assume was positive. Based on the User’s approval, Twitter will record the current
unauthorized Request Token as having been approved by the User (thus making it User specific) and will generate a
new value in the form of a verification code. The User is now redirected back to a specific callback URL used by
TweetExpress (this callback URL may be registered with Twitter or dynamically set using an oauth_callback parameter
in requests). The redirect URL will contain the newly generated verification code.


TweetExpress’ callback URL will trigger an examination of the response to determine whether the User has granted
their approval to Twitter. Assuming so, it may now exchange it’s unauthorized Request Token for a fully authorized
Access Token by sending a request back to Twitter including the Request Token and the received verification code.
Twitter should now send back a response containing this Access Token which must be used in all requests used to
access Twitter’s API on behalf of the User. Twitter will only do this once they have confirmed the attached
Request Token has not already been used to retrieve another Access Token. At this point, TweetExpress may confirm
the receipt of the approval to the User and delete the original Request Token which is no longer needed.


From this point forward, TweetExpress may use Twitter’s API to post new tweets on the User’s behalf simply by
accessing the API endpoints with a request that has been digitally signed (via HMAC-SHA1) with a combination of
TweetExpress’ Consumer Secret and the Access Key being used.


Although Twitter do not currently expire Access Tokens, the User is free to deauthorize TweetExpress from their
Twitter account settings. Once deauthorized, TweetExpress’ access will be cut off and their Access Token rendered
invalid.





Security Architecture


OAuth was designed specifically to operate over an insecure HTTP connection and so the use of HTTPS is not
required though obviously it would be desireable if available. Should a HTTPS connection be feasible, OAuth
offers a signature method implementation called PLAINTEXT which may be utilised. Over a typical unsecured HTTP
connection, the use of PLAINTEXT must be avoided and an alternate scheme using. The OAuth specification defines two
such signature methods: HMAC-SHA1 and RSA-SHA1. Both are fully supported by Zend_Oauth.


These signature methods are quite easy to understand. As you can imagine, a PLAINTEXT signature method does nothing
that bears mentioning since it relies on HTTPS. If you were to use PLAINTEXT over HTTP, you are left with a
significant problem: there’s no way to be sure that the content of any OAuth enabled request (which would include
the OAuth Access Token) was altered en route. This is because unsecured HTTP requests are always at risk of
eavesdropping, Man In The Middle (MITM) attacks, or other risks whereby a request can be retooled so to speak to
perform tasks on behalf of the attacker by masquerading as the origin application without being noticed by the
service provider.


HMAC-SHA1 and RSA-SHA1 alleviate this risk by digitally signing all OAuth requests with the original application’s
registered Consumer Secret. Assuming only the Consumer and the Provider know what this secret is, a middle-man can
alter requests all they wish - but they will not be able to validly sign them and unsigned or invalidly signed
requests would be discarded by both parties. Digital signatures therefore offer a guarantee that validly signed
requests do come from the expected party and have not been altered en route. This is the core of why OAuth can
operate over an unsecure connection.


How these digital signatures operate depends on the method used, i.e. HMAC-SHA1, RSA-SHA1 or perhaps another method
defined by the service provider. HMAC-SHA1 is a simple mechanism which generates a Message Authentication Code
(MAC) using a cryptographic hash function (i.e. SHA1) in combination with a secret key known only to the message
sender and receiver (i.e. the OAuth Consumer Secret and the authorized Access Key combined). This hashing mechanism
is applied to the parameters and content of any OAuth requests which are concatenated into a “base signature
string” as defined by the OAuth specification.


RSA-SHA1 operates on similar principles except that the shared secret is, as you would expect, each parties’ RSA
private key. Both sides would have the other’s public key with which to verify digital signatures. This does pose a
level of risk compared to HMAC-SHA1 since the RSA method does not use the Access Key as part of the shared secret.
This means that if the RSA private key of any Consumer is compromised, then all Access Tokens assigned to that
Consumer are also. RSA imposes an all or nothing scheme. In general, the majority of service providers offering
OAuth authorization have therefore tended to use HMAC-SHA1 by default, and those who offer RSA-SHA1 may offer
fallback support to HMAC-SHA1.


While digital signatures add to OAuth’s security they are still vulnerable to other forms of attack, such as replay
attacks which copy earlier requests which were intercepted and validly signed at that time. An attacker can now
resend the exact same request to a Provider at will at any time and intercept its results. This poses a significant
risk but it is quiet simple to defend against - add a unique string (i.e. a nonce) to all requests which changes
per request (thus continually changing the signature string) but which can never be reused because Providers
actively track used nonces within the a certain window defined by the timestamp also attached to a request. You
might first suspect that once you stop tracking a particular nonce, the replay could work but this ignore the
timestamp which can be used to determine a request’s age at the time it was validly signed. One can assume that a
week old request used in an attempted replay should be summarily discarded!


As a final point, this is not an exhaustive look at the security architecture in OAuth. For example, what if HTTP
requests which contain both the Access Token and the Consumer Secret are eavesdropped? The system relies on at one
in the clear transmission of each unless HTTPS is active, so the obvious conclusion is that where feasible
HTTPS is to be preferred leaving unsecured HTTP in place only where it is not possible or affordable to do so.





Getting Started


With the OAuth protocol explained, let’s show a simple example of it with source code. Our new Consumer will be
handling Twitter Status submissions. To do so, it will need to be registered with Twitter in order to receive an
OAuth Consumer Key and Consumer Secret. This are utilised to obtain an Access Token before we use the Twitter API
to post a status message.


Assuming we have obtained a key and secret, we can start the OAuth workflow by setting up a Zend_Oauth_Consumer
instance as follows passing it a configuration (either an array or Zend_Config object).


		1
2
3
4
5
6
7


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);










The callbackUrl is the URI we want Twitter to request from our server when sending information. We’ll look at this
later. The siteUrl is the base URI of Twitter’s OAuth API endpoints. The full list of endpoints include
http://twitter.com/oauth/request_token, http://twitter.com/oauth/access_token, and
http://twitter.com/oauth/authorize. The base siteUrl utilises a convention which maps to these three OAuth
endpoints (as standard) for requesting a request token, access token or authorization. If the actual endpoints of
any service differ from the standard set, these three URIs can be separately set using the methods
setRequestTokenUrl(), setAccessTokenUrl(), and setAuthorizeUrl() or the configuration fields
requestTokenUrl, accessTokenUrl and authorizeUrl.


The consumerKey and consumerSecret are retrieved from Twitter when your application is registered for OAuth access.
These also apply to any OAuth enabled service, so each one will provide a key and secret for your application.


All of these configuration options may be set using method calls simply by converting from, e.g. callbackUrl to
setCallbackUrl().


In addition, you should note several other configuration values not explicitly used: requestMethod and
requestScheme. By default, Zend_Oauth_Consumer sends requests as POST (except for a redirect which uses
GET). The customised client (see later) also includes its authorization by way of a header. Some services may,
at their discretion, require alternatives. You can reset the requestMethod (which defaults to Zend_Oauth::POST) to
Zend_Oauth::GET, for example, and reset the requestScheme from its default of Zend_Oauth::REQUEST_SCHEME_HEADER to
one of Zend_Oauth::REQUEST_SCHEME_POSTBODY or Zend_Oauth::REQUEST_SCHEME_QUERYSTRING. Typically the defaults should
work fine apart from some exceptional cases. Please refer to the service provider’s documentation for more details.


The second area of customisation is how HMAC operates when calculating/comparing them for all requests. This is
configured using the signatureMethod configuration field or setSignatureMethod(). By default this is HMAC-SHA1.
You can set it also to a provider’s preferred method including RSA-SHA1. For RSA-SHA1, you should also configure
RSA private and public keys via the rsaPrivateKey and rsaPublicKey configuration fields or the
setRsaPrivateKey() and setRsaPublicKey() methods.


The first part of the OAuth workflow is obtaining a request token. This is accomplished using:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

// fetch a request token
$token = $consumer->getRequestToken();










The new request token (an instance of Zend_Oauth_Token_Request) is unauthorized. In order to exchange it for an
authorized token with which we can access the Twitter API, we need the user to authorize it. We accomplish this
by redirecting the user to Twitter’s authorize endpoint via:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

// fetch a request token
$token = $consumer->getRequestToken();

// persist the token to storage
$_SESSION['TWITTER_REQUEST_TOKEN'] = serialize($token);

// redirect the user
$consumer->redirect();










The user will now be redirected to Twitter. They will be asked to authorize the request token attached to the
redirect URI’s query string. Assuming they agree, and complete the authorization, they will be again redirected,
this time to our Callback URL as previously set (note that the callback URL is also registered with Twitter when we
registered our application).


Before redirecting the user, we should persist the request token to storage. For simplicity I’m just using the
user’s session, but you can easily use a database for the same purpose, so long as you tie the request token to the
current user so it can be retrieved when they return to our application.


The redirect URI from Twitter will contain an authorized Access Token. We can include code to parse out this access
token as follows - this source code would exist within the executed code of our callback URI. Once parsed we can
discard the previous request token, and instead persist the access token for future use with the Twitter API.
Again, we’re simply persisting to the user session, but in reality an access token can have a long lifetime so it
should really be stored to a database.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

if (!empty($_GET) && isset($_SESSION['TWITTER_REQUEST_TOKEN'])) {
    $token = $consumer->getAccessToken(
                 $_GET,
                 unserialize($_SESSION['TWITTER_REQUEST_TOKEN'])
             );
    $_SESSION['TWITTER_ACCESS_TOKEN'] = serialize($token);

    // Now that we have an Access Token, we can discard the Request Token
    $_SESSION['TWITTER_REQUEST_TOKEN'] = null;
} else {
    // Mistaken request? Some malfeasant trying something?
    exit('Invalid callback request. Oops. Sorry.');
}










Success! We have an authorized access token - so it’s time to actually use the Twitter API. Since the access
token must be included with every single API request, Zend_Oauth_Consumer offers a ready-to-go HTTP client
(a subclass of Zend_Http_Client) to use either by itself or by passing it as a custom HTTP Client to another
library or component. Here’s an example of using it standalone. This can be done from anywhere in your application,
so long as you can access the OAuth configuration and retrieve the final authorized access token.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);

$statusMessage = 'I\'m posting to Twitter using Zend_Oauth!';

$token = unserialize($_SESSION['TWITTER_ACCESS_TOKEN']);
$client = $token->getHttpClient($configuration);
$client->setUri('http://twitter.com/statuses/update.json');
$client->setMethod(Zend_Http_Client::POST);
$client->setParameterPost('status', $statusMessage);
$response = $client->request();

$data = Zend_Json::decode($response->getBody());
$result = $response->getBody();
if (isset($data->text)) {
    $result = 'true';
}
echo $result;










As a note on the customised client, this can be passed to most Zend Framework service or other classes using
Zend_Http_Client displacing the default client they would otherwise use.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction to OAuth
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.db.sql.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\Sql


Zend\Db\Sql is a SQL abstraction layer for building platform specific SQL queries via a object-oriented API.
The end result of an Zend\Db\Sql object will be to either produce a Statement and Parameter container that
represents the target query, or a full string that can be directly executed against the database platform. To
achieve this, Zend\Db\Sql objects require a Zend\Db\Adapter\Adapter object in order to produce the
desired results.



Zend\Db\Sql\Sql (Quickstart)


As there are for primary tasks associated with interacting with a database (from the DML, or Data Manipulation
Language): selecting, inserting, updating and deleting. As such, there are four primary objects that developers can
interact or building queries, Zend\Db\Sql\Select, Insert, Update and Delete.


Since these four tasks are so closely related, and generally used together within the same application,
Zend\Db\Sql\Sql objects help you create them and produce the result you are attempting to achieve.


		1
2
3
4
5
6


		use Zend\Db\Sql\Sql;
$sql = new Sql($adapter);
$select = $sql->select(); // @return Zend\Db\Sql\Select
$insert = $sql->insert(); // @return Zend\Db\Sql\Insert
$update = $sql->update(); // @return Zend\Db\Sql\Update
$delete = $sql->delete(); // @return Zend\Db\Sql\Delete










As a developer, you can now interact with these objects, as described in the sections below, to specialize each
query. Once they have been populated with values, they are ready to either be prepared or executed.


To prepare (using a Select object):


		1
2
3
4
5
6
7
8


		use Zend\Db\Sql\Sql;
$sql = new Sql($adapter);
$select = $sql->select();
$select->from('foo');
$select->where(array('id' => 2));

$statement = $sql->prepareStatementForSqlObject($select);
$results = $statement->execute();










To execute (using a Select object)


		1
2
3
4
5
6
7
8


		use Zend\Db\Sql\Sql;
$sql = new Sql($adapter);
$select = $sql->select();
$select->from('foo');
$select->where(array('id' => 2));

$selectString = $sql->getSqlStringForSqlObject($select);
$results = $adapter->query($selectString, $adapter::QUERY_MODE_EXECUTE);










Zend\Db\Sql\Sql objects can also be bound to a particular table so that in getting a select, insert, update, or
delete object, they are all primarily seeded with the same table when produced.


		1
2
3
4


		use Zend\Db\Sql\Sql;
$sql = new Sql($adapter, 'foo');
$select = $sql->select();
$select->where(array('id' => 2)); // $select already has the from('foo') applied













Zend\Db\Sql’s Select, Insert, Update and Delete


Each of these objects implement the following (2) interfaces:


		1
2
3
4
5
6


		interface PreparableSqlInterface {
     public function prepareStatement(Adapter $adapter, StatementInterface $statement);
}
interface SqlInterface {
     public function getSqlString(PlatformInterface $adapterPlatform = null);
}










These are the functions you can call to either produce (a) a prepared statement, or (b) a string to be executed.





Zend\Db\Sql\Select


Zend\Db\Sql\Select is an object who’s primary function is to present a unified API for building platform
specific SQL SELECT queries. The object can be instantiated and consumed without Zend\Db\Sql\Sql:


		1
2
3
4


		use Zend\Db\Sql\Select;
$select = new Select();
// or, to produce a $select bound to a specific table
$select = new Select('foo');










If a table is provided to the Select object, then from() cannot be called later to change the name of the table.


Once you have a valid Select object, the following API can be used to further specify various select statement
parts:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		class Select extends AbstractSql implements SqlInterface, PreparableSqlInterface
{
    const JOIN_INNER = 'inner';
    const JOIN_OUTER = 'outer';
    const JOIN_LEFT = 'left';
    const JOIN_RIGHT = 'right';
    const SQL_STAR = '*';
    const ORDER_ASCENDING = 'ASC';
    const ORDER_DESENDING = 'DESC';

    public $where; // @param Where $where

    public function __construct($table = null);
    public function from($table);
    public function columns(array $columns, $prefixColumnsWithTable = true);
    public function join($name, $on, $columns = self::SQL_STAR, $type = self::JOIN_INNER);
    public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
    public function group($group);
    public function having($predicate, $combination = Predicate\PredicateSet::OP_AND);
    public function order($order);
    public function limit($limit);
    public function offset($offset);
}











from():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// as a string:
$select->from('foo');

// as an array to specify an alias:
// produces SELECT "t".* FROM "table" AS "t"

$select->from(array('t' => 'table'));

// using a Sql\TableIdentifier:
// same output as above

$select->from(new TableIdentifier(array('t' => 'table')));













columns():


		1
2
3
4
5
6
7


		// as array of names
$select->columns(array('foo', 'bar'));

// as an associative array with aliases as the keys:
// produces 'bar' AS 'foo', 'bax' AS 'baz'

$select->columns(array('foo' => 'bar', 'baz' => 'bax'));













join():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$select->join(
     'foo' // table name,
     'id = bar.id', // expression to join on (will be quoted by platform object before insertion),
     array('bar', 'baz'), // (optional) list of columns, same requiremetns as columns() above
     $select::JOIN_OUTER // (optional), one of inner, outer, left, right also represtned by constants in the API
);

$select->from(array('f' => 'foo'))  // base table
    ->join(array('b' => 'bar'),     // join table with alias
    'f.foo_id = b.foo_id');         // join expression













where(), having():


The Zend\Db\Sql\Select object provides bit of flexibility as it regards to what kind of
parameters are acceptable when calling where() or having().  The method signature is listed as:


		1
2
3
4
5
6
7
8


		/**
 * Create where clause
 *
 * @param  Where|\Closure|string|array $predicate
 * @param  string $combination One of the OP_* constants from Predicate\PredicateSet
 * @return Select
 */
public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);










As you can see, there are a number of different ways to pass criteria to both having() and
where().


If you provide a Zend\Db\Sql\Where object to where() or a
Zend\Db\Sql\Having object to having(), the internal objects for Select will be replaced
completely.  When the where/having() is processed, this object will be iterated to produce
the WHERE or HAVING section of the SELECT statement.


If you provide a Closure to where() or having(), this function will be called with
the Select’s Where object as the only parameter.  So the following is possible:


		1
2
3
4
5


		$spec = function (Where $where) {
    $where->like('username', 'ralph%');
};

$select->where($spec);










If you provide a string, this string will be used to instantiate a
Zend\Db\Sql\Predicate\Expression object so that it’s contents will be applied
as is.  This means that there will be no quoting in the fragment provided.


Consider the following code:


		1
2


		// SELECT "foo".* FROM "foo" WHERE x = 5
$select->from('foo')->where('x = 5');










If you provide an array who’s values are keyed by an integer, the value can either
be a string that will be then used to build a Predicate\Expression or any object
that implements Predicate\PredicateInterface.  These objects are pushed onto the
Where stack with the $combination provided.


Consider the following code:


		1
2


		// SELECT "foo".* FROM "foo" WHERE x = 5 AND y = z
$select->from('foo')->where(array('x = 5', 'y = z'));










If you provide an array who’s values are keyed with a string, these values will
be handled in the following:



		PHP value nulls will be made into a Predicate\IsNull object


		PHP value array()s will be made into a Predicate\In object


		PHP value strings will be made into a Predicate\Operator object such that the string key will be identifier, and the value will target value.





Consider the following code:


		1
2
3
4
5
6


		// SELECT "foo".* FROM "foo" WHERE "c1" IS NULL AND "c2" IN (?, ?, ?) AND "c3" IS NOT NULL
$select->from('foo')->where(array(
    'c1' => null,
    'c2' => array(1, 2, 3),
    new \Zend\Db\Sql\Predicate\IsNotNull('c3')
));













order():


		1
2
3
4
5
6
7
8
9


		$select = new Select;
$select->order('id DESC'); // produces 'id' DESC

$select = new Select;
$select->order('id DESC')
     ->order('name ASC, age DESC'); // produces 'id' DESC, 'name' ASC, 'age' DESC

$select = new Select;
$select->order(array('name ASC', 'age DESC')); // produces 'name' ASC, 'age' DESC













limit() and offset():


		1
2
3


		$select = new Select;
$select->limit(5); // always takes an integer/numeric
$select->offset(10); // similarly takes an integer/numeric















Zend\Db\Sql\Insert


The Insert API:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		class Insert implements SqlInterface, PreparableSqlInterface
{
     const VALUES_MERGE = 'merge';
     const VALUES_SET   = 'set';

     public function __construct($table = null);
     public function into($table);
     public function columns(array $columns);
     public function values(array $values, $flag = self::VALUES_SET);
}










Similarly to Select objects, the table can be set at construction time or via into().



columns():


		1


		$insert->columns(array('foo', 'bar')); // set the valid columns













values():


		1
2
3
4
5
6


		// default behavior of values is to set the values
// succesive calls will not preserve values from previous calls
$insert->values(array(
     'col_1' => 'value1',
     'col_2' => 'value2'
));










		1
2


		// merging values with previous calls
$insert->values(array('col_2' => 'value2'), $insert::VALUES);















Zend\Db\Sql\Update


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		class Update
{
    const VALUES_MERGE = 'merge';
    const VALUES_SET   = 'set';

    public $where; // @param Where $where
    public function __construct($table = null);
    public function table($table);
    public function set(array $values, $flag = self::VALUES_SET);
    public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
}











set():


		1


		$update->set(array('foo' => 'bar', 'baz' => 'bax'));













where():


See where section below.







Zend\Db\Sql\Delete


		1
2
3
4
5
6
7


		class Delete
{
    public $where; // @param Where $where
    public function __construct($table = null);
    public function from($table);
    public function where($predicate, $combination = Predicate\PredicateSet::OP_AND);
}











where():


See where section below.







Zend\Db\Sql\Where & Zend\Db\Sql\Having


In the following, we will talk about Where, Having is implies as being the same API.


Effectively, Where and Having extend from the same base object, a Predicate (and PredicateSet). All of the parts
that make up a where or having that are and’ed or or’d together are called predicates. The full set of predicates
is called a PredicateSet. This object set generally contains the values (and identifiers) separate from the
fragment they belong to until the last possible moment when the statement is either used to be prepared
(parameteritized), or executed. In parameterization, the parameters will be replaced with their proper placeholder
(a named or positional parameter), and the values stored inside a Adapter\ParameterContainer. When executed, the
values will be interpolated into the fragments they belong to and properly quoted.


It is important to know that in this API, a distinction is made between what elements are considered identifiers
(TYPE_IDENTIFIER) and which of those is a value (TYPE_VALUE). There is also a special use case type for literal
values (TYPE_LITERAL). These are all exposed via the Zend\Db\Sql\ExpressionInterface interface.


The Zend\Db\Sql\Where (Predicate/PredicateSet) API:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		// Where & Having:
class Predicate extends PredicateSet
{
     public $and;
     public $or;
     public $AND;
     public $OR;
     public $NEST;
     public $UNNSET;

     public function nest();
     public function setUnnest(Predicate $predicate);
     public function unnest();
     public function equalTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
     public function lessThan($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
     public function greaterThan($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
     public function lessThanOrEqualTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
     public function greaterThanOrEqualTo($left, $right, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
     public function like($identifier, $like);
     public function literal($literal, $parameter);
     public function isNull($identifier);
     public function isNotNull($identifier);
     public function in($identifier, array $valueSet = array());
     public function between($identifier, $minValue, $maxValue);


     // Inherited From PredicateSet

     public function addPredicate(PredicateInterface $predicate, $combination = null);
     public function getPredicates();
     public function orPredicate(PredicateInterface $predicate);
     public function andPredicate(PredicateInterface $predicate);
     public function getExpressionData();
     public function count();
}










Each method in the Where API will produce a corresponding Predicate object of a similarly named type, described
below, with the full API of the object:



equalTo(), lessThan(), greaterThan(), lessThanOrEqualTo(), greaterThanOrEqualTo():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		$where->equalTo('id', 5);

// same as the following workflow
$where->addPredicate(
     new Predicate\Operator($left, Operator::OPERATOR_EQUAL_TO, $right, $leftType, $rightType)
);

class Operator implements PredicateInterface
{
    const OPERATOR_EQUAL_TO                  = '=';
    const OP_EQ                              = '=';
    const OPERATOR_NOT_EQUAL_TO              = '!=';
    const OP_NE                              = '!=';
    const OPERATOR_LESS_THAN                 = '<';
    const OP_LT                              = '<';
    const OPERATOR_LESS_THAN_OR_EQUAL_TO     = '<=';
    const OP_LTE                             = '<=';
    const OPERATOR_GREATER_THAN              = '>';
    const OP_GT                              = '>';
    const OPERATOR_GREATER_THAN_OR_EQUAL_TO  = '>=';
    const OP_GTE                             = '>=';

    public function __construct($left = null, $operator = self::OPERATOR_EQUAL_TO, $right = null, $leftType = self::TYPE_IDENTIFIER, $rightType = self::TYPE_VALUE);
    public function setLeft($left);
    public function getLeft();
    public function setLeftType($type);
    public function getLeftType();
    public function setOperator($operator);
    public function getOperator();
    public function setRight($value);
    public function getRight();
    public function setRightType($type);
    public function getRightType();
    public function getExpressionData();
}













like($identifier, $like):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$where->like($identifier, $like):

// same as
$where->addPredicate(
     new Predicate\Like($identifier, $like)
);

// full API

class Like implements PredicateInterface
{
    public function __construct($identifier = null, $like = null);
    public function setIdentifier($identifier);
    public function getIdentifier();
    public function setLike($like);
    public function getLike();
}













literal($literal, $parameter);


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		$where->literal($literal, $parameter);

// same as
$where->addPredicate(
    new Predicate\Expression($literal, $parameter)
);

// full API
class Expression implements ExpressionInterface, PredicateInterface
{
    const PLACEHOLDER = '?';
     public function __construct($expression = null, $valueParameter = null /*[, $valueParameter, ... ]*/);
    public function setExpression($expression);
    public function getExpression();
    public function setParameters($parameters);
    public function getParameters();
    public function setTypes(array $types);
    public function getTypes();
}













isNull($identifier);


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$where->isNull($identifier);

// same as
$where->addPredicate(
    new Predicate\IsNull($identifier)
);

// full API
class IsNull implements PredicateInterface
{
    public function __construct($identifier = null);
    public function setIdentifier($identifier);
    public function getIdentifier();
}













isNotNull($identifier);


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$where->isNotNull($identifier);

// same as
$where->addPredicate(
    new Predicate\IsNotNull($identifier)
);

// full API
class IsNotNull implements PredicateInterface
{
    public function __construct($identifier = null);
    public function setIdentifier($identifier);
    public function getIdentifier();
}













in($identifier, array $valueSet = array());


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$where->in($identifier, array $valueSet = array());

// same as
$where->addPredicate(
    new Predicate\In($identifier, $valueSet)
);

// full API
class In implements PredicateInterface
{
    public function __construct($identifier = null, array $valueSet = array());
    public function setIdentifier($identifier);
    public function getIdentifier();
    public function setValueSet(array $valueSet);
    public function getValueSet();
}













between($identifier, $minValue, $maxValue);


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		$where->between($identifier, $minValue, $maxValue);

// same as
$where->addPredicate(
    new Predicate\Between($identifier, $minValue, $maxValue)
);

// full API
class Between implements PredicateInterface
{
    public function __construct($identifier = null, $minValue = null, $maxValue = null);
    public function setIdentifier($identifier);
    public function getIdentifier();
    public function setMinValue($minValue);
    public function getMinValue();
    public function setMaxValue($maxValue);
    public function getMaxValue();
    public function setSpecification($specification);
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\Sql
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.form.collections.dynamic-elements.template.png
v<fieldset>
<legend=Please choose categories for this product</legend>
»<fieldsets.</Fieldsets
b <fieldsets.</Tieldsets
<span data

product [cat
</fieldset>





modules/zend.i18n.view.helpers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
I18n View Helpers



Introduction


Zend Framework comes with an initial set of helper classes related to Internationalization: e.g., formatting a
date, formatting currency, or displaying translated content. You can use helper, or plugin, classes to perform
these behaviors for you.


See the section on view helpers for more information.





CurrencyFormat Helper


The CurrencyFormat view helper can be used to simplify rendering of localized currency values. It acts as a
wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Basic Usage


		1
2
3
4
5
6
7


		// Within your view

echo $this->currencyFormat(1234.56, "USD", "en_US");
// This returns: "$1,234.56"

echo $this->currencyFormat(1234.56, "EUR", "de_DE");
// This returns: "1.234,56 €"











		
currencyFormat(float $number, string $currencyCode[, string $locale])


		



		Parameters:		
		$number – The numeric currency value.


		$currencyCode – The 3-letter ISO 4217 currency code indicating the currency to use.


		$locale – (Optional) Locale in which the currency would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $currencyCode and $locale options can be set prior to formatting and will be applied each time the
helper is used:


		1
2
3
4
5


		// Within your view
$this->plugin("currencyformat")->setCurrencyCode("USD")->setLocale("en_US");

echo $this->currencyFormat(1234.56);  // "$1,234.56"
echo $this->currencyFormat(5678.90);  // "$5,678.90"













DateFormat Helper


The DateFormat view helper can be used to simplify rendering of localized date/time values. It acts as a
wrapper for the IntlDateFormatter class within the Internationalization extension (Intl).


Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// Within your view

// Date and Time
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::MEDIUM, // date
    IntlDateFormatter::MEDIUM, // time
    "en_US"
);
// This returns: "Jul 2, 2012 6:44:03 PM"

// Date Only
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::LONG, // date
    IntlDateFormatter::NONE, // time
    "en_US"
);
// This returns: "July 2, 2012"

// Time Only
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::NONE,  // date
    IntlDateFormatter::SHORT, // time
    "en_US"
);
// This returns: "6:44 PM"











		
dateFormat(mixed $date[, int $dateType[, int $timeType[, string $locale]]])


		



		Parameters:		
		$date – The value to format. This may be a DateTime object, an integer representing a Unix timestamp value or an array in the format output by localtime().


		$dateType – (Optional) Date type to use (none, short, medium, long, full). This is one of the IntlDateFormatter constants [http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]. Defaults to IntlDateFormatter::NONE.


		$timeType – (Optional) Time type to use (none, short, medium, long, full). This is one of the IntlDateFormatter constants [http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]. Defaults to IntlDateFormatter::NONE.


		$locale – (Optional) Locale in which the date would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $locale option can be set prior to formatting with the setLocale() method and will be applied each time
the helper is used.


By default, the system’s default timezone will be used when formatting. This overrides any timezone that may be set
inside a DateTime object. To change the timezone when formatting, use the setTimezone method.


		1
2
3
4
5


		// Within your view
$this->plugin("dateFormat")->setTimezone("America/New_York")->setLocale("en_US");

echo $this->dateFormat(new DateTime(), IntlDateFormatter::MEDIUM);  // "Jul 2, 2012"
echo $this->dateFormat(new DateTime(), IntlDateFormatter::SHORT);   // "7/2/12"













NumberFormat Helper


The NumberFormat view helper can be used to simplify rendering of locale-specific number and percentage
strings. It acts as a wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// Within your view

// Example of Decimal formatting:
echo $this->numberFormat(
    1234567.891234567890000,
    NumberFormatter::DECIMAL,
    NumberFormatter::TYPE_DEFAULT,
    "de_DE"
);
// This returns: "1.234.567,891"

// Example of Percent formatting:
echo $this->numberFormat(
    0.80,
    NumberFormatter::PERCENT,
    NumberFormatter::TYPE_DEFAULT,
    "en_US"
);
// This returns: "80%"

// Example of Scientific notation formatting:
echo $this->numberFormat(
    0.00123456789,
    NumberFormatter::SCIENTIFIC,
    NumberFormatter::TYPE_DEFAULT,
    "fr_FR"
);
// This returns: "1,23456789E-3"











		
numberFormat(number $number[, int $formatStyle[, int $formatType[, string $locale]]])


		



		Parameters:		
		$number – The numeric value.


		$formatStyle – (Optional) Style of the formatting, one of the format style constants [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle]. If unset, it will use NumberFormatter::DECIMAL as the default style.


		$formatType – (Optional) The formatting type [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types] to use. If unset, it will use NumberFormatter::TYPE_DEFAULT as the default type.


		$locale – (Optional) Locale in which the number would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $formatStyle, $formatType, and $locale options can be set prior to formatting and will be applied
each time the helper is used.


		1
2
3
4
5
6
7
8


		// Within your view
$this->plugin("numberformat")
            ->setFormatStyle(NumberFormatter::PERCENT)
            ->setFormatType(NumberFormatter::TYPE_DOUBLE)
            ->setLocale("en_US");

echo $this->numberFormat(0.56);  // "56%"
echo $this->numberFormat(0.90);  // "90%"













Translate Helper


The Translate view helper can be used to translate content. It acts as a wrapper for the
Zend\I18n\Translator\Translator class.


Setup


Before using the Translate view helper, you must have first created a Translator object and have attached
it to the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper,
this will be done automatically for you.


Basic Usage


		1
2
3
4
5
6
7
8
9


		// Within your view

echo $this->translate("Some translated text.");

echo $this->translate("Translated text from a custom text domain.", "customDomain");

echo sprintf($this->translate("The current time is %s."), $currentTime);

echo $this->translate("Translate in a specific locale", "default", "de_DE");











		
translate(string $message[, string $textDomain[, string $locale]])


		



		Parameters:		
		$message – The message to be translated.


		$textDomain – (Optional) The text domain where this translation lives. Defaults to the value “default”.


		$locale – (Optional) Locale in which the message would be translated (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Gettext


The xgettext utility can be used to compile *.po files from PHP source files containing the translate view helper.


xgettext --language=php --add-location --keyword=translate my-view-file.phtml






See the Gettext Wikipedia page [http://en.wikipedia.org/wiki/Gettext] for more information.


Public Methods



		Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from


		Zend\I18n\View\Helper\AbstractTranslatorHelper.








TranslatePlural Helper


The TranslatePlural view helper can be used to translate words which take into account numeric meanings.
English, for example, has a singular definition of “car”, for one car. And has the plural definition, “cars”,
meaning zero “cars” or more than one car. Other languages like Russian or Polish have more plurals with different
rules.


The viewhelper acts as a wrapper for the Zend\I18n\Translator\Translator class.


Setup


Before using the TranslatePlural view helper, you must have first created a Translator object and
have attached it to the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper,
this will be done automatically for you.


Basic Usage


		1
2
3
4
5
6
7
8


		// Within your view
echo $this->translatePlural("car", "cars", $num);

// Use a custom domain
echo $this->translatePlural("monitor", "monitors", $num, "customDomain");

// Change locale
echo $this->translate("locale", "locales", $num, "default", "de_DE");











		
translatePlural(string $singular, string $plural, int $number[, string $textDomain[, string $locale]])


		



		Parameters:		
		$singular – The singular message to be translated.


		$plural – The plural message to be translated.


		$number – The number to evaluate and determine which message to use.


		$textDomain – (Optional) The text domain where this translation lives. Defaults to the value “default”.


		$locale – (Optional) Locale in which the message would be translated (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods



		Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from


		Zend\I18n\View\Helper\AbstractTranslatorHelper.








Abstract Translator Helper


The AbstractTranslatorHelper view helper is used as a base abstract class for any helpers that need to
translate content. It provides an implementation for the Zend\I18n\Translator\TranslatorAwareInterface
which allows injecting a translator and setting a text domain.


Public Methods



		
setTranslator(Translator $translator[, string $textDomain = null])


		Sets Zend\I18n\Translator\Translator to use in helper. The $textDomain argument is optional.
It is provided as a convenience for setting both the translator and textDomain at the same time.









		
getTranslator()


		Returns the Zend\I18n\Translator\Translator used in the helper.






		Return type:		Zend\I18n\Translator\Translator














		
hasTranslator()


		Returns a true if a Zend\I18n\Translator\Translator is set in the helper, and false if otherwise.






		Return type:		boolean














		
setTranslatorEnabled(boolean $enabled)


		Sets whether translations should be enabled or disabled.









		
isTranslatorEnabled()


		Returns true if translations are enabled, and false if disabled.






		Return type:		boolean














		
setTranslatorTextDomain(string $textDomain)


		Set the translation text domain to use in helper when translating.









		
getTranslatorTextDomain()


		Returns the translation text domain used in the helper.






		Return type:		string



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                I18n View Helpers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.digits.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Digits


Zend\Validator\Digits validates if a given value contains only digits.



Supported options for Zend\Validator\Digits


There are no additional options for Zend\Validator\Digits:





Validating digits


To validate if a given value contains only digits and no other characters, simply call the validator like shown in
this example:


		1
2
3
4
5


		$validator = new Zend\Validator\Digits();

$validator->isValid("1234567890"); // returns true
$validator->isValid(1234);         // returns true
$validator->isValid('1a234');      // returns false











Note


Validating numbers


When you want to validate numbers or numeric values, be aware that this validator only validates digits. This
means that any other sign like a thousand separator or a comma will not pass this validator. In this case you
should use Zend\Validator\Int or Zend\Validator\Float.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Digits
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.10.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.0


When upgrading from a previous release to Zend Framework 1.0 or higher you should note the following migration
notes.



Zend_Controller


The principal changes introduced in 1.0.0RC1 are the introduction of and default enabling of the ErrorHandler plugin and the ViewRenderer action helper. Please read the documentation to each thoroughly to
see how they work and what effect they may have on your applications.


The ErrorHandler plugin runs during postDispatch() checking for exceptions, and forwarding to a specified
error handler controller. You should include such a controller in your application. You may disable it by setting
the front controller parameter noErrorHandler:


		1


		$front->setParam('noErrorHandler', true);










The ViewRenderer action helper automates view injection into action controllers as well as autorendering of
view scripts based on the current action. The primary issue you may encounter is if you have actions that do not
render view scripts and neither forward or redirect, as the ViewRenderer will attempt to render a view script
based on the action name.


There are several strategies you can take to update your code. In the short term, you can globally disable the
ViewRenderer in your front controller bootstrap prior to dispatching:


		1
2


		// Assuming $front is an instance of Zend_Controller_Front
$front->setParam('noViewRenderer', true);










However, this is not a good long term strategy, as it means most likely you’ll be writing more code.


When you’re ready to start using the ViewRenderer functionality, there are several things to look for in your
controller code. First, look at your action methods (the methods ending in ‘Action’), and determine what each is
doing. If none of the following is happening, you’ll need to make changes:



		Calls to $this->render();


		Calls to $this->_forward();


		Calls to $this->_redirect();


		Calls to the Redirector action helper





The easiest change is to disable auto-rendering for that method:


		1


		$this->_helper->viewRenderer->setNoRender();










If you find that none of your action methods are rendering, forwarding, or redirecting, you will likely want to put
the above line in your preDispatch() or init() methods:


		1
2
3
4
5
6


		public function preDispatch()
{
    // disable view script autorendering
    $this->_helper->viewRenderer->setNoRender()
    // .. do other things...
}










If you are calling render(), and you’re using the Conventional Modular directory structure, you’ll want to change your code to make use of autorendering:



		If you’re rendering multiple view scripts in a single action, you don’t need to change a thing.


		If you’re simply calling render() with no arguments, you can remove such lines.


		If you’re calling render() with arguments, and not doing any processing afterwards or rendering multiple view
scripts, you can change these calls to read $this->_helper->viewRenderer();.





If you’re not using the conventional modular directory structure, there are a variety of methods for setting the
view base path and script path specifications so that you can make use of the ViewRenderer. Please read the
ViewRenderer documentation for information on these methods.


If you’re using a view object from the registry, or customizing your view object, or using a different view
implementation, you’ll want to inject the ViewRenderer with this object. This can be done easily at any time.



		Prior to dispatching a front controller instance:


		1
2
3


		// Assuming $view has already been defined
$viewRenderer = new Zend_Controller_Action_Helper_ViewRenderer($view);
Zend_Controller_Action_HelperBroker::addHelper($viewRenderer);













		Any time during the bootstrap process:


		1
2
3


		$viewRenderer =
    Zend_Controller_Action_HelperBroker::getStaticHelper('viewRenderer');
$viewRenderer->setView($view);
















There are many ways to modify the ViewRenderer, including setting a different view script to render, specifying
replacements for all replaceable elements of a view script path (including the suffix), choosing a response named
segment to utilize, and more. If you aren’t using the conventional modular directory structure, you can even
associate different path specifications with the ViewRenderer.


We encourage you to adapt your code to use the ErrorHandler and ViewRenderer as they are now core
functionality.





Zend_Currency


Creating an object of Zend_Currency has become simpler. You no longer have to give a script or set it to
NULL. The optional script parameter is now an option which can be set through the setFormat() method.


		1


		$currency = new Zend_Currency($currency, $locale);










The setFormat() method takes now an array of options. These options are set permanently and override all
previously set values. Also a new option ‘precision’ has been added. The following options have been refactored:



		position: Replacement for the old ‘rules’ parameter.


		script: Replacement for the old ‘script’ parameter.


		format: Replacement for the old ‘locale’ parameter which does not set new currencies but only the number
format.


		display: Replacement for the old ‘rules’ parameter.


		precision: New parameter.


		name: Replacement for the ole ‘rules’ parameter. Sets the full currencies name.


		currency: New parameter.


		symbol: New parameter.





		1


		$currency->setFormat(array $options);










The toCurrency() method no longer supports the optional ‘script’ and ‘locale’ parameters. Instead it takes an
options array which can contain the same keys as for the setFormat() method.


		1


		$currency->toCurrency($value, array $options);










The methods getSymbol(), getShortName(), getName(), getRegionList() and getCurrencyList() are
no longer static and can be called from within the object. They return the set values of the object if no parameter
has been set.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.0
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cache.storage.adapter.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cache\Storage\Adapter



Overview


Storage adapters are wrappers for real storage resources such as memory and the filesystem, using the well known
adapter pattern.


They comes with tons of methods to read, write and modify stored items and to get information about stored items
and the storage.


All adapters implements the interface Zend\Cache\Storage\StorageInterface and most extend
Zend\Cache\Storage\Adapter\AbstractAdapter, which comes with basic logic.


Configuration is handled by either Zend\Cache\Storage\Adapter\AdapterOptions, or an adapter-specific options
class if it exists. You may pass the options instance to the class at instantiation or via the setOptions()
method, or alternately pass an associative array of options in either place (internally, these are then passed to
an options class instance). Alternately, you can pass either the options instance or associative array to the
Zend\Cache\StorageFactory::factory method.



Note


Many methods throw exceptions


Because many caching methods can throw exceptions, you need to catch them manually or you can use the plug-in
Zend\Cache\Storage\Plugin\ExceptionHandler to automatically catch them and redirect exceptions into a log
file using the option “exception_callback”.







Quick Start


Caching adapters can either be created from the provided Zend\Cache\StorageFactory factory, or by simply
instantiating one of the Zend\Cache\Storage\Adapter\*classes.


To make life easier, the Zend\Cache\StorageFactory comes with a factory method to create an adapter and
create/add all requested plugins at once.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		use Zend\Cache\StorageFactory;

// Via factory:
$cache = StorageFactory::factory(array(
    'adapter' => 'apc',
    'plugins' => array(
        'exception_handler' => array('throw_exceptions' => false),
    ),
));

// Alternately:
$cache  = StorageFactory::adapterFactory('apc');
$plugin = StorageFactory::pluginFactory('exception_handler', array(
    'throw_exceptions' => false,
));
$cache->addPlugin($plugin);

// Or manually:
$cache  = new Zend\Cache\Storage\Adapter\Apc();
$plugin = new Zend\Cache\Storage\Plugin\ExceptionHandler(array(
    'throw_exceptions' => false,
));
$cache->addPlugin($plugin);













Basic configuration Options



		key_pattern


		Pattern against which to validate cache keys.



		setKeyPattern(null|string $pattern)
Implements a fluent interface.


		getKeyPattern()
Returns string












		namespace


		The “namespace” in which cache items will live.



		setNamespace(string $namespace)
Implements a fluent interface.


		getNamespace()
Returns string












		readable


		Enable/Disable reading data from cache.



		setReadable(boolean $flag)
Implements a fluent interface.


		getReadable()
Returns boolean












		ttl


		Set time to live.



		setTtl(int|float $ttl)
Implements a fluent interface.


		getTtl()
Returns float












		writable


		Enable/Disable writing data to cache.



		setWritable(boolean $flag)
Implements a fluent interface.


		getWritable()
Returns boolean














Available Methods defined by Zend\Cache\Storage\StorageInterface



		setOptions


		setOptions(array|Traversable|Zend\Cache\Storage\Adapter\AdapterOptions $options)


Set options.


Implements a fluent interface.









		getOptions


		getOptions()


Get options


Returns Zend\Cache\Storage\Adapter\AdapterOptions









		getItem


		getItem(string $key, boolean & $success = null, mixed & $casToken = null)


Load an item with the given $key,
set parameter $success to TRUE and
set parameter $casToken.


If item can’t load this method returns NULL and
set parameter $success to FALSE.









		getItems


		getItems(array $keys)


Load all items given by $keys.


Returns an array of key-value pairs of available items.









		hasItem


		hasItem(string $key)


Test if an item exists.


Returns boolean









		hasItems


		hasItems(array $keys)


Test multiple items.


Returns array









		getMetadata


		getMetadata(string $key)


Get metadata of an item.


Returns array|boolean









		getMetadatas


		getMetadatas(array $keys)


Get multiple metadata


Returns array









		setItem


		setItem(string $key, mixed $value)


Store an item.


Returns boolean









		setItems


		setItems(array $keyValuePairs)


Store multiple items.


Returns boolean









		addItem


		addItem(string $key, mixed $value)


Add an item.


Returns boolean









		addItems


		addItems(array $keyValuePairs)


Add multiple items.


Returns boolean









		replaceItem


		replaceItem(string $key, mixed $value)


Replace an item.


Returns boolean









		replaceItems


		replaceItems(array $keyValuePairs)


Replace multiple items.


Returns boolean









		checkAndSetItem


		checkAndSetItem(mixed $token, string $key, mixed $value)


Set item only if token matches


It uses the token from received from getItem() to check if the item has changed before overwriting it.


Returns boolean









		touchItem


		touchItem(string $key)


Reset lifetime of an item


Returns boolean









		touchItems


		touchItems(array $keys)


Reset lifetime of multiple items.


Returns boolean









		removeItem


		removeItem(string $key)


Remove an item.


Returns boolean









		removeItems


		removeItems(array $keys)


Remove multiple items.


Returns boolean









		incrementItem


		incrementItem(string $key, int $value)


Increment an item.


Returns int|boolean









		incrementItems


		incrementItems(array $keyValuePairs)


Increment multiple items.


Returns boolean









		decrementItem


		decrementItem(string $key, int $value)


Decrement an item.


Returns int|boolean









		decrementItems


		decrementItems(array $keyValuePairs)


Decrement multiple items.


Returns boolean









		getCapabilities


		getCapabilities()


Capabilities of this storage


Returns Zend\Cache\Storage\Capabilities











Available Methods defined by Zend\Cache\Storage\AvailableSpaceCapableInterface



		getAvailableSpace


		getAvailableSpace()


Get available space in bytes


Returns int|float











Available Methods defined by Zend\Cache\Storage\TotalSpaceCapableInterface



		getTotalSpace


		getTotalSpace()


Get total space in bytes


Returns int|float











Available Methods defined by Zend\Cache\Storage\ClearByNamespaceInterface



		clearByNamespace


		clearByNamespace(string $namespace)


Remove items of given namespace


Returns boolean











Available Methods defined by Zend\Cache\Storage\ClearByPrefixInterface



		clearByPrefix


		clearByPrefix(string $prefix)


Remove items matching given prefix


Returns boolean











Available Methods defined by Zend\Cache\Storage\ClearExpiredInterface



		clearExpired


		clearExpired()


Remove expired items


Returns boolean











Available Methods defined by Zend\Cache\Storage\FlushableInterface



		flush


		flush()


Flush the whole storage


Returns boolean











Available Methods defined by Zend\Cache\Storage\IterableInterface (extends IteratorAggregate)



		getIterator


		getIterator()


Get an Iterator


Returns Zend\Cache\Storage\IteratorInterface











Available Methods defined by Zend\Cache\Storage\OptimizableInterface



		optimize


		optimize()


Optimize the storage


Returns boolean











Available Methods defined by Zend\Cache\Storage\TaggableInterface



		setTags


		setTags(string   $key, string[] $tags)


Set tags to an item by given key.
An empty array will remove all tags.


Returns boolean









		getTags


		getTags(string $key)


Get tags of an item by given key


Returns string[]|FALSE









		clearByTags


		clearByTags(string[] $tags, boolean $disjunction = false)


Remove items matching given tags.



If $disjunction only one of the given tags must match
else all given tags must match.



Returns boolean











TODO: Examples








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cache\Storage\Adapter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.barcode.renderers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Barcode Renderers


Renderers have some common options. These options can be set in three ways:



		As an array or a Traversable object passed to the constructor.


		As an array passed to the setOptions() method.


		As discrete values passed to individual setters.





Different ways to parameterize a renderer object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Barcode;

$options = array('topOffset' => 10);

// Case 1
$renderer = new Renderer\Pdf($options);

// Case 2
$renderer = new Renderer\Pdf();
$renderer->setOptions($options);

// Case 3
$renderer = new Renderer\Pdf();
$renderer->setTopOffset(10);











Common Options


In the following list, the values have no unit; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit.” The real units depend on the rendering support. The individual setters are obtained by
uppercasing the initial letter of the option and prefixing the name with “set” (e.g. “barHeight” =>
“setBarHeight”). All options have a correspondant getter prefixed with “get” (e.g. “getBarHeight”). Available
options are:



Common Options







		Option
		Data Type
		Default Value
		Description





		rendererNamespace
		String
		Zend\Barcode\Renderer
		Namespace of the renderer; for example, if you need to extend the renderers



		horizontalPosition
		String
		“left”
		Can be “left”, “center” or “right”. Can be useful with PDF or if the setWidth() method is used with an image renderer.



		verticalPosition
		String
		“top”
		Can be “top”, “middle” or “bottom”. Can be useful with PDF or if the setHeight() method is used with an image renderer.



		leftOffset
		Integer
		0
		Top position of the barcode inside the renderer. If used, this value will override the “horizontalPosition” option.



		topOffset
		Integer
		0
		Top position of the barcode inside the renderer. If used, this value will override the “verticalPosition” option.



		automaticRenderError
		Boolean
		FALSE
		Whether or not to automatically render errors. If an exception occurs, the provided barcode object will be replaced with an Error representation. Note that some errors (or exceptions) can not be rendered.



		moduleSize
		Float
		1
		Size of a rendering module in the support.



		barcode
		Zend\Barcode\Object
		NULL
		The barcode object to render.







An additional getter exists: getType(). It returns the name of the renderer class without the namespace (e.g.
Zend\Barcode\Renderer\Image returns “image”).





Zend\Barcode\Renderer\Image


The Image renderer will draw the instruction list of the barcode object in an image resource. The component
requires the GD extension. The default width of a module is 1 pixel.


Available options are:



Zend\Barcode\Renderer\Image Options







		Option
		Data Type
		Default Value
		Description





		height
		Integer
		0
		Allow you to specify the height of the result image. If “0”, the height will be calculated by the barcode object.



		width
		Integer
		0
		Allow you to specify the width of the result image. If “0”, the width will be calculated by the barcode object.



		imageType
		String
		“png”
		Specify the image format. Can be “png”, “jpeg”, “jpg” or “gif”.










Zend\Barcode\Renderer\Pdf


The PDF renderer will draw the instruction list of the barcode object in a PDF document. The default width of a
module is 0.5 point.


There are no particular options for this renderer.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Barcode Renderers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.config.processor.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Config\Processor


Zend\Config\Processor gives you the ability to perform some operations on a Zend\Config\Config object. The
Zend\Config\Processor is an interface that defines two methods: process() and processValue(). These
operations are provided by the following concrete implementations:



		Zend\Config\Processor\Constant: manage PHP constant values;


		Zend\Config\Processor\Filter: filter the configuration data using Zend\Filter;


		Zend\Config\Processor\Queue: manage a queue of operations to apply to configuration data;


		Zend\Config\Processor\Token: find and replace specific tokens;


		Zend\Config\Processor\Translator: translate configuration values in other languages using
Zend\I18n\Translator;





Below we reported some examples for each type of processor.



Zend\Config\Processor\Constant


Using Zend\Config\Processor\Constant


This example illustrates the basic use of Zend\Config\Processor\Constant:


		1
2
3
4
5
6
7
8


		define ('TEST_CONST', 'bar');
// set true to Zend\Config\Config to allow modifications
$config = new Zend\Config\Config(array('foo' => 'TEST_CONST'), true);
$processor = new Zend\Config\Processor\Constant();

echo $config->foo . ',';
$processor->process($config);
echo $config->foo;










This example returns the output: TEST_CONST, bar..





Zend\Config\Processor\Filter


Using Zend\Config\Processor\Filter


This example illustrates the basic use of Zend\Config\Processor\Filter:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Filter\StringToUpper;
use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Config;

$config = new Config(array ('foo' => 'bar'), true);
$upper = new StringToUpper();

$upperProcessor = new FilterProcessor($upper);

echo $config->foo . ',';
$upperProcessor->process($config);
echo $config->foo;










This example returns the output: bar,BAR.





Zend\Config\Processor\Queue


Using Zend\Config\Processor\Queue


This example illustrates the basic use of Zend\Config\Processor\Queue:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		use Zend\Filter\StringToLower;
use Zend\Filter\StringToUpper;
use Zend\Config\Processor\Filter as FilterProcessor;
use Zend\Config\Processor\Queue;
use Zend\Config\Config;

$config = new Config(array ('foo' => 'bar'), true);
$upper  = new StringToUpper();
$lower  = new StringToLower();

$lowerProcessor = new FilterProcessor($lower);
$upperProcessor = new FilterProcessor($upper);

$queue = new Queue();
$queue->insert($upperProcessor);
$queue->insert($lowerProcessor);
$queue->process($config);

echo $config->foo;










This example returns the output: bar. The filters in the queue are applied with a FIFO logic (First In, First
Out).





Zend\Config\Processor\Token


Using Zend\Config\Processor\Token


This example illustrates the basic use of Zend\Config\Processor\Token:


		1
2
3
4
5
6
7
8


		// set the Config to true to allow modifications
$config = new Config(array('foo' => 'Value is TOKEN'), true);
$processor = new TokenProcessor();

$processor->addToken('TOKEN', 'bar');
echo $config->foo . ',';
$processor->process($config);
echo $config->foo;










This example returns the output: Value is TOKEN,Value is bar.





Zend\Config\Processor\Translator


Using Zend\Config\Processor\Translator


This example illustrates the basic use of Zend\Config\Processor\Translator:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		use Zend\Config\Config;
use Zend\Config\Processor\Translator as TranslatorProcessor;
use Zend\I18n\Translator\Translator;

$config = new Config(array('animal' => 'dog'), true);

/*
 * The following mapping would exist for the translation
 * loader you provide to the translator instance
 * $italian = array(
 *     'dog' => 'cane'
 * );
 */

$translator = new Translator();
// ... configure the translator ...
$processor = new TranslatorProcessor($translator);

echo "English: {$config->animal}, ";
$processor->process($config);
echo "Italian: {$config->animal}";










This example returns the output: English: dog, Italian: cane.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Config\Processor
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.mvc-event.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The MvcEvent


The ZF2 MVC layer incorporates and utilizes a custom Zend\EventManager\EventDescription type,
Zend\Mvc\MvcEvent. This event is created during Zend\Mvc\Application::run(), and is passed directly to all
events that method triggers. Additionally, if you mark your controllers with the
Zend\Mvc\InjectApplicationEvent interface, it will be injected into those controllers.


The MvcEvent adds accessors and mutators for the following:



		Application object


		Request object


		Response object


		Router object


		RouteMatch object


		“Result”, usually the result of dispatching a controller


		ViewModel object, typically representing the layout view model





The methods it defines are:



		setApplication($application)


		getApplication()


		setRequest($request)


		getRequest()


		setResponse($response)


		getResponse()


		setRouter($router)


		getRouter()


		setRouteMatch($routeMatch)


		getRouteMatch()


		setResult($result)


		getResult()


		setViewModel($viewModel)


		getViewModel()





The Application, Request, Response, Router, and ViewModel are all injected during the
bootstrap event. Following the route event, it will be injected also with the RouteMatch object
encapsulating the results of routing.


Since this object is passed around throughout the MVC, it is a common location for retrieving the results of
routing, the router, and the request and response objects. Additionally, we encourage setting the results of
execution in the event, to allow event listeners to introspect them and utilize them within their execution. As an
example, the results could be passed into a view renderer.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The MvcEvent
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.alpha.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alpha


Zend\Validator\Alpha allows you to validate if a given value contains only alphabetical characters. There is no
length limitation for the input you want to validate. This validator is related to the Zend\Validator\Alnum
validator with the exception that it does not accept digits.



Supported options for Zend\Validator\Alpha


The following options are supported for Zend\Validator\Alpha:



		allowWhiteSpace: If whitespace characters are allowed. This option defaults to FALSE








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alpha();
if ($validator->isValid('Abcd')) {
    // value contains only allowed chars
} else {
    // false
}













Using whitespaces


Per default whitespaces are not accepted because they are not part of the alphabet. Still, there is a way to accept
them as input. This allows to validate complete sentences or phrases.


To allow the usage of whitespaces you need to give the allowWhiteSpace option. This can be done while creating
an instance of the validator, or afterwards by using setAllowWhiteSpace(). To get the actual state you can use
getAllowWhiteSpace().


		1
2
3
4
5
6


		$validator = new Zend\Validator\Alpha(array('allowWhiteSpace' => true));
if ($validator->isValid('Abcd and efg')) {
    // value contains only allowed chars
} else {
    // false
}













Using different languages


When using Zend\Validator\Alpha then the language which the user sets within his browser will be used to set
the allowed characters. This means when your user sets de for german then he can also enter characters like
ä, ö and ü additionally to the characters from the english alphabet.


Which characters are allowed depends completely on the used language as every language defines it’s own set of
characters.


There are actually 3 languages which are not accepted in their own script. These languages are korean,
japanese and chinese because this languages are using an alphabet where a single character is build by
using multiple characters.


In the case you are using these languages, the input will only be validated by using the english alphabet.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alpha
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.controllers.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Console-aware action controllers


Zend Framework 2 has built-in MVC integration with console. After the user runs
our application in console window, the request will be routed. By matching command line arguments against
console routes we have defined in our application, MVC will invoke a controller and
an action.


In this chapter we will learn how ZF2 Controllers can interact with and return output to console window.



See also


In order for a controller to be invoked, at least one route must point to it. To learn about creating console
routes, please read this chapter Console routes and routing





Handling console requests


Console requests are very similar to http requests. In fact, they implement common interface and are created at the
same time in the MVC workflow. Console routes match against command line arguments
and provide defaults array, which holds controller and action keys. These correspond with controller
alias in Service Manager, and method name in controller class. This is analogic to the way HTTP requests are handled
in ZF2.



See also


To learn about defining and creating controllers, please read this chapter
Routing and controllers




In this example we’ll use the following simple route:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		// FILE: modules/Application/config/module.config.php
array(
    'router' => array(
        'routes' => array(
            // HTTP routes are here
        )
    ),

    'console' => array(
        'router' => array(
            'routes' => array(
                'list-users' => array(
                    'options' => array(
                        'route'    => 'show [all|disabled|deleted]:mode users [--verbose|-v]',
                        'defaults' => array(
                            'controller' => 'Application\Index',
                            'action'     => 'showusers'
                        )
                    )
                )
            )
        )
    ),
)










This route will match commands such as:


> zf show users
> zf show all users
> zf show disabled users






This route points to Application\IndexController::listusersAction() method.


Let’s add it to our controller.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


		<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
    public function indexAction()
    {
        return new ViewModel(); // display standard index page
    }

    public function showusersAction(){
        $request = $this->getRequest();

        // Check verbose flag
        $verbose = $request->getParam('verbose') || $request->getParam('v');

        // Check mode
        $mode = $request->getParam('mode', 'all'); // defaults to 'all'

        $users = array();
        switch ($mode) {
            case 'disabled':
                $users = $this->getServiceLocator()->get('users')->fetchDisabledUsers();
                break;
            case 'deleted':
                $users = $this->getServiceLocator()->get('users')->fetchDeletedUsers();
                break;
            case 'all':
            default:
                $users = $this->getServiceLocator()->get('users')->fetchAllUsers();
                break;
        }
    }
}










We have fetched console request, read parameters and loaded users from our (theoretical) users service. In order to make
this method functional, we’ll have to display the result in console window.





Sending output to console


The simplest way for our controller to display data in console window is to return a string. Let’s modify our
example to output a list of users:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


		public function showusersAction(){
    $request = $this->getRequest();

    // Check verbose flag
    $verbose = $request->getParam('verbose') || $request->getParam('v');

    // Check mode
    $mode = $request->getParam('mode', 'all'); // defaults to 'all'

    $users = array();
    switch ($mode) {
        case 'disabled':
            $users = $this->getServiceLocator()->get('users')->fetchDisabledUsers();
            break;
        case 'deleted':
            $users = $this->getServiceLocator()->get('users')->fetchDeletedUsers();
            break;
        case 'all':
        default:
            $users = $this->getServiceLocator()->get('users')->fetchAllUsers();
            break;
    }

    if (count($users) == 0) {
        // Show an error message in the console
        return "There are no users in the database\n";
    }

    $result = '';

    foreach($users as $user){
        $result .= $user->name . ' ' . $user->email . "\n";
    }

    return $result; // show it in the console
}










On line 26 we are checking if users service found any users - otherwise we are returning an error message that will
be immediately displayed and the application will end.


If there are 1 or more users, we will loop through them with and prepare a listing. It is then returned from the action
and displayed in console window.





Are we in a console?


Sometimes we might need to check if our method is being called from a console or from a web request. This is useful
to block certain methods from running in console or to change their behavior based on that context.


Here is an example of how to check if we are dealing with a console request:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Zend\Console\Request as ConsoleRequest;
use RuntimeException;

class IndexController extends AbstractActionController
{
    public function showusersAction(){
        $request = $this->getRequest();

        // Make sure that we are running in a console and the user has not tricked our
        // application into running this action from a public web server.
        if (!$request instanceof ConsoleRequest){
            thrown new RuntimeException('You can only use this action from a console!');
        }
        // ...
    }
}











Note


You do not need to secure all your controllers and method from console requests. Controller action will
only be invoked when at least one console route matches it. HTTP and Console
routes are separated and defined in different places in module (and application) configuration.


There is no way to invoke a console action unless there is at least one route pointing to it. Similarly, there is
no way for a http action to be invoked unless there is at least one HTTP route that points to it.




The example below shows how a single controller method can handle both Console and HTTP requests:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Zend\Console\Request as ConsoleRequest;
use Zend\Http\Request as HttpRequest;
use RuntimeException;

class IndexController extends AbstractActionController
{
    public function showusersAction(){
        $request = $this->getRequest();

        $users = array();
        // ... fetch users from database ...

        if ($request instanceof HttpRequest){
            // display a web page with users list
            return new ViewModel($result);
        } elseif ($request instanceof ConsoleRequest) {
            // ... prepare console output and return it ...
            return $result;
        } else {
            throw new RuntimeException('Cannot handle request of type '.get_class($request));
        }
    }
}













Reading values from console parameters


There are several types of parameters recognized by the Console component - all of them are described in
the console routing chapter. Here we’ll focus on how to retrieve values from distinct
parameters and flags.



Positional parameters


After a route matches, we can access both literal parameters and value parameters from within $request
container.


Assuming we have the following route:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// inside of config.console.router.routes:
'show-users' => array(
    'options' => array(
        'route'    => 'show (all|deleted|locked|admin) [<groupName>]'
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'showusers'
        )
    )
)










If this route matches, our action can now query parameters in the following way:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// an action inside Application\UsersController:
public function showusersAction(){
    $request = $this->getRequest();

    // We can access named value parameters directly by their name:
    $showUsersFromGroup = $request->getParam('groupName');

    // Literal parameters can be checked with isset() against their exact spelling
    if (isset($request->getParam('all'))) {
        // show all users
    } elseif (isset($request->getParam('deleted'))) {
        // show deleted users
    }
    // ...
}










In case of parameter alternatives it is a good idea to assign a name to the group, which simplifies the branching
in our action controllers. We can do this with the following syntax:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// inside of config.console.router.routes:
'show-users' => array(
    'options' => array(
        'route'    => 'show (all|deleted|locked|admin):userTypeFilter [<groupName>]'
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'showusers'
        )
    )
)










Now we can use a the group name userTypeFilter to check which option has been selected by the user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		public function showusersAction(){
    $request = $this->getRequest();

    // We can access named value parameters directly by their name:
    $showUsersFromGroup = $request->getParam('groupName');

    // The selected option from second parameter is now stored under 'userTypeFilter'
    $userTypeFilter     = $request->getParam('userTypeFilter');

    switch($userTypeFilter) {
        case 'all':
            // all users
        case 'deleted':
            // deleted users
        case 'locked'
           // ...
           // ...
    }
}













Flags


Flags are directly accessible with their name. Value flags will contain string values, as provided by the user.
Non-value flags will be equal to true.


Given the following route:


		1
2
3
4
5
6
7
8
9


		'find-user' => array(
    'options' => array(
        'route'    => 'find user [--fast] [--verbose] [--id=] [--firstName=] [--lastName=] [--email=] ',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'find'
        )
    )
)










... we can easily retrieve values in the following fashion:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		public function findAction(){
    $request = $this->getRequest();

    // We can retrieve values from value flags using their name
    $searchId        = $request->getParam('id',        null); // default null
    $searchFirstName = $request->getParam('firstName', null);
    $searchLastName  = $request->getParam('lastName',  null);
    $searchEmail     = $request->getParam('email',     null);

    // Standard flags that have been matched will be equal to TRUE
    $isFast          = (bool)$request->getParam('fast',   false); // default false
    $isVerbose       = (bool)$request->getParam('verbose',false);

    if ($isFast) {
        // perform a fast query ...
    } else {
        // perform standard query ...
    }
}










In case of flag alternatives, we have to check each alternative separately:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Assuming our route now reads:
//      'route'    => 'find user [--fast|-f] [--verbose|-v] ... ',
//
public function findAction(){
    $request = $this->getRequest();

    // Check both alternatives
    $isFast    = $request->getParam('fast',false)    || $request->getParam('f',false);
    $isVerbose = $request->getParam('verbose',false) || $request->getParam('v',false);

    // ...
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Console-aware action controllers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.base-url.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
BaseUrl Helper


While most URLs generated by the framework have the base URL prepended automatically, developers will need to
prepend the base URL to their own URLs in order for paths to resources to be correct.


Usage of the BaseUrl helper is very straightforward:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		/*
 * The following assume that the base URL of the page/application is "/mypage".
 */

/*
 * Prints:
 * <base href="/mypage/" />
 */
<base href="<?php echo $this->baseUrl(); ?>" />

/*
 * Prints:
 * <link rel="stylesheet" type="text/css" href="/mypage/css/base.css" />
 */
<link rel="stylesheet" type="text/css"
     href="<?php echo $this->baseUrl('css/base.css'); ?>" />











Note


For simplicity’s sake, we strip out the entry PHP file (e.g., “index.php”) from the base URL that was
contained in Zend_Controller. However, in some situations this may cause a problem. If one occurs, use
$this->getHelper('BaseUrl')->setBaseUrl() to set your own BaseUrl.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                BaseUrl Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.code-generator.reference.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_CodeGenerator Reference



Abstract Classes and Interfaces



Zend_CodeGenerator_Abstract


The base class from which all CodeGenerator classes inherit provides the minimal functionality necessary. It’s
API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		abstract class Zend_CodeGenerator_Abstract
{
    final public function __construct(Array $options = array())
    public function setOptions(Array $options)
    public function setSourceContent($sourceContent)
    public function getSourceContent()
    protected function _init()
    protected function _prepare()
    abstract public function generate();
    final public function __toString()
}










The constructor first calls _init() (which is left empty for the concrete extending class to implement), then
passes the $options parameter to setOptions(), and finally calls _prepare() (again, to be implemented
by an extending class).


Like most classes in Zend Framework, setOptions() compares an option key to existing setters in the class, and
passes the value on to that method if found.


__toString() is marked as final, and proxies to generate().


setSourceContent() and getSourceContent() are intended to either set the default content for the code being
generated, or to replace said content once all generation tasks are complete.





Zend_CodeGenerator_Php_Abstract


Zend_CodeGenerator_Php_Abstract extends Zend_CodeGenerator_Abstract, and adds some properties for tracking
whether content has changed as well as the amount of indentation that should appear before generated content. Its
API is as follows:


		1
2
3
4
5
6
7
8


		abstract class Zend_CodeGenerator_Php_Abstract
    extends Zend_CodeGenerator_Abstract
{
    public function setSourceDirty($isSourceDirty = true)
    public function isSourceDirty()
    public function setIndentation($indentation)
    public function getIndentation()
}













Zend_CodeGenerator_Php_Member_Abstract


Zend_CodeGenerator_Php_Member_Abstract is a base class for generating class members – properties and methods
– and provides accessors and mutators for establishing visibility; whether or not the member is abstract, static,
or final; and the name of the member. Its API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		abstract class Zend_CodeGenerator_Php_Member_Abstract
    extends Zend_CodeGenerator_Php_Abstract
{
    public function setAbstract($isAbstract)
    public function isAbstract()
    public function setStatic($isStatic)
    public function isStatic()
    public function setVisibility($visibility)
    public function getVisibility()
    public function setName($name)
    public function getName()
}















Concrete CodeGenerator Classes



Zend_CodeGenerator_Php_Body


Zend_CodeGenerator_Php_Body is intended for generating arbitrary procedural code to include within a file. As
such, you simply set content for the object, and it will return that content when you invoke generate().


The API of the class is as follows:


		1
2
3
4
5
6


		class Zend_CodeGenerator_Php_Body extends Zend_CodeGenerator_Php_Abstract
{
    public function setContent($content)
    public function getContent()
    public function generate()
}













Zend_CodeGenerator_Php_Class


Zend_CodeGenerator_Php_Class is intended for generating PHP classes. The basic functionality just generates
the PHP class itself, as well as optionally the related PHP DocBlock. Classes may implement or inherit from
other classes, and may be marked as abstract. Utilizing other code generator classes, you can also attach class
constants, properties, and methods.


The API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		class Zend_CodeGenerator_Php_Class extends Zend_CodeGenerator_Php_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Class $reflectionClass
    )
    public function setDocblock(Zend_CodeGenerator_Php_Docblock $docblock)
    public function getDocblock()
    public function setName($name)
    public function getName()
    public function setAbstract($isAbstract)
    public function isAbstract()
    public function setExtendedClass($extendedClass)
    public function getExtendedClass()
    public function setImplementedInterfaces(Array $implementedInterfaces)
    public function getImplementedInterfaces()
    public function setProperties(Array $properties)
    public function setProperty($property)
    public function getProperties()
    public function getProperty($propertyName)
    public function setMethods(Array $methods)
    public function setMethod($method)
    public function getMethods()
    public function getMethod($methodName)
    public function hasMethod($methodName)
    public function isSourceDirty()
    public function generate()
}










The setProperty() method accepts an array of information that may be used to generate a
Zend_CodeGenerator_Php_Property instance – or simply an instance of Zend_CodeGenerator_Php_Property.
Likewise, setMethod() accepts either an array of information for generating a Zend_CodeGenerator_Php_Method
instance or a concrete instance of that class.


Note that setDocBlock() expects an instance of Zend_CodeGenerator_Php_DocBlock.





Zend_CodeGenerator_Php_Docblock


Zend_CodeGenerator_Php_Docblock can be used to generate arbitrary PHP docblocks, including all the standard
docblock features: short and long descriptions and annotation tags.


Annotation tags may be set using the setTag() and setTags() methods; these each take either an array
describing the tag that may be passed to the Zend_CodeGenerator_Php_Docblock_Tag constructor, or an instance of
that class.


The API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		class Zend_CodeGenerator_Php_Docblock extends Zend_CodeGenerator_Php_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Docblock $reflectionDocblock
    )
    public function setShortDescription($shortDescription)
    public function getShortDescription()
    public function setLongDescription($longDescription)
    public function getLongDescription()
    public function setTags(Array $tags)
    public function setTag($tag)
    public function getTags()
    public function generate()
}













Zend_CodeGenerator_Php_Docblock_Tag


Zend_CodeGenerator_Php_Docblock_Tag is intended for creating arbitrary annotation tags for inclusion in PHP
docblocks. Tags are expected to contain a name (the portion immediately following the ‘@’ symbol) and a description
(everything following the tag name).


The class API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		class Zend_CodeGenerator_Php_Docblock_Tag
    extends Zend_CodeGenerator_Php_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Docblock_Tag $reflectionTag
    )
    public function setName($name)
    public function getName()
    public function setDescription($description)
    public function getDescription()
    public function generate()
}













Zend_CodeGenerator_Php_DocBlock_Tag_Param


Zend_CodeGenerator_Php_DocBlock_Tag_Param is a specialized version of Zend_CodeGenerator_Php_DocBlock_Tag,
and represents a method parameter. The tag name is therefor known (“param”), but due to the format of this
annotation tag, additional information is required in order to generate it: the parameter name and data type it
represents.


The class API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		class Zend_CodeGenerator_Php_Docblock_Tag_Param
    extends Zend_CodeGenerator_Php_Docblock_Tag
{
    public static function fromReflection(
        Zend_Reflection_Docblock_Tag $reflectionTagParam
    )
    public function setDatatype($datatype)
    public function getDatatype()
    public function setParamName($paramName)
    public function getParamName()
    public function generate()
}













Zend_CodeGenerator_Php_DocBlock_Tag_Return


Like the param docblock tag variant, Zend_CodeGenerator_Php_Docblock_Tab_Return is an annotation tag variant
for representing a method return value. In this case, the annotation tag name is known (“return”), but requires a
return type.


The class API is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		class Zend_CodeGenerator_Php_Docblock_Tag_Param
    extends Zend_CodeGenerator_Php_Docblock_Tag
{
    public static function fromReflection(
        Zend_Reflection_Docblock_Tag $reflectionTagReturn
    )
    public function setDatatype($datatype)
    public function getDatatype()
    public function generate()
}













Zend_CodeGenerator_Php_File


Zend_CodeGenerator_Php_File is used to generate the full contents of a file that will contain PHP code. The
file may contain classes or arbitrary PHP code, as well as a file-level docblock if desired.


When adding classes to the file, you will need to pass either an array of information to pass to the
Zend_CodeGenerator_Php_Class constructor, or an instance of that class. Similarly, with docblocks, you will
need to pass information for the Zend_CodeGenerator_Php_Docblock constructor to consume or an instance of the
class.


The API of the class is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		class Zend_CodeGenerator_Php_File extends Zend_CodeGenerator_Php_Abstract
{
    public static function fromReflectedFilePath(
        $filePath,
        $usePreviousCodeGeneratorIfItExists = true,
        $includeIfNotAlreadyIncluded = true)
    public static function fromReflection(Zend_Reflection_File $reflectionFile)
    public function setDocblock(Zend_CodeGenerator_Php_Docblock $docblock)
    public function getDocblock()
    public function setRequiredFiles($requiredFiles)
    public function getRequiredFiles()
    public function setClasses(Array $classes)
    public function getClass($name = null)
    public function setClass($class)
    public function setFilename($filename)
    public function getFilename()
    public function getClasses()
    public function setBody($body)
    public function getBody()
    public function isSourceDirty()
    public function generate()
}













Zend_CodeGenerator_Php_Member_Container


Zend_CodeGenerator_Php_Member_Container is used internally by Zend_CodeGenerator_Php_Class to keep track of
class members – properties and methods alike. These are indexed by name, using the concrete instances of the
members as values.


The API of the class is as follows:


		1
2
3
4


		class Zend_CodeGenerator_Php_Member_Container extends ArrayObject
{
    public function __construct($type = self::TYPE_PROPERTY)
}













Zend_CodeGenerator_Php_Method


Zend_CodeGenerator_Php_Method describes a class method, and can generate both the code and the docblock for the
method. The visibility and status as static, abstract, or final may be indicated, per its parent class,
Zend_CodeGenerator_Php_Member_Abstract. Finally, the parameters and return value for the method may be
specified.


Parameters may be set using setParameter() or setParameters(). In each case, a parameter should either be
an array of information to pass to the Zend_CodeGenerator_Php_Parameter constructor or an instance of that
class.


The API of the class is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class Zend_CodeGenerator_Php_Method
    extends Zend_CodeGenerator_Php_Member_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Method $reflectionMethod
    )
    public function setDocblock(Zend_CodeGenerator_Php_Docblock $docblock)
    public function getDocblock()
    public function setFinal($isFinal)
    public function setParameters(Array $parameters)
    public function setParameter($parameter)
    public function getParameters()
    public function setBody($body)
    public function getBody()
    public function generate()
}













Zend_CodeGenerator_Php_Parameter


Zend_CodeGenerator_Php_Parameter may be used to specify method parameters. Each parameter may have a position
(if unspecified, the order in which they are registered with the method will be used), a default value, and a data
type; a parameter name is required.


The API of the class is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class Zend_CodeGenerator_Php_Parameter extends Zend_CodeGenerator_Php_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Parameter $reflectionParameter
    )
    public function setType($type)
    public function getType()
    public function setName($name)
    public function getName()
    public function setDefaultValue($defaultValue)
    public function getDefaultValue()
    public function setPosition($position)
    public function getPosition()
    public function getPassedByReference()
    public function setPassedByReference($passedByReference)
    public function generate()
}










There are several problems that might occur when trying to set NULL, booleans or arrays as default values. For
this the value holder object Zend_CodeGenerator_Php_ParameterDefaultValue can be used, for example:


		1
2
3
4
5
6
7


		$parameter = new Zend_CodeGenerator_Php_Parameter();
$parameter->setDefaultValue(
    new Zend_CodeGenerator_Php_Parameter_DefaultValue("null")
);
$parameter->setDefaultValue(
    new Zend_CodeGenerator_Php_Parameter_DefaultValue("array('foo', 'bar')")
);










Internally setDefaultValue() also converts the values which can’t be expressed in PHP into the value holder.





Zend_CodeGenerator_Php_Property


Zend_CodeGenerator_Php_Property describes a class property, which may be either a constant or a variable. In
each case, the property may have an optional default value associated with it. Additionally, the visibility of
variable properties may be set, per the parent class, Zend_CodeGenerator_Php_Member_Abstract.


The API of the class is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		class Zend_CodeGenerator_Php_Property
    extends Zend_CodeGenerator_Php_Member_Abstract
{
    public static function fromReflection(
        Zend_Reflection_Property $reflectionProperty
    )
    public function setConst($const)
    public function isConst()
    public function setDefaultValue($defaultValue)
    public function getDefaultValue()
    public function generate()
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_CodeGenerator Reference
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.openid.protocol.jpg
Ik i B varicaion opoons






ref/migration.17.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.7


When upgrading from a previous release to Zend Framework 1.7 or higher you should note the following migration
notes.



Zend_Controller



Dispatcher Interface Changes


Users brought to our attention the fact that Zend_Controller_Action_Helper_ViewRenderer were using a method of
the dispatcher abstract class that was not in the dispatcher interface. We have now added the following method to
ensure that custom dispatchers will continue to work with the shipped implementations:



		formatModuleName(): should be used to take a raw controller name, such as one that would be packaged inside a
request object, and reformat it to a proper class name that a class extending Zend_Controller_Action would
use










Zend_File_Transfer



Changes when using filters and validators


As noted by users, the validators from Zend_File_Transfer do not work in conjunction with Zend_Config due
to the fact that they have not used named arrays.


Therefor, all filters and validators for Zend_File_Transfer have been reworked. While the old signatures
continue to work, they have been marked as deprecated, and will emit a PHP notice asking you to fix them.


The following list shows you the changes you will have to do for proper usage of the parameters.





Filter: Rename



		Old method API: Zend_Filter_File_Rename($oldfile, $newfile, $overwrite)


		New method API: Zend_Filter_File_Rename($options) where $options accepts the following array keys:
source equals to $oldfile, target equals to $newfile, overwrite equals to $overwrite.





Changes for the rename filter from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addFilter('Rename',
                   array('/path/to/oldfile', '/path/to/newfile', true));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addFilter('Rename',
                   array('source' => '/path/to/oldfile',
                         'target' => '/path/to/newfile',
                         'overwrite' => true));













Validator: Count



		Old method API: Zend_Validate_File_Count($min, $max)


		New method API: Zend_Validate_File_Count($options) where $options accepts the following array keys:
min equals to $min, max equals to $max.





Changes for the count validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Count',
                      array(2, 3));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Count',
                      false,
                      array('min' => 2,
                            'max' => 3));













Validator:Extension



		Old method API: Zend_Validate_File_Extension($extension, $case)


		New method API: Zend_Validate_File_Extension($options) where $options accepts the following array keys:
* equals to $extension and can have any other key, case equals to $case.





Changes for the extension validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Extension',
                      array('jpg,gif,bmp', true));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Extension',
                      false,
                      array('extension1' => 'jpg,gif,bmp',
                            'case' => true));













Validator: FilesSize



		Old method API: Zend_Validate_File_FilesSize($min, $max, $bytestring)


		New method API: Zend_Validate_File_FilesSize($options) where $options accepts the following array keys:
min equals to $min, max equals to $max, bytestring equals to $bytestring.





Additionally, the useByteString() method signature has changed. It can only be used to test if the validator is
expecting to use byte strings in generated messages. To set the value of the flag, use the setUseByteString()
method.


Changes for the filessize validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('FilesSize',
                   array(100, 10000, true));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('FilesSize',
                      false,
                      array('min' => 100,
                            'max' => 10000,
                            'bytestring' => true));

// Example for 1.6
$upload->useByteString(true); // set flag

// Same example for 1.7
$upload->setUseByteSting(true); // set flag













Validator: Hash



		Old method API: Zend_Validate_File_Hash($hash, $algorithm)


		New method API: Zend_Validate_File_Hash($options) where $options accepts the following array keys:
* equals to $hash and can have any other key, algorithm equals to $algorithm.





Changes for the hash validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Hash',
                   array('12345', 'md5'));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Hash',
                      false,
                      array('hash1' => '12345',
                            'algorithm' => 'md5'));













Validator: ImageSize



		Old method API: Zend_Validate_File_ImageSize($minwidth, $minheight, $maxwidth, $maxheight)


		New method API: Zend_Validate_File_FilesSize($options) where $options accepts the following array keys:
minwidth equals to $minwidth, maxwidth equals to $maxwidth, minheight equals to
$minheight, maxheight equals to $maxheight.





Changes for the imagesize validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('ImageSize',
                      array(10, 10, 100, 100));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('ImageSize',
                      false,
                      array('minwidth' => 10,
                            'minheight' => 10,
                            'maxwidth' => 100,
                            'maxheight' => 100));













Validator: Size



		Old method API: Zend_Validate_File_Size($min, $max, $bytestring)


		New method API: Zend_Validate_File_Size($options) where $options accepts the following array keys:
min equals to $min, max equals to $max, bytestring equals to $bytestring.





Changes for the size validator from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Example for 1.6
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Size',
                      array(100, 10000, true));

// Same example for 1.7
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('Size',
                      false,
                      array('min' => 100,
                            'max' => 10000,
                            'bytestring' => true));















Zend_Locale



Changes when using isLocale()


According to the coding standards isLocale() had to be changed to return a boolean. In previous releases a
string was returned on success. For release 1.7 a compatibility mode has been added which allows to use the old
behaviour of a returned string, but it triggers a user warning to mention you to change to the new behaviour. The
rerouting which the old behaviour of isLocale() could have done is no longer neccessary as all I18n will now
process a rerouting themself.


To migrate your scripts to the new API, simply use the method as shown below.


How to change isLocale() from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Example for 1.6
if ($locale = Zend_Locale::isLocale($locale)) {
    // do something
}

// Same example for 1.7

// You should change the compatiblity mode to prevent user warnings
// But you can do this in your bootstrap
Zend_Locale::$compatibilityMode = false;

if (Zend_Locale::isLocale($locale)) {
}










Note that you can use the second parameter to see if the locale is correct without processing a rerouting.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Example for 1.6
if ($locale = Zend_Locale::isLocale($locale, false)) {
    // do something
}

// Same example for 1.7

// You should change the compatiblity mode to prevent user warnings
// But you can do this in your bootstrap
Zend_Locale::$compatibilityMode = false;

if (Zend_Locale::isLocale($locale, false)) {
    if (Zend_Locale::isLocale($locale, true)) {
        // no locale at all
    }

    // original string is no locale but can be rerouted
}













Changes when using getDefault()


The meaning of the getDefault() method has been change due to the fact that we integrated a framework locale
which can be set with setDefault(). It does no longer return the locale chain but only the set framework
locale.


To migrate your scripts to the new API, simply use the method as shown below.


How to change getDefault() from 1.6 to 1.7


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Example for 1.6
$locales = $locale->getDefault(Zend_Locale::BROWSER);

// Same example for 1.7

// You should change the compatiblity mode to prevent user warnings
// But you can do this in your bootstrap
Zend_Locale::$compatibilityMode = false;

$locale = Zend_Locale::getOrder(Zend_Locale::BROWSER);










Note that the second parameter of the old getDefault() implementation is not available anymore, but the
returned values are the same.



Note


Per default the old behaviour is still active, but throws a user warning. When you have changed your code to the
new behaviour you should also change the compatibility mode to FALSE so that no warning is thrown anymore.









Zend_Translator



Setting languages


When using automatic detection of languages, or setting languages manually to Zend_Translator you may have
mentioned that from time to time a notice is thrown about not added or empty translations. In some previous release
also an exception was raised in some cases.


The reason is, that when a user requests a non existing language, you have no simple way to detect what’s going
wrong. So we added those notices which show up in your log and tell you that the user requested a language which
you do not support. Note that the code, even when we trigger such an notice, keeps working without problems.


But when you use a own error or exception handler, like xdebug, you will get all notices returned, even if this was
not your intention. This is due to the fact that these handlers override all settings from within PHP.


To get rid of these notices you can simply set the new option ‘disableNotices’ to TRUE. It defaults to
FALSE.


Setting languages without getting notices


Let’s assume that we have ‘en’ available and our user requests ‘fr’ which is not in our portfolio of translated
languages.


		1
2
3


		$language = new Zend_Translator('gettext',
                               '/path/to/translations',
                               'auto');










In this case we will get an notice about a not available language ‘fr’. Simply add the option and the notices will
be disabled.


		1
2
3
4


		$language = new Zend_Translator('gettext',
                               '/path/to/translations',
                               'auto',
                               array('disableNotices' => true));















Zend_View



Note


The API changes within Zend_View are only notable for you when you are upgrading to release 1.7.5 or
higher.




Prior to the 1.7.5 release, the Zend Framework team was notified of a potential Local File Inclusion (LFI)
vulnerability in the Zend_View::render() method. Prior to 1.7.5, the method allowed, by default, the ability to
specify view scripts that included parent directory notation (e.g., ”../” or ”..\”). This opens the possibility
for an LFI attack if unfiltered user input is passed to the render() method:


		1
2


		// Where $_GET['foobar'] = '../../../../etc/passwd'
echo $view->render($_GET['foobar']); // LFI inclusion










Zend_View now by default raises an exception when such a view script is requested.



Disabling LFI protection for the render() method


Since a number of developers reported that they were using such notation within their applications that was not
the result of user input, a special flag was created to allow disabling the default protection. You have two
methods for doing so: by passing the ‘lfiProtectionOn’ key to the constructor options, or by explicitly calling the
setLfiProtection() method.


		1
2
3
4
5
6


		// Disabling via constructor
$view = new Zend_View(array('lfiProtectionOn' => false));

// Disabling via exlicit method call:
$view = new Zend_View();
$view->setLfiProtection(false);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.7
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.dir.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Dir


Given a string containing a path to a file, this function will return the name of the directory.



Supported options for Zend_Filter_Dir


There are no additional options for Zend_Filter_Dir.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Dir();

print $filter->filter('/etc/passwd');










This returns “/etc”.


		1
2
3


		$filter = new Zend_Filter_Dir();

print $filter->filter('C:/Temp/x');










This returns “C:/Temp”.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Dir
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.compress.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Compress and Decompress


These two filters are capable of compressing and decompressing strings, files, and directories.



Supported options for Zend_Filter_Compress and Zend_Filter_Decompress


The following options are supported for Zend_Filter_Compress and Zend_Filter_Decompress:



		adapter: The compression adapter which should be used. It defaults to Gz.


		options: Additional options which are given to the adapter at initiation. Each adapter supports it’s own
options.








Supported compression adapters


The following compression formats are supported by their own adapter:



		Bz2


		Gz


		Lzf


		Rar


		Tar


		Zip





Each compression format has different capabilities as described below. All compression filters may be used in
approximately the same ways, and differ primarily in the options available and the type of compression they offer
(both algorithmically as well as string vs. file vs. directory)





Generic handling


To create a compression filter you need to select the compression format you want to use. The following description
takes the Bz2 adapter. Details for all other adapters are described after this section.


The two filters are basically identical, in that they utilize the same backends. Zend_Filter_Compress should be
used when you wish to compress items, and Zend_Filter_Decompress should be used when you wish to decompress
items.


For instance, if we want to compress a string, we have to initiate Zend_Filter_Compress and indicate the
desired adapter.


		1


		$filter = new Zend_Filter_Compress('Bz2');










To use a different adapter, you simply specify it to the constructor.


You may also provide an array of options or Zend_Config object. If you do, provide minimally the key “adapter”,
and then either the key “options” or “adapterOptions” (which should be an array of options to provide to the
adapter on instantiation).


		1
2
3
4
5
6


		$filter = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'blocksize' => 8,
    ),
));











Note


Default compression Adapter


When no compression adapter is given, then the Gz adapter will be used.




Almost the same usage is we want to decompress a string. We just have to use the decompression filter in this case.


		1


		$filter = new Zend_Filter_Decompress('Bz2');










To get the compressed string, we have to give the original string. The filtered value is the compressed version of
the original string.


		1
2
3


		$filter     = new Zend_Filter_Compress('Bz2');
$compressed = $filter->filter('Uncompressed string');
// Returns the compressed string










Decompression works the same way.


		1
2
3


		$filter     = new Zend_Filter_Decompress('Bz2');
$compressed = $filter->filter('Compressed string');
// Returns the uncompressed string











Note


Note on string compression


Not all adapters support string compression. Compression formats like Rar can only handle files and
directories. For details, consult the section for the adapter you wish to use.







Creating an archive


Creating an archive file works almost the same as compressing a string. However, in this case we need an additional
parameter which holds the name of the archive we want to create.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2',
    ),
));
$compressed = $filter->filter('Uncompressed string');
// Returns true on success and creates the archive file










In the above example the uncompressed string is compressed, and is then written into the given archive file.



Note


Existing archives will be overwritten


The content of any existing file will be overwritten when the given filename of the archive already exists.




When you want to compress a file, then you must give the name of the file with its path.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2'
    ),
));
$compressed = $filter->filter('C:\temp\compressme.txt');
// Returns true on success and creates the archive file










You may also specify a directory instead of a filename. In this case the whole directory with all its files and
subdirectories will be compressed into the archive.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2'
    ),
));
$compressed = $filter->filter('C:\temp\somedir');
// Returns true on success and creates the archive file











Note


Do not compress large or base directories


You should never compress large or base directories like a complete partition. Compressing a complete partition
is a very time consuming task which can lead to massive problems on your server when there is not enough space
or your script takes too much time.







Decompressing an archive


Decompressing an archive file works almost like compressing it. You must specify either the archive parameter,
or give the filename of the archive when you decompress the file.


		1
2
3


		$filter     = new Zend_Filter_Decompress('Bz2');
$compressed = $filter->filter('filename.bz2');
// Returns true on success and decompresses the archive file










Some adapters support decompressing the archive into another subdirectory. In this case you can set the target
parameter.


		1
2
3
4
5
6
7
8
9


		$filter     = new Zend_Filter_Decompress(array(
    'adapter' => 'Zip',
    'options' => array(
        'target' => 'C:\temp',
    )
));
$compressed = $filter->filter('filename.zip');
// Returns true on success and decompresses the archive file
// into the given target directory











Note


Directories to extract to must exist


When you want to decompress an archive into a directory, then that directory must exist.







Bz2 Adapter


The Bz2 Adapter can compress and decompress:



		Strings


		Files


		Directories





This adapter makes use of PHP‘s Bz2 extension.


To customize compression, this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Blocksize: This parameter sets the blocksize to use. It can be from ‘0’ to ‘9’. The default value is ‘4’.





All options can be set at instantiation or by using a related method. For example, the related methods for
‘Blocksize’ are getBlocksize() and setBlocksize(). You can also use the setOptions() method which
accepts all options as array.





Gz Adapter


The Gz Adapter can compress and decompress:



		Strings


		Files


		Directories





This adapter makes use of PHP‘s Zlib extension.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Level: This compression level to use. It can be from ‘0’ to ‘9’. The default value is ‘9’.


		Mode: There are two supported modes. ‘compress’ and ‘deflate’. The default value is ‘compress’.





All options can be set at initiation or by using a related method. For example, the related methods for ‘Level’ are
getLevel() and setLevel(). You can also use the setOptions() method which accepts all options as array.





Lzf Adapter


The Lzf Adapter can compress and decompress:



		Strings






Note


Lzf supports only strings


The Lzf adapter can not handle files and directories.




This adapter makes use of PHP‘s Lzf extension.


There are no options available to customize this adapter.





Rar Adapter


The Rar Adapter can compress and decompress:



		Files


		Directories






Note


Rar does not support strings


The Rar Adapter can not handle strings.




This adapter makes use of PHP‘s Rar extension.



Note


Rar compression not supported


Due to restrictions with the Rar compression format, there is no compression available for free. When you want
to compress files into a new Rar archive, you must provide a callback to the adapter that can invoke a Rar
compression program.




To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Callback: A callback which provides compression support to this adapter.


		Password: The password which has to be used for decompression.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.





Tar Adapter


The Tar Adapter can compress and decompress:



		Files


		Directories






Note


Tar does not support strings


The Tar Adapter can not handle strings.




This adapter makes use of PEAR‘s Archive_Tar component.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Mode: A mode to use for compression. Supported are either ‘NULL‘ which means no compression at all, ‘Gz’
which makes use of PHP‘s Zlib extension and ‘Bz2’ which makes use of PHP‘s Bz2 extension. The default value
is ‘NULL‘.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.



Note


Directory usage


When compressing directories with Tar then the complete file path is used. This means that created Tar files
will not only have the subdirectory but the complete path for the compressed file.







Zip Adapter


The Zip Adapter can compress and decompress:



		Strings


		Files


		Directories






Note


Zip does not support string decompression


The Zip Adapter can not handle decompression to a string; decompression will always be written to a file.




This adapter makes use of PHP‘s Zip extension.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Compress and Decompress
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.oauth.security-architecture.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Security Architecture


OAuth was designed specifically to operate over an insecure HTTP connection and so the use of HTTPS is not
required though obviously it would be desireable if available. Should a HTTPS connection be feasible, OAuth
offers a signature method implementation called PLAINTEXT which may be utilised. Over a typical unsecured HTTP
connection, the use of PLAINTEXT must be avoided and an alternate scheme using. The OAuth specification defines two
such signature methods: HMAC-SHA1 and RSA-SHA1. Both are fully supported by Zend_Oauth.


These signature methods are quite easy to understand. As you can imagine, a PLAINTEXT signature method does nothing
that bears mentioning since it relies on HTTPS. If you were to use PLAINTEXT over HTTP, you are left with a
significant problem: there’s no way to be sure that the content of any OAuth enabled request (which would include
the OAuth Access Token) was altered en route. This is because unsecured HTTP requests are always at risk of
eavesdropping, Man In The Middle (MITM) attacks, or other risks whereby a request can be retooled so to speak to
perform tasks on behalf of the attacker by masquerading as the origin application without being noticed by the
service provider.


HMAC-SHA1 and RSA-SHA1 alleviate this risk by digitally signing all OAuth requests with the original application’s
registered Consumer Secret. Assuming only the Consumer and the Provider know what this secret is, a middle-man can
alter requests all they wish - but they will not be able to validly sign them and unsigned or invalidly signed
requests would be discarded by both parties. Digital signatures therefore offer a guarantee that validly signed
requests do come from the expected party and have not been altered en route. This is the core of why OAuth can
operate over an unsecure connection.


How these digital signatures operate depends on the method used, i.e. HMAC-SHA1, RSA-SHA1 or perhaps another method
defined by the service provider. HMAC-SHA1 is a simple mechanism which generates a Message Authentication Code
(MAC) using a cryptographic hash function (i.e. SHA1) in combination with a secret key known only to the message
sender and receiver (i.e. the OAuth Consumer Secret and the authorized Access Key combined). This hashing mechanism
is applied to the parameters and content of any OAuth requests which are concatenated into a “base signature
string” as defined by the OAuth specification.


RSA-SHA1 operates on similar principles except that the shared secret is, as you would expect, each parties’ RSA
private key. Both sides would have the other’s public key with which to verify digital signatures. This does pose a
level of risk compared to HMAC-SHA1 since the RSA method does not use the Access Key as part of the shared secret.
This means that if the RSA private key of any Consumer is compromised, then all Access Tokens assigned to that
Consumer are also. RSA imposes an all or nothing scheme. In general, the majority of service providers offering
OAuth authorization have therefore tended to use HMAC-SHA1 by default, and those who offer RSA-SHA1 may offer
fallback support to HMAC-SHA1.


While digital signatures add to OAuth’s security they are still vulnerable to other forms of attack, such as replay
attacks which copy earlier requests which were intercepted and validly signed at that time. An attacker can now
resend the exact same request to a Provider at will at any time and intercept its results. This poses a significant
risk but it is quiet simple to defend against - add a unique string (i.e. a nonce) to all requests which changes
per request (thus continually changing the signature string) but which can never be reused because Providers
actively track used nonces within the a certain window defined by the timestamp also attached to a request. You
might first suspect that once you stop tracking a particular nonce, the replay could work but this ignore the
timestamp which can be used to determine a request’s age at the time it was validly signed. One can assume that a
week old request used in an attempted replay should be summarily discarded!


As a final point, this is not an exhaustive look at the security architecture in OAuth. For example, what if HTTP
requests which contain both the Access Token and the Consumer Secret are eavesdropped? The system relies on at one
in the clear transmission of each unless HTTPS is active, so the obvious conclusion is that where feasible
HTTPS is to be preferred leaving unsecured HTTP in place only where it is not possible or affordable to do so.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Security Architecture
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.memory.overview.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Overview



Introduction


The Zend_Memory component is intended to manage data in an environment with limited memory.


Memory objects (memory containers) are generated by memory manager by request and transparently swapped/loaded when
it’s necessary.


For example, if creating or loading a managed object would cause the total memory usage to exceed the limit you
specify, some managed objects are copied to cache storage outside of memory. In this way, the total memory used by
managed objects does not exceed the limit you need to enforce.


The memory manager uses Zend_Cache backends as storage providers.


Using Zend_Memory component


Zend_Memory::factory() instantiates the memory manager object with specified backend options.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$backendOptions = array(
    'cache_dir' => './tmp/' // Directory where to put the swapped memory blocks
);

$memoryManager = Zend_Memory::factory('File', $backendOptions);

$loadedFiles = array();

for ($count = 0; $count < 10000; $count++) {
    $f = fopen($fileNames[$count], 'rb');
    $data = fread($f, filesize($fileNames[$count]));
    $fclose($f);

    $loadedFiles[] = $memoryManager->create($data);
}

echo $loadedFiles[$index1]->value;

$loadedFiles[$index2]->value = $newValue;

$loadedFiles[$index3]->value[$charIndex] = '_';













Theory of Operation


Zend_Memory component operates with the following concepts:




		Memory manager


		Memory container


		Locked memory object


		Movable memory object










Memory manager


The memory manager generates memory objects (locked or movable) by request of user application and returns them
wrapped into a memory container object.





Memory container


The memory container has a virtual or actual value attribute of string type. This attribute contains the data
value specified at memory object creation time.


You can operate with this value attribute as an object property:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$memObject = $memoryManager->create($data);

echo $memObject->value;

$memObject->value = $newValue;

$memObject->value[$index] = '_';

echo ord($memObject->value[$index1]);

$memObject->value = substr($memObject->value, $start, $length);











Note


If you are using a PHP version earlier than 5.2, use the getRef() method instead of accessing the value property directly.







Locked memory


Locked memory objects are always stored in memory. Data stored in locked memory are never swapped to the cache
backend.





Movable memory


Movable memory objects are transparently swapped and loaded to/from the cache backend by Zend_Memory when it’s
necessary.


The memory manager doesn’t swap objects with size less than the specified minimum, due to performance
considerations. See this section for more details.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Overview
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/autoloading.resources.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Resource Autoloading


Often, when developing an application, it’s either difficult to package classes in the 1:1 classname:filename
standard Zend Framework recommends, or it’s advantageous for purposes of packaging not to do so. However, this
means you class files will not be found by the autoloader.


If you read through the design goals for the autoloader, the last point in
that section indicated that the solution should cover this situation. Zend Framework does so with
Zend_Loader_Autoloader_Resource.


A resource is just a name that corresponds to a component namespace (which is appended to the autoloader’s
namespace) and a path (which is relative to the autoloader’s base path). In action, you’d do something like this:


		1
2
3
4


		$loader = new Zend_Application_Module_Autoloader(array(
    'namespace' => 'Blog',
    'basePath'  => APPLICATION_PATH . '/modules/blog',
));










Once you have the loader in place, you then need to inform it of the various resource types it’s aware of. These
resource types are simply pairs of subtree and prefix.


As an example, consider the following tree:


		1
2
3
4
5
6
7
8


		path/to/some/resources/
|-- forms/
|   `-- Guestbook.php        // Foo_Form_Guestbook
|-- models/
|   |-- DbTable/
|   |   `-- Guestbook.php    // Foo_Model_DbTable_Guestbook
|   |-- Guestbook.php        // Foo_Model_Guestbook
|   `-- GuestbookMapper.php  // Foo_Model_GuestbookMapper










Our first step is creating the resource loader:


		1
2
3
4


		$loader = new Zend_Loader_Autoloader_Resource(array(
    'basePath'  => 'path/to/some/resources/',
    'namespace' => 'Foo',
));










Next, we need to define some resource types. Zend_Loader_Autoloader_Resourse::addResourceType() has three
arguments: the “type” of resource (an arbitrary string), the path under the base path in which the resource type
may be found, and the component prefix to use for the resource type. In the above tree, we have three resource
types: form (in the subdirectory “forms”, with a component prefix of “Form”), model (in the subdirectory “models”,
with a component prefix of “Model”), and dbtable (in the subdirectory “models/DbTable”, with a component prefix
of “Model_DbTable”). We’d define them as follows:


		1
2
3


		$loader->addResourceType('form', 'forms', 'Form')
       ->addResourceType('model', 'models', 'Model')
       ->addResourceType('dbtable', 'models/DbTable', 'Model_DbTable');










Once defined, we can simply use these classes:


		1
2


		$form      = new Foo_Form_Guestbook();
$guestbook = new Foo_Model_Guestbook();











Note


Module Resource Autoloading


Zend Framework’s MVC layer encourages the use of “modules”, which are self-contained applications within your
site. Modules typically have a number of resource types by default, and Zend Framework even recommends a
standard directory layout for modules. Resource autoloaders are therefore quite
useful in this paradigm – so useful that they are enabled by default when you create a bootstrap class for your
module that extends Zend_Application_Module_Bootstrap. For more information, read the
Zend_Loader_Autoloader_Module documentation.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Resource Autoloading
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.paginator.usage.rendering.control.png
Results Page:
Prev 4234567891





modules/zend.json.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Json provides convenience methods for serializing native PHP to JSON and decoding JSON to native
PHP. For more information on JSON, visit the JSON project site [http://www.json.org/].


JSON, JavaScript Object Notation, can be used for data interchange between JavaScript and other languages. Since
JSON can be directly evaluated by JavaScript, it is a more efficient and lightweight format than XML for
exchanging data with JavaScript clients.


In addition, Zend_Json provides a useful way to convert any arbitrary XML formatted string into a JSON
formatted string. This built-in feature will enable PHP developers to transform the enterprise data encoded in
XML format into JSON format before sending it to browser-based Ajax client applications. It provides an easy
way to do dynamic data conversion on the server-side code thereby avoiding unnecessary XML parsing in the
browser-side applications. It offers a nice utility function that results in easier application-specific data
processing techniques.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.regions-and-avalibility-zones.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Regions and Availability Zones


Amazon EC2 provides the ability to place instances in different regions and Availability Zones. Regions are
dispersed in separate geographic areas or countries. Availability Zones are located within regions and are
engineered to be insulated from failures in other Availability Zones and provide inexpensive low latency network
connectivity to other Availability Zones in the same region. By launching instances in separate Availability Zones,
you can protect your applications from the failure of a single Availability Zone.



Amazon EC2 Regions


Amazon EC2 provides multiple regions so you can launch Amazon EC2 instances in locations that meet your
requirements. For example, you might want to launch instances in Europe to be closer to your European customers or
to meet legal requirements.


Each Amazon EC2 region is designed to be completely isolated from the other Amazon EC2 regions. This achieves the
greatest possible failure independence and stability, and it makes the locality of each EC2 resource unambiguous.


Viewing the available regions


describe is used to find out which regions your account has access to.


describe will return an array containing information about which regions are available. Each array will contain
regionName and regionUrl.


		1
2
3
4
5
6


		$ec2_region = new Zend_Service_Amazon_Ec2_Region('aws_key','aws_secret_key');
$regions = $ec2_region->describe();

foreach($regions as $region) {
    print $region['regionName'] . ' -- ' . $region['regionUrl'] . '<br />';
}













Amazon EC2 Availability Zones


When you launch an instance, you can optionally specify an Availability Zone. If you do not specify an Availability
Zone, Amazon EC2 selects one for you in the region that you are using. When launching your initial instances, we
recommend accepting the default Availability Zone, which allows Amazon EC2 to select the best Availability Zone for
you based on system health and available capacity. Even if you have other instances running, you might consider not
specifying an Availability Zone if your new instances do not need to be close to, or separated from, your existing
instances.


Viewing the available zones


describe is used to find out which what the status is of each availability zone.


describe will return an array containing information about which zones are available. Each array will contain
zoneName and zoneState.


		1
2
3
4
5
6
7


		$ec2_zones = new Zend_Service_Amazon_Ec2_Availabilityzones('aws_key',
                                                           'aws_secret_key');
$zones = $ec2_zones->describe();

foreach($zones as $zone) {
    print $zone['zoneName'] . ' -- ' . $zone['zoneState'] . '<br />';
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Regions and Availability Zones
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mime.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Mime



Introduction


Zend_Mime is a support class for handling multipart MIME messages. It is used by Zend_Mail
and Zend_Mime_Message and may be used by applications requiring MIME support.





Static Methods and Constants


Zend_Mime provides a simple set of static helper methods to work with MIME:




		Zend_Mime::isPrintable(): Returns TRUE if the given string contains no unprintable characters,
FALSE otherwise.


		Zend_Mime::encode(): Encodes a string with specified encoding.


		Zend_Mime::encodeBase64(): Encodes a string into base64 encoding.


		Zend_Mime::encodeQuotedPrintable(): Encodes a string with the quoted-printable mechanism.


		Zend_Mime::encodeBase64Header(): Encodes a string into base64 encoding for Mail Headers.


		Zend_Mime::encodeQuotedPrintableHeader(): Encodes a string with the quoted-printable mechanism for Mail
Headers.









Zend_Mime defines a set of constants commonly used with MIME Messages:




		Zend_Mime::TYPE_OCTETSTREAM: ‘application/octet-stream’


		Zend_Mime::TYPE_TEXT: ‘text/plain’


		Zend_Mime::TYPE_HTML: ‘text/html’


		Zend_Mime::ENCODING_7BIT: ‘7bit’


		Zend_Mime::ENCODING_8BIT: ‘8bit’


		Zend_Mime::ENCODING_QUOTEDPRINTABLE: ‘quoted-printable’


		Zend_Mime::ENCODING_BASE64: ‘base64’


		Zend_Mime::DISPOSITION_ATTACHMENT: ‘attachment’


		Zend_Mime::DISPOSITION_INLINE: ‘inline’


		Zend_Mime::MULTIPART_ALTERNATIVE: ‘multipart/alternative’


		Zend_Mime::MULTIPART_MIXED: ‘multipart/mixed’


		Zend_Mime::MULTIPART_RELATED: ‘multipart/related’












Instantiating Zend_Mime


When Instantiating a Zend_Mime Object, a MIME boundary is stored that is used for all subsequent non-static
method calls on that object. If the constructor is called with a string parameter, this value is used as a MIME
boundary. If not, a random MIME boundary is generated during construction time.


A Zend_Mime object has the following Methods:




		boundary(): Returns the MIME boundary string.


		boundaryLine(): Returns the complete MIME boundary line.


		mimeEnd(): Returns the complete MIME end boundary line.















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Mime
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.xmlrpc.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


From its home page [http://www.xmlrpc.com/], XML-RPC is described as a ”...remote procedure calling using HTTP as the transport and
XML as the encoding. XML-RPC is designed to be as simple as possible, while allowing complex data structures to
be transmitted, processed and returned.”


Zend Framework provides support for both consuming remote XML-RPC services and building new XML-RPC servers.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-week.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormWeek


The FormWeek view helper can be used to render a <input type="week">
HTML5 form input. It is meant to work with the Zend\Form\Element\Week
element, which provides a default input specification for validating HTML5 week values.


FormWeek extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Week('my-week');

// Within your view...

echo $this->formWeek($element);
// <input type="week" name="my-week" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormWeek
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/paginator.simple.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Simple Examples


In this first example we won’t do anything spectacular, but hopefully it will give you a good idea of what
Zend_Paginator is designed to do. Let’s say we have an array called $data with the numbers 1 to 100 in it,
which we want to divide over a number of pages. We can use the static factory() method in the
Zend_Paginator class to get a Zend_Paginator object with our array in it.


		1
2
3
4
5


		// Create an array with numbers 1 to 100
$data = range(1, 100);

// Get a Paginator object using Zend_Paginator's built-in factory.
$paginator = Zend_Paginator::factory($data);










We’re already almost done! The $paginator variable now contains a reference to the Paginator object. By default it
is setup to display 10 items per page. To display the items for the currently active page, all you need to do is
iterate over the Paginator object with a foreach loop. The currently active page defaults to the first page if it’s
not explicitly specified. We will see how you can select a specific page later on. The snippet below will display
an unordered list containing the numbers 1 to 10, which are the numbers on the first page.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create an array with numbers 1 to 100
$data = range(1, 100);

// Get a Paginator object using Zend_Paginator's built-in factory.
$paginator = Zend_Paginator::factory($data);

?><ul><?php

// Render each item for the current page in a list-item
foreach ($paginator as $item) {
    echo '<li>' . $item . '</li>';
}

?></ul>










Now let’s try and render the items on the second page. You can use the setCurrentPageNumber() method to select
which page you want to view.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		// Create an array with numbers 1 to 100
$data = range(1, 100);

// Get a Paginator object using Zend_Paginator's built-in factory.
$paginator = Zend_Paginator::factory($data);

// Select the second page
$paginator->setCurrentPageNumber(2);

?><ul><?php

// Render each item for the current page in a list-item
foreach ($paginator as $item) {
    echo '<li>' . $item . '</li>';
}

?></ul>










As expected, this little snippet will render an unordered list with the numbers 11 to 20 in it.


These simple examples demonstrate a small portion of what can be achieved with Zend_Paginator. However, a real
application rarely reads its data from a plain array, so the next section is dedicated to showing you how you can
use Paginator to paginate the results of a database query. Before reading on, make sure you’re familiar with the
way Zend_Db_Select works!


In the database examples we will look at a table with blog posts called ‘posts’. The ‘posts’ table has four
columns: id, title, body, date_created. Let’s dive right in and have a look at a simple example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Create a select query. $db is a Zend_Db_Adapter object, which we assume
// already exists in your script.
$select = $db->select()->from('posts')->order('date_created DESC');

// Get a Paginator object using Zend_Paginator's built-in factory.
$paginator = Zend_Paginator::factory($select);

// Select the second page
$paginator->setCurrentPageNumber(2);

?><ul><?php

// Render each the title of each post for the current page in a list-item
foreach ($paginator as $item) {
    echo '<li>' . $item->title . '</li>';
}

?></ul>










As you can see, this example is not that different from the previous one. The only difference is that you pass a
Zend_Db_Select object to the Paginator’s factory() method, rather than an array. For more details on how
the database adapter makes sure that your query is being executed efficiently, see the Zend_Paginator chapter
in the reference manual on the DbSelect and DbTableSelect adapters.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Simple Examples
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.simplest.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Decorator Basics



Overview of the Decorator Pattern


To begin, we’ll cover some background on the Decorator design pattern [http://en.wikipedia.org/wiki/Decorator_pattern]. One common technique is to define a
common interface that both your originating object and decorator will implement; your decorator than accepts the
originating object as a dependency, and will either proxy to it or override its methods. Let’s put that into code
to make it more easily understood:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


		interface Window
{
    public function isOpen();
    public function open();
    public function close();
}

class StandardWindow implements Window
{
    protected $_open = false;

    public function isOpen()
    {
        return $this->_open;
    }

    public function open()
    {
        if (!$this->_open) {
            $this->_open = true;
        }
    }

    public function close()
    {
        if ($this->_open) {
            $this->_open = false;
        }
    }
}

class LockedWindow implements Window
{
    protected $_window;

    public function __construct(Window $window)
    {
        $this->_window = $window;
        $this->_window->close();
    }

    public function isOpen()
    {
        return false;
    }

    public function open()
    {
        throw new Exception('Cannot open locked windows');
    }

    public function close()
    {
        $this->_window->close();
    }
}










You then create an object of type StandardWindow, pass it to the constructor of LockedWindow, and your
window instance now has different behavior. The beauty is that you don’t have to implement any sort of “locking”
functionality on your standard window class – the decorator takes care of that for you. In the meantime, you can
pass your locked window around as if it were just another window.


One particular place where the decorator pattern is useful is for creating textual representations of objects. As
an example, you might have a “Person” object that, by itself, has no textual representation. By using the Decorator
pattern, you can create an object that will act as if it were a Person, but also provide the ability to render that
Person textually.


In this particular example, we’re going to use duck typing [http://en.wikipedia.org/wiki/Duck_typing] instead of an explicit interface. This allows our
implementation to be a bit more flexible, while still allowing the decorator object to act exactly as if it were a
Person object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		class Person
{
    public function setFirstName($name) {}
    public function getFirstName() {}
    public function setLastName($name) {}
    public function getLastName() {}
    public function setTitle($title) {}
    public function getTitle() {}
}

class TextPerson
{
    protected $_person;

    public function __construct(Person $person)
    {
        $this->_person = $person;
    }

    public function __call($method, $args)
    {
        if (!method_exists($this->_person, $method)) {
            throw new Exception('Invalid method called on HtmlPerson: '
                .  $method);
        }
        return call_user_func_array(array($this->_person, $method), $args);
    }

    public function __toString()
    {
        return $this->_person->getTitle() . ' '
            . $this->_person->getFirstName() . ' '
            . $this->_person->getLastName();
    }
}










In this example, you pass your Person instance to the TextPerson constructor. By using method overloading,
you are able to continue to call all the methods of Person– to set the first name, last name, or title – but
you also now gain a string representation via the __toString() method.


This latter example is getting close to how Zend_Form decorators work. The key difference is that instead of a
decorator wrapping the element, the element has one or more decorators attached to it that it then injects itself
into in order to render. The decorator then can access the element’s methods and properties in order to create a
representation of the element – or a subset of it.





Creating Your First Decorator


Zend_Form decorators all implement a common interface, Zend_Form_Decorator_Interface. That interface
provides the ability to set decorator-specific options, register and retrieve the element, and render. A base
decorator, Zend_Form_Decorator_Abstract, provides most of the functionality you will ever need, with the
exception of the rendering logic.


Let’s consider a situation where we simply want to render an element as a standard form text input with a label. We
won’t worry about error handling or whether or not the element should be wrapped within other tags for now – just
the basics. Such a decorator might look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class My_Decorator_SimpleInput extends Zend_Form_Decorator_Abstract
{
    protected $_format = '<label for="%s">%s</label><input id="%s" name="%s" type="text" value="%s"/>';

    public function render($content)
    {
        $element = $this->getElement();
        $name    = htmlentities($element->getFullyQualifiedName());
        $label   = htmlentities($element->getLabel());
        $id      = htmlentities($element->getId());
        $value   = htmlentities($element->getValue());

        $markup  = sprintf($this->_format, $name, $label, $id, $name, $value);
        return $markup;
    }
}










Let’s create an element that uses this decorator:


		1
2
3
4
5
6
7


		$decorator = new My_Decorator_SimpleInput();
$element   = new Zend_Form_Element('foo', array(
    'label'      => 'Foo',
    'belongsTo'  => 'bar',
    'value'      => 'test',
    'decorators' => array($decorator),
));










Rendering this element results in the following markup:


		1
2


		<label for="bar[foo]">Foo</label>
<input id="bar-foo" name="bar[foo]" type="text" value="test"/>










You could also put this class in your library somewhere, inform your element of that path, and refer to the
decorator as simply “SimpleInput” as well:


		1
2
3
4
5
6
7
8
9


		$element = new Zend_Form_Element('foo', array(
    'label'      => 'Foo',
    'belongsTo'  => 'bar',
    'value'      => 'test',
    'prefixPath' => array('decorator' => array(
        'My_Decorator' => 'path/to/decorators/',
    )),
    'decorators' => array('SimpleInput'),
));










This gives you the benefit of re-use in other projects, and also opens the door for providing alternate
implementations of that decorator later.


In the next section, we’ll look at how to combine decorators in order to create composite output.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Decorator Basics
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.step.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Step


Zend\Validator\Step allows you to validate if a given value is a valid step value. This validator requires the
value to be a numeric value (either string, int or float).



Supported options for Zend\Validator\Step


The following options are supported for Zend\Validator\Step:



		baseValue: This is the base value from which the step should be computed. This option defaults to 0


		step: This is the step value. This option defaults to 1








Basic usage


A basic example is the following one:


		1
2
3
4
5
6


		            $validator = new Zend\Validator\Step();
            if ($validator->isValid(1)) {
            // value is a valid step value
            } else {
            // false
            }













Using floating-point values


This validator also supports floating-point base value and step value. Here is a basic example of this feature:


		1
2
3
4
5
6
7
8
9


		            $validator = new Zend\Validator\Step(array(
            'baseValue' => 1.1,
            'step' => 2.2
            ));

            echo $validator->isValid(1.1); // prints true
            echo $validator->isValid(3.3); // prints true
            echo $validator->isValid(3.35); // prints false
            echo $validator->isValid(2.2); // prints false
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Step
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.conclusion.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Congratulations!


You have now built a very simple application using some of the most commonly used Zend Framework components. Zend
Framework makes many components available to you which address most common requirements in web applications,
including web services, search, PDF reading and writing, authentication, authorization, and much more. The
Reference Guide is a great place to find out more about the components you’ve used in this
QuickStart as well as other components. We hope you find Zend Framework useful and - more importantly - fun!






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Congratulations!
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.open-id.provider.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_OpenId_Provider


Zend_OpenId_Provider can be used to implement OpenID servers. This chapter provides examples that demonstrate
how to build a very basic server. However, for implementation of a production OpenID server (such as
www.myopenid.com [http://www.myopenid.com]) you may have to deal with more complex issues.



Quick start


The following example includes code for creating a user account using Zend_OpenId_Provider::register. The link
element with rel="openid.server" points to our own server script. If you submit this identity to an
OpenID-enabled site, it will perform authentication on this server.


The code before the <html> tag is just a trick that automatically creates a user account. You won’t need such code
when using real identities.


The Identity


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		<?php
// Set up test identity
define("TEST_SERVER", Zend_OpenId::absoluteURL("example-8.php"));
define("TEST_ID", Zend_OpenId::selfURL());
define("TEST_PASSWORD", "123");
$server = new Zend_OpenId_Provider();
if (!$server->hasUser(TEST_ID)) {
    $server->register(TEST_ID, TEST_PASSWORD);
}
?>
<html><head>
<link rel="openid.server" href="<?php echo TEST_SERVER;?>" />
</head><body>
<?php echo TEST_ID;?>
</body></html>










The following identity server script handles two kinds of requests from OpenID-enabled sites (for association and
authentication). Both of them are handled by the same method: Zend_OpenId_Provider::handle. The two arguments
to the Zend_OpenId_Provider constructor are URLs of login and trust pages, which ask for input from the end
user.


On success, the method Zend_OpenId_Provider::handle returns a string that should be passed back to the
OpenID-enabled site. On failure, it returns FALSE. This example will return an HTTP 403 response if
Zend_OpenId_Provider::handle fails. You will get this response if you open this script with a web browser,
because it sends a non-OpenID conforming request.


Simple Identity Provider


		1
2
3
4
5
6
7
8
9


		$server = new Zend_OpenId_Provider("example-8-login.php",
                                   "example-8-trust.php");
$ret = $server->handle();
if (is_string($ret)) {
    echo $ret;
} else if ($ret !== true) {
    header('HTTP/1.0 403 Forbidden');
    echo 'Forbidden';
}











Note


It is a good idea to use a secure connection (HTTPS) for these scripts- especially for the following interactive
scripts- to prevent password disclosure.




The following script implements a login screen for an identity server using Zend_OpenId_Provider and redirects
to this page when a required user has not yet logged in. On this page, a user will enter his password to login.


You should use the password “123” that was used in the identity script above.


On submit, the script calls Zend_OpenId_Provider::login with the accepted user’s identity and password, then
redirects back to the main identity provider’s script. On success, the Zend_OpenId_Provider::login establishes
a session between the user and the identity provider and stores the information about the user, who is now logged
in. All following requests from the same user won’t require a login procedure- even if they come from another
OpenID enabled web site.



Note


Note that this session is between end-user and identity provider only. OpenID enabled sites know nothing about
it.




Simple Login Screen


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


		<?php
$server = new Zend_OpenId_Provider();

if ($_SERVER['REQUEST_METHOD'] == 'POST' &&
    isset($_POST['openid_action']) &&
    $_POST['openid_action'] === 'login' &&
    isset($_POST['openid_identifier']) &&
    isset($_POST['openid_password'])) {
    $server->login($_POST['openid_identifier'],
                   $_POST['openid_password']);
    Zend_OpenId::redirect("example-8.php", $_GET);
}
?>
<html>
<body>
<form method="post">
<fieldset>
<legend>OpenID Login</legend>
<table border=0>
<tr>
<td>Name:</td>
<td>
<input type="text"
       name="openid_identifier"
       value="<?php echo htmlspecialchars($_GET['openid_identity']);?>">
</td>
</tr>
<tr>
<td>Password:</td>
<td>
<input type="text"
       name="openid_password"
       value="">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="submit"
       name="openid_action"
       value="login">
</td>
</tr>
</table>
</fieldset>
</form>
</body>
</html>










The fact that the user is now logged in doesn’t mean that the authentication must necessarily succeed. The user may
decide not to trust particular OpenID enabled sites. The following trust screen allows the end user to make that
choice. This choice may either be made only for current requests or forever. In the second case, information about
trusted/untrusted sites is stored in an internal database, and all following authentication requests from this site
will be handled automatically without user interaction.


Simple Trust Screen


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		<?php
$server = new Zend_OpenId_Provider();

if ($_SERVER['REQUEST_METHOD'] == 'POST' &&
    isset($_POST['openid_action']) &&
    $_POST['openid_action'] === 'trust') {

    if (isset($_POST['allow'])) {
        if (isset($_POST['forever'])) {
            $server->allowSite($server->getSiteRoot($_GET));
        }
        $server->respondToConsumer($_GET);
    } else if (isset($_POST['deny'])) {
        if (isset($_POST['forever'])) {
            $server->denySite($server->getSiteRoot($_GET));
        }
        Zend_OpenId::redirect($_GET['openid_return_to'],
                              array('openid.mode'=>'cancel'));
    }
}
?>
<html>
<body>
<p>A site identifying as
<a href="<?php echo htmlspecialchars($server->getSiteRoot($_GET));?>">
<?php echo htmlspecialchars($server->getSiteRoot($_GET));?>
</a>
has asked us for confirmation that
<a href="<?php echo htmlspecialchars($server->getLoggedInUser());?>">
<?php echo htmlspecialchars($server->getLoggedInUser());?>
</a>
is your identity URL.
</p>
<form method="post">
<input type="checkbox" name="forever">
<label for="forever">forever</label><br>
<input type="hidden" name="openid_action" value="trust">
<input type="submit" name="allow" value="Allow">
<input type="submit" name="deny" value="Deny">
</form>
</body>
</html>










Production OpenID servers usually support the Simple Registration Extension that allows consumers to request some
information about the user from the provider. In this case, the trust page can be extended to allow entering
requested fields or selecting a specific user profile.





Combined Provide Scripts


It is possible to combine all provider functionality in one script. In this case login and trust URLs are
omitted, and Zend_OpenId_Provider assumes that they point to the same page with the additional
“openid.action”GET argument.



Note


The following example is not complete. It doesn’t provide GUI code for the user, instead performing an automatic
login and trust relationship instead. This is done just to simplify the example; a production server should
include some code from previous examples.




Everything Together


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		$server = new Zend_OpenId_Provider();

define("TEST_ID", Zend_OpenId::absoluteURL("example-9-id.php"));
define("TEST_PASSWORD", "123");

if ($_SERVER['REQUEST_METHOD'] == 'GET' &&
    isset($_GET['openid_action']) &&
    $_GET['openid_action'] === 'login') {
    $server->login(TEST_ID, TEST_PASSWORD);
    unset($_GET['openid_action']);
    Zend_OpenId::redirect(Zend_OpenId::selfUrl(), $_GET);
} else if ($_SERVER['REQUEST_METHOD'] == 'GET' &&
    isset($_GET['openid_action']) &&
    $_GET['openid_action'] === 'trust') {
    unset($_GET['openid_action']);
    $server->respondToConsumer($_GET);
} else {
    $ret = $server->handle();
    if (is_string($ret)) {
        echo $ret;
    } else if ($ret !== true) {
        header('HTTP/1.0 403 Forbidden');
        echo 'Forbidden';
    }
}










If you compare this example with previous examples split in to separate pages, you will see only the one difference
besides the dispatch code: unset($_GET['openid_action']). This call to unset() is necessary to route the
next request to main handler.





Simple Registration Extension


Again, the code before the <html> tag is just a trick to demonstrate functionality. It creates a new user account
and associates it with a profile (nickname and password). Such tricks aren’t needed in deployed providers where end
users register on OpenID servers and fill in their profiles. Implementing this GUI is out of scope for this manual.


Identity with Profile


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		<?php
define("TEST_SERVER", Zend_OpenId::absoluteURL("example-10.php"));
define("TEST_ID", Zend_OpenId::selfURL());
define("TEST_PASSWORD", "123");
$server = new Zend_OpenId_Provider();
if (!$server->hasUser(TEST_ID)) {
    $server->register(TEST_ID, TEST_PASSWORD);
    $server->login(TEST_ID, TEST_PASSWORD);
    $sreg = new Zend_OpenId_Extension_Sreg(array(
        'nickname' =>'test',
        'email' => 'test@test.com'
    ));
    $root = Zend_OpenId::absoluteURL(".");
    Zend_OpenId::normalizeUrl($root);
    $server->allowSite($root, $sreg);
    $server->logout();
}
?>
<html>
<head>
<link rel="openid.server" href="<?php echo TEST_SERVER;?>" />
</head>
<body>
<?php echo TEST_ID;?>
</body>
</html>










You should now pass this identity to the OpenID-enabled web site (use the Simple Registration Extension example
from the previous section), and it should use the following OpenID server script.


This script is a variation of the script in the “Everything Together” example. It uses the same automatic login
mechanism, but doesn’t contain any code for a trust page. The user already trusts the example scripts forever. This
trust was established by calling the Zend_OpenId_Provider::allowSite() method in the identity script. The same
method associates the profile with the trusted URL. This profile will be returned automatically for a request
from the trusted URL.


To make Simple Registration Extension work, you must simply pass an instance of Zend_OpenId_Extension_Sreg as
the second argument to the Zend_OpenId_Provider::handle() method.


Provider with SREG


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		$server = new Zend_OpenId_Provider();
$sreg = new Zend_OpenId_Extension_Sreg();

define("TEST_ID", Zend_OpenId::absoluteURL("example-10-id.php"));
define("TEST_PASSWORD", "123");

if ($_SERVER['REQUEST_METHOD'] == 'GET' &&
    isset($_GET['openid_action']) &&
    $_GET['openid_action'] === 'login') {
    $server->login(TEST_ID, TEST_PASSWORD);
    unset($_GET['openid_action']);
    Zend_OpenId::redirect(Zend_OpenId::selfUrl(), $_GET);
} else if ($_SERVER['REQUEST_METHOD'] == 'GET' &&
    isset($_GET['openid_action']) &&
    $_GET['openid_action'] === 'trust') {
   echo "UNTRUSTED DATA" ;
} else {
    $ret = $server->handle(null, $sreg);
    if (is_string($ret)) {
        echo $ret;
    } else if ($ret !== true) {
        header('HTTP/1.0 403 Forbidden');
        echo 'Forbidden';
    }
}













Anything Else?


Building OpenID providers is much less common than building OpenID-enabled sites, so this manual doesn’t cover all
Zend_OpenId_Provider features exhaustively, as was done for Zend_OpenId_Consumer.


To summamize, Zend_OpenId_Provider contains:



		A set of methods to build an end-user GUI that allows users to register and manage their trusted sites and
profiles


		An abstract storage layer to store information about users, their sites and their profiles. It also stores
associations between the provider and OpenID-enabled sites. This layer is very similar to that of the
Zend_OpenId_Consumer class. It also uses file storage by default, but may used with another backend.


		An abstract user-association layer that may associate a user’s web browser with a logged-in identity





The Zend_OpenId_Provider class doesn’t attempt to cover all possible features that can be implemented by OpenID
servers, e.g. digital certificates, but it can be extended easily using Zend_OpenId_Extensions or by standard
object-oriented extension.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_OpenId_Provider
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.110.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.10


When upgrading from a previous release to Zend Framework 1.10 or higher you should note the following migration
notes.



Zend_Controller_Front


A wrong behaviour was fixed, when there was no module route and no route matched the given request. Previously, the
router returned an unmodified request object, so the front controller just displayed the default controller and
action. Since Zend Framework 1.10, the router will correctly as noted in the router interface, throw an exception
if no route matches. The error plugin will then catch that exception and forward to the error controller. You can
then test for that specific error with the constant Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ROUTE:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		/**
 * Before 1.10
 */
    public function errorAction()
    {
        $errors = $this->_getParam('error_handler');

        switch ($errors->type) {
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:
    // ...

/**
 * With 1.10
 */
    public function errorAction()
    {
        $errors = $this->_getParam('error_handler');

        switch ($errors->type) {
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ROUTE:
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:
    // ...













Zend_Feed_Reader


With the introduction of Zend Framework 1.10, Zend_Feed_Reader‘s handling of retrieving Authors and
Contributors was changed, introducing a break in backwards compatibility. This change was an effort to harmonise
the treatment of such data across the RSS and Atom classes of the component and enable the return of Author and
Contributor data in more accessible, usable and detailed form. It also rectifies an error in that it was assumed
any author element referred to a name. In RSS this is incorrect as an author element is actually only required to
provide an email address. In addition, the original implementation applied its RSS limits to Atom feeds
significantly reducing the usefulness of the parser with that format.


The change means that methods like getAuthors() and getContributors no longer return a simple array of
strings parsed from the relevant RSS and Atom elements. Instead, the return value is an ArrayObject subclass
called Zend_Feed_Reader_Collection_Author which simulates an iterable multidimensional array of Authors. Each
member of this object will be a simple array with three potential keys (as the source data permits). These include:
name, email and uri.


The original behaviour of such methods would have returned a simple array of strings, each string attempting to
present a single name, but in reality this was unreliable since there is no rule governing the format of RSS Author
strings.


The simplest method of simulating the original behaviour of these methods is to use the
Zend_Feed_Reader_Collection_Author‘s getValues() which also returns a simple array of strings representing
the “most relevant data”, for authors presumed to be their name. Each value in the resulting array is derived from
the “name” value attached to each Author (if present). In most cases this simple change is easy to apply as
demonstrated below.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		/**
 * Before 1.10
 */
$feed = Zend_Feed_Reader::import('http://example.com/feed');
$authors = $feed->getAuthors();

/**
 * With 1.10
 */
$feed = Zend_Feed_Reader::import('http://example.com/feed');
$authors = $feed->getAuthors()->getValues();













Zend_File_Transfer



Security change


For security reasons Zend_File_Transfer does no longer store the original mimetype and filesize which is given
from the requesting client into its internal storage. Instead the real values will be detected at initiation.


Additionally the original values within $_FILES will be overridden within the real values at initiation. This
makes also $_FILES secure.


When you are in need of the original values you can either store them before initiating Zend_File_Transfer or
use the disableInfos option at initiation. Note that this option is useless when its given after initiation.





Count validation


Before release 1.10 the MimeType validator used a wrong naming. For consistency the following constants have
been changed:



Changed Validation Messages






		Old
		New
		Value





		TOO_MUCH
		TOO_MANY
		Too many files, maximum ‘%max%’ are allowed but ‘%count%’ are given



		TOO_LESS
		TOO_FEW
		Too few files, minimum ‘%min%’ are expected but ‘%count%’ are given







When you are translating these messages within your code then use the new constants. As benefit you don’t need to
translate the original string anymore to get a correct spelling.







Zend_Filter_HtmlEntities


In order to default to a more secure character encoding, Zend_Filter_HtmlEntities now defaults to UTF-8
instead of ISO-8859-1.


Additionally, because the actual mechanism is dealing with character encodings and not character sets, two new
methods have been added, setEncoding() and getEncoding(). The previous methods setCharSet() and
setCharSet() are now deprecated and proxy to the new methods. Finally, instead of using the protected members
directly within the filter() method, these members are retrieved by their explicit accessors. If you were
extending the filter in the past, please check your code and unit tests to ensure everything still continues to
work.





Zend_Filter_StripTags


Zend_Filter_StripTags contains a flag, commentsAllowed, that, in previous versions, allowed you to
optionally whitelist HTML comments in HTML text filtered by the class. However, this opens code enabling the
flag to XSS attacks, particularly in Internet Explorer (which allows specifying conditional functionality via
HTML comments). Starting in version 1.9.7 (and backported to versions 1.8.5 and 1.7.9), the commentsAllowed
flag no longer has any meaning, and all HTML comments, including those containing other HTML tags or nested
commments, will be stripped from the final output of the filter.





Zend_Translator



Xliff adapter


In past the Xliff adapter used the source string as message Id. According to the Xliff standard the trans-unit Id
should be used. This behaviour was corrected with Zend Framework 1.10. Now the trans-unit Id is used as message Id
per default.


But you can still get the incorrect and old behaviour by setting the useId option to FALSE.


		1
2
3


		$trans = new Zend_Translator(
    'xliff', '/path/to/source', $locale, array('useId' => false)
);















Zend_Validate



Self written validators


When setting returning a error from within a self written validator you have to call the _error() method.
Before Zend Framework 1.10 you were able to call this method without giving a parameter. It used then the first
found message template.


This behaviour is problematic when you have validators with more than one different message to be returned. Also
when you extend an existing validator you can get unexpected results. This could lead to the problem that your user
get not the message you expected.


		1
2
3
4
5
6
7
8
9


		My_Validator extends Zend_Validate_Abstract
{
    public isValid($value)
    {
        ...
        $this->_error(); // unexpected results between different OS
        ...
    }
}










To prevent this problem the _error() method is no longer allowed to be called without giving a parameter.


		1
2
3
4
5
6
7
8
9


		My_Validator extends Zend_Validate_Abstract
{
    public isValid($value)
    {
        ...
        $this->_error(self::MY_ERROR); // defined error, no unexpected results
        ...
    }
}













Simplification in date validator


Before Zend Framework 1.10 2 identical messages were thrown within the date validator. These were
NOT_YYYY_MM_DD and FALSEFORMAT. As of Zend Framework 1.10 only the FALSEFORMAT message will be returned
when the given date does not match the set format.





Fixes in Alpha, Alnum and Barcode validator


Before Zend Framework 1.10 the messages within the 2 barcode adapters, the Alpha and the Alnum validator were
identical. This introduced problems when using custom messages, translations or multiple instances of these
validators.


As with Zend Framework 1.10 the values of the constants were changed to be unique. When you used the constants as
proposed in the manual there is no change for you. But when you used the content of the constants in your code then
you will have to change them. The following table shows you the changed values:



Available Validation Messages






		Validator
		Constant
		Value





		Alnum
		STRING_EMPTY
		alnumStringEmpty



		Alpha
		STRING_EMPTY
		alphaStringEmpty



		Barcode_Ean13
		INVALID
		ean13Invalid



		Barcode_Ean13
		INVALID_LENGTH
		ean13InvalidLength



		Barcode_UpcA
		INVALID
		upcaInvalid



		Barcode_UpcA
		INVALID_LENGTH
		upcaInvalidLength



		Digits
		STRING_EMPTY
		digitsStringEmpty















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.10
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.gapps.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Google Apps Provisioning


Google Apps is a service which allows domain administrators to offer their users managed access to Google services
such as Mail, Calendar, and Docs & Spreadsheets. The Provisioning API offers a programmatic interface to
configure this service. Specifically, this API allows administrators the ability to create, retrieve, update, and
delete user accounts, nicknames, groups, and email lists.


This library implements version 2.0 of the Provisioning API. Access to your account via the Provisioning API
must be manually enabled for each domain using the Google Apps control panel. Only certain account types are able
to enable this feature.


For more information on the Google Apps Provisioning API, including instructions for enabling API access, refer
to the Provisioning API V2.0 Reference [http://code.google.com/apis/apps/gdata_provisioning_api_v2.0_reference.html].



Note


Authentication


The Provisioning API does not support authentication via AuthSub and anonymous access is not permitted. All
HTTP connections must be authenticated using ClientAuth authentication.





Setting the current domain


In order to use the Provisioning API, the domain being administered needs to be specified in all request URIs. In order to ease development, this information is stored within both the Gapps service and query classes to use
when constructing requests.



Setting the domain for the service class


To set the domain for requests made by the service class, either call setDomain() or specify the domain when
instantiating the service class. For example:


		1
2


		$domain = "example.com";
$gdata = new Zend_Gdata_Gapps($client, $domain);













Setting the domain for query classes


Setting the domain for requests made by query classes is similar to setting it for the service class-either call
setDomain() or specify the domain when creating the query. For example:


		1
2


		$domain = "example.com";
$query = new Zend_Gdata_Gapps_UserQuery($domain, $arg);










When using a service class factory method to create a query, the service class will automatically set the query’s
domain to match its own domain. As a result, it is not necessary to specify the domain as part of the constructor
arguments.


		1
2
3


		$domain = "example.com";
$gdata = new Zend_Gdata_Gapps($client, $domain);
$query = $gdata->newUserQuery($arg);















Interacting with users


Each user account on a Google Apps hosted domain is represented as an instance of Zend_Gdata_Gapps_UserEntry.
This class provides access to all account properties including name, username, password, access rights, and current
quota.



Creating a user account


User accounts can be created by calling the createUser() convenience method:


		1


		$gdata->createUser('foo', 'Random', 'User', '••••••••');










Users can also be created by instantiating UserEntry, providing a username, given name, family name, and password,
then calling insertUser() on a service object to upload the entry to the server.


		1
2
3
4
5
6
7
8


		$user = $gdata->newUserEntry();
$user->login = $gdata->newLogin();
$user->login->username = 'foo';
$user->login->password = '••••••••';
$user->name = $gdata->newName();
$user->name->givenName = 'Random';
$user->name->familyName = 'User';
$user = $gdata->insertUser($user);










The user’s password should normally be provided as cleartext. Optionally, the password can be provided as an
SHA-1 digest if login->passwordHashFunction is set to ‘SHA-1‘.





Retrieving a user account


Individual user accounts can be retrieved by calling the retrieveUser() convenience method. If the user is not
found, NULL will be returned.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$user = $gdata->retrieveUser('foo');

echo 'Username: ' . $user->login->userName . "\n";
echo 'Given Name: ' . $user->name->givenName . "\n";
echo 'Family Name: ' . $user->name->familyName . "\n";
echo 'Suspended: ' . ($user->login->suspended ? 'Yes' : 'No') . "\n";
echo 'Admin: ' . ($user->login->admin ? 'Yes' : 'No') . "\n"
echo 'Must Change Password: ' .
     ($user->login->changePasswordAtNextLogin ? 'Yes' : 'No') . "\n";
echo 'Has Agreed To Terms: ' .
     ($user->login->agreedToTerms ? 'Yes' : 'No') . "\n";










Users can also be retrieved by creating an instance of Zend_Gdata_Gapps_UserQuery, setting its username
property to equal the username of the user that is to be retrieved, and calling getUserEntry() on a service
object with that query.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$query = $gdata->newUserQuery('foo');
$user = $gdata->getUserEntry($query);

echo 'Username: ' . $user->login->userName . "\n";
echo 'Given Name: ' . $user->login->givenName . "\n";
echo 'Family Name: ' . $user->login->familyName . "\n";
echo 'Suspended: ' . ($user->login->suspended ? 'Yes' : 'No') . "\n";
echo 'Admin: ' . ($user->login->admin ? 'Yes' : 'No') . "\n"
echo 'Must Change Password: ' .
     ($user->login->changePasswordAtNextLogin ? 'Yes' : 'No') . "\n";
echo 'Has Agreed To Terms: ' .
     ($user->login->agreedToTerms ? 'Yes' : 'No') . "\n";










If the specified user cannot be located a ServiceException will be thrown with an error code of
Zend_Gdata_Gapps_Error::ENTITY_DOES_NOT_EXIST. ServiceExceptions will be covered in the exceptions
chapter.





Retrieving all users in a domain


To retrieve all users in a domain, call the retrieveAllUsers() convenience method.


		1
2
3
4
5
6


		$feed = $gdata->retrieveAllUsers();

foreach ($feed as $user) {
    echo "  * " . $user->login->username . ' (' . $user->name->givenName .
        ' ' . $user->name->familyName . ")\n";
}










This will create a Zend_Gdata_Gapps_UserFeed object which holds each user on the domain.


Alternatively, call getUserFeed() with no options. Keep in mind that on larger domains this feed may be paged
by the server. For more information on paging, see the paging chapter.


		1
2
3
4
5
6


		$feed = $gdata->getUserFeed();

foreach ($feed as $user) {
    echo "  * " . $user->login->username . ' (' . $user->name->givenName .
        ' ' . $user->name->familyName . ")\n";
}













Updating a user account


The easiest way to update a user account is to retrieve the user as described in the previous sections, make any
desired changes, then call save() on that user. Any changes made will be propagated to the server.


		1
2
3
4


		$user = $gdata->retrieveUser('foo');
$user->name->givenName = 'Foo';
$user->name->familyName = 'Bar';
$user = $user->save();













Resetting a user’s password


A user’s password can be reset to a new value by updating the login->password property.


		1
2
3


		$user = $gdata->retrieveUser('foo');
$user->login->password = '••••••••';
$user = $user->save();










Note that it is not possible to recover a password in this manner as stored passwords are not made available via
the Provisioning API for security reasons.





Forcing a user to change their password


A user can be forced to change their password at their next login by setting the
login->changePasswordAtNextLogin property to TRUE.


		1
2
3


		$user = $gdata->retrieveUser('foo');
$user->login->changePasswordAtNextLogin = true;
$user = $user->save();










Similarly, this can be undone by setting the login->changePasswordAtNextLogin property to FALSE.





Suspending a user account


Users can be restricted from logging in without deleting their user account by instead suspending their user
account. Accounts can be suspended or restored by using the suspendUser() and restoreUser() convenience
methods:


		1
2


		$gdata->suspendUser('foo');
$gdata->restoreUser('foo');










Alternatively, you can set the UserEntry’s login->suspended property to TRUE.


		1
2
3


		$user = $gdata->retrieveUser('foo');
$user->login->suspended = true;
$user = $user->save();










To restore the user’s access, set the login->suspended property to FALSE.





Granting administrative rights


Users can be granted the ability to administer your domain by setting their login->admin property to TRUE.


		1
2
3


		$user = $gdata->retrieveUser('foo');
$user->login->admin = true;
$user = $user->save();










And as expected, setting a user’s login->admin property to FALSE revokes their administrative rights.





Deleting user accounts


Deleting a user account to which you already hold a UserEntry is a simple as calling delete() on that entry.


		1
2


		$user = $gdata->retrieveUser('foo');
$user->delete();










If you do not have access to a UserEntry object for an account, use the deleteUser() convenience method.


		1


		$gdata->deleteUser('foo');















Interacting with nicknames


Nicknames serve as email aliases for existing users. Each nickname contains precisely two key properties: its name
and its owner. Any email addressed to a nickname is forwarded to the user who owns that nickname.


Nicknames are represented as an instances of Zend_Gdata_Gapps_NicknameEntry.



Creating a nickname


Nicknames can be created by calling the createNickname() convenience method:


		1


		$gdata->createNickname('foo', 'bar');










Nicknames can also be created by instantiating NicknameEntry, providing the nickname with a name and an owner, then
calling insertNickname() on a service object to upload the entry to the server.


		1
2
3
4


		$nickname = $gdata->newNicknameEntry();
$nickname->login = $gdata->newLogin('foo');
$nickname->nickname = $gdata->newNickname('bar');
$nickname = $gdata->insertNickname($nickname);













Retrieving a nickname


Nicknames can be retrieved by calling the retrieveNickname() convenience method. This will return NULL if a
user is not found.


		1
2
3
4


		$nickname = $gdata->retrieveNickname('bar');

echo 'Nickname: ' . $nickname->nickname->name . "\n";
echo 'Owner: ' . $nickname->login->username . "\n";










Individual nicknames can also be retrieved by creating an instance of Zend_Gdata_Gapps_NicknameQuery, setting
its nickname property to equal the nickname that is to be retrieved, and calling getNicknameEntry() on a
service object with that query.


		1
2
3
4
5


		$query = $gdata->newNicknameQuery('bar');
$nickname = $gdata->getNicknameEntry($query);

echo 'Nickname: ' . $nickname->nickname->name . "\n";
echo 'Owner: ' . $nickname->login->username . "\n";










As with users, if no corresponding nickname is found a ServiceException will be thrown with an error code of
Zend_Gdata_Gapps_Error::ENTITY_DOES_NOT_EXIST. Again, these will be discussed in the exceptions chapter.





Retrieving all nicknames for a user


To retrieve all nicknames associated with a given user, call the convenience method retrieveNicknames().


		1
2
3
4
5


		$feed = $gdata->retrieveNicknames('foo');

foreach ($feed as $nickname) {
    echo '  * ' . $nickname->nickname->name . "\n";
}










This will create a Zend_Gdata_Gapps_NicknameFeed object which holds each nickname associated with the specified
user.


Alternatively, create a new Zend_Gdata_Gapps_NicknameQuery, set its username property to the desired user, and
submit the query by calling getNicknameFeed() on a service object.


		1
2
3
4
5
6
7


		$query = $gdata->newNicknameQuery();
$query->setUsername('foo');
$feed = $gdata->getNicknameFeed($query);

foreach ($feed as $nickname) {
    echo '  * ' . $nickname->nickname->name . "\n";
}













Retrieving all nicknames in a domain


To retrieve all nicknames in a feed, simply call the convenience method retrieveAllNicknames()


		1
2
3
4
5
6


		$feed = $gdata->retrieveAllNicknames();

foreach ($feed as $nickname) {
    echo '  * ' . $nickname->nickname->name . ' => ' .
        $nickname->login->username . "\n";
}










This will create a Zend_Gdata_Gapps_NicknameFeed object which holds each nickname on the domain.


Alternatively, call getNicknameFeed() on a service object with no arguments.


		1
2
3
4
5
6


		$feed = $gdata->getNicknameFeed();

foreach ($feed as $nickname) {
    echo '  * ' . $nickname->nickname->name . ' => ' .
        $nickname->login->username . "\n";
}













Deleting a nickname


Deleting a nickname to which you already hold a NicknameEntry for is a simple as calling delete() on that
entry.


		1
2


		$nickname = $gdata->retrieveNickname('bar');
$nickname->delete();










For nicknames which you do not hold a NicknameEntry for, use the deleteNickname() convenience method.


		1


		$gdata->deleteNickname('bar');















Interacting with groups


Google Groups allows people to post messages like an email list. Google is depreciating the Email List API.
Google Groups provides some neat features like nested groups and group owners. If you want to start a new email
lst, it is advisable to use Google Groups instead. Google’s Email List is not compatible with Google Groups. So if
you create an email list, it will not show up as a group. The opposite is true as well.


Each group on a domain is represented as an instance of Zend_Gdata_Gapps_GroupEntry.



Creating a group


Groups can be created by calling the createGroup() convenience method:


		1


		$gdata->createGroup('friends', 'The Friends Group');










Groups can also be created by instantiating GroupEntry, providing a group id and name for the group, then calling
insertGroup() on a service object to upload the entry to the server.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$group = $gdata->newGroupEntry();

$properties[0] = $this->newProperty();
$properties[0]->name = 'groupId';
$properties[0]->value = 'friends';
$properties[1] = $this->newProperty();
$properties[1]->name = 'groupName';
$properties[1]->value = 'The Friends Group';

$group->property = $properties;

$group = $gdata->insertGroup($group);













Retrieving an individual group


To retrieve an individual group, call the retrieveGroup() convenience method:


		1
2
3
4
5
6


		$entry = $gdata->retrieveGroup('friends');

foreach ($entry->property as $p) {
    echo "Property Name: " . $p->name;
    echo "\nProperty Value: " . $p->value . "\n\n";
}










This will create a Zend_Gdata_Gapps_GroupEntry object which holds the properties about the group.


Alternatively, create a new Zend_Gdata_Gapps_GroupQuery, set its groupId property to the desired group id, and
submit the query by calling getGroupEntry() on a service object.


		1
2
3
4
5
6
7
8


		$query = $gdata->newGroupQuery();
$query->setGroupId('friends');
$entry = $gdata->getGroupEntry($query);

foreach ($entry->property as $p) {
    echo "Property Name: " . $p->name;
    echo "\nProperty Value: " . $p->value . "\n\n";
}













Retrieving all groups in a domain


To retrieve all groups in a domain, call the convenience method retrieveAllGroups().


		1
2
3
4
5
6
7
8
9


		$feed = $gdata->retrieveAllGroups();

foreach ($feed->entry as $entry) {
    foreach ($entry->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
    echo "\n\n";
}










This will create a Zend_Gdata_Gapps_GroupFeed object which holds each group on the domain.


Alternatively, call getGroupFeed() on a service object with no arguments.


		1
2
3
4
5
6
7
8
9


		$feed = $gdata->getGroupFeed();

foreach ($feed->entry as $entry) {
    foreach ($entry->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
    echo "\n\n";
}













Deleting a group


To delete a group, call the deleteGroup() convenience method:


		1


		$gdata->deleteGroup('friends');













Updating a group


Groups can be updated by calling the updateGroup() convenience method:


		1


		$gdata->updateGroup('group-id-here', 'Group Name Here');










The first parameter is required. The second, third and fourth parameter, representing the group name, group
descscription, and email permission, respectively are optional. Setting any of these optional parameters to null
will not update that item.





Retrieving all groups to which a person is a member


To retrieve all groups to which a particular person is a member, call the retrieveGroups() convenience method:


		1
2
3
4
5
6
7
8
9


		$feed = $gdata->retrieveGroups('baz@somewhere.com');

foreach ($feed->entry as $entry) {
    foreach ($entry->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
    echo "\n\n";
}










This will create a Zend_Gdata_Gapps_GroupFeed object which holds each group associated with the specified
member.


Alternatively, create a new Zend_Gdata_Gapps_GroupQuery, set its member property to the desired email address,
and submit the query by calling getGroupFeed() on a service object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$query = $gdata->newGroupQuery();
$query->setMember('baz@somewhere.com');
$feed = $gdata->getGroupFeed($query);

foreach ($feed->entry as $entry) {
    foreach ($entry->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
    echo "\n\n";
}















Interacting with group members


Each member subscribed to a group is represented by an instance of Zend_Gdata_Gapps_MemberEntry. Through this
class, individual recipients can be added and removed from groups.



Adding a member to a group


To add a member to a group, simply call the addMemberToGroup() convenience method:


		1


		$gdata->addMemberToGroup('bar@somewhere.com', 'friends');













Check to see if member belongs to group


To check to see if member belongs to group, simply call the isMember() convenience method:


		1
2


		$isMember = $gdata->isMember('bar@somewhere.com', 'friends');
var_dump($isMember);










The method returns a boolean value. If the member belongs to the group specified, the method returns true, else it
returns false.





Removing a member from a group


To remove a member from a group, call the removeMemberFromGroup() convenience method:


		1


		$gdata->removeMemberFromGroup('baz', 'friends');













Retrieving the list of members to a group


The convenience method retrieveAllMembers() can be used to retrieve the list of members of a group:


		1
2
3
4
5
6
7
8


		$feed = $gdata->retrieveAllMembers('friends');

foreach ($feed as $member) {
    foreach ($member->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
}










Alternatively, construct a new MemberQuery, set its groupId property to match the desired group id, and call
getMemberFeed() on a service object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$query = $gdata->newMemberQuery();
$query->setGroupId('friends');
$feed = $gdata->getMemberFeed($query);

foreach ($feed as $member) {
    foreach ($member->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
}










This will create a Zend_Gdata_Gapps_MemberFeed object which holds each member for the selected group.







Interacting with group owners


Each owner associated with a group is represented by an instance of Zend_Gdata_Gapps_OwnerEntry. Through this
class, individual owners can be added and removed from groups.



Adding an owner to a group


To add an owner to a group, simply call the addOwnerToGroup() convenience method:


		1


		$gdata->addOwnerToGroup('bar@somewhere.com', 'friends');













Retrieving the list of the owner of a group


The convenience method retrieveGroupOwners() can be used to retrieve the list of the owners of a group:


		1
2
3
4
5
6
7
8


		$feed = $gdata->retrieveGroupOwners('friends');

foreach ($feed as $owner) {
    foreach ($owner->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
}










Alternatively, construct a new OwnerQuery, set its groupId property to match the desired group id, and call
getOwnerFeed() on a service object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$query = $gdata->newOwnerQuery();
$query->setGroupId('friends');
$feed = $gdata->getOwnerFeed($query);

foreach ($feed as $owner) {
    foreach ($owner->property as $p) {
        echo "Property Name: " . $p->name;
        echo "\nProperty Value: " . $p->value . "\n\n";
    }
}










This will create a Zend_Gdata_Gapps_OwnerFeed object which holds each member for the selected group.





Check to see if an email is the owner of a group


To check to see if an email is the owner of a group, simply call the isOwner() convenience method:


		1
2


		$isOwner = $gdata->isOwner('bar@somewhere.com', 'friends');
var_dump($isOwner);










The method returns a boolean value. If the email is the owner of the group specified, the method returns true, else
it returns false.





Removing an owner from a group


To remove an owner from a group, call the removeOwnerFromGroup() convenience method:


		1


		$gdata->removeOwnerFromGroup('baz@somewhere.com', 'friends');















Interacting with email lists


Email lists allow several users to retrieve email addressed to a single email address. Users do not need to be a
member of this domain in order to subscribe to an email list provided their complete email address (including
domain) is used.


Each email list on a domain is represented as an instance of Zend_Gdata_Gapps_EmailListEntry.



Creating an email list


Email lists can be created by calling the createEmailList() convenience method:


		1


		$gdata->createEmailList('friends');










Email lists can also be created by instantiating EmailListEntry, providing a name for the list, then calling
insertEmailList() on a service object to upload the entry to the server.


		1
2
3


		$list = $gdata->newEmailListEntry();
$list->emailList = $gdata->newEmailList('friends');
$list = $gdata->insertEmailList($list);













Retrieving all email lists to which a recipient is subscribed


To retrieve all email lists to which a particular recipient is subscribed, call the retrieveEmailLists()
convenience method:


		1
2
3
4
5


		$feed = $gdata->retrieveEmailLists('baz@somewhere.com');

foreach ($feed as $list) {
    echo '  * ' . $list->emailList->name . "\n";
}










This will create a Zend_Gdata_Gapps_EmailListFeed object which holds each email list associated with the
specified recipient.


Alternatively, create a new Zend_Gdata_Gapps_EmailListQuery, set its recipient property to the desired email
address, and submit the query by calling getEmailListFeed() on a service object.


		1
2
3
4
5
6
7


		$query = $gdata->newEmailListQuery();
$query->setRecipient('baz@somewhere.com');
$feed = $gdata->getEmailListFeed($query);

foreach ($feed as $list) {
    echo '  * ' . $list->emailList->name . "\n";
}













Retrieving all email lists in a domain


To retrieve all email lists in a domain, call the convenience method retrieveAllEmailLists().


		1
2
3
4
5


		$feed = $gdata->retrieveAllEmailLists();

foreach ($feed as $list) {
    echo '  * ' . $list->emailList->name . "\n";
}










This will create a Zend_Gdata_Gapps_EmailListFeed object which holds each email list on the domain.


Alternatively, call getEmailListFeed() on a service object with no arguments.


		1
2
3
4
5


		$feed = $gdata->getEmailListFeed();

foreach ($feed as $list) {
    echo '  * ' . $list->emailList->name . "\n";
}













Deleting an email list


To delete an email list, call the deleteEmailList() convenience method:


		1


		$gdata->deleteEmailList('friends');















Interacting with email list recipients


Each recipient subscribed to an email list is represented by an instance of
Zend_Gdata_Gapps_EmailListRecipient. Through this class, individual recipients can be added and removed from
email lists.



Adding a recipient to an email list


To add a recipient to an email list, simply call the addRecipientToEmailList() convenience method:


		1


		$gdata->addRecipientToEmailList('bar@somewhere.com', 'friends');













Retrieving the list of subscribers to an email list


The convenience method retrieveAllRecipients() can be used to retrieve the list of subscribers to an email
list:


		1
2
3
4
5


		$feed = $gdata->retrieveAllRecipients('friends');

foreach ($feed as $recipient) {
    echo '  * ' . $recipient->who->email . "\n";
}










Alternatively, construct a new EmailListRecipientQuery, set its emailListName property to match the desired email
list, and call getEmailListRecipientFeed() on a service object.


		1
2
3
4
5
6
7


		$query = $gdata->newEmailListRecipientQuery();
$query->setEmailListName('friends');
$feed = $gdata->getEmailListRecipientFeed($query);

foreach ($feed as $recipient) {
    echo '  * ' . $recipient->who->email . "\n";
}










This will create a Zend_Gdata_Gapps_EmailListRecipientFeed object which holds each recipient for the selected
email list.





Removing a recipient from an email list


To remove a recipient from an email list, call the removeRecipientFromEmailList() convenience method:


		1


		$gdata->removeRecipientFromEmailList('baz@somewhere.com', 'friends');















Handling errors


In addition to the standard suite of exceptions thrown by Zend_Gdata, requests using the Provisioning API may
also throw a Zend_Gdata_Gapps_ServiceException. These exceptions indicate that a API specific error occurred
which prevents the request from completing.


Each ServiceException instance may hold one or more Error objects. Each of these objects contains an error code,
reason, and (optionally) the input which triggered the exception. A complete list of known error codes is provided
in Zend Framework’s API documentation under Zend_Gdata_Gapps_Error. Additionally, the authoritative error
list is available online at Google Apps Provisioning API V2.0 Reference: Appendix D [http://code.google.com/apis/apps/gdata_provisioning_api_v2.0_reference.html#appendix_d].


While the complete list of errors received is available within ServiceException as an array by calling
getErrors(), often it is convenient to know if one specific error occurred. For these cases the presence of an
error can be determined by calling hasError().


The following example demonstrates how to detect if a requested resource doesn’t exist and handle the fault
gracefully:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		function retrieveUser ($username) {
    $query = $gdata->newUserQuery($username);
    try {
        $user = $gdata->getUserEntry($query);
    } catch (Zend_Gdata_Gapps_ServiceException $e) {
        // Set the user to null if not found
        if ($e->hasError(Zend_Gdata_Gapps_Error::ENTITY_DOES_NOT_EXIST)) {
            $user = null;
        } else {
            throw $e;
        }
    }
    return $user;
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Google Apps Provisioning
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.prompt2.png
a]

lc:\zf2app>2f
Is this the correct answer? [y/nly
IYou chose YES

lc:\z#2app>






modules/zend.service.amazon.ec2.elasticip.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Elastic IP Addresses


By default, all Amazon EC2 instances are assigned two IP addresses at launch: a private (RFC 1918) address and a
public address that is mapped to the private IP address through Network Address Translation (NAT).


If you use dynamic DNS to map an existing DNS name to a new instance’s public IP address, it might take up to 24
hours for the IP address to propagate through the Internet. As a result, new instances might not receive traffic
while terminated instances continue to receive requests.


To solve this problem, Amazon EC2 provides elastic IP addresses. Elastic IP addresses are static IP addresses
designed for dynamic cloud computing. Elastic IP addresses are associated with your account, not specific
instances. Any elastic IP addresses that you associate with your account remain associated with your account until
you explicitly release them. Unlike traditional static IP addresses, however, elastic IP addresses allow you to
mask instance or Availability Zone failures by rapidly remapping your public IP addresses to any instance in your
account.


Allocating a new Elastic IP


allocate will assign your account a new Elastic IP Address.


allocate returns the newly allocated ip.


		1
2
3
4
5


		$ec2_eip = new Zend_Service_Amazon_Ec2_Elasticip('aws_key','aws_secret_key');
$ip = $ec2_eip->allocate();

// print out your newly allocated elastic ip address;
print $ip;










Describing Allocated Elastic IP Addresses


describe has an optional paramater to describe all of your allocated Elastic IP addresses or just some of your
allocated addresses.


describe returns an array that contains information on each Elastic IP Address which contains the publicIp and
the instanceId if it is assocated.


		1
2
3
4
5
6
7
8
9


		$ec2_eip = new Zend_Service_Amazon_Ec2_Elasticip('aws_key','aws_secret_key');
// describe all
$ips = $ec2_eip->describe();

// describe a subset
$ips = $ec2_eip->describe(array('ip1', 'ip2', 'ip3'));

// describe a single ip address
$ip = $ec2_eip->describe('ip1');










Releasing Elastic IP


release will release an Elastic IP to Amazon.


Returns a boolean TRUE or FALSE.


		1
2


		$ec2_eip = new Zend_Service_Amazon_Ec2_Elasticip('aws_key','aws_secret_key');
$ec2_eip->release('ipaddress');










Associates an Elastic IP to an Instance


associate will assign an Elastic IP to an already running instance.


Returns a boolean TRUE or FALSE.


		1
2


		$ec2_eip = new Zend_Service_Amazon_Ec2_Elasticip('aws_key','aws_secret_key');
$ec2_eip->associate('instance_id', 'ipaddress');










Disassociate an Elastic IP from an instance


disassociate will disassociate an Elastic IP from an instance. If you terminate an Instance it will automaticly
disassociate the Elastic IP address for you.


Returns a boolean TRUE or FALSE.


		1
2


		$ec2_eip = new Zend_Service_Amazon_Ec2_Elasticip('aws_key','aws_secret_key');
$ec2_eip->disassociate('ipaddress');














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Elastic IP Addresses
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.flickr.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Flickr



Introduction


Zend_Service_Flickr is a simple API for using the Flickr REST Web Service. In order to use the Flickr web
services, you must have an API key. To obtain a key and for more information about the Flickr REST Web Service,
please visit the Flickr API Documentation [http://www.flickr.com/services/api/].


In the following example, we use the tagSearch() method to search for photos having “php” in the tags.


Simple Flickr Photo Search


		1
2
3
4
5
6
7


		$flickr = new Zend_Service_Flickr('MY_API_KEY');

$results = $flickr->tagSearch("php");

foreach ($results as $result) {
    echo $result->title . '<br />';
}











Note


Optional parameter


tagSearch() accepts an optional second parameter as an array of options.







Finding Flickr Users’ Photos and Information


Zend_Service_Flickr provides several ways to get information about Flickr users:



		userSearch(): Accepts a string query of space-delimited tags and an optional second parameter as an array of
search options, and returns a set of photos as a Zend_Service_Flickr_ResultSet object.


		getIdByUsername(): Returns a string user ID associated with the given username string.


		getIdByEmail(): Returns a string user ID associated with the given email address string.





Finding a Flickr User’s Public Photos by E-Mail Address


In this example, we have a Flickr user’s e-mail address, and we search for the user’s public photos by using the
userSearch() method:


		1
2
3
4
5
6
7


		$flickr = new Zend_Service_Flickr('MY_API_KEY');

$results = $flickr->userSearch($userEmail);

foreach ($results as $result) {
    echo $result->title . '<br />';
}













Finding photos From a Group Pool


Zend_Service_Flickr allows to retrieve a group’s pool photos based on the group ID. Use the
groupPoolGetPhotos() method:


Retrieving a Group’s Pool Photos by Group ID


		1
2
3
4
5
6
7


		$flickr = new Zend_Service_Flickr('MY_API_KEY');

    $results = $flickr->groupPoolGetPhotos($groupId);

    foreach ($results as $result) {
        echo $result->title . '<br />';
    }











Note


Optional parameter


groupPoolGetPhotos() accepts an optional second parameter as an array of options.







Retrieving Flickr Image Details


Zend_Service_Flickr makes it quick and easy to get an image’s details based on a given image ID. Just use the
getImageDetails() method, as in the following example:


Retrieving Flickr Image Details


Once you have a Flickr image ID, it is a simple matter to fetch information about the image:


		1
2
3
4
5
6


		$flickr = new Zend_Service_Flickr('MY_API_KEY');

$image = $flickr->getImageDetails($imageId);

echo "Image ID $imageId is $image->width x $image->height pixels.<br />\n";
echo "<a href=\"$image->clickUri\">Click for Image</a>\n";













Zend_Service_Flickr Result Classes


The following classes are all returned by tagSearch() and userSearch():




		Zend_Service_Flickr_ResultSet


		Zend_Service_Flickr_Result


		Zend_Service_Flickr_Image










Zend_Service_Flickr_ResultSet


Represents a set of Results from a Flickr search.



Note


Implements the SeekableIterator interface for easy iteration (e.g., using foreach()), as well as direct
access to a specific result using seek().







Properties



Zend_Service_Flickr_ResultSet Properties






		Name
		Type
		Description





		totalResultsAvailable
		int
		Total Number of Results available



		totalResultsReturned
		int
		Total Number of Results returned



		firstResultPosition
		int
		The offset in the total result set of this result set










Zend_Service_Flickr_ResultSet::totalResults()


int:totalResults()


Returns the total number of results in this result set.


Back to Class List





Zend_Service_Flickr_Result


A single Image result from a Flickr query





Properties



Zend_Service_Flickr_Result Properties






		Name
		Type
		Description





		id
		string
		Image ID



		owner
		string
		The photo owner’s NSID.



		secret
		string
		A key used in url construction.



		server
		string
		The servername to use for URL construction.



		title
		string
		The photo’s title.



		ispublic
		string
		The photo is public.



		isfriend
		string
		The photo is visible to you because you are a friend of the owner.



		isfamily
		string
		The photo is visible to you because you are family of the owner.



		license
		string
		The license the photo is available under.



		dateupload
		string
		The date the photo was uploaded.



		datetaken
		string
		The date the photo was taken.



		ownername
		string
		The screenname of the owner.



		iconserver
		string
		The server used in assembling icon URLs.



		Square
		Zend_Service_Flickr_Image
		A 75x75 thumbnail of the image.



		Thumbnail
		Zend_Service_Flickr_Image
		A 100 pixel thumbnail of the image.



		Small
		Zend_Service_Flickr_Image
		A 240 pixel version of the image.



		Medium
		Zend_Service_Flickr_Image
		A 500 pixel version of the image.



		Large
		Zend_Service_Flickr_Image
		A 640 pixel version of the image.



		Original
		Zend_Service_Flickr_Image
		The original image.







Back to Class List





Zend_Service_Flickr_Image


Represents an Image returned by a Flickr search.





Properties



Zend_Service_Flickr_Image Properties






		Name
		Type
		Description





		uri
		string
		URI for the original image



		clickUri
		string
		Clickable URI (i.e. the Flickr page) for the image



		width
		int
		Width of the Image



		height
		int
		Height of the Image







Back to Class List










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Flickr
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.event-manager.event-manager.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The EventManager



Overview


The EventManager is a component designed for the following use cases:



		Implementing simple subject/observer patterns.


		Implementing Aspect-Oriented designs.


		Implementing event-driven architectures.





The basic architecture allows you to attach and detach listeners to named events, both on a per-instance basis as
well as via shared collections; trigger events; and interrupt execution of listeners.





Quick Start


Typically, you will compose an EventManager instance in a class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		use Zend\EventManager\EventCollection;
use Zend\EventManager\EventManager;
use Zend\EventManager\EventManagerAware;

class Foo implements EventManagerAware
{
    protected $events;

    public function setEventManager(EventCollection $events)
    {
        $events->setIdentifiers(array(
            __CLASS__,
            get_called_class(),
        ));
        $this->events = $events;
        return $this;
    }

    public function getEventManager()
    {
        if (null === $this->events) {
            $this->setEventManager(new EventManager());
        }
        return $this->events;
    }
}










The above allows users to access the EventManager instance, or reset it with a new instance; if one does not
exist, it will be lazily instantiated on-demand.


An EventManager is really only interesting if it triggers some events. Basic triggering takes three arguments:
the event name, which is usually the current function/method name; the “context”, which is usually the current
object instance; and the arguments, which are usually the arguments provided to the current function/method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		class Foo
{
    // ... assume events definition from above

    public function bar($baz, $bat = null)
    {
        $params = compact('baz', 'bat');
        $this->getEventManager()->trigger(__FUNCTION__, $this, $params);
    }
}










In turn, triggering events is only interesting if something is listening for the event. Listeners attach to the
EventManager, specifying a named event and the callback to notify. The callback receives an Event object,
which has accessors for retrieving the event name, context, and parameters. Let’s add a listener, and trigger the
event.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\Log\Factory as LogFactory;

$log = LogFactory($someConfig);
$foo = new Foo();
$foo->getEventManager()->attach('bar', function ($e) use ($log) {
    $event  = $e->getName();
    $target = get_class($e->getTarget());
    $params = json_encode($e->getParams());

    $log->info(sprintf(
        '%s called on %s, using params %s',
        $event,
        $target,
        $params
    ));
});

// Results in log message:
$foo->bar('baz', 'bat');
// reading: bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"










Note that the second argument to attach() is any valid callback; an anonymous function is shown in the example
in order to keep the example self-contained. However, you could also utilize a valid function name, a functor, a
string referencing a static method, or an array callback with a named static method or instance method. Again, any
PHP callback is valid.


Sometimes you may want to specify listeners without yet having an object instance of the class composing an
EventManager. Zend Framework enables this through the concept of a SharedEventCollection. Simply put, you
can inject individual EventManager instances with a well-known SharedEventCollection, and the
EventManager instance will query it for additional listeners. Listeners attach to a SharedEventCollection
in roughly the same way the do normal event managers; the call to attach is identical to the EventManager,
but expects an additional parameter at the beginning: a named instance. Remember the example of composing an
EventManager, how we passed it __CLASS__? That value, or any strings you provide in an array to the
constructor, may be used to identify an instance when using a SharedEventCollection. As an example, assuming we
have a SharedEventManager instance that we know has been injected in our EventManager instances (for
instance, via dependency injection), we could change the above example to attach via the shared collection:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		use Zend\Log\Factory as LogFactory;

// Assume $events is a Zend\EventManager\SharedEventManager instance

$log = LogFactory($someConfig);
$events->attach('Foo', 'bar', function ($e) use ($log) {
    $event  = $e->getName();
    $target = get_class($e->getTarget());
    $params = json_encode($e->getParams());

    $log->info(sprintf(
        '%s called on %s, using params %s',
        $event,
        $target,
        $params
    ));
});

// Later, instantiate Foo:
$foo = new Foo();
$foo->getEventManager()->setSharedEventCollection($events);

// And we can still trigger the above event:
$foo->bar('baz', 'bat');
// results in log message:
// bar called on Foo, using params {"baz" : "baz", "bat" : "bat"}"











Note


StaticEventManager


As of 2.0.0beta3, you can use the StaticEventManager singleton as a SharedEventCollection. As such, you
do not need to worry about where and how to get access to the SharedEventCollection; it’s globally available
by simply calling StaticEventManager::getInstance().


Be aware, however, that its usage is deprecated within the framework, and starting with 2.0.0beta4, you will
instead configure a SharedEventManager instance that will be injected by the framework into individual
EventManager instances.




The EventManager also provides the ability to detach listeners, short-circuit execution of an event either from
within a listener or by testing return values of listeners, test and loop through the results returned by
listeners, prioritize listeners, and more. Many of these features are detailed in the examples.



Wildcard Listeners


Sometimes you’ll want to attach the same listener to many events or to all events of a given instance – or
potentially, with a shared event collection, many contexts, and many events. The EventManager component allows
for this.


Attaching to many events at once


		1
2


		$events = new EventManager();
$events->attach(array('these', 'are', 'event', 'names'), $callback);










Note that if you specify a priority, that priority will be used for all events specified.


Attaching using the wildcard


		1
2


		$events = new EventManager();
$events->attach('*', $callback);










Note that if you specify a priority, that priority will be used for this listener for any event triggered.


What the above specifies is that any event triggered will result in notification of this particular listener.


Attaching to many events at once via a SharedEventManager


		1
2
3
4
5
6


		$events = new SharedEventManager();
// Attach to many events on the context "foo"
$events->attach('foo', array('these', 'are', 'event', 'names'), $callback);

// Attach to many events on the contexts "foo" and "bar"
$events->attach(array('foo', 'bar'), array('these', 'are', 'event', 'names'), $callback);










Note that if you specify a priority, that priority will be used for all events specified.


Attaching to many events at once via a SharedEventManager


		1
2
3
4
5
6


		$events = new SharedEventManager();
// Attach to all events on the context "foo"
$events->attach('foo', '*', $callback);

// Attach to all events on the contexts "foo" and "bar"
$events->attach(array('foo', 'bar'), '*', $callback);










Note that if you specify a priority, that priority will be used for all events specified.


The above is specifying that for the contexts “foo” and “bar”, the specified listener should be notified for any
event they trigger.







Configuration Options


EventManager Options



		identifier


		A string or array of strings to which the given EventManager instance can answer when accessed via a
SharedEventManager.


		event_class


		The name of an alternate Event class to use for representing events passed to listeners.


		shared_collections


		An instance of a SharedEventCollection instance to use when triggering events.








Available Methods



		__construct


		__construct(null|string|int $identifier)


Constructs a new EventManager instance, using the given identifier, if provided, for purposes of shared
collections.









		setEventClass


		setEventClass(string $class)


Provide the name of an alternate Event class to use when creating events to pass to triggered listeners.









		setSharedCollections


		setSharedCollections(SharedEventCollection $collections = null)


An instance of a SharedEventCollection instance to use when triggering events.









		getSharedCollections


		getSharedCollections()


Returns the currently attached SharedEventCollection instance. Returns either a null if no collection is
attached, or a SharedEventCollection instance otherwise.









		trigger


		trigger(string $event, mixed $target, mixed $argv, callback $callback)


Triggers all listeners to a named event. The recommendation is to use the current function/method name for
$event, appending it with values such as ”.pre”, ”.post”, etc. as needed. $context should be the current
object instance, or the name of the function if not triggering within an object. $params should typically be
an associative array or ArrayAccess instance; we recommend using the parameters passed to the
function/method (compact() is often useful here). This method can also take a callback and behave in the
same way as triggerUntil().


The method returns an instance of ResponseCollection, which may be used to introspect return values of the
various listeners, test for short-circuiting, and more.









		triggerUntil


		triggerUntil(string $event, mixed $context, mixed $argv, callback $callback)


Triggers all listeners to a named event, just like trigger(), with the addition that it passes the return value from each
listener to $callback; if $callback returns a boolean true value, execution of the listeners is
interrupted. You can test for this using $result->stopped().









		attach


		attach(string $event, callback $callback, int $priority)


Attaches $callback to the EventManager instance, listening for the event $event. If a $priority
is provided, the listener will be inserted into the internal listener stack using that priority; higher values
execute earliest. (Default priority is “1”, and negative priorities are allowed.)


The method returns an instance of Zend\Stdlib\CallbackHandler; this value can later be passed to
detach() if desired.









		attachAggregate


		attachAggregate(string|ListenerAggregate $aggregate)


If a string is passed for $aggregate, instantiates that class. The $aggregate is then passed the
EventManager instance to its attach() method so that it may register listeners.


The ListenerAggregate instance is returned.









		detach


		detach(CallbackHandler $listener)


Scans all listeners, and detaches any that match $listener so that they will no longer be triggered.


Returns a boolean true if any listeners have been identified and unsubscribed, and a boolean false
otherwise.









		detachAggregate


		detachAggregate(ListenerAggregate $aggregate)


Loops through all listeners of all events to identify listeners that are represented by the aggregate; for all
matches, the listeners will be removed.


Returns a boolean true if any listeners have been identified and unsubscribed, and a boolean false
otherwise.









		getEvents


		getEvents()


Returns an array of all event names that have listeners attached.









		getListeners


		getListeners(string $event)


Returns a Zend\Stdlib\PriorityQueue instance of all listeners attached to $event.









		clearListeners


		clearListeners(string $event)


Removes all listeners attached to $event.









		prepareArgs


		prepareArgs(array $args)


Creates an ArrayObject from the provided $args. This can be useful if you want yours listeners to be
able to modify arguments such that later listeners or the triggering method can see the changes.











Examples


Modifying Arguments


Occasionally it can be useful to allow listeners to modify the arguments they receive so that later listeners or
the calling method will receive those changed values.


As an example, you might want to pre-filter a date that you know will arrive as a string and convert it to a
DateTime argument.


To do this, you can pass your arguments to prepareArgs(), and pass this new object when triggering an event.
You will then pull that value back into your method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		class ValueObject
{
    // assume a composed event manager

    function inject(array $values)
    {
        $argv = compact('values');
        $argv = $this->getEventManager()->prepareArgs($argv);
        $this->getEventManager()->trigger(__FUNCTION__, $this, $argv);
        $date = isset($argv['values']['date']) ? $argv['values']['date'] : new DateTime('now');

        // ...
    }
}

$v = new ValueObject();

$v->getEventManager()->attach('inject', function($e) {
    $values = $e->getParam('values');
    if (!$values) {
        return;
    }
    if (!isset($values['date'])) {
        $values['date'] = new DateTime('now');
        return;
    }
    $values['date'] = new Datetime($values['date']);
});

$v->inject(array(
    'date' => '2011-08-10 15:30:29',
));










Short Circuiting


One common use case for events is to trigger listeners until either one indicates no further processing should be
done, or until a return value meets specific criteria. As examples, if an event creates a Response object, it may
want execution to stop.


		1
2
3
4
5
6
7


		$listener = function($e) {
    // do some work

    // Stop propagation and return a response
    $e->stopPropagation(true);
    return $response;
};










Alternately, we could do the check from the method triggering the event.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		class Foo implements DispatchableInterface
{
    // assume composed event manager

    public function dispatch(Request $request, Response $response = null)
    {
        $argv = compact('request', 'response');
        $results = $this->getEventManager()->triggerUntil(__FUNCTION__, $this, $argv, function($v) {
            return ($v instanceof Response);
        });
    }
}










Typically, you may want to return a value that stopped execution, or use it some way. Both trigger() and
triggerUntil() return a ResponseCollection instance; call its stopped() method to test if execution was
stopped, and last() method to retrieve the return value from the last executed listener:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		class Foo implements DispatchableInterface
{
    // assume composed event manager

    public function dispatch(Request $request, Response $response = null)
    {
        $argv = compact('request', 'response');
        $results = $this->getEventManager()->triggerUntil(__FUNCTION__, $this, $argv, function($v) {
            return ($v instanceof Response);
        });

        // Test if execution was halted, and return last result:
        if ($results->stopped()) {
            return $results->last();
        }

        // continue...
    }
}










Assigning Priority to Listeners


One use case for the EventManager is for implementing caching systems. As such, you often want to check the
cache early, and save to it late.


The third argument to attach() is a priority value. The higher this number, the earlier that listener will
execute; the lower it is, the later it executes. The value defaults to 1, and values will trigger in the order
registered within a given priority.


So, to implement a caching system, our method will need to trigger an event at method start as well as at method
end. At method start, we want an event that will trigger early; at method end, an event should trigger late.


Here is the class in which we want caching:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		class SomeValueObject
{
    // assume it composes an event manager

    public function get($id)
    {
        $params = compact('id');
        $results = $this->getEventManager()->trigger('get.pre', $this, $params);

        // If an event stopped propagation, return the value
        if ($results->stopped()) {
            return $results->last();
        }

        // do some work...

        $params['__RESULT__'] = $someComputedContent;
        $this->getEventManager()->trigger('get.post', $this, $params);
    }
}










Now, let’s create a ListenerAggregateInterface that can handle caching for us:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


		use Zend\Cache\Cache;
use Zend\EventManager\EventCollection;
use Zend\EventManager\ListenerAggregateInterface;
use Zend\EventManager\EventInterface;

class CacheListener implements ListenerAggregateInterface
{
    protected $cache;

    protected $listeners = array();

    public function __construct(Cache $cache)
    {
        $this->cache = $cache;
    }

    public function attach(EventCollection $events)
    {
        $this->listeners[] = $events->attach('get.pre', array($this, 'load'), 100);
        $this->listeners[] = $events->attach('get.post', array($this, 'save'), -100);
    }

    public function detach(EventManagerInterface $events)
    {
        foreach ($this->listeners as $index => $listener) {
            if ($events->detach($listener)) {
                unset($this->listeners[$index]);
            }
        }
    }

    public function load(EventInterface $e)
    {
        $id = get_class($e->getTarget()) . '-' . json_encode($e->getParams());
        if (false !== ($content = $this->cache->load($id))) {
            $e->stopPropagation(true);
            return $content;
        }
    }

    public function save(EventInterface $e)
    {
        $params  = $e->getParams();
        $content = $params['__RESULT__'];
        unset($params['__RESULT__']);

        $id = get_class($e->getTarget()) . '-' . json_encode($params);
        $this->cache->save($content, $id);
    }
}










We can then attach the aggregate to an instance.


		1
2
3


		$value         = new SomeValueObject();
$cacheListener = new CacheListener($cache);
$value->getEventManager()->attachAggregate($cacheListener);










Now, as we call get(), if we have a cached entry, it will be returned immediately; if not, a computed entry
will be cached when we complete the method.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The EventManager
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.identcode.png
D Eas 678801 6





modules/zend.validator.date.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Date


Zend\Validator\Date allows you to validate if a given value contains a date. This validator validates also
localized input.



Supported options for Zend\Validator\Date


The following options are supported for Zend\Validator\Date:



		format: Sets the format which is used to write the date.


		locale: Sets the locale which will be used to validate date values.








Default date validation


The easiest way to validate a date is by using the default date format. It is used when no locale and no format has
been given.


		1
2
3
4


		$validator = new Zend\Validator\Date();

$validator->isValid('2000-10-10');   // returns true
$validator->isValid('10.10.2000'); // returns false










The default date format for Zend\Validator\Date is ‘yyyy-MM-dd’.





Localized date validation


Zend\Validator\Date validates also dates which are given in a localized format. By using the locale option
you can define the locale which the date format should use for validation.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('locale' => 'de'));

$validator->isValid('10.Feb.2010'); // returns true
$validator->isValid('10.May.2010'); // returns false










The locale option sets the default date format. In the above example this is ‘dd.MM.yyyy’ which is defined as
default date format for ‘de’.





Self defined date validation


Zend\Validator\Date supports also self defined date formats. When you want to validate such a date you can use
the format option.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('format' => 'yyyy'));

$validator->isValid('2010'); // returns true
$validator->isValid('May');  // returns false










Of course you can combine format and locale. In this case you can also use localized month or day names.


		1
2
3
4


		$validator = new Zend\Validator\Date(array('format' => 'yyyy MMMM', 'locale' => 'de));

$validator->isValid('2010 Dezember'); // returns true
$validator->isValid('2010 June');     // returns false
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Date
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.node.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Object oriented access to the LDAP tree using Zend\Ldap\Node



Basic CRUD operations



Retrieving data from the LDAP





Getting a node by its DN





Searching a node’s subtree





Adding a new node to the LDAP





Deleting a node from the LDAP





Updating a node on the LDAP







Extended operations



Copy and move nodes in the LDAP







Tree traversal


Traverse LDAP tree recursively


		1
2
3
4
5
6
7
8


		$options = array(/* ... */);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind();
$ri = new RecursiveIteratorIterator($ldap->getBaseNode(),
                                    RecursiveIteratorIterator::SELF_FIRST);
foreach ($ri as $rdn => $n) {
    var_dump($n);
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Object oriented access to the LDAP tree using Zend\Ldap\Node
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.log.writers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Writers


A Writer is an object that inherits from Zend\Log\Writer\AbstractWriter. A Writer’s responsibility is to record
log data to a storage backend.



Writing to Streams


Zend\Log\Writer\Stream sends log data to a PHP stream [http://www.php.net/stream].


To write log data to the PHP output buffer, use the URL php://output. Alternatively, you can send log data
directly to a stream like STDERR (php://stderr).


		1
2
3
4


		$writer = new Zend\Log\Writer\Stream('php://output');
$logger = new Zend\Log\Logger($writer);

$logger->info('Informational message');










To write data to a file, use one of the Filesystem URLs [http://www.php.net/manual/en/wrappers.php#wrappers.file]:


		1
2
3
4


		$writer = new Zend\Log\Writer\Stream('/path/to/logfile');
$logger = new Zend\Log\Logger($writer);

$logger->info('Informational message');










By default, the stream opens in the append mode (“a”). To open it with a different mode, the
Zend\Log\Writer\Stream constructor accepts an optional second parameter for the mode.


The constructor of Zend\Log\Writer\Stream also accepts an existing stream resource:


		1
2
3
4
5
6
7
8
9


		$stream = @fopen('/path/to/logfile', 'a', false);
if (! $stream) {
    throw new Exception('Failed to open stream');
}

$writer = new Zend\Log\Writer\Stream($stream);
$logger = new Zend\Log\Logger($writer);

$logger->info('Informational message');










You cannot specify the mode for existing stream resources. Doing so causes a Zend\Log\Exception to be thrown.





Writing to Databases


Zend\Log\Writer\Db writes log information to a database table using Zend\Db\Adapter\Adapter. The
constructor of Zend\Log\Writer\Db receives a Zend\Db\Adapter\Adapter instance, a table name, an optional
mapping of event data to database columns, and an optional string contains the character separator for the log
array:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$dbconfig = array(
    // Sqlite Configuration
    'driver' => 'Pdo',
    'dsn' => 'sqlite:' . __DIR__ . '/tmp/sqlite.db',
);
$db = new Zend\Db\Adapter\Adapter($dbconfig);

$writer = new Zend\Log\Writer\Db($db, 'log_table_name');
$logger = new Zend\Log\Logger($writer);

$logger->info('Informational message');










The example above writes a single row of log data to the database table named ‘log_table_name’ table. The database
column will be created according to the event array generated by the Zend\Log\Logger instance.


If we specify the mapping of the events with the database columns the log will store in the database only the
selected fields.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$dbconfig = array(
    // Sqlite Configuration
    'driver' => 'Pdo',
    'dsn' => 'sqlite:' . __DIR__ . '/tmp/sqlite.db',
);
$db = new Zend\Db\Adapter\Adapter($dbconfig);

$mapping = array(
    'timestamp' => 'date',
    'priority'  => 'type',
    'message'   => 'event'
);
$writer = new Zend\Log\Writer\Db($db, 'log_table_name', $mapping);
$logger = new Zend\Log\Logger($writer);

$logger->info('Informational message');










The previous example will store only the log information timestamp, priority and message in the database fields
date, type and event.


The Zend\Log\Writer\Db has a second optional parameter in the constructor. This parameter is the character
separator for the log events managed by an array. For instance, if we have a log that contains an array extra
fields, this will be translated in ‘extra-field’, where ‘-‘ is the character separator (default) and field is the
subname of the specific extra field.





Stubbing Out the Writer


The Zend\Log\Writer\Null is a stub that does not write log data to anything. It is useful for disabling logging
or stubbing out logging during tests:


		1
2
3
4
5


		$writer = new Zend\Log\Writer\Null;
$logger = new Zend\Log\Logger($writer);

// goes nowhere
$logger->info('Informational message');













Testing with the Mock


The Zend\Log\Writer\Mock is a very simple writer that records the raw data it receives in an array exposed as a
public property.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$mock = new Zend\Log\Writer\Mock;
$logger = new Zend\Log\Logger($mock);

$logger->info('Informational message');

var_dump($mock->events[0]);

// Array
// (
//    [timestamp] => 2007-04-06T07:16:37-07:00
//    [message] => Informational message
//    [priority] => 6
//    [priorityName] => INFO
// )










To clear the events logged by the mock, simply set $mock->events = array().





Compositing Writers


There is no composite Writer object. However, a Log instance can write to any number of Writers. To do this, use
the addWriter() method:


		1
2
3
4
5
6
7
8
9


		$writer1 = new Zend\Log\Writer\Stream('/path/to/first/logfile');
$writer2 = new Zend\Log\Writer\Stream('/path/to/second/logfile');

$logger = new Zend\Log\Logger();
$logger->addWriter($writer1);
$logger->addWriter($writer2);

// goes to both writers
$logger->info('Informational message');










You can also specify the priority number for each writer to change the order of writing. The priority number is an
integer number (greater or equal to 1) passed as second parameter in the addWriter() method.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Writers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/autoloading.usage.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Basic Autoloader Usage


Now that we have an understanding of what autoloading is and the goals and design of Zend Framework’s autoloading
solution, let’s look at how to use Zend_Loader_Autoloader.


In the simplest case, you would simply require the class, and then instantiate it. Since Zend_Loader_Autoloader
is a singleton (due to the fact that the SPL autoloader is a single resource), we use getInstance() to
retrieve an instance.


		1
2


		require_once 'Zend/Loader/Autoloader.php';
Zend_Loader_Autoloader::getInstance();










By default, this will allow loading any classes with the class namespace prefixes of “Zend_” or “ZendX_”, as long
as they are on your include_path.


What happens if you have other namespace prefixes you wish to use? The best, and simplest, way is to call the
registerNamespace() method on the instance. You can pass a single namespace prefix, or an array of them:


		1
2
3
4


		require_once 'Zend/Loader/Autoloader.php';
$loader = Zend_Loader_Autoloader::getInstance();
$loader->registerNamespace('Foo_');
$loader->registerNamespace(array('Foo_', 'Bar_'));










Alternately, you can tell Zend_Loader_Autoloader to act as a “fallback” autoloader. This means that it will try
to resolve any class regardless of namespace prefix.


		1


		$loader->setFallbackAutoloader(true);











Warning


Do not use as a fallback autoloader


While it’s tempting to use Zend_Loader_Autoloader as a fallback autoloader, we do not recommend the
practice.


Internally, Zend_Loader_Autoloader uses Zend_Loader::loadClass() to load classes. That method uses
include() to attempt to load the given class file. include() will return a boolean FALSE if not
successful – but also issues a PHP warning. This latter fact can lead to some issues:



		If display_errors is enabled, the warning will be included in output.


		Depending on the error_reporting level you have chosen, it could also clutter your logs.





You can suppress the error messages (the Zend_Loader_Autoloader documentation details this), but note that
the suppression is only relevant when display_errors is enabled; the error log will always display the
messages. For these reasons, we recommend always configuring the namespace prefixes the autoloader should be
aware of





Note


Namespace Prefixes vs PHP Namespaces


At the time this is written, PHP 5.3 has been released. With that version, PHP now has official namespace
support.


However, Zend Framework predates PHP 5.3, and thus namespaces. Within Zend Framework, when we refer to
“namespaces”, we are referring to a practice whereby classes are prefixed with a vender “namespace”. As an
example, all Zend Framework class names are prefixed with “Zend_” – that is our vendor “namespace”.


Zend Framework plans to offer native PHP namespace support to the autoloader in future revisions, and its own
library will utilize namespaces starting with version 2.0.0.




If you have a custom autoloader you wish to use with Zend Framework – perhaps an autoloader from a third-party
library you are also using – you can manage it with Zend_Loader_Autoloader‘s pushAutoloader() and
unshiftAutoloader() methods. These methods will append or prepend, respectively, autoloaders to a chain that is
called prior to executing Zend Framework’s internal autoloading mechanism. This approach offers the following
benefits:



		Each method takes an optional second argument, a class namespace prefix. This can be used to indicate that the
given autoloader should only be used when looking up classes with that given class prefix. If the class being
resolved does not have that prefix, the autoloader will be skipped – which can lead to performance improvements.


		If you need to manipulate spl_autoload()‘s registry, any autoloaders that are callbacks pointing to instance
methods can pose issues, as spl_autoload_functions() does not return the exact same callbacks.
Zend_Loader_Autoloader has no such limitation.





Autoloaders managed this way may be any valid PHP callback.


		1
2
3
4
5
6
7


		// Append function 'my_autoloader' to the stack,
// to manage classes with the prefix 'My_':
$loader->pushAutoloader('my_autoloader', 'My_');

// Prepend static method Foo_Loader::autoload() to the stack,
// to manage classes with the prefix 'Foo_':
$loader->unshiftAutoloader(array('Foo_Loader', 'autoload'), 'Foo_');














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Basic Autoloader Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.email.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Email Element


Zend\Form\Element\Email is meant to be paired with the Zend/Form/View/Helper/FormEmail for HTML5 inputs with
type email [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#e-mail-state-(type=email)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 valid email address [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#valid-e-mail-address] on the server.



Basic Usage


This element automatically adds a "type" attribute of value "email".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		use Zend\Form\Element;
use Zend\Form\Form;

$form = new Form('my-form');

// Single email address
$email = new Element\Email('email');
$email->setLabel('Email Address')
$form->add($email);

// Comma separated list of emails
$emails = new Element\Email('emails');
$emails
    ->setLabel('Email Addresses')
    ->setAttribute('multiple', true);
$form->add($emails);











Note


Note: the multiple attribute should be set prior to calling Zend\Form::prepare(). Otherwise, the default
input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a validator based
on the multiple attribute.


If the multiple attribute is unset or false, a Zend\Validator\Regex validator will be added to validate
a single email address.


If the multiple attribute is true, a Zend\Validator\Explode validator will be added to ensure the input
string value is split by commas before validating each email address with Zend\Validator\Regex.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Email Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.alpha.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alpha


Zend_Filter_Alpha is a filter which returns the string $value, removing all but alphabetic characters. This
filter includes an option to also allow white space characters.



Supported options for Zend_Filter_Alpha


The following options are supported for Zend_Filter_Alpha:



		allowwhitespace: If this option is set then whitespace characters are allowed. Otherwise they are suppressed.
By default whitespace characters are not allowed.








Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Alpha();

print $filter->filter('This is (my) content: 123');










The above example returns ‘Thisismycontent’. Notice that the whitespace characters and brackets are removed.



Note


Zend_Filter_Alpha works on most languages; however, there are three exceptions: Chinese, Japanese and
Korean. With these languages the english alphabet is used. The language is detected through the use of
Locale.







Allow whitespace characters


Zend_Filter_Alpha can also allow whitespace characters. This can be useful when you want to strip special
characters from a string. See the following example:


		1
2
3


		$filter = new Zend_Filter_Alpha(array('allowwhitespace' => true));

print $filter->filter('This is (my) content: 123');










The above example returns ‘This is my content ‘. Notice that the parenthesis, colon, and numbers have all been
removed while the whitespace characters remain.


To change allowWhiteSpace after instantiation the method setAllowWhiteSpace() may be used.


To query the current value of allowWhiteSpace the method getAllowWhiteSpace() may be used.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alpha
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.prompt.png





modules/zend.feed.writer.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Feed_Writer



Introduction


Zend_Feed_Writer is the sibling component to Zend_Feed_Reader responsible for generating feeds for output.
It supports the Atom 1.0 specification (RFC 4287) and RSS 2.0 as specified by the RSS Advisory Board (RSS
2.0.11). It does not deviate from these standards. It does, however, offer a simple Extension system which allows
for any extension and module for either of these two specifications to be implemented if they are not provided out
of the box.


In many ways, Zend_Feed_Writer is the inverse of Zend_Feed_Reader. Where Zend_Feed_Reader focuses on
providing an easy to use architecture fronted by getter methods, Zend_Feed_Writer is fronted by similarly named
setters or mutators. This ensures the API won’t pose a learning curve to anyone familiar with
Zend_Feed_Reader.


As a result of this design, the rest may even be obvious. Behind the scenes, data set on any Zend_Feed_Writer
Data Container object is translated at render time onto a DOMDocument object using the necessary feed elements. For
each supported feed type there is both an Atom 1.0 and RSS 2.0 renderer. Using a DOMDocument class rather than a
templating solution has numerous advantages, the most obvious being the ability to export the DOMDocument for
additional processing and relying on PHP DOM for correct and valid rendering.


As with Zend_Feed_Reader, Zend_Feed_Writer is a standalone replacement for Zend_Feed‘s Builder
architecture and is not compatible with those classes.





Architecture


The architecture of Zend_Feed_Writer is very simple. It has two core sets of classes: data containers and
renderers.


The containers include the Zend_Feed_Writer_Feed and Zend_Feed_Writer_Entry classes. The Entry classes can
be attached to any Feed class. The sole purpose of these containers is to collect data about the feed to generate
using a simple interface of setter methods. These methods perform some data validity testing. For example, it will
validate any passed URIs, dates, etc. These checks are not tied to any of the feed standards definitions. The
container objects also contain methods to allow for fast rendering and export of the final feed, and these can be
reused at will.


In addition to the main data container classes, there are two additional Atom 2.0 specific classes.
Zend_Feed_Writer_Source and Zend_Feed_Writer_Deleted. The former implements Atom 2.0 source elements which
carry source feed metadata for a specific entry within an aggregate feed (i.e. the current feed is not the entry’s
original source). The latter implements the Atom Tombstones RFC allowing feeds to carry references to entries
which have been deleted.


While there are two main data container types, there are four renderers - two matching container renderers per
supported feed type. Each renderer accepts a container, and based on its content attempts to generate valid feed
markup. If the renderer is unable to generate valid feed markup, perhaps due to the container missing an obligatory
data point, it will report this by throwing an Exception. While it is possible to ignore Exceptions, this
removes the default safeguard of ensuring you have sufficient data set to render a wholly valid feed.


To explain this more clearly, you may construct a set of data containers for a feed where there is a Feed
container, into which has been added some Entry containers and a Deleted container. This forms a data hierarchy
resembling a normal feed. When rendering is performed, this hierarchy has its pieces passed to relevant renderers
and the partial feeds (all DOMDocuments) are then pieced together to create a complete feed. In the case of Source
or Deleted (Tomestone) containers, these are rendered only for Atom 2.0 and ignored for RSS.


Due to the system being divided between data containers and renderers, it can make Extensions somewhat interesting.
A typical Extension offering namespaced feed and entry level elements, must itself reflect the exact same
architecture, i.e. offer feed and entry level data containers, and matching renderers. There is, fortunately, no
complex integration work required since all Extension classes are simply registered and automatically used by the
core classes. We’ll meet Extensions in more detail at the end of this section.





Getting Started


Using Zend_Feed_Writer is as simple as setting data and triggering the renderer. Here is an example to generate
a minimal Atom 1.0 feed. As this demonstrates, each feed or entry uses a separate data container.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		/**
 * Create the parent feed
 */
$feed = new Zend_Feed_Writer_Feed;
$feed->setTitle('Paddy\'s Blog');
$feed->setLink('http://www.example.com');
$feed->setFeedLink('http://www.example.com/atom', 'atom');
$feed->addAuthor(array(
    'name'  => 'Paddy',
    'email' => 'paddy@example.com',
    'uri'   => 'http://www.example.com',
));
$feed->setDateModified(time());
$feed->addHub('http://pubsubhubbub.appspot.com/');

/**
 * Add one or more entries. Note that entries must
 * be manually added once created.
 */
$entry = $feed->createEntry();
$entry->setTitle('All Your Base Are Belong To Us');
$entry->setLink('http://www.example.com/all-your-base-are-belong-to-us');
$entry->addAuthor(array(
    'name'  => 'Paddy',
    'email' => 'paddy@example.com',
    'uri'   => 'http://www.example.com',
));
$entry->setDateModified(time());
$entry->setDateCreated(time());
$entry->setDescription('Exposing the difficultly of porting games to English.');
$entry->setContent(
    'I am not writing the article. The example is long enough as is ;).'
);
$feed->addEntry($entry);

/**
 * Render the resulting feed to Atom 1.0 and assign to $out.
 * You can substitute "atom" with "rss" to generate an RSS 2.0 feed.
 */
$out = $feed->export('atom');










The output rendered should be as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


		<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
    <title type="text">Paddy's Blog</title>
    <subtitle type="text">Writing about PC Games since 176 BC.</subtitle>
    <updated>2009-12-14T20:28:18+00:00</updated>
    <generator uri="http://framework.zend.com" version="1.10.0alpha">
        Zend_Feed_Writer
    </generator>
    <link rel="alternate" type="text/html" href="http://www.example.com"/>
    <link rel="self" type="application/atom+xml"
        href="http://www.example.com/atom"/>
    <id>http://www.example.com</id>
    <author>
        <name>Paddy</name>
        <email>paddy@example.com</email>
        <uri>http://www.example.com</uri>
    </author>
    <link rel="hub" href="http://pubsubhubbub.appspot.com/"/>
    <entry>
        <title type="html"><![CDATA[All Your Base Are Belong To
            Us]]></title>
        <summary type="html">
            <![CDATA[Exposing the difficultly of porting games to
                English.]]>
        </summary>
        <published>2009-12-14T20:28:18+00:00</published>
        <updated>2009-12-14T20:28:18+00:00</updated>
        <link rel="alternate" type="text/html"
             href="http://www.example.com/all-your-base-are-belong-to-us"/>
        <id>http://www.example.com/all-your-base-are-belong-to-us</id>
        <author>
            <name>Paddy</name>
            <email>paddy@example.com</email>
            <uri>http://www.example.com</uri>
        </author>
        <content type="html">
            <![CDATA[I am not writing the article.
                     The example is long enough as is ;).]]>
        </content>
    </entry>
</feed>










This is a perfectly valid Atom 1.0 example. It should be noted that omitting an obligatory point of data, such as a
title, will trigger an Exception when rendering as Atom 1.0. This will differ for RSS 2.0 since a title may
be omitted so long as a description is present. This gives rise to Exceptions that differ between the two standards
depending on the renderer in use. By design, Zend_Feed_Writer will not render an invalid feed for either
standard unless the end-user deliberately elects to ignore all Exceptions. This built in safeguard was added to
ensure users without in-depth knowledge of the relevant specifications have a bit less to worry about.





Setting Feed Data Points


Before you can render a feed, you must first setup the data necessary for the feed being rendered. This utilises a
simple setter style API which doubles as an initial method for validating the data being set. By design, the
API closely matches that for Zend_Feed_Reader to avoid undue confusion and uncertainty.



Note


Users have commented that the lack of a simple array based notation for input data gives rise to lengthy tracts
of code. This will be addressed in a future release.




Zend_Feed_Writer offers this API via its data container classes Zend_Feed_Writer_Feed and
Zend_Feed_Writer_Entry (not to mention the Atom 2.0 specific and Extension classes). These classes merely store
all feed data in a type-agnostic manner, meaning you may reuse any data container with any renderer without
requiring additional work. Both classes are also amenable to Extensions, meaning that an Extension may define its
own container classes which are registered to the base container classes as extensions, and are checked when any
method call triggers the base container’s __call() method.


Here’s a summary of the Core API for Feeds. You should note it comprises not only the basic RSS and Atom
standards, but also accounts for a number of included Extensions bundled with Zend_Feed_Writer. The naming of
these Extension sourced methods remain fairly generic - all Extension methods operate at the same level as the Core
API though we do allow you to retrieve any specific Extension object separately if required.


The Feed Level API for data is contained in Zend_Feed_Writer_Feed. In addition to the API detailed below,
the class also implements the Countable and Iterator interfaces.



Feed Level API Methods





		setId()
		Set a unique ID associated with this feed. For Atom 1.0 this is an atom:id element, whereas for RSS 2.0 it is added as a guid element. These are optional so long as a link is added, i.e. the link is set as the ID.



		setTitle()
		Set the title of the feed.



		setDescription()
		Set the text description of the feed.



		setLink()
		Set a URI to the HTML website containing the same or similar information as this feed (i.e. if the feed is from a blog, it should provide the blog’s URI where the HTML version of the entries can be read).



		setFeedLinks()
		Add a link to an XML feed, whether the feed being generated or an alternate URI pointing to the same feed but in a different format. At a minimum, it is recommended to include a link to the feed being generated so it has an identifiable final URI allowing a client to track its location changes without necessitating constant redirects. The parameter is an array of arrays, where each sub-array contains the keys “type” and “uri”. The type should be one of “atom”, “rss”, or “rdf”.



		addAuthors()
		Sets the data for authors. The parameter is an array of arrays where each sub-array may contain the keys “name”, “email” and “uri”. The “uri” value is only applicable for Atom feeds since RSS contains no facility to show it. For RSS 2.0, rendering will create two elements - an author element containing the email reference with the name in brackets, and a Dublin Core creator element only containing the name.



		addAuthor()
		Sets the data for a single author following the same array format as described above for a single sub-array.



		setDateCreated()
		Sets the date on which this feed was created. Generally only applicable to Atom where it represents the date the resource described by an Atom 1.0 document was created. The expected parameter may be a UNIX timestamp or a DateTime object.



		setDateModified()
		Sets the date on which this feed was last modified. The expected parameter may be a UNIX timestamp or a DateTime object.



		setLastBuildDate()
		Sets the date on which this feed was last build. The expected parameter may be a UNIX timestamp or a DateTime object. This will only be rendered for RSS 2.0 feeds and is automatically rendered as the current date by default when not explicity set.



		setLanguage()
		Sets the language of the feed. This will be omitted unless set.



		setGenerator()
		Allows the setting of a generator. The parameter should be an array containing the keys “name”, “version” and “uri”. If omitted a default generator will be added referencing Zend_Feed_Writer, the current Zend Framework version and the Framework’s URI.



		setCopyright()
		Sets a copyright notice associated with the feed.



		addHubs()
		Accepts an array of Pubsubhubbub Hub Endpoints to be rendered in the feed as Atom links so that PuSH Subscribers may subscribe to your feed. Note that you must implement a Pubsubhubbub Publisher in order for real-time updates to be enabled. A Publisher may be implemented using Zend_Feed_Pubsubhubbub_Publisher. The method addHub() allows adding a single hub at a time.



		addCategories()
		Accepts an array of categories for rendering, where each element is itself an array whose possible keys include “term”, “label” and “scheme”. The “term” is a typically a category name suitable for inclusion in a URI. The “label” may be a human readable category name supporting special characters (it is HTML encoded during rendering) and is a required key. The “scheme” (called the domain in RSS) is optional but must be a valid URI. The method addCategory() allows adding a single category at a time.



		setImage()
		Accepts an array of image metadata for an RSS image or Atom logo. Atom 1.0 only requires a URI. RSS 2.0 requires a URI, HTML link, and an image title. RSS 2.0 optionally may send a width, height and image description. The array parameter may contain these using the keys: uri, link, title, description, height and width. The RSS 2.0 HTML link should point to the feed source’s HTML page.



		createEntry()
		Returns a new instance of Zend_Feed_Writer_Entry. This is the Entry level data container. New entries are not automatically assigned to the current feed, so you must explicitly call addEntry() to add the entry for rendering.



		addEntry()
		Adds an instance of Zend_Feed_Writer_Entry to the current feed container for rendering.



		createTombstone()
		Returns a new instance of Zend_Feed_Writer_Deleted. This is the Atom 2.0 Tombstone level data container. New entries are not automatically assigned to the current feed, so you must explicitly call addTombstone() to add the deleted entry for rendering.



		addTombstone()
		Adds an instance of Zend_Feed_Writer_Deleted to the current feed container for rendering.



		removeEntry()
		Accepts a parameter indicating an array index of the entry to remove from the feed.



		export()
		Exports the entire data hierarchy to an XML feed. The method has two parameters. The first is the feed type, one of “atom” or “rss”. The second is an optional boolean to set whether Exceptions are thrown. The default is TRUE.








Note


In addition to these setters, there are also matching getters to retrieve data from the Entry data container.
For example, setImage() is matched with a getImage() method.







Setting Entry Data Points


Here’s a summary of the Core API for Entries and Items. You should note it comprises not only the basic RSS and
Atom standards, but also accounts for a number of included Extensions bundled with Zend_Feed_Writer. The naming
of these Extension sourced methods remain fairly generic - all Extension methods operate at the same level as the
Core API though we do allow you to retrieve any specific Extension object separately if required.


The Entry Level API for data is contained in Zend_Feed_Writer_Entry.



Entry Level API Methods





		setId()
		Set a unique ID associated with this entry. For Atom 1.0 this is an atom:id element, whereas for RSS 2.0 it is added as a guid element. These are optional so long as a link is added, i.e. the link is set as the ID.



		setTitle()
		Set the title of the entry.



		setDescription()
		Set the text description of the entry.



		setContent()
		Set the content of the entry.



		setLink()
		Set a URI to the HTML website containing the same or similar information as this entry (i.e. if the feed is from a blog, it should provide the blog article’s URI where the HTML version of the entry can be read).



		setFeedLinks()
		Add a link to an XML feed, whether the feed being generated or an alternate URI pointing to the same feed but in a different format. At a minimum, it is recommended to include a link to the feed being generated so it has an identifiable final URI allowing a client to track its location changes without necessitating constant redirects. The parameter is an array of arrays, where each sub-array contains the keys “type” and “uri”. The type should be one of “atom”, “rss”, or “rdf”. If a type is omitted, it defaults to the type used when rendering the feed.



		addAuthors()
		Sets the data for authors. The parameter is an array of arrays where each sub-array may contain the keys “name”, “email” and “uri”. The “uri” value is only applicable for Atom feeds since RSS contains no facility to show it. For RSS 2.0, rendering will create two elements - an author element containing the email reference with the name in brackets, and a Dublin Core creator element only containing the name.



		addAuthor()
		Sets the data for a single author following the same format as described above for a single sub-array.



		setDateCreated()
		Sets the date on which this feed was created. Generally only applicable to Atom where it represents the date the resource described by an Atom 1.0 document was created. The expected parameter may be a UNIX timestamp or a DateTime object. If omitted, the date used will be the current date and time.



		setDateModified()
		Sets the date on which this feed was last modified. The expected parameter may be a UNIX timestamp or a DateTime object. If omitted, the date used will be the current date and time.



		setCopyright()
		Sets a copyright notice associated with the feed.



		setCategories()
		Accepts an array of categories for rendering, where each element is itself an array whose possible keys include “term”, “label” and “scheme”. The “term” is a typically a category name suitable for inclusion in a URI. The “label” may be a human readable category name supporting special characters (it is encoded during rendering) and is a required key. The “scheme” (called the domain in RSS) is optional but must be a valid URI.



		setCommentCount()
		Sets the number of comments associated with this entry. Rendering differs between RSS and Atom 2.0 depending on the element or attribute needed.



		setCommentLink()
		Seta a link to a HTML page containing comments associated with this entry.



		setCommentFeedLink()
		Sets a link to a XML feed containing comments associated with this entry. The parameter is an array containing the keys “uri” and “type”, where the type is one of “rdf”, “rss” or “atom”.



		setCommentFeedLinks()
		Same as setCommentFeedLink() except it accepts an array of arrays, where each subarray contains the expected parameters of setCommentFeedLink().



		setEncoding()
		Sets the encoding of entry text. This will default to UTF-8 which is the preferred encoding.








Note


In addition to these setters, there are also matching getters to retrieve data from the Entry data container.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Feed_Writer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/comment-close.png





modules/zend.form.element.collection.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Collection Element


Sometimes, you may want to add input (or a set of inputs) multiple times, either because you don’t want to duplicate code, or because you does not know in advance how many elements you need (in the case of elements dynamically added to a form using JavaScript, for instance).


Zend\Form\Element\Collection is meant to be paired with the Zend\Form\View\Helper\FormCollection.



Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Form\Element;
use Zend\Form\Form;

$colors = new Element\Collection('collection');
$colors->setLabel('Colors');
$colors->setCount(2);
$colors->setTargetElement(new Element\Color());
$colors->setShouldCreateTemplate(true);

$form = new Form('my-form');
$form->add($colors);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element .



		
setOptions(array $options)


		Set options for an element of type Collection. Accepted options, in addition to the inherited options of Zend\Form\Element <zend.form.element.methods.set-options>` , are: "target_element", "count", "allow_add", "should_create_template" and "template_placeholder" , which call setTargetElement, setCount, setAllowAdd, setShouldCreateTemplate and setTemplatePlaceholder , respectively.









		
setCount($count)


		Defines how many times the target element will be rendered by the Zend/Form/View/Helper/FormCollection view helper.









		
getCount()


		Return the number of times the target element will be initially rendered by the Zend/Form/View/Helper/FormCollection view helper.






		Return type:		integer














		
setTargetElement($elementOrFieldset)


		This function either takes an Zend/Form/ElementInterface, Zend/Form/FieldsetInterface instance or an array to pass to the form factory. When the Collection element will be validated, the input filter will be retrieved from this target element and be used to validate each element in the collection.









		
getTargetElement()


		Return the target element used by the collection.






		Return type:		ElementInterface | null














		
setAllowAdd($allowAdd)


		If allowAdd is set to true (which is the default), new elements added dynamically in the form (using JavaScript, for instance) will also be validated and retrieved.









		
allowAdd()


		Return if new elements can by dynamically added in the collection.






		Return type:		boolean














		
setAllowRemove($allowRemove)


		If allowRemove is set to true (which is the default), new elements added dynamically in the form (using JavaScript, for instance) will be allowed to be removed.









		
allowRemove()


		Return if new elements can by dynamically added in the collection.






		Return type:		boolean














		
setShouldCreateTemplate($shouldCreateTemplate)


		If shouldCreateTemplate is set to true (defaults to false), a <span> element will be generated by the Zend/Form/View/Helper/FormCollection view helper. This non-semantic span element contains a single data-template HTML5 attribute whose value is the whole HTML to copy to create a new element in the form. The template is indexed using the templatePlaceholder value.









		
shouldCreateTemplate()


		Return if a template should be created.






		Return type:		boolean














		
setTemplatePlaceholder($templatePlaceholder)


		Set the template placeholder (defaults to __index__) used to index element in the template.









		
getTemplatePlaceholder()


		Returns the template placeholder used to index element in the template.






		Return type:		string



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Collection Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.advanced-mswordblocksdocument_zoom.png
T o1 | [Ftpagewidh S

Telocom Company LLC
PO 77734, 26773 Charlotte

James Horey Brown

Invoice for number +49 421 335 9000

WIMAGINGSOURCE

Phone number  +49.421 3359000
Date  Septombor 10,2009

Customer number  #629648110
Involce number 4374041735
Account number  #546416415

Do you have
questions sbout your
Plassa cal cur ok frae
customar sarvice

Phone  +49.421 335 910

Fax 49421335910

September 2009

‘Accounts recaivable trade (total)

Monthly free
Connection number Connsction duration
Cannestion

“49421335912 000007
Cannestion

+49421335913 000007
Cannestion:

49421335914 000007
Cannestion:

+49421335916 000007

Totalnet

19%% Tax

Total Amount

Amount in USD

€500

€0

€0

€0

€0

€1ma

€500

€130.00

Start Presentation

= Leave Rullscreen





modules/zend.service.strike-iron.bundled-services.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_StrikeIron: Bundled Services


Zend_Service_StrikeIron comes with wrapper classes for three popular StrikeIron services.



ZIP Code Information


Zend_Service_StrikeIron_ZipCodeInfo provides a client for StrikeIron’s Zip Code Information Service. For more
information on this service, visit these StrikeIron resources:




		Zip Code Information Service Page [http://www.strikeiron.com/ProductDetail.aspx?p=267]


		Zip Code Information Service WSDL [http://sdpws.strikeiron.com/zf1.StrikeIron/sdpZIPCodeInfo?WSDL]









The service contains a getZipCode() method that will retrieve information about a United States ZIP code or
Canadian postal code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

// Get a client for the Zip Code Information service
$zipInfo = $strikeIron->getService(array('class' => 'ZipCodeInfo'));

// Get the Zip information for 95014
$response = $zipInfo->getZipCode(array('ZipCode' => 95014));
$zips = $response->serviceResult;

// Display the results
if ($zips->count == 0) {
    echo 'No results found';
} else {
    // a result with one single zip code is returned as an object,
    // not an array with one element as one might expect.
    if (! is_array($zips->zipCodes)) {
        $zips->zipCodes = array($zips->zipCodes);
    }

    // print all of the possible results
    foreach ($zips->zipCodes as $z) {
        $info = $z->zipCodeInfo;

        // show all properties
        print_r($info);

        // or just the city name
        echo $info->preferredCityName;
    }
}

// Detailed status information
// http://www.strikeiron.com/exampledata/StrikeIronZipCodeInformation_v3.pdf
$status = $response->serviceStatus;













U.S. Address Verification


Zend_Service_StrikeIron_USAddressVerification provides a client for StrikeIron’s U.S. Address Verification
Service. For more information on this service, visit these StrikeIron resources:




		U.S. Address Verification Service Page [http://www.strikeiron.com/ProductDetail.aspx?p=198]


		U.S. Address Verification Service WSDL [http://ws.strikeiron.com/zf1.StrikeIron/USAddressVerification4_0?WSDL]









The service contains a verifyAddressUSA() method that will verify an address in the United States:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

// Get a client for the Zip Code Information service
$verifier = $strikeIron->getService(array('class' => 'USAddressVerification'));

// Address to verify. Not all fields are required but
// supply as many as possible for the best results.
$address = array('firm'           => 'Zend Technologies',
                 'addressLine1'   => '19200 Stevens Creek Blvd',
                 'addressLine2'   => '',
                 'city_state_zip' => 'Cupertino CA 95014');

// Verify the address
$result = $verifier->verifyAddressUSA($address);

// Display the results
if ($result->addressErrorNumber != 0) {
    echo $result->addressErrorNumber;
    echo $result->addressErrorMessage;
} else {
    // show all properties
    print_r($result);

    // or just the firm name
    echo $result->firm;

    // valid address?
    $valid = ($result->valid == 'VALID');
}













Sales & Use Tax Basic


Zend_Service_StrikeIron_SalesUseTaxBasic provides a client for StrikeIron’s Sales & Use Tax Basic service. For
more information on this service, visit these StrikeIron resources:




		Sales & Use Tax Basic Service Page [http://www.strikeiron.com/ProductDetail.aspx?p=351]


		Sales & Use Tax Basic Service WSDL [http://ws.strikeiron.com/zf1.StrikeIron/taxdatabasic4?WSDL]









The service contains two methods, getTaxRateUSA() and getTaxRateCanada(), that will retrieve sales and use
tax data for the United States and Canada, respectively.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$strikeIron = new Zend_Service_StrikeIron(array('username' => 'your-username',
                                                'password' => 'your-password'));

// Get a client for the Sales & Use Tax Basic service
$taxBasic = $strikeIron->getService(array('class' => 'SalesUseTaxBasic'));

// Query tax rate for Ontario, Canada
$rateInfo = $taxBasic->getTaxRateCanada(array('province' => 'foo'));
print_r($rateInfo);               // show all properties
echo $rateInfo->GST;              // or just the GST (Goods & Services Tax)

// Query tax rate for Cupertino, CA USA
$rateInfo = $taxBasic->getTaxRateUS(array('zip_code' => 95014));
print_r($rateInfo);               // show all properties
echo $rateInfo->state_sales_tax;  // or just the state sales tax
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_StrikeIron: Bundled Services
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.bitmaps-documentpage2_zoom.png
7. Exclusion of warranties
Megasoft Co-operation offers and the Licensee accepts the product ‘as is'. Megasoft Co-operation does not
warrant Magic Graphical Compression Suite v1.9 will meet the Licensee’s requirements, nor will operate
uninterrupted, nor error free.

8. Liability
With the exception of damage caused by willil or gross negligence, neither Megasoft Co-operation nor its
distributors are responsible for any damage whatsoever which is put down to the use of Magic Graphical
Compression Suite v1.9. This is valid without exception, including loss of profits, lost working time, lost
‘company information or other financial losses. In any event the liabilty of Megasoft Co-operation is limited to
the purchase price.

9. Trial version limitation
1 you are installing a tral version of Magic Graphical Compression Suite v1.9, itis forbidden to:
* Instal the trial version on a production server.
* Distribute or sell an application with the tril version
* Delete the additional trial text that is added to the created documents

10. Duration of agreement
This agreement is valid for an indefinite period of time. The Licensee’s rights as a user automatically expire if
the conditions of this agreement are in any way violated. In this event al data storage material and all copies
of Magic Graphical Compression Sute v1.9 are to be destroyed.

Signatures

Dai Lemaitre Wegasoft Co-operation

Printed and signed on December 2, 2009 at 6:34:57 AM CET in Lyon, France.





modules/zend.loader.classmap-generator.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The Class Map Generator utility: bin/classmap_generator.php



Overview


The script bin/classmap_generator.php can be used to generate class map files for use with the
ClassMapAutoloader.


Internally, it consumes both Zend\Console\Getopt (for parsing command-line options)
and Zend\File\ClassFileLocator for recursively finding all PHP class files
in a given tree.





Quick Start


You may run the script over any directory containing source code. By default, it will look in the current
directory, and will write the script to .classmap.php in the directory you specify.


		1


		php classmap_generator.php Some/Directory/













Configuration Options


Class Map Generator Options



		–help or -h


		Returns the usage message. If any other options are provided, they will be ignored.


		–library or -l


		Expects a single argument, a string specifying the library directory to parse. If this option is not specified,
it will assume the current working directory.


		–output or -o


		Where to write the autoload class map file. If not provided, assumes ”.classmap.php” in the library directory.


		–overwrite or -w


		If an autoload class map file already exists with the name as specified via the --output option, you can
overwrite it by specifying this flag. Otherwise, the script will not write the class map and return a warning.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The Class Map Generator utility: bin/classmap_generator.php
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.crypt.public-key.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Public key cryptography


Public-key cryptography refers to a cryptographic system requiring two separate keys, one of which is secret and
one of which is public. Although different, the two parts of the key pair are mathematically linked. One key locks
or encrypts the plaintext, and the other unlocks or decrypts the cyphertext. Neither key can perform both
functions. One of these keys is published or public, while the other is kept private.


In Zend Framework we implemented two public key algorithms: Diffie-Hellman [http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange] key exchange and RSA [http://en.wikipedia.org/wiki/RSA_%28algorithm%29].



Diffie-Hellman


The Diffie-Hellman algorithm is a specific method of exchanging cryptographic keys. It is one of the earliest
practical examples of key exchange implemented within the field of cryptography. The Diffie–Hellman key exchange
method allows two parties that have no prior knowledge of each other to jointly establish a shared secret key
over an insecure communications channel. This key can then be used to encrypt subsequent communications using a
symmetric key cipher.


The diagram of operation of the Diffie-Hellman algorithm can be defined by the following picture
(taken by the Diffie-Hellman [http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange] Wikipedia page):



[image: ../_images/zend.crypt.public-key.diffie-hellman.png]


The schema’s colors represent the parameters of the algorithm. Here is reported an example of usage
using the Zend\Crypt\PublicKey\DiffieHellman class:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		use Zend\Crypt\PublicKey\DiffieHellman;

$aliceOptions = array(
    'prime'    => '155172898181473697471232257763715539915724801966915404479707795314057629378541917580651227' .
                  '423698188993727816152646631438561595825688188889951272158842675419950341258706556549803580' .
                  '104870537681476726513255747040765857479291291572334510643245094715007229621094194349783925' .
                  '984760375594985848253359305585439638443',
    'generator'=> '2',
    'private'  => '992093140665725952364085695919679885571412495614942674862518080355353963322786201435363176' .
                 '813127128916726230726309951803243888416814918577455156967890911274095150092503589658166661' .
                 '463420498381785213791321533481399080168191962194483101070726325157493390557981225386151351' .
                 '04828702523796951800575031871051678091'
);

$bobOptions   = array(
    'prime'    => $aliceOptions['prime'],
    'generator'=> '2',
    'private'  => '334117357926395586257336357178925636125481806504021611510774783148414637079488997861035889' .
                  '123256347304105519467727528801778689728169635518217403867000760342134081539246925625431179' .
                  '634647331566005454845108330724270034742070646507148310833044977371603820970833568760781462' .
                  '31616972608703322302585471319261275664'
);

$alice = new DiffieHellman($aliceOptions['prime'], $aliceOptions['generator'], $aliceOptions['private']);
$bob   = new DiffieHellman($bobOptions['prime'], $bobOptions['generator'], $bobOptions['private']);

$alice->generateKeys();
$bob->generateKeys();

$aliceSecretKey = $alice->computeSecretKey($bob->getPublicKey(DiffieHellman::FORMAT_BINARY),
                                           DiffieHellman::FORMAT_BINARY,
                                           DiffieHellman::FORMAT_BINARY);

$bobSecretKey   = $bob->computeSecretKey($alice->getPublicKey(DiffieHellman::FORMAT_BINARY),
                                         DiffieHellman::FORMAT_BINARY,
                                         DiffieHellman::FORMAT_BINARY);

if ($aliceSecretKey !== $bobSecretKey) {
    echo "ERROR!\n";
} else {
    printf("The secret key is: %s\n", base64_encode($aliceSecretKey));
}










The parameters of the Diffie-Hellman class are: a prime number (p), a generator (g) that is a primitive root mod p
and a private integer number. The security of the Diffie-Hellman exchange algorithm is related to the choice of
these parameters. To know how to choose secure numbers you can read the RFC 3526 [http://tools.ietf.org/html/rfc3526] document.



Note


The Zend\Crypt\PublicKey\DiffieHellman class use by default the OpenSSL [http://php.net/manual/en/book.openssl.php] extension of PHP to generate the
parameters. If you want don’t want to use the OpenSSL library you have to set the useOpensslExtension static
method to false.







RSA


RSA is an algorithm for public-key cryptography that is based on the presumed difficulty of factoring large
integers, the factoring problem [http://en.wikipedia.org/wiki/Factoring_problem].
A user of RSA creates and then publishes the product of two large prime numbers, along with an auxiliary value,
as their public key. The prime factors must be kept secret. Anyone can use the public key to encrypt a message,
but with currently published methods, if the public key is large enough, only someone with knowledge of the prime
factors can feasibly decode the message. Whether breaking RSA encryption is as hard as factoring is an open
question known as the RSA problem.


The RSA algorithm can be used to encrypt/decrypt message and also to provide authenticity and integrity generating
a digital signature of a message. Suppose that Alice wants to send an encrypted message to Bob. Alice must use the
public key of Bob to encrypt the message. Bob can decrypt the message using his private key. Because Bob he is the
only one that can access to his private key, he is the only one that can decrypt the message.
If Alice wants to provide authenticity and integrity of a message to Bob she can use her private key to sign the
message. Bob can check the correctness of the digital signature using the public key of Alice.
Alice can provide encryption, authenticity and integrity of a message to Bob using the previous schemas in
sequence, applying the encryption first and the digital signature after.


Below we reported some examples of usage of the Zend\Crypt\PublicKey\Rsa class in order to:




		generate a public key and a private key;


		encrypt/decrypt a string;


		generate a digital signature of a file.










Generate a public key and a private key


In order to generate a public and private key you can use the following code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Crypt\PublicKey\RsaOptions;

$rsaOptions = new RsaOptions(array(
    'pass_phrase' => 'test'
));

$rsaOptions->generateKeys(array(
    'private_key_bits' => 2048,
));

file_put_contents('private_key.pem', $rsaOptions->getPrivateKey());
file_put_contents('public_key.pub', $rsaOptions->getPublicKey());










This example generates a public and privat key of 2048 bit storing the keys in two separate files,
the private_key.pem for the private key and the public_key.pub for the public key.
You can also generate the public and private key using OpenSSL from the command line (Unix style syntax):


ssh-keygen -t rsa









Encrypt and decrypt a string


Below is reported an example on how to encrypt and decrypt a string using the RSA algorithm. You can encrypt
only small strings. The maximum size of encryption is given by the length of the public/private key - 88 bits.
For instance, if we use a size of 2048 bit you can encrypt string with a maximum size of 1960 bit
(245 characters). This limitation is related to the OpenSSL implementation for a security reason related to the
nature of the RSA algorithm.


The normal application of a public key encryption algorithm is to store a key or a hash of the data you want to
respectively encrypt or sign. A hash is typically 128-256 bits (the PHP sha1() function returns a 160 bit hash).
An AES encryption key is 128 to 256 bits. So either of those will comfortably fit inside a single RSA encryption.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		use Zend\Crypt\PublicKey\Rsa;

$rsa = Rsa::factory(array(
    'public_key'    => 'public_key.pub',
    'private_key'   => 'private_key.pem',
    'pass_phrase'   => 'test',
    'binary_output' => false
));

$text = 'This is the message to encrypt';

$encrypt = $rsa->encrypt($text);
printf("Encrypted message:\n%s\n", $encrypt);

$decrypt = $rsa->decrypt($encrypt);

if ($text !== $decrypt) {
    echo "ERROR\n";
} else {
    echo "Encryption and decryption performed successfully!\n";
}













Generate a digital signature of a file


Below is reported an example of how to generate a digital signature of a file.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\Crypt\PublicKey\Rsa;

$rsa = Rsa::factory(array(
    'private_key'   => 'path/to/private_key',
    'pass_phrase'   => 'passphrase of the private key',
    'binary_output' => false
));

$file = file_get_contents('path/file/to/sign');

$signature = $rsa->sign($file, $rsa->getOptions()->getPrivateKey());
$verify    = $rsa->verify($file, $signature, $rsa->getOptions()->getPublicKey());

if ($verify) {
    echo "The signature is OK\n";
    file_put_contents($filename . '.sig', $signature);
    echo "Signature save in $filename.sig\n";
} else {
     echo "The signature is not valid!\n";
}










In this example we used the Base64 format to encode the digital signature of the file (binary_output is false).



Note


The implementation of Zend\Crypt\PublicKey\Rsa algorithm uses the OpenSSL extension of PHP.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Public key cryptography
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.serializer.adapter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Serializer_Adapter


Zend_Serializer adapters create a bridge for different methods of serializing with very little effort.


Every adapter has different pros and cons. In some cases, not every PHP datatype (e.g., objects) can be converted
to a string representation. In most such cases, the type will be converted to a similar type that is serializable
– as an example, PHP objects will often be cast to arrays. If this fails, a Zend_Serializer_Exception will
be thrown.


Below is a list of available adapters.



Zend_Serializer_Adapter_PhpSerialize


This adapter uses the built-in un/serialize PHP functions, and is a good default adapter choice.


There are no configurable options for this adapter.





Zend_Serializer_Adapter_IgBinary


Igbinary [http://opensource.dynamoid.com] is Open Source Software released by Sulake Dynamoid Oy. It’s a drop-in replacement for the standard
PHP serializer. Instead of time and space consuming textual representation, igbinary stores PHP data structures
in a compact binary form. Savings are significant when using memcached or similar memory based storages for
serialized data.


You need the igbinary PHP extension installed on your system in order to use this adapter.


There adapter takes no configuration options.





Zend_Serializer_Adapter_Wddx


WDDX [http://wikipedia.org/wiki/WDDX] (Web Distributed Data eXchange) is a programming-language-, platform-, and transport-neutral data
interchange mechanism for passing data between different environments and different computers.


The adapter simply uses the wddx_*() [http://php.net/manual/book.wddx.php] PHP functions. Please read the PHP manual to determine how you may
enable them in your PHP installation.


Additionally, the SimpleXML [http://php.net/manual/book.simplexml.php] PHP extension is used to check if a returned NULL value from
wddx_unserialize() is based on a serialized NULL or on invalid data.


Available options include:



Zend_Serializer_Adapter_Wddx Options







		Option
		Data Type
		Default Value
		Description





		comment
		string
		 
		An optional comment that appears in the packet header.










Zend_Serializer_Adapter_Json


The JSON adapter provides a bridge to the Zend_Json component and/or ext/json. Please read the
Zend_Json documentation for further information.


Available options include:



Zend_Serializer_Adapter_Json Options







		Option
		Data Type
		Default Value
		Description





		cycleCheck
		boolean
		false
		See this section



		objectDecodeType
		Zend_Json::TYPE_*
		Zend_Json::TYPE_ARRAY
		See this section



		enableJsonExprFinder
		boolean
		false
		See this section










Zend_Serializer_Adapter_Amf 0 and 3


The AMF adapters, Zend_Serializer_Adapter_Amf0 and Zend_Serializer_Adapter_Amf3, provide a bridge to the
serializer of the Zend_Amf component. Please read the Zend_Amf documentation for
further information.


There are no options for these adapters.





Zend_Serializer_Adapter_PythonPickle


This adapter converts PHP types to a Python Pickle [http://docs.python.org/library/pickle.html] string representation. With it, you can read the serialized
data with Python and read Pickled data of Python with PHP.


Available options include:



Zend_Serializer_Adapter_PythonPickle Options







		Option
		Data Type
		Default Value
		Description





		protocol
		integer (0 | 1 | 2 | 3)
		0
		The Pickle protocol version used on serialize







Datatype merging (PHP to Python) occurs as follows:



Datatype merging (PHP to Python)





		PHP Type
		Python Type





		NULL
		None



		boolean
		boolean



		integer
		integer



		float
		float



		string
		string



		array
		list



		associative array
		dictionary



		object
		dictionary







Datatype merging (Python to PHP) occurs per the following:



Datatype merging (Python to PHP)





		Python-Type
		PHP-Type





		None
		NULL



		boolean
		boolean



		integer
		integer



		long
		integer | float | string | Zend_Serializer_Exception



		float
		float



		string
		string



		bytes
		string



		Unicode string
		UTF-8 string



		list
		array



		tuple
		array



		dictionary
		associative array



		All other types
		Zend_Serializer_Exception










Zend_Serializer_Adapter_PhpCode


This adapter generates a parsable PHP code representation using var_export() [http://php.net/manual/function.var-export.php]. On restoring, the data will be
executed using eval [http://php.net/manual/function.eval.php].


There are no configuration options for this adapter.



Warning


Unserializing objects


Objects will be serialized using the __set_state [http://php.net/manual/language.oop5.magic.php#language.oop5.magic.set-state] magic method. If the class doesn’t implement this method, a
fatal error will occur during execution.





Warning


Uses eval()


The PhpCode adapter utilizes eval() to unserialize. This introduces both a performance and potential
security issue as a new process will be executed. Typically, you should use the PhpSerialize adapter unless
you require human-readability of the serialized data.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Serializer_Adapter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.getopt.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend_Console_Getopt class helps command-line applications to parse their options and arguments.


Users may specify command-line arguments when they execute your application. These arguments have meaning to the
application, to change the behavior in some way, or choose resources, or specify parameters. Many options have
developed customary meaning, for example --verbose enables extra output from many applications. Other options
may have a meaning that is different for each application. For example, -c enables different features in
grep, ls, and tar.


Below are a few definitions of terms. Common usage of the terms varies, but this documentation will use the
definitions below.



		“argument”: a string that occurs on the command-line following the name of the command. Arguments may be options
or else may appear without an option, to name resources on which the command operates.





		“option”: an argument that signifies that the command should change its default behavior in some way.





		“flag”: the first part of an option, identifies the purpose of the option. A flag is preceded conventionally by
one or two dashes (- or --). A single dash precedes a single-character flag or a cluster of
single-character flags. A double-dash precedes a multi-character flag. Long flags cannot be clustered.





		“parameter”: the secondary part of an option; a data value that may accompany a flag, if it is applicable to the
given option. For example, many commands accept a --verbose option, but typically this option has no
parameter. However, an option like --user almost always requires a following parameter.


A parameter may be given as a separate argument following a flag argument, or as part of the same argument
string, separated from the flag by an equals symbol (=). The latter form is supported only by long flags. For
example, -u username, --user username, and --user=username are forms supported by
Zend_Console_Getopt.





		“cluster”: multiple single-character flags combined in a single string argument and preceded by a single dash.
For example, “ls -1str” uses a cluster of four short flags. This command is equivalent to “ls -1 -s -t
-r”. Only single-character flags can be clustered. You cannot make a cluster of long flags.








For example, in mysql --user=root mydatabase, mysql is a command, --user=root is an option,
--user is a flag, root is a parameter to the option, and mydatabase is an argument but not an
option by our definition.


Zend_Console_Getopt provides an interface to declare which flags are valid for your application, output an
error and usage message if they use an invalid flag, and report to your application code which flags the user
specified.



Note


Getopt is not an Application Framework


Zend_Console_Getopt does not interpret the meaning of flags and parameters, nor does this class
implement application workflow or invoke application code. You must implement those actions in your own
application code. You can use the Zend_Console_Getopt class to parse the command-line and provide
object-oriented methods for querying which options were given by a user, but code to use this information to
invoke parts of your application should be in another PHP class.




The following sections describe usage of Zend_Console_Getopt.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.config.theory-of-operation.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Theory of Operation


Configuration data are made accessible to Zend\Config\Config‘s constructor with an associative array,
which may be multi-dimensional, so data can be organized from general to specific. Concrete adapter
classes adapt configuration data from storage to produce the associative array for Zend\Config\Config‘s
constructor. If needed, user scripts may provide such arrays directly to Zend\Config\Config‘s constructor, without using
a reader class.


Each value in the configuration data array becomes a property of the Zend\Config\Config object. The key is used as the
property name. If a value is itself an array, then the resulting object property is created as a new
Zend\Config\Config object, loaded with the array data. This occurs recursively, such that a hierarchy of
configuration data may be created with any number of levels.


Zend\Config\Config implements the Countable [http://php.net/manual/en/class.countable.php] and Iterator [http://php.net/manual/en/class.iterator.php] interfaces in order to facilitate simple
access to configuration data. Thus, Zend\Config\Config objects support the count() [http://php.net/count] function and
PHP constructs such as foreach [http://php.net/foreach].


By default, configuration data made available through Zend\Config\Config are read-only, and an assignment
(e.g. $config->database->host = 'example.com';) results in a thrown exception. This default behavior may be
overridden through the constructor, allowing modification of data values. Also, when modifications are
allowed, Zend\Config\Config supports unsetting of values (i.e. unset($config->database->host)). The
isReadOnly() method can be used to determine if modifications to a given Zend\Config\Config object are
allowed and the setReadOnly() method can be used to stop any further modifications to a Zend\Config\Config
object that was created allowing modifications.



Note


Modifying Config does not save changes


It is important not to confuse such in-memory modifications with saving configuration data out to specific
storage media. Tools for creating and modifying configuration data for various storage media are out of scope
with respect to Zend\Config\Config. Third-party open source solutions are readily available for the purpose
of creating and modifying configuration data for various storage media.




If you have two Zend\Config\Config objects, you can merge them into a single object using the merge()
function. For example, given $config and $localConfig, you can merge data from $localConfig to
$config using $config->merge($localConfig);. The items in $localConfig will override any items with the
same name in $config.



Note


The Zend\Config\Config object that is performing the merge must have been constructed to allow
modifications, by passing TRUE as the second parameter of the constructor. The setReadOnly() method can
then be used to prevent any further modifications after the merge is complete.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Theory of Operation
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.date.time.local.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
DateTimeLocal Element


Zend\Form\Element\DateTimeLocal is meant to be paired with the Zend/Form/View/Helper/FormDateTimeLocal for HTML5
inputs with type datetime-local [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#local-date-and-time-state-(type=datetime-local)]. This element adds filters and validators to it’s input filter specification in
order to validate HTML5 a local datetime input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "datetime-local".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$dateTimeLocal = new Element\DateTimeLocal('appointment-date-time');
$dateTimeLocal
    ->setLabel('Appointment Date')
    ->setAttributes(array(
        'min'  => '2010-01-01T00:00:00',
        'max'  => '2020-01-01T00:00:00',
        'step' => '1', // minutes; default step interval is 1 min
    ));

$form = new Form('my-form');
$form->add($dateTimeLocal);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                DateTimeLocal Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.paginator.usage.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Usage



Paginating data collections


In order to paginate items into pages, Zend\Paginator must have a generic way of accessing that data. For that
reason, all data access takes place through data source adapters. Several adapters ship with Zend Framework by
default:



Adapters for Zend\Paginator





		Adapter
		Description





		Array
		Accepts a PHP array



		DbSelect
		Accepts a Zend\Db\Sql\Select plus either a Zend\Db\Adapter\Adapter or Zend\Db\Sql\Sql to paginate rows from a database



		Iterator
		Accepts an Iterator instance



		Null
		Does not use Zend\Paginator to manage data pagination. You can still take advantage of the pagination control feature.








Note


Instead of selecting every matching row of a given query, the DbSelect adapter retrieves only
the smallest amount of data necessary for displaying the current page.  Because of this, a second query is dynamically generated to determine the total number of matching rows.




To create an instance of Zend\Paginator, you must supply an adapter to the constructor:


		1
2
3
4


		$paginator = new Zend\Paginator(new Zend\Paginator\Adapter\Array($array));

In the case of the ``Null`` adapter, in lieu of a data collection you must supply an item count to its
constructor.










Although the instance is technically usable in this state, in your controller action you’ll need to tell the
paginator what page number the user requested. This allows advancing through the paginated data.


		1


		$paginator->setCurrentPageNumber($page);










The simplest way to keep track of this value is through a URL parameter.  The following is an example route you might use in an Array configuration file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		return array(
    'routes' => array(
        'paginator' => array(
            'type' => 'segment',
            'options' => array(
                'route' => '/list/[page/:page]',
                'defaults' => array(
                    'page' => 1,
                ),
            ),
        ),
    ),
);










With the above route (and using Zend Framework MVC components), you might set the current page number in your controller action like so:


		1


		$paginator->setCurrentPageNumber($this->params()->fromRoute('page'));










There are other options available; see Configuration for more on them.


Finally, you’ll need to assign the paginator instance to your view. If you’re using Zend Framework MVC component, you can assign the paginator object to your view model:


		1
2
3


		$vm = new ViewModel();
$vm->setVariable('paginator', $paginator);
return $vm;













The DbSelect adapter


The usage of most adapters is pretty straight-forward. However, the database adapter requires a more detailed
explanation regarding the retrieval and count of the data from the database.


To use the DbSelect adapter you don’t have to retrieve the data upfront from the database. The adapter will do the
retrieval for you, as well as the counting of the total pages. If additional work has to be done on the database results
which cannot be expressed via the provided Zend\Db\Sql\Select object you must extend the adapter and override the
getItems() method.


Additionally this adapter does not fetch all records from the database in order to count them. Instead, the
adapter manipulates the original query to produce a corresponding COUNT query. Paginator then executes that
COUNT query to get the number of rows. This does require an extra round-trip to the database, but this is many
times faster than fetching an entire result set and using count(), especially with large collections of data.


The database adapter will try and build the most efficient query that will execute on pretty much any modern
database. However, depending on your database or even your own schema setup, there might be more efficient ways to
get a rowcount. For this scenario, you can extend the provided DbSelect adapter and implement a custom getRowCount
method.  For example, if you keep track of the count of blog posts in a separate table, you could achieve a faster count query with the
following setup:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		class MyDbSelect extends Zend\Paginator\Adapter\DbSelect
{
    public function count()
    {
        $sql = new Zend\Db\Sql\Select();
        $sql->from('item_counts')->columns(array('c'=>'post_count'));

        $statement = $this->sql->prepareStatementForSqlObject($select);
        $result    = $statement->execute();
        $row       = $result->current();
        $this->rowCount = $row['c'];

        return $this->rowCount;
    }
}

$adapter = new MyDbSelect($query, $adapter);
$paginator = new Zend\Paginator\Paginator($adapter);










This approach will probably not give you a huge performance gain on small collections and/or simple select queries.
However, with complex queries and large collections, a similar approach could give you a significant performance
boost.


The DbSelect adapter also supports returning of fetched records using the Zend\Db\ResultSet component of Zend\Db.
You can override the concrete RowSet implementation by passing an object implementing Zend\Db\ResultSet\ResultSetInterface
as the third constructor argument to the DbSelect adapter:


		1
2
3
4
5
6


		// $objectPrototype is an instance of our custom entity
// $hydrator is a custom hydrator for our entity (implementing Zend\Stdlib\Hydrator\HydratorInterface)
$resultSet = new Zend\Db\ResultSet\HydratingResultSet($hydrator, $objectPrototype);

$adapter = new Zend\Paginator\Adapter\DbSelect($query, $dbAdapter, $resultSet)
$paginator = new Zend\Paginator\Paginator($adapter);










Now when we iterate over $paginator we will get instances of our custom entity instead of key-value-pair arrays.





Rendering pages with view scripts


The view script is used to render the page items (if you’re using Zend\Paginator to do so) and display the
pagination control.


Because Zend\Paginator implements the SPL interface IteratorAggregate [http://www.php.net/~helly/php/ext/spl/interfaceIteratorAggregate.html], looping over your items and
displaying them is simple.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		<html>
<body>
<h1>Example</h1>
<?php if (count($this->paginator)): ?>
<ul>
<?php foreach ($this->paginator as $item): ?>
  <li><?php echo $item; ?></li>
<?php endforeach; ?>
</ul>
<?php endif; ?>

<?php echo $this->paginationControl($this->paginator,
                                    'Sliding',
                                    'my_pagination_control'); ?>
</body>
</html>










Notice the view helper call near the end. PaginationControl accepts up to four parameters: the paginator instance,
a scrolling style, a view script name, and an array of additional parameters.


The second and third parameters are very important. Whereas the view script name is used to determine how the
pagination control should look, the scrolling style is used to control how it should behave. Say the view
script is in the style of a search pagination control, like the one below:


[image: ../_images/zend.paginator.usage.rendering.control.png]
What happens when the user clicks the “next” link a few times? Well, any number of things could happen. The current
page number could stay in the middle as you click through (as it does on Yahoo!), or it could advance to the end of
the page range and then appear again on the left when the user clicks “next” one more time. The page numbers might
even expand and contract as the user advances (or “scrolls”) through them (as they do on Google).


There are four scrolling styles packaged with Zend Framework:



Scrolling styles for Zend\Paginator





		Scrolling style
		Description





		All
		Returns every page. This is useful for dropdown menu pagination controls with relatively few pages. In these cases, you want all pages available to the user at once.



		Elastic
		A Google-like scrolling style that expands and contracts as a user scrolls through the pages.



		Jumping
		As users scroll through, the page number advances to the end of a given range, then starts again at the beginning of the new range.



		Sliding
		A Yahoo!-like scrolling style that positions the current page number in the center of the page range, or as close as possible. This is the default style.







The fourth and final parameter is reserved for an optional associative array of additional variables that you want
available in your view (available via $this). For instance, these values could include extra URL
parameters for pagination links.


By setting the default view script name, default scrolling style, and view instance, you can eliminate the calls to
PaginationControl completely:


		1
2
3
4


		Zend\Paginator\Paginator::setDefaultScrollingStyle('Sliding');
Zend\View\Helper\PaginationControl::setDefaultViewPartial(
    'my_pagination_control'
);










When all of these values are set, you can render the pagination control inside your view script with a simple echo
statement:


		1


		<?php echo $this->paginator; ?>











Note


Of course, it’s possible to use Zend\Paginator with other template engines. For example, with Smarty you
might do the following:


		1


		$smarty->assign('pages', $paginator->getPages());










You could then access paginator values from a template like so:


		1


		{$pages->pageCount}













Example pagination controls


The following example pagination controls will hopefully help you get started:


Search pagination:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


		<!--
See http://developer.yahoo.com/ypatterns/pattern.php?pattern=searchpagination
-->

<?php if ($this->pageCount): ?>
<div class="paginationControl">
<!-- Previous page link -->
<?php if (isset($this->previous)): ?>
  <a href="<?php echo $this->url(array('page' => $this->previous)); ?>">
    < Previous
  </a> |
<?php else: ?>
  <span class="disabled">< Previous</span> |
<?php endif; ?>

<!-- Numbered page links -->
<?php foreach ($this->pagesInRange as $page): ?>
  <?php if ($page != $this->current): ?>
    <a href="<?php echo $this->url(array('page' => $page)); ?>">
        <?php echo $page; ?>
    </a> |
  <?php else: ?>
    <?php echo $page; ?> |
  <?php endif; ?>
<?php endforeach; ?>

<!-- Next page link -->
<?php if (isset($this->next)): ?>
  <a href="<?php echo $this->url(array('page' => $this->next)); ?>">
    Next >
  </a>
<?php else: ?>
  <span class="disabled">Next ></span>
<?php endif; ?>
</div>
<?php endif; ?>










Item pagination:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


		<!--
See http://developer.yahoo.com/ypatterns/pattern.php?pattern=itempagination
-->

<?php if ($this->pageCount): ?>
<div class="paginationControl">
<?php echo $this->firstItemNumber; ?> - <?php echo $this->lastItemNumber; ?>
of <?php echo $this->totalItemCount; ?>

<!-- First page link -->
<?php if (isset($this->previous)): ?>
  <a href="<?php echo $this->url(array('page' => $this->first)); ?>">
    First
  </a> |
<?php else: ?>
  <span class="disabled">First</span> |
<?php endif; ?>

<!-- Previous page link -->
<?php if (isset($this->previous)): ?>
  <a href="<?php echo $this->url(array('page' => $this->previous)); ?>">
    < Previous
  </a> |
<?php else: ?>
  <span class="disabled">< Previous</span> |
<?php endif; ?>

<!-- Next page link -->
<?php if (isset($this->next)): ?>
  <a href="<?php echo $this->url(array('page' => $this->next)); ?>">
    Next >
  </a> |
<?php else: ?>
  <span class="disabled">Next ></span> |
<?php endif; ?>

<!-- Last page link -->
<?php if (isset($this->next)): ?>
  <a href="<?php echo $this->url(array('page' => $this->last)); ?>">
    Last
  </a>
<?php else: ?>
  <span class="disabled">Last</span>
<?php endif; ?>

</div>
<?php endif; ?>










Dropdown pagination:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		<?php if ($this->pageCount): ?>
<select id="paginationControl" size="1">
<?php foreach ($this->pagesInRange as $page): ?>
  <?php $selected = ($page == $this->current) ? ' selected="selected"' : ''; ?>
  <option value="<?php
        echo $this->url(array('page' => $page));?>"<?php echo $selected ?>>
    <?php echo $page; ?>
  </option>
<?php endforeach; ?>
</select>
<?php endif; ?>

<script type="text/javascript"
     src="http://ajax.googleapis.com/ajax/libs/prototype/1.6.0.2/prototype.js">
</script>
<script type="text/javascript">
$('paginationControl').observe('change', function() {
    window.location = this.options[this.selectedIndex].value;
})
</script>













Listing of properties


The following options are available to pagination control view scripts:



Properties available to view partials






		Property
		Type
		Description





		first
		integer
		First page number (i.e., 1)



		firstItemNumber
		integer
		Absolute number of the first item on this page



		firstPageInRange
		integer
		First page in the range returned by the scrolling style



		current
		integer
		Current page number



		currentItemCount
		integer
		Number of items on this page



		itemCountPerPage
		integer
		Maximum number of items available to each page



		last
		integer
		Last page number



		lastItemNumber
		integer
		Absolute number of the last item on this page



		lastPageInRange
		integer
		Last page in the range returned by the scrolling style



		next
		integer
		Next page number



		pageCount
		integer
		Number of pages



		pagesInRange
		array
		Array of pages returned by the scrolling style



		previous
		integer
		Previous page number



		totalItemCount
		integer
		Total number of items















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/performance.view.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
View Rendering


When using Zend Framework’s MVC layer, chances are you will be using Zend_View. Zend_View is performs
well compared to other view or templating engines; since view scripts are written in PHP, you do not incur the
overhead of compiling custom markup to PHP, nor do you need to worry that the compiled PHP is not optimized.
However, Zend_View presents its own issues: extension is done via overloading (view helpers), and a number of
view helpers, while carrying out key functionality do so with a performance cost.



How can I speed up resolution of view helpers?


Most Zend_View“methods” are actually provided via overloading to the helper system. This provides important
flexibility to Zend_View; instead of needing to extend Zend_View and provide all the helper methods you may
utilize in your application, you can define your helper methods in separate classes and consume them at will as if
they were direct methods of Zend_View. This keeps the view object itself relatively thin, and ensures that
objects are created only when needed.


Internally, Zend_View uses the PluginLoader to look up helper classes. This
means that for each helper you call, Zend_View needs to pass the helper name to the PluginLoader, which then
needs to determine the class name, load the class file if necessary, and then return the class name so it may be
instantiated. Subsequent uses of the helper are much faster, as Zend_View keeps an internal registry of loaded
helpers, but if you use many helpers, the calls add up.


The question, then, is: how can you speed up helper resolution?



Use the PluginLoader include file cache


The simplest, cheapest solution is the same as for general PluginLoader performance: use the PluginLoader include file cache. Anecdotal evidence has shown this technique to provide a 25-30%
performance gain on systems without an opcode cache, and a 40-65% gain on systems with an opcode cache.





Extend Zend_View to provide often used helper methods


Another solution for those seeking to tune performance even further is to extend Zend_View to manually add the
helper methods they most use in their application. Such helper methods may simply manually instantiate the
appropriate helper class and proxy to it, or stuff the full helper implementation into the method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		class My_View extends Zend_View
{
    /**
     * @var array Registry of helper classes used
     */
    protected $_localHelperObjects = array();

    /**
     * Proxy to url view helper
     *
     * @param  array $urlOptions Options passed to the assemble method
     *                           of the Route object.
     * @param  mixed $name The name of a Route to use. If null it will
     *                     use the current Route
     * @param  bool $reset Whether or not to reset the route defaults
     *                     with those provided
     * @return string Url for the link href attribute.
     */
    public function url(array $urlOptions = array(), $name = null,
        $reset = false, $encode = true
    ) {
        if (!array_key_exists('url', $this->_localHelperObjects)) {
            $this->_localHelperObjects['url'] = new Zend_View_Helper_Url();
            $this->_localHelperObjects['url']->setView($this);
        }
        $helper = $this->_localHelperObjects['url'];
        return $helper->url($urlOptions, $name, $reset, $encode);
    }

    /**
     * Echo a message
     *
     * Direct implementation.
     *
     * @param  string $string
     * @return string
     */
    public function message($string)
    {
        return "<h1>" . $this->escape($message) . "</h1>\n";
    }
}










Either way, this technique will substantially reduce the overhead of the helper system by avoiding calls to the
PluginLoader entirely, and either benefiting from autoloading or bypassing it altogether.







How can I speed up view partials?


Those who use partials heavily and who profile their applications will often immediately notice that the
partial() view helper incurs a lot of overhead, due to the need to clone the view object. Is it possible to
speed this up?



Use partial() only when really necessary


The partial() view helper accepts three arguments:



		$name: the name of the view script to render


		$module: the name of the module in which the view script resides; or, if no third argument is provided and
this is an array or object, it will be the $model argument.


		$model: an array or object to pass to the partial representing the clean data to assign to the view.





The power and use of partial() come from the second and third arguments. The $module argument allows
partial() to temporarily add a script path for the given module so that the partial view script will resolve to
that module; the $model argument allows you to explicitly pass variables for use with the partial view. If
you’re not passing either argument, use render() instead!


Basically, unless you are actually passing variables to the partial and need the clean variable scope, or rendering
a view script from another MVC module, there is no reason to incur the overhead of partial(); instead, use
Zend_View‘s built-in render() method to render the view script.







How can I speed up calls to the action() view helper?


Version 1.5.0 introduced the action() view helper, which allows you to dispatch an MVC action and capture its
rendered content. This provides an important step towards the DRY principle, and promotes code reuse. However, as
those who profile their applications will quickly realize, it, too, is an expensive operation. Internally, the
action() view helper needs to clone new request and response objects, invoke the dispatcher, invoke the
requested controller and action, etc.


How can you speed it up?



Use the ActionStack when possible


Introduced at the same time as the action() view helper, the ActionStack consists of an action helper and a front controller plugin. Together,
they allow you to push additional actions to invoke during the dispatch cycle onto a stack. If you are calling
action() from your layout view scripts, you may want to instead use the ActionStack, and render your views to
discrete response segments. As an example, you could write a dispatchLoopStartup() plugin like the following to
add a login form box to each page:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		class LoginPlugin extends Zend_Controller_Plugin_Abstract
{
    protected $_stack;

    public function dispatchLoopStartup(
        Zend_Controller_Request_Abstract $request
    ) {
        $stack = $this->getStack();
        $loginRequest = new Zend_Controller_Request_Simple();
        $loginRequest->setControllerName('user')
                     ->setActionName('index')
                     ->setParam('responseSegment', 'login');
        $stack->pushStack($loginRequest);
    }

    public function getStack()
    {
        if (null === $this->_stack) {
            $front = Zend_Controller_Front::getInstance();
            if (!$front->hasPlugin('Zend_Controller_Plugin_ActionStack')) {
                $stack = new Zend_Controller_Plugin_ActionStack();
                $front->registerPlugin($stack);
            } else {
                $stack = $front->getPlugin('ActionStack')
            }
            $this->_stack = $stack;
        }
        return $this->_stack;
    }
}










The UserController::indexAction() method might then use the $responseSegment parameter to indicate which
response segment to render to. In the layout script, you would then simply render that response segment:


		1


		<?php $this->layout()->login ?>










While the ActionStack still requires a dispatch cycle, this is still cheaper than the action() view helper as
it does not need to clone objects and reset internal state. Additionally, it ensures that all pre and post dispatch
plugins are invoked, which may be of particular concern if you are using front controller plugins for handling
ACL‘s to particular actions.





Favor helpers that query the model over action()


In most cases, using action() is simply overkill. If you have most business logic nested in your models and are
simply querying the model and passing the results to a view script, it will typically be faster and cleaner to
simply write a view helper that pulls the model, queries it, and does something with that information.


As an example, consider the following controller action and view script:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		class BugController extends Zend_Controller_Action
{
    public function listAction()
    {
        $model = new Bug();
        $this->view->bugs = $model->fetchActive();
    }
}

// bug/list.phtml:
echo "<ul>\n";
foreach ($this->bugs as $bug) {
    printf("<li><b>%s</b>: %s</li>\n",
        $this->escape($bug->id),
        $this->escape($bug->summary)
    );
}
echo "</ul>\n";










Using action(), you would then invoke it with the following:


		1


		<?php $this->action('list', 'bug') ?>










This could be refactored to a view helper that looks like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		class My_View_Helper_BugList extends Zend_View_Helper_Abstract
{
    public function bugList()
    {
        $model = new Bug();
        $html  = "<ul>\n";
        foreach ($model->fetchActive() as $bug) {
            $html .= sprintf(
                "<li><b>%s</b>: %s</li>\n",
                $this->view->escape($bug->id),
                $this->view->escape($bug->summary)
            );
        }
        $html .= "</ul>\n";
        return $html;
    }
}










You would then invoke the helper as follows:


		1


		<?php $this->bugList() ?>










This has two benefits: it no longer incurs the overhead of the action() view helper, and also presents a more
semantically understandable API.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                View Rendering
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.post-code.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
PostCode


Zend\Validator\PostCode allows you to determine if a given value is a valid postal code. Postal codes are
specific to cities, and in some locales termed ZIP codes.


Zend\Validator\PostCode knows more than 160 different postal code formats. To select the correct format there
are 2 ways. You can either use a fully qualified locale or you can set your own format manually.


Using a locale is more convenient as Zend Framework already knows the appropriate postal code format for each
locale; however, you need to use the fully qualified locale (one containing a region specifier) to do so. For
instance, the locale “de” is a locale but could not be used with Zend\Validator\PostCode as it does not include
the region; “de_AT”, however, would be a valid locale, as it specifies the region code (“AT”, for Austria).


		1


		$validator = new Zend\Validator\PostCode('de_AT');










When you don’t set a locale yourself, then Zend\Validator\PostCode will use the application wide set locale,
or, when there is none, the locale returned by Locale.


		1
2
3
4


		// application wide locale within your bootstrap
Locale::setDefault('de_AT');

$validator = new Zend\Validator\PostCode();










You can also change the locale afterwards by calling setLocale(). And of course you can get the actual used
locale by calling getLocale().


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator->setLocale('en_GB');










Postal code formats are simply regular expression strings. When the international postal code format, which is used
by setting the locale, does not fit your needs, then you can also manually set a format by calling setFormat().


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator->setFormat('AT-\d{5}');











Note


Conventions for self defined formats


When using self defined formats you should omit the starting ('/^') and ending tags ('$/'). They are
attached automatically.


You should also be aware that postcode values are always be validated in a strict way. This means that they have
to be written standalone without additional characters when they are not covered by the format.





Constructor options


At it’s most basic, you may pass a string representing a fully qualified locale to the constructor of
Zend\Validator\PostCode.


		1
2


		$validator = new Zend\Validator\PostCode('de_AT');
$validator = new Zend\Validator\PostCode($locale);










Additionally, you may pass either an array or a Traversable instance to the constructor. When you do so, you
must include either the key “locale” or “format”; these will be used to set the appropriate values in the validator
object.


		1
2
3
4


		$validator = new Zend\Validator\PostCode(array(
    'locale' => 'de_AT',
    'format' => 'AT_\d+'
));













Supported options for Zend\Validator\PostCode


The following options are supported for Zend\Validator\PostCode:



		format: Sets a postcode format which will be used for validation of the input.


		locale: Sets a locale from which the postcode will be taken from.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                PostCode
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.partial.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Partial Helper


The Partial view helper is used to render a specified template within its own variable scope. The primary use
is for reusable template fragments with which you do not need to worry about variable name clashes. Additionally,
they allow you to specify partial view scripts from specific modules.


A sibling to the Partial, the PartialLoop view helper allows you to pass iterable data, and render a
partial for each item.



Note


PartialLoop Counter


The PartialLoop view helper assigns a variable to the view named partialCounter which passes the current
position of the array to the view script. This provides an easy way to have alternating colors on table rows for
example.




Basic Usage of Partials


Basic usage of partials is to render a template fragment in its own view scope. Consider the following partial
script:


		1
2
3
4
5


		<?php // partial.phtml ?>
<ul>
    <li>From: <?php echo $this->escapeHtml($this->from) ?></li>
    <li>Subject: <?php echo $this->escapeHtml($this->subject) ?></li>
</ul>










You would then call it from your view script using the following:


		1
2
3


		<?php echo $this->partial('partial.phtml', array(
    'from' => 'Team Framework',
    'subject' => 'view partials')); ?>










Which would then render:


		1
2
3
4


		<ul>
    <li>From: Team Framework</li>
    <li>Subject: view partials</li>
</ul>











Note


What is a model?


A model used with the Partial view helper can be one of the following:



		Array. If an array is passed, it should be associative, as its key/value pairs are assigned to the view
with keys as view variables.


		Object implementing toArray() method. If an object is passed an has a toArray() method, the results of
toArray() will be assigned to the view object as view variables.


		Standard object. Any other object will assign the results of object_get_vars() (essentially all public
properties of the object) to the view object.





If your model is an object, you may want to have it passed as an object to the partial script, instead of
serializing it to an array of variables. You can do this by setting the ‘objectKey’ property of the appropriate
helper:


		1
2
3
4
5
6


		// Tell partial to pass objects as 'model' variable
$view->partial()->setObjectKey('model');

// Tell partial to pass objects from partialLoop as 'model' variable
// in final partial view script:
$view->partialLoop()->setObjectKey('model');










This technique is particularly useful when passing Zend_Db_Table_Rowsets to partialLoop(), as you then
have full access to your row objects within the view scripts, allowing you to call methods on them (such as
retrieving values from parent or dependent rows).




Using PartialLoop to Render Iterable Models


Typically, you’ll want to use partials in a loop, to render the same content fragment many times; this way you can
put large blocks of repeated content or complex display logic into a single location. However this has a
performance impact, as the partial helper needs to be invoked once for each iteration.


The PartialLoop view helper helps solve this issue. It allows you to pass an iterable item (array or object
implementing Iterator) as the model. It then iterates over this, passing, the items to the partial script as
the model. Items in the iterator may be any model the Partial view helper allows.


Let’s assume the following partial view script:


		1
2
3


		<?php // partialLoop.phtml ?>
    <dt><?php echo $this->key ?></dt>
    <dd><?php echo $this->value ?></dd>










And the following “model”:


		1
2
3
4
5
6


		$model = array(
    array('key' => 'Mammal', 'value' => 'Camel'),
    array('key' => 'Bird', 'value' => 'Penguin'),
    array('key' => 'Reptile', 'value' => 'Asp'),
    array('key' => 'Fish', 'value' => 'Flounder'),
);










In your view script, you could then invoke the PartialLoop helper:


		1
2
3


		<dl>
<?php echo $this->partialLoop('partialLoop.phtml', $model) ?>
</dl>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<dl>
    <dt>Mammal</dt>
    <dd>Camel</dd>

    <dt>Bird</dt>
    <dd>Penguin</dd>

    <dt>Reptile</dt>
    <dd>Asp</dd>

    <dt>Fish</dt>
    <dd>Flounder</dd>
</dl>










Rendering Partials in Other Modules


Sometime a partial will exist in a different module. If you know the name of the module, you can pass it as the
second argument to either partial() or partialLoop(), moving the $model argument to third position.


For instance, if there’s a pager partial you wish to use that’s in the ‘list’ module, you could grab it as follows:


		1


		<?php echo $this->partial('pager.phtml', 'list', $pagerData) ?>










In this way, you can re-use partials created specifically for other modules. That said, it’s likely a better
practice to put re-usable partials in shared view script paths.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Partial Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.spreadsheets.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Google Spreadsheets


The Google Spreadsheets data API allows client applications to view and update Spreadsheets content in the form
of Google data API feeds. Your client application can request a list of a user’s spreadsheets, edit or delete
content in an existing Spreadsheets worksheet, and query the content in an existing Spreadsheets worksheet.


See http://code.google.com/apis/spreadsheets/overview.html for more information about the Google Spreadsheets
API.



Create a Spreadsheet


The Spreadsheets data API does not currently provide a way to programmatically create or delete a spreadsheet.





Get a List of Spreadsheets


You can get a list of spreadsheets for a particular user by using the getSpreadsheetFeed() method of the
Spreadsheets service. The service will return a Zend_Gdata_Spreadsheets_SpreadsheetFeed object containing a
list of spreadsheets associated with the authenticated user.


		1
2
3
4


		$service = Zend_Gdata_Spreadsheets::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$spreadsheetService = new Zend_Gdata_Spreadsheets($client);
$feed = $spreadsheetService->getSpreadsheetFeed();













Get a List of Worksheets


A given spreadsheet may contain multiple worksheets. For each spreadsheet, there’s a worksheets metafeed listing
all the worksheets in that spreadsheet.


Given the spreadsheet key from the <id> of a Zend_Gdata_Spreadsheets_SpreadsheetEntry object you’ve already
retrieved, you can fetch a feed containing a list of worksheets associated with that spreadsheet.


		1
2
3


		$query = new Zend_Gdata_Spreadsheets_DocumentQuery();
$query->setSpreadsheetKey($spreadsheetKey);
$feed = $spreadsheetService->getWorksheetFeed($query);










The resulting Zend_Gdata_Spreadsheets_WorksheetFeed object feed represents the response from the server. Among
other things, this feed contains a list of Zend_Gdata_Spreadsheets_WorksheetEntry objects ($feed->entries),
each of which represents a single worksheet.





Interacting With List-based Feeds


A given worksheet generally contains multiple rows, each containing multiple cells. You can request data from the
worksheet either as a list-based feed, in which each entry represents a row, or as a cell-based feed, in which each
entry represents a single cell. For information on cell-based feeds, see Interacting with cell-based feeds.


The following sections describe how to get a list-based feed, add a row to a worksheet, and send queries with
various query parameters.


The list feed makes some assumptions about how the data is laid out in the spreadsheet.


In particular, the list feed treats the first row of the worksheet as a header row; Spreadsheets dynamically
creates XML elements named after the contents of header-row cells. Users who want to provide Gdata feeds should
not put any data other than column headers in the first row of a worksheet.


The list feed contains all rows after the first row up to the first blank row. The first blank row terminates the
data set. If expected data isn’t appearing in a feed, check the worksheet manually to see whether there’s an
unexpected blank row in the middle of the data. In particular, if the second row of the spreadsheet is blank, then
the list feed will contain no data.


A row in a list feed is as many columns wide as the worksheet itself.



Get a List-based Feed


To retrieve a worksheet’s list feed, use the getListFeed() method of the Spreadsheets service.


		1
2
3
4


		$query = new Zend_Gdata_Spreadsheets_ListQuery();
$query->setSpreadsheetKey($spreadsheetKey);
$query->setWorksheetId($worksheetId);
$listFeed = $spreadsheetService->getListFeed($query);










The resulting Zend_Gdata_Spreadsheets_ListFeed object $listfeed represents a response from the server.
Among other things, this feed contains an array of Zend_Gdata_Spreadsheets_ListEntry objects
($listFeed->entries), each of which represents a single row in a worksheet.


Each Zend_Gdata_Spreadsheets_ListEntry contains an array, custom, which contains the data for that row. You
can extract and display this array:


		1
2
3
4


		$rowData = $listFeed->entries[1]->getCustom();
foreach($rowData as $customEntry) {
  echo $customEntry->getColumnName() . " = " . $customEntry->getText();
}










An alternate version of this array, customByName, allows direct access to an entry’s cells by name. This is
convenient when trying to access a specific header:


		1
2


		$customEntry = $listFeed->entries[1]->getCustomByName('my_heading');
echo $customEntry->getColumnName() . " = " . $customEntry->getText();













Reverse-sort Rows


By default, rows in the feed appear in the same order as the corresponding rows in the GUI; that is, they’re in
order by row number. To get rows in reverse order, set the reverse properties of the
Zend_Gdata_Spreadsheets_ListQuery object to TRUE:


		1
2
3
4
5


		$query = new Zend_Gdata_Spreadsheets_ListQuery();
$query->setSpreadsheetKey($spreadsheetKey);
$query->setWorksheetId($worksheetId);
$query->setReverse('true');
$listFeed = $spreadsheetService->getListFeed($query);










Note that if you want to order (or reverse sort) by a particular column, rather than by position in the worksheet,
you can set the orderby value of the Zend_Gdata_Spreadsheets_ListQuery object to column:<the header of
that column>.





Send a Structured Query


You can set a Zend_Gdata_Spreadsheets_ListQuery‘s sq value to produce a feed with entries that meet the
specified criteria. For example, suppose you have a worksheet containing personnel data, in which each row
represents information about a single person. You wish to retrieve all rows in which the person’s name is “John”
and the person’s age is over 25. To do so, you would set sq as follows:


		1
2
3
4
5


		$query = new Zend_Gdata_Spreadsheets_ListQuery();
$query->setSpreadsheetKey($spreadsheetKey);
$query->setWorksheetId($worksheetId);
$query->setSpreadsheetQuery('name=John and age>25');
$listFeed = $spreadsheetService->getListFeed($query);













Add a Row


Rows can be added to a spreadsheet by using the insertRow() method of the Spreadsheet service.


		1
2
3


		$insertedListEntry = $spreadsheetService->insertRow($rowData,
                                                    $spreadsheetKey,
                                                    $worksheetId);










The $rowData parameter contains an array of column keys to data values. The method returns a
Zend_Gdata_Spreadsheets_SpreadsheetsEntry object which represents the inserted row.


Spreadsheets inserts the new row immediately after the last row that appears in the list-based feed, which is to
say immediately before the first entirely blank row.





Edit a Row


Once a Zend_Gdata_Spreadsheets_ListEntry object is fetched, its rows can be updated by using the
updateRow() method of the Spreadsheet service.


		1
2


		$updatedListEntry = $spreadsheetService->updateRow($oldListEntry,
                                                   $newRowData);










The $oldListEntry parameter contains the list entry to be updated. $newRowData contains an array of column
keys to data values, to be used as the new row data. The method returns a
Zend_Gdata_Spreadsheets_SpreadsheetsEntry object which represents the updated row.





Delete a Row


To delete a row, simply invoke deleteRow() on the Zend_Gdata_Spreadsheets object with the existing entry to
be deleted:


		1


		$spreadsheetService->deleteRow($listEntry);










Alternatively, you can call the delete() method of the entry itself:


		1


		$listEntry->delete();















Interacting With Cell-based Feeds


In a cell-based feed, each entry represents a single cell.


Note that we don’t recommend interacting with both a cell-based feed and a list-based feed for the same worksheet
at the same time.



Get a Cell-based Feed


To retrieve a worksheet’s cell feed, use the getCellFeed() method of the Spreadsheets service.


		1
2
3
4


		$query = new Zend_Gdata_Spreadsheets_CellQuery();
$query->setSpreadsheetKey($spreadsheetKey);
$query->setWorksheetId($worksheetId);
$cellFeed = $spreadsheetService->getCellFeed($query);










The resulting Zend_Gdata_Spreadsheets_CellFeed object $cellFeed represents a response from the server.
Among other things, this feed contains an array of Zend_Gdata_Spreadsheets_CellEntry objects
($cellFeed>entries), each of which represents a single cell in a worksheet. You can display this information:


		1
2
3
4
5
6


		foreach($cellFeed as $cellEntry) {
  $row = $cellEntry->cell->getRow();
  $col = $cellEntry->cell->getColumn();
  $val = $cellEntry->cell->getText();
  echo "$row, $col = $val\n";
}













Send a Cell Range Query


Suppose you wanted to retrieve the cells in the first column of a worksheet. You can request a cell feed containing
only this column as follows:


		1
2
3
4
5


		$query = new Zend_Gdata_Spreadsheets_CellQuery();
$query->setMinCol(1);
$query->setMaxCol(1);
$query->setMinRow(2);
$feed = $spreadsheetService->getCellsFeed($query);










This requests all the data in column 1, starting with row 2.





Change Contents of a Cell


To modify the contents of a cell, call updateCell() with the row, column, and new value of the cell.


		1
2
3
4
5


		$updatedCell = $spreadsheetService->updateCell($row,
                                               $col,
                                               $inputValue,
                                               $spreadsheetKey,
                                               $worksheetId);










The new data is placed in the specified cell in the worksheet. If the specified cell contains data already, it will
be overwritten. Note: Use updateCell() to change the data in a cell, even if the cell is empty.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Google Spreadsheets
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/requirements.dependencies.table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework Components and their dependency to other Zend Framework Components





		Zend Framework Component
		 





		ZendPermissionsAcl
		 



		Zend_Amf
		 



		Zend_Server
		 



		Soft
		 



		Zend_Loader
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Auth
		 



		Soft
		 



		Zend_InfoCard
		 



		Zend_Ldap
		 



		Zend_OpenId
		 



		Zend_Session
		 



		Fix
		 



		Zend_Http
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_View
		 



		Sub
		 



		Zend_Config
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_Cache
		 



		Soft
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Captcha
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_ReLoader
		 



		Zend_Config
		 



		Zend_Console_Getopt
		 



		Soft
		 



		Sub
		 



		Zend_Server
		 



		Zend_Controller
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_View
		 



		Soft
		 



		Zend_Json
		 



		Zend_Layout
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Currency
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Date
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Db
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Wildfire
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Debug
		 



		Hard
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Registry
		 



		Zend_View
		 



		Soft
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Feed
		 



		Zend_Loader
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Http
		 



		Zend_Registry
		 



		Zend_File_Transfer
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Loader
		 



		Zend_Validate
		 



		Soft
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Form
		 



		Zend_Filter
		 



		Zend_Validate
		 



		Soft
		 



		Zend_Controller
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Session
		 



		Fix
		 



		Zend_Http
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_View
		 



		Sub
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Layout
		 



		Zend_Wildfire
		 



		Zend_Gdata
		 



		Zend_Http
		 



		Zend_Mime
		 



		Zend_Version
		 



		Soft
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Loader
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_InfoCard
		 



		Zend_Loader
		 



		Zend_Json
		 



		Zend_Loader
		 



		Zend_Server
		 



		Zend_Layout
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Loader
		 



		Zend_View
		 



		Fix
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Ldap
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Soft
		 



		Sub
		 



		Zend_Log
		 



		Soft
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Mail
		 



		Zend_Loader
		 



		Zend_Mime
		 



		Zend_Validate
		 



		Fix
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Measure
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Sub
		 



		Zend_Memory
		 



		Zend_Exception
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Log
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Mime
		 



		Zend_OpenId
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Session
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Paginator
		 



		Zend_Json
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Db
		 



		Zend_View
		 



		Fix
		 



		Sub
		 



		Zend_Config
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_Pdf
		 



		Zend_Log
		 



		Zend_Memory
		 



		Fix
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Progressbar
		 



		Zend_Exception
		 



		Zend_Json
		 



		Soft
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Server
		 



		Sub
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Registry
		 



		Soft
		 



		Zend_Request
		 



		Zend_Rest
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Search_Lucene
		 



		Zend_Serializer
		 



		Zend_Loader
		 



		Soft
		 



		Zend_Amf
		 



		Zend_Server
		 



		Zend_Service_Akismet
		 



		Zend_Http
		 



		Zend_Uri
		 



		Zend_Version
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Amazon
		 



		Zend_Http
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Http
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Delicious
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Service_Flickr
		 



		Zend_Http
		 



		Soft
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Nirvanix
		 



		Zend_Http
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_ReCaptcha
		 



		Zend_Http
		 



		Zend_Json
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Rest
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_SlideShare
		 



		Zend_Exception
		 



		Zend_Http
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Config
		 



		Zend_Controller
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Log
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Service_StrikeIron
		 



		Zend_Http
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Service_Technorati
		 



		Zend_Exception
		 



		Zend_Http
		 



		Zend_Uri
		 



		Zend_Locale
		 



		Soft
		 



		Fix
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Registry
		 



		Zend_Service_Twitter
		 



		Zend_Feed
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Rest
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Validate
		 



		Fix
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Http
		 



		Zend_Rest
		 



		Soft
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Server
		 



		Zend_Service
		 



		Zend_Uri
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Session
		 



		Soft
		 



		Zend_Db
		 



		Zend_Loader
		 



		Sub
		 



		Zend_Date
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_Wildfire
		 



		Zend_Soap
		 



		Zend_Server
		 



		Zend_Uri
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Session
		 



		Soft
		 



		Fix
		 



		Zend_Locale
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Json
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Text
		 



		Soft
		 



		Zend_TimeSync
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Fix
		 



		Sub
		 



		Zend_Translator
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Uri
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Validate
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Validate
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Soft
		 



		Zend_Filter
		 



		Zend_Registry
		 



		Zend_Version
		 



		Zend_View
		 



		Zend_Exception
		 



		Zend_Loader
		 



		Zend_Locale
		 



		Zend_Registry
		 



		Soft
		 



		Zend_Layout
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Server
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_Wildfire
		 



		Zend_Wildfire
		 



		Zend_Exception
		 



		Zend_Json
		 



		Zend_Loader
		 



		Fix
		 



		Zend_Layout
		 



		Zend_Registry
		 



		Zend_Server
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_View
		 



		Sub
		 



		Zend_Date
		 



		Zend_Db
		 



		Zend_Filter
		 



		Zend_Form
		 



		Zend_Http
		 



		Zend_Layout
		 



		Zend_Service_ReCaptcha
		 



		Zend_Session
		 



		Zend_Text
		 



		Zend_XmlRpc
		 



		Zend_Http
		 



		Zend_Server
		 



		Fix
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Zend_Locale
		 



		Sub
		 



		Zend_Filter
		 



		Zend_Registry
		 









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                <no title>
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.pdf.create.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Creating and Loading PDF Documents


The Zend_Pdf class represents PDF documents and provides document-level operations.


To create a new document, a new Zend_Pdf object should first be created.


Zend_Pdf class also provides two static methods to load an existing PDF document. These are the
Zend_Pdf::load() and Zend_Pdf::parse() methods. Both of them return Zend_Pdf objects as a result or
throw an exception if an error occurs.


Create new or load existing PDF document


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		...
// Create a new PDF document
$pdf1 = new Zend_Pdf();

// Load a PDF document from a file
$pdf2 = Zend_Pdf::load($fileName);

// Load a PDF document from a string
$pdf3 = Zend_Pdf::parse($pdfString);
...










The PDF file format supports incremental document update. Thus each time a document is updated, then a new
revision of the document is created. Zend_Pdf component supports the retrieval of a specified revision.


A revision can be specified as a second parameter to the Zend_Pdf::load() and Zend_Pdf::parse() methods or
requested by calling the Zend_Pdf::rollback() method. [1] call.


Requesting Specific Revisions of a PDF Document


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		...
// Load the previous revision of the PDF document
$pdf1 = Zend_Pdf::load($fileName, 1);

// Load the previous revision of the PDF document
$pdf2 = Zend_Pdf::parse($pdfString, 1);

// Load the first revision of the PDF document
$pdf3 = Zend_Pdf::load($fileName);
$revisions = $pdf3->revisions();
$pdf3->rollback($revisions - 1);
...













		[1]		Zend_Pdf::rollback() method must be invoked before any changes are applied to the document, otherwise
the behavior is not defined.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Creating and Loading PDF Documents
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.file.options.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Mail\Transport\FileOptions



Overview


This document details the various options available to the Zend\Mail\Transport\File mail transport.





Quick Start


File Transport Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Mail\Transport\File as FileTransport;
use Zend\Mail\Transport\FileOptions;

// Setup SMTP transport using LOGIN authentication
$transport = new FileTransport();
$options   = new FileOptions(array(
    'path'              => 'data/mail/',
    'callback'  => function (FileTransport $transport) {
        return 'Message_' . microtime(true) . '_' . mt_rand() . '.txt';
    },
));
$transport->setOptions($options);













Configuration Options


Configuration Options



		path


		The path under which mail files will be written.






		callback


		A PHP callable to be invoked in order to generate a unique name for a message file. By default, the following is
used:


		1
2
3


		function (Zend\Mail\FileTransport $transport) {
    return 'ZendMail_' . time() . '_' . mt_rand() . '.tmp';
}



















Available Methods


Zend\Mail\Transport\FileOptions extends Zend\Stdlib\Options, and inherits all functionality from that
class; this includes ArrayAccess and property overloading. Additionally, the following explicit setters and
getters are provided.



		__construct


		setPath(string $path)


Set the path under which mail files will be written.


Implements fluent interface.









		getPath


		getPath()


Get the path under which mail files will be written.


Returns string









		setCallback


		setCallback(Callable $callback)


Set the callback used to generate unique filenames for messages.


Implements fluent interface.









		getCallback


		getCallback()


Get the callback used to generate unique filenames for messages.


Returns PHP callable argument.









		__construct


		__construct(null|array|Traversable $config)


Initialize the object. Allows passing a PHP array or Traversable object with which to populate the instance.











Examples


Please see the Quick Start for examples.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Mail\Transport\FileOptions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/requirements.zendcomponents.table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework Components and the PHP Extensions they use





		Zend Framework Components and the PHP Extensions they use
		 





		All Components
		 



		SPL
		 



		standard
		 



		ZendPermissionsAcl
		 



		Zend_Amf
		 



		Soft
		 



		SimpleXML
		 



		Zend_Auth
		 



		hash
		 



		Zend_Cache
		 



		memcache
		 



		sqlite
		 



		zlib
		 



		Zend_Captcha
		 



		Zend_Config
		 



		SimpleXML
		 



		Zend_Console_Getopt
		 



		Zend_Controller
		 



		session
		 



		Zend_Currency
		 



		Zend_Db
		 



		mysqli
		 



		oci8
		 



		pdo
		 



		pdo_mssql
		 



		pdo_mysql
		 



		pdo_oci
		 



		pdo_pgsql
		 



		pdo_sqlite
		 



		Zend_Debug
		 



		Zend_Dom
		 



		Zend_Exception
		 



		Zend_Feed
		 



		libxml
		 



		mbstring
		 



		SimpleXML
		 



		Zend_File_Transfer
		 



		upload_extension
		 



		Zend_Filter
		 



		Soft
		 



		Zend_Form
		 



		Zend_Gdata
		 



		dom
		 



		libxml
		 



		Zend_Http
		 



		curl
		 



		mime_magic
		 



		Zend_InfoCard
		 



		Zend_Json
		 



		Hard
		 



		Zend_Layout
		 



		Zend_Ldap
		 



		Zend_Loader
		 



		Zend_Log
		 



		libxml
		 



		Reflection
		 



		Zend_Mail
		 



		Zend_Measure
		 



		Zend_Memory
		 



		Zend_Mime
		 



		Zend_OpenId
		 



		Zend_Paginator
		 



		Zend_Pdf
		 



		gd
		 



		iconv
		 



		zlib
		 



		Zend_ProgressBar
		 



		Zend_Request
		 



		Zend_Rest
		 



		dom
		 



		libxml
		 



		Reflection
		 



		SimpleXML
		 



		Zend_Search_Lucene
		 



		Hard
		 



		dom
		 



		iconv
		 



		libxml
		 



		Zend_Serializer
		 



		SimpleXml
		 



		igbinary
		 



		Soft
		 



		Zend_Server_Reflection
		 



		Zend_Service_Akismet
		 



		Zend_Service_Amazon
		 



		libxml
		 



		Zend_Service_Audioscrobbler
		 



		libxml
		 



		SimpleXML
		 



		Zend_Service_Delicious
		 



		libxml
		 



		Zend_Service_Flickr
		 



		iconv
		 



		libxml
		 



		Zend_Service_Nirvanix
		 



		Zend_Service_ReCaptcha
		 



		libxml
		 



		Zend_Service_SlideShare
		 



		Zend_Service_StrikeIron
		 



		Zend_Service_Technorati
		 



		Zend_Service_Twitter
		 



		libxml
		 



		Zend_Session
		 



		Zend_Soap
		 



		SimpleXML
		 



		soap
		 



		Zend_Text
		 



		Zend_TimeSync
		 



		Zend_Uri
		 



		Zend_Validate
		 



		Reflection
		 



		Zend_Validate_Hostname
		 



		Zend_Validate_StringLength
		 



		Zend_Version
		 



		Zend_Validate
		 



		Zend_Wildfire
		 



		Zend_XmlRpc
		 



		iconv
		 



		libxml
		 



		Reflection
		 



		SimpleXML
		 









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                <no title>
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/ajax-loader.gif





ref/performance.classloading.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Class Loading


Anyone who ever performs profiling of a Zend Framework application will immediately recognize that class loading is
relatively expensive in Zend Framework. Between the sheer number of class files that need to be loaded for many
components, to the use of plugins that do not have a 1:1 relationship between their class name and the file system,
the various calls to include_once() and require_once() can be problematic. This chapter intends to provide
some concrete solutions to these issues.



How can I optimize my include_path?


One trivial optimization you can do to increase the speed of class loading is to pay careful attention to your
include_path. In particular, you should do four things: use absolute paths (or paths relative to absolute paths),
reduce the number of include paths you define, have your Zend Framework include_path as early as possible, and only
include the current directory path at the end of your include_path.



Use absolute paths


While this may seem a micro-optimization, the fact is that if you don’t, you’ll get very little benefit from
PHP‘s realpath cache, and as a result, opcode caching will not perform nearly as you may expect.


There are two easy ways to ensure this. First, you can hardcode the paths in your php.ini, httpd.conf, or
.htaccess. Second, you can use PHP‘s realpath() function when setting your include_path:


		1
2
3
4
5


		$paths = array(
    realpath(dirname(__FILE__) . '/../library'),
    '.',
);
set_include_path(implode(PATH_SEPARATOR, $paths);










You can use relative paths – so long as they are relative to an absolute path:


		1
2
3
4
5
6


		define('APPLICATION_PATH', realpath(dirname(__FILE__)));
$paths = array(
    APPLICATION_PATH . '/../library'),
    '.',
);
set_include_path(implode(PATH_SEPARATOR, $paths);










However, even so, it’s typically a trivial task to simply pass the path to realpath().





Reduce the number of include paths you define


Include paths are scanned in the order in which they appear in the include_path. Obviously, this means that you’ll
get a result faster if the file is found on the first scan rather than the last. Thus, a rather obvious enhancement
is to simply reduce the number of paths in your include_path to only what you need. Look through each include_path
you’ve defined, and determine if you actually have any functionality in that path that is used in your application;
if not, remove it.


Another optimization is to combine paths. For instance, Zend Framework follows PEAR naming conventions; thus, if
you are using PEAR libraries (or libraries from another framework or component library that follows PEAR CS),
try to put all of these libraries on the same include_path. This can often be achieved by something as simple as
symlinking one or more libraries into a common directory.





Define your Zend Framework include_path as early as possible


Continuing from the previous suggestion, another obvious optimization is to define your Zend Framework include_path
as early as possible in your include_path. In most cases, it should be the first path in the list. This ensures
that files included from Zend Framework are found on the first scan.





Define the current directory last, or not at all


Most include_path examples show using the current directory, or ‘.’. This is convenient for ensuring that scripts
in the same directory as the file requiring them can be loaded. However, these same examples typically show this
path item as the first item in the include_path – which means that the current directory tree is always scanned
first. In most cases, with Zend Framework applications, this is not desired, and the path may be safely pushed to
the last item in the list.


Example: Optimized include_path


Let’s put all of these suggestions together. Our assumption will be that you are using one or more PEAR libraries
in conjunction with Zend Framework – perhaps the PHPUnit and Archive_Tar libraries – and that you
occasionally need to include files relative to the current file.


First, we’ll create a library directory in our project. Inside that directory, we’ll symlink our Zend Framework’s
library/Zend directory, as well as the necessary directories from our PEAR installation:


		1
2
3
4
5


		library
    Archive/
    PEAR/
    PHPUnit/
    Zend/










This allows us to add our own library code if necessary, while keeping shared libraries intact.


Next, we’ll opt to create our include_path programmatically within our public/index.php file. This allows us to
move our code around on the file system, without needing to edit the include_path every time.


We’ll borrow ideas from each of the suggestions above: we’ll use absolute paths, as determined using
realpath(); we’ll include Zend Framework’s include path early; we’ve already consolidated include_paths; and
we’ll put the current directory as the last path. In fact, we’re doing really well here – we’re going to end up
with only two paths.


		1
2
3
4
5


		$paths = array(
    realpath(dirname(__FILE__) . '/../library'),
    '.'
);
set_include_path(implode(PATH_SEPARATOR, $paths));















How can I eliminate unnecessary require_once statements?


Lazy loading is an optimization technique designed to push the expensive operation of loading a class file until
the last possible moment – i.e., when instantiating an object of that class, calling a static class method, or
referencing a class constant or static property. PHP supports this via autoloading, which allows you to define
one or more callbacks to execute in order to map a class name to a file.


However, most benefits you may reap from autoloading are negated if your library code is still performing
require_once() calls – which is precisely the case with Zend Framework. So, the question is: how can you
eliminate those require_once() calls in order to maximize autoloader performance?



Strip require_once calls with find and sed


An easy way to strip require_once() calls is to use the UNIX utilities ‘find’ and ‘sed’ in conjunction to
comment out each call. Try executing the following statements (where ‘%’ indicates the shell prompt):


		1
2
3
4


		% cd path/to/ZendFramework/library
% find . -name '*.php' -not -wholename '*/Loader/Autoloader.php' \
  -not -wholename '*/Application.php' -print0 | \
  xargs -0 sed --regexp-extended --in-place 's/(require_once)/\/\/ \1/g'










This one-liner (broken into two lines for readability) iterates through each PHP file and tells it to replace
each instance of ‘require_once’ with ‘// require_once’, effectively commenting out each such statement. (It
selectively keeps require_once() calls within Zend_Application and Zend_Loader_Autoloader, as these
classes will fail without them.)


This command could be added to an automated build or release process trivially, helping boost performance in your
production application. It should be noted, however, that if you use this technique, you must utilize
autoloading; you can do that from your “public/index.php” file with the following code:


		1
2


		require_once 'Zend/Loader/Autoloader.php';
Zend_Loader_Autoloader::getInstance();















How can I speed up plugin loading?


Many components have plugins, which allow you to create your own classes to utilize with the component, as well as
to override existing, standard plugins shipped with Zend Framework. This provides important flexibility to the
framework, but at a price: plugin loading is a fairly expensive task.


The plugin loader allows you to register class prefix / path pairs, allowing you to specify class files in
non-standard paths. Each prefix can have multiple paths associated with it. Internally, the plugin loader loops
through each prefix, and then through each path attached to it, testing to see if the file exists and is readable
on that path. It then loads it, and tests to see that the class it is looking for is available. As you might
imagine, this can lead to many stat calls on the file system.


Multiply this by the number of components that use the PluginLoader, and you get an idea of the scope of this
issue. At the time of this writing, the following components made use of the PluginLoader:



		Zend_Controller_Action_HelperBroker: helpers


		Zend_File_Transfer: adapters


		Zend_Filter_Inflector: filters (used by the ViewRenderer action helper and Zend_Layout)


		Zend_Filter_Input: filters and validators


		Zend_Form: elements, validators, filters, decorators, captcha and file transfer adapters


		Zend_Paginator: adapters


		Zend_View: helpers, filters





How can you reduce the number of such calls made?



Use the PluginLoader include file cache


Zend Framework 1.7.0 adds an include file cache to the PluginLoader. This functionality writes “include_once()”
calls to a file, which you can then include in your bootstrap. While this introduces extra include_once() calls
to your code, it also ensures that the PluginLoader returns as early as possible.


The PluginLoader documentation includes a complete example of its use.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Class Loading
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Pages


Zend_Navigation ships with two page types:



		MVC pages – using the class Zend\Navigation\Page\Mvc


		URI pages – using the class Zend\Navigation\Page\Uri





MVC pages are link to on-site web pages, and are defined using MVC parameters (action, controller,
route, params). URI pages are defined by a single property uri, which give you the full flexibility to link
off-site pages or do other things with the generated links (e.g. an URI that turns into <a href="#">foo<a>).





Common page features


All page classes must extend Zend\Navigation\Page\AbstractPage, and will thus share a common set of features
and properties. Most notably they share the options in the table below and the same initialization process.


Option keys are mapped to set methods. This means that the option order maps to the method setOrder(), and
reset_params maps to the method setResetParams(). If there is no setter method for the option, it will be set
as a custom property of the page.


Read more on extending Zend\Navigation\Page\AbstractPage in Creating custom page types.



Common page options







		Key
		Type
		Default
		Description





		label
		String
		NULL
		A page label, such as ‘Home’ or ‘Blog’.



		fragment
		String | NULL
		NULL
		A fragment identifier (anchor identifier) pointing to an anchor within a resource that is subordinate to another, primary resource. The fragment identifier introduced by a hash mark “#”. Example: http://www.example.org/foo.html#bar (bar is the fragment identifier)



		id
		String | int
		NULL
		An id tag/attribute that may be used when rendering the page, typically in an anchor element.



		class
		String
		NULL
		A CSS class that may be used when rendering the page, typically in an anchor element.



		title
		String
		NULL
		A short page description, typically for using as the title attribute in an anchor.



		target
		String
		NULL
		Specifies a target that may be used for the page, typically in an anchor element.



		rel
		Array
		array()
		Specifies forward relations for the page. Each element in the array is a key-value pair, where the key designates the relation/link type, and the value is a pointer to the linked page. An example of a key-value pair is 'alternate' => 'format/plain.html'. To allow full flexbility, there are no restrictions on relation values. The value does not have to be a string. Read more about rel and rev in the section on the Links helper.



		rev
		Array
		array()
		Specifies reverse relations for the page. Works exactly like rel.



		order
		String | int | NULL
		NULL
		Works like order for elements in Zend\Form. If specified, the page will be iterated in a specific order, meaning you can force a page to be iterated before others by setting the order attribute to a low number, e.g. -100. If a String is given, it must parse to a valid int. If NULL is given, it will be reset, meaning the order in which the page was added to the container will be used.



		resource
		String | Zend\Permissions\Acl\Resource\ResourceInterface | NULL
		NULL
		ACL resource to associate with the page. Read more in the section on ACL integration in view helpers.



		privilege
		String | NULL
		NULL
		ACL privilege to associate with the page. Read more in the section on ACL integration in view helpers.



		active
		bool
		FALSE
		Whether the page should be considered active for the current request. If active is FALSE or not given, MVC pages will check its properties against the request object upon calling $page->isActive().



		visible
		bool
		TRUE
		Whether page should be visible for the user, or just be a part of the structure. Invisible pages are skipped by view helpers.



		pages
		Array | ZendConfig | NULL
		NULL
		Child pages of the page. This could be an Array or Zend\Config object containing either page options that can be passed to the factory() method, or actual Zend\Navigation\Page\AbstractPage instances, or a mixture of both.








Note


Custom properties


All pages support setting and getting of custom properties by use of the magic methods __set($name, $value),
__get($name), __isset($name) and __unset($name). Custom properties may have any value, and will be
included in the array that is returned from $page->toArray(), which means that pages can be
serialized/deserialized successfully even if the pages contains properties that are not native in the page
class.


Both native and custom properties can be set using $page->set($name, $value) and retrieved using
$page->get($name), or by using magic methods.




Custom page properties


This example shows how custom properties can be used.


		1
2
3
4
5
6
7
8
9


		$page = new Zend\Navigation\Page\Mvc();
$page->foo = 'bar';
$page->meaning = 42;

echo $page->foo;

if ($page->meaning != 42) {
    // action should be taken
}













Zend_Navigation_Page_Mvc


MVC pages are defined using MVC parameters known from the Zend_Controller component. An MVC page will use
Zend_Controller_Action_Helper_Url internally in the getHref() method to generate hrefs, and the
isActive() method will intersect the Zend_Controller_Request_Abstract params with the page’s params to
determine if the page is active.



MVC page options







		Key
		Type
		Default
		Description





		action
		String
		NULL
		Action name to use when generating href to the page.



		controller
		String
		NULL
		Controller name to use when generating href to the page.



		module
		String
		NULL
		Module name to use when generating href to the page.



		params
		Array
		array()
		User params to use when generating href to the page.



		route
		String
		NULL
		Route name to use when generating href to the page.



		reset_params
		bool
		TRUE
		Whether user params should be reset when generating href to the page.








Note


The three examples below assume a default MVC setup with the default route in place.


The URI returned is relative to the baseUrl in Zend_Controller_Front. In the examples, the baseUrl is
‘/’ for simplicity.




getHref() generates the page URI


This example show that MVC pages use Zend_Controller_Action_Helper_Url internally to generate URIs when
calling $page->getHref().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		// getHref() returns /
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'index',
    'controller' => 'index'
));

// getHref() returns /blog/post/view
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog'
));

// getHref() returns /blog/post/view/id/1337
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog',
    'params'     => array('id' => 1337)
));










isActive() determines if page is active


This example show that MVC pages determine whether they are active by using the params found in the request
object.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


		/*
 * Dispatched request:
 * - module:     default
 * - controller: index
 * - action:     index
 */
$page1 = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'index',
    'controller' => 'index'
));

$page2 = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'bar',
    'controller' => 'index'
));

$page1->isActive(); // returns true
$page2->isActive(); // returns false

/*
 * Dispatched request:
 * - module:     blog
 * - controller: post
 * - action:     view
 * - id:         1337
 */
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog'
));

// returns true, because request has the same module, controller and action
$page->isActive();

/*
 * Dispatched request:
 * - module:     blog
 * - controller: post
 * - action:     view
 */
$page = new Zend_Navigation_Page_Mvc(array(
    'action'     => 'view',
    'controller' => 'post',
    'module'     => 'blog',
    'params'     => array('id' => null)
));

// returns false, because page requires the id param to be set in the request
$page->isActive(); // returns false










Using routes


Routes can be used with MVC pages. If a page has a route, this route will be used in getHref() to generate
the URL for the page.



Note


Note that when using the route property in a page, you should also specify the default params that the route
defines (module, controller, action, etc.), otherwise the isActive() method will not be able to determine if
the page is active. The reason for this is that there is currently no way to get the default params from a
Zend_Controller_Router_Route_Interface object, nor to retrieve the current route from a
Zend_Controller_Router_Interface object.




		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// the following route is added to the ZF router
Zend_Controller_Front::getInstance()->getRouter()->addRoute(
    'article_view', // route name
    new Zend_Controller_Router_Route(
        'a/:id',
        array(
            'module'     => 'news',
            'controller' => 'article',
            'action'     => 'view',
            'id'         => null
        )
    )
);

// a page is created with a 'route' option
$page = new Zend_Navigation_Page_Mvc(array(
    'label'      => 'A news article',
    'route'      => 'article_view',
    'module'     => 'news',    // required for isActive(), see note above
    'controller' => 'article', // required for isActive(), see note above
    'action'     => 'view',    // required for isActive(), see note above
    'params'     => array('id' => 42)
));

// returns: /a/42
$page->getHref();













ZendNavigationPageUri


Pages of type Zend\Navigation\Page\Uri can be used to link to pages on other domains or sites, or to implement
custom logic for the page. URI pages are simple; in addition to the common page options, a URI page takes only
one option — uri. The uri will be returned when calling $page->getHref(), and may be a String or
NULL.



Note


Zend\Navigation\Page\Uri will not try to determine whether it should be active when calling
$page->isActive(). It merely returns what currently is set, so to make a URI page active you have to
manually call $page->setActive() or specifying active as a page option when constructing.





URI page options







		Key
		Type
		Default
		Description





		uri
		String
		NULL
		URI to page. This can be any string or NULL.










Creating custom page types


When extending Zend\Navigation\Page, there is usually no need to override the constructor or the methods
setOptions() or setConfig(). The page constructor takes a single parameter, an Array or a
Zend\Config object, which is passed to setOptions() or setConfig() respectively. Those methods will in
turn call set() method, which will map options to native or custom properties. If the option internal_id is
given, the method will first look for a method named setInternalId(), and pass the option to this method if it
exists. If the method does not exist, the option will be set as a custom property of the page, and be accessible
via $internalId = $page->internal_id; or $internalId = $page->get('internal_id');.


The most simple custom page


The only thing a custom page class needs to implement is the getHref() method.


		1
2
3
4
5
6
7


		class My\Simple\Page extends Zend\Navigation\Page
{
    public function getHref()
    {
        return 'something-completely-different';
    }
}










A custom page with properties


When adding properties to an extended page, there is no need to override/modify setOptions() or
setConfig().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		class My\Navigation\Page extends Zend\Navigation\Page
{
    protected $foo;
    protected $fooBar;

    public function setFoo($foo)
    {
        $this->foo = $foo;
    }

    public function getFoo()
    {
        return $this->oo;
    }

    public function setFooBar($fooBar)
    {
        $this->fooBar = $fooBar;
    }

    public function getFooBar()
    {
        return $this->fooBar;
    }

    public function getHref()
    {
        return $this->foo . '/' . $this->fooBar;
    }
}

// can now construct using
$page = new My\Navigation\Page(array(
    'label'   => 'Property names are mapped to setters',
    'foo'     => 'bar',
    'foo_bar' => 'baz'
));

// ...or
$page = Zend\Navigation\Page::factory(array(
    'type'    => 'My\Navigation\Page',
    'label'   => 'Property names are mapped to setters',
    'foo'     => 'bar',
    'foo_bar' => 'baz'
));













Creating pages using the page factory


All pages (also custom classes), can be created using the page factory, Zend_Navigation_Page::factory(). The
factory can take an array with options, or a Zend_Config object. Each key in the array/config corresponds to a
page option, as seen in the section on Pages. If the option uri is given and no
MVC options are given (action, controller, module, route), an URI page will be created. If any of the MVC
options are given, an MVC page will be created.


If type is given, the factory will assume the value to be the name of the class that should be created. If the
value is mvc or uri and MVC/URI page will be created.


Creating an MVC page using the page factory


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		$page = Zend_Navigation_Page::factory(array(
    'label'  => 'My MVC page',
    'action' => 'index'
));

$page = Zend_Navigation_Page::factory(array(
    'label'      => 'Search blog',
    'action'     => 'index',
    'controller' => 'search',
    'module'     => 'blog'
));

$page = Zend_Navigation_Page::factory(array(
    'label'      => 'Home',
    'action'     => 'index',
    'controller' => 'index',
    'module'     => 'index',
    'route'      => 'home'
));

$page = Zend_Navigation_Page::factory(array(
    'type'   => 'mvc',
    'label'  => 'My MVC page'
));










Creating a URI page using the page factory


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$page = Zend_Navigation_Page::factory(array(
    'label' => 'My URI page',
    'uri'   => 'http://www.example.com/'
));

$page = Zend_Navigation_Page::factory(array(
    'label'  => 'Search',
    'uri'    => 'http://www.example.com/search',
    'active' => true
));

$page = Zend_Navigation_Page::factory(array(
    'label' => 'My URI page',
    'uri'   => '#'
));

$page = Zend_Navigation_Page::factory(array(
    'type'   => 'uri',
    'label'  => 'My URI page'
));










Creating a custom page type using the page factory


To create a custom page type using the factory, use the option type to specify a class name to instantiate.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class My_Navigation_Page extends Zend_Navigation_Page
{
    protected $_fooBar = 'ok';

    public function setFooBar($fooBar)
    {
        $this->_fooBar = $fooBar;
    }
}

$page = Zend_Navigation_Page::factory(array(
    'type'    => 'My_Navigation_Page',
    'label'   => 'My custom page',
    'foo_bar' => 'foo bar'
));














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Pages
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.ebs.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Elastic Block Storage (EBS)


Amazon Elastic Block Store (Amazon EBS) is a new type of storage designed specifically for Amazon EC2 instances.
Amazon EBS allows you to create volumes that can be mounted as devices by Amazon EC2 instances. Amazon EBS volumes
behave like raw unformatted external block devices. They have user supplied device names and provide a block device
interface. You can load a file system on top of Amazon EBS volumes, or use them just as you would use a block
device.


You can create up to twenty Amazon EBS volumes of any size (from one GiB up to one TiB). Each Amazon EBS volume can
be attached to any Amazon EC2 instance in the same Availability Zone or can be left unattached.


Amazon EBS provides the ability to create snapshots of your Amazon EBS volumes to Amazon S3. You can use these
snapshots as the starting point for new Amazon EBS volumes and can protect your data for long term durability.



Create EBS Volumes and Snapshots


Create a new EBS Volume


Creating a brand new EBS Volume requires the size and which zone you want the EBS Volume to be in.


createNewVolume will return an array containing information about the new Volume which includes the volumeId,
size, zone, status and createTime.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->createNewVolume(40, 'us-east-1a');










Create an EBS Volume from a Snapshot


Creating an EBS Volume from a snapshot requires the snapshot_id and which zone you want the EBS Volume to be in.


createVolumeFromSnapshot will return an array containing information about the new Volume which includes the
volumeId, size, zone, status, createTime and snapshotId.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->createVolumeFromSnapshot('snap-78a54011', 'us-east-1a');










Create a Snapshot of an EBS Volume


Creating a Snapshot of an EBS Volume requires the volumeId of the EBS Volume.


createSnapshot will return an array containing information about the new Volume Snapshot which includes the
snapshotId, volumeId, status, startTime and progress.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->createSnapshot('volumeId');













Describing EBS Volumes and Snapshots


Describing an EBS Volume


describeVolume allows you to get information on an EBS Volume or a set of EBS Volumes. If nothing is passed in
then it will return all EBS Volumes. If only one EBS Volume needs to be described a string can be passed in while
an array of EBS Volume Id’s can be passed in to describe them.


describeVolume will return an array with information about each Volume which includes the volumeId, size, status
and createTime. If the volume is attached to an instance, an addition value of attachmentSet will be returned. The
attachment set contains information about the instance that the EBS Volume is attached to, which includes volumeId,
instanceId, device, status and attachTime.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->describeVolume('volumeId');










Describe Attached Volumes


To return a list of EBS Volumes currently attached to a running instance you can call this method. It will only
return EBS Volumes attached to the instance with the passed in instanceId.


describeAttachedVolumes returns the same information as the describeVolume but only for the EBS Volumes that
are currently attached to the specified instanceId.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->describeAttachedVolumes('instanceId');










Describe an EBS Volume Snapshot


describeSnapshot allows you to get information on an EBS Volume Snapshot or a set of EBS Volume Snapshots. If
nothing is passed in then it will return information about all EBS Volume Snapshots. If only one EBS Volume
Snapshot needs to be described its snapshotId can be passed in while an array of EBS Volume Snapshot Id’s can be
passed in to describe them.


describeSnapshot will return an array containing information about each EBS Volume Snapshot which includes the
snapshotId, volumeId, status, startTime and progress.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->describeSnapshot('volumeId');













Attach and Detaching Volumes from Instances


Attaching an EBS Volume


attachVolume will attach an EBS Volume to a running Instance. To attach a volume you need to specify the
volumeId, the instanceId and the device (ex: /dev/sdh).


attachVolume will return an array with information about the attach status which contains volumeId, instanceId,
device, status and attachTime


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->attachVolume('volumeId', 'instanceid', '/dev/sdh');










Detaching an EBS Volume


detachVolume will detach an EBS Volume from a running Instance. detachVolume requires that you specify the
volumeId with the optional instanceId and device name that was passed when attaching the volume. If you need to
force the detachment you can set the fourth parameter to be TRUE and it will force the volume to detach.


detachVolume returns an array containing status information about the EBS Volume which includes volumeId,
instanceId, device, status and attachTime.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->detachVolume('volumeId');











Note


Forced Detach


You should only force a detach if the previous detachment attempt did not occur cleanly (logging into an
instance, unmounting the volume, and detaching normally). This option can lead to data loss or a corrupted file
system. Use this option only as a last resort to detach a volume from a failed instance. The instance will not
have an opportunity to flush file system caches or file system meta data. If you use this option, you must
perform file system check and repair procedures.







Deleting EBS Volumes and Snapshots


Deleting an EBS Volume


deleteVolume will delete an unattached EBS Volume.


deleteVolume will return boolean TRUE or FALSE.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->deleteVolume('volumeId');










Deleting an EBS Volume Snapshot


deleteSnapshot will delete an EBS Volume Snapshot.


deleteSnapshot returns boolean TRUE or FALSE.


		1
2


		$ec2_ebs = new Zend_Service_Amazon_Ec2_Ebs('aws_key','aws_secret_key');
$return = $ec2_ebs->deleteSnapshot('snapshotId');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Elastic Block Storage (EBS)
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.open-id.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_OpenId is a Zend Framework component that provides a simple API for building OpenID-enabled sites and
identity providers.



What is OpenID?


OpenID is a set of protocols for user-centric digital identities. These protocols allows users to create an
identity online, using an identity provider. This identity can be used on any site that supports OpenID. Using
OpenID-enabled sites, users do not need to remember traditional authentication tokens such as usernames and
passwords for each site. All OpenID-enabled sites accept a single OpenID identity. This identity is typically a
URL. It may be the URL of the user’s personal page, blog or other resource that may provide additional
information about them. That mean a user needs just one identifier for all sites he or she uses. services. OpenID
is an open, decentralized, and free user-centric solution. Users may choose which OpenID provider to use, or even
create their own personal identity server. No central authority is required to approve or register OpenID-enabled
sites or identity providers.


For more information about OpenID visit the OpenID official site [http://www.openid.net/].





How Does it Work?


The purpose of the Zend_OpenId component is to implement the OpenID authentication protocol as described in the
following sequence diagram:


[image: ../_images/zend.openid.protocol.jpg]

		. Authentication is initiated by the end user, who passes their OpenID identifier to the OpenID consumer through a


		User-Agent.


		. The OpenID consumer performs normalization and discovery on the user-supplied identifier. Through this process,


		the consumer obtains the claimed identifier, the URL of the OpenID provider and an OpenID protocol version.


		. The OpenID consumer establishes an optional association with the provider using Diffie-Hellman keys. As a result,


		both parties have a common “shared secret” that is used for signing and verification of the subsequent messages.


		. The OpenID consumer redirects the User-Agent to the URL of the OpenID provider with an OpenID authentication


		request.





. The OpenID provider checks if the User-Agent is already authenticated and, if not, offers to do so.


. The end user enters the required password.



		. The OpenID provider checks if it is allowed to pass the user identity to the given consumer, and asks the user if


		necessary.





. The user allows or disallows passing his identity.



		. The OpenID Provider redirects the User-Agent back to the OpenID consumer with an “authentication approved” or


		“failed” request.


		. The OpenID consumer verifies the information received from the provider by using the shared secret it got in step


		3 or by sending an additional direct request to the OpenID provider.








Zend_OpenId Structure


Zend_OpenId consists of two sub-packages. The first one is Zend_OpenId_Consumer for developing
OpenID-enabled sites, and the second is Zend_OpenId_Provider for developing OpenID servers. They are completely
independent of each other and may be used separately.


The only common code used by these sub-packages are the OpenID Simple Registration Extension implemented by
Zend_OpenId_Extension_Sreg class and a set of utility functions implemented by the Zend_OpenId class.



Note


Zend_OpenId takes advantage of the GMP extension [http://php.net/gmp], where available. Consider enabling the GMP extension
for enhanced performance when using Zend_OpenId.







Supported OpenID Standards


The Zend_OpenId component supports the following standards:



		OpenID Authentication protocol version 1.1


		OpenID Authentication protocol version 2.0 draft 11


		OpenID Simple Registration Extension version 1.0


		OpenID Simple Registration Extension version 1.1 draft 1











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.di.instance-manager.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Di InstanceManager


The InstanceManage is responsible for any runtime information associated with the Zend\Di\Di DiC. This means that
the information that goes into the instance manager is specific to both how the particular consuming Application’s
needs and even more specifically to the environment in which the application is running.



Parameters


Parameters are simply entry points for either dependencies or instance configuration values. A class consist of a
set of parameters, each uniquely named. When writing your classes, you should attempt to not use the same parameter
name twice in the same class when you expect that that parameters is used for either instance configuration or an
object dependency. This leads to an ambiguous parameter, and is a situation best avoided.


Our movie finder example can be further used to explain these concepts:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		namespace MyLibrary
{
    class DbAdapter
    {
        protected $username = null;
        protected $password = null;
        public function __construct($username, $password)
        {
            $this->username = $username;
            $this->password = $password;
        }
    }
}

namespace MyMovieApp
{
    class MovieFinder
    {
        protected $dbAdapter = null;
        public function __construct(\MyLibrary\DbAdapter $dbAdapter)
        {
            $this->dbAdapter = $dbAdapter;
        }
    }

    class MovieLister
    {
        protected $movieFinder = null;
        public function __construct(MovieFinder $movieFinder)
        {
            $this->movieFinder = $movieFinder;
        }
    }
}










In the above example, the class DbAdapter has 2 parameters: username and password; MovieFinder has one parameter:
dbAdapter, and MovieLister has one parameter: movieFinder. Any of these can be utilized for injection of either
dependencies or scalar values during instance configuration or during call time.


When looking at the above code, since the dbAdapter parameter and the movieFinder parameter are both type-hinted
with concrete types, the DiC can assume that it can fulfill these object tendencies by itself. On the other hand,
username and password do not have type-hints and are, more than likely, scalar in nature. Since the DiC cannot
reasonably know this information, it must be provided to the instance manager in the form of parameters. Not doing
so will force $di->get(‘MyMovieApp\MovieLister’) to throw an exception.


The following ways of using parameters are available:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// setting instance configuration into the instance manager
$di->instanceManager()->setParameters('MyLibrary\DbAdapter', array(
    'username' => 'myusername',
    'password' => 'mypassword'
));

// forcing a particular dependency to be used by the instance manager
$di->instanceManager()->setParameters('MyMovieApp\MovieFinder', array(
    'dbAdapter' => new MyLibrary\DbAdaper('myusername', 'mypassword')
));

// passing instance parameters at call time
$movieLister = $di->get('MyMovieApp\MovieLister', array(
    'username' => $config->username,
    'password' => $config->password
));

// passing a specific instance at call time
$movieLister = $di->get('MyMovieApp\MovieLister', array(
    'dbAdapter' => new MyLibrary\DbAdaper('myusername', 'mypassword')
));













Preferences


In some cases, you might be using interfaces as type hints as opposed to concrete types. Lets assume the movie
example was modified in the following way:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		namespace MyMovieApp
{
    interface MovieFinderInterface
    {
        // methods required for this type
    }

    class GenericMovieFinder implements MovieFinderInterface
    {
        protected $dbAdapter = null;
        public function __construct(\MyLibrary\DbAdapter $dbAdapter)
        {
            $this->dbAdapter = $dbAdapter;
        }
    }

    class MovieLister
    {
        protected $movieFinder = null;
        public function __construct(MovieFinderInterface $movieFinder)
        {
            $this->movieFinder = $movieFinder;
        }
    }
}










What you’ll notice above is that now the MovieLister type minimally expects that the dependency injected implements
the MovieFinderInterface. This allows multiple implementations of this base interface to be used as a dependency,
if that is what the consumer decides they want to do. As you can imagine, Zend\Di, by itself would not be able to
determine what kind of concrete object to use fulfill this dependency, so this type of ‘preference’ needs to be
made known to the instance manager.


To give this information to the instance manager, see the following code example:


		1
2
3


		$di->instanceManager()->addTypePreference('MyMovieApp\MovieFinderInterface', 'MyMovieApp\GenericMovieFinder');
// assuming all instance config for username, password is setup
$di->get('MyMovieApp\MovieLister');













Aliases


In some situations, you’ll find that you need to alias an instance. There are two main reasons to do this. First,
it creates a simpler, alternative name to use when using the DiC, as opposed to using the full class name. Second,
you might find that you need to have the same object type in two separate contexts. This means that when you alias
a particular class, you can then attach a specific instance configuration to that alias; as opposed to attaching
that configuration to the class name.


To demonstrate both of these points, we’ll look at a use case where we’ll have two separate DbAdapters, one will be
for read-only operations, the other will be for read-write operations:


Note: Aliases can also have parameters registered at alias time


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		// assume the MovieLister example of code from the QuickStart

$im = $di->instanceManager();

// add alias for short naming
$im->addAlias('movielister', 'MyMovieApp\MovieLister');

// add aliases for specific instances
$im->addAlias('dbadapter-readonly', 'MyLibrary\DbAdapter', array(
    'username' => $config->db->readAdapter->username,
    'password' => $config->db->readAdapter->password,
));
$im->addAlias('dbadapter-readwrite', 'MyLibrary\DbAdapter', array(
    'username' => $config->db->readWriteAdapter>username,
    'password' => $config->db->readWriteAdapter>password,
));

// set a default type to use, pointing to an alias
$im->addTypePreference('MyLibrary\DbAdapter', 'dbadapter-readonly');

$movieListerRead = $di->get('MyMovieApp\MovieLister');
$movieListerReadWrite = $di->get('MyMovieApp\MovieLister', array('dbAdapter' => 'dbadapter-readwrite'));
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Di InstanceManager
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.config.writer.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Config\Writer


Zend\Config\Writer gives you the ability to write config files out of array, Zend\Config\Config and any
Traversable object. The Zend\Config\Writer is an interface that defines two methods: toFile() and
toString(). We have five specific writers that implement this interface:



		Zend\Config\Writer\Ini


		Zend\Config\Writer\Xml


		Zend\Config\Writer\PhpArray


		Zend\Config\Writer\Json


		Zend\Config\Writer\Yaml






Zend\Config\Writer\Ini


The INI writer has two modes for rendering with regard to sections. By default the top-level configuration is
always written into section names. By calling $writer->setRenderWithoutSectionsFlags(true); all options are
written into the global namespace of the INI file and no sections are applied.


As an addition Zend\Config\Writer\Ini has an additional option parameter nestSeparator, which defines with
which character the single nodes are separated. The default is a single dot, like it is accepted by
Zend\Config\Reader\Ini by default.


When modifying or creating a Zend\Config\Config object, there are some things to know. To create or modify a
value, you simply say set the parameter of the Config object via the parameter accessor (->). To create a
section in the root or to create a branch, you just create a new array (“$config->branch = array();”).


Using Zend\Config\Writer\Ini


This example illustrates the basic use of Zend\Config\Writer\Ini to create a new config file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the config object
$config = new Zend\Config\Config(array(), true);
$config->production = array();

$config->production->webhost = 'www.example.com';
$config->production->database = array();
$config->production->database->params = array();
$config->production->database->params->host = 'localhost';
$config->production->database->params->username = 'production';
$config->production->database->params->password = 'secret';
$config->production->database->params->dbname = 'dbproduction';

$writer = new Zend\Config\Writer\Ini();
echo $writer->toString($config);










The result of this code is an INI string contains the following values:


		1
2
3
4
5
6


		[production]
webhost = "www.example.com"
database.params.host = "localhost"
database.params.username = "production"
database.params.password = "secret"
database.params.dbname = "dbproduction"










You can use the method toFile() to store the INI data in a file.





Zend\Config\Writer\Xml


The Zend\Config\Writer\Xmlcan be used to generate an XML string or file starting from a
Zend\Config\Config object.


Using Zend\Config\Writer\Ini


This example illustrates the basic use of Zend\Config\Writer\Xml to create a new config file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the config object
$config = new Zend\Config\Config(array(), true);
$config->production = array();

$config->production->webhost = 'www.example.com';
$config->production->database = array();
$config->production->database->params = array();
$config->production->database->params->host = 'localhost';
$config->production->database->params->username = 'production';
$config->production->database->params->password = 'secret';
$config->production->database->params->dbname = 'dbproduction';

$writer = new Zend\Config\Writer\Xml();
echo $writer->toString($config);










The result of this code is an XML string contains the following data:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		<?xml version="1.0" encoding="UTF-8"?>
<zend-config>
    <production>
        <webhost>www.example.com</webhost>
        <database>
            <params>
                <host>localhost</host>
                <username>production</username>
                <password>secret</password>
                <dbname>dbproduction</dbname>
            </params>
        </database>
    </production>
</zend-config>










You can use the method toFile() to store the XML data in a file.





Zend\Config\Writer\PhpArray


The Zend\Config\Writer\PhpArraycan be used to generate a PHP code that returns an array representation of an
Zend\Config\Config object.


Using Zend\Config\Writer\PhpArray


This example illustrates the basic use of Zend\Config\Writer\PhpArray to create a new config file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the config object
$config = new Zend\Config\Config(array(), true);
$config->production = array();

$config->production->webhost = 'www.example.com';
$config->production->database = array();
$config->production->database->params = array();
$config->production->database->params->host = 'localhost';
$config->production->database->params->username = 'production';
$config->production->database->params->password = 'secret';
$config->production->database->params->dbname = 'dbproduction';

$writer = new Zend\Config\Writer\PhpArray();
echo $writer->toString($config);










The result of this code is a PHP script that returns an array as follow:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		<?php
return array (
  'production' =>
  array (
    'webhost' => 'www.example.com',
    'database' =>
    array (
      'params' =>
      array (
        'host' => 'localhost',
        'username' => 'production',
        'password' => 'secret',
        'dbname' => 'dbproduction',
      ),
    ),
  ),
);










You can use the method toFile() to store the PHP script in a file.





Zend\Config\Writer\Json


The Zend\Config\Writer\Jsoncan be used to generate a PHP code that returns the JSON representation of a
Zend\Config\Config object.


Using Zend\Config\Writer\Json


This example illustrates the basic use of Zend\Config\Writer\Json to create a new config file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the config object
$config = new Zend\Config\Config(array(), true);
$config->production = array();

$config->production->webhost = 'www.example.com';
$config->production->database = array();
$config->production->database->params = array();
$config->production->database->params->host = 'localhost';
$config->production->database->params->username = 'production';
$config->production->database->params->password = 'secret';
$config->production->database->params->dbname = 'dbproduction';

$writer = new Zend\Config\Writer\Json();
echo $writer->toString($config);










The result of this code is a JSON string contains the following values:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		{ "webhost"  : "www.example.com",
  "database" : {
    "params"  : {
      "host"     : "localhost",
      "username" : "production",
      "password" : "secret",
      "dbname"   : "dbproduction"
    }
  }
}










You can use the method toFile() to store the JSON data in a file.


The Zend\Config\Writer\Json class uses the Zend\Json\Json component to convert the data in a JSON format.





Zend\Config\Writer\Yaml


The Zend\Config\Writer\Yamlcan be used to generate a PHP code that returns the YAML representation of a
Zend\Config\Config object. In order to use the YAML writer we need to pass a callback to an external PHP
library or use the Yaml PECL extension [http://www.php.net/manual/en/book.yaml.php].


Using Zend\Config\Writer\Yaml


This example illustrates the basic use of Zend\Config\Writer\Yaml to create a new config file using the Yaml
PECL extension:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the config object
$config = new Zend\Config\Config(array(), true);
$config->production = array();

$config->production->webhost = 'www.example.com';
$config->production->database = array();
$config->production->database->params = array();
$config->production->database->params->host = 'localhost';
$config->production->database->params->username = 'production';
$config->production->database->params->password = 'secret';
$config->production->database->params->dbname = 'dbproduction';

$writer = new Zend\Config\Writer\Yaml();
echo $writer->toString($config);










The result of this code is a YAML string contains the following values:


		1
2
3
4
5
6
7


		webhost: www.example.com
database:
    params:
      host:     localhost
      username: production
      password: secret
      dbname:   dbproduction










You can use the method toFile() to store the YAML data in a file.


If you want to use an external YAML writer library you have to pass the callback function in the constructor of the
class. For instance, if you want to use the Spyc [http://code.google.com/p/spyc/] library:


		1
2
3
4
5


		// include the Spyc library
require_once ('path/to/spyc.php');

$writer = new Zend\Config\Writer\Yaml(array('Spyc','YAMLDump'));
echo $writer->toString($config);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Config\Writer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.conclusion.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Conclusion


Form decorators are a system that takes some time to learn. At first, they will likely feel cumbersome and overly
complex. Hopefully the various topics covered in this chapter will help you to understand both how they work, as
well as strategies for using them effectively in your forms.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Conclusion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.form.collections.validation-groups.png
Name of the product
Price of the product

‘Please choose categories for this product:

Category

Name of the category

Category

Name of the category

Name of the brand

[‘Envoyer |





modules/zend.form.view.helper.form-checkbox.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormCheckbox


The FormCheckbox view helper can be used to render a <input type="checkbox"> HTML
form input. It is meant to work with the Zend\Form\Element\Checkbox
element, which provides a default input specification for validating the checkbox values.


FormCheckbox extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		use Zend\Form\Element;

$element = new Element\Checkbox('my-checkbox');

// Within your view...

/**
 * Example #1: Default options
 */
echo $this->formCheckbox($element);
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #2: Disable hidden element
 */
$element->setUseHiddenElement(false);
echo $this->formCheckbox($element);
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #3: Change checked/unchecked values
 */
$element->setUseHiddenElement(true)
        ->setUncheckedValue('no')
        ->setCheckedValue('yes');
echo $this->formCheckbox($element);
// <input type="hidden" name="my-checkbox" value="no">
// <input type="checkbox" name="my-checkbox" value="yes">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormCheckbox
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.auth.adapter.open-id.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Open ID Authentication



Introduction


The Zend_Auth_Adapter_OpenId adapter can be used to authenticate users using remote OpenID servers. This
authentication method assumes that the user submits only their OpenID identity to the web application. They are
then redirected to their OpenID provider to prove identity ownership using a password or some other method. This
password is never provided to the web application.


The OpenID identity is just a URI that points to a web site with information about a user, along with special
tags that describes which server to use and which identity to submit there. You can read more about OpenID at the
OpenID official site [http://www.openid.net/].


The Zend_Auth_Adapter_OpenId class wraps the Zend_OpenId_Consumer component, which implements the OpenID
authentication protocol itself.



Note


Zend_OpenId takes advantage of the GMP extension [http://php.net/gmp], where available. Consider enabling the GMP extension
for better performance when using Zend_Auth_Adapter_OpenId.







Specifics


As is the case for all Zend_Auth adapters, the Zend_Auth_Adapter_OpenId class implements
Zend_Auth_Adapter_Interface, which defines one method: authenticate(). This method performs the
authentication itself, but the object must be prepared prior to calling it. Such adapter preparation includes
setting up the OpenID identity and some other Zend_OpenId specific options.


However, as opposed to other Zend_Auth adapters, Zend_Auth_Adapter_OpenId performs authentication on an
external server in two separate HTTP requests. So the Zend_Auth_Adapter_OpenId::authenticate() method must be
called twice. On the first invocation the method won’t return, but will redirect the user to their OpenID server.
Then after the user is authenticated on the remote server, they will be redirected back and the script for this
second request must call Zend_Auth_Adapter_OpenId::authenticate() again to verify the signature which comes
with the redirected request from the server to complete the authentication process. On this second invocation, the
method will return the Zend_Auth_Result object as expected.


The following example shows the usage of Zend_Auth_Adapter_OpenId. As previously mentioned, the
Zend_Auth_Adapter_OpenId::authenticate() must be called two times. The first time is after the user submits the
HTML form with the $_POST['openid_action'] set to “login”, and the second time is after the HTTP
redirection from OpenID server with $_GET['openid_mode'] or $_POST['openid_mode'] set.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		<?php
$status = "";
$auth = Zend_Auth::getInstance();
if ((isset($_POST['openid_action']) &&
     $_POST['openid_action'] == "login" &&
     !empty($_POST['openid_identifier'])) ||
    isset($_GET['openid_mode']) ||
    isset($_POST['openid_mode'])) {
    $result = $auth->authenticate(
        new Zend_Auth_Adapter_OpenId(@$_POST['openid_identifier']));
    if ($result->isValid()) {
        $status = "You are logged in as "
                . $auth->getIdentity()
                . "<br>\n";
    } else {
        $auth->clearIdentity();
        foreach ($result->getMessages() as $message) {
            $status .= "$message<br>\n";
        }
    }
} else if ($auth->hasIdentity()) {
    if (isset($_POST['openid_action']) &&
        $_POST['openid_action'] == "logout") {
        $auth->clearIdentity();
    } else {
        $status = "You are logged in as "
                . $auth->getIdentity()
                . "<br>\n";
    }
}
?>
<html><body>
<?php echo htmlspecialchars($status);?>
<form method="post"><fieldset>
<legend>OpenID Login</legend>
<input type="text" name="openid_identifier" value="">
<input type="submit" name="openid_action" value="login">
<input type="submit" name="openid_action" value="logout">
</fieldset></form></body></html>
*/










You may customize the OpenID authentication process in several way. You can, for example, receive the redirect from
the OpenID server on a separate page, specifying the “root” of web site and using a custom
Zend_OpenId_Consumer_Storage or a custom Zend_Controller_Response. You may also use the Simple Registration
Extension to retrieve information about user from the OpenID server. All of these possibilities are described in
more detail in the Zend_OpenId_Consumer chapter.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Open ID Authentication
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.view.helper.abstract-translator-helper.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Abstract Translator Helper


The AbstractTranslatorHelper view helper is used as a base abstract class for any helpers that need to
translate content. It provides an implementation for the Zend\I18n\Translator\TranslatorAwareInterface
which allows injecting a translator and setting a text domain.


Public Methods



		
setTranslator(Translator $translator[, string $textDomain = null])


		Sets Zend\I18n\Translator\Translator to use in helper. The $textDomain argument is optional.
It is provided as a convenience for setting both the translator and textDomain at the same time.









		
getTranslator()


		Returns the Zend\I18n\Translator\Translator used in the helper.






		Return type:		Zend\I18n\Translator\Translator














		
hasTranslator()


		Returns a true if a Zend\I18n\Translator\Translator is set in the helper, and false if otherwise.






		Return type:		boolean














		
setTranslatorEnabled(boolean $enabled)


		Sets whether translations should be enabled or disabled.









		
isTranslatorEnabled()


		Returns true if translations are enabled, and false if disabled.






		Return type:		boolean














		
setTranslatorTextDomain(string $textDomain)


		Set the translation text domain to use in helper when translating.









		
getTranslatorTextDomain()


		Returns the translation text domain used in the helper.






		Return type:		string

















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Abstract Translator Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.ean5.png
0540





modules/zend.i18n.translating.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Translating


Zend_I18n comes with a complete translation suite which supports all major formats and includes popular features
like plural translations and text domains. The Translator component is mostly dependency free, except for the
fallback to a default locale, where it relies on the Intl PHP extension.


The translator itself is initialized without any parameters, as any configuration to it is optional. A translator
without any translations will actually do nothing but just return the given message IDs.



Adding translations


To add translations to the translator, there are two options. You can either add every translation file
individually, which is the best way if you use translation formats which store multiple locales in the same file,
or you can add translations via a pattern, which works best for formats which contain one locale per file.


To add a single file to the translator, use the addTranslationFile() method:


		1
2
3
4


		use Zend\I18n\Translator\Translator;

$translator = new Translator();
$translator->addTranslationFile($type, $filename, $textDomain, $locale);










The type given there is a name of one of the format loaders listed in the next section. Filename points to the file
containing the file containing the translations and the text domain specifies a category name for the translations.
If the text domain is omitted, it will default to the “default” value. The locale specifies which language the
translated strings are from and is only required for formats which contain translations for a single locale.



Note


For each text domain and locale combination, there can only be one file loaded. Every successive file would
override the translations which were loaded prior.




When storing one locale per file, you should specify those files via a pattern. This allows you to add new
translations to the file system, without touching your code. Patterns are added with the
addTranslationPattern() method:


		1
2
3
4


		use Zend\I18n\Translator\Translator;

$translator = new Translator();
$translator->addTranslationPattern($type, $pattern, $textDomain);










The parameters for adding patterns is pretty similar to adding individual files, except that don’t specify a locale
and give the file location as sprtinf pattern. The locale is passed to the sprintf call, so you can either use %s
oder %1$s where it should be substituted. So when youf translation files are located in
/var/messages/LOCALE/messages.mo, you would specify your pattern as /var/messages/%s/messages.mo.





Supported formats


The translator supports the following major translation formats:



		PHP arrays


		Gettext


		Tmx


		Xliff








Setting a locale


By default, the translator will get the locale to use from the Intl extension’s Locale class. If you want to
set an alternative locale explicitly, you can do so by passing it to the setLocale() method.


When there is not translation for a specific message ID in a locale, the message ID itself will be returned by
default. Alternatively you can set a fallback locale which is used to retrieve a fallback translation. To do so,
pass it to the setFallbackLocale() method.





Translating messages


Translating messages can accomplished by calling the translate() method of the translator:


		1


		$translator->translate($message, $textDomain, $locale);










The message is the ID of your message to translate. If it does not exist in the loader translations or is empty,
the original message ID will be returned. The text domain parameter is the one you specified when adding
translations. If omitted, the default text domain will be used. The locale parameter will usually not be used in
this context, as by default the locale is taken from the locale set in the translator.


To translate plural messages, you can use the translatePlural() method. It works similar to translate(),
but instead of a single messages it takes a singluar and a plural value and an additional integer number on which
the returned plural form is based on:


		1


		$translator->translatePlural($singular, $plural, $number, $textDomain, $locale);










Plural translations are only available if the underlying format supports the transport of plural messages and
plural rule definitions.





Caching


In production it makes sense to cache your translations. This not only saves you from loading and parsing the
individual formats each time, but also guarantees an optimized loading procedure. To enable caching, simply pass a
Zend\Cache\Storage\Adapter to the setCache() method. To disable the cache, you can just pass a null value
to it.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Translating
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/down-pressed.png





modules/zend.form.collections.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Form Collections


Often, fieldsets or elements in your forms will correspond to other domain
objects. In some cases, they may correspond to collections of domain objects. In
this latter case, in terms of user interfaces, you may want to add items
dynamically in the user interface – a great example is adding tasks to a task
list.


This document is intended to demonstrate these features. To do so, we first need
to define some domain objects that we’ll be using.


namespace Application\Entity;

class Product
{
    /**
     * @var string
     \*/
    protected $name;

    /**
     * @var int
     \*/
    protected $price;

    /**
     * @var Brand
     \*/
    protected $brand;

    /**
     * @var array
     \*/
    protected $categories;

    /**
     * @param string $name
     * @return Product
     \*/
    public function setName($name)
    {
        $this->name = $name;
        return $this;
    }

    /**
     * @return string
     \*/
    public function getName()
    {
        return $this->name;
    }

    /**
     * @param int $price
     * @return Product
     \*/
    public function setPrice($price)
    {
        $this->price = $price;
        return $this;
    }

    /**
     * @return int
     \*/
    public function getPrice()
    {
        return $this->price;
    }

    /**
     * @param Brand $brand
     * @return Product
     \*/
    public function setBrand(Brand $brand)
    {
        $this->brand = $brand;
        return $this;
    }

    /**
     * @return Brand
     \*/
    public function getBrand()
    {
        return $this->brand;
    }

    /**
     * @param array $categories
     * @return Product
     \*/
    public function setCategories(array $categories)
    {
        $this->categories = $categories;
        return $this;
    }

    /**
     * @return array
     \*/
    public function getCategories()
    {
        return $this->categories;
    }
}

class Brand
{
    /**
     * @var string
     \*/
    protected $name;

    /**
     * @var string
     \*/
    protected $url;

    /**
     * @param string $name
     * @return Brand
     \*/
    public function setName($name)
    {
        $this->name = $name;
        return $this;
    }

    /**
     * @return string
     \*/
    public function getName()
    {
        return $this->name;
    }

    /**
     * @param string $url
     * @return Brand
     \*/
    public function setUrl($url)
    {
        $this->url = $url;
        return $this;
    }

    /**
     * @return string
     \*/
    public function getUrl()
    {
        return $this->url;
    }
}

class Category
{
    /**
     * @var string
     \*/
    protected $name;

    /**
     * @param string $name
     * @return Category
     \*/
    public function setName($name)
    {
        $this->name = $name;
        return $this;
    }

    /**
     * @return string
     \*/
    public function getName()
    {
        return $this->name;
    }
}






As you can see, this is really simple code. A Product has two scalar properties
(name and price), a OneToOne relationship (one product has one brand), and a
OneToMany relationship (one product has many categories).



Creating Fieldsets


The first step is to create three fieldsets. Each fieldset will contain all the
fields and relationships for a specific entity.


Here is the Brand fieldset:


namespace Application\Form;

use Application\Entity\Brand;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class BrandFieldset extends Fieldset implements InputFilterProviderInterface
{
    public function __construct()
    {
        parent::__construct('brand');
        $this->setHydrator(new ClassMethodsHydrator(false))
            ->setObject(new Brand());

        $this->setLabel('Brand');

        $this->add(array(
            'name' => 'name',
            'options' => array(
                'label' => 'Name of the brand'
            ),
            'attributes' => array(
                'required' => 'required'
            )
        ));

        $this->add(array(
            'name' => 'url',
            'type' => 'Zend\Form\Element\Url',
            'options' => array(
                'label' => 'Website of the brand'
            ),
            'attributes' => array(
                'required' => 'required'
            )
        ));
    }

    /**
     * @return array
     \*/
    public function getInputFilterSpecification()
    {
        return array(
            'name' => array(
                'required' => true,
            )
        );
    }
}






We can discover some new things here. As you can see, the fieldset calls the
method setHydrator(), giving it a ClassMethods hydrator, and the
setObject() method, giving it an empty instance of a concrete Brand
object.


When the data will be validated, the Form will automatically iterate through
all the field sets it contains, and automatically populate the sub-objects, in
order to return a complete entity.


Also notice that the Url element has a type of Zend\Form\Element\Url.
This information will be used to validate the input field. You don’t need to
manually add filters or validators for this input as that element provides a
reasonable input specification.


Finally, getInputSpecification() gives the specification for the remaining
input (“name”), indicating that this input is required. Note that required in
the array “attributes” (when elements are added) is only meant to add the
“required” attribute to the form markup (and therefore has semantic meaning
only).


Here is the Category fieldset:


namespace Application\Form;

use Application\Entity\Category;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CategoryFieldset extends Fieldset implements InputFilterProviderInterface
{
    public function __construct()
    {
        parent::__construct('category');
        $this->setHydrator(new ClassMethodsHydrator(false))
             ->setObject(new Category());

        $this->setLabel('Category');

        $this->add(array(
            'name' => 'name',
            'options' => array(
                'label' => 'Name of the category'
            ),
            'attributes' => array(
                'required' => 'required'
            )
        ));
    }

    /**
     * @return array
     \*/
    public function getInputFilterSpecification()
    {
        return array(
            'name' => array(
                'required' => true,
            )
        );
    }
}






Nothing new here.


And finally the Product fieldset:


namespace Application\Form;

use Application\Entity\Product;
use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class ProductFieldset extends Fieldset implements InputFilterProviderInterface
{
    public function __construct()
    {
        parent::__construct('product');
        $this->setHydrator(new ClassMethodsHydrator(false))
             ->setObject(new Product());

        $this->add(array(
            'name' => 'name',
            'options' => array(
                'label' => 'Name of the product'
            ),
            'attributes' => array(
                'required' => 'required'
            )
        ));

        $this->add(array(
            'name' => 'price',
            'options' => array(
                'label' => 'Price of the product'
            ),
            'attributes' => array(
                'required' => 'required'
            )
        ));

        $this->add(array(
            'type' => 'Application\Form\BrandFieldset',
            'name' => 'brand',
            'options' => array(
                'label' => 'Brand of the product'
            )
        ));

        $this->add(array(
            'type' => 'Zend\Form\Element\Collection',
            'name' => 'categories',
            'options' => array(
                'label' => 'Please choose categories for this product',
                'count' => 2,
                'should_create_template' => true,
                'allow_add' => true,
                'target_element' => array(
                    'type' => 'Application\Form\CategoryFieldset'
                )
            )
        ));
    }

    /**
     * Should return an array specification compatible with
     * {@link Zend\InputFilter\Factory::createInputFilter()}.
     *
     * @return array
     \*/
    public function getInputFilterSpecification()
    {
        return array(
            'name' => array(
                'required' => true,
            ),
            'price' => array(
                'required' => true,
                'validators' => array(
                    array(
                        'name' => 'Float'
                    )
                )
            )
        );
    }
}






We have a lot of new things here!


First, notice how the brand element is added: we specify it to be of type
Application\Form\BrandFieldset. This is how you handle a OneToOne
relationship.  When the form is validated, the BrandFieldset will first be
populated, and will return a Brand entity (as we have specified a
ClassMethods hydrator, and bound the fieldset to a Brand entity using
the setObject() method). This Brand entity will then be used to populate
the Product entity by calling the setBrand() method.


The next element shows you how to handle OneToMany relationship. The type is
Zend\Form\Element\Collection, which is a specialized element to handle such
cases. As you can see, the name of the element (“categories”) perfectly matches
the name of the property in the Product entity.


This element has a few interesting options:



		count: this is how many times the element (in this case a category) has
to be rendered. We’ve set it to two in this examples.


		should_create_template: if set to true, it will generate a template
markup in a <span> element, in order to simplify adding new element on the
fly (we will speak about this one later).


		allow_add: if set to true (which is the default), dynamically added
elements will be retrieved and validated; otherwise, they will be completely
ignored. This, of course, depends on what you want to do.


		target_element: this is either an element or, as this is the case in this
example, an array that describes the element or fieldset that will be used in
the collection. In this case, the target_element is a Category
fieldset.








The Form Element


So far, so good. We now have our field sets in place. But those are field sets,
not forms. And only Form instances can be validated. So here is the form :


namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form
{
    public function __construct()
    {
        parent::__construct('create_product');

        $this->setAttribute('method', 'post')
             ->setHydrator(new ClassMethodsHydrator(false))
             ->setInputFilter(new InputFilter());

        $this->add(array(
            'type' => 'Application\Form\ProductFieldset',
            'options' => array(
                'use_as_base_fieldset' => true
            )
        ));

        $this->add(array(
            'type' => 'Zend\Form\Element\Csrf',
            'name' => 'csrf'
        ));

        $this->add(array(
            'name' => 'submit',
            'attributes' => array(
                'type' => 'submit'
            )
        ));
    }
}






CreateForm is quite simple, as it only defines a Product fieldset, as
well as some other useful fields (CSRF for security, and a Submit button).


Notice the use_base_fieldset option. This option is here to say to the form:
“hey, the object I bind to you is, in fact, bound to the fieldset that is the
base fieldset.” This will be to true most of the times.


What’s cool with this approach is that each entity can have its own Fieldset and
can be reused. You describe the elements, the filters, and validators for each
entity only once, and the concrete Form instance will only compose those
fieldsets. You no longer have to add the “username” input to every form that
deals with users!





The Controller


Now, let’s create the action in the controller:


/**
  * @return array
  \*/
 public function indexAction()
 {
     $form = new CreateProduct();
     $product = new Product();
     $form->bind($product);

     if ($this->request->isPost()) {
         $form->setData($this->request->getPost());

         if ($form->isValid()) {
             var_dump($product);
         }
     }

     return array(
         'form' => $form
     );
 }






This is super easy. Nothing to do in the controllers. All the magic is done
behind the scene.





The View


And finally, the view:


<?php
$form->setAttribute('action', $this->url('home'))
     ->prepare();

echo $this->form()->openTag($form);

$product = $form->get('product');

echo $this->formRow($product->get('name'));
echo $this->formRow($product->get('price'));
echo $this->formCollection($product->get('categories'));

$brand = $product->get('brand');

echo $this->formRow($brand->get('name'));
echo $this->formRow($brand->get('url'));

echo $this->formHidden($form->get('csrf'));
echo $this->formElement($form->get('submit'));

echo $this->form()->closeTag();






A few new things here :



		the prepare() method. You msut call it prior to rendering anything in
the view (this function is only meant to be called in views, not in
controllers).


		the FormRow helper renders a label (if present), the input itself, and
errors.


		the FormCollection helper will iterate through every element in the
collection, and render every element with the FormRow helper (you may specify
an alternate helper if desired, using the setElementHelper() method on
that FormCollection helper instance). If you need more control about the
way you render your forms, you can iterate through the elements in the
collection, and render them manually one by one.





Here is the result:


[image: ../_images/zend.form.collections.view.png]
As you can see, collections are wrapped inside a fieldset, and every item in the
collection is itself wrapped in the fieldset. In fact, the Collection
element uses label for each item in the collection, while the label of the
Collection element itself is used as the legend of the fieldset. If you
don’t want the fieldset created (just the elements within it), just add a
boolean false as the second parameter of the the FormCollection view
helper.


If you validate, all elements will show errors (this is normal, as we’ve marked
them as required). As soon as the form is valid, this is what we get :


[image: ../_images/zend.form.collections.view.result.png]
As you can see, the bound object is completely filled, not with arrays, but with
objects!


But that’s not all.





Adding New Elements Dynamically


Remember the should_create_template? We are going to use it now.


Often, forms are not completely static. In our case, let’s say that we don’t
want only two categories, but we want the user to be able to add other ones at
runtime. Zend\Form has this capability. First, let’s see what it generates
when we ask it to create a template:


[image: ../_images/zend.form.collections.dynamic-elements.template.png]
As you can see, the collection generates two fieldsets (the two categories)
plus a span with a data-template attribute that contains the full HTML
code to copy to create a new element in the collection. Of course __index__
(this is the placeholder generated) has to be changed to a valid value.
Currently, we have
2 elements (categories[0] and categories[1], so __index__ has to be
changed to 2.


If you want, this placeholder (__index__ is the default) can be changed using
the template_placeholder option key:


$this->add(array(
    'type' => 'Zend\Form\Element\Collection',
    'name' => 'categories',
    'options' => array(
        'label' => 'Please choose categories for this product',
        'count' => 2,
        'should_create_template' => true,
        'template_placeholder' => '__placeholder__',
        'target_element' => array(
            'type' => 'Application\Form\CategoryFieldset'
        )
    )
));






First, let’s add a small button “Add new category” anywhere in the form:


<button onclick="return add_category()">Add a new category</button>






The add_category function is fairly simple:


# First, count the number of elements we already have.
# Get the template from the span‘s data-template attribute.
# Change the placeholder to a valid index.
# Add the element to the DOM.


Here is the code:


<script>
    function add_category() {
        var currentCount = $('form > fieldset > fieldset').length;
        var template = $('form > fieldset > span').data('template');
        template = template.replace('__index__', currentCount);

        $('form > fieldset').append(template);

        return false;
    }
</script>






(Note: the above example assumes $() is defined, and equivalent to jQuery’s
$() function, Dojo’s dojo.query, etc.)


One small remark about the template.replace: the example uses
currentCount and not currentCount + 1, as the indices are zero-based
(so, if we have two elements in the collection, the third one will have the
index 2).


Now, if we validate the form, it will automatically take into account this new
element by validating it, filtering it and retrieving it:


[image: ../_images/zend.form.collections.dynamic-elements.result.png]
Of course, if you don’t want to allow adding elements in a collection, you must
to set the option allow_add to ``false. This way, even if new elements are
added, they won’t be validated and, hence, not added to the entity. Here is how
you do it (and, as we don’t want elements to be added, we don’t need the data
template, either):


$this->add(array(
    'type' => 'Zend\Form\Element\Collection',
    'name' => 'categories',
    'options' => array(
        'label' => 'Please choose categories for this product',
        'count' => 2,
        'should_create_template' => false,
        'allow_add' => false,
        'target_element' => array(
            'type' => 'Application\Form\CategoryFieldset'
        )
    )
));






There are some limitations of this capability:



		Although you can add new elements and remove them, you CANNOT remove more
elements in a collection than the initial count (for instance, if your code
specifies count == 2, you will be able to add a third one and remove it, but
you won’t be able to remove any others. If the initial count is 2, you must
have at least two elements.


		Dynamically added elements have to be added at the end of the collection. They
can be added anywhere (these elements will still be validated and inserted
into the entity), but if the validation fails, this newly added element will
be automatically be replaced at the end of the collection.








Validation groups for fieldsets and collection


Validation groups allow you to validate a subset of fields.


As an example, although the Brand entity has a URL property, we don’t
want to user to specify it in the creation form (but may wish to later in the
“Edit Product” form, for instance). Let’s update the view to remove the URL
input:


<?php
$form->setAttribute('action', $this->url('home'))
     ->prepare();

echo $this->form()->openTag($form);

$product = $form->get('product');

echo $this->formRow($product->get('name'));
echo $this->formRow($product->get('price'));
echo $this->formCollection($product->get('categories'));

$brand = $product->get('brand');

echo $this->formRow($brand->get('name'));

echo $this->formHidden($form->get('csrf'));
echo $this->formElement($form->get('submit'));

echo $this->form()->closeTag();






This is what we get:


[image: ../_images/zend.form.collections.validation-groups.png]
The URL input has disappeared, but even if we fill every input, the form won’t
validate. In fact, this is normal. We specified in the input filter that the URL
is a required field, so if the form does not have it, it won’t validate, even
though we didn’t add it to the view!


Of course, you could create a BrandFieldsetWithoutURL fieldset, but of
course this is not recommended, as a lot of code will be duplicated.


The solution: validation groups. A validation group is specified in a Form
object (hence, in our case, in the CreateProduct form) by giving an array of
all the elements we want to validate.  Our CreateForm now looks like this:


namespace Application\Form;

use Zend\Form\Form;
use Zend\InputFilter\InputFilter;
use Zend\Stdlib\Hydrator\ClassMethods as ClassMethodsHydrator;

class CreateProduct extends Form
{
    public function __construct()
    {
        parent::__construct('create_product');

        $this->setAttribute('method', 'post')
             ->setHydrator(new ClassMethodsHydrator())
             ->setInputFilter(new InputFilter());

        $this->add(array(
            'type' => 'Application\Form\ProductFieldset',
            'options' => array(
                'use_as_base_fieldset' => true
            )
        ));

        $this->add(array(
            'type' => 'Zend\Form\Element\Csrf',
            'name' => 'csrf'
        ));

        $this->add(array(
            'name' => 'submit',
            'attributes' => array(
                'type' => 'submit'
            )
        ));

        $this->setValidationGroup(array(
            'csrf',
            'product' => array(
                'name',
                'price',
                'brand' => array(
                    'name'
                ),
                'categories' => array(
                    'name'
                )
            )
        ));
    }
}






Of course, don’t forget to add the CSRF element, as we want it to be
validated too (but notice that I didn’t write the submit element, as we don’t
care about it). You can recursively select the elements you want.


There is one simple limitation currently: validation groups for collections are
set on a per-collection basis, not element in a collection basis. This means you
cannot say, “validate the name input for the first element of the categories
collection, but don’t validate it for the second one.” But, honestly, this is
really an edge-case.


Now, the form validates (and the URL is set to null as we didn’t specify it).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Form Collections
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cloud.infrastructure.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cloud\Infrastructure



Overview


The Zend\Cloud\Infrastructure is a class to manage different cloud computing infrastructures using a common
API.


In order to provide a common class API for different cloud vendors we implemented a small set of basic operations
for the management of instances (servers) in a cloud infrastructure. These basic operations are:



		create a new instance;


		delete a new instance;


		start/stop an instance;


		reboot an instance;


		list of the available instances;


		get the status of an instance;


		wait for a status change of an instance;


		get the public IP or DNS name of the instance;


		list all the available images for new instances;


		list all the available geographical zones for new instances;


		monitor an instance getting the systems information (CPU%, RAM%, DISK%, NETWORK% usage);


		deploy of an instance (run arbitrary shell script on an instance);






Note


Deployment of an instance


For the deploy operations we used the SSH2 PHP extension (ext/ssh2) [http://www.php.net/manual/en/book.ssh2.php] to connect on an instance and execute
shell script. The SSH2 extensions can be used to connect only to Gnu/Linux instances (servers).




This class is managed by a factory to initialize specific cloud computing adapters.





Quick Start


To use this class you have to initialize the factory with a specific adapters. You can check the supported apadters
in the specific Chapter Zend\Cloud\Infrastructure\Adapter. We are
planning to support other cloud computing vendors very soon.


For instance, to work with the AMAZON EC2 adapter you have to initialize the class with following parameters:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Cloud\Infrastructure\Adapter\Ec2 as Ec2Adapter;
use Zend\Cloud\Infrastructure\Factory as FactoryInfrastructure;

$key    = 'key';
$secret = 'secret';
$region = 'region';

$infrastructure = FactoryInfrastructure::getAdapter(array(
    FactoryInfrastructure::INFRASTRUCTURE_ADAPTER_KEY => 'Zend\Cloud\Infrastructure\Adapter\Ec2',
    Ec2Adapter::AWS_ACCESS_KEY => $key,
    Ec2Adapter::AWS_SECRET_KEY => $secret,
    Ec2Adapter::AWS_REGION     => $region,
));










Zend\Cloud\Infrastructure has only a couple of methods that are vendor specific. These methods are the creation
of a new instance and the monitoring of an instance. For instance, below is reported an example that shows how to
create a new instance using the Amazon EC2 adapter:


		1
2
3
4
5
6
7
8
9


		$param= array (
    'imageId'      => 'your-image-id',
    'instanceType' => 'your-instance-type',
);

$instance= $infrastructure->createInstance('name of the instance', $param);

printf ("Name of the instance: %s\n", $instance->getName());
printf ("ID of the instance  : %s\n", $instance->getId());










The interface of the createInstance is always the same, only the content of $param is specific to the
adapter. for more information about the adapter supported by Zend\Cloud\Infrastructure go to the specific
page of the manual.


The Zend\Cloud\Infrastructure uses the classes Zend\Cloud\Infrastructure\Instance and
Zend\Cloud\Infrastructure\Image to manage the instances (servers) and the images of an instance.





Available Methods



		createInstance


		createInstance(string $name, array $options)


Create an instance. The return value is an instance of Zend\Cloud\Infrastructure\Instance. In case of error
the return is false.


$name is the name of the instance to create


$options is the array contains the specific parameter for the cloud adapter. For more info read the Chapter
of Zend\Cloud\Infrastructure\Adapter.









		deployInstance


		deployInstance(string $id, array $param, string|array $cmd)


Run arbitrary shell scripts on an instance. Return a string or an array contains all the standard output (errors
included) of the scripts executed in the instance.




Note


Requirement


In order to use the deployInstance method you have to install the SSH2 extension (ext/ssh2) of PHP. The
SSH2 extensions can be used to connect only to Gnu/Linux instances (servers). For more info about the SSH2
extension, click here [http://www.php.net/manual/en/book.ssh2.php].








$id is the ID of the instance


$param is an array contains the username and the password to be used for the SSH connection. The username
and the password must be specified using the following constants key of the
Zend\Cloud\Infrastructure\Instance: SSH_USERNAME, SSH_PASSWORD.


$cmd is a string (or an array) contains the commands line to be executed in the instance.









		destroyInstance


		destroyInstance(string $id)


Destroy an instance. Return true in case of success, false in case of error.


$id is the ID of the instance









		getAdapter


		getAdapter()


Return the adapter object.









		getAdapterResult


		getAdapterResult()


Return the original adapter result.









		getLastHttpRequest


		getLastHttpRequest()


Return the last HTTP Request of the adapter.









		getLastHttpResponse


		getLastHttpResponse()


Return the last HTTP Response of the adapter.









		imagesInstance


		imagesInstance()


Return all the available images to use for an instance. The return value is an instance of
Zend\Cloud\Infrastructure\ImageList









		listInstances


		listInstances()


Return the list of of the available instances. The return is an instance of
Zend\Cloud\Infrastructure\InstanceList.









		monitorInstance


		monitorInstance(string $id,string $metric,array $options=null)


Monitor an instance. Return the system information about the metric of an instance. The return value is an array
that contains samples of values, timestamp and the elaboration of the average value.


$id is the ID of the instance;


$metric is the metric to be monitored. The allowed metrics are reported as contants of the
Zend\Cloud\Infrastructure\Instance class: MONITOR_CPU, MONITOR_RAM, MONITOR_NETWORK_IN, MONITOR_NETWORK_OUT,
MONITOR_DISK, MONITOR_DISK_WRITE, MONITOR_DISK_READ.


$options is the optional array contains the adapter specific options.









		publicDnsInstance


		publicDnsInstance(string $id)


Return the public DNS name or the IP address of the instance. The return value is a string. In case of error the
return is false.


$id is the ID of the instance









		rebootInstance


		rebootInstance(string $id)


Reboot an instance. Return true in case of success, false in case of error.


$id is the ID of the instance









		startInstance


		startInstance(string $id)


Start an instance. Return true in case of success, false in case of error.


$id is the ID of the instance









		statusInstance


		statusInstance(string $id)


Get the status of an instance. The return value is a string. The available status are reported in the following
constants of the class Zend\Cloud\Infrastructure\Instance: STATUS_STOPPED, STATUS_RUNNING,
STATUS_SHUTTING_DOWN, STATUS_REBOOTING, STATUS_TERMINATED, STATUS_PENDING, STATUS_REBUILD. In case of error the
return is false.


$id is the ID of the instance









		stopInstance


		stopInstance(string $id)


Stop an instance. Return true in case of success, false in case of error.


$id is the ID of the instance









		waitStatusInstance


		waitStatusInstance(string $id, string $status,integer $timeout=30)


Wait the status change of an instance for a maximum time of n seconds. Return true if the status changes
as expected, false if not.


$id is the ID of the instance;


$status is the status to wait for;


$timeout is the maximum time, in seconds, to wait for the status change. This parametr is optional and the
default value is 30 seconds.









		zonesInstance


		zonesInstance()


Return all the available zones for an instance. The return value is an array.











Examples


Get the datetime system information of an instance


Get the result of the date command line.


		1
2
3
4
5
6
7
8
9


		$param = array (
    Instance::SSH_USERNAME => 'username',
    Instance::SSH_PASSWORD => 'password',
);

$cmd    = 'date';
$output = $infrastructure->deployInstance('instance-id', $param, $cmd);

echo $output;










Get the datetime system information of an instance


Get the result of the date command line.


		1
2
3
4
5
6
7
8
9


		$param = array (
    Instance::SSH_USERNAME => 'username',
    Instance::SSH_PASSWORD => 'password',
);

$cmd    = 'date';
$output = $infrastructure->deployInstance('instance-id', $param, $cmd);

echo $output;










Reboot an instance and wait for the running status


Reboot an instance and wait 60 seconds for the running status.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Cloud\Infrastructure\Instance;

if (!$infrastructure->rebootInstance('instance-id')) {
    die ('Error in the execution of the reboot command');
}
echo 'Reboot command executed successfully';

if ($rackspace->waitStatusInstance('instance-id', Instance::STATUS_RUNNING, 60)) {
    echo 'The instance is ready';
} else {
    echo 'The instance is not ready yet';
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cloud\Infrastructure
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/overview.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Overview


Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented [http://en.wikipedia.org/wiki/Object-oriented_programming] code and utilises most of the new features of PHP 5.3, namely
namespaces [http://php.net/manual/en/language.namespaces.php], late static binding [http://it.php.net/lsb], lambda functions and closures [http://it2.php.net/manual/en/functions.anonymous.php].


Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million
downloads.



Note


ZF2 is not backward compatible with ZF1, because of the new features in PHP 5.3+ implemented by
the framework, and due to major rewrites of many components.




The component structure of Zend Framework 2 is unique; each component is designed with few
dependencies on other components. ZF2 follows the SOLID [http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29] object oriented design principle. This loosely coupled
architecture allows developers to use whichever components they want. We call this a “use-at-will” design.
We support Pyrus [http://pear.php.net/manual/en/pyrus.php] and Composer [http://getcomposer.org/] as installation  and dependency tracking mechanisms for the framework as a whole and
for each component, further enhancing this design.


We use PHPUnit [http://www.phpunit.de] to test our code and Travis CI [http://travis-ci.org/] as a Continuous Integration service.


While they can be used separately, Zend Framework 2 components in the standard library form a powerful and extensible
web application framework when combined. Also, it offers a robust, high performance MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP] implementation, a
database abstraction that is simple to use, and a forms component that implements HTML5 form rendering [http://www.w3.org/TR/html5/forms.html#forms],
validation, and filtering so that developers can consolidate all of these operations using one easy-to-use, object
oriented interface. Other components, such as ZendAuthentication and ZendPermissionsAcl, provide user
authentication and authorization against all common credential stores.


Still others, with the ZendService namespace, implement client libraries to simply access the most
popular web services available. Whatever your application needs are, you’re likely to find a Zend Framework 2
component that can be used to dramatically reduce development time with a thoroughly tested foundation.


The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies [http://www.zend.com], but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and StrikeIron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available
to Zend Framework 2 developers.


Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework 2
community. Community members, including contributors, make themselves available on mailing lists [http://framework.zend.com/archives],
IRC channels [http://www.zftalk.com] and other forums. Whatever question you have about Zend Framework 2, the community is always
available to address it.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Overview
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.server.reflection.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Server_Reflection



Introduction


Zend_Server_Reflection provides a standard mechanism for performing function and class introspection for use
with server classes. It is based on PHP 5’s Reflection API, augmenting it with methods for retrieving parameter
and return value types and descriptions, a full list of function and method prototypes (i.e., all possible valid
calling combinations), and function or method descriptions.


Typically, this functionality will only be used by developers of server classes for the framework.





Usage


Basic usage is simple:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		$class    = Zend_Server_Reflection::reflectClass('My_Class');
$function = Zend_Server_Reflection::reflectFunction('my_function');

// Get prototypes
$prototypes = $reflection->getPrototypes();

// Loop through each prototype for the function
foreach ($prototypes as $prototype) {

    // Get prototype return type
    echo "Return type: ", $prototype->getReturnType(), "\n";

    // Get prototype parameters
    $parameters = $prototype->getParameters();

    echo "Parameters: \n";
    foreach ($parameters as $parameter) {
        // Get parameter type
        echo "    ", $parameter->getType(), "\n";
    }
}

// Get namespace for a class, function, or method.
// Namespaces may be set at instantiation time (second argument), or using
// setNamespace()
$reflection->getNamespace();










reflectFunction() returns a Zend_Server_Reflection_Function object; reflectClass() returns a
Zend_Server_Reflection_Class object. Please refer to the API documentation to see what methods are available
to each.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Server_Reflection
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Service is an abstract class which serves as a foundation for web service implementations, such as SOAP
or REST.


If you need support for generic, XML-based REST services, you may want to look at Zend_Rest_Client.


In addition to being able to extend the Zend_Service and use Zend_Rest_Client for REST-based web services,
Zend also provides support for popular web services. See the following sections for specific information on each
supported web service.



		Akismet


		Amazon


		Audioscrobbler


		Del.icio.us


		Flickr


		LiveDocx


		Nirvanix


		Rackspace


		ReCaptcha


		SlideShare


		StrikeIron


		Technorati


		Twitter


		Windows Azure





Additional services are coming in the future.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.akismet.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Akismet



Introduction


Zend_Service_Akismet provides a client for the Akismet API [http://akismet.com/development/api/]. The Akismet service is used to determine if
incoming data is potentially spam. It also exposes methods for submitting data as known spam or as false positives
(ham). It was originally intended to help categorize and identify spam for Wordpress, but it can be used for any
type of data.


Akismet requires an API key for usage. You can get one by signing up for a WordPress.com [http://wordpress.com/] account. You do not
need to activate a blog. Simply acquiring the account will provide you with the API key.


Akismet requires that all requests contain a URL to the resource for which data is being filtered. Because of
Akismet’s origins in WordPress, this resource is called the blog URL. This value should be passed as the second
argument to the constructor, but may be reset at any time using the setBlogUrl() method, or overridden by
specifying a ‘blog’ key in the various method calls.





Verify an API key


Zend_Service_Akismet::verifyKey($key) is used to verify that an Akismet API key is valid. In most cases, you
will not need to check, but if you need a sanity check, or to determine if a newly acquired key is active, you may
do so with this method.


		1
2
3
4
5
6
7
8
9


		// Instantiate with the API key and a URL to the application or
// resource being used
$akismet = new Zend_Service_Akismet($apiKey,
                                    'http://framework.zend.com/wiki/');
if ($akismet->verifyKey($apiKey) {
    echo "Key is valid.\n";
} else {
    echo "Key is not valid\n";
}










If called with no arguments, verifyKey() uses the API key provided to the constructor.


verifyKey() implements Akismet’s verify-key REST method.





Check for spam


Zend_Service_Akismet::isSpam($data) is used to determine if the data provided is considered spam by Akismet. It
accepts an associative array as the sole argument. That array requires the following keys be set:



		user_ip, the IP address of the user submitting the data (not your IP address, but that of a user on your site).


		user_agent, the reported UserAgent string (browser and version) of the user submitting the data.





The following keys are also recognized specifically by the API:



		blog, the fully qualified URL to the resource or application. If not specified, the URL provided to the
constructor will be used.


		referrer, the content of the HTTP_REFERER header at the time of submission. (Note spelling; it does not follow
the header name.)


		permalink, the permalink location, if any, of the entry the data was submitted to.


		comment_type, the type of data provided. Values specified in the API include ‘comment’, ‘trackback’,
‘pingback’, and an empty string (‘’), but it may be any value.


		comment_author, the name of the person submitting the data.


		comment_author_email, the email of the person submitting the data.


		comment_author_url, the URL or home page of the person submitting the data.


		comment_content, the actual data content submitted.





You may also submit any other environmental variables you feel might be a factor in determining if data is spam.
Akismet suggests the contents of the entire $_SERVER array.


The isSpam() method will return either TRUE or FALSE, or throw an exception if the API key is
invalid.


isSpam() Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$data = array(
    'user_ip'              => '111.222.111.222',
    'user_agent'           => 'Mozilla/5.0 ' . (Windows; U; Windows NT ' .
                              '5.2; en-GB; rv:1.8.1) Gecko/20061010 ' .
                              'Firefox/2.0',
    'comment_type'         => 'contact',
    'comment_author'       => 'John Doe',
    'comment_author_email' => 'nospam@myhaus.net',
    'comment_content'      => "I'm not a spammer, honest!"
);
if ($akismet->isSpam($data)) {
    echo "Sorry, but we think you're a spammer.";
} else {
    echo "Welcome to our site!";
}










isSpam() implements the comment-check Akismet API method.





Submitting known spam


Spam data will occasionally get through the filter. If you discover spam that you feel should have been caught, you
can submit it to Akismet to help improve their filter.


Zend_Service_Akismet::submitSpam() takes the same data array as passed to isSpam(), but does not return a
value. An exception will be raised if the API key used is invalid.


submitSpam() Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$data = array(
    'user_ip'              => '111.222.111.222',
    'user_agent'           => 'Mozilla/5.0 (Windows; U; Windows NT 5.2;' .
                              'en-GB; rv:1.8.1) Gecko/20061010 Firefox/2.0',
    'comment_type'         => 'contact',
    'comment_author'       => 'John Doe',
    'comment_author_email' => 'nospam@myhaus.net',
    'comment_content'      => "I'm not a spammer, honest!"
);
$akismet->submitSpam($data));










submitSpam() implements the submit-spam Akismet API method.





Submitting false positives (ham)


Data will occasionally be trapped erroneously as spam by Akismet. For this reason, you should probably keep a log
of all data trapped as spam by Akismet and review it periodically. If you find such occurrences, you can submit the
data to Akismet as “ham”, or a false positive (ham is good, spam is not).


Zend_Service_Akismet::submitHam() takes the same data array as passed to isSpam() or submitSpam(), and,
like submitSpam(), does not return a value. An exception will be raised if the API key used is invalid.


submitHam() Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$data = array(
    'user_ip'              => '111.222.111.222',
    'user_agent'           => 'Mozilla/5.0 (Windows; U; Windows NT 5.2;' .
                              'en-GB; rv:1.8.1) Gecko/20061010 Firefox/2.0',
    'comment_type'         => 'contact',
    'comment_author'       => 'John Doe',
    'comment_author_email' => 'nospam@myhaus.net',
    'comment_content'      => "I'm not a spammer, honest!"
);
$akismet->submitHam($data));










submitHam() implements the submit-ham Akismet API method.





Zend-specific Methods


While the Akismet API only specifies four methods, Zend_Service_Akismet has several additional methods that
may be used for retrieving and modifying internal properties.



		getBlogUrl() and setBlogUrl() allow you to retrieve and modify the blog URL used in requests.





		getApiKey() and setApiKey() allow you to retrieve and modify the API key used in requests.





		getCharset() and setCharset() allow you to retrieve and modify the character set used to make the
request.





		getPort() and setPort() allow you to retrieve and modify the TCP port used to make the request.





		getUserAgent() and setUserAgent() allow you to retrieve and modify the HTTP user agent used to make the
request. Note: this is not the user_agent used in data submitted to the service, but rather the value provided in
the HTTP User-Agent header when making a request to the service.


The value used to set the user agent should be of the form some user agent/version | Akismet/version. The
default is Zend Framework/ZF-VERSION | Akismet/1.11, where ZF-VERSION is the current Zend Framework version
as stored in the Zend_Framework::VERSION constant.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Akismet
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.encryption.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Encrypt and Decrypt


These filters allow to encrypt and decrypt any given string. Therefor they make use of Adapters. Actually there are
adapters for the Mcrypt and OpenSSL extensions from PHP.



Supported options for Zend_Filter_Encrypt and Zend_Filter_Decrypt


The following options are supported for Zend_Filter_Encrypt and Zend_Filter_Decrypt:



		adapter: This sets the encryption adapter which should be used


		algorithm: Only MCrypt. The algorithm which has to be used. It should be one of the algorithm ciphers
which can be found under PHP’s mcrypt ciphers [http://php.net/mcrypt]. If not set it defaults to blowfish.


		algorithm_directory: Only MCrypt. The directory where the algorithm can be found. If not set it defaults
to the path set within the mcrypt extension.


		compression: If the encrypted value should be compressed. Default is no compression.


		envelope: Only OpenSSL. The encrypted envelope key from the user who encrypted the content. You can
either provide the path and filename of the key file, or just the content of the key file itself. When the
package option has been set, then you can omit this parameter.


		key: Only MCrypt. The encryption key with which the input will be encrypted. You need the same key for
decryption.


		mode: Only MCrypt. The encryption mode which has to be used. It should be one of the modes which can be
found under PHP’s mcrypt modes [http://php.net/mcrypt]. If not set it defaults to ‘cbc’.


		mode_directory: Only MCrypt. The directory where the mode can be found. If not set it defaults to the
path set within the Mcrypt extension.


		package: Only OpenSSL. If the envelope key should be packed with the encrypted value. Default is
FALSE.


		private: Only OpenSSL. Your private key which will be used for encrypting the content. Also the private
key can be either a filename with path of the key file, or just the content of the key file itself.


		public: Only OpenSSL. The public key of the user whom you want to provide the encrpted content. You can
give multiple public keys by using an array. You can eigther provide the path and filename of the key file, or
just the content of the key file itself.


		salt: Only MCrypt. If the key should be used as salt value. The key used for encryption will then itself
also be encrypted. Default is FALSE.


		vector: Only MCrypt. The initialization vector which shall be used. If not set it will be a random
vector.








Adapter usage


As these two encryption methodologies work completely different, also the usage of the adapters differ. You have to
select the adapter you want to use when initiating the filter.


		1
2
3
4
5


		// Use the Mcrypt adapter
$filter1 = new Zend_Filter_Encrypt(array('adapter' => 'mcrypt'));

// Use the OpenSSL adapter
$filter2 = new Zend_Filter_Encrypt(array('adapter' => 'openssl'));










To set another adapter you can also use setAdapter(), and the getAdapter() method to receive the actual set
adapter.


		1
2
3


		// Use the Mcrypt adapter
$filter = new Zend_Filter_Encrypt();
$filter->setAdapter('openssl');











Note


When you do not supply the adapter option or do not use setAdapter(), then the Mcrypt adapter will
be used per default.







Encryption with Mcrypt


When you have installed the Mcrypt extension you can use the Mcrypt adapter. If you provide a string
instead of an array of options, this string will be used as key.


You can get and set the encryption values also afterwards with the getEncryption() and setEncryption()
methods.



Note


Note that you will get an exception if the mcrypt extension is not available in your environment.





Note


You should also note that all settings which be checked when you create the instance or when you call
setEncryption(). If mcrypt detects problem with your settings an exception will be thrown.




You can get or set the encryption vector by calling getVector() and setVector(). A given string will be
truncated or padded to the needed vector size of the used algorithm.



Note


Note that when you are not using an own vector, you must get the vector and store it. Otherwise you will not be
able to decode the encoded string.




		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use the default blowfish settings
$filter = new Zend_Filter_Encrypt('myencryptionkey');

// Set a own vector, otherwise you must call getVector()
// and store this vector for later decryption
$filter->setVector('myvector');
// $filter->getVector();

$encrypted = $filter->filter('text_to_be_encoded');
print $encrypted;

// For decryption look at the Decrypt filter













Decryption with Mcrypt


For decrypting content which was previously encrypted with Mcrypt you need to have the options with which the
encryption has been called.


There is one eminent difference for you. When you did not provide a vector at encryption you need to get it after
you encrypted the content by using the getVector() method on the encryption filter. Without the correct vector
you will not be able to decrypt the content.


As soon as you have provided all options decryption is as simple as encryption.


		1
2
3
4
5
6
7
8


		// Use the default blowfish settings
$filter = new Zend_Filter_Decrypt('myencryptionkey');

// Set the vector with which the content was encrypted
$filter->setVector('myvector');

$decrypted = $filter->filter('encoded_text_normally_unreadable');
print $decrypted;











Note


Note that you will get an exception if the mcrypt extension is not available in your environment.





Note


You should also note that all settings which be checked when you create the instance or when you call
setEncryption(). If mcrypt detects problem with your settings an exception will be thrown.







Encryption with OpenSSL


When you have installed the OpenSSL extension you can use the OpenSSL adapter. You can get or set the
public keys also afterwards with the getPublicKey() and setPublicKey() methods. The private key can also be
get and set with the related getPrivateKey() and setPrivateKey() methods.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));











Note


Note that the OpenSSL adapter will not work when you do not provide valid keys.




When you want to encode also the keys, then you have to provide a passphrase with the setPassphrase() method.
When you want to decode content which was encoded with a passphrase you will not only need the public key, but also
the passphrase to decode the encrypted key.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));
$filter->setPassphrase('mypassphrase');










At last, when you use OpenSSL you need to give the receiver the encrypted content, the passphrase when have
provided one, and the envelope keys for decryption.


This means for you, that you have to get the envelope keys after the encryption with the getEnvelopeKey()
method.


So our complete example for encrypting content with OpenSSL look like this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));
$filter->setPassphrase('mypassphrase');

$encrypted = $filter->filter('text_to_be_encoded');
$envelope  = $filter->getEnvelopeKey();
print $encrypted;

// For decryption look at the Decrypt filter











Simplified usage with Openssl


As seen before, you need to get the envelope key to be able to decrypt the previous encrypted value. This can be
very annoying when you work with multiple values.


To have a simplified usage you can set the package option to TRUE. The default value is FALSE.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem',
   'public'  => '/public/key/path/public.pem',
   'package' => true
));

$encrypted = $filter->filter('text_to_be_encoded');
print $encrypted;

// For decryption look at the Decrypt filter










Now the returned value contains the encrypted value and the envelope. You don’t need to get them after the
compression. But, and this is the negative aspect of this feature, the encrypted value can now only be decrypted by
using Zend_Filter_Encrypt.





Compressing the content


Based on the original value, the encrypted value can be a very large string. To reduce the value
Zend_Filter_Encrypt allows the usage of compression.


The compression option can eighter be set to the name of a compression adapter, or to an array which sets all
wished options for the compression adapter.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		// Use basic compression adapter
$filter1 = new Zend_Filter_Encrypt(array(
   'adapter'     => 'openssl',
   'private'     => '/path/to/mykey/private.pem',
   'public'      => '/public/key/path/public.pem',
   'package'     => true,
   'compression' => 'bz2'
));

// Use basic compression adapter
$filter2 = new Zend_Filter_Encrypt(array(
   'adapter'     => 'openssl',
   'private'     => '/path/to/mykey/private.pem',
   'public'      => '/public/key/path/public.pem',
   'package'     => true,
   'compression' => array('adapter' => 'zip', 'target' => '\usr\tmp\tmp.zip')
));











Note


Decryption with same settings


When you want to decrypt a value which is additionally compressed, then you need to set the same compression
settings for decryption as for encryption. Otherwise the decryption will fail.









Decryption with OpenSSL


Decryption with OpenSSL is as simple as encryption. But you need to have all data from the person who encrypted
the content. See the following example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));











Note


Note that the OpenSSL adapter will not work when you do not provide valid keys.




Optionally it could be necessary to provide the passphrase for decrypting the keys themself by using the
setPassphrase() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));
$filter->setPassphrase('mypassphrase');










At last, decode the content. Our complete example for decrypting the previously encrypted content looks like this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));
$filter->setPassphrase('mypassphrase');

$decrypted = $filter->filter('encoded_text_normally_unreadable');
print $decrypted;
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Encrypt and Decrypt
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.08.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 0.8


When upgrading from a previous release to Zend Framework 0.8 or higher you should note the following migration
notes.



Zend_Controller


Per previous changes, the most basic usage of the MVC components remains the same:


		1


		Zend_Controller_Front::run('/path/to/controllers');










However, the directory structure underwent an overhaul, several components were removed, and several others either
renamed or added. Changes include:



		Zend_Controller_Router was removed in favor of the rewrite router.





		Zend_Controller_RewriteRouter was renamed to Zend_Controller_Router_Rewrite, and promoted to the standard
router shipped with the framework; Zend_Controller_Front will use it by default if no other router is
supplied.





		A new route class for use with the rewrite router was introduced, Zend_Controller_Router_Route_Module; it
covers the default route used by the MVC, and has support for controller modules.





		Zend_Controller_Router_StaticRoute was renamed to Zend_Controller_Router_Route_Static.





		Zend_Controller_Dispatcher was renamed Zend_Controller_Dispatcher_Standard.





		Zend_Controller_Action::_forward()‘s arguments have changed. The signature is now:


		1
2
3
4


		final protected function _forward($action,
                                  $controller = null,
                                  $module = null,
                                  array $params = null);










$action is always required; if no controller is specified, an action in the current controller is assumed.
$module is always ignored unless $controller is specified. Finally, any $params provided will be
appended to the request object. If you do not require the controller or module, but still need to pass
parameters, simply specify NULL for those values.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 0.8
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/performance.database.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Db Performance


Zend_Db is a database abstraction layer, and is intended to provide a common API for SQL operations.
Zend_Db_Table is a Table Data Gateway, intended to abstract common table-level database operations. Due to
their abstract nature and the “magic” they do under the hood to perform their operations, they can sometimes
introduce performance overhead.



How can I reduce overhead introduced by Zend_Db_Table for retrieving table metadata?


In order to keep usage as simple as possible, and also to support constantly changing schemas during development,
Zend_Db_Table does some magic under the hood: on first use, it fetches the table schema and stores it within
object members. This operation is typically expensive, regardless of the database – which can contribute to
bottlenecks in production.


Fortunately, there are techniques for improving the situation.



Use the metadata cache


Zend_Db_Table can optionally utilize Zend_Cache to cache table metadata. This is typically faster to access
and less expensive than fetching the metadata from the database itself.


The Zend_Db_Table documentation includes information on metadata caching.





Hardcode your metadata in the table definition


As of 1.7.0, Zend_Db_Table also provides support for hardcoding metadata in the table definition. This is an advanced use case, and should only be used when you know
the table schema is unlikely to change, or that you’re able to keep the definitions up-to-date.







SQL generated with Zend_Db_Select s not hitting my indexes; how can I make it better?


Zend_Db_Select is relatively good at its job. However, if you are performing complex queries requiring joins or
sub-selects, it can often be fairly naive.



Write your own tuned SQL


The only real answer is to write your own SQL; Zend_Db does not require the usage of Zend_Db_Select, so
providing your own, tuned SQL select statements is a perfectly legitimate approach,


Run EXPLAIN on your queries, and test a variety of approaches until you can reliably hit your indices in the
most performant way – and then hardcode the SQL as a class property or constant.


If the SQL requires variable arguments, provide placeholders in the SQL, and utilize a combination of
vsprintf() and array_walk() to inject the values into the SQL:


		1
2
3
4
5
6


		// $adapter is the DB adapter. In Zend_Db_Table, retrieve
// it using $this->getAdapter().
$sql = vsprintf(
    self::SELECT_FOO,
    array_walk($values, array($adapter, 'quoteInto'))
);


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Db Performance
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.planet.png





modules/zend.validator.iban.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Iban


Zend\Validator\Iban validates if a given value could be a IBAN number. IBAN is the abbreviation for
“International Bank Account Number”.



Supported options for Zend\Validator\Iban


The following options are supported for Zend\Validator\Iban:



		locale: Sets the locale which is used to get the IBAN format for validation.








IBAN validation


IBAN numbers are always related to a country. This means that different countries use different formats for their
IBAN numbers. This is the reason why IBAN numbers always need a locale. By knowing this we already know how to
use Zend\Validator\Iban.



Application wide locale


We could use the application wide locale. This means that when no option is given at initiation,
Zend\Validator\Iban searches for the application wide locale. See the following code snippet:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// within bootstrap
Locale::setDefault('de_AT');

// within the module
$validator = new Zend\Validator\Iban();

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}











Note


Application wide locale


Of course this works only when an application wide locale was set within the registry previously. Otherwise
Locale will try to use the locale which the client sends or, when non has been send, it uses the environment
locale. Be aware that this can lead to unwanted behaviour within the validation.







Ungreedy IBAN validation


Sometime it is useful, just to validate if the given value is a IBAN number or not. This means that you don’t
want to validate it against a defined country. This can be done by using a FALSE as locale.


		1
2
3
4
5
6
7
8


		$validator = new Zend\Validator\Iban(array('locale' => false));
// Note: you can also set a FALSE as single parameter

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}










So any IBAN number will be valid. Note that this should not be done when you accept only accounts from a
single country.





Region aware IBAN validation


To validate against a defined country, you just need to give the wished locale. You can do this by the option
locale and also afterwards by using setLocale().


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Iban(array('locale' => 'de_AT'));

if ($validator->isValid('AT611904300234573201')) {
    // IBAN appears to be valid
} else {
    // IBAN is not valid
}











Note


Use full qualified locales


You must give a full qualified locale, otherwise the country could not be detected correct because languages are
spoken in multiple countries.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Iban
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.character-sets.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Character Sets


Zend_Mail does not check for the correct character set of the mail parts. When instantiating Zend_Mail, a
charset for the e-mail itself may be given. It defaults to iso-8859-1. The application has to make sure that
all parts added to that mail object have their content encoded in the correct character set. When creating a new
mail part, a different charset can be given for each part.



Note


Only in text format


Character sets are only applicable for message parts in text format.




Usage in CJK languages


The following example is how to use Zend_Mail in Japanese. This is one of CJK (aka CJKV) languages. If you
use Chinese, you may use HZ-GB-2312 instead of ISO-2022-JP.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		//We suppose that character encoding of strings is UTF-8 on PHP script.
function myConvert($string) {
    return mb_convert_encoding($string, 'ISO-2022-JP', 'UTF-8');
}

$mail = new Zend_Mail('ISO-2022-JP');
// In this case, you can use ENCODING_7BIT
// because the ISO-2022-JP does not use MSB.
$mail->setBodyText(
    myConvert('This is the text of the mail.'),
    null,
    Zend_Mime::ENCODING_7BIT
);
$mail->setHeaderEncoding(Zend_Mime::ENCODING_BASE64);
$mail->setFrom('somebody@example.com', myConvert('Some Sender'));
$mail->addTo('somebody_else@example.com', myConvert('Some Recipient'));
$mail->setSubject(myConvert('TestSubject'));
$mail->send();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Character Sets
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.db.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Db\RecordExists and Db\NoRecordExists


Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists provide a means to test whether a
record exists in a given table of a database, with a given value.



Supported options for Zend\Validator\Db_*


The following options are supported for Zend\Validator\Db\NoRecordExists and
Zend\Validator\Db\RecordExists:



		adapter: The database adapter which will be used for the search.


		exclude: Sets records which will be excluded from the search.


		field: The database field within this table which will be searched for the record.


		schema: Sets the schema which will be used for the search.


		table: The table which will be searched for the record.








Basic usage


An example of basic usage of the validators:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		//Check that the email address exists in the database
$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table' => 'users',
        'field' => 'emailaddress'
    )
);

if ($validator->isValid($emailaddress)) {
    // email address appears to be valid
} else {
    // email address is invalid; print the reasons
    foreach ($validator->getMessages() as $message) {
        echo "$message\n";
    }
}










The above will test that a given email address is in the database table. If no record is found containing the value
of $emailaddress in the specified column, then an error message is displayed.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		//Check that the username is not present in the database
$validator = new Zend\Validator\Db\NoRecordExists(
    array(
        'table' => 'users',
        'field' => 'username'
    )
);
if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above will test that a given username is not in the database table. If a record is found containing the value
of $username in the specified column, then an error message is displayed.





Excluding records


Zend\Validator\Db\RecordExists and Zend\Validator\Db\NoRecordExists also provide a means to test the
database, excluding a part of the table, either by providing a where clause as a string, or an array with the keys
“field” and “value”.


When providing an array for the exclude clause, the != operator is used, so you can check the rest of a table
for a value before altering a record (for example on a user profile form)


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		//Check no other users have the username
$user_id   = $user->getId();
$validator = new Zend\Validator\Db\NoRecordExists(
    array(
        'table' => 'users',
        'field' => 'username',
        'exclude' => array(
            'field' => 'id',
            'value' => $user_id
        )
    )
);

if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above example will check the table to ensure no records other than the one where id = $user_id contains the
value $username.


You can also provide a string to the exclude clause so you can use an operator other than !=. This can be
useful for testing against composite keys.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		$email     = 'user@example.com';
$clause    = $db->quoteInto('email = ?', $email);
$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table'   => 'users',
        'field'   => 'username',
        'exclude' => $clause
    )
);

if ($validator->isValid($username)) {
    // username appears to be valid
} else {
    // username is invalid; print the reason
    $messages = $validator->getMessages();
    foreach ($messages as $message) {
        echo "$message\n";
    }
}










The above example will check the ‘users’ table to ensure that only a record with both the username $username
and with the email $email is valid.





Database Adapters


You can also specify an adapter. This will allow you to work with applications using multiple database adapters, or
where you have not set a default adapter. As in the example below:


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table' => 'users',
        'field' => 'id',
        'adapter' => $dbAdapter
    )
);













Database Schemas


You can specify a schema within your database for adapters such as PostgreSQL and DB/2 by simply supplying an array
with table and schema keys. As in the example below:


		1
2
3
4
5
6
7


		$validator = new Zend\Validator\Db\RecordExists(
    array(
        'table'  => 'users',
        'schema' => 'my',
        'field'  => 'id'
    )
);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Db\RecordExists and Db\NoRecordExists
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.rest.server.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Rest_Server



Introduction


Zend_Rest_Server is intended as a fully-featured REST server.





REST Server Usage


Basic Zend_Rest_Server Usage - Classes


		1
2
3


		$server = new Zend_Rest_Server();
$server->setClass('My_Service_Class');
$server->handle();










Basic Zend_Rest_Server Usage - Functions


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Say Hello
 *
 * @param string $who
 * @param string $when
 * @return string
 */
function sayHello($who, $when)
{
    return "Hello $who, Good $when";
}

$server = new Zend_Rest_Server();
$server->addFunction('sayHello');
$server->handle();













Calling a Zend_Rest_Server Service


To call a Zend_Rest_Server service, you must supply a GET/POST method argument with a value that is the
method you wish to call. You can then follow that up with any number of arguments using either the name of the
argument (i.e. “who”) or using arg following by the numeric position of the argument (i.e. “arg1”).



Note


Numeric index


Numeric arguments use a 1-based index.




To call sayHello from the example above, you can use either:


?method=sayHello&who=Davey&when=Day


or:


?method=sayHello&arg1=Davey&arg2=Day





Sending A Custom Status


When returning values, to return a custom status, you may return an array with a status key.


Returning Custom Status


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Say Hello
 *
 * @param string $who
 * @param string $when
 * @return array
 */
function sayHello($who, $when)
{
    return array('msg' => "An Error Occurred", 'status' => false);
}

$server = new Zend_Rest_Server();
$server->addFunction('sayHello');
$server->handle();













Returning Custom XML Responses


If you wish to return custom XML, simply return a DOMDocument, DOMElement or SimpleXMLElement object.


Return Custom XML


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		/**
 * Say Hello
 *
 * @param string $who
 * @param string $when
 * @return SimpleXMLElement
 */
function sayHello($who, $when)
{
    $xml ='<?xml version="1.0" encoding="ISO-8859-1"?>
<mysite>
    <value>Hey $who! Hope you\'re having a good $when</value>
    <code>200</code>
</mysite>';

    $xml = simplexml_load_string($xml);
    return $xml;
}

$server = new Zend_Rest_Server();
$server->addFunction('sayHello');

$server->handle();










The response from the service will be returned without modification to the client.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Rest_Server
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.permissions.acl.refining.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Refining Access Controls



Precise Access Controls


The basic ACL as defined in the previous section shows how various privileges may
be allowed upon the entire ACL (all resources). In practice, however, access controls tend to have exceptions and
varying degrees of complexity. Zend\Permissions\Acl\Acl allows to you accomplish these refinements in a straightforward and
flexible manner.


For the example CMS, it has been determined that whilst the ‘staff’ group covers the needs of the vast majority
of users, there is a need for a new ‘marketing’ group that requires access to the newsletter and latest news in the
CMS. The group is fairly self-sufficient and will have the ability to publish and archive both newsletters and
the latest news.


In addition, it has also been requested that the ‘staff’ group be allowed to view news stories but not to revise
the latest news. Finally, it should be impossible for anyone (administrators included) to archive any
‘announcement’ news stories since they only have a lifespan of 1-2 days.


First we revise the role registry to reflect these changes. We have determined that the ‘marketing’ group has the
same basic permissions as ‘staff’, so we define ‘marketing’ in such a way that it inherits permissions from
‘staff’:


		1
2
3
4
5
6
7
8


		// The new marketing group inherits permissions from staff
use Zend\Permissions\Acl\Acl;
use Zend\Permissions\Acl\Role\GenericRole as Role;
use Zend\Permissions\Acl\Resource\GenericResource as Resource;

$acl = new Acl();

$acl->addRole(new Role('marketing'), 'staff');










Next, note that the above access controls refer to specific resources (e.g., “newsletter”, “latest news”,
“announcement news”). Now we add these resources:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Create Resources for the rules

// newsletter
$acl->addResource(new Resource('newsletter'));

// news
$acl->addResource(new Resource('news'));

// latest news
$acl->addResource(new Resource('latest'), 'news');

// announcement news
$acl->addResource(new Resource('announcement'), 'news');










Then it is simply a matter of defining these more specific rules on the target areas of the ACL:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Marketing must be able to publish and archive newsletters and the
// latest news
$acl->allow('marketing',
            array('newsletter', 'latest'),
            array('publish', 'archive'));

// Staff (and marketing, by inheritance), are denied permission to
// revise the latest news
$acl->deny('staff', 'latest', 'revise');

// Everyone (including administrators) are denied permission to
// archive news announcements
$acl->deny(null, 'announcement', 'archive');










We can now query the ACL with respect to the latest changes:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		echo $acl->isAllowed('staff', 'newsletter', 'publish') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'newsletter', 'publish') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('staff', 'latest', 'publish') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'latest', 'publish') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'archive') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'revise') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('editor', 'announcement', 'archive') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('administrator', 'announcement', 'archive') ?
     "allowed" : "denied";
// denied













Removing Access Controls


To remove one or more access rules from the ACL, simply use the available removeAllow() or removeDeny()
methods. As with allow() and deny(), you may provide a NULL value to indicate application to all roles,
resources, and/or privileges:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// Remove the denial of revising latest news to staff (and marketing,
// by inheritance)
$acl->removeDeny('staff', 'latest', 'revise');

echo $acl->isAllowed('marketing', 'latest', 'revise') ?
     "allowed" : "denied";
// allowed

// Remove the allowance of publishing and archiving newsletters to
// marketing
$acl->removeAllow('marketing',
                  'newsletter',
                  array('publish', 'archive'));

echo $acl->isAllowed('marketing', 'newsletter', 'publish') ?
     "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'newsletter', 'archive') ?
     "allowed" : "denied";
// denied










Privileges may be modified incrementally as indicated above, but a NULL value for the privileges overrides such
incremental changes:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Allow marketing all permissions upon the latest news
$acl->allow('marketing', 'latest');

echo $acl->isAllowed('marketing', 'latest', 'publish') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'archive') ?
     "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'anything') ?
     "allowed" : "denied";
// allowed
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Refining Access Controls
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.php-renderer.scripts.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
PhpRenderer View Scripts


Once you call render(), Zend\View\Renderer\PhpRenderer then include()s the requested view script and
executes it “inside” the scope of the PhpRenderer instance. Therefore, in your view scripts, references to
$this actually point to the PhpRenderer instance itself.


Variables assigned to the view – either via a View Model, Variables container, or simply by passing an array of variables to render()– may be retrieved in three
ways:



		Explicitly, by retrieving them from the Variables container composed in the PhpRenderer:
$this->vars()->varname.


		As instance properties of the PhpRenderer instance: $this->varname. (In this situation, instance property
access is simply proxying to the composed Variables instance.)


		As local PHP variables: $varname. The PhpRenderer extracts the members of the Variables container
locally.





We generally recommend using the second notation, as it’s less verbose than the first, but differentiates between
variables in the view script scope and those assigned to the renderer from elsewhere.


By way of reminder, here is the example view script from the PhpRenderer introduction.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		<?php if ($this->books): ?>

    <!-- A table of some books. -->
    <table>
        <tr>
            <th>Author</th>
            <th>Title</th>
        </tr>

        <?php foreach ($this->books as $key => $val): ?>
        <tr>
            <td><?php echo $this->escapeHtml($val['author']) ?></td>
            <td><?php echo $this->escapeHtml($val['title']) ?></td>
        </tr>
        <?php endforeach; ?>

    </table>

<?php else: ?>

    <p>There are no books to display.</p>

<?php endif;?>











Escaping Output


One of the most important tasks to perform in a view script is to make sure that output is escaped properly; among
other things, this helps to avoid cross-site scripting attacks. Unless you are using a function, method, or helper
that does escaping on its own, you should always escape variables when you output them and pay careful attention to
applying the correct escaping strategy to each HTML context you use.


The PhpRenderer includes a selection of helpers you can use for this purpose: EscapeHtml,
EscapeHtmlAttr EscapeJs, EscapeCss, and EscapeUrl. Matching the correct helper (or combination of
helpers) to the context into which you are injecting untrusted variables will ensure that you are protected against
Cross-Site Scripting (XSS) vulnerabilities.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// bad view-script practice:
echo $this->variable;

// good view-script practice:
echo $this->escapeHtml($this->variable);

// and remember context is always relevant!
<script type="text/javascript">
    var foo = "<?php echo $this->escapeJs($variable) ?>";
</script>
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                PhpRenderer View Scripts
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.di.definitions.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Di Definition


Definitions are the place where Zend\Di attempts to understand the structure of the code it is attempting to wire.
This means that if you’ve written non-ambiguous, clear and concise code; Zend\Di has a very good chance of
understanding how to wire things up without much added complexity.



DefinitionList


Definitions are introduced to the Zend\Di\Di object through a definition list implemented as
Zend\Di\DefinitionList (SplDoublyLinkedList). Order is important. Definitions in the front of the list will be
consulted on a class before definitions at the end of the list.


Note: Regardless of what kind of Definition strategy you decide to use, it is important that your autoloaders are
already setup and ready to use.





RuntimeDefinition


The default DefinitionList instantiated by Zend\Di\Di, when no other DefinitionList is provided, has as
Definition\RuntimeDefinition baked-in. The RuntimeDefinition will respond to query’s about classes by using
Reflection. This Runtime definitions uses any available information inside methods: their signature, the names of
parameters, the type-hints of the parameters, and the default values to determine if something is optional or
required when making a call to that method. The more explicit you can be in your method naming and method
signatures, the easier of a time Zend\Di\Definition\RuntimeDefinition will have determining the structure of
your code.


This is what the constructor of a RuntimeDefinition looks like:


		1
2
3
4
5
6
7


		public function __construct(IntrospectionStrategy $introspectionStrategy = null, array $explicitClasses = null)
{
    $this->introspectionStrategy = ($introspectionStrategy) ?: new IntrospectionStrategy();
    if ($explicitClasses) {
        $this->setExplicitClasses($explicitClasses);
    }
}










The IntrospectionStrategy object is an object that determines the rules, or guidelines, for how the
RuntimeDefinition will introspect information about your classes. Here are the things it knows how to do:



		Whether or not to use Annotations (Annotations are expensive and off by default, read more about these in the
Annotations section)


		Which method names to include in the introspection, by default, the pattern /^set[A-Z]{1}\w*/ is registered by
default, this is a list of patterns.


		Which interface names represent the interface injection pattern. By default, the pattern /\w*Aware\w*/ is
registered, this is a list of patterns.





The constructor for the IntrospectionStrategy looks like this:


		1
2
3
4


		public function __construct(AnnotationManager $annotationManager = null)
{
    $this->annotationManager = ($annotationManager) ?: $this->createDefaultAnnotationManager();
}










This goes to say that an AnnotationManager is not required, but if you wish to create a special AnnotationManager
with your own annotations, and also wish to extend the RuntimeDefinition to look for these special Annotations,
this is the place to do it.


The RuntimeDefinition also can be used to look up either all classes (implicitly, which is default), or explicitly
look up for particular pre-defined classes. This is useful when your strategy for inspecting one set of classes
might differ from those of another strategy for another set of classes. This can be achieved by using the
setExplictClasses() method or by passing a list of classes as a second argument to the constructor of the
RuntimeDefinition.





CompilerDefinition


The CompilerDefinition is very much similar in nature to the RuntimeDefinition with the exception that it can be
seeded with more information for the purposes of “compiling” a definition. This is useful when you do not want to
be making all those (sometimes expensive) calls to reflection and the annotation scanning system during the request
of your application. By using the compiler, a definition can be created and written to disk to be used during a
request, as opposed to the task of scanning the actual code.


For example, let’s assume we want to create a script that will create definitions for some of our library code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// in "package name" format
$components = array(
    'My_MovieApp',
    'My_OtherClasses',
);

foreach ($components as $component) {
    $diCompiler = new Zend\Di\Definition\CompilerDefinition;
    $diCompiler->addDirectory('/path/to/classes/' . str_replace('_', '/', $component));

    $diCompiler->compile();
    file_put_contents(
        __DIR__ . '/../data/di/' . $component . '-definition.php',
        '<?php return ' . var_export($diCompiler->toArrayDefinition()->toArray(), true) . ';'
    );
}










This will create a couple of files that will return an array of the definition for that class. To utilize this in
an application, the following code will suffice:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		protected function setupDi(Application $app)
{
    $definitionList = new DefinitionList(array(
        new Definition\ArrayDefinition(include __DIR__ . '/path/to/data/di/My_MovieApp-definition.php'),
        new Definition\ArrayDefinition(include __DIR__ . '/path/to/data/di/My_OtherClasses-definition.php'),
        $runtime = new Definition\RuntimeDefinition(),
    ));
    $di = new Di($definitionList, null, new Configuration($this->config->di));
    $di->instanceManager()->addTypePreference('Zend\Di\LocatorInterface', $di);
    $app->setLocator($di);
}










The above code would more than likely go inside your application’s or module’s bootstrap file. This represents the
simplest and most performant way of configuring your DiC for usage.





ClassDefinition


The idea behind using a ClassDefinition is two-fold. First, you may want to override some information inside of a
RuntimeDefinition. Secondly, you might want to simply define your complete class’s definition with an xml, ini, or
php file describing the structure. This class definition can be fed in via Configuration or by directly
instantiating and registering the Definition with the DefinitionList.


Todo - example








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Di Definition
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.db.table-gateway.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\TableGateway


The Table Gateway object is intended to provide an object that represents a table in a database, and the methods of
this object mirror the most common operations on a database table. In code, the interface for such an object looks
like this:


		1
2
3
4
5
6
7
8


		interface Zend\Db\TableGateway\TableGatewayInterface
{
    public function getTable();
    public function select($where = null);
    public function insert($set);
    public function update($set, $where = null);
    public function delete($where);
}










There are two primary implementations of the TableGatewayInterface that are of the most useful:
AbstractTableGateway and TableGateway. The AbstractTableGateway is an abstract basic implementation
that provides functionality for select(), insert(), update(), delete(), as well as an additional
API for doing these same kinds of tasks with explicit SQL objects. These methods are selectWith(),
insertWith(), updateWith() and deleteWith(). In addition, AbstractTableGateway also implements a
“Feature” API, that allows for expanding the behaviors of the base TableGateway implementation without having
to extend the class with this new functionality. The TableGateway concrete implementation simply adds a
sensible constructor to the AbstractTableGateway class so that out-of-the-box, TableGateway does not need
to be extended in order to be consumed and utilized to its fullest.



Basic Usage


The quickest way to get up and running with Zend\Db\TableGateway is to configure and utilize the concrete
implementation of the TableGateway. The API of the concrete TableGateway is:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		class TableGateway extends AbstractTableGateway
{
     public $lastInsertValue;
     public $table;
     public $adapter;

     public function __construct($table, Adapter $adapter, $features = null, ResultSet $resultSetPrototype = null, Sql $sql = null)

     /** Inherited from AbstractTableGateway */

    public function isInitialized();
    public function initialize();
    public function getTable();
    public function getAdapter();
    public function getColumns();
    public function getFeatureSet();
    public function getResultSetPrototype();
    public function getSql();
    public function select($where = null);
    public function selectWith(Select $select);
    public function insert($set);
    public function insertWith(Insert $insert);
    public function update($set, $where = null);
    public function updateWith(Update $update);
    public function delete($where);
    public function deleteWith(Delete $delete);
    public function getLastInsertValue();

}










The concrete TableGateway object practices constructor injection for getting dependencies and options into the
instance. The table name and an instance of an Adapter are all that is needed to setup a working TableGateway
object.


Out of the box, this implementation makes no assumptions about table structure or metadata, and when select()
is executed, a simple ResultSet object with the populated Adapter’s Result (the datasource) will be returned and
ready for iteration.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Db\TableGateway\TableGateway;
$projectTable = new TableGateway('project', $adapter);
$rowset = $projectTable->select(array('type' => 'PHP'));

echo 'Projects of type PHP: ';
foreach ($rowset as $projectRow) {
     echo $projectRow['name'] . PHP_EOL;
}

// or, when expecting a single row:
$artistTable = new TableGateway('artist', $adapter);
$rowset = $artistTable->select(array('id' => 2));
$artistRow = $rowset->current();

var_dump($artistRow);










The select() method takes the same arguments as Zend\Db\Sql\Select::where() with the addition of also being
able to accept a closure, which in turn, will be passed the current Select object that is being used to build the
SELECT query. The following usage is possible:


		1
2
3
4
5
6
7
8
9


		use Zend\Db\TableGateway\TableGateway;
use Zend\Db\Sql\Select;
$artistTable = new TableGateway('artist', $adapter);

// search for at most 2 artists who's name starts with Brit, ascending
$rowset = $artistTable->select(function (Select $select) {
     $select->where->like('name', 'Brit%');
     $select->order('name ASC')->limit(2);
});













TableGateway Features


The Features API allows for extending the functionality of the base TableGateway object without having to
polymorphically extend the base class. This allows for a wider array of possible mixing and matching of features to
achieve a particular behiavior that needs to be attained to make the base implementation of TableGateway useful
for a particular problem.


With the TableGateway object, features should be injected though the constructor. The constructor can take
Features in 3 different forms: as a single feature object, as a FeatureSet object, or as an array of Feature
objects.


There are a number of features built-in and shipped with Zend\Db:



		GlobalAdapterFeature: the ability to use a global/static adapter without needing to inject it into a
TableGateway instance. This is more useful when you are extending the AbstractTableGateway
implementation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class MyTableGateway extends <classname>AbstractTableGateway</classname>
{
   public function __construct()
   {
           $this->table = 'my_table';
           $this->featureSet = new Feature\FeatureSet();
           $this->featureSet->addFeature(new Feature\GlobalAdapterFeature());
           $this->initialize();
   }
}

// elsewhere in code, in a bootstrap
Zend\Db\TableGateway\Feature\GlobalAdapterFeature::setStaticAdapter($adapter);

// in a controller, or model somewhere
$table = new MyTableGateway(); // adapter is statially loaded













		MasterSlaveFeature: the ability to use a master adapter for insert(), update(), and delete() while using a slave
adapter for all select() operations.


		1


		$table = new TableGateway('artist', $adapter, new Feature\MasterSlaveFeature($slaveAdapter));













		MetadataFeature: the ability populate TableGateway with column information from a Metadata object. It will
also store the primary key information in case RowGatewayFeature needs to consume this information.


		1


		$table = new TableGateway('artist', $adapter, new Feature\MeatadataFeature());













		EventFeature: the ability utilize a TableGateway object with Zend\EventManager and to be able to subscribe
to various events in a TableGateway lifecycle.


		1


		$table = new TableGateway('artist', $adapter, new Feature\EventFeature($eventManagerInstance));













		RowGatewayFeature: the ability for select() to return a ResultSet object that upon iteration will


		1
2
3
4
5
6


		$table = new TableGateway('artist', $adapter, new Feature\RowGatewayFeature('id'));
$results = $table->select(array('id' => 2));

$artistRow = $results->current();
$artistRow->name = 'New Name';
$artistRow->save();






















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\TableGateway
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.cookie.handling.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Http_Cookie and Zend_Http_CookieJar



Introduction


Zend_Http_Cookie, as expected, is a class that represents an HTTP cookie. It provides methods for parsing
HTTP response strings, collecting cookies, and easily accessing their properties. It also allows checking if a
cookie matches against a specific scenario, IE a request URL, expiration time, secure connection, etc.


Zend_Http_CookieJar is an object usually used by Zend_Http_Client to hold a set of Zend_Http_Cookie
objects. The idea is that if a Zend_Http_CookieJar object is attached to a Zend_Http_Client object, all
cookies going from and into the client through HTTP requests and responses will be stored by the CookieJar
object. Then, when the client will send another request, it will first ask the CookieJar object for all cookies
matching the request. These will be added to the request headers automatically. This is highly useful in cases
where you need to maintain a user session over consecutive HTTP requests, automatically sending the session ID
cookies when required. Additionally, the Zend_Http_CookieJar object can be serialized and stored in $_SESSION
when needed.





Instantiating Zend_Http_Cookie Objects


Instantiating a Cookie object can be done in two ways:




		Through the constructor, using the following syntax: new Zend_Http_Cookie(string $name, string $value,
string $domain, [int $expires, [string $path, [boolean $secure]]]);



		$name: The name of the cookie (eg. ‘PHPSESSID’) (required)


		$value: The value of the cookie (required)


		$domain: The cookie’s domain (eg. ‘.example.com’) (required)


		$expires: Cookie expiration time, as UNIX time stamp (optional, defaults to NULL). If not set,
cookie will be treated as a ‘session cookie’ with no expiration time.


		$path: Cookie path, eg. ‘/foo/bar/’ (optional, defaults to ‘/’)


		$secure: Boolean, Whether the cookie is to be sent over secure (HTTPS) connections only (optional,
defaults to boolean FALSE)








		By calling the fromString($cookieStr, [$refUri, [$encodeValue]]) static method, with a cookie string as
represented in the ‘Set-Cookie ‘HTTP response header or ‘Cookie’HTTP request header. In this case, the
cookie value must already be encoded. When the cookie string does not contain a ‘domain’ part, you must
provide a reference URI according to which the cookie’s domain and path will be set.


The fromString() method accepts the following parameters:



		$cookieStr: a cookie string as represented in the ‘Set-Cookie’HTTP response header or ‘Cookie’HTTP
request header (required)


		$refUri: a reference URI according to which the cookie’s domain and path will be set. (optional,
defaults to parsing the value from the $cookieStr)


		$encodeValue: If the value should be passed through urldecode. Also effects the cookie’s behavior when
being converted back to a cookie string. (optional, defaults to true)






Instantiating a Zend_Http_Cookie object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// First, using the constructor. This cookie will expire in 2 hours
$cookie = new Zend_Http_Cookie('foo',
                               'bar',
                               '.example.com',
                               time() + 7200,
                               '/path');

// You can also take the HTTP response Set-Cookie header and use it.
// This cookie is similar to the previous one, only it will not expire, and
// will only be sent over secure connections
$cookie = Zend_Http_Cookie::fromString('foo=bar; domain=.example.com; ' .
                                       'path=/path; secure');

// If the cookie's domain is not set, you have to manually specify it
$cookie = Zend_Http_Cookie::fromString('foo=bar; secure;',
                                       'http://www.example.com/path');





















Note


When instantiating a cookie object using the Zend_Http_Cookie::fromString() method, the cookie value is
expected to be URL encoded, as cookie strings should be. However, when using the constructor, the cookie
value string is expected to be the real, decoded value.








A cookie object can be transferred back into a string, using the __toString() magic method. This method will
produce a HTTP request “Cookie” header string, showing the cookie’s name and value, and terminated by a semicolon
(‘;’). The value will be URL encoded, as expected in a Cookie header:



Stringifying a Zend_Http_Cookie object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// Create a new cookie
$cookie = new Zend_Http_Cookie('foo',
                               'two words',
                               '.example.com',
                               time() + 7200,
                               '/path');

// Will print out 'foo=two+words;' :
echo $cookie->__toString();

// This is actually the same:
echo (string) $cookie;

// In PHP 5.2 and higher, this also works:
echo $cookie;

















Zend_Http_Cookie getter methods


Once a Zend_Http_Cookie object is instantiated, it provides several getter methods to get the different
properties of the HTTP cookie:




		getName(): Get the name of the cookie


		getValue(): Get the real, decoded value of the cookie


		getDomain(): Get the cookie’s domain


		getPath(): Get the cookie’s path, which defaults to ‘/’


		getExpiryTime(): Get the cookie’s expiration time, as UNIX time stamp. If the cookie has no expiration
time set, will return NULL.









Additionally, several boolean tester methods are provided:




		isSecure(): Check whether the cookie is set to be sent over secure connections only. Generally speaking,
if TRUE the cookie should only be sent over HTTPS.





		isExpired(int $time = null): Check whether the cookie is expired or not. If the cookie has no expiration
time, will always return TRUE. If $time is provided, it will override the current time stamp as the time
to check the cookie against.





		isSessionCookie(): Check whether the cookie is a “session cookie” - that is a cookie with no expiration
time, which is meant to expire when the session ends.



Using getter methods with Zend_Http_Cookie


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		// First, create the cookie
$cookie =
    Zend_Http_Cookie::fromString('foo=two+words; ' +
                                 'domain=.example.com; ' +
                                 'path=/somedir; ' +
                                 'secure; ' +
                                 'expires=Wednesday, 28-Feb-05 20:41:22 UTC');

echo $cookie->getName();   // Will echo 'foo'
echo $cookie->getValue();  // will echo 'two words'
echo $cookie->getDomain(); // Will echo '.example.com'
echo $cookie->getPath();   // Will echo '/'

echo date('Y-m-d', $cookie->getExpiryTime());
// Will echo '2005-02-28'

echo ($cookie->isExpired() ? 'Yes' : 'No');
// Will echo 'Yes'

echo ($cookie->isExpired(strtotime('2005-01-01') ? 'Yes' : 'No');
// Will echo 'No'

echo ($cookie->isSessionCookie() ? 'Yes' : 'No');
// Will echo 'No'



























Zend_Http_Cookie: Matching against a scenario


The only real logic contained in a Zend_Http_Cookie object, is in the match() method. This method is used to
test a cookie against a given HTTP request scenario, in order to tell whether the cookie should be sent in this
request or not. The method has the following syntax and parameters: Zend_Http_Cookie->match(mixed $uri, [boolean
$matchSessionCookies, [int $now]]);




		$uri: A Zend_Uri_Http object with a domain name and path to be checked. Optionally, a string
representing a valid HTTP URL can be passed instead. The cookie will match if the URL‘s scheme (HTTP or
HTTPS), domain and path all match.





		$matchSessionCookies: Whether session cookies should be matched or not. Defaults to TRUE. If set to
FALSE, cookies with no expiration time will never match.





		$now: Time (represented as UNIX time stamp) to check a cookie against for expiration. If not specified,
will default to the current time.



Matching cookies


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


		// Create the cookie object - first, a secure session cookie
$cookie = Zend_Http_Cookie::fromString('foo=two+words; ' +
                                       'domain=.example.com; ' +
                                       'path=/somedir; ' +
                                       'secure;');

$cookie->match('https://www.example.com/somedir/foo.php');
// Will return true

$cookie->match('http://www.example.com/somedir/foo.php');
// Will return false, because the connection is not secure

$cookie->match('https://otherexample.com/somedir/foo.php');
// Will return false, because the domain is wrong

$cookie->match('https://example.com/foo.php');
// Will return false, because the path is wrong

$cookie->match('https://www.example.com/somedir/foo.php', false);
// Will return false, because session cookies are not matched

$cookie->match('https://sub.domain.example.com/somedir/otherdir/foo.php');
// Will return true

// Create another cookie object - now, not secure, with expiration time
// in two hours
$cookie = Zend_Http_Cookie::fromString('foo=two+words; ' +
                                       'domain=www.example.com; ' +
                                       'expires='
                                       . date(DATE_COOKIE, time() + 7200));

$cookie->match('http://www.example.com/');
// Will return true

$cookie->match('https://www.example.com/');
// Will return true - non secure cookies can go over secure connections
// as well!

$cookie->match('http://subdomain.example.com/');
// Will return false, because the domain is wrong

$cookie->match('http://www.example.com/', true, time() + (3 * 3600));
// Will return false, because we added a time offset of +3 hours to
// current time



























The Zend_Http_CookieJar Class: Instantiation


In most cases, there is no need to directly instantiate a Zend_Http_CookieJar object. If you want to attach a
new cookie jar to your Zend_Http_Client object, just call the Zend_Http_Client->setCookieJar() method, and a
new, empty cookie jar will be attached to your client. You could later get this cookie jar using
Zend_Http_Client->getCookieJar().


If you still wish to manually instantiate a CookieJar object, you can do so by calling “new Zend_Http_CookieJar()”
directly - the constructor method does not take any parameters. Another way to instantiate a CookieJar object is to
use the static Zend_Http_CookieJar::fromResponse() method. This method takes two parameters: a
Zend_Http_Response object, and a reference URI, as either a string or a Zend_Uri_Http object. This method
will return a new Zend_Http_CookieJar object, already containing the cookies set by the passed HTTP response.
The reference URI will be used to set the cookie’s domain and path, if they are not defined in the Set-Cookie
headers.





Adding Cookies to a Zend_Http_CookieJar object


Usually, the Zend_Http_Client object you attached your CookieJar object to will automatically add cookies set
by HTTP responses to your jar. if you wish to manually add cookies to your jar, this can be done by using two
methods:




		Zend_Http_CookieJar->addCookie($cookie[, $ref_uri]): Add a single cookie to the jar. $cookie can be either
a Zend_Http_Cookie object or a string, which will be converted automatically into a Cookie object. If a
string is provided, you should also provide $ref_uri - which is a reference URI either as a string or
Zend_Uri_Http object, to use as the cookie’s default domain and path.


		Zend_Http_CookieJar->addCookiesFromResponse($response, $ref_uri): Add all cookies set in a single HTTP
response to the jar. $response is expected to be a Zend_Http_Response object with Set-Cookie headers.
$ref_uri is the request URI, either as a string or a Zend_Uri_Http object, according to which the
cookies’ default domain and path will be set.












Retrieving Cookies From a Zend_Http_CookieJar object


Just like with adding cookies, there is usually no need to manually fetch cookies from a CookieJar object. Your
Zend_Http_Client object will automatically fetch the cookies required for an HTTP request for you. However,
you can still use 3 provided methods to fetch cookies from the jar object: getCookie(), getAllCookies(),
and getMatchingCookies(). Additionnaly, iterating over the CookieJar will let you retrieve all the
Zend_Http_Cookie objects from it.


It is important to note that each one of these methods takes a special parameter, which sets the return type of the
method. This parameter can have 3 values:




		Zend_Http_CookieJar::COOKIE_OBJECT: Return a Zend_Http_Cookie object. If the method returns more than
one cookie, an array of objects will be returned.


		Zend_Http_CookieJar::COOKIE_STRING_ARRAY: Return cookies as strings, in a “foo=bar” format, suitable for
sending in a HTTP request “Cookie” header. If more than one cookie is returned, an array of strings is
returned.


		Zend_Http_CookieJar::COOKIE_STRING_CONCAT: Similar to COOKIE_STRING_ARRAY, but if more than one cookie is
returned, this method will concatenate all cookies into a single, long string separated by semicolons (;), and
return it. This is especially useful if you want to directly send all matching cookies in a single HTTP
request “Cookie” header.









The structure of the different cookie-fetching methods is described below:




		Zend_Http_CookieJar->getCookie($uri, $cookie_name[, $ret_as]): Get a single cookie from the jar, according
to its URI (domain and path) and name. $uri is either a string or a Zend_Uri_Http object representing
the URI. $cookie_name is a string identifying the cookie name. $ret_as specifies the return type as
described above. $ret_type is optional, and defaults to COOKIE_OBJECT.





		Zend_Http_CookieJar->getAllCookies($ret_as): Get all cookies from the jar. $ret_as specifies the return
type as described above. If not specified, $ret_type defaults to COOKIE_OBJECT.





		Zend_Http_CookieJar->getMatchingCookies($uri[, $matchSessionCookies[, $ret_as[, $now]]]): Get all cookies
from the jar that match a specified scenario, that is a URI and expiration time.




		$uri is either a Zend_Uri_Http object or a string specifying the connection type (secure or
non-secure), domain and path to match against.


		$matchSessionCookies is a boolean telling whether to match session cookies or not. Session cookies
are cookies that have no specified expiration time. Defaults to TRUE.


		$ret_as specifies the return type as described above. If not specified, defaults to COOKIE_OBJECT.


		$now is an integer representing the UNIX time stamp to consider as “now” - that is any cookies who
are set to expire before this time will not be matched. If not specified, defaults to the current time.









You can read more about cookie matching here: this section.


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Http_Cookie and Zend_Http_CookieJar
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.tag.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Tag is a component suite which provides a facility to work with taggable Items. As its base, it provides
two classes to work with Tags, Zend_Tag_Item and Zend_Tag_ItemList. Additionally, it comes with the
interface Zend_Tag_Taggable, which allows you to use any of your models as a taggable item in conjunction with
Zend_Tag.


Zend_Tag_Item is a basic taggable item implementation which comes with the essential functionality required to
work with the Zend_Tag suite. A taggable item always consists of a title and a relative weight (e.g. number of
occurrences). It also stores parameters which are used by the different sub-components of Zend_Tag.


To group multiple items together, Zend_Tag_ItemList exists as an array iterator and provides additional
functionality to calculate absolute weight values based on the given relative weights of each item in it.


Using Zend_Tag


This example illustrates how to create a list of tags and spread absolute weight values on them.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// Create the item list
$list = new Zend_Tag_ItemList();

// Assign tags to it
$list[] = new Zend_Tag_Item(array('title' => 'Code', 'weight' => 50));
$list[] = new Zend_Tag_Item(array('title' => 'Zend Framework', 'weight' => 1));
$list[] = new Zend_Tag_Item(array('title' => 'PHP', 'weight' => 5));

// Spread absolute values on the items
$list->spreadWeightValues(array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));

// Output the items with their absolute values
foreach ($list as $item) {
    printf("%s: %d\n", $item->getTitle(), $item->getParam('weightValue'));
}










This will output the three items Code, Zend Framework and PHP with the absolute values 10, 1 and 2.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/performance.localization.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Internationalization (i18n) and Localization (l10n)


Internationalizing and localizing a site are fantastic ways to expand your audience and ensure that all visitors
can get to the information they need. However, it often comes with a performance penalty. Below are some strategies
you can employ to reduce the overhead of i18n and l10n.



Which translation adapter should I use?


Not all translation adapters are made equal. Some have more features than others, and some perform better than
others. Additionally, you may have business requirements that force you to use a particular adapter. However, if
you have a choice, which adapters are fastest?



Use non-XML translation adapters for greatest speed


Zend Framework ships with a variety of translation adapters. Fully half of them utilize an XML format, incurring
memory and performance overhead. Fortunately, there are several adapters that utilize other formats that can be
parsed much more quickly. In order of speed, from fastest to slowest, they are:



		Array: this is the fastest, as it is, by definition, parsed into a native PHP format immediately on
inclusion.


		CSV: uses fgetcsv() to parse a CSV file and transform it into a native PHP format.


		INI: uses parse_ini_file() to parse an INI file and transform it into a native PHP format. This and
the CSV adapter are roughly equivalent performance-wise.


		Gettext: The gettext adapter from Zend Framework does not use the gettext extension as it is not thread
safe and does not allow specifying more than one locale per server. As a result, it is slower than using the
gettext extension directly, but, because the gettext format is binary, it’s faster to parse than XML.





If high performance is one of your concerns, we suggest utilizing one of the above adapters.







How can I make translation and localization even faster?


Maybe, for business reasons, you’re limited to an XML-based translation adapter. Or perhaps you’d like to speed
things up even more. Or perhaps you want to make l10n operations faster. How can you do this?



Use translation and localization caches


Both Zend_Translator and Zend_Locale implement caching functionality that can greatly affect performance.
In the case of each, the major bottleneck is typically reading the files, not the actual lookups; using a cache
eliminates the need to read the translation and/or localization files.


You can read about caching of translation and localization strings in the following locations:



		Zend_Translator adapter caching


		Zend_Locale caching













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Internationalization (i18n) and Localization (l10n)
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Http



Overview


Zend\Http is a primary foundational component of Zend Framework. Since much of what PHP does is web-based,
specifically HTTP, it makes sense to have a performant, extensible, concise and consistent API to do all things
HTTP. In nutshell, there are several parts of Zend\Http:



		Context-less Request and Response classes that expose a fluent API for introspecting several aspects of
HTTP messages:
		Request line information and response status information


		Parameters, such as those found in POST and GET


		Message Body


		Headers








		A Client implementation with various adapters that allow for sending requests and introspecting responses.








Zend\Http Request, Response and Headers


The Request, Response and Headers portion of the Zend\Http component provides a fluent, object-oriented
interface for introspecting information from all the various parts of an HTTP request or HTTP response. The two
main objects are Zend\Http\Request and Zend\Http\Response. These two classes are “context-less”, meaning
that they model a request or response in the same way whether it is presented by a client (to send a request
and receive a response) or by a server (to receive a request and send a response). In other words,
regardless of the context, the API remains the same for introspecting their various respective parts. Each attempts
to fully model a request or response so that a developer can create these objects from a factory, or create and
populate them manually.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Http
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/view.placeholders.conclusion.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
View Placeholders: Conclusion


View placeholders are a simple and powerful method for creating rich layouts for your application. You can use a
variety of standard placeholders, such as those discussed (doctype(), headTitle(), headLink(), and
headScript()), or use the generic placeholder() helper to aggregate content and render it in custom ways.
Experiment with their exposed functionality, and visit the appropriate sections in the reference guide to find out
about the additional features they offer – and how you may leverage those features to create rich content for your
readers.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                View Placeholders: Conclusion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.alnum.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alnum


Zend_Filter_Alnum is a filter which returns only alphabetic characters and digits. All other characters are
supressed.



Supported options for Zend_Filter_Alnum


The following options are supported for Zend_Filter_Alnum:



		allowwhitespace: If this option is set then whitespace characters are allowed. Otherwise they are supressed.
Per default whitespaces are not allowed.








Basic usage


See the following example for the default behaviour of this filter.


		1
2
3


		$filter = new Zend_Filter_Alnum();
$return = $filter->filter('This is (my) content: 123');
// returns 'Thisismycontent123'










The above example returns ‘Thisismycontent123’. As you see all whitespaces and also the brackets are filtered.



Note


Zend_Filter_Alnum works on almost all languages. But actually there are three exceptions: Chinese, Japanese
and Korean. Within these languages the english alphabet is use instead of the characters from these languages.
The language itself is detected by using Locale.







Allow whitespaces


Zend_Filter_Alnum can also allow whitespaces. This can be usefull when you want to strip special chars from a
text. See the following example:


		1
2
3


		$filter = new Zend_Filter_Alnum(array('allowwhitespace' => true));
$return = $filter->filter('This is (my) content: 123');
// returns 'This is my content 123'










The above example returns ‘This is my content 123’. As you see only the brackets are filtered whereas the
whitespaces are not touched.


To change allowWhiteSpace afterwards you can use setAllowWhiteSpace() and getAllowWhiteSpace().








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alnum
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.config.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Config is designed to simplify access to configuration data within applications. It
provides a nested object property-based user interface for accessing this configuration data within application
code. The configuration data may come from a variety of media supporting hierarchical data storage. Currently,
Zend\Config provides adapters that read and write configuration data stored in .ini, JSON, YAML and XML files.



Using Zend\Config\Config with a Reader Class


Normally, it is expected that users would use one of the reader classes to read a
configuration file, but if configuration data are available in a PHP array, one may simply pass the data
to Zend\Config\Config‘s constructor in order to utilize a simple object-oriented interface:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// An array of configuration data is given
$configArray = array(
    'webhost'  => 'www.example.com',
    'database' => array(
        'adapter' => 'pdo_mysql',
        'params'  => array(
            'host'     => 'db.example.com',
            'username' => 'dbuser',
            'password' => 'secret',
            'dbname'   => 'mydatabase'
        )
    )
);

// Create the object-oriented wrapper using the configuration data
$config = new Zend\Config\Config($configArray);

// Print a configuration datum (results in 'www.example.com')
echo $config->webhost;










As illustrated in the example above, Zend\Config\Config provides nested object property syntax to access
configuration data passed to its constructor.


Along with the object oriented access to the data values, Zend\Config\Config also has get() method that
returns the supplied value if the data element doesn’t exist in the configuration array. For example:


		1


		$host = $config->database->get('host', 'localhost');













Using Zend\Config\Config with a PHP Configuration File


It is often desirable to use a purely PHP-based configuration file. The following code illustrates how easily this
can be accomplished:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// config.php
return array(
    'webhost'  => 'www.example.com',
    'database' => array(
        'adapter' => 'pdo_mysql',
        'params'  => array(
            'host'     => 'db.example.com',
            'username' => 'dbuser',
            'password' => 'secret',
            'dbname'   => 'mydatabase'
        )
    )
);










		1
2
3
4
5


		// Consumes the configuration array
$config = new Zend\Config\Config(include 'config.php');

// Print a configuration datum (results in 'www.example.com')
echo $config->webhost;
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-label.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormLabel


The FormLabel view helper is used to render a <label> HTML element and its attributes.
If you have a Zend\\I18n\\Translator\\Translator attached, FormLabel will translate
the label contents during it’s rendering.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		use Zend\Form\Element;

$element = new Element\Text('my-text');
$element->setLabel('Label')
        ->setAttribute('id', 'text-id')
        ->setLabelAttributes(array('class' => 'control-label'));

// Within your view...

/**
 * Example #1: Render label in one shot
 */
echo $this->formLabel($element);
// <label class="control-label" for="text-id">Label</label>

echo $this->formLabel($element, $this->formText($element));
// <label class="control-label" for="text-id">Label<input type="text" name="my-text"></label>

echo $this->formLabel($element, $this->formText($element), 'append');
// <label class="control-label" for="text-id"><input type="text" name="my-text">Label</label>

/**
 * Example #2: Render label in separate steps
 */
// Render the opening tag
echo $this->formLabel()->openTag($element);
// <label class="control-label" for="text-id">

// Render the closing tag
echo $this->formLabel()->closeTag();
// </label>










Attaching a translator and setting a text domain:


		1
2
3
4
5
6
7
8


		// Setting a translator
$this->formLabel()->setTranslator($translator);

// Setting a text domain
$this->formLabel()->setTranslatorTextDomain('my-text-domain');

// Setting both
$this->formLabel()->setTranslator($translator, 'my-text-domain');











Note


Note: If you have a translator in the Service Manager under the key, ‘translator’, the view helper plugin
manager will automatically attach the translator to the FormLabel view helper. See
Zend\\View\\HelperPluginManager::injectTranslator() for more information.




The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
__invoke(ElementInterface $element = null, string $labelContent = null, string $position = null)


		Render a form label, optionally with content.


Always generates a “for” statement, as we cannot assume the form input will be provided in the $labelContent.






		Parameters:		
		$element – A form element.


		$labelContent – If null, will attempt to use the element’s label value.


		$position – Append or prepend the element’s label value to the $labelContent. One of FormLabel::APPEND or FormLabel::PREPEND (default)









		Return type:		string

















		
openTag(array|ElementInterface $attributesOrElement = null)


		Renders the <label> open tag and attributes.






		Parameters:		$attributesOrElement – An array of key value attributes or a ElementInterface instance.



		Return type:		string














		
closeTag()


		Renders a </label> closing tag.






		Return type:		string

















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormLabel
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.barcode.objects.details.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Description of shipped barcodes


You will find below detailed information about all barcode types shipped by default with Zend Framework.



Zend\Barcode\Object\Error


[image: ../_images/zend.barcode.objects.details.error.png]
This barcode is a special case. It is internally used to automatically render an exception caught by the
Zend\Barcode component.





Zend\Barcode\Object\Code128


[image: ../_images/zend.barcode.objects.details.code128.png]

		Name: Code 128


		Allowed characters: the complete ASCII-character set


		Checksum: optional (modulo 103)


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Codabar


[image: ../_images/zend.barcode.objects.details.codabar.png]

		Name: Codabar (or Code 2 of 7)


		Allowed characters:‘0123456789-$:/.+’ with ‘ABCD’ as start and stop characters


		Checksum: none


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Code25


[image: ../_images/zend.barcode.objects.details.code25.png]

		Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)


		Allowed characters:‘0123456789’


		Checksum: optional (modulo 10)


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Code25interleaved


[image: ../_images/zend.barcode.objects.details.int25.png]
This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options, and
adds the following:



		Name: Code 2 of 5 Interleaved


		Allowed characters:‘0123456789’


		Checksum: optional (modulo 10)


		Length: variable (always even number of characters)





Available options include:



Zend\Barcode\Object\Code25interleaved Options







		Option
		Data Type
		Default Value
		Description





		withBearerBars
		Boolean
		FALSE
		Draw a thick bar at the top and the bottom of the barcode.








Note


If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automatically prepend
the missing zero to the barcode text.







Zend\Barcode\Object\Ean2


[image: ../_images/zend.barcode.objects.details.ean2.png]
This barcode extends Zend\Barcode\Object\Ean5 (EAN 5), and has the same particulars and options, and adds the
following:



		Name: EAN-2


		Allowed characters:‘0123456789’


		Checksum: only use internally but not displayed


		Length: 2 characters





There are no particular options for this barcode.



Note


If the number of characters is lower than 2, Zend\Barcode\Object\Ean2 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean5


[image: ../_images/zend.barcode.objects.details.ean5.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:



		Name: EAN-5


		Allowed characters:‘0123456789’


		Checksum: only use internally but not displayed


		Length: 5 characters





There are no particular options for this barcode.



Note


If the number of characters is lower than 5, Zend\Barcode\Object\Ean5 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean8


[image: ../_images/zend.barcode.objects.details.ean8.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:



		Name: EAN-8


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 8 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 8, Zend\Barcode\Object\Ean8 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean13


[image: ../_images/zend.barcode.objects.details.ean13.png]

		Name: EAN-13


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 13 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 13, Zend\Barcode\Object\Ean13 will automatically prepend the
missing zero to the barcode text.


The option withQuietZones has no effect with this barcode.







Zend\Barcode\Object\Code39


[image: ../_images/zend.barcode.introduction.example-1.png]

		Name: Code 39


		Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’


		Checksum: optional (modulo 43)


		Length: variable






Note


Zend\Barcode\Object\Code39 will automatically add the start and stop characters (‘*’) for you.




There are no particular options for this barcode.





Zend\Barcode\Object\Identcode


[image: ../_images/zend.barcode.objects.details.identcode.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: Identcode (Deutsche Post Identcode)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10 different from Code25)


		Length: 12 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically prepend
missing zeros to the barcode text.







Zend\Barcode\Object\Itf14


[image: ../_images/zend.barcode.objects.details.itf14.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: ITF-14


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 14 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 14, Zend\Barcode\Object\Itf14 will automatically prepend missing
zeros to the barcode text.







Zend\Barcode\Object\Leitcode


[image: ../_images/zend.barcode.objects.details.leitcode.png]
This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: Leitcode (Deutsche Post Leitcode)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10 different from Code25)


		Length: 14 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically prepend
missing zeros to the barcode text.







Zend\Barcode\Object\Planet


[image: ../_images/zend.barcode.objects.details.planet.png]

		Name: Planet (PostaL Alpha Numeric Encoding Technique)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 12 or 14 characters (including checksum)





There are no particular options for this barcode.





Zend\Barcode\Object\Postnet


[image: ../_images/zend.barcode.objects.details.postnet.png]

		Name: Postnet (POSTal Numeric Encoding Technique)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 6, 7, 10 or 12 characters (including checksum)





There are no particular options for this barcode.





Zend\Barcode\Object\Royalmail


[image: ../_images/zend.barcode.objects.details.royalmail.png]

		Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)


		Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’


		Checksum: mandatory


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Upca


[image: ../_images/zend.barcode.objects.details.upca.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN-13), and inherits some of its capabilities; it also has a
few particulars of its own.



		Name: UPC-A (Universal Product Code)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 12 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 12, Zend\Barcode\Object\Upca will automatically prepend missing
zeros to the barcode text.


The option withQuietZones has no effect with this barcode.







Zend\Barcode\Object\Upce


[image: ../_images/zend.barcode.objects.details.upce.png]
This barcode extends Zend\Barcode\Object\Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).



		Name: UPC-E (Universal Product Code)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 8 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 8, Zend\Barcode\Object\Upce will automatically prepend missing
zeros to the barcode text.





Note


If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object\Upce will automatically
replace it by 0.


The option withQuietZones has no effect with this barcode.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Description of shipped barcodes
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.doctype.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Doctype Helper


Valid HTML and XHTML documents should include a DOCTYPE declaration. Besides being difficult to remember,
these can also affect how certain elements in your document should be rendered (for instance, CDATA escaping in
<script> and <style> elements.


The Doctype helper allows you to specify one of the following types:



		XHTML11


		XHTML1_STRICT


		XHTML1_TRANSITIONAL


		XHTML1_FRAMESET


		XHTML1_RDFA


		XHTML_BASIC1


		HTML4_STRICT


		HTML4_LOOSE


		HTML4_FRAMESET


		HTML5





You can also specify a custom doctype as long as it is well-formed.


The Doctype helper is a concrete implementation of the Placeholder helper.


Doctype Helper Basic Usage


You may specify the doctype at any time. However, helpers that depend on the doctype for their output will
recognize it only after you have set it, so the easiest approach is to specify it in your bootstrap:


		1
2


		$doctypeHelper = new Zend_View_Helper_Doctype();
$doctypeHelper->doctype('XHTML1_STRICT');










And then print it out on top of your layout script:


		1


		<?php echo $this->doctype() ?>










Retrieving the Doctype


If you need to know the doctype, you can do so by calling getDoctype() on the object, which is returned by
invoking the helper.


		1


		$doctype = $view->doctype()->getDoctype();










Typically, you’ll simply want to know if the doctype is XHTML or not; for this, the isXhtml() method will
suffice:


		1
2
3


		if ($view->doctype()->isXhtml()) {
    // do something differently
}










You can also check if the doctype represents an HTML5 document.


		1
2
3


		if ($view->doctype()->isHtml5()) {
    // do something differently
}










Choosing a Doctype to Use with the Open Graph Protocol


To implement the Open Graph Protocol [http://opengraphprotocol.org/], you may specify the XHTML1_RDFA doctype. This doctype allows a developer
to use the Resource Description Framework [http://www.w3.org/TR/xhtml-rdfa-primer/] within an XHTML document.


		1
2


		$doctypeHelper = new Zend_View_Helper_Doctype();
$doctypeHelper->doctype('XHTML1_RDFA');










The RDFa doctype allows XHTML to validate when the ‘property’ meta tag attribute is used per the Open Graph
Protocol spec. Example within a view script:


		1
2
3
4
5


		<?php echo $this->doctype('XHTML1_RDFA'); ?>
<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:og="http://opengraphprotocol.org/schema/">
<head>
   <meta property="og:type" content="musician" />










In the previous example, we set the property to og:type. The og references the Open Graph namespace we specified in
the html tag. The content identifies the page as being about a musician. See the Open Graph Protocol
documentation [http://opengraphprotocol.org/] for supported properties. The HeadMeta helper may be
used to programmatically set these Open Graph Protocol meta tags.


Here is how you check if the doctype is set to XHTML1_RDFA:


		1
2
3
4
5
6
7


		<?php echo $this->doctype() ?>
<html xmlns="http://www.w3.org/1999/xhtml"
      <?php if ($view->doctype()->isRdfa()): ?>
      xmlns:og="http://opengraphprotocol.org/schema/"
      xmlns:fb="http://www.facebook.com/2008/fbml"
      <?php endif; ?>
>














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Doctype Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.pagination.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Search result pagination


As mentioned above, search result hit objects use lazy loading for
stored document fields. When any stored field is accessed, the complete document is loaded.


Do not retrieve all documents if you actually need to work only with some portion of them. Go through the search
results and store document IDs (and optionally the score) somewhere to retrive documents from the index during the
next script execution.


Search result pagination example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		$cacheId = md5($query);

if (!$resultSet = $cache->load($cacheId)) {
    $hits = $index->find($query);
    $resultSet = array();
    foreach ($hits as $hit) {
        $resultSetEntry          = array();
        $resultSetEntry['id']    = $hit->id;
        $resultSetEntry['score'] = $hit->score;

        $resultSet[] = $resultSetEntry;
    }

    $cache->save($resultSet, $cacheId);
}

$publishedResultSet = array();
for ($resultId = $startId; $resultId < $endId; $resultId++) {
    $publishedResultSet[$resultId] = array(
        'id'    => $resultSet[$resultId]['id'],
        'score' => $resultSet[$resultId]['score'],
        'doc'   => $index->getDocument($resultSet[$resultId]['id']),
    );
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Search result pagination
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.instance.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Instances



Instance Types


Amazon EC2 instances are grouped into two families: standard and High-CPU. Standard instances have memory to CPU
ratios suitable for most general purpose applications; High-CPU instances have proportionally more CPU resources
than memory (RAM) and are well suited for compute-intensive applications. When selecting instance types, you might
want to use less powerful instance types for your web server instances and more powerful instance types for your
database instances. Additionally, you might want to run CPU instance types for CPU-intensive data processing
tasks.


One of the advantages of EC2 is that you pay by the instance hour, which makes it convenient and inexpensive to
test the performance of your application on different instance families and types. One good way to determine the
most appropriate instance family and instance type is to launch test instances and benchmark your application.



Note


Instance Types


The instance types are defined as constants in the code. Column eight in the table is the defined constant name





Available Instance Types











		Type
		CPU
		Memory
		Storage
		Platform
		I/O
		Name
		Constant Name





		Small
		1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
		1.7 GB
		160 GB instance storage (150 GB plus 10 GB root partition)
		32=bit
		Moderate
		m1.small
		Zend_Service_Amazon_Ec2_Instance::SMALL



		Large
		4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)
		7.5 GB
		850 GB instance storage (2 x 420 GB plus 10 GB root partition)
		64-bit
		High
		m1.large
		Zend_Service_Amazon_Ec2_Instance::LARGE



		Extra Large
		8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)
		15 GB
		1,690 GB instance storage (4 x 420 GB plus 10 GB root partition)
		64-bit
		High
		m1.xlarge
		Zend_Service_Amazon_Ec2_Instance::XLARGE



		High-CPU Medium
		5 EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute Units each)
		1.7 GB
		350 GB instance storage (340 GB plus 10 GB root partition)
		32-bit
		Moderate
		c1.medium
		Zend_Service_Amazon_Ec2_Instance::HCPU_MEDIUM



		High-CPU Extra Large
		20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each)
		7 GB
		1,690 GB instance storage (4 x 420 GB plus 10 GB root partition)
		64-bit
		High
		c1.xlarge
		Zend_Service_Amazon_Ec2_Instance::HCPU_XLARGE










Running Amazon EC2 Instances


This section describes the operation methods for maintaining Amazon EC2 Instances.


Starting New Ec2 Instances


run will launch a specified number of EC2 Instances. run takes an array of parameters to start, below is a
table containing the valid values.




Valid Run Options






		Name
		Description
		Required





		imageId
		ID of the AMI with which to launch instances.
		Yes



		minCount
		Minimum number of instances to launch. Default: 1
		No



		maxCount
		Maximum number of instances to launch. Default: 1
		No



		keyName
		Name of the key pair with which to launch instances. If you do not provide a key, all instances will be inaccessible.
		No



		securityGroup
		Names of the security groups with which to associate the instances.
		No



		userData
		The user data available to the launched instances. This should not be Base64 encoded.
		No



		instanceType
		Specifies the instance type. Default: m1.small
		No



		placement
		Specifies the availability zone in which to launch the instance(s). By default, Amazon EC2 selects an availability zone for you.
		No



		kernelId
		The ID of the kernel with which to launch the instance.
		No



		ramdiskId
		The ID of the RAM disk with which to launch the instance.
		No



		blockDeviceVirtualName
		Specifies the virtual name to map to the corresponding device name. For example: instancestore0
		No



		blockDeviceName
		Specifies the device to which you are mapping a virtual name. For example: sdb
		No



		monitor
		Turn on AWS CloudWatch Instance Monitoring
		No











run will return information about each instance that is starting up.


		1
2
3
4
5
6


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->run(array('imageId' => 'ami-509320',
                                   'keyName' => 'myKey',
                                   'securityGroup' => array('web',
                                                            'default')));










Rebooting an Ec2 Instances


reboot will reboot one or more instances.


This operation is asynchronous; it only queues a request to reboot the specified instance(s). The operation will
succeed if the instances are valid and belong to the user. Requests to reboot terminated instances are ignored.


reboot returns boolean TRUE or FALSE


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->reboot('instanceId');










Terminating an Ec2 Instances


terminate shuts down one or more instances. This operation is idempotent; if you terminate an instance more than
once, each call will succeed.


terminate returns boolean TRUE or FALSE


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->terminate('instanceId');











Note


Terminated Instances


Terminated instances will remain visible after termination (approximately one hour).







Amazon Instance Utilities


In this section you will find out how to retreive information, the console output and see if an instance contains a
product code.


Describing Instances


describe returns information about instances that you own.


If you specify one or more instance IDs, Amazon EC2 returns information for those instances. If you do not specify
instance IDs, Amazon EC2 returns information for all relevant instances. If you specify an invalid instance ID, a
fault is returned. If you specify an instance that you do not own, it will not be included in the returned results.


describe will return an array containing information on the instance.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->describe('instanceId');











Note


Terminated Instances


Recently terminated instances might appear in the returned results. This interval is usually less than one hour.
If you do not want terminated instances to be returned, pass in a second variable of boolean TRUE to
describe and the terminated instances will be ignored.




Describing Instances By Image Id


describeByImageId is functionally the same as describe but it will only return the instances that are using the
provided imageId.


describeByImageId will return an array containing information on the instances thare were started by the passed
in imageId


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->describeByImageId('imageId');











Note


Terminated Instances


Recently terminated instances might appear in the returned results. This interval is usually less than one hour.
If you do not want terminated instances to be returned, pass in a second variable of boolean TRUE to
describe and the terminated instances will be ignored.




Retreiving Console Output


consoleOutput retrieves console output for the specified instance.


Instance console output is buffered and posted shortly after instance boot, reboot, and termination. Amazon EC2
preserves the most recent 64 KB output which will be available for at least one hour after the most recent post.


consoleOutput returns an array containing the instanceId, timestamp from the last output and the output
from the console.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->consoleOutput('instanceId');










Confirm Product Code on an Instance


confirmProduct returns TRUE if the specified product code is attached to the specified instance. The
operation returns FALSE if the product code is not attached to the instance.


The confirmProduct operation can only be executed by the owner of the AMI. This feature is useful when an AMI
owner is providing support and wants to verify whether a user’s instance is eligible.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->confirmProduct('productCode', 'instanceId');










Turn on CloudWatch Monitoring on an Instance(s)


monitor returns the list of instances and their current state of the CloudWatch Monitoring. If the instance does
not currently have Monitoring enabled it will be turned on.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->monitor('instanceId');










Turn off CloudWatch Monitoring on an Instance(s)


monitor returns the list of instances and their current state of the CloudWatch Monitoring. If the instance
currently has Monitoring enabled it will be turned off.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->unmonitor('instanceId');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Instances
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/conclusion.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Conclusion


This concludes our brief look at building a simple, but fully functional, MVC
application using Zend Framework 2.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Conclusion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mime.message.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Mime_Message



Introduction


Zend_Mime_Message represents a MIME compliant message that can contain one or more separate Parts
(Represented as Zend_Mime_Part objects). With Zend_Mime_Message, MIME compliant
multipart messages can be generated from Zend_Mime_Part objects. Encoding and Boundary handling are handled
transparently by the class. Zend_Mime_Message objects can also be reconstructed from given strings
(experimental). Used by Zend_Mail.





Instantiation


There is no explicit constructor for Zend_Mime_Message.





Adding MIME Parts


Zend_Mime_Part Objects can be added to a given Zend_Mime_Message object by calling
->addPart($part)


An array with all Zend_Mime_Part objects in the Zend_Mime_Message is returned from the
method getParts(). The Zend_Mime_Part objects can then be changed since they are stored in the array as
references. If parts are added to the array or the sequence is changed, the array needs to be given back to the
Zend_Mime_Part object by calling setParts($partsArray).


The function isMultiPart() will return TRUE if more than one part is registered with the
Zend_Mime_Message object and thus the object would generate a Multipart-Mime-Message when generating the actual
output.





Boundary handling


Zend_Mime_Message usually creates and uses its own Zend_Mime Object to generate a boundary. If you need to
define the boundary or want to change the behaviour of the Zend_Mime object used by Zend_Mime_Message, you
can instantiate the Zend_Mime object yourself and then register it to Zend_Mime_Message. Usually you will
not need to do this. setMime(Zend_Mime $mime) sets a special instance of Zend_Mime to be used by this
Zend_Mime_Message


getMime() returns the instance of Zend_Mime that will be used to render the message when
generateMessage() is called.


generateMessage() renders the Zend_Mime_Message content to a string.





parsing a string to create a Zend_Mime_Message object (experimental)


A given MIME compliant message in string form can be used to reconstruct a Zend_Mime_Message Object from it.
Zend_Mime_Message has a static factory Method to parse this String and return a Zend_Mime_Message Object.


Zend_Mime_Message::createFromMessage($str, $boundary) decodes the given string and returns a
Zend_Mime_Message Object that can then be examined using getParts()








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Mime_Message
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.info-card.basics.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend_InfoCard component implements relying-party support for Information Cards. Information Cards are used for identity management on the internet and authentication of users to web sites. The web sites that the user ultimately authenticates to are called relying-parties.


Detailed information about information cards and their importance to the internet identity metasystem can be found on the IdentityBlog [http://www.identityblog.com/].



Basic Theory of Usage


Usage of Zend_InfoCard can be done one of two ways: either as part of the larger Zend_Auth component via the Zend_InfoCard authentication adapter or as a stand-alone component. In both cases an information card can be requested from a user by using the following HTML block in your HTML login form:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<form action="http://example.com/server" method="POST">
  <input type='image' src='/images/ic.png' align='center'
        width='120px' style='cursor:pointer' />
  <object type="application/x-informationCard"
          name="xmlToken">
   <param name="tokenType"
         value="urn:oasis:names:tc:SAML:1.0:assertion" />
   <param name="requiredClaims"
         value="http://.../claims/privatepersonalidentifier
         http://.../claims/givenname
         http://.../claims/surname" />
 </object>
</form>










In the example above, the requiredClaims <param> tag is used to identify pieces of information known as claims (i.e. person’s first name, last name) which the web site (a.k.a “relying party”) needs in order a user to authenticate using an information card. For your reference, the full URI (for instance the givenname claim) is as follows: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname


When the above HTML is activated by a user (clicks on it), the browser will bring up a card selection program which not only shows them which information cards meet the requirements of the site, but also allows them to select which information card to use if multiple meet the criteria. This information card is transmitted as an XML document to the specified POST URL and is ready to be processed by the Zend_InfoCard component.


Note, Information cards can only be HTTP POSTed to SSL-encrypted URLs. Please consult your web server’s documentation on how to set up SSL encryption.





Using as part of Zend_Auth


In order to use the component as part of the Zend_Auth authentication system, you must use the provided Zend_Auth_Adapter_InfoCard to do so (not available in the standalone Zend_InfoCard distribution). An example of its usage is shown below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


		<?php
if (isset($_POST['xmlToken'])) {

    $adapter = new Zend_Auth_Adapter_InfoCard($_POST['xmlToken']);

    $adapter->addCertificatePair('/usr/local/Zend/apache2/conf/server.key',
                                 '/usr/local/Zend/apache2/conf/server.crt');

    $auth = Zend_Auth::getInstance();

    $result = $auth->authenticate($adapter);

    switch ($result->getCode()) {
        case Zend_Auth_Result::SUCCESS:
            $claims = $result->getIdentity();
            print "Given Name: {$claims->givenname}<br />";
            print "Surname: {$claims->surname}<br />";
            print "Email Address: {$claims->emailaddress}<br />";
            print "PPI: {$claims->getCardID()}<br />";
            break;
        case Zend_Auth_Result::FAILURE_CREDENTIAL_INVALID:
            print "The Credential you provided did not pass validation";
            break;
        default:
        case Zend_Auth_Result::FAILURE:
            print "There was an error processing your credentials.";
            break;
    }

    if (count($result->getMessages()) > 0) {
        print "<pre>";
        var_dump($result->getMessages());
        print "</pre>";
    }

}
?>
<hr />
<div id="login" style="font-family: arial; font-size: 2em;">
<p>Simple Login Demo</p>
 <form method="post">
  <input type="submit" value="Login" />
   <object type="application/x-informationCard" name="xmlToken">
    <param name="tokenType"
          value="urn:oasis:names:tc:SAML:1.0:assertion" />
    <param name="requiredClaims"
          value="http://.../claims/givenname
                 http://.../claims/surname
                 http://.../claims/emailaddress
                 http://.../claims/privatepersonalidentifier" />
  </object>
 </form>
</div>










In the example above, we first create an instance of the Zend_Auth_Adapter_InfoCard and pass the XML data posted by the card selector into it. Once an instance has been created you must then provide at least one SSL certificate public/private key pair used by the web server that received the HTTP POST. These files are used to validate the destination of the information posted to the server and are a requirement when using Information Cards.


Once the adapter has been configured, you can then use the standard Zend_Auth facilities to validate the provided information card token and authenticate the user by examining the identity provided by the getIdentity() method.





Using the Zend_InfoCard component standalone


It is also possible to use the Zend_InfoCard component as a standalone component by interacting with the Zend_InfoCard class directly. Using the Zend_InfoCard class is very similar to its use with the Zend_Auth component. An example of its use is shown below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		<?php
if (isset($_POST['xmlToken'])) {
    $infocard = new Zend_InfoCard();
    $infocard->addCertificatePair('/usr/local/Zend/apache2/conf/server.key',
                                  '/usr/local/Zend/apache2/conf/server.crt');

    $claims = $infocard->process($_POST['xmlToken']);

    if($claims->isValid()) {
        print "Given Name: {$claims->givenname}<br />";
        print "Surname: {$claims->surname}<br />";
        print "Email Address: {$claims->emailaddress}<br />";
        print "PPI: {$claims->getCardID()}<br />";
    } else {
        print "Error Validating identity: {$claims->getErrorMsg()}";
    }
}
?>
<hr />
<div id="login" style="font-family: arial; font-size: 2em;">
 <p>Simple Login Demo</p>
 <form method="post">
  <input type="submit" value="Login" />
   <object type="application/x-informationCard" name="xmlToken">
    <param name="tokenType"
          value="urn:oasis:names:tc:SAML:1.0:assertion" />
    <param name="requiredClaims"
          value="http://.../claims/givenname
                 http://.../claims/surname
                 http://.../claims/emailaddress
                 http://.../claims/privatepersonalidentifier" />
   </object>
 </form>
</div>










In the example above, we use the Zend_InfoCard component independently to validate the token provided by the user. As was the case with the Zend_Auth_Adapter_InfoCard, we create an instance of Zend_InfoCard and then set one or more SSL certificate public/private key pairs used by the web server. Once configured, we can use the process() method to process the information card and return the results.





Working with a Claims object


Regardless of whether the Zend_InfoCard component is used as a standalone component or as part of Zend_Auth via Zend_Auth_Adapter_InfoCard, the ultimate result of the processing of an information card is a Zend_InfoCard_Claims object. This object contains the assertions (a.k.a. claims) made by the submitting user based on the data requested by your web site when the user authenticated. As shown in the examples above, the validity of the information card can be ascertained by calling the Zend_InfoCard_Claims::isValid() method. Claims themselves can either be retrieved by simply accessing the identifier desired (i.e. givenname) as a property of the object or through the getClaim() method.


In most cases you will never need to use the getClaim() method. However, if your requiredClaims mandate that you request claims from multiple different sources/namespaces then you will need to extract them explicitly using this method (simply pass it the full URI of the claim to retrieve its value from within the information card). Generally speaking however, the Zend_InfoCard component will set the default URI for claims to be the one used the most frequently within the information card itself and the simplified property-access method can be used.


As part of the validation process, it is the developer’s responsibility to examine the issuing source of the claims contained within the information card and to decide if that source is a trusted source of information. To do so, the getIssuer() method is provided within the Zend_InfoCard_Claims object which returns the URI of the issuer of the information card claims.





Attaching Information Cards to existing accounts


It is possible to add support for information cards to an existing authentication system by storing the private personal identifier (PPI) to a previously traditionally-authenticated account and including at least the http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier claim as part of the requiredClaims of the request. If this claim is requested then the Zend_InfoCard_Claims object will provide a unique identifier for the specific card that was submitted by calling the getCardID() method.


An example of how to attach an information card to an existing traditional-authentication account is shown below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		// ...
public function submitinfocardAction()
{
    if (!isset($_REQUEST['xmlToken'])) {
        throw new ZBlog_Exception('Expected an encrypted token ' .
                                  'but was not provided');
    }

    $infoCard = new Zend_InfoCard();
    $infoCard->addCertificatePair(SSL_CERTIFICATE_PRIVATE,
                                  SSL_CERTIFICATE_PUB);

    try {
        $claims = $infoCard->process($request['xmlToken']);
    } catch(Zend_InfoCard_Exception $e) {
        // TODO Error processing your request
        throw $e;
    }

    if ($claims->isValid()) {
        $db = ZBlog_Data::getAdapter();

        $ppi = $db->quote($claims->getCardID());
        $fullname = $db->quote("{$claims->givenname} {$claims->surname}");

        $query = "UPDATE blogusers
                     SET ppi = $ppi,
                         real_name = $fullname
                   WHERE username='administrator'";

        try {
            $db->query($query);
        } catch(Exception $e) {
            // TODO Failed to store in DB
        }

        $this->view->render();
        return;
    } else {
        throw new
            ZBlog_Exception("Infomation card failed security checks");
    }
}













Creating Zend_InfoCard Adapters


The Zend_InfoCard component was designed to allow for growth in the information card standard through the use of a modular architecture. At this time, many of these hooks are unused and can be ignored, but there is one class that should be written for any serious information card implementation: the Zend_InfoCard adapter.


The Zend_InfoCard adapter is used as a callback mechanism within the component to perform various tasks, such as storing and retrieving Assertion IDs for information cards when they are processed by the component. While storing the assertion IDs of submitted information cards is not necessary, failing to do so opens up the possibility of the authentication scheme being compromised through a replay attack.


To prevent this, one must implement the Zend_InfoCard_Adapter_Interface and set an instance of this interface prior to calling either the process() (standalone) or authenticate() method as a Zend_Auth adapter. To set this interface, the setAdapter() method should be used. In the example below, we set a Zend_InfoCard adapter and use it in our application:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		class myAdapter implements Zend_InfoCard_Adapter_Interface
{
    public function storeAssertion($assertionURI,
                                   $assertionID,
                                   $conditions)
    {
        /* Store the assertion and its conditions by ID and URI */
    }

    public function retrieveAssertion($assertionURI, $assertionID)
    {
        /* Retrieve the assertion by URI and ID */
    }

    public function removeAssertion($assertionURI, $assertionID)
    {
        /* Delete a given assertion by URI/ID */
    }
}

$adapter  = new myAdapter();

$infoCard = new Zend_InfoCard();
$infoCard->addCertificatePair(SSL_PRIVATE, SSL_PUB);
$infoCard->setAdapter($adapter);

$claims = $infoCard->process($_POST['xmlToken']);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-input.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormInput


The FormInput view helper is used to render a <input> HTML form input tag.
It acts as a base class for all of the specifically typed form input helpers
(FormText, FormCheckbox, FormSubmit, etc.), and is not suggested for direct use.


It contains a general map of valid tag attributes and types for attribute filtering.
Each subclass of FormInput implements it’s own specific map of valid tag attributes.


The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
render(ElementInterface $element)


		Renders the <input> tag for the $element.






		Return type:		string

















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormInput
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.code-generator.examples.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_CodeGenerator Examples


Generating PHP classes


The following example generates an empty class with a class-level DocBlock.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		$foo      = new Zend_CodeGenerator_Php_Class();
$docblock = new Zend_CodeGenerator_Php_Docblock(array(
    'shortDescription' => 'Sample generated class',
    'longDescription'  => 'This is a class generated with Zend_CodeGenerator.',
    'tags'             => array(
        array(
            'name'        => 'version',
            'description' => '$Rev:$',
        ),
        array(
            'name'        => 'license',
            'description' => 'New BSD',
        ),
    ),
));
$foo->setName('Foo')
    ->setDocblock($docblock);
echo $foo->generate();










The above code will result in the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		/**
 * Sample generated class
 *
 * This is a class generated with Zend_CodeGenerator.
 *
 * @version $Rev:$
 * @license New BSD
 *
 */
class Foo
{

}










Generating PHP classes with class properties


Building on the previous example, we now add properties to our generated class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


		$foo      = new Zend_CodeGenerator_Php_Class();
$docblock = new Zend_CodeGenerator_Php_Docblock(array(
    'shortDescription' => 'Sample generated class',
    'longDescription'  => 'This is a class generated with Zend_CodeGenerator.',
    'tags'             => array(
        array(
            'name'        => 'version',
            'description' => '$Rev:$',
        ),
        array(
            'name'        => 'license',
            'description' => 'New BSD',
        ),
    ),
));
$foo->setName('Foo')
    ->setDocblock($docblock)
    ->setProperties(array(
        array(
            'name'         => '_bar',
            'visibility'   => 'protected',
            'defaultValue' => 'baz',
        ),
        array(
            'name'         => 'baz',
            'visibility'   => 'public',
            'defaultValue' => 'bat',
        ),
        array(
            'name'         => 'bat',
            'const'        => true,
            'defaultValue' => 'foobarbazbat',
        ),
    ));
echo $foo->generate();










The above results in the following class definition:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		/**
 * Sample generated class
 *
 * This is a class generated with Zend_CodeGenerator.
 *
 * @version $Rev:$
 * @license New BSD
 *
 */
class Foo
{

    protected $_bar = 'baz';

    public $baz = 'bat';

    const bat = 'foobarbazbat';

}










Generating PHP classes with class methods


Zend_CodeGenerator_Php_Class allows you to attach methods with optional content to your classes. Methods may be
attached as either arrays or concrete Zend_CodeGenerator_Php_Method instances.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


		$foo      = new Zend_CodeGenerator_Php_Class();
$docblock = new Zend_CodeGenerator_Php_Docblock(array(
    'shortDescription' => 'Sample generated class',
    'longDescription'  => 'This is a class generated with Zend_CodeGenerator.',
    'tags'             => array(
        array(
            'name'        => 'version',
            'description' => '$Rev:$',
        ),
        array(
            'name'        => 'license',
            'description' => 'New BSD',
        ),
    ),
));
$foo->setName('Foo')
    ->setDocblock($docblock)
    ->setProperties(array(
        array(
            'name'         => '_bar',
            'visibility'   => 'protected',
            'defaultValue' => 'baz',
        ),
        array(
            'name'         => 'baz',
            'visibility'   => 'public',
            'defaultValue' => 'bat',
        ),
        array(
            'name'         => 'bat',
            'const'        => true,
            'defaultValue' => 'foobarbazbat',
        ),
    ))
    ->setMethods(array(
        // Method passed as array
        array(
            'name'       => 'setBar',
            'parameters' => array(
                array('name' => 'bar'),
            ),
            'body'       => '$this->_bar = $bar;' . "\n" . 'return $this;',
            'docblock'   => new Zend_CodeGenerator_Php_Docblock(array(
                'shortDescription' => 'Set the bar property',
                'tags'             => array(
                    new Zend_CodeGenerator_Php_Docblock_Tag_Param(array(
                        'paramName' => 'bar',
                        'datatype'  => 'string'
                    )),
                    new Zend_CodeGenerator_Php_Docblock_Tag_Return(array(
                        'datatype'  => 'string',
                    )),
                ),
            )),
        ),
        // Method passed as concrete instance
        new Zend_CodeGenerator_Php_Method(array(
            'name' => 'getBar',
            'body'       => 'return $this->_bar;',
            'docblock'   => new Zend_CodeGenerator_Php_Docblock(array(
                'shortDescription' => 'Retrieve the bar property',
                'tags'             => array(
                    new Zend_CodeGenerator_Php_Docblock_Tag_Return(array(
                        'datatype'  => 'string|null',
                    )),
                ),
            )),
        )),
    ));

echo $foo->generate();










The above generates the following output:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		/**
 * Sample generated class
 *
 * This is a class generated with Zend_CodeGenerator.
 *
 * @version $Rev:$
 * @license New BSD
 */
class Foo
{

    protected $_bar = 'baz';

    public $baz = 'bat';

    const bat = 'foobarbazbat';

    /**
     * Set the bar property
     *
     * @param string bar
     * @return string
     */
    public function setBar($bar)
    {
        $this->_bar = $bar;
        return $this;
    }

    /**
     * Retrieve the bar property
     *
     * @return string|null
     */
    public function getBar()
    {
        return $this->_bar;
    }

}










Generating PHP files


Zend_CodeGenerator_Php_File can be used to generate the contents of a PHP file. You can include classes as
well as arbitrary content body. When attaching classes, you should attach either concrete
Zend_CodeGenerator_Php_Class instances or an array defining the class.


In the example below, we will assume you’ve defined $foo per one of the class definitions in a previous
example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$file = new Zend_CodeGenerator_Php_File(array(
    'classes'  => array($foo);
    'docblock' => new Zend_CodeGenerator_Php_Docblock(array(
        'shortDescription' => 'Foo class file',
        'tags'             => array(
            array(
                'name'        => 'license',
                'description' => 'New BSD',
            ),
        ),
    )),
    'body'     => 'define(\'APPLICATION_ENV\', \'testing\');',
));










Calling generate() will generate the code – but not write it to a file. You will need to capture the contents
and write them to a file yourself. As an example:


		1
2


		$code = $file->generate();
file_put_contents('Foo.php', $code);










The above will generate the following file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


		<?php
/**
 * Foo class file
 *
 * @license New BSD
 */

/**
 * Sample generated class
 *
 * This is a class generated with Zend_CodeGenerator.
 *
 * @version $Rev:$
 * @license New BSD
 */
class Foo
{

    protected $_bar = 'baz';

    public $baz = 'bat';

    const bat = 'foobarbazbat';

    /**
     * Set the bar property
     *
     * @param string bar
     * @return string
     */
    public function setBar($bar)
    {
        $this->_bar = $bar;
        return $this;
    }

    /**
     * Retrieve the bar property
     *
     * @return string|null
     */
    public function getBar()
    {
        return $this->_bar;
    }

}

define('APPLICATION_ENV', 'testing');










Seeding PHP file code generation via reflection


You can add PHP code to an existing PHP file using the code generator. To do so, you need to first do
reflection on it. The static method fromReflectedFileName() allows you to do this.


		1
2
3
4


		$generator = Zend_CodeGenerator_Php_File::fromReflectedFileName($path);
$body = $generator->getBody();
$body .= "\n\$foo->bar();";
file_put_contents($path, $generator->generate());










Seeding PHP class generation via reflection


You may add code to an existing class. To do so, first use the static fromReflection() method to map the class
into a generator object. From there, you may add additional properties or methods, and then regenerate the class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		$generator = Zend_CodeGenerator_Php_Class::fromReflection(
    new Zend_Reflection_Class($class)
);
$generator->setMethod(array(
    'name'       => 'setBaz',
    'parameters' => array(
        array('name' => 'baz'),
    ),
    'body'       => '$this->_baz = $baz;' . "\n" . 'return $this;',
    'docblock'   => new Zend_CodeGenerator_Php_Docblock(array(
        'shortDescription' => 'Set the baz property',
        'tags'             => array(
            new Zend_CodeGenerator_Php_Docblock_Tag_Param(array(
                'paramName' => 'baz',
                'datatype'  => 'string'
            )),
            new Zend_CodeGenerator_Php_Docblock_Tag_Return(array(
                'datatype'  => 'string',
            )),
        ),
    )),
));
$code = $generator->generate();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_CodeGenerator Examples
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.keypair.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Keypairs


Keypairs are used to access instances.


Creating a new Amazon Keypair


create, creates a new 2048 bit RSA key pair and returns a unique ID that can be used to reference this key pair
when launching new instances.


create returns an array which contains the keyName, keyFingerprint and keyMaterial.


		1
2


		$ec2_kp = new Zend_Service_Amazon_Ec2_Keypair('aws_key','aws_secret_key');
$return = $ec2_kp->create('my-new-key');










Deleting an Amazon Keypair


delete, will delete the key pair. This will only prevent it from being used with new instances. Instances
currently running with the keypair will still allow you to access them.


delete returns boolean TRUE or FALSE


		1
2


		$ec2_kp = new Zend_Service_Amazon_Ec2_Keypair('aws_key','aws_secret_key');
$return = $ec2_kp->delete('my-new-key');










Describe an Amazon Keypair


describe returns information about key pairs available to you. If you specify key pairs, information about those
key pairs is returned. Otherwise, information for all registered key pairs is returned.


describe returns an array which contains keyName and keyFingerprint


		1
2


		$ec2_kp = new Zend_Service_Amazon_Ec2_Keypair('aws_key','aws_secret_key');
$return = $ec2_kp->describe('my-new-key');














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Keypairs
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.twitter.search.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Twitter_Search



Introduction


Zend_Service_Twitter_Search provides a client for the Twitter Search API [http://apiwiki.twitter.com/Search+API+Documentation]. The Twitter Search service is use
to search Twitter. Currently, it only returns data in Atom or JSON format, but a full REST service is in the
future, which will support XML responses.





Twitter Trends


Returns the top ten queries that are currently trending on Twitter. The response includes the time of the request,
the name of each trending topic, and the url to the Twitter Search results page for that topic. Currently the
search API for trends only supports a JSON return so the function returns an array.


		1
2
3
4
5
6


		$twitterSearch  = new Zend_Service_Twitter_Search();
$twitterTrends  = $twitterSearch->trends();

foreach ($twitterTrends as $trend) {
    print $trend['name'] . ' - ' . $trend['url'] . PHP_EOL
}










The return array has two values in it:



		name is the name of trend.


		url is the URL to see the tweets for that trend.








Searching Twitter


Using the search method returns tweets that match a specific query. There are a number of Search Operators [http://search.twitter.com/operators] that
you can use to query with.


The search method can accept six different optional URL parameters passed in as an array:



		lang restricts the tweets to a given language. lang must be given by an ISO 639-1 code [http://en.wikipedia.org/wiki/ISO_639-1].


		rpp is the number of tweets to return per page, up to a maximum of 100.


		page specifies the page number to return, up to a maximum of roughly 1500 results (based on rpp * page).


		since_id returns tweets with status IDs greater than the given ID.


		show_user specifies whether to add “>user<:” to the beginning of the tweet. This is useful for readers that do
not display Atom’s author field. The default is “FALSE”.


		geocode returns tweets by users located within a given radius of the given latitude/longitude, where the user’s
location is taken from their Twitter profile. The parameter value is specified by “latitude,longitude,radius”,
where radius units must be specified as either “mi” (miles) or “km” (kilometers).





JSON Search Example


The following code sample will return an array with the search results.


		1
2


		$twitterSearch  = new Zend_Service_Twitter_Search('json');
$searchResults  = $twitterSearch->search('zend', array('lang' => 'en'));










ATOM Search Example


The following code sample will return a Zend_Feed_Atom object.


		1
2


		$twitterSearch  = new Zend_Service_Twitter_Search('atom');
$searchResults  = $twitterSearch->search('zend', array('lang' => 'en'));













Zend-specific Accessor Methods


While the Twitter Search API only specifies two methods, Zend_Service_Twitter_Search has additional methods
that may be used for retrieving and modifying internal properties.



		getResponseType() and setResponseType() allow you to retrieve and modify the response type of the search
between JSON and Atom.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Twitter_Search
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.image.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Amazon Machine Images (AMI)


Amazon Machine Images (AMIs) are preconfigured with an ever-growing list of operating systems.



AMI Information Utilities


Register an AMI with EC2


register Each AMI is associated with an unique ID which is provided by the Amazon EC2 service through the
RegisterImage operation. During registration, Amazon EC2 retrieves the specified image manifest from Amazon S3 and
verifies that the image is owned by the user registering the image.


register returns the imageId for the registered Image.


		1
2


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
$ip = $ec2_img->register('imageLocation');










Deregister an AMI with EC2


deregister, Deregisters an AMI. Once deregistered, instances of the AMI can no longer be launched.


deregister returns boolean TRUE or FALSE.


		1
2


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
$ip = $ec2_img->deregister('imageId');










Describe an AMI


describe Returns information about AMIs, AKIs, and ARIs available to the user. Information returned includes
image type, product codes, architecture, and kernel and RAM disk IDs. Images available to the user include public
images available for any user to launch, private images owned by the user making the request, and private images
owned by other users for which the user has explicit launch permissions.




Launch permissions fall into three categories





		Name
		Description





		public
		The owner of the AMI granted launch permissions for the AMI to the all group. All users have launch permissions for these AMIs.



		explicit
		The owner of the AMI granted launch permissions to a specific user.



		implicit
		A user has implicit launch permissions for all AMIs he or she owns.











The list of AMIs returned can be modified by specifying AMI IDs, AMI owners, or users with launch
permissions. If no options are specified, Amazon EC2 returns all AMIs for which the user has launch
permissions.


If you specify one or more AMI IDs, only AMIs that have the specified IDs are returned. If you specify an
invalid AMI ID, a fault is returned. If you specify an AMI ID for which you do not have access, it will not be
included in the returned results.


If you specify one or more AMI owners, only AMIs from the specified owners and for which you have access are
returned. The results can include the account IDs of the specified owners, amazon for AMIs owned by Amazon or
self for AMIs that you own.


If you specify a list of executable users, only users that have launch permissions for the AMIs are returned.
You can specify account IDs (if you own the AMI(s)), self for AMIs for which you own or have explicit
permissions, or all for public AMIs.


describe returns an array for all the images that match the critera that was passed in. The array contains the
imageId, imageLocation, imageState, imageOwnerId, isPublic, architecture, imageType, kernelId, ramdiskId and
platform.


		1
2


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
$ip = $ec2_img->describe();













AMI Attribute Utilities


Modify Image Attributes


Modifies an attribute of an AMI




Valid Attributes





		Name
		Description





		launchPermission
		Controls who has permission to launch the AMI. Launch permissions can be granted to specific users by adding userIds. To make the AMI public, add the all group.



		productCodes
		Associates a product code with AMIs. This allows developers to charge users for using AMIs. The user must be signed up for the product before they can launch the AMI. This is a write once attribute; after it is set, it cannot be changed or removed.











modifyAttribute returns boolean TRUE or FALSE.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
// modify the launchPermission of an AMI
$return = $ec2_img->modifyAttribute('imageId',
                                    'launchPermission',
                                    'add',
                                    'userId',
                                    'userGroup');

// set the product code of the AMI.
$return = $ec2_img->modifyAttribute('imageId',
                                    'productCodes',
                                    'add',
                                    null,
                                    null,
                                    'productCode');










Reset an AMI Attribute


resetAttribute will reset the attribute of an AMI to its default value. The productCodes attribute cannot be
reset.


		1
2


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
$return = $ec2_img->resetAttribute('imageId', 'launchPermission');










Describe AMI Attribute


describeAttribute returns information about an attribute of an AMI. Only one attribute can be specified per
call. Currently only launchPermission and productCodes are supported.


describeAttribute returns an array with the value of the attribute that was requested.


		1
2


		$ec2_img = new Zend_Service_Amazon_Ec2_Image('aws_key','aws_secret_key');
$return = $ec2_img->describeAttribute('imageId', 'launchPermission');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Amazon Machine Images (AMI)
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.set.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Standard Filter Classes


Zend Framework comes with a standard set of filters, which are ready for you to use.





Alnum


Zend_Filter_Alnum is a filter which returns only alphabetic characters and digits. All other characters are
supressed.



Supported options for Zend_Filter_Alnum


The following options are supported for Zend_Filter_Alnum:



		allowwhitespace: If this option is set then whitespace characters are allowed. Otherwise they are supressed.
Per default whitespaces are not allowed.








Basic usage


See the following example for the default behaviour of this filter.


		1
2
3


		$filter = new Zend_Filter_Alnum();
$return = $filter->filter('This is (my) content: 123');
// returns 'Thisismycontent123'










The above example returns ‘Thisismycontent123’. As you see all whitespaces and also the brackets are filtered.



Note


Zend_Filter_Alnum works on almost all languages. But actually there are three exceptions: Chinese, Japanese
and Korean. Within these languages the english alphabet is use instead of the characters from these languages.
The language itself is detected by using Locale.







Allow whitespaces


Zend_Filter_Alnum can also allow whitespaces. This can be usefull when you want to strip special chars from a
text. See the following example:


		1
2
3


		$filter = new Zend_Filter_Alnum(array('allowwhitespace' => true));
$return = $filter->filter('This is (my) content: 123');
// returns 'This is my content 123'










The above example returns ‘This is my content 123’. As you see only the brackets are filtered whereas the
whitespaces are not touched.


To change allowWhiteSpace afterwards you can use setAllowWhiteSpace() and getAllowWhiteSpace().







Alpha


Zend_Filter_Alpha is a filter which returns the string $value, removing all but alphabetic characters. This
filter includes an option to also allow white space characters.



Supported options for Zend_Filter_Alpha


The following options are supported for Zend_Filter_Alpha:



		allowwhitespace: If this option is set then whitespace characters are allowed. Otherwise they are suppressed.
By default whitespace characters are not allowed.








Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Alpha();

print $filter->filter('This is (my) content: 123');










The above example returns ‘Thisismycontent’. Notice that the whitespace characters and brackets are removed.



Note


Zend_Filter_Alpha works on most languages; however, there are three exceptions: Chinese, Japanese and
Korean. With these languages the english alphabet is used. The language is detected through the use of
Locale.







Allow whitespace characters


Zend_Filter_Alpha can also allow whitespace characters. This can be useful when you want to strip special
characters from a string. See the following example:


		1
2
3


		$filter = new Zend_Filter_Alpha(array('allowwhitespace' => true));

print $filter->filter('This is (my) content: 123');










The above example returns ‘This is my content ‘. Notice that the parenthesis, colon, and numbers have all been
removed while the whitespace characters remain.


To change allowWhiteSpace after instantiation the method setAllowWhiteSpace() may be used.


To query the current value of allowWhiteSpace the method getAllowWhiteSpace() may be used.







BaseName


Zend_Filter_BaseName allows you to filter a string which contains the path to a file and it will return the
base name of this file.



Supported options for Zend_Filter_BaseName


There are no additional options for Zend_Filter_BaseName.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_BaseName();

print $filter->filter('/vol/tmp/filename');










This will return ‘filename’.


		1
2
3


		$filter = new Zend_Filter_BaseName();

print $filter->filter('/vol/tmp/filename.txt');










This will return ‘filename.txt‘.







Boolean


This filter changes a given input to be a BOOLEAN value. This is often useful when working with databases or
when processing form values.



Supported options for Zend_Filter_Boolean


The following options are supported for Zend_Filter_Boolean:



		casting: When this option is set to TRUE then any given input will be casted to boolean. This option
defaults to TRUE.


		locale: This option sets the locale which will be used to detect localized input.


		type: The type option sets the boolean type which should be used. Read the following for details.








Default behaviour for Zend_Filter_Boolean


By default, this filter works by casting the input to a BOOLEAN value; in other words, it operates in a similar
fashion to calling (boolean) $value.


		1
2
3
4


		$filter = new Zend_Filter_Boolean();
$value  = '';
$result = $filter->filter($value);
// returns false










This means that without providing any configuration, Zend_Filter_Boolean accepts all input types and returns a
BOOLEAN just as you would get by type casting to BOOLEAN.





Changing behaviour for Zend_Filter_Boolean


Sometimes casting with (boolean) will not suffice. Zend_Filter_Boolean allows you to configure specific
types to convert, as well as which to omit.


The following types can be handled:



		boolean: Returns a boolean value as is.


		integer: Converts an integer 0 value to FALSE.


		float: Converts a float 0.0 value to FALSE.


		string: Converts an empty string ‘’ to FALSE.


		zero: Converts a string containing the single character zero (‘0’) to FALSE.


		empty_array: Converts an empty array to FALSE.


		null: Converts a NULL value to FALSE.


		php: Converts values according to PHP when casting them to BOOLEAN.


		false_string: Converts a string containing the word “false” to a boolean FALSE.


		yes: Converts a localized string which contains the word “no” to FALSE.


		all: Converts all above types to BOOLEAN.





All other given values will return TRUE by default.


There are several ways to select which of the above types are filtered. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// converts 0 to false
$filter = new Zend_Filter_Boolean(Zend_Filter_Boolean::INTEGER);

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(
    Zend_Filter_Boolean::INTEGER + Zend_Filter_Boolean::ZERO
);

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(array(
    'type' => array(
        Zend_Filter_Boolean::INTEGER,
        Zend_Filter_Boolean::ZERO,
    ),
));

// converts 0 and '0' to false
$filter = new Zend_Filter_Boolean(array(
    'type' => array(
        'integer',
        'zero',
    ),
));










You can also give an instance of Zend_Config to set the desired types. To set types after instantiation, use
the setType() method.





Localized booleans


As mentioned previously, Zend_Filter_Boolean can also recognise localized “yes” and “no” strings. This means
that you can ask your customer in a form for “yes” or “no” within his native language and Zend_Filter_Boolean
will convert the response to the appropriate boolean value.


To set the desired locale, you can either use the locale option, or the method setLocale().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$filter = new Zend_Filter_Boolean(array(
    'type'   => Zend_Filter_Boolean::ALL,
    'locale' => 'de',
));

// returns false
echo $filter->filter('nein');

$filter->setLocale('en');

// returns true
$filter->filter('yes');













Disable casting


Sometimes it is necessary to recognise only TRUE or FALSE and return all other values without changes.
Zend_Filter_Boolean allows you to do this by setting the casting option to FALSE.


In this case Zend_Filter_Boolean will work as described in the following table, which shows which values return
TRUE or FALSE. All other given values are returned without change when casting is set to FALSE



Usage without casting






		Type
		True
		False





		Zend_Filter_Boolean::BOOLEAN
		TRUE
		FALSE



		Zend_Filter_Boolean::INTEGER
		0
		1



		Zend_Filter_Boolean::FLOAT
		0.0
		1.0



		Zend_Filter_Boolean::STRING
		“”
		 



		Zend_Filter_Boolean::ZERO
		“0”
		“1”



		Zend_Filter_Boolean::EMPTY_ARRAY
		array()
		 



		Zend_Filter_Boolean::NULL
		NULL
		 



		Zend_Filter_Boolean::FALSE_STRING
		“false” (case independently)
		“true” (case independently)



		Zend_Filter_Boolean::YES
		localized “yes” (case independently)
		localized “no” (case independently)







The following example shows the behaviour when changing the casting option:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$filter = new Zend_Filter_Boolean(array(
    'type'    => Zend_Filter_Boolean::ALL,
    'casting' => false,
));

// returns false
echo $filter->filter(0);

// returns true
echo $filter->filter(1);

// returns the value
echo $filter->filter(2);















Callback


This filter allows you to use own methods in conjunction with Zend_Filter. You don’t have to create a new
filter when you already have a method which does the job.



Supported options for Zend_Filter_Callback


The following options are supported for Zend_Filter_Callback:



		callback: This sets the callback which should be used.


		options: This property sets the options which are used when the callback is processed.








Basic usage


The usage of this filter is quite simple. Let’s expect we want to create a filter which reverses a string.


		1
2
3
4


		$filter = new Zend_Filter_Callback('strrev');

print $filter->filter('Hello!');
// returns "!olleH"










As you can see it’s really simple to use a callback to define a own filter. It is also possible to use a method,
which is defined within a class, by giving an array as callback.


		1
2
3
4
5
6
7
8
9


		// Our classdefinition
class MyClass
{
    public function Reverse($param);
}

// The filter definition
$filter = new Zend_Filter_Callback(array('MyClass', 'Reverse'));
print $filter->filter('Hello!');










To get the actual set callback use getCallback() and to set another callback use setCallback().



Note


Possible exceptions


You should note that defining a callback method which can not be called will raise an exception.







Default parameters within a callback


It is also possible to define default parameters, which are given to the called method as array when the filter is
executed. This array will be concatenated with the value which will be filtered.


		1
2
3
4
5
6
7


		$filter = new Zend_Filter_Callback(
    array(
        'callback' => 'MyMethod',
        'options'  => array('key' => 'param1', 'key2' => 'param2')
    )
);
$filter->filter(array('value' => 'Hello'));










When you would call the above method definition manually it would look like this:


		1


		$value = MyMethod('Hello', 'param1', 'param2');















Compress and Decompress


These two filters are capable of compressing and decompressing strings, files, and directories.



Supported options for Zend_Filter_Compress and Zend_Filter_Decompress


The following options are supported for Zend_Filter_Compress and Zend_Filter_Decompress:



		adapter: The compression adapter which should be used. It defaults to Gz.


		options: Additional options which are given to the adapter at initiation. Each adapter supports it’s own
options.








Supported compression adapters


The following compression formats are supported by their own adapter:



		Bz2


		Gz


		Lzf


		Rar


		Tar


		Zip





Each compression format has different capabilities as described below. All compression filters may be used in
approximately the same ways, and differ primarily in the options available and the type of compression they offer
(both algorithmically as well as string vs. file vs. directory)





Generic handling


To create a compression filter you need to select the compression format you want to use. The following description
takes the Bz2 adapter. Details for all other adapters are described after this section.


The two filters are basically identical, in that they utilize the same backends. Zend_Filter_Compress should be
used when you wish to compress items, and Zend_Filter_Decompress should be used when you wish to decompress
items.


For instance, if we want to compress a string, we have to initiate Zend_Filter_Compress and indicate the
desired adapter.


		1


		$filter = new Zend_Filter_Compress('Bz2');










To use a different adapter, you simply specify it to the constructor.


You may also provide an array of options or Zend_Config object. If you do, provide minimally the key “adapter”,
and then either the key “options” or “adapterOptions” (which should be an array of options to provide to the
adapter on instantiation).


		1
2
3
4
5
6


		$filter = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'blocksize' => 8,
    ),
));











Note


Default compression Adapter


When no compression adapter is given, then the Gz adapter will be used.




Almost the same usage is we want to decompress a string. We just have to use the decompression filter in this case.


		1


		$filter = new Zend_Filter_Decompress('Bz2');










To get the compressed string, we have to give the original string. The filtered value is the compressed version of
the original string.


		1
2
3


		$filter     = new Zend_Filter_Compress('Bz2');
$compressed = $filter->filter('Uncompressed string');
// Returns the compressed string










Decompression works the same way.


		1
2
3


		$filter     = new Zend_Filter_Decompress('Bz2');
$compressed = $filter->filter('Compressed string');
// Returns the uncompressed string











Note


Note on string compression


Not all adapters support string compression. Compression formats like Rar can only handle files and
directories. For details, consult the section for the adapter you wish to use.







Creating an archive


Creating an archive file works almost the same as compressing a string. However, in this case we need an additional
parameter which holds the name of the archive we want to create.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2',
    ),
));
$compressed = $filter->filter('Uncompressed string');
// Returns true on success and creates the archive file










In the above example the uncompressed string is compressed, and is then written into the given archive file.



Note


Existing archives will be overwritten


The content of any existing file will be overwritten when the given filename of the archive already exists.




When you want to compress a file, then you must give the name of the file with its path.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2'
    ),
));
$compressed = $filter->filter('C:\temp\compressme.txt');
// Returns true on success and creates the archive file










You may also specify a directory instead of a filename. In this case the whole directory with all its files and
subdirectories will be compressed into the archive.


		1
2
3
4
5
6
7
8


		$filter     = new Zend_Filter_Compress(array(
    'adapter' => 'Bz2',
    'options' => array(
        'archive' => 'filename.bz2'
    ),
));
$compressed = $filter->filter('C:\temp\somedir');
// Returns true on success and creates the archive file











Note


Do not compress large or base directories


You should never compress large or base directories like a complete partition. Compressing a complete partition
is a very time consuming task which can lead to massive problems on your server when there is not enough space
or your script takes too much time.







Decompressing an archive


Decompressing an archive file works almost like compressing it. You must specify either the archive parameter,
or give the filename of the archive when you decompress the file.


		1
2
3


		$filter     = new Zend_Filter_Decompress('Bz2');
$compressed = $filter->filter('filename.bz2');
// Returns true on success and decompresses the archive file










Some adapters support decompressing the archive into another subdirectory. In this case you can set the target
parameter.


		1
2
3
4
5
6
7
8
9


		$filter     = new Zend_Filter_Decompress(array(
    'adapter' => 'Zip',
    'options' => array(
        'target' => 'C:\temp',
    )
));
$compressed = $filter->filter('filename.zip');
// Returns true on success and decompresses the archive file
// into the given target directory











Note


Directories to extract to must exist


When you want to decompress an archive into a directory, then that directory must exist.







Bz2 Adapter


The Bz2 Adapter can compress and decompress:



		Strings


		Files


		Directories





This adapter makes use of PHP‘s Bz2 extension.


To customize compression, this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Blocksize: This parameter sets the blocksize to use. It can be from ‘0’ to ‘9’. The default value is ‘4’.





All options can be set at instantiation or by using a related method. For example, the related methods for
‘Blocksize’ are getBlocksize() and setBlocksize(). You can also use the setOptions() method which
accepts all options as array.





Gz Adapter


The Gz Adapter can compress and decompress:



		Strings


		Files


		Directories





This adapter makes use of PHP‘s Zlib extension.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Level: This compression level to use. It can be from ‘0’ to ‘9’. The default value is ‘9’.


		Mode: There are two supported modes. ‘compress’ and ‘deflate’. The default value is ‘compress’.





All options can be set at initiation or by using a related method. For example, the related methods for ‘Level’ are
getLevel() and setLevel(). You can also use the setOptions() method which accepts all options as array.





Lzf Adapter


The Lzf Adapter can compress and decompress:



		Strings






Note


Lzf supports only strings


The Lzf adapter can not handle files and directories.




This adapter makes use of PHP‘s Lzf extension.


There are no options available to customize this adapter.





Rar Adapter


The Rar Adapter can compress and decompress:



		Files


		Directories






Note


Rar does not support strings


The Rar Adapter can not handle strings.




This adapter makes use of PHP‘s Rar extension.



Note


Rar compression not supported


Due to restrictions with the Rar compression format, there is no compression available for free. When you want
to compress files into a new Rar archive, you must provide a callback to the adapter that can invoke a Rar
compression program.




To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Callback: A callback which provides compression support to this adapter.


		Password: The password which has to be used for decompression.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.





Tar Adapter


The Tar Adapter can compress and decompress:



		Files


		Directories






Note


Tar does not support strings


The Tar Adapter can not handle strings.




This adapter makes use of PEAR‘s Archive_Tar component.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Mode: A mode to use for compression. Supported are either ‘NULL‘ which means no compression at all, ‘Gz’
which makes use of PHP‘s Zlib extension and ‘Bz2’ which makes use of PHP‘s Bz2 extension. The default value
is ‘NULL‘.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.



Note


Directory usage


When compressing directories with Tar then the complete file path is used. This means that created Tar files
will not only have the subdirectory but the complete path for the compressed file.







Zip Adapter


The Zip Adapter can compress and decompress:



		Strings


		Files


		Directories






Note


Zip does not support string decompression


The Zip Adapter can not handle decompression to a string; decompression will always be written to a file.




This adapter makes use of PHP‘s Zip extension.


To customize the compression this adapter supports the following options:



		Archive: This parameter sets the archive file which should be used or created.


		Target: The target where the decompressed files will be written to.





All options can be set at instantiation or by using a related method. For example, the related methods for ‘Target’
are getTarget() and setTarget(). You can also use the setOptions() method which accepts all options as
array.







Digits


Returns the string $value, removing all but digits.



Supported options for Zend_Filter_Digits


There are no additional options for Zend_Filter_Digits.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Digits();

print $filter->filter('October 2009');










This returns “2009”.


		1
2
3


		$filter = new Zend_Filter_Digits();

print $filter->filter('HTML 5 for Dummies');










This returns “5”.







Dir


Given a string containing a path to a file, this function will return the name of the directory.



Supported options for Zend_Filter_Dir


There are no additional options for Zend_Filter_Dir.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Dir();

print $filter->filter('/etc/passwd');










This returns “/etc”.


		1
2
3


		$filter = new Zend_Filter_Dir();

print $filter->filter('C:/Temp/x');










This returns “C:/Temp”.







Encrypt and Decrypt


These filters allow to encrypt and decrypt any given string. Therefor they make use of Adapters. Actually there are
adapters for the Mcrypt and OpenSSL extensions from PHP.



Supported options for Zend_Filter_Encrypt and Zend_Filter_Decrypt


The following options are supported for Zend_Filter_Encrypt and Zend_Filter_Decrypt:



		adapter: This sets the encryption adapter which should be used


		algorithm: Only MCrypt. The algorithm which has to be used. It should be one of the algorithm ciphers
which can be found under PHP’s mcrypt ciphers [http://php.net/mcrypt]. If not set it defaults to blowfish.


		algorithm_directory: Only MCrypt. The directory where the algorithm can be found. If not set it defaults
to the path set within the mcrypt extension.


		compression: If the encrypted value should be compressed. Default is no compression.


		envelope: Only OpenSSL. The encrypted envelope key from the user who encrypted the content. You can
either provide the path and filename of the key file, or just the content of the key file itself. When the
package option has been set, then you can omit this parameter.


		key: Only MCrypt. The encryption key with which the input will be encrypted. You need the same key for
decryption.


		mode: Only MCrypt. The encryption mode which has to be used. It should be one of the modes which can be
found under PHP’s mcrypt modes [http://php.net/mcrypt]. If not set it defaults to ‘cbc’.


		mode_directory: Only MCrypt. The directory where the mode can be found. If not set it defaults to the
path set within the Mcrypt extension.


		package: Only OpenSSL. If the envelope key should be packed with the encrypted value. Default is
FALSE.


		private: Only OpenSSL. Your private key which will be used for encrypting the content. Also the private
key can be either a filename with path of the key file, or just the content of the key file itself.


		public: Only OpenSSL. The public key of the user whom you want to provide the encrpted content. You can
give multiple public keys by using an array. You can eigther provide the path and filename of the key file, or
just the content of the key file itself.


		salt: Only MCrypt. If the key should be used as salt value. The key used for encryption will then itself
also be encrypted. Default is FALSE.


		vector: Only MCrypt. The initialization vector which shall be used. If not set it will be a random
vector.








Adapter usage


As these two encryption methodologies work completely different, also the usage of the adapters differ. You have to
select the adapter you want to use when initiating the filter.


		1
2
3
4
5


		// Use the Mcrypt adapter
$filter1 = new Zend_Filter_Encrypt(array('adapter' => 'mcrypt'));

// Use the OpenSSL adapter
$filter2 = new Zend_Filter_Encrypt(array('adapter' => 'openssl'));










To set another adapter you can also use setAdapter(), and the getAdapter() method to receive the actual set
adapter.


		1
2
3


		// Use the Mcrypt adapter
$filter = new Zend_Filter_Encrypt();
$filter->setAdapter('openssl');











Note


When you do not supply the adapter option or do not use setAdapter(), then the Mcrypt adapter will
be used per default.







Encryption with Mcrypt


When you have installed the Mcrypt extension you can use the Mcrypt adapter. If you provide a string
instead of an array of options, this string will be used as key.


You can get and set the encryption values also afterwards with the getEncryption() and setEncryption()
methods.



Note


Note that you will get an exception if the mcrypt extension is not available in your environment.





Note


You should also note that all settings which be checked when you create the instance or when you call
setEncryption(). If mcrypt detects problem with your settings an exception will be thrown.




You can get or set the encryption vector by calling getVector() and setVector(). A given string will be
truncated or padded to the needed vector size of the used algorithm.



Note


Note that when you are not using an own vector, you must get the vector and store it. Otherwise you will not be
able to decode the encoded string.




		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use the default blowfish settings
$filter = new Zend_Filter_Encrypt('myencryptionkey');

// Set a own vector, otherwise you must call getVector()
// and store this vector for later decryption
$filter->setVector('myvector');
// $filter->getVector();

$encrypted = $filter->filter('text_to_be_encoded');
print $encrypted;

// For decryption look at the Decrypt filter













Decryption with Mcrypt


For decrypting content which was previously encrypted with Mcrypt you need to have the options with which the
encryption has been called.


There is one eminent difference for you. When you did not provide a vector at encryption you need to get it after
you encrypted the content by using the getVector() method on the encryption filter. Without the correct vector
you will not be able to decrypt the content.


As soon as you have provided all options decryption is as simple as encryption.


		1
2
3
4
5
6
7
8


		// Use the default blowfish settings
$filter = new Zend_Filter_Decrypt('myencryptionkey');

// Set the vector with which the content was encrypted
$filter->setVector('myvector');

$decrypted = $filter->filter('encoded_text_normally_unreadable');
print $decrypted;











Note


Note that you will get an exception if the mcrypt extension is not available in your environment.





Note


You should also note that all settings which be checked when you create the instance or when you call
setEncryption(). If mcrypt detects problem with your settings an exception will be thrown.







Encryption with OpenSSL


When you have installed the OpenSSL extension you can use the OpenSSL adapter. You can get or set the
public keys also afterwards with the getPublicKey() and setPublicKey() methods. The private key can also be
get and set with the related getPrivateKey() and setPrivateKey() methods.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));











Note


Note that the OpenSSL adapter will not work when you do not provide valid keys.




When you want to encode also the keys, then you have to provide a passphrase with the setPassphrase() method.
When you want to decode content which was encoded with a passphrase you will not only need the public key, but also
the passphrase to decode the encrypted key.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));
$filter->setPassphrase('mypassphrase');










At last, when you use OpenSSL you need to give the receiver the encrypted content, the passphrase when have
provided one, and the envelope keys for decryption.


This means for you, that you have to get the envelope keys after the encryption with the getEnvelopeKey()
method.


So our complete example for encrypting content with OpenSSL look like this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the public keys at initiation
$filter->setPublicKey(array(
   '/public/key/path/first.pem',
   '/public/key/path/second.pem'
));
$filter->setPassphrase('mypassphrase');

$encrypted = $filter->filter('text_to_be_encoded');
$envelope  = $filter->getEnvelopeKey();
print $encrypted;

// For decryption look at the Decrypt filter











Simplified usage with Openssl


As seen before, you need to get the envelope key to be able to decrypt the previous encrypted value. This can be
very annoying when you work with multiple values.


To have a simplified usage you can set the package option to TRUE. The default value is FALSE.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Encrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem',
   'public'  => '/public/key/path/public.pem',
   'package' => true
));

$encrypted = $filter->filter('text_to_be_encoded');
print $encrypted;

// For decryption look at the Decrypt filter










Now the returned value contains the encrypted value and the envelope. You don’t need to get them after the
compression. But, and this is the negative aspect of this feature, the encrypted value can now only be decrypted by
using Zend_Filter_Encrypt.





Compressing the content


Based on the original value, the encrypted value can be a very large string. To reduce the value
Zend_Filter_Encrypt allows the usage of compression.


The compression option can eighter be set to the name of a compression adapter, or to an array which sets all
wished options for the compression adapter.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		// Use basic compression adapter
$filter1 = new Zend_Filter_Encrypt(array(
   'adapter'     => 'openssl',
   'private'     => '/path/to/mykey/private.pem',
   'public'      => '/public/key/path/public.pem',
   'package'     => true,
   'compression' => 'bz2'
));

// Use basic compression adapter
$filter2 = new Zend_Filter_Encrypt(array(
   'adapter'     => 'openssl',
   'private'     => '/path/to/mykey/private.pem',
   'public'      => '/public/key/path/public.pem',
   'package'     => true,
   'compression' => array('adapter' => 'zip', 'target' => '\usr\tmp\tmp.zip')
));











Note


Decryption with same settings


When you want to decrypt a value which is additionally compressed, then you need to set the same compression
settings for decryption as for encryption. Otherwise the decryption will fail.









Decryption with OpenSSL


Decryption with OpenSSL is as simple as encryption. But you need to have all data from the person who encrypted
the content. See the following example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));











Note


Note that the OpenSSL adapter will not work when you do not provide valid keys.




Optionally it could be necessary to provide the passphrase for decrypting the keys themself by using the
setPassphrase() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));
$filter->setPassphrase('mypassphrase');










At last, decode the content. Our complete example for decrypting the previously encrypted content looks like this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// Use openssl and provide a private key
$filter = new Zend_Filter_Decrypt(array(
   'adapter' => 'openssl',
   'private' => '/path/to/mykey/private.pem'
));

// of course you can also give the envelope keys at initiation
$filter->setEnvelopeKey(array(
   '/key/from/encoder/first.pem',
   '/key/from/encoder/second.pem'
));
$filter->setPassphrase('mypassphrase');

$decrypted = $filter->filter('encoded_text_normally_unreadable');
print $decrypted;















HtmlEntities


Returns the string $value, converting characters to their corresponding HTML entity equivalents where they
exist.



Supported options for Zend_Filter_HtmlEntities


The following options are supported for Zend_Filter_HtmlEntities:



		quotestyle: Equivalent to the PHP htmlentities native function parameter quote_style. This allows you
to define what will be done with ‘single’ and “double” quotes. The following constants are accepted:
ENT_COMPAT, ENT_QUOTES ENT_NOQUOTES with the default being ENT_COMPAT.





		charset: Equivalent to the PHP htmlentities native function parameter charset. This defines the
character set to be used in filtering. Unlike the PHP native function the default is ‘UTF-8’. See
“http://php.net/htmlentities” for a list of supported character sets.



Note


This option can also be set via the $options parameter as a Zend_Config object or array. The option
key will be accepted as either charset or encoding.







		doublequote: Equivalent to the PHP htmlentities native function parameter double_encode. If set to
false existing html entities will not be encoded. The default is to convert everything (true).



Note


This option must be set via the $options parameter or the setDoubleEncode() method.













Basic usage


See the following example for the default behaviour of this filter.


		1
2
3


		$filter = new Zend_Filter_HtmlEntities();

print $filter->filter('<');













Quote Style


Zend_Filter_HtmlEntities allows changing the quote style used. This can be useful when you want to leave
double, single, or both types of quotes un-filtered. See the following example:


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_QUOTES));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that ‘single’ as well as “double” quotes are
filtered.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_COMPAT));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that “double” quotes are filtered while ‘single’
quotes are not altered.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities(array('quotestyle' => ENT_NOQUOTES));

$input  = "A 'single' and " . '"double"';
print $filter->filter($input);










The above example returns A ‘single’ and “double”. Notice that neither “double” or ‘single’ quotes are altered.





Helper Methods


To change or retrieve the quotestyle after instantiation, the two methods setQuoteStyle() and
getQuoteStyle() may be used respectively. setQuoteStyle() accepts one parameter $quoteStyle. The
following constants are accepted: ENT_COMPAT, ENT_QUOTES, ENT_NOQUOTES


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);










To change or retrieve the charset after instantiation, the two methods setCharSet() and getCharSet()
may be used respectively. setCharSet() accepts one parameter $charSet. See “http://php.net/htmlentities”
for a list of supported character sets.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);










To change or retrieve the doublequote option after instantiation, the two methods setDoubleQuote() and
getDoubleQuote() may be used respectively. setDoubleQuote() accepts one boolean parameter $doubleQuote.


		1
2
3
4


		$filter = new Zend_Filter_HtmlEntities();

$filter->setQuoteStyle(ENT_QUOTES);
print $filter->getQuoteStyle(ENT_QUOTES);















Int


Zend_Filter_Int allows you to transform a sclar value which contains into an integer.



Supported options for Zend_Filter_Int


There are no additional options for Zend_Filter_Int.





Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_Int();

print $filter->filter('-4 is less than 0');










This will return ‘-4’.







Null


This filter will change the given input to be NULL if it meets specific criteria. This is often necessary when
you work with databases and want to have a NULL value instead of a boolean or any other type.



Supported options for Zend_Filter_Null


The following options are supported for Zend_Filter_Null:



		type: The variable type which should be supported.








Default behaviour for Zend_Filter_Null


Per default this filter works like PHP‘s empty() method; in other words, if empty() returns a boolean
TRUE, then a NULL value will be returned.


		1
2
3
4


		$filter = new Zend_Filter_Null();
$value  = '';
$result = $filter->filter($value);
// returns null instead of the empty string










This means that without providing any configuration, Zend_Filter_Null will accept all input types and return
NULL in the same cases as empty().


Any other value will be returned as is, without any changes.





Changing behaviour for Zend_Filter_Null


Sometimes it’s not enough to filter based on empty(). Therefor Zend_Filter_Null allows you to configure
which type will be converted and which not.


The following types can be handled:



		boolean: Converts a boolean FALSE value to NULL.


		integer: Converts an integer 0 value to NULL.


		empty_array: Converts an empty array to NULL.


		float: Converts an float 0.0 value to NULL.


		string: Converts an empty string ‘’ to NULL.


		zero: Converts a string containing the single character zero (‘0’) to NULL.


		all: Converts all above types to NULL. (This is the default behavior.)





There are several ways to select which of the above types are filtered. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// converts false to null
$filter = new Zend_Filter_Null(Zend_Filter_Null::BOOLEAN);

// converts false and 0 to null
$filter = new Zend_Filter_Null(
    Zend_Filter_Null::BOOLEAN + Zend_Filter_Null::INTEGER
);

// converts false and 0 to null
$filter = new Zend_Filter_Null( array(
    Zend_Filter_Null::BOOLEAN,
    Zend_Filter_Null::INTEGER
));

// converts false and 0 to null
$filter = new Zend_Filter_Null(array(
    'boolean',
    'integer',
));










You can also give an instance of Zend_Config to set the wished types. To set types afterwards use
setType().







PregReplace


Zend_Filter_PregReplace performs a search using regular expressions and replaces all found elements.



Supported options for Zend_Filter_PregReplace


The following options are supported for Zend_Filter_PregReplace:



		match: The pattern which will be searched for.


		replace: The string which is used as replacement for the matches.








Basic usage


To use this filter properly you must give two options:


The option match has to be given to set the pattern which will be searched for. It can be a string for a single
pattern, or an array of strings for multiple pattern.


To set the pattern which will be used as replacement the option replace has to be used. It can be a string for
a single pattern, or an array of strings for multiple pattern.


		1
2
3
4
5
6
7
8


		$filter = new Zend_Filter_PregReplace(array(
    'match'   => '/bob/',
    'replace' => 'john',
));
$input  = 'Hy bob!";

$filter->filter($input);
// returns 'Hy john!'










You can use getMatchPattern() and setMatchPattern() to set the matching pattern afterwards. To set the
replacement pattern you can use getReplacement() and setReplacement().


		1
2
3
4
5
6
7


		$filter = new Zend_Filter_PregReplace();
$filter->setMatchPattern(array('bob', 'Hy'))
      ->setReplacement(array('john', 'Bye'));
$input  = 'Hy bob!";

$filter->filter($input);
// returns 'Bye john!'










For a more complex usage take a look into PHP‘s PCRE Pattern Chapter [http://www.php.net/manual/en/reference.pcre.pattern.modifiers.php].







RealPath


This filter will resolve given links and pathnames and returns canonicalized absolute pathnames.



Supported options for Zend_Filter_RealPath


The following options are supported for Zend_Filter_RealPath:



		exists: This option defaults to TRUE which checks if the given path really exists.








Basic usage


For any given link of pathname its absolute path will be returned. References to ‘/./‘, ‘/../‘ and extra
‘/‘ characters in the input path will be stripped. The resulting path will not have any symbolic link,
‘/./‘ or ‘/../‘ character.


Zend_Filter_RealPath will return FALSE on failure, e.g. if the file does not exist. On BSD systems
Zend_Filter_RealPath doesn’t fail if only the last path component doesn’t exist, while other systems will
return FALSE.


		1
2
3
4
5


		$filter = new Zend_Filter_RealPath();
$path   = '/www/var/path/../../mypath';
$filtered = $filter->filter($path);

// returns '/www/mypath'













Non existing paths


Sometimes it is useful to get also paths when they don’t exist, f.e. when you want to get the real path for a path
which you want to create. You can then either give a FALSE at initiation, or use setExists() to set it.


		1
2
3
4
5
6


		$filter = new Zend_Filter_RealPath(false);
$path   = '/www/var/path/../../non/existing/path';
$filtered = $filter->filter($path);

// returns '/www/non/existing/path'
// even when file_exists or realpath would return false















StringToLower


This filter converts any input to be lowercased.



Supported options for Zend_Filter_StringToLower


The following options are supported for Zend_Filter_StringToLower:



		encoding: This option can be used to set an encoding which has to be used.








Basic usage


This is a basic example:


		1
2
3
4


		$filter = new Zend_Filter_StringToLower();

print $filter->filter('SAMPLE');
// returns "sample"













Different encoded strings


Per default it will only handle characters from the actual locale of your server. Characters from other charsets
would be ignored. Still, it’s possible to also lowercase them when the mbstring extension is available in your
environment. Simply set the wished encoding when initiating the StringToLower filter. Or use the
setEncoding() method to change the encoding afterwards.


		1
2
3
4
5
6
7
8


		// using UTF-8
$filter = new Zend_Filter_StringToLower('UTF-8');

// or give an array which can be useful when using a configuration
$filter = new Zend_Filter_StringToLower(array('encoding' => 'UTF-8'));

// or do this afterwards
$filter->setEncoding('ISO-8859-1');











Note


Setting wrong encodings


Be aware that you will get an exception when you want to set an encoding and the mbstring extension is not
available in your environment.


Also when you are trying to set an encoding which is not supported by your mbstring extension you will get an
exception.









StringToUpper


This filter converts any input to be uppercased.



Supported options for Zend_Filter_StringToUpper


The following options are supported for Zend_Filter_StringToUpper:



		encoding: This option can be used to set an encoding which has to be used.








Basic usage


This is a basic example for using the StringToUpper filter:


		1
2
3
4


		$filter = new Zend_Filter_StringToUpper();

print $filter->filter('Sample');
// returns "SAMPLE"













Different encoded strings


Like the StringToLower filter, this filter handles only characters from the actual locale of your server. Using
different character sets works the same as with StringToLower.


		1
2
3
4


		$filter = new Zend_Filter_StringToUpper(array('encoding' => 'UTF-8'));

// or do this afterwards
$filter->setEncoding('ISO-8859-1');















StringTrim


This filter modifies a given string such that certain characters are removed from the beginning and end.



Supported options for Zend_Filter_StringTrim


The following options are supported for Zend_Filter_StringTrim:



		charlist: List of characters to remove from the beginning and end of the string. If this is not set or is
null, the default behavior will be invoked, which is to remove only whitespace from the beginning and end of the
string.








Basic usage


A basic example of usage is below:


		1
2
3


		$filter = new Zend_Filter_StringTrim();

print $filter->filter(' This is (my) content: ');










The above example returns ‘This is (my) content:’. Notice that the whitespace characters have been removed.





Default behaviour for Zend_Filter_StringTrim


		1
2
3
4


		$filter = new Zend_Filter_StringTrim(':');
// or new Zend_Filter_StringTrim(array('charlist' => ':'));

print $filter->filter(' This is (my) content:');










The above example returns ‘This is (my) content’. Notice that the whitespace characters and colon are removed. You
can also provide an instance of Zend_Config or an array with a ‘charlist’ key. To set the desired character
list after instantiation, use the setCharList() method. The getCharList() return the values set for
charlist.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Standard Filter Classes
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.math.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Math namespace provides general mathematical functions. So far the supported functionalities are:




		Zend\Math\Rand, a random number generator;


		Zend\Math\BigInteger, a library to manage big integers.









We expect to add more functionalities in the future.



Random number generator


Zend\Math\Rand implements a random number generator that is able to generate random numbers for general
purpose usage and for cryptographic scopes. To generate good random numbers this component uses the OpenSSL [http://php.net/manual/en/book.openssl.php] and
the Mcrypt [http://it.php.net/manual/en/book.mcrypt.php] extension of PHP. If you don’t have the OpenSSL or the Mcrypt extension installed in your
environment the component will use the mt_rand [http://it.php.net/manual/en/function.mt-rand.php] function of PHP as fallback. The mt_rand is not considered
secure for cryptographic purpose, that means if you will try to use it to generate secure random number the class
will throw an exception.


In particular, the algorithm that generates random bytes in Zend\Math\Rand tries to call the
openssl_random_pseudo_bytes [http://it.php.net/manual/en/function.openssl-random-pseudo-bytes.php] function of the OpenSSL extension if installed. If the OpenSSL extension is not
present in the system the algorithm tries to use the the mcrypt_create_iv [http://it.php.net/manual/en/function.mcrypt-create-iv.php] function of the Mcrypt extension
(using the MCRYPT_DEV_URANDOM parameter). Finally, if the OpenSSL and Mcrypt are not installed the generator
uses the mt_rand function of PHP.


The Zend\Math\Rand class offers the following methods to generate random values:




		getBytes($length, $strong = false) to generate a random set of $length bytes;


		getBoolean($strong = false) to generate a random boolean value (true or false);


		getInteger($min, $max, $strong = false) to generate a random integer between $min and $max;


		getFloat($strong = false) to generate a random float number between 0 and 1;


		getString($length, $charlist = null, $strong = false) to generate a random string of $length characters
using the alphabet $chalist (if not provided the default alphabet is the Base64 [http://en.wikipedia.org/wiki/Base64]).









In all these methods the parameter $strong specify the usage of a strong random number generator. We suggest to
set the $strong to true if you need to generate random number for cryptographic and security implementation.


If $strong is set to true and you try to generate random values in a PHP environment without the OpenSSL and
the Mcrypt extensions the component will throw an Exception.


Below we reported an example on how to generate random data using Zend\Math\Rand.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		use Zend\Math\Rand;

$bytes = Rand::getBytes(32, true);
printf("Random bytes (in Base64): %s\n", base64_encode($bytes));

$boolean = Rand::getBoolean();
printf("Random boolean: %s\n", $boolean ? 'true' : 'false');

$integer = Rand::getInteger(0,1000);
printf("Random integer in [0-1000]: %d\n", $integer);

$float = Rand::getFloat();
printf("Random float in [0-1): %f\n", $float);

$string = Rand::getString(32, 'abcdefghijklmnopqrstuvwxyz', true);
printf("Random string in latin alphabet: %s\n", $string);













Big integers


Zend\Math\BigInteger\BigInteger offers a class to manage arbitrary length integer. PHP supports integer
numbers with a maximum value of PHP_INT_MAX. If you need to manage integers bigger than PHP_INT_MAX
you have to use external libraries or PHP extensions like GMP [http://www.php.net/manual/en/book.gmp.php] or BC Math [http://www.php.net/manual/en/book.bc.php].


Zend\Math\BigInteger\BigInteger is able to manage big integers using the GMP or the BC Math extensions as
adapters.


The mathematical functions implemented in Zend\Math\BigInteger\BigInteger are:




		add($leftOperand, $rightOperand), add two big integers;


		sub($leftOperand, $rightOperand), subtract two big integers;


		mul($leftOperand, $rightOperand), multiply two big integers;


		div($leftOperand, $rightOperand), divide two big integers (this method returns only integer part
of result);


		pow($operand, $exp), raise a big integers to another;


		sqrt($operand), get the square root of a big integer;


		abs($operand), get the absolute value of a big integer;


		mod($leftOperand, $modulus), get modulus of a big integer;


		powmod($leftOperand, $rightOperand, $modulus), raise a big integer to another, reduced by a
specified modulus;


		comp($leftOperand, $rightOperand), compare two big integers, returns < 0 if leftOperand is less
than rightOperand; > 0 if leftOperand is greater than rightOperand, and 0 if they are equal;


		intToBin($int, $twoc = false), convert big integer into it’s binary number representation;


		binToInt($bytes, $twoc = false), convert binary number into big integer;


		baseConvert($operand, $fromBase, $toBase = 10), convert a number between arbitrary bases;









Below is reported an example using the BC Math adapter to calculate the sum of two integer random numbers with
100 digits.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Math\BigInteger\BigInteger;
use Zend\Math\Rand;

$bigInt = BigInteger::factory('bcmath');

$x = Rand::getString(100,'0123456789');
$y = Rand::getString(100,'0123456789');

$sum = $bigInt->add($x, $y);
$len = strlen($sum);

printf("%{$len}s +\n%{$len}s =\n%s\n%s\n", $x, $y, str_repeat('-', $len), $sum);










As you can see in the code the big integers are managed using strings. Even the result of the sum is
represented as a string.


Below is reported another example using the BC Math adapter to generate the binary representation of a
negative big integer of 100 digits.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		use Zend\Math\BigInteger\BigInteger;
use Zend\Math\Rand;

$bigInt = BigInteger::factory('bcmath');

$digit = 100;
$x = '-' . Rand::getString($digit,'0123456789');

$byte = $bigInt->intToBin($x);

printf("The binary representation of the big integer with $digit digit:\n%s\nis (in Base64 format): %s\n",
       $x, base64_encode($byte));
printf("Length in bytes: %d\n", strlen($byte));

$byte = $bigInt->intToBin($x, true);

printf("The two's complement binary representation of the big integer with $digit digit:\n%s\nis (in Base64 format): %s\n",
       $x, base64_encode($byte));
printf("Length in bytes: %d\n", strlen($byte));










We generated the binary representation of the big integer number using the default binary format and the
two’s complement [http://en.wikipedia.org/wiki/Two%27s_complement] representation (specified with the true parameter in the intToBin function).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.head-title.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HeadTitle Helper


The HTML <title> element is used to provide a title for an HTML document. The HeadTitle helper allows
you to programmatically create and store the title for later retrieval and output.


The HeadTitle helper is a concrete implementation of the Placeholder helper. It overrides the toString() method to enforce generating a
<title> element, and adds a headTitle() method for quick and easy setting and aggregation of title
elements. The signature for that method is headTitle($title, $setType = null); by default, the value is
appended to the stack (aggregating title segments) if left at null, but you may also specify either ‘PREPEND’
(place at top of stack) or ‘SET’ (overwrite stack).


Since setting the aggregating (attach) order on each call to headTitle can be cumbersome, you can set a default
attach order by calling setDefaultAttachOrder() which is applied to all headTitle() calls unless you
explicitly pass a different attach order as the second parameter.


HeadTitle Helper Basic Usage


You may specify a title tag at any time. A typical usage would have you setting title segments for each level of
depth in your application: site, controller, action, and potentially resource.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		 // setting the controller and action name as title segments:
$request = Zend_Controller_Front::getInstance()->getRequest();
$this->headTitle($request->getActionName())
     ->headTitle($request->getControllerName());

// setting the site in the title; possibly in the layout script:
$this->headTitle('Zend Framework');

// setting a separator string for segments:
$this->headTitle()->setSeparator(' / ');










When you’re finally ready to render the title in your layout script, simply echo the helper:


		1
2


		<!-- renders <action> / <controller> / Zend Framework -->
<?php echo $this->headTitle() ?>














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HeadTitle Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.file.transfer.validators.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Validators for Zend_File_Transfer


Zend_File_Transfer is delivered with several file-related validators which can be used to increase security and
prevent possible attacks. Note that these validators are only as effective as how effectively you apply them. All
validators provided with Zend_File_Transfer can be found in the Zend_Validator component and are named
Zend_Validate_File_*. The following validators are available:



		Count: This validator checks for the number of files. A minimum and maximum range can be specified. An error
will be thrown if either limit is crossed.


		Crc32: This validator checks for the crc32 hash value of the content from a file. It is based on the Hash
validator and provides a convenient and simple validator that only supports Crc32.


		ExcludeExtension: This validator checks the extension of files. It will throw an error when an given file has
a defined extension. With this validator, you can exclude defined extensions from being validated.


		ExcludeMimeType: This validator validates the MIME type of files. It can also validate MIME types and
will throw an error if the MIME type of specified file matches.


		Exists: This validator checks for the existence of files. It will throw an error when a specified file does
not exist.


		Extension: This validator checks the extension of files. It will throw an error when a specified file has an
undefined extension.


		FilesSize: This validator checks the size of validated files. It remembers internally the size of all checked
files and throws an error when the sum of all specified files exceed the defined size. It also provides minimum
and maximum values.


		ImageSize: This validator checks the size of image. It validates the width and height and enforces minimum
and maximum dimensions.


		IsCompressed: This validator checks whether the file is compressed. It is based on the MimeType validator
and validates for compression archives like zip or arc. You can also limit it to other archives.


		IsImage: This validator checks whether the file is an image. It is based on the MimeType validator and
validates for image files like jpg or gif. You can also limit it to other image types.


		Hash: This validator checks the hash value of the content from a file. It supports multiple algorithms.


		Md5: This validator checks for the md5 hash value of the content from a file. It is based on the Hash
validator and provides a convenient and simple validator that only supports Md5.


		MimeType: This validator validates the MIME type of files. It can also validate MIME types and will throw
an error if the MIME type of a specified file does not match.


		NotExists: This validator checks for the existence of files. It will throw an error when an given file does
exist.


		Sha1: This validator checks for the sha1 hash value of the content from a file. It is based on the Hash
validator and provides a convenient and simple validator that only supports sha1.


		Size: This validator is able to check files for its file size. It provides a minimum and maximum size range
and will throw an error when either of these thesholds are crossed.


		Upload: This validator is internal. It checks if an upload has resulted in an error. You must not set it, as
it’s automatically set by Zend_File_Transfer itself. So you do not use this validator directly. You should
only know that it exists.


		WordCount: This validator is able to check the number of words within files. It provides a minimum and
maximum count and will throw an error when either of these thresholds are crossed.






Using Validators with Zend_File_Transfer


Putting validators to work is quite simple. There are several methods for adding and manipulating validators:



		isValid($files = null): Checks the specified files using all validators. $files may be either a real
filename, the element’s name or the name of the temporary file.


		addValidator($validator, $breakChainOnFailure, $options = null, $files = null): Adds the specified validator
to the validator stack (optionally only to the file(s) specified). $validator may be either an actual
validator instance or a short name specifying the validator type (e.g., ‘Count’).


		addValidators(array $validators, $files = null): Adds the specified validators to the stack of validators.
Each entry may be either a validator type/options pair or an array with the key ‘validator’ specifying the
validator. All other options will be considered validator options for instantiation.


		setValidators(array $validators, $files = null): Overwrites any existing validators with the validators
specified. The validators should follow the syntax for addValidators().


		hasValidator($name): Indicates whether a validator has been registered.


		getValidator($name): Returns a previously registered validator.


		getValidators($files = null): Returns registered validators. If $files is specified, returns validators
for that particular file or set of files.


		removeValidator($name): Removes a previously registered validator.


		clearValidators(): Clears all registered validators.





Add Validators to a File Transfer Object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$upload = new Zend_File_Transfer();

// Set a file size with 20000 bytes
$upload->addValidator('Size', false, 20000);

// Set a file size with 20 bytes minimum and 20000 bytes maximum
$upload->addValidator('Size', false, array('min' => 20, 'max' => 20000));

// Set a file size with 20 bytes minimum and 20000 bytes maximum and
// a file count in one step
$upload->setValidators(array(
    'Size'  => array('min' => 20, 'max' => 20000),
    'Count' => array('min' => 1, 'max' => 3),
));










Limit Validators to Single Files


addValidator(), addValidators(), and setValidators() each accept a final $files argument. This
argument can be used to specify a particular file or array of files on which to set the given validator.


		1
2
3
4


		$upload = new Zend_File_Transfer();

// Set a file size with 20000 bytes and limits it only to 'file2'
$upload->addValidator('Size', false, 20000, 'file2');










Normally, you should use the addValidators() method, which can be called multiple times.


Add Multiple Validators


Often it’s simpler just to call addValidator() multiple times with one call for each validator. This also
increases readability and makes your code more maintainable. All methods provide a fluent interface, so you can
couple the calls as shown below:


		1
2
3
4
5
6


		$upload = new Zend_File_Transfer();

// Set a file size with 20000 bytes
$upload->addValidator('Size', false, 20000)
       ->addValidator('Count', false, 2)
       ->addValidator('Filessize', false, 25000);











Note


Note that setting the same validator multiple times is allowed, but doing so can lead to issues when using
different options for the same validator.




Last but not least, you can simply check the files using isValid().


Validate the Files


isValid() accepts the file name of the uploaded or downloaded file, the temporary file name and or the name of
the form element. If no parameter or null is given all files will be validated


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$upload = new Zend_File_Transfer();

// Set a file size with 20000 bytes
$upload->addValidator('Size', false, 20000)
       ->addValidator('Count', false, 2)
       ->addValidator('Filessize', false, 25000);

if (!$upload->isValid()) {
    print "Validation failure";
}











Note


Note that isValid() will be called automatically when you receive the files and have not called it
previously.




When validation has failed it is a good idea to get information about the problems found. To get this information,
you can use the methods getMessages() which returns all validation messages as array, getErrors() which
returns all error codes, and hasErrors() which returns TRUE as soon as a validation error has been found.





Count Validator


The Count validator checks for the number of files which are provided. It supports the following option keys:



		min: Sets the minimum number of files to transfer.



Note


When using this option you must give the minimum number of files when calling this validator the first time;
otherwise you will get an error in return.




With this option you can define the minimum number of files you expect to receive.





		max: Sets the maximum number of files to transfer.


With this option you can limit the number of files which are accepted but also detect a possible attack when more
files are given than defined in your form.








If you initiate this validator with a string or integer, the value will be used as max. Or you can also use the
methods setMin() and setMax() to set both options afterwards and getMin() and getMax() to retrieve
the actual set values.


Using the Count Validator


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer();

// Limit the amount of files to maximum 2
$upload->addValidator('Count', false, 2);

// Limit the amount of files to maximum 5 and minimum 1 file
$upload->addValidator('Count', false, array('min' =>1, 'max' => 5));











Note


Note that this validator stores the number of checked files internally. The file which exceeds the maximum will
be returned as error.







Crc32 Validator


The Crc32 validator checks the content of a transferred file by hashing it. This validator uses the hash
extension from PHP with the crc32 algorithm. It supports the following options:



		*: Sets any key or use a numeric array. The values will be used as hash to validate against.


You can set multiple hashes by using different keys. Each will be checked and the validation will fail only if
all values fail.








Using the Crc32 Validator


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer();

// Checks whether the content of the uploaded file has the given hash
$upload->addValidator('Crc32', false, '3b3652f');

// Limits this validator to two different hashes
$upload->addValidator('Crc32', false, array('3b3652f', 'e612b69'));













ExcludeExtension Validator


The ExcludeExtension validator checks the file extension of the specified files. It supports the following
options:



		*: Sets any key or use a numeric array. The values will be used to check whether the given file does not use
this file extension.


		case: Sets a boolean indicating whether validation should be case-sensitive. The default is not case
sensitive. Note that this key can be applied to for all available extensions.





This validator accepts multiple extensions, either as a comma-delimited string, or as an array. You may also use
the methods setExtension(), addExtension(), and getExtension() to set and retrieve extensions.


In some cases it is useful to match in a case-sensitive fashion. So the constructor allows a second parameter
called $case which, if set to TRUE, validates the extension by comparing it with the specified values in a
case-sensitive fashion.


Using the ExcludeExtension Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$upload = new Zend_File_Transfer();

// Do not allow files with extension php or exe
$upload->addValidator('ExcludeExtension', false, 'php,exe');

// Do not allow files with extension php or exe, but use array notation
$upload->addValidator('ExcludeExtension', false, array('php', 'exe'));

// Check in a case-sensitive fashion
$upload->addValidator('ExcludeExtension',
                      false,
                      array('php', 'exe', 'case' => true));
$upload->addValidator('ExcludeExtension',
                      false,
                      array('php', 'exe', 'case' => true));











Note


Note that this validator only checks the file extension. It does not check the file’s MIME type.







ExcludeMimeType Validator


The ExcludeMimeType validator checks the MIME type of transferred files. It supports the following options:



		*: Sets any key individually or use a numeric array. Sets the MIME type to validate against.


With this option you can define the MIME type of files that are not to be accepted.





		headerCheck: If set to TRUE this option will check the HTTP Information for the file type when the
fileInfo or mimeMagic extensions can not be found. The default value for this option is FALSE.








This validator accepts multiple MIME types, either as a comma-delimited string, or as an array. You may also use
the methods setMimeType(), addMimeType(), and getMimeType() to set and retrieve the MIME types.


Using the ExcludeMimeType Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$upload = new Zend_File_Transfer();

// Does not allow MIME type of gif images for all files
$upload->addValidator('ExcludeMimeType', false, 'image/gif');

// Does not allow MIME type of gif and jpg images for all given files
$upload->addValidator('ExcludeMimeType', false, array('image/gif',
                                                      'image/jpeg');

// Does not allow MIME type of the group images for all given files
$upload->addValidator('ExcludeMimeType', false, 'image');










The above example shows that it is also possible to disallow groups of MIME types. For example, to disallow all
images, just use ‘image’ as the MIME type. This can be used for all groups of MIME types like ‘image’, ‘audio’,
‘video’, ‘text’, etc.



Note


Note that disallowing groups of MIME types will disallow all members of this group even if this is not
intentional. When you disallow ‘image’ you will disallow all types of images like ‘image/jpeg’ or ‘image/vasa’.
When you are not sure if you want to disallow all types, you should disallow only specific MIME types instead
of complete groups.







Exists Validator


The Exists validator checks for the existence of specified files. It supports the following options:



		*: Sets any key or use a numeric array to check if the specific file exists in the given directory.





This validator accepts multiple directories, either as a comma-delimited string, or as an array. You may also use
the methods setDirectory(), addDirectory(), and getDirectory() to set and retrieve directories.


Using the Exists Validator


		1
2
3
4
5
6
7
8
9


		$upload = new Zend_File_Transfer();

// Add the temp directory to check for
$upload->addValidator('Exists', false, '\temp');

// Add two directories using the array notation
$upload->addValidator('Exists',
                      false,
                      array('\home\images', '\home\uploads'));











Note


Note that this validator checks whether the specified file exists in all of the given directories. The
validation will fail if the file does not exist in any of the given directories.







Extension Validator


The Extension validator checks the file extension of the specified files. It supports the following options:



		*: Sets any key or use a numeric array to check whether the specified file has this file extension.


		case: Sets whether validation should be done in a case-sensitive fashion. The default is no case sensitivity.
Note the this key is used for all given extensions.





This validator accepts multiple extensions, either as a comma-delimited string, or as an array. You may also use
the methods setExtension(), addExtension(), and getExtension() to set and retrieve extension values.


In some cases it is useful to test in a case-sensitive fashion. Therefore the constructor takes a second parameter
$case, which, if set to TRUE, will validate the extension in a case-sensitive fashion.


Using the Extension Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$upload = new Zend_File_Transfer();

// Limit the extensions to jpg and png files
$upload->addValidator('Extension', false, 'jpg,png');

// Limit the extensions to jpg and png files but use array notation
$upload->addValidator('Extension', false, array('jpg', 'png'));

// Check case sensitive
$upload->addValidator('Extension', false, array('mo', 'png', 'case' => true));
if (!$upload->isValid('C:\temp\myfile.MO')) {
    print 'Not valid because MO and mo do not match with case sensitivity;
}











Note


Note that this validator only checks the file extension. It does not check the file’s MIME type.







FilesSize Validator


The FilesSize validator checks for the aggregate size of all transferred files. It supports the following
options:



		min: Sets the minimum aggregate file size. This option defines the minimum aggregate file size to be
transferred.





		max: Sets the maximum aggregate file size.


This option limits the aggregate file size of all transferred files, but not the file size of individual files.





		bytestring: Defines whether a failure is to return a user-friendly number or the plain file size.


This option defines whether the user sees ‘10864’ or ‘10MB’. The default value is TRUE, so ‘10MB’ is returned
if you did not specify otherwise.








You can initialize this validator with a string, which will then be used to set the max option. You can also
use the methods setMin() and setMax() to set both options after construction, along with getMin() and
getMax() to retrieve the values that have been set previously.


The size itself is also accepted in SI notation as handled by most operating systems. That is, instead of
specifying 20000 bytes, 20kB may be given. All file sizes are converted using 1024 as the base value. The
following Units are accepted: kB, MB, GB, TB, PB and EB. Note that 1kB is equal to 1024
bytes, 1MB is equal to 1024kB, and so on.


Using the FilesSize Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$upload = new Zend_File_Transfer();

// Limit the size of all files to be uploaded to 40000 bytes
$upload->addValidator('FilesSize', false, 40000);

// Limit the size of all files to be uploaded to maximum 4MB and mimimum 10kB
$upload->addValidator('FilesSize',
                      false,
                      array('min' => '10kB', 'max' => '4MB'));

// As before, but returns the plain file size instead of a user-friendly string
$upload->addValidator('FilesSize',
                      false,
                      array('min' => '10kB',
                            'max' => '4MB',
                            'bytestring' => false));











Note


Note that this validator internally stores the file size of checked files. The file which exceeds the size will
be returned as an error.







ImageSize Validator


The ImageSize validator checks the size of image files. It supports the following options:



		minheight: Sets the minimum image height.


		maxheight: Sets the maximum image height.


		minwidth: Sets the minimum image width.


		maxwidth: Sets the maximum image width.





The methods setImageMin() and setImageMax() also set both minimum and maximum values, while the methods
getMin() and getMax() return the currently set values.


For your convenience there are also the setImageWidth() and setImageHeight() methods, which set the minimum
and maximum height and width of the image file. They, too, have corresponding getImageWidth() and
getImageHeight() methods to retrieve the currently set values.


To bypass validation of a particular dimension, the relevent option simply should not be set.


Using the ImageSize Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$upload = new Zend_File_Transfer();

// Limit the size of a image to a height of 100-200 and a width of
// 40-80 pixel
$upload->addValidator('ImageSize', false,
                      array('minwidth' => 40,
                            'maxwidth' => 80,
                            'minheight' => 100,
                            'maxheight' => 200)
                      );

// Reset the width for validation
$upload->setImageWidth(array('minwidth' => 20, 'maxwidth' => 200));













IsCompressed Validator


The IsCompressed validator checks if a transferred file is a compressed archive, such as zip or arc. This
validator is based on the MimeType validator and supports the same methods and options. You may also limit this
validator to particular compression types with the methods described there.


Using the IsCompressed Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$upload = new Zend_File_Transfer();

// Checks is the uploaded file is a compressed archive
$upload->addValidator('IsCompressed', false);

// Limits this validator to zip files only
$upload->addValidator('IsCompressed', false, array('application/zip'));

// Limits this validator to zip files only using simpler notation
$upload->addValidator('IsCompressed', false, 'zip');











Note


Note that there is no check if you set a MIME type that is not a archive. For example, it would be possible to
define gif files to be accepted by this validator. Using the ‘MimeType’ validator for files which are not
archived will result in more readable code.







IsImage Validator


The IsImage validator checks if a transferred file is a image file, such as gif or jpeg. This validator is
based on the MimeType validator and supports the same methods and options. You can limit this validator to
particular image types with the methods described there.


Using the IsImage Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$upload = new Zend_File_Transfer();

// Checks whether the uploaded file is a image file
$upload->addValidator('IsImage', false);

// Limits this validator to gif files only
$upload->addValidator('IsImage', false, array('application/gif'));

// Limits this validator to jpeg files only using a simpler notation
$upload->addValidator('IsImage', false, 'jpeg');











Note


Note that there is no check if you set a MIME type that is not an image. For example, it would be possible to
define zip files to be accepted by this validator. Using the ‘MimeType’ validator for files which are not images
will result in more readable code.







Hash Validator


The Hash validator checks the content of a transferred file by hashing it. This validator uses the hash
extension from PHP. It supports the following options:



		*: Takes any key or use a numeric array. Sets the hash to validate against.


You can set multiple hashes by passing them as an array. Each file is checked, and the validation will fail only
if all files fail validation.





		algorithm: Sets the algorithm to use for hashing the content.


You can set multiple algorithm by calling the addHash() method multiple times.








Using the Hash Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$upload = new Zend_File_Transfer();

// Checks if the content of the uploaded file contains the given hash
$upload->addValidator('Hash', false, '3b3652f');

// Limits this validator to two different hashes
$upload->addValidator('Hash', false, array('3b3652f', 'e612b69'));

// Sets a different algorithm to check against
$upload->addValidator('Hash',
                      false,
                      array('315b3cd8273d44912a7',
                            'algorithm' => 'md5'));











Note


This validator supports about 34 different hash algorithms. The most common include ‘crc32’, ‘md5’ and ‘sha1’. A
comprehesive list of supports hash algorithms can be found at the hash_algos method [http://php.net/hash_algos] on the php.net site [http://php.net].







Md5 Validator


The Md5 validator checks the content of a transferred file by hashing it. This validator uses the hash
extension for PHP with the md5 algorithm. It supports the following options:



		*: Takes any key or use a numeric array.


You can set multiple hashes by passing them as an array. Each file is checked, and the validation will fail only
if all files fail validation.








Using the Md5 Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$upload = new Zend_File_Transfer();

// Checks if the content of the uploaded file has the given hash
$upload->addValidator('Md5', false, '3b3652f336522365223');

// Limits this validator to two different hashes
$upload->addValidator('Md5',
                      false,
                      array('3b3652f336522365223',
                            'eb3365f3365ddc65365'));













MimeType Validator


The MimeType validator checks the MIME type of transferred files. It supports the following options:



		*: Sets any key or use a numeric array. Sets the MIME type to validate against.


Defines the MIME type of files to be accepted.





		headerCheck: If set to TRUE this option will check the HTTP Information for the file type when the
fileInfo or mimeMagic extensions can not be found. The default value for this option is FALSE.





		magicfile: The magicfile to be used.


With this option you can define which magicfile to use. When it’s not set or empty, the MAGIC constant will be
used instead. This option is available since Zend Framework 1.7.1.


When you omit this option or set it to NULL, the environment variable ‘magic’ will be used to get the proper
magicfile. When you set it to ‘false’, PHP will use the build it magic file. A ‘string’ will be seen as filename
or path to the magicfile.








This validator accepts multiple MIME type, either as a comma-delimited string, or as an array. You may also use
the methods setMimeType(), addMimeType(), and getMimeType() to set and retrieve MIME type.


You can also set the magicfile which shall be used by fileinfo with the ‘magicfile’ option. Additionally there are
convenient setMagicFile() and getMagicFile() methods which allow later setting and retrieving of the
magicfile parameter. This methods are available since Zend Framework 1.7.1.


Using the MimeType Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$upload = new Zend_File_Transfer();

// Limit the MIME type of all given files to gif images
$upload->addValidator('MimeType', false, 'image/gif');

// Limit the MIME type of all given files to gif and jpeg images
$upload->addValidator('MimeType', false, array('image/gif', 'image/jpeg');

// Limit the MIME type of all given files to the group images
$upload->addValidator('MimeType', false, 'image');

// Use a different magicfile
$upload->addValidator('MimeType',
                      false,
                      array('image',
                            'magicfile' => '/path/to/magicfile.mgx'));










The above example shows that it is also possible to limit the accepted MIME type to a group of MIME types. To
allow all images just use ‘image’ as MIME type. This can be used for all groups of MIME types like ‘image’,
‘audio’, ‘video’, ‘text, and so on.


By using disableMagicFile(true) the MimeType validator will use PHP’s build in magic file. You should use this
method when you have PHP 5.3 or higher and want to use the magic file which is provided by PHP itself. By using
isMagicFileDisabled() you can check if magicfile is actually disabled or not.



Note


Note that allowing groups of MIME types will accept all members of this group even if your application does
not support them. When you allow ‘image’ you will also get ‘image/xpixmap’ or ‘image/vasa’ which could be
problematic. When you are not sure if your application supports all types you should better allow only defined
MIME types instead of the complete group.





Note


This component will use the FileInfo extension if it is available. If it’s not, it will degrade to the
mime_content_type() function. And if the function call fails it will use the MIME type which is given by
HTTP.


You should be aware of possible security problems when you have whether FileInfo nor mime_content_type()
available. The MIME type given by HTTP is not secure and can be easily manipulated.







NotExists Validator


The NotExists validator checks for the existence of the provided files. It supports the following options:



		*: Set any key or use a numeric array. Checks whether the file exists in the given directory.





This validator accepts multiple directories either as a comma-delimited string, or as an array. You may also use
the methods setDirectory(), addDirectory(), and getDirectory() to set and retrieve directories.


Using the NotExists Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$upload = new Zend_File_Transfer();

// Add the temp directory to check
$upload->addValidator('NotExists', false, '\temp');

// Add two directories using the array notation
$upload->addValidator('NotExists', false,
                      array('\home\images',
                            '\home\uploads')
                     );











Note


Note that this validator checks if the file does not exist in all of the provided directories. The validation
will fail if the file does exist in any of the given directories.







Sha1 Validator


The Sha1 validator checks the content of a transferred file by hashing it. This validator uses the hash
extension for PHP with the sha1 algorithm. It supports the following options:



		*: Takes any key or use a numeric array.


You can set multiple hashes by passing them as an array. Each file is checked, and the validation will fail only
if all files fail validation.








Using the sha1 Validator


		1
2
3
4
5
6
7
8
9


		$upload = new Zend_File_Transfer();

// Checks if the content of the uploaded file has the given hash
$upload->addValidator('sha1', false, '3b3652f336522365223');

// Limits this validator to two different hashes
$upload->addValidator('Sha1',
                      false, array('3b3652f336522365223',
                                   'eb3365f3365ddc65365'));













Size Validator


The Size validator checks for the size of a single file. It supports the following options:



		min: Sets the minimum file size.





		max: Sets the maximum file size.





		bytestring: Defines whether a failure is returned with a user-friendly number, or with the plain file size.


With this option you can define if the user gets ‘10864’ or ‘10MB’. Default value is TRUE which returns
‘10MB’.








You can initialize this validator with a string, which will then be used to set the max option. You can also
use the methods setMin() and setMax() to set both options after construction, along with getMin() and
getMax() to retrieve the values that have been set previously.


The size itself is also accepted in SI notation as handled by most operating systems. That is, instead of
specifying 20000 bytes, 20kB may be given. All file sizes are converted using 1024 as the base value. The
following Units are accepted: kB, MB, GB, TB, PB and EB. Note that 1kB is equal to 1024
bytes, 1MB is equal to 1024kB, and so on.


Using the Size Validator


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$upload = new Zend_File_Transfer();

// Limit the size of a file to 40000 bytes
$upload->addValidator('Size', false, 40000);

// Limit the size a given file to maximum 4MB and mimimum 10kB
// Also returns the plain number in case of an error
// instead of a user-friendly number
$upload->addValidator('Size',
                      false,
                      array('min' => '10kB',
                            'max' => '4MB',
                            'bytestring' => false));













WordCount Validator


The WordCount validator checks for the number of words within provided files. It supports the following option
keys:



		min: Sets the minimum number of words to be found.


		max: Sets the maximum number of words to be found.





If you initiate this validator with a string or integer, the value will be used as max. Or you can also use the
methods setMin() and setMax() to set both options afterwards and getMin() and getMax() to retrieve
the actual set values.


Using the WordCount Validator


		1
2
3
4
5
6
7


		$upload = new Zend_File_Transfer();

// Limit the amount of words within files to maximum 2000
$upload->addValidator('WordCount', false, 2000);

// Limit the amount of words within files to maximum 5000 and minimum 1000 words
$upload->addValidator('WordCount', false, array('min' => 1000, 'max' => 5000));
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Validators for Zend_File_Transfer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.json.server.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Json_Server - JSON-RPC server


Zend_Json_Server is a JSON-RPC [http://groups.google.com/group/json-rpc/] server implementation. It supports both the JSON-RPC version 1
specification [http://json-rpc.org/wiki/specification] as well as the version 2 specification [http://groups.google.com/group/json-rpc/web/json-rpc-1-2-proposal]; additionally, it provides a PHP implementation of the
Service Mapping Description (SMD) specification [http://groups.google.com/group/json-schema/web/service-mapping-description-proposal] for providing service metadata to service consumers.


JSON-RPC is a lightweight Remote Procedure Call protocol that utilizes JSON for its messaging envelopes. This
JSON-RPC implementation follows PHP‘s SoapServer [http://www.php.net/manual/en/class.soapserver.php] API. This means, in a typical situation, you will simply:



		Instantiate the server object


		Attach one or more functions and/or classes/objects to the server object


		handle() the request





Zend_Json_Server utilizes Zend_Server_Reflection to perform reflection on any
attached classes or functions, and uses that information to build both the SMD and enforce method call signatures.
As such, it is imperative that any attached functions and/or class methods have full PHP docblocks documenting,
minimally:



		All parameters and their expected variable types


		The return value variable type





Zend_Json_Server listens for POST requests only at this time; fortunately, most JSON-RPC client implementations
in the wild at the time of this writing will only POST requests as it is. This makes it simple to utilize the same
server end point to both handle requests as well as to deliver the service SMD, as is shown in the next example.


Zend_Json_Server Usage


First, let’s define a class we wish to expose via the JSON-RPC server. We’ll call the class ‘Calculator’, and
define methods for ‘add’, ‘subtract’, ‘multiply’, and ‘divide’:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


		/**
 * Calculator - sample class to expose via JSON-RPC
 */
class Calculator
{
    /**
     * Return sum of two variables
     *
     * @param  int $x
     * @param  int $y
     * @return int
     */
    public function add($x, $y)
    {
        return $x + $y;
    }

    /**
     * Return difference of two variables
     *
     * @param  int $x
     * @param  int $y
     * @return int
     */
    public function subtract($x, $y)
    {
        return $x - $y;
    }

    /**
     * Return product of two variables
     *
     * @param  int $x
     * @param  int $y
     * @return int
     */
    public function multiply($x, $y)
    {
        return $x * $y;
    }

    /**
     * Return the division of two variables
     *
     * @param  int $x
     * @param  int $y
     * @return float
     */
    public function divide($x, $y)
    {
        return $x / $y;
    }
}










Note that each method has a docblock with entries indicating each parameter and its type, as well as an entry for
the return value. This is absolutely critical when utilizing Zend_Json_Server or any other server component
in Zend Framework, for that matter.


Now we’ll create a script to handle the requests:


		1
2
3
4
5
6
7


		$server = new Zend_Json_Server();

// Indicate what functionality is available:
$server->setClass('Calculator');

// Handle the request:
$server->handle();










However, this will not address the issue of returning an SMD so that the JSON-RPC client can autodiscover methods.
That can be accomplished by determining the HTTP request method, and then specifying some server metadata:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		$server = new Zend_Json_Server();
$server->setClass('Calculator');

if ('GET' == $_SERVER['REQUEST_METHOD']) {
    // Indicate the URL endpoint, and the JSON-RPC version used:
    $server->setTarget('/json-rpc.php')
           ->setEnvelope(Zend_Json_Server_Smd::ENV_JSONRPC_2);

    // Grab the SMD
    $smd = $server->getServiceMap();

    // Return the SMD to the client
    header('Content-Type: application/json');
    echo $smd;
    return;
}

$server->handle();










If utilizing the JSON-RPC server with Dojo toolkit, you will also need to set a special compatibility flag to
ensure that the two interoperate properly:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$server = new Zend_Json_Server();
$server->setClass('Calculator');

if ('GET' == $_SERVER['REQUEST_METHOD']) {
    $server->setTarget('/json-rpc.php')
           ->setEnvelope(Zend_Json_Server_Smd::ENV_JSONRPC_2);
    $smd = $server->getServiceMap();

    // Set Dojo compatibility:
    $smd->setDojoCompatible(true);

    header('Content-Type: application/json');
    echo $smd;
    return;
}

$server->handle();











Advanced Details


While most functionality for Zend_Json_Server is spelled out in this section,
more advanced functionality is available.



Zend_Json_Server


Zend_Json_Server is the core class in the JSON-RPC offering; it handles all requests and returns the response
payload. It has the following methods:



		addFunction($function): Specify a userland function to attach to the server.


		setClass($class): Specify a class or object to attach to the server; all public methods of that item will be
exposed as JSON-RPC methods.


		fault($fault = null, $code = 404, $data = null): Create and return a Zend_Json_Server_Error object.


		handle($request = false): Handle a JSON-RPC request; optionally, pass a Zend_Json_Server_Request object
to utilize (creates one by default).


		getFunctions(): Return a list of all attached methods.


		setRequest(Zend_Json_Server_Request $request): Specify a request object for the server to utilize.


		getRequest(): Retrieve the request object used by the server.


		setResponse(Zend_Json_Server_Response $response): Set the response object for the server to utilize.


		getResponse(): Retrieve the response object used by the server.


		setAutoEmitResponse($flag): Indicate whether the server should automatically emit the response and all
headers; by default, this is TRUE.


		autoEmitResponse(): Determine if auto-emission of the response is enabled.


		getServiceMap(): Retrieve the service map description in the form of a Zend_Json_Server_Smd object








Zend_Json_Server_Request


The JSON-RPC request environment is encapsulated in the Zend_Json_Server_Request object. This object allows you
to set necessary portions of the JSON-RPC request, including the request ID, parameters, and JSON-RPC specification
version. It has the ability to load itself via JSON or a set of options, and can render itself as JSON via the
toJson() method.


The request object has the following methods available:



		setOptions(array $options): Specify object configuration. $options may contain keys matching any ‘set’
method: setParams(), setMethod(), setId(), and setVersion().


		addParam($value, $key = null): Add a parameter to use with the method call. Parameters can be just the
values, or can optionally include the parameter name.


		addParams(array $params): Add multiple parameters at once; proxies to addParam()


		setParams(array $params): Set all parameters at once; overwrites any existing parameters.


		getParam($index): Retrieve a parameter by position or name.


		getParams(): Retrieve all parameters at once.


		setMethod($name): Set the method to call.


		getMethod(): Retrieve the method that will be called.


		isMethodError(): Determine whether or not the request is malformed and would result in an error.


		setId($name): Set the request identifier (used by the client to match requests to responses).


		getId(): Retrieve the request identifier.


		setVersion($version): Set the JSON-RPC specification version the request conforms to. May be either ‘1.0’ or
‘2.0’.


		getVersion(): Retrieve the JSON-RPC specification version used by the request.


		loadJson($json): Load the request object from a JSON string.


		toJson(): Render the request as a JSON string.





An HTTP specific version is available via Zend_Json_Server_Request_Http. This class will retrieve the request
via php://input, and allows access to the raw JSON via the getRawJson() method.





Zend_Json_Server_Response


The JSON-RPC response payload is encapsulated in the Zend_Json_Server_Response object. This object allows you
to set the return value of the request, whether or not the response is an error, the request identifier, the
JSON-RPC specification version the response conforms to, and optionally the service map.


The response object has the following methods available:



		setResult($value): Set the response result.


		getResult(): Retrieve the response result.


		setError(Zend_Json_Server_Error $error): Set an error object. If set, this will be used as the response when
serializing to JSON.


		getError(): Retrieve the error object, if any.


		isError(): Whether or not the response is an error response.


		setId($name): Set the request identifier (so the client may match the response with the original request).


		getId(): Retrieve the request identifier.


		setVersion($version): Set the JSON-RPC version the response conforms to.


		getVersion(): Retrieve the JSON-RPC version the response conforms to.


		toJson(): Serialize the response to JSON. If the response is an error response, serializes the error
object.


		setServiceMap($serviceMap): Set the service map object for the response.


		getServiceMap(): Retrieve the service map object, if any.





An HTTP specific version is available via Zend_Json_Server_Response_Http. This class will send the
appropriate HTTP headers as well as serialize the response as JSON.





Zend_Json_Server_Error


JSON-RPC has a special format for reporting error conditions. All errors need to provide, minimally, an error
message and error code; optionally, they can provide additional data, such as a backtrace.


Error codes are derived from those recommended by the XML-RPC EPI project [http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php]. Zend_Json_Server appropriately
assigns the code based on the error condition. For application exceptions, the code ‘-32000’ is used.


Zend_Json_Server_Error exposes the following methods:



		setCode($code): Set the error code; if the code is not in the accepted XML-RPC error code range, -32000 will
be assigned.


		getCode(): Retrieve the current error code.


		setMessage($message): Set the error message.


		getMessage(): Retrieve the current error message.


		setData($data): Set auxiliary data further qualifying the error, such as a backtrace.


		getData(): Retrieve any current auxiliary error data.


		toArray(): Cast the error to an array. The array will contain the keys ‘code’, ‘message’, and ‘data’.


		toJson(): Cast the error to a JSON-RPC error representation.








Zend_Json_Server_Smd


SMD stands for Service Mapping Description, a JSON schema that defines how a client can interact with a
particular web service. At the time of this writing, the specification [http://groups.google.com/group/json-schema/web/service-mapping-description-proposal] has not yet been formally ratified, but
it is in use already within Dojo toolkit as well as other JSON-RPC consumer clients.


At its most basic, a Service Mapping Description indicates the method of transport (POST, GET, TCP/IP, etc),
the request envelope type (usually based on the protocol of the server), the target URL of the service provider,
and a map of services available. In the case of JSON-RPC, the service map is a list of available methods, which
each method documenting the available parameters and their types, as well as the expected return value type.


Zend_Json_Server_Smd provides an object oriented way to build service maps. At its most basic, you pass it
metadata describing the service using mutators, and specify services (methods and functions).


The service descriptions themselves are typically instances of Zend_Json_Server_Smd_Service; you can also pass
all information as an array to the various service mutators in Zend_Json_Server_Smd, and it will instantiate a
service object for you. The service objects contain information such as the name of the service (typically the
function or method name), the parameters (names, types, and position), and the return value type. Optionally, each
service can have its own target and envelope, though this functionality is rarely used.


Zend_Json_Server actually does all of this behind the scenes for you, by using reflection on the attached
classes and functions; you should create your own service maps only if you need to provide custom functionality
that class and function introspection cannot offer.


Methods available in Zend_Json_Server_Smd include:



		setOptions(array $options): Setup an SMD object from an array of options. All mutators (methods beginning
with ‘set’) can be used as keys.


		setTransport($transport): Set the transport used to access the service; only POST is currently supported.


		getTransport(): Get the current service transport.


		setEnvelope($envelopeType): Set the request envelope that should be used to access the service. Currently,
supports the constants Zend_Json_Server_Smd::ENV_JSONRPC_1 and Zend_Json_Server_Smd::ENV_JSONRPC_2.


		getEnvelope(): Get the current request envelope.


		setContentType($type): Set the content type requests should use (by default, this is ‘application/json’).


		getContentType(): Get the current content type for requests to the service.


		setTarget($target): Set the URL endpoint for the service.


		getTarget(): Get the URL endpoint for the service.


		setId($id): Typically, this is the URL endpoint of the service (same as the target).


		getId(): Retrieve the service ID (typically the URL endpoint of the service).


		setDescription($description): Set a service description (typically narrative information describing the
purpose of the service).


		getDescription(): Get the service description.


		setDojoCompatible($flag): Set a flag indicating whether or not the SMD is compatible with Dojo toolkit. When
TRUE, the generated JSON SMD will be formatted to comply with the format that Dojo’s JSON-RPC client
expects.


		isDojoCompatible(): Returns the value of the Dojo compatibility flag (FALSE, by default).


		addService($service): Add a service to the map. May be an array of information to pass to the constructor of
Zend_Json_Server_Smd_Service, or an instance of that class.


		addServices(array $services): Add multiple services at once.


		setServices(array $services): Add multiple services at once, overwriting any previously set services.


		getService($name): Get a service by its name.


		getServices(): Get all attached services.


		removeService($name): Remove a service from the map.


		toArray(): Cast the service map to an array.


		toDojoArray(): Cast the service map to an array compatible with Dojo Toolkit.


		toJson(): Cast the service map to a JSON representation.





Zend_Json_Server_Smd_Service has the following methods:



		setOptions(array $options): Set object state from an array. Any mutator (methods beginning with ‘set’) may be
used as a key and set via this method.


		setName($name): Set the service name (typically, the function or method name).


		getName(): Retrieve the service name.


		setTransport($transport): Set the service transport (currently, only transports supported by
Zend_Json_Server_Smd are allowed).


		getTransport(): Retrieve the current transport.


		setTarget($target): Set the URL endpoint of the service (typically, this will be the same as the overall
SMD to which the service is attached).


		getTarget(): Get the URL endpoint of the service.


		setEnvelope($envelopeType): Set the service envelope (currently, only envelopes supported by
Zend_Json_Server_Smd are allowed).


		getEnvelope(): Retrieve the service envelope type.


		addParam($type, array $options = array(), $order = null): Add a parameter to the service. By default, only
the parameter type is necessary. However, you may also specify the order, as well as options such as:
		name: the parameter name


		optional: whether or not the parameter is optional


		default: a default value for the parameter


		description: text describing the parameter








		addParams(array $params): Add several parameters at once; each param should be an assoc array containing
minimally the key ‘type’ describing the parameter type, and optionally the key ‘order’; any other keys will be
passed as $options to addOption().


		setParams(array $params): Set many parameters at once, overwriting any existing parameters.


		getParams(): Retrieve all currently set parameters.


		setReturn($type): Set the return value type of the service.


		getReturn(): Get the return value type of the service.


		toArray(): Cast the service to an array.


		toJson(): Cast the service to a JSON representation.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Json_Server - JSON-RPC server
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/view.placeholders.basics.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Basic Placeholder Usage


Zend Framework defines a generic placeholder() view helper that you may use for as many custom placeholders you
need. It also provides a variety of specific placeholder implementations for often-needed functionality, such as
specifying the DocType declaration, document title, and more.


All placeholders operate in roughly the same way. They are containers, and thus allow you to operate on them as
collections. With them you can:



		Append or prepend items to the collection.


		Replace the entire collection with a single value.


		Specify a string with which to prepend output of the collection when rendering.


		Specify a string with which to append output of the collection when rendering.


		Specify a string with which to separate items of the collection when rendering.


		Capture content into the collection.


		Render the aggregated content.





Typically, you will call the helper with no arguments, which will return a container on which you may operate. You
will then either echo this container to render it, or call methods on it to configure or populate it. If the
container is empty, rendering it will simply return an empty string; otherwise, the content will be aggregated
according to the rules by which you configure it.


As an example, let’s create a sidebar that consists of a number of “blocks” of content. You’ll likely know up-front
the structure of each block; let’s assume for this example that it might look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		<div class="sidebar">
    <div class="block">
        <p>
            Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus
            consectetur aliquet odio ac consectetur. Nulla quis eleifend
            tortor. Pellentesque varius, odio quis bibendum consequat, diam
            lectus porttitor quam, et aliquet mauris orci eu augue.
        </p>
    </div>
    <div class="block">
        <ul>
            <li><a href="/some/target">Link</a></li>
            <li><a href="/some/target">Link</a></li>
        </ul>
    </div>
</div>










The content will vary based on the controller and action, but the structure will be the same. Let’s first setup the
sidebar in a resource method of our bootstrap:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
    // ...

    protected function _initSidebar()
    {
        $this->bootstrap('View');
        $view = $this->getResource('View');

        $view->placeholder('sidebar')
             // "prefix" -> markup to emit once before all items in collection
             ->setPrefix("<div class=\"sidebar\">\n    <div class=\"block\">\n")
             // "separator" -> markup to emit between items in a collection
             ->setSeparator("</div>\n    <div class=\"block\">\n")
             // "postfix" -> markup to emit once after all items in a collection
             ->setPostfix("</div>\n</div>");
    }

    // ...
}










The above defines a placeholder, “sidebar”, that has no items. It configures the basic markup structure of that
placeholder, however, per our requirements.


Now, let’s assume for the “user” controller that for all actions we’ll want a block at the top containing some
information. We could accomplish this in two ways: (a) we could add the content to the placeholder directly in the
controller’s preDispatch() method, or (b) we could render a view script from within the preDispatch()
method. We’ll use (b), as it follows a more proper separation of concerns (leaving view-related logic and
functionality within a view script).


We’ll name the view script “user/_sidebar.phtml”, and populate it as follows:


		1
2
3
4
5
6
7
8
9


		<?php $this->placeholder('sidebar')->captureStart() ?>
<h4>User Administration</h4>
<ul>
    <li><a href="<?php $this->url(array('action' => 'list')) ?>">
        List</a></li>
    <li><a href="<?php $this->url(array('action' => 'create')) ?>">
        Create</a></a></li>
</ul>
<?php $this->placeholder('sidebar')->captureEnd() ?>










The above example makes use of the content capturing feature of placeholders. By default, content is appended as a
new item in the container, allowing us to aggregate content. This example makes use of view helpers and static
HTML in order to generate markup, and the content is then captured and appended into the placeholder itself.


To invoke the above view script, we would write the following in our preDispatch() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class UserController extends Zend_Controller_Action
{
    // ...

    public function preDispatch()
    {
        // ...

        $this->view->render('user/_sidebar.phtml');

        // ...
    }

    // ...
}










Note that we’re not capturing the rendered value; there’s no need, as the entierty of that view is being captured
into a placeholder.


Now, let’s assume our “view” action in that same controller needs to present some information. Within the
“user/view.phtml” view script, we might have the following snippet of content:


		1
2


		$this->placeholder('sidebar')
     ->append('<p>User: ' . $this->escape($this->username) .  '</p>');










This example makes use of the append() method, and passes it some simple markup to aggregate.


Finally, let’s modify our layout view script, and have it render the placeholder.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<html>
<head>
    <title>My Site</title>
</head>
<body>
    <div class="content">
        <?php echo $this->layout()->content ?>
    </div>
    <?php echo $this->placeholder('sidebar') ?>
</body>
</html>










For controllers and actions that do not populate the “sidebar” placeholder, no content will be rendered; for those
that do, however, echoing the placeholder will render the content according to the rules we created in our
bootstrap, and the content we aggregated throughout the application. In the case of the “/user/view” action,
and assuming a username of “matthew”, we would get content for the sidebar as follows (formatted for readability):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<div class="sidebar">
    <div class="block">
        <h4>User Administration</h4>
        <ul>
            <li><a href="/user/list">List</a></li>
            <li><a href="/user/create">Create</a></a></li>
        </ul>
    </div>
    <div class="block">
        <p>User: matthew</p>
    </div>
</div>










There are a large number of things you can do by combining placeholders and layout scripts; experiment with them,
and read the relevant manual sections for more information.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Basic Placeholder Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.indexing.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Indexing


Indexing is performed by adding a new document to an existing or new index:


		1


		$index->addDocument($doc);










There are two ways to create document object. The first is to do it manually.


Manual Document Construction


		1
2
3
4
5


		$doc = new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search_Lucene_Field::Text('url', $docUrl));
$doc->addField(Zend_Search_Lucene_Field::Text('title', $docTitle));
$doc->addField(Zend_Search_Lucene_Field::unStored('contents', $docBody));
$doc->addField(Zend_Search_Lucene_Field::binary('avatar', $avatarData));










The second method is to load it from HTML or Microsoft Office 2007 files:


Document loading


		1
2
3
4


		$doc = Zend_Search_Lucene_Document_Html::loadHTML($htmlString);
$doc = Zend_Search_Lucene_Document_Docx::loadDocxFile($path);
$doc = Zend_Search_Lucene_Document_Pptx::loadPptFile($path);
$doc = Zend_Search_Lucene_Document_Xlsx::loadXlsxFile($path);










If a document is loaded from one of the supported formats, it still can be extended manually with new user defined
fields.



Indexing Policy


You should define indexing policy within your application architectural design.


You may need an on-demand indexing configuration (something like OLTP system). In such systems, you usually add
one document per user request. As such, the MaxBufferedDocs option will not affect the system. On the other
hand, MaxMergeDocs is really helpful as it allows you to limit maximum script execution time. MergeFactor
should be set to a value that keeps balance between the average indexing time (it’s also affected by average
auto-optimization time) and search performance (index optimization level is dependent on the number of segments).


If you will be primarily performing batch index updates, your configuration should use a MaxBufferedDocs option
set to the maximum value supported by the available amount of memory. MaxMergeDocs and MergeFactor have to
be set to values reducing auto-optimization involvement as much as possible [1]. Full index optimization should be
applied after indexing.


Index optimization


		1


		$index->optimize();










In some configurations, it’s more effective to serialize index updates by organizing update requests into a queue
and processing several update requests in a single script execution. This reduces index opening overhead, and
allows utilizing index document buffering.





		[1]		An additional limit is the maximum file handlers supported by the operation system for concurrent open
operations












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Indexing
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.crypt.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Crypt provides support of some cryptographic tools. The available features are:



		encrypt-then-authenticate using symmetric ciphers (the authentication step is provided using HMAC);


		encrypt/decrypt using symmetric and public key algorithm (e.g. RSA algorithm);


		generate digital sign using public key algorithm (e.g. RSA algorithm);


		key exchange using the Diffie-Hellman method;


		Key derivation function (e.g. using PBKDF2 algorithm);


		Secure password hash (e.g. using Bcrypt algorithm);


		generate Hash values;


		generate HMAC values;





The main scope of this component is to offer an easy and secure way to protect and authenticate sensitive data in
PHP. Because the use of cryptography is not so easy we recommend to use the Zend\Crypt component only if you
have a minimum background on this topic. For an introduction to cryptography we suggest the following references:




		Dan Boneh “Cryptography course” [https://www.coursera.org/course/crypto] Stanford University, Coursera - free online course


		N.Ferguson, B.Schneier, and T.Kohno, “Cryptography Engineering” [http://www.schneier.com/book-ce.html], John Wiley & Sons (2010)


		B.Schneier “Applied Cryptography” [http://www.schneier.com/book-applied.html], John Wiley & Sons (1996)










Note


PHP-CryptLib


Most of the ideas behind the Zend\Crypt component have been inspired by the PHP-CryptLib project [https://github.com/ircmaxell/PHP-CryptLib] of
Anthony Ferrara [http://blog.ircmaxell.com/]. PHP-CryptLib is an all-inclusive pure PHP cryptographic library for all cryptographic needs.
It is meant to be easy to install and use, yet extensible and powerful enough for even the most experienced
developer.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.client.adapters.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Http_Client - Connection Adapters



Overview


Zend_Http_Client is based on a connection adapter design. The connection adapter is the object in charge of
performing the actual connection to the server, as well as writing requests and reading responses. This connection
adapter can be replaced, and you can create and extend the default connection adapters to suite your special needs,
without the need to extend or replace the entire HTTP client class, and with the same interface.


Currently, the Zend_Http_Client class provides four built-in connection adapters:




		Zend_Http_Client_Adapter_Socket (default)


		Zend_Http_Client_Adapter_Proxy


		Zend_Http_Client_Adapter_Curl


		Zend_Http_Client_Adapter_Test









The Zend_Http_Client object’s adapter connection adapter is set using the ‘adapter’ configuration option. When
instantiating the client object, you can set the ‘adapter’ configuration option to a string containing the
adapter’s name (eg. ‘Zend_Http_Client_Adapter_Socket’) or to a variable holding an adapter object (eg. new
Zend_Http_Client_Adapter_Test). You can also set the adapter later, using the Zend_Http_Client->setConfig()
method.





The Socket Adapter


The default connection adapter is the Zend_Http_Client_Adapter_Socket adapter - this adapter will be used
unless you explicitly set the connection adapter. The Socket adapter is based on PHP‘s built-in fsockopen()
function, and does not require any special extensions or compilation flags.


The Socket adapter allows several extra configuration options that can be set using
Zend_Http_Client->setConfig() or passed to the client constructor.





Zend_Http_Client_Adapter_Socket configuration parameters







		Parameter
		Description
		Expected Type
		Default Value





		persistent
		Whether to use persistent TCP connections
		boolean
		FALSE



		ssltransport
		SSL transport layer (eg. ‘sslv2’, ‘tls’)
		string
		ssl



		sslcert
		Path to a PEM encoded SSL certificate
		string
		NULL



		sslpassphrase
		Passphrase for the SSL certificate file
		string
		NULL



		sslusecontext
		Enables proxied connections to use SSL even if the proxy connection itself does not.
		boolean
		FALSE












Note


Persistent TCP Connections


Using persistent TCP connections can potentially speed up HTTP requests - but in most use cases, will
have little positive effect and might overload the HTTP server you are connecting to.


It is recommended to use persistent TCP connections only if you connect to the same server very frequently,
and are sure that the server is capable of handling a large number of concurrent connections. In any case you
are encouraged to benchmark the effect of persistent connections on both the client speed and server load
before using this option.


Additionally, when using persistent connections it is recommended to enable Keep-Alive HTTP requests as
described in the configuration section- otherwise persistent
connections might have little or no effect.





Note


HTTPS SSL Stream Parameters


ssltransport, sslcert and sslpassphrase are only relevant when connecting using HTTPS.


While the default SSL settings should work for most applications, you might need to change them if the
server you are connecting to requires special client setup. If so, you should read the sections about SSL
transport layers and options here [http://www.php.net/manual/en/transports.php#transports.inet].








Changing the HTTPS transport layer


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Set the configuration parameters
$config = array(
    'adapter'      => 'Zend_Http_Client_Adapter_Socket',
    'ssltransport' => 'tls'
);

// Instantiate a client object
$client = new Zend_Http_Client('https://www.example.com', $config);

// The following request will be sent over a TLS secure connection.
$response = $client->request();










The result of the example above will be similar to opening a TCP connection using the following PHP command:


fsockopen('tls://www.example.com', 443)



Customizing and accessing the Socket adapter stream context


Starting from Zend Framework 1.9, Zend_Http_Client_Adapter_Socket provides direct access to the underlying
stream context [http://php.net/manual/en/stream.contexts.php] used to connect to the remote server. This allows the user to pass specific options and
parameters to the TCP stream, and to the SSL wrapper in case of HTTPS connections.


You can access the stream context using the following methods of Zend_Http_Client_Adapter_Socket:




		setStreamContext($context) Sets the stream context to be used by the adapter. Can accept either a stream
context resource created using the stream_context_create() [http://php.net/manual/en/function.stream-context-create.php] PHP function, or an array of stream context
options, in the same format provided to this function. Providing an array will create a new stream context
using these options, and set it.


		getStreamContext() Get the stream context of the adapter. If no stream context was set, will create a
default stream context and return it. You can then set or get the value of different context options using
regular PHP stream context functions.









Setting stream context options for the Socket adapter


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


		// Array of options
$options = array(
    'socket' => array(
        // Bind local socket side to a specific interface
        'bindto' => '10.1.2.3:50505'
    ),
    'ssl' => array(
        // Verify server side certificate,
        // do not accept invalid or self-signed SSL certificates
        'verify_peer' => true,
        'allow_self_signed' => false,

        // Capture the peer's certificate
        'capture_peer_cert' => true
    )
);

// Create an adapter object and attach it to the HTTP client
$adapter = new Zend_Http_Client_Adapter_Socket();
$client = new Zend_Http_Client();
$client->setAdapter($adapter);

// Method 1: pass the options array to setStreamContext()
$adapter->setStreamContext($options);

// Method 2: create a stream context and pass it to setStreamContext()
$context = stream_context_create($options);
$adapter->setStreamContext($context);

// Method 3: get the default stream context and set the options on it
$context = $adapter->getStreamContext();
stream_context_set_option($context, $options);

// Now, perform the request
$response = $client->request();

// If everything went well, you can now access the context again
$opts = stream_context_get_options($adapter->getStreamContext());
echo $opts['ssl']['peer_certificate'];











Note


Note that you must set any stream context options before using the adapter to perform actual requests. If no
context is set before performing HTTP requests with the Socket adapter, a default stream context will be
created. This context resource could be accessed after performing any requests using the getStreamContext()
method.









The Proxy Adapter


The Zend_Http_Client_Adapter_Proxy adapter is similar to the default Socket adapter - only the connection is
made through an HTTP proxy server instead of a direct connection to the target server. This allows usage of
Zend_Http_Client behind proxy servers - which is sometimes needed for security or performance reasons.


Using the Proxy adapter requires several additional configuration parameters to be set, in addition to the default
‘adapter’ option:




Zend_Http_Client configuration parameters







		Parameter
		Description
		Expected Type
		Example Value





		proxy_host
		Proxy server address
		string
		‘proxy.myhost.com’ or ‘10.1.2.3’



		proxy_port
		Proxy server TCP port
		integer
		8080 (default) or 81



		proxy_user
		Proxy user name, if required
		string
		‘shahar’ or ‘’ for none (default)



		proxy_pass
		Proxy password, if required
		string
		‘secret’ or ‘’ for none (default)



		proxy_auth
		Proxy HTTP authentication type
		string
		Zend_Http_Client::AUTH_BASIC (default)











proxy_host should always be set - if it is not set, the client will fall back to a direct connection using
Zend_Http_Client_Adapter_Socket. proxy_port defaults to ‘8080’ - if your proxy listens on a different port you
must set this one as well.


proxy_user and proxy_pass are only required if your proxy server requires you to authenticate. Providing these will
add a ‘Proxy-Authentication’ header to the request. If your proxy does not require authentication, you can leave
these two options out.


proxy_auth sets the proxy authentication type, if your proxy server requires authentication. Possibly values are
similar to the ones accepted by the Zend_Http_Client::setAuth() method. Currently, only basic authentication
(Zend_Http_Client::AUTH_BASIC) is supported.


Using Zend_Http_Client behind a proxy server


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// Set the configuration parameters
$config = array(
    'adapter'    => 'Zend_Http_Client_Adapter_Proxy',
    'proxy_host' => 'proxy.int.zend.com',
    'proxy_port' => 8000,
    'proxy_user' => 'shahar.e',
    'proxy_pass' => 'bananashaped'
);

// Instantiate a client object
$client = new Zend_Http_Client('http://www.example.com', $config);

// Continue working...










As mentioned, if proxy_host is not set or is set to a blank string, the connection will fall back to a regular
direct connection. This allows you to easily write your application in a way that allows a proxy to be used
optionally, according to a configuration parameter.



Note


Since the proxy adapter inherits from Zend_Http_Client_Adapter_Socket, you can use the stream context access
method (see this section) to set stream context options
on Proxy connections as demonstrated above.







The cURL Adapter


cURL is a standard HTTP client library that is distributed with many operating systems and can be used in PHP
via the cURL extension. It offers functionality for many special cases which can occur for a HTTP client and make
it a perfect choice for a HTTP adapter. It supports secure connections, proxy, all sorts of authentication
mechanisms and shines in applications that move large files around between servers.


Setting cURL options


		1
2
3
4
5


		$config = array(
    'adapter'   => 'Zend_Http_Client_Adapter_Curl',
    'curloptions' => array(CURLOPT_FOLLOWLOCATION => true),
);
$client = new Zend_Http_Client($uri, $config);










By default the cURL adapter is configured to behave exactly like the Socket Adapter and it also accepts the same
configuration parameters as the Socket and Proxy adapters. You can also change the cURL options by either
specifying the ‘curloptions’ key in the constructor of the adapter or by calling setCurlOption($name, $value).
The $name key corresponds to the CURL_* constants of the cURL extension. You can get access to the Curl handle
by calling $adapter->getHandle();


Transfering Files by Handle


You can use cURL to transfer very large files over HTTP by filehandle.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$putFileSize   = filesize("filepath");
$putFileHandle = fopen("filepath", "r");

$adapter = new Zend_Http_Client_Adapter_Curl();
$client = new Zend_Http_Client();
$client->setAdapter($adapter);
$adapter->setConfig(array(
    'curloptions' => array(
        CURLOPT_INFILE => $putFileHandle,
        CURLOPT_INFILESIZE => $putFileSize
    )
));
$client->request("PUT");













The Test Adapter


Sometimes, it is very hard to test code that relies on HTTP connections. For example, testing an application that
pulls an RSS feed from a remote server will require a network connection, which is not always available.


For this reason, the Zend_Http_Client_Adapter_Test adapter is provided. You can write your application to use
Zend_Http_Client, and just for testing purposes, for example in your unit testing suite, you can replace the
default adapter with a Test adapter (a mock object), allowing you to run tests without actually performing server
connections.


The Zend_Http_Client_Adapter_Test adapter provides an additional method, setResponse() method. This method
takes one parameter, which represents an HTTP response as either text or a Zend_Http_Response object. Once
set, your Test adapter will always return this response, without even performing an actual HTTP request.


Testing Against a Single HTTP Response Stub


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// Instantiate a new adapter and client
$adapter = new Zend_Http_Client_Adapter_Test();
$client = new Zend_Http_Client('http://www.example.com', array(
    'adapter' => $adapter
));

// Set the expected response
$adapter->setResponse(
    "HTTP/1.1 200 OK"        . "\r\n" .
    "Content-type: text/xml" . "\r\n" .
                               "\r\n" .
    '<?xml version="1.0" encoding="UTF-8"?>' .
    '<rss version="2.0" ' .
    '     xmlns:content="http://purl.org/rss/1.0/modules/content/"' .
    '     xmlns:wfw="http://wellformedweb.org/CommentAPI/"' .
    '     xmlns:dc="http://purl.org/dc/elements/1.1/">' .
    '  <channel>' .
    '    <title>Premature Optimization</title>' .
    // and so on...
    '</rss>');

$response = $client->request('GET');
// .. continue parsing $response..










The above example shows how you can preset your HTTP client to return the response you need. Then, you can
continue testing your own code, without being dependent on a network connection, the server’s response, etc. In
this case, the test would continue to check how the application parses the XML in the response body.


Sometimes, a single method call to an object can result in that object performing multiple HTTP transactions. In
this case, it’s not possible to use setResponse() alone because there’s no opportunity to set the next response(s)
your program might need before returning to the caller.


Testing Against Multiple HTTP Response Stubs


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		// Instantiate a new adapter and client
$adapter = new Zend_Http_Client_Adapter_Test();
$client = new Zend_Http_Client('http://www.example.com', array(
    'adapter' => $adapter
));

// Set the first expected response
$adapter->setResponse(
    "HTTP/1.1 302 Found"      . "\r\n" .
    "Location: /"             . "\r\n" .
    "Content-Type: text/html" . "\r\n" .
                                "\r\n" .
    '<html>' .
    '  <head><title>Moved</title></head>' .
    '  <body><p>This page has moved.</p></body>' .
    '</html>');

// Set the next successive response
$adapter->addResponse(
    "HTTP/1.1 200 OK"         . "\r\n" .
    "Content-Type: text/html" . "\r\n" .
                                "\r\n" .
    '<html>' .
    '  <head><title>My Pet Store Home Page</title></head>' .
    '  <body><p>...</p></body>' .
    '</html>');

// inject the http client object ($client) into your object
// being tested and then test your object's behavior below










The setResponse() method clears any responses in the Zend_Http_Client_Adapter_Test‘s buffer and sets the first
response that will be returned. The addResponse() method will add successive responses.


The responses will be replayed in the order that they were added. If more requests are made than the number of
responses stored, the responses will cycle again in order.


In the example above, the adapter is configured to test your object’s behavior when it encounters a 302 redirect.
Depending on your application, following a redirect may or may not be desired behavior. In our example, we expect
that the redirect will be followed and we configure the test adapter to help us test this. The initial 302 response
is set up with the setResponse() method and the 200 response to be returned next is added with the addResponse()
method. After configuring the test adapter, inject the HTTP client containing the adapter into your object under
test and test its behavior.


If you need the adapter to fail on demand you can use setNextRequestWillFail($flag). The method will cause the
next call to connect() to throw an Zend_Http_Client_Adapter_Exception exception. This can be useful when
your application caches content from an external site (in case the site goes down) and you want to test this
feature.


Forcing the adapter to fail


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		// Instantiate a new adapter and client
$adapter = new Zend_Http_Client_Adapter_Test();
$client = new Zend_Http_Client('http://www.example.com', array(
    'adapter' => $adapter
));

// Force the next request to fail with an exception
$adapter->setNextRequestWillFail(true);

try {
    // This call will result in a Zend_Http_Client_Adapter_Exception
    $client->request();
} catch (Zend_Http_Client_Adapter_Exception $e) {
    // ...
}

// Further requests will work as expected until
// you call setNextRequestWillFail(true) again













Creating your own connection adapters


You can create your own connection adapters and use them. You could, for example, create a connection adapter that
uses persistent sockets, or a connection adapter with caching abilities, and use them as needed in your
application.


In order to do so, you must create your own adapter class that implements the
Zend_Http_Client_Adapter_Interface interface. The following example shows the skeleton of a user-implemented
adapter class. All the public functions defined in this example must be defined in your adapter as well:


Creating your own connection adapter


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


		class MyApp_Http_Client_Adapter_BananaProtocol
    implements Zend_Http_Client_Adapter_Interface
{
    /**
     * Set the configuration array for the adapter
     *
     * @param array $config
     */
    public function setConfig($config = array())
    {
        // This rarely changes - you should usually copy the
        // implementation in Zend_Http_Client_Adapter_Socket.
    }

    /**
     * Connect to the remote server
     *
     * @param string  $host
     * @param int     $port
     * @param boolean $secure
     */
    public function connect($host, $port = 80, $secure = false)
    {
        // Set up the connection to the remote server
    }

    /**
     * Send request to the remote server
     *
     * @param string        $method
     * @param Zend_Uri_Http $url
     * @param string        $http_ver
     * @param array         $headers
     * @param string        $body
     * @return string Request as text
     */
    public function write($method,
                          $url,
                          $http_ver = '1.1',
                          $headers = array(),
                          $body = '')
    {
        // Send request to the remote server.
        // This function is expected to return the full request
        // (headers and body) as a string
    }

    /**
     * Read response from server
     *
     * @return string
     */
    public function read()
    {
        // Read response from remote server and return it as a string
    }

    /**
     * Close the connection to the server
     *
     */
    public function close()
    {
        // Close the connection to the remote server - called last.
    }
}

// Then, you could use this adapter:
$client = new Zend_Http_Client(array(
    'adapter' => 'MyApp_Http_Client_Adapter_BananaProtocol'
));
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Http_Client - Connection Adapters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.null.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Null


This filter will change the given input to be NULL if it meets specific criteria. This is often necessary when
you work with databases and want to have a NULL value instead of a boolean or any other type.



Supported options for Zend_Filter_Null


The following options are supported for Zend_Filter_Null:



		type: The variable type which should be supported.








Default behaviour for Zend_Filter_Null


Per default this filter works like PHP‘s empty() method; in other words, if empty() returns a boolean
TRUE, then a NULL value will be returned.


		1
2
3
4


		$filter = new Zend_Filter_Null();
$value  = '';
$result = $filter->filter($value);
// returns null instead of the empty string










This means that without providing any configuration, Zend_Filter_Null will accept all input types and return
NULL in the same cases as empty().


Any other value will be returned as is, without any changes.





Changing behaviour for Zend_Filter_Null


Sometimes it’s not enough to filter based on empty(). Therefor Zend_Filter_Null allows you to configure
which type will be converted and which not.


The following types can be handled:



		boolean: Converts a boolean FALSE value to NULL.


		integer: Converts an integer 0 value to NULL.


		empty_array: Converts an empty array to NULL.


		float: Converts an float 0.0 value to NULL.


		string: Converts an empty string ‘’ to NULL.


		zero: Converts a string containing the single character zero (‘0’) to NULL.


		all: Converts all above types to NULL. (This is the default behavior.)





There are several ways to select which of the above types are filtered. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// converts false to null
$filter = new Zend_Filter_Null(Zend_Filter_Null::BOOLEAN);

// converts false and 0 to null
$filter = new Zend_Filter_Null(
    Zend_Filter_Null::BOOLEAN + Zend_Filter_Null::INTEGER
);

// converts false and 0 to null
$filter = new Zend_Filter_Null( array(
    Zend_Filter_Null::BOOLEAN,
    Zend_Filter_Null::INTEGER
));

// converts false and 0 to null
$filter = new Zend_Filter_Null(array(
    'boolean',
    'integer',
));










You can also give an instance of Zend_Config to set the wished types. To set types afterwards use
setType().








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Null
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.json.xml2json.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
XML to JSON conversion


Zend_Json provides a convenience method for transforming XML formatted data into JSON format. This feature
was inspired from an IBM developerWorks article [http://www.ibm.com/developerworks/xml/library/x-xml2jsonphp/].


Zend_Json includes a static function called Zend_Json::fromXml(). This function will generate JSON from a
given XML input. This function takes any arbitrary XML string as an input parameter. It also takes an optional
boolean input parameter to instruct the conversion logic to ignore or not ignore the XML attributes during the
conversion process. If this optional input parameter is not given, then the default behavior is to ignore the XML
attributes. This function call is made as shown below:


		1
2
3


		// fromXml function simply takes a String containing XML contents
// as input.
$jsonContents = Zend_Json::fromXml($xmlStringContents, true);










Zend_Json::fromXml() function does the conversion of the XML formatted string input parameter and returns the
equivalent JSON formatted string output. In case of any XML input format error or conversion logic error, this
function will throw an exception. The conversion logic also uses recursive techniques to traverse the XML tree.
It supports recursion upto 25 levels deep. Beyond that depth, it will throw a Zend_Json_Exception. There are
several XML files with varying degree of complexity provided in the tests directory of Zend Framework. They can
be used to test the functionality of the xml2json feature.


The following is a simple example that shows both the XML input string passed to and the JSON output string
returned as a result from the Zend_Json::fromXml() function. This example used the optional function parameter
as not to ignore the XML attributes during the conversion. Hence, you can notice that the resulting JSON string
includes a representation of the XML attributes present in the XML input string.


XML input string passed to Zend_Json::fromXml() function:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		<?xml version="1.0" encoding="UTF-8"?>
<books>
    <book id="1">
        <title>Code Generation in Action</title>
        <author><first>Jack</first><last>Herrington</last></author>
        <publisher>Manning</publisher>
    </book>

    <book id="2">
        <title>PHP Hacks</title>
        <author><first>Jack</first><last>Herrington</last></author>
        <publisher>O'Reilly</publisher>
    </book>

    <book id="3">
        <title>Podcasting Hacks</title>
        <author><first>Jack</first><last>Herrington</last></author>
        <publisher>O'Reilly</publisher>
    </book>
</books>










JSON output string returned from Zend_Json::fromXml() function:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		{
   "books" : {
      "book" : [ {
         "@attributes" : {
            "id" : "1"
         },
         "title" : "Code Generation in Action",
         "author" : {
            "first" : "Jack", "last" : "Herrington"
         },
         "publisher" : "Manning"
      }, {
         "@attributes" : {
            "id" : "2"
         },
         "title" : "PHP Hacks", "author" : {
            "first" : "Jack", "last" : "Herrington"
         },
         "publisher" : "O'Reilly"
      }, {
         "@attributes" : {
            "id" : "3"
         },
         "title" : "Podcasting Hacks", "author" : {
            "first" : "Jack", "last" : "Herrington"
         },
         "publisher" : "O'Reilly"
      }
   ]}
}










More details about this xml2json feature can be found in the original proposal itself. Take a look at the
Zend_xml2json proposal [http://tinyurl.com/2tfa8z].






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                XML to JSON conversion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.greater-than.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
GreaterThan


Zend\Validator\GreaterThan allows you to validate if a given value is greater than a minimum border value.



Note


ZendValidatorGreaterThan supports only number validation


It should be noted that Zend\Validator\GreaterThan supports only the validation of numbers. Strings or dates
can not be validated with this validator.





Supported options for Zend\Validator\GreaterThan


The following options are supported for Zend\Validator\GreaterThan:



		inclusive: Defines if the validation is inclusive the minimum border value or exclusive. It defaults to
FALSE.


		min: Sets the minimum allowed value.








Basic usage


To validate if a given value is greater than a defined border simply use the following example.


		1
2
3
4


		$valid  = new Zend\Validator\GreaterThan(array('min' => 10));
$value  = 8;
$return = $valid->isValid($value);
// returns false










The above example returns TRUE for all values which are greater than 10.





Validation inclusive the border value


Sometimes it is useful to validate a value by including the border value. See the following example:


		1
2
3
4
5
6
7
8
9


		$valid  = new Zend\Validator\GreaterThan(
    array(
        'min' => 10,
        'inclusive' => true
    )
);
$value  = 10;
$result = $valid->isValid($value);
// returns true










The example is almost equal to our first example but we included the border value. Now the value ‘10’ is allowed
and will return TRUE.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                GreaterThan
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.session.advanced-usage.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Advanced Usage


While the basic usage examples are a perfectly acceptable way to utilize Zend Framework sessions, there are some
best practices to consider. This section discusses the finer details of session handling and illustrates more
advanced usage of the Zend_Session component.



Starting a Session


If you want all requests to have a session facilitated by Zend_Session, then start the session in the bootstrap
file:


Starting the Global Session


		1


		Zend_Session::start();










By starting the session in the bootstrap file, you avoid the possibility that your session might be started after
headers have been sent to the browser, which results in an exception, and possibly a broken page for website
viewers. Various advanced features require Zend_Session::start() first. (More on advanced features later.)


There are four ways to start a session, when using Zend_Session. Two are wrong.



		. Wrong: Do not enable PHP‘s session.auto_start setting [http://www.php.net/manual/en/ref.session.php#ini.session.auto-start]. If you do not have the ability to disable this


		setting in php.ini, you are using mod_php (or equivalent), and the setting is already enabled in php.ini, then
add the following to your .htaccess file (usually in your HTML document root directory):


		1


		php_value session.auto_start 0













		. Wrong: Do not use PHP‘s session_start() [http://www.php.net/session_start] function directly. If you use session_start() directly, and then


		start using Zend_Session_Namespace, an exception will be thrown by Zend_Session::start() (“session has
already been started”). If you call session_start() after using Zend_Session_Namespace or calling
Zend_Session::start(), an error of level E_NOTICE will be generated, and the call will be ignored.


		. Correct: Use Zend_Session::start(). If you want all requests to have and use sessions, then place this


		function call early and unconditionally in your bootstrap code. Sessions have some overhead. If some requests
need sessions, but other requests will not need to use sessions, then:



		Unconditionally set the strict option to TRUE using Zend_Session::setOptions() in your bootstrap.


		Call Zend_Session::start() only for requests that need to use sessions and before any
Zend_Session_Namespace objects are instantiated.


		Use “new Zend_Session_Namespace()” normally, where needed, but make sure Zend_Session::start() has been
called previously.





The strict option prevents new Zend_Session_Namespace() from automatically starting the session using
Zend_Session::start(). Thus, this option helps application developers enforce a design decision to avoid
using sessions for certain requests, since it causes an exception to be thrown when Zend_Session_Namespace is
instantiated before Zend_Session::start() is called. Developers should carefully consider the impact of using
Zend_Session::setOptions(), since these options have global effect, owing to their correspondence to the
underlying options for ext/session.





		. Correct: Just instantiate Zend_Session_Namespace whenever needed, and the underlying PHP session will be


		automatically started. This offers extremely simple usage that works well in most situations. However, you then
become responsible for ensuring that the first new Zend_Session_Namespace() happens before any output
(e.g., HTTP headers [http://www.php.net/headers_sent]) has been sent by PHP to the client, if you are using the default, cookie-based sessions
(strongly recommended). See this section for more
information.








Locking Session Namespaces


Session namespaces can be locked, to prevent further alterations to the data in that namespace. Use lock() to
make a specific namespace read-only, unLock() to make a read-only namespace read-write, and isLocked() to
test if a namespace has been previously locked. Locks are transient and do not persist from one request to the
next. Locking the namespace has no effect on setter methods of objects stored in the namespace, but does prevent
the use of the namespace’s setter method to remove or replace objects stored directly in the namespace. Similarly,
locking Zend_Session_Namespace instances does not prevent the use of symbol table aliases to the same data (see
PHP references [http://www.php.net/references]).


Locking Session Namespaces


		1
2
3
4
5
6
7
8
9


		$userProfileNamespace = new Zend_Session_Namespace('userProfileNamespace');

// marking session as read only locked
$userProfileNamespace->lock();

// unlocking read-only lock
if ($userProfileNamespace->isLocked()) {
    $userProfileNamespace->unLock();
}













Namespace Expiration


Limits can be placed on the longevity of both namespaces and individual keys in namespaces. Common use cases
include passing temporary information between requests, and reducing exposure to certain security risks by removing
access to potentially sensitive information some time after authentication occurred. Expiration can be based on
either elapsed seconds or the number of “hops”, where a hop occurs for each successive request.


Expiration Examples


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$s = new Zend_Session_Namespace('expireAll');
$s->a = 'apple';
$s->p = 'pear';
$s->o = 'orange';

$s->setExpirationSeconds(5, 'a'); // expire only the key "a" in 5 seconds

// expire entire namespace in 5 "hops"
$s->setExpirationHops(5);

$s->setExpirationSeconds(60);
// The "expireAll" namespace will be marked "expired" on
// the first request received after 60 seconds have elapsed,
// or in 5 hops, whichever happens first.










When working with data expiring from the session in the current request, care should be used when retrieving them.
Although the data are returned by reference, modifying the data will not make expiring data persist past the
current request. In order to “reset” the expiration time, fetch the data into temporary variables, use the
namespace to unset them, and then set the appropriate keys again.





Session Encapsulation and Controllers


Namespaces can also be used to separate session access by controllers to protect variables from contamination. For
example, an authentication controller might keep its session state data separate from all other controllers for
meeting security requirements.


Namespaced Sessions for Controllers with Automatic Expiration


The following code, as part of a controller that displays a test question, initiates a boolean variable to
represent whether or not a submitted answer to the test question should be accepted. In this case, the application
user is given 300 seconds to answer the displayed question.


		1
2
3
4
5
6
7


		// ...
// in the question view controller
$testSpace = new Zend_Session_Namespace('testSpace');
// expire only this variable
$testSpace->setExpirationSeconds(300, 'accept_answer');
$testSpace->accept_answer = true;
//...










Below, the controller that processes the answers to test questions determines whether or not to accept an answer
based on whether the user submitted the answer within the allotted time:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// ...
// in the answer processing controller
$testSpace = new Zend_Session_Namespace('testSpace');
if ($testSpace->accept_answer === true) {
    // within time
}
else {
    // not within time
}
// ...













Preventing Multiple Instances per Namespace


Although session locking provides a good degree of protection against
unintended use of namespaced session data, Zend_Session_Namespace also features the ability to prevent the
creation of multiple instances corresponding to a single namespace.


To enable this behavior, pass TRUE to the second constructor argument when creating the last allowed instance
of Zend_Session_Namespace. Any subsequent attempt to instantiate the same namespace would result in a thrown
exception.


Limiting Session Namespace Access to a Single Instance


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		// create an instance of a namespace
$authSpaceAccessor1 = new Zend_Session_Namespace('Zend_Auth');

// create another instance of the same namespace, but disallow any
// new instances
$authSpaceAccessor2 = new Zend_Session_Namespace('Zend_Auth', true);

// making a reference is still possible
$authSpaceAccessor3 = $authSpaceAccessor2;

$authSpaceAccessor1->foo = 'bar';

assert($authSpaceAccessor2->foo, 'bar');

try {
    $aNamespaceObject = new Zend_Session_Namespace('Zend_Auth');
} catch (Zend_Session_Exception $e) {
    echo 'Cannot instantiate this namespace since ' .
         '$authSpaceAccessor2 was created\n';
}










The second parameter in the constructor above tells Zend_Session_Namespace that any future instances with the
“Zend_Auth” namespace are not allowed. Attempting to create such an instance causes an exception to be thrown
by the constructor. The developer therefore becomes responsible for storing a reference to an instance object
($authSpaceAccessor1, $authSpaceAccessor2, or $authSpaceAccessor3 in the example above) somewhere, if
access to the session namespace is needed at a later time during the same request. For example, a developer may
store the reference in a static variable, add the reference to a registry [http://www.martinfowler.com/eaaCatalog/registry.html] (see Zend_Registry), or otherwise make it available to other methods that may need access to the session namespace.





Working with Arrays


Due to the implementation history of PHP magic methods, modifying an array inside a namespace may not work under
PHP versions before 5.2.1. If you will only be working with PHP 5.2.1 or later, then you may skip to the
next section.


Modifying Array Data with a Session Namespace


The following illustrates how the problem may be reproduced:


		1
2
3
4
5
6


		$sessionNamespace = new Zend_Session_Namespace();
$sessionNamespace->array = array();

// may not work as expected before PHP 5.2.1
$sessionNamespace->array['testKey'] = 1;
echo $sessionNamespace->array['testKey'];










Building Arrays Prior to Session Storage


If possible, avoid the problem altogether by storing arrays into a session namespace only after all desired array
values have been set.


		1
2


		$sessionNamespace = new Zend_Session_Namespace('Foo');
$sessionNamespace->array = array('a', 'b', 'c');










If you are using an affected version of PHP and need to modify the array after assigning it to a session
namespace key, you may use either or both of the following workarounds.


Workaround: Reassign a Modified Array


In the code that follows, a copy of the stored array is created, modified, and reassigned to the location from
which the copy was created, overwriting the original array.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$sessionNamespace = new Zend_Session_Namespace();

// assign the initial array
$sessionNamespace->array = array('tree' => 'apple');

// make a copy of the array
$tmp = $sessionNamespace->array;

// modfiy the array copy
$tmp['fruit'] = 'peach';

// assign a copy of the array back to the session namespace
$sessionNamespace->array = $tmp;

echo $sessionNamespace->array['fruit']; // prints "peach"










Workaround: store array containing reference


Alternatively, store an array containing a reference to the desired array, and then access it indirectly.


		1
2
3
4
5


		$myNamespace = new Zend_Session_Namespace('myNamespace');
$a = array(1, 2, 3);
$myNamespace->someArray = array( &$a );
$a['foo'] = 'bar';
echo $myNamespace->someArray['foo']; // prints "bar"













Using Sessions with Objects


If you plan to persist objects in the PHP session, know that they will be serialized [http://www.php.net/manual/en/language.oop5.serialization.php] for storage. Thus, any
object persisted with the PHP session must be unserialized upon retrieval from storage. The implication is that
the developer must ensure that the classes for the persisted objects must have been defined before the object is
unserialized from session storage. If an unserialized object’s class is not defined, then it becomes an instance of
stdClass.





Using Sessions with Unit Tests


Zend Framework relies on PHPUnit to facilitate testing of itself. Many developers extend the existing suite of unit
tests to cover the code in their applications. The exception “Zend_Session is currently marked as read-only” is
thrown while performing unit tests, if any write-related methods are used after ending the session. However, unit
tests using Zend_Session require extra attention, because closing (Zend_Session::writeClose()), or
destroying a session (Zend_Session::destroy()) prevents any further setting or unsetting of keys in any
instance of Zend_Session_Namespace. This behavior is a direct result of the underlying ext/session mechanism
and PHP‘s session_destroy() and session_write_close(), which have no “undo” mechanism to facilitate
setup/teardown with unit tests.


To work around this, see the unit test testSetExpirationSeconds() in SessionTest.php and
SessionTestHelper.php, both located in tests/Zend/Session, which make use of PHP‘s exec() to launch a
separate process. The new process more accurately simulates a second, successive request from a browser. The
separate process begins with a “clean” session, just like any PHP script execution for a web request. Also, any
changes to $_SESSION made in the calling process become available to the child process, provided the parent
closed the session before using exec().


PHPUnit Testing Code Dependent on Zend_Session


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


		// testing setExpirationSeconds()
$script = 'SessionTestHelper.php';
$s = new Zend_Session_Namespace('space');
$s->a = 'apple';
$s->o = 'orange';
$s->setExpirationSeconds(5);

Zend_Session::regenerateId();
$id = Zend_Session::getId();
session_write_close(); // release session so process below can use it
sleep(4); // not long enough for things to expire
exec($script . "expireAll $id expireAll", $result);
$result = $this->sortResult($result);
$expect = ';a === apple;o === orange;p === pear';
$this->assertTrue($result === $expect,
    "iteration over default Zend_Session namespace failed; " .
    "expecting result === '$expect', but got '$result'");

sleep(2); // long enough for things to expire (total of 6 seconds
          // waiting, but expires in 5)
exec($script . "expireAll $id expireAll", $result);
$result = array_pop($result);
$this->assertTrue($result === '',
    "iteration over default Zend_Session namespace failed; " .
    "expecting result === '', but got '$result')");
session_start(); // resume artificially suspended session

// We could split this into a separate test, but actually, if anything
// leftover from above contaminates the tests below, that is also a
// bug that we want to know about.
$s = new Zend_Session_Namespace('expireGuava');
$s->setExpirationSeconds(5, 'g'); // now try to expire only 1 of the
                                  // keys in the namespace
$s->g = 'guava';
$s->p = 'peach';
$s->p = 'plum';

session_write_close(); // release session so process below can use it
sleep(6); // not long enough for things to expire
exec($script . "expireAll $id expireGuava", $result);
$result = $this->sortResult($result);
session_start(); // resume artificially suspended session
$this->assertTrue($result === ';p === plum',
    "iteration over named Zend_Session namespace failed (result=$result)");
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Advanced Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.date.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Date Element


Zend\Form\Element\Date is meant to be paired with the Zend/Form/View/Helper/FormDate for HTML5 inputs with type
date [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#date-state-(type=date)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 date
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "date".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$date = new Element\Date('appointment-date');
$date
    ->setLabel('Appointment Date')
    ->setAttributes(array(
        'min'  => '2012-01-01',
        'max'  => '2020-01-01',
        'step' => '1', // days; default step interval is 1 day
    ));

$form = new Form('my-form');
$form->add($date);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of days (default is 1 day).






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Date Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.module-manager.module-manager.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The Module Manager


The module manager, Zend\ModuleManager\ModuleManager, is a very simple class which is responsible for iterating
over an array of module names and triggering a sequence of events for each. Instantiation of module classes,
initialization tasks, and configuration are all performed by attached event listeners.



Module Manager Events


Events triggered by Zend\ModuleManager\ModuleManager



		loadModules


		This event is primarily used internally to help encapsulate the work of loading modules in event listeners, and
allow the loadModules.post event to be more user-friendly. Internal listeners will attach to this event with a
negative priority instead of loadModules.post so that users can safely assume things like config merging have
been done once loadModules.post is triggered, without having to worry about priorities at all.


		loadModule.resolve


		Triggered for each module that is to be loaded. The listener(s) to this event are responsible for taking a
module name and resolving it to an instance of some class. The default module resolver shipped with ZF2 simply
looks for the class {modulename}\Module, instantiating and returning it if it exists.


The name of the module may be retrieved by listeners using the getModuleName() method of the Event
object; a listener should then take that name and resolve it to an object instance representing the given
module. Multiple listeners can be attached to this event, and the module manager will trigger them in order of
their priority until one returns an object. This allows you to attach additional listeners which have
alternative methods of resolving modules from a given module name.





		loadModule


		Once a module resolver listener has resolved the module name to an object, the module manager then triggers this
event, passing the newly created object to all listeners.


		loadModules.post


		This event is triggered by the module manager to allow any listeners to perform work after every module has
finished loading. For example, the default configuration listener,
Zend\ModuleManager\Listener\ConfigListener (covered later), attaches to this event to merge additional
user-supplied configuration which is meant to override the default supplied configurations of installed modules.








Module Manager Listeners


By default, Zend Framework provides several useful module manager listeners.


Provided Module Manager Listeners



		ZendModuleManagerListenerDefaultListenerAggregate


		To help simplify the most common use case of the module manager, ZF2 provides this default aggregate listener.
In most cases, this will be the only listener you will need to attach to use the module manager, as it will take
care of properly attaching the requisite listeners (those listed below) for the module system to function
properly.


		ZendModuleManagerListenerAutoloaderListener


		This listener checks each module to see if it has implemented
Zend\ModuleManager\Feature\AutoloaderProviderInterface or simply defined the getAutoloaderConfig()
method. If so, it calls the getAutoloaderConfig() method on the module class and passes the returned array
to Zend\Loader\AutoloaderFactory.


		ZendModuleManagerListenerConfigListener


		If a module class has a getConfig() method, this listener will call it and merge the returned array (or
Traversable object) into the main application configuration.


		ZendModuleManagerListenerInitTrigger


		If a module class either implements Zend\ModuleManager\Feature\InitProviderInterface, or simply defines an
init() method, this listener will call init() and pass the current instance of
Zend\ModuleManager\ModuleManager as the sole parameter. The init() method is called for every module
implementing this feature, on every page request and should only be used for performing lightweight
tasks such as registering event listeners.


		ZendModuleManagerListenerLocatorRegistrationListener


		If a module class implements Zend\ModuleManager\Feature\LocatorRegisteredInterface, this listener will
inject the module class instance into the ServiceManager using the module class name as the service name.
This allows you to later retrieve the module class from the ServiceManager.


		ZendModuleManagerListenerModuleResolverListener


		This is the default module resolver. It attaches to the “loadModule.resolve” event and simply returns an
instance of {moduleName}\Module.


		ZendModuleManagerListenerOnBootstrapListener


		If a module class implements Zend\ModuleManager\Feature\BootstrapListenerInterface, or simply defines an
onBootstrap() method, this listener will register the onBootstrap() method with the
Zend\Mvc\Application bootstrap event. This method will then be triggered during the bootstrap event
(and passed an MvcEvent instance).


Like the InitTrigger, the onBootstrap() method is called for every module implementing this feature,
on every page request, and should only be used for performing lightweight tasks such as registering
event listeners.





		ZendModuleManagerListenerServiceListener


		If a module class implements Zend\ModuleManager\Feature\ServiceProviderInterface, or simply defines an
getServiceConfig() method, this listener will call that method and aggregate the return values for
use in configuring the ServiceManager.


The getServiceConfig() method may return either an array of configuration compatible with
Zend\ServiceManager\Config, an instance of that class, or the string name of a class that extends it.
Values are merged and aggregated on completion, and then merged with any configuration from the
ConfigListener falling under the service_manager key. For more information, see the ServiceManager
documentation.


Unlike the other listeners, this listener is not managed by the DefaultListenerAggregate; instead, it is
created and instantiated within the Zend\Mvc\Service\ModuleManagerFactory, where it is injected with the
current ServiceManager instance before being registered with the ModuleManager events.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The Module Manager
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.identical.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Identical


Zend\Validator\Identical allows you to validate if a given value is identical with an set haystack.



Supported options for Zend\Validator\Identical


The following options are supported for Zend\Validator\Identical:



		strict: Defines if the validation should be done strict. The default value is TRUE.


		token: Sets the token with which the input will be validated against.








Basic usage


To validate if two values are identical you need to set the origin value as haystack. See the following example
which validates two strings.


		1
2
3
4


		$valid = new Zend\Validator\Identical('origin');
if ($valid->isValid($value) {
    return true;
}










The validation will only then return TRUE when both values are 100% identical. In our example, when $value
is ‘origin’.


You can set the wished token also afterwards by using the method setToken() and getToken() to get the
actual set token.





Identical objects


Of course Zend\Validator\Identical can not only validate strings, but also any other variable type like
Boolean, Integer, Float, Array or even Objects. As already noted Haystack and Value must be identical.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(123);
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}











Note


Type comparison


You should be aware that also the type of a variable is used for validation. This means that the string ‘3’
is not identical with the integer 3. When you want such a non strict validation you must set the strict
option.







Form elements


Zend\Validator\Identical supports also the comparison of form elements. This can be done by using the element’s
name as token. See the following example:


		1
2
3
4
5
6


		$form->addElement('password', 'elementOne');
$form->addElement('password', 'elementTwo', array(
    'validators' => array(
        array('identical', false, array('token' => 'elementOne'))
    )
));










By using the elements name from the first element as token for the second element, the validator validates if
the second element is equal with the first element. In the case your user does not enter two identical values, you
will get an validation error.





Strict validation


As mentioned before Zend\Validator\Identical validates tokens strict. You can change this behaviour by using
the strict option. The default value for this property is TRUE.


		1
2
3
4
5
6
7


		$valid = new Zend\Validator\Identical(array('token' => 123, 'strict' => FALSE));
$input = '123';
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The difference to the previous example is that the validation returns in this case TRUE, even if you compare a
integer with string value as long as the content is identical but not the type.


For convenience you can also use setStrict() and getStrict().





Configuration


As all other validators also Zend\Validator\Identical supports the usage of configuration settings as input
parameter. This means that you can configure this validator with an Traversable instance.


But this adds one case which you have to be aware. When you are using an array as haystack then you should wrap it
within an ‘token‘ key when it could contain only one element.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(array('token' => 123));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}










The above example validates the integer 123. The reason for this special case is, that you can configure the token
which has to be used by giving the ‘token‘ key.


So, when your haystack contains one element and this element is named ‘token‘ then you have to wrap it like
shown in the example below.


		1
2
3
4
5
6


		$valid = new Zend\Validator\Identical(array('token' => array('token' => 123)));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Identical
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.routes.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Console routes and routing


Zend Framework 2 has native MVC integration with console,
which means that command line arguments are read and used to determine the appropriate
action controller and action method that will handle the request. Actions can
perform any numer of task prior to returning a result, that will be displayed to the user in his console window.


There are several routes you can use with Console. All of them are defined in Zend\Mvc\Router\Console\* classes.



See also


Routes are used to handle real commands, but they are not used to create help messages (usage information).
When a zf2 application is run in console for the first time (without arguments) it can
display usage information that is provided by modules. To learn more about
providing usage information, please read this chapter: Console-aware modules.





Router configuration


All Console Routes are automatically read from the following configuration location:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// This can sit inside of modules/Application/config/module.config.php or any other module's config.
array(
    'router' => array(
        'routes' => array(
            // HTTP routes are here
        )
    ),

    'console' => array(
        'router' => array(
            'routes' => array(
                // Console routes go here
            )
        )
    ),
)










Console Routes will only be processed when the application is run inside console (terminal) window. They have no
effect in web (http) request and will be ignored. It is possible to define only HTTP routes (only web application) or
only Console routes (which means we want a console-only application which will refuse to run in a browser).


A single route can be described with the following array:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// inside config.console.router.routes:
// [...]
'my-first-route' => array(
    'type'    => 'simple'       // <- simple route is created by default, we can skip that
    'options' => array(
        'route'    => 'foo bar',
        'defaults' => array(
            'controller' => 'Application\Index',
            'action'     => 'password'
        )
    )
)










We have created a simple console route with a name my-first-route. It expects two parameters:
foo and bar. If user puts these in a console, Application\IndexController::passwordAction() action will be
invoked.



See also


You can read more about how ZF2 routing works in this chapter.







Basic route


This is the default route type for console. It recognizes the following types of parameters:



		Literal parameters (i.e. create object (external|internal))


		Literal flags (i.e. --verbose --direct [-d] [-a])


		Positional value parameters (i.e. create <modelName> [<destination>])


		Value flags (i.e. --name=NAME [--method=METHOD])






Literal parameters


These parameters are expected to appear on the command line exactly the way they are spelled in the route. For example:


		1
2
3
4
5
6
7
8
9


		'show-users' => array(
    'options' => array(
        'route'    => 'show users',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'show'
        )
    )
)










This route will only match for the following command line


> zf show users






It expects mandatory literal parameters show users. It will not match if there are any more params,
or if one of the words
is missing. The order of words is also enforced.


We can also provide optional literal parameters, for example:


		1
2
3
4
5
6
7
8
9


		'show-users' => array(
    'options' => array(
        'route'    => 'show [all] users',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'show'
        )
    )
)










Now this route will match for both of these commands:


> zf show users
> zf show all users






We can also provide parameter alternative:


		1
2
3
4
5
6
7
8
9


		'show-users' => array(
    'options' => array(
        'route'    => 'show [all|deleted|locked|admin] users',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'show'
        )
    )
)










This route will match both without and with second parameter being one of the words, which enables us to capture
commands such:


> zf show users
> zf show locked users
> zf show admin users
etc.







Note


Whitespaces in route definition are ignored. If you separate your parameters with more spaces,
or separate alternatives and pipe characters with spaces, it won’t matter for the parser. The above route
definition is equivalent to: show [  all | deleted | locked | admin  ]   users







Literal flags


Flags are a common concept for console tools. You can define any number of optional and mandatory flags. The order of
flags is ignored. The can be defined in any order and the user can provide them in any other order.


Let’s create a route with optional long flags


		1
2
3
4
5
6
7
8
9


		'check-users' => array(
    'options' => array(
        'route'    => 'check users [--verbose] [--fast] [--thorough]',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'check'
        )
    )
)










This route will match for commands like:


> zf check users
> zf check users --fast
> zf check users --verbose --thorough
> zf check users --thorough --fast






We can also define one or more mandatory long flags and group them as an alternative:


		1
2
3
4
5
6
7
8
9


		'check-users' => array(
    'options' => array(
        'route'    => 'check users (--suspicious|--expired) [--verbose] [--fast] [--thorough]',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'check'
        )
    )
)










This route will only match if we provide either --suspicious or --expired flag, i.e.:


> zf check users --expired
> zf check users --expired --fast
> zf check users --verbose --thorough --suspicious






We can also use short flags in our routes and group them with long flags for convenience, for example:


		1
2
3
4
5
6
7
8
9


		'check-users' => array(
    'options' => array(
        'route'    => 'check users [--verbose|-v] [--fast|-f] [--thorough|-t]',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'check'
        )
    )
)










Now we can use short versions of our flags:


> zf check users -f
> zf check users -v --thorough
> zf check users -t -f -v









Positional value parameters


Value parameters capture any text-based input and come in two forms - positional and flags.



		Positional value parameters are expected to appear in an exact position on the command line. Let’s take a look at


		the following route definition:





		1
2
3
4
5
6
7
8
9


		'delete-user' => array(
    'options' => array(
        'route'    => 'delete user <userEmail>',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'delete'
        )
    )
)










This route will match for commands like:


> zf delete user john@acme.org
> zf delete user betty@acme.org






We can access the email value by calling $this->getRequest()->getParam('userEmail') inside of our controller
action (you can read more about accessing values here)


We can also define optional positional value parameters by adding square brackets:


		1
2
3
4
5
6
7
8
9


		'delete-user' => array(
    'options' => array(
        'route'    => 'delete user [<userEmail>]',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'delete'
        )
    )
)










In this case, userEmail parameter will not be required for the route to match. If it is not provided,
userEmail parameter will not be set.


We can define any number of positional value parameters, for example:


		1
2
3
4
5
6
7
8
9


		'create-user' => array(
    'options' => array(
        'route'    => 'create user <firstName> <lastName> <email> <position>',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'create'
        )
    )
)










This allows us to capture commands such as:


> zf create user Johnny Bravo john@acme.org Entertainer







Note


Command line arguments on all systems must be properly escaped, otherwise they will not be passed to our
application correctly. For example, to create a user with two names and a complex position description,
we could write something like this:


> zf create user "Johnan Tom" Bravo john@acme.org "Head of the Entertainment Department"











Value flag parameters


Positional value parameters are only matched if they appear in the exact order as described in the route. If we do
not want to enforce the order of parameters, we can define value flags.


Value flags can be defined and matched in any order. They can digest text-based values, for example:


		1
2
3
4
5
6
7
8
9


		'find-user' => array(
    'options' => array(
        'route'    => 'find user [--id=] [--firstName=] [--lastName=] [--email=] [--position=] ',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'find'
        )
    )
)










This route will match for any of the following routes:


> zf find user
> zf find user --id 29110
> zf find user --id=29110
> zf find user --firstName=Johny --lastName=Bravo
> zf find user --lastName Bravo --firstName Johny
> zf find user --position=Executive --firstName=Bob
> zf find user --position "Head of the Entertainment Department"







Note


The order of flags is irrelevant for the parser.





Note


The parser understands values that are provided after equal symbol (=) and separated by a space. Values without
whitespaces can be provided after = symbol or after a space. Values with one more whitespaces however, must be
properly quoted and written after a space.




In previous example, all value flags are optional. It is also possible to define mandatory value flags:


		1
2
3
4
5
6
7
8
9


		'rename-user' => array(
    'options' => array(
        'route'    => 'rename user --id= [--firstName=] [--lastName=]',
        'defaults' => array(
            'controller' => 'Application\Users',
            'action'     => 'rename'
        )
    )
)










The --id parameter is required for this route to match. The following commands will work with this route:


> zf rename user --id 123
> zf rename user --id 123 --firstName Jonathan
> zf rename user --id=123 --lastName=Bravo











Catchall route


This special route will catch all console requests, regardless of the parameters provided.


		1
2
3
4
5
6
7
8
9


		'default-route' => array(
    'options' => array(
        'type'     => 'catchall',
        'defaults' => array(
            'controller' => 'Application\Index',
            'action'     => 'consoledefault'
        )
    )
)











Note


This route type is rarely used. You could use it as a last console route, to display usage information. Before
you do so, read about the preferred way of displaying console usage information.
It is the recommended way and will guarantee proper inter-operation with other modules in your application.







Console routes cheat-sheet









		Param type
		Example route definition
		Explanation





		Literal params



		Literal
		foo bar
		“foo” followed by “bar”



		Literal alternative
		foo (bar|baz)
		“foo” followed by “bar” or “baz”



		Literal, optional
		foo [bar]
		“foo”, optional “bar”



		Literal, optional alternative
		foo [bar|baz]
		“foo”, optional “bar” or “baz”



		Flags



		Flag long
		foo --bar
		“foo” as first parameter, “–bar” flag before or after



		Flag long, optional
		foo [--bar]
		“foo” as first parameter, optional “–bar” flag before or after



		Flag long, optional, alternative
		foo [--bar|--baz]
		“foo” as first parameter, optional “–bar” or “–baz”, before or after



		Flag short
		foo -b
		“foo” as first parameter, “-b” flag before or after



		Flag short, optional
		foo [-b]
		“foo” as first parameter, optional “-b” flag before or after



		Flag short, optional, alternative
		foo [-b|-z]
		“foo” as first parameter, optional “-b” or “-z”, before or after



		Flag long/short alternative
		foo [--bar|-b]
		“foo” as first parameter, optional “–bar” or “-b” before or after



		Value parameters



		Value positional param
		foo <bar>
		“foo” followed by any text (stored as “bar” param)



		Value positional param, optional
		foo [<bar>]
		“foo”, optionally followed by any text (stored as “bar” param)



		Value Flag
		foo --bar=
		“foo” as first parameter, “–bar” with a value, before or after



		Value Flag, optional
		foo [--bar=]
		“foo” as first parameter, optionally “–bar” with a value, before or after



		Parameter groups



		Literal params group
		foo (bar|baz):myParam
		“foo” followed by “bar” or “baz” (stored as “myParam” param)



		Literal optional params group
		foo [bar|baz]:myParam
		“foo” followed by optional “bar” or “baz” (stored as “myParam” param)



		Long flags group
		foo (--bar|--baz):myParam
		“foo”, “bar” or “baz” flag before or after (stored as “myParam” param)



		Long optional flags group
		foo [--bar|--baz]:myParam
		“foo”, optional “bar” or “baz” flag before or after (as “myParam” param)



		Short flags group
		foo (-b|-z):myParam
		“foo”, “-b” or “-z” flag before or after (stored as “myParam” param)



		Short optional flags group
		foo [-b|-z]:myParam
		“foo”, optional “-b” or “-z” flag before or after (stored as “myParam” param)













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Console routes and routing
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.http.client.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Http\Client



Overview


Zend\Http\Client provides an easy interface for performing Hyper-Text Transfer Protocol (HTTP) requests.
Zend\Http\Client supports most simple features expected from an HTTP client, as well as some more complex
features such as HTTP authentication and file uploads. Successful requests (and most unsuccessful ones too)
return a Zend\Http\Response object, which provides access to the response’s headers and body (see this
section).





Quick Start


The class constructor optionally accepts a URL as its first parameter (can be either a string or a
Zend\Uri\Http object), and an array or Zend\Config\Config object containing configuration options. Both can
be left out, and set later using the setUri() and setConfig() methods.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		use Zend\Http\Client;
$client = new Client('http://example.org', array(
    'maxredirects' => 0,
    'timeout'      => 30
));

// This is actually exactly the same:
$client = new Client();
$client->setUri('http://example.org');
$client->setConfig(array(
    'maxredirects' => 0,
    'timeout'      => 30
));

// You can also use a Zend\Config\Ini object to set the client's configuration
$config = new Zend\Config\Ini('httpclient.ini', 'secure');
$client->setConfig($config);











Note


Zend\Http\Client uses Zend\Uri\Http to validate URLs. This means that some special characters like the
pipe symbol (‘|’) or the caret symbol (‘^’) will not be accepted in the URL by default. This can be modified by
setting the ‘allowunwise’ option of Zend\Uri to ‘TRUE‘. See this section for more information.







Configuration Options


The constructor and setConfig() method accept an associative array of configuration parameters, or a
Zend\Config\Config object. Setting these parameters is optional, as they all have default values.




Zend\Http\Client configuration parameters







		Parameter
		Description
		Expected Values
		Default Value





		maxredirects
		Maximum number of redirections to follow (0 = none)
		integer
		5



		strict
		Whether perform validation on header names. When set to FALSE, validation functions will be skipped. Usually this should not be changed
		boolean
		TRUE



		strictredirects
		Whether to strictly follow the RFC when redirecting (see this section)
		boolean
		FALSE



		useragent
		User agent identifier string (sent in request headers)
		string
		‘Zend\Http\Client’



		timeout
		Connection timeout (seconds)
		integer
		10



		httpversion
		HTTP protocol version (usually ‘1.1’ or ‘1.0’)
		string
		‘1.1’



		adapter
		Connection adapter class to use (see this section)
		mixed
		‘Zend\Http\Client\Adapter\Socket’



		keepalive
		Whether to enable keep-alive connections with the server. Useful and might improve performance if several consecutive requests to the same server are performed.
		boolean
		FALSE



		storeresponse
		Whether to store last response for later retrieval with getLastResponse(). If set to FALSEgetLastResponse() will return NULL.
		boolean
		TRUE



		encodecookies
		Whether to pass the cookie value through urlencode/urldecode. Enabling this breaks support with some web servers. Disabling this limits the range of values the cookies can contain.
		boolean
		TRUE














Available Methods



		__construct


		__construct(string $uri, array $config)


Constructor


Returns void









		setConfig


		setConfig(Config|array $config = array ( ))


Set configuration parameters for this HTTP client


Returns Zend\Http\Client









		setAdapter


		setAdapter(Zend\Http\Client\Adapter|string $adapter)


Load the connection adapter


While this method is not called more than one for a client, it is seperated from ->send() to preserve logic
and readability


Returns null









		getAdapter


		getAdapter()


Load the connection adapter


Returns Zend\Http\Client\Adapter









		getRequest


		getRequest()


Get Request


Returns Request









		getResponse


		getResponse()


Get Response


Returns Response









		setRequest


		setRequest(Zend\Http\Zend\Http\Request $request)


Set request


Returns void









		setResponse


		setResponse(Zend\Http\Zend\Http\Response $response)


Set response


Returns void









		getLastRequest


		getLastRequest()


Get the last request (as a string)


Returns string









		getLastResponse


		getLastResponse()


Get the last response (as a string)


Returns string









		getRedirectionsCount


		getRedirectionsCount()


Get the redirections count


Returns integer









		setUri


		setUri(string|Zend\Http\Zend\Uri\Http $uri)


Set Uri (to the request)


Returns void









		getUri


		getUri()


Get uri (from the request)


Returns Zend\Http\Zend\Uri\Http









		setMethod


		setMethod(string $method)


Set the HTTP method (to the request)


Returns Zend\Http\Client









		getMethod


		getMethod()


Get the HTTP method


Returns string









		setEncType


		setEncType(string $encType, string $boundary)


Set the encoding type and the boundary (if any)


Returns void









		getEncType


		getEncType()


Get the encoding type


Returns type









		setRawBody


		setRawBody(string $body)


Set raw body (for advanced use cases)


Returns Zend\Http\Client









		setParameterPost


		setParameterPost(array $post)


Set the POST parameters


Returns Zend\Http\Client









		setParameterGet


		setParameterGet(array $query)


Set the GET parameters


Returns Zend\Http\Client









		getCookies


		getCookies()


Return the current cookies


Returns array









		addCookie


		addCookie(ArrayIterator|SetCookie|string $cookie, string $value, string $domain, string $expire, string $path, boolean $secure = false, boolean $httponly = true)


Add a cookie


Returns Zend\Http\Client









		setCookies


		setCookies(array $cookies)


Set an array of cookies


Returns Zend\Http\Client









		clearCookies


		clearCookies()


Clear all the cookies


Returns void









		setHeaders


		setHeaders(Headers|array $headers)


Set the headers (for the request)


Returns Zend\Http\Client









		hasHeader


		hasHeader(string $name)


Check if exists the header type specified


Returns boolean









		getHeader


		getHeader(string $name)


Get the header value of the request


Returns string|boolean









		setStream


		setStream(string|boolean $streamfile = true)


Set streaming for received data


Returns Zend\Http\Client









		getStream


		getStream()


Get status of streaming for received data


Returns boolean|string









		setAuth


		setAuth(string $user, string $password, string $type = 'basic')


Create a HTTP authentication “Authorization:” header according to the specified user, password and
authentication method.


Returns Zend\Http\Client









		resetParameters


		resetParameters()


Reset all the HTTP parameters (auth,cookies,request, response, etc)


Returns void









		send


		send(Request $request)


Send HTTP request


Returns Response









		setFileUpload


		setFileUpload(string $filename, string $formname, string $data, string $ctype)


Set a file to upload (using a POST request)


Can be used in two ways: 1. $data is null (default): $filename is treated as the name if a local file which will
be read and sent. Will try to guess the content type using mime_content_type(). 2. $data is set - $filename is
sent as the file name, but $data is sent as the file contents and no file is read from the file system. In this
case, you need to manually set the Content-Type ($ctype) or it will default to application/octet-stream.


Returns Zend\Http\Client









		removeFileUpload


		removeFileUpload(string $filename)


Remove a file to upload


Returns boolean









		encodeFormData


		encodeFormData(string $boundary, string $name, mixed $value, string $filename, array $headers = array ( ))


Encode data to a multipart/form-data part suitable for a POST request.


Returns string











Examples


Performing a Simple GET Request


Performing simple HTTP requests is very easily done using the request() method, and rarely needs more than three
lines of code:


		1
2
3


		use Zend\Config\Client;
$client = new Client('http://example.org');
$response = $client->send();










The request() method takes one optional parameter - the request method. This can be either GET, POST,
PUT, HEAD, DELETE, TRACE, OPTIONS or CONNECT as defined by the HTTP protocol [1].


Using Request Methods Other Than GET


For convenience, these are all defined as class constants: Zend\Http\Client::GET, Zend\Http\Client::POST and so
on.


If no method is specified, the method set by the last setMethod() call is used. If setMethod() was never
called, the default request method is GET (see the above example).


		1
2
3
4
5
6
7
8


		use Zend\Http\Client;
$client = new Client();
// Performing a POST request
$response = $client->send('POST');

// Yet another way of performing a POST request
$client->setMethod(Client::POST);
$response = $client->send();










Adding GET and POST parameters


Adding GET parameters to an HTTP request is quite simple, and can be done either by specifying them as part
of the URL, or by using the setParameterGet() method. This method takes the GET parameter’s name as its first
parameter, and the GET parameter’s value as its second parameter. For convenience, the setParameterGet() method
can also accept a single associative array of name => value GET variables - which may be more comfortable when
several GET parameters need to be set.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Http\Client;
$client = new Client();

// Setting a get parameter using the setParameterGet method
$client->setParameterGet('knight', 'lancelot');

// This is equivalent to setting such URL:
$client->setUri('http://example.com/index.php?knight=lancelot');

// Adding several parameters with one call
$client->setParameterGet(array(
    'first_name'  => 'Bender',
    'middle_name' => 'Bending',
    'made_in'     => 'Mexico',
));










Setting POST Parameters


While GET parameters can be sent with every request method, POST parameters are only sent in the body of POST
requests. Adding POST parameters to a request is very similar to adding GET parameters, and can be done with
the setParameterPost() method, which is similar to the setParameterGet() method in structure.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Http\Client;
$client = new Client();
// Setting a POST parameter
$client->setParameterPost('language', 'fr');

// Setting several POST parameters, one of them with several values
$client->setParameterPost(array(
    'language'  => 'es',
    'country'   => 'ar',
    'selection' => array(45, 32, 80)
));










Note that when sending POST requests, you can set both GET and POST parameters. On the other hand, while
setting POST parameters for a non-POST request will not trigger and error, it is useless. Unless the request is a
POST request, POST parameters are simply ignored.


Using A Request Object With The Client


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Http\Request;
use Zend\Http\Client;
$request = new Request();
$request->setUri('http://www.test.com');
$request->setMethod('POST');
$request->setParameterPost(array('foo' => 'bar'));

$client = new Client();
$response = $client->dispatch($request);

if ($response->isSuccess()) {
    //  the POST was successful
}













		[1]		See RFC 2616 -http://www.w3.org/Protocols/rfc2616/rfc2616.html.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Http\Client
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/plugins.conclusion.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Conclusion


Understanding the concept of prefix paths and overriding existing plugins will help you with your understanding of
many components within the framework. Plugins are used in a variety of places:



		Zend_Application: resources.


		Zend_Controller_Action: action helpers.


		Zend_Feed_Reader: plugins.


		Zend_Form: elements, filters, validators, and decorators.


		Zend_View: view helpers.





And several more places, besides. Learn the concepts early so you can leverage this important extension point in
Zend Framework.



Note


Caveat


We’ll note here that Zend_Controller_Front has a plugin system - but it does not adhere to any of the
guidelines offerred in this tutorial. The plugins registered with the front controller must be instantiated
directly and registered individually with it. The reason for this is that this system predates any other plugin
system in the framework, and changes to it must be carefully weighed to ensure existing plugins written by
developers continue to work with it.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Conclusion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.attachments.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Attachments


Files can be attached to an e-mail using the createAttachment() method. The default behavior of Zend_Mail
is to assume the attachment is a binary object (application/octet-stream), that it should be transferred with
base64 encoding, and that it is handled as an attachment. These assumptions can be overridden by passing more
parameters to createAttachment():


E-Mail Messages with Attachments


		1
2
3
4
5
6
7


		$mail = new Zend_Mail();
// build message...
$mail->createAttachment($someBinaryString);
$mail->createAttachment($myImage,
                        'image/gif',
                        Zend_Mime::DISPOSITION_INLINE,
                        Zend_Mime::ENCODING_BASE64);










If you want more control over the MIME part generated for this attachment you can use the return value of
createAttachment() to modify its attributes. The createAttachment() method returns a Zend_Mime_Part
object:


		1
2
3
4
5
6
7
8
9


		$mail = new Zend_Mail();

$at = $mail->createAttachment($myImage);
$at->type        = 'image/gif';
$at->disposition = Zend_Mime::DISPOSITION_INLINE;
$at->encoding    = Zend_Mime::ENCODING_BASE64;
$at->filename    = 'test.gif';

$mail->send();










An alternative is to create an instance of Zend_Mime_Part and add it with addAttachment():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$mail = new Zend_Mail();

$at = new Zend_Mime_Part($myImage);
$at->type        = 'image/gif';
$at->disposition = Zend_Mime::DISPOSITION_INLINE;
$at->encoding    = Zend_Mime::ENCODING_BASE64;
$at->filename    = 'test.gif';

$mail->addAttachment($at);

$mail->send();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Attachments
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.upce.png
Al 134557H





modules/zend.pdf.save.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Save Changes to PDF Documents


There are two methods that save changes to PDF documents: the Zend_Pdf::save() and Zend_Pdf::render()
methods.


Zend_Pdf::save($filename, $updateOnly = false) saves the PDF document to a file. If $updateOnly is TRUE,
then only the new PDF file segment is appended to a file. Otherwise, the file is overwritten.


Zend_Pdf::render($newSegmentOnly = false) returns the PDF document as a string. If $newSegmentOnly is
TRUE, then only the new PDF file segment is returned.


Saving PDF Documents


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		...
// Load the PDF document
$pdf = Zend_Pdf::load($fileName);
...
// Update the PDF document
$pdf->save($fileName, true);
// Save document as a new file
$pdf->save($newFileName);

// Return the PDF document as a string
$pdfString = $pdf->render();

...














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Save Changes to PDF Documents
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.error.png
ERROR:
‘a" contains invalid characters





modules/zend.service-manager.quick-start.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\ServiceManager Quick Start


By default, Zend Framework utilizes Zend\ServiceManager within the MVC layer. As such, in most cases you’ll be
providing services, invokable classes, aliases, and factories either via configuration or via your module classes.


By default, the module manager listener Zend\ModuleManager\Listener\ServiceListener will do the following:



		For modules implementing the Zend\ModuleManager\Feature\ServiceProvider interface, or the
getServiceConfig() method, it will call that method and merge the configuration.


		After all modules have been processed, it will grab the configuration from the registered
Zend\ModuleManager\Feature\ConfigListener, and merge any configuration under the service_manager key.


		Finally, it will use the merged configuration to configure the ServiceManager.





In most cases, you won’t interact with the ServiceManager, other than to provide services to it; your
application will typically rely on good configuration in the ServiceManager to ensure that classes are
configured correctly with their dependencies. When creating factories, however, you may want to interact with the
ServiceManager to retrieve other services to inject as dependencies. Additionally, there are some cases where
you may want to receive the ServiceManager to lazy-retrieve dependencies; as such, you’ll want to implement
ServiceManagerAwareInterface, and learn the API of the ServiceManager.



Using Configuration


Configuration requires a service_manager key at the top level of your configuration, with one or more of the
following sub-keys:



		abstract_factories, which should be an array of abstract factory class names.


		aliases, which should be an associative array of alias name/target name pairs (where the target name may also
be an alias).


		factories, an array of service name/factory class name pairs. The factories should be either classes
implementing Zend\ServiceManager\FactoryInterface or invokable classes. If you are using PHP configuration
files, you may provide any PHP callable as the factory.


		invokables, an array of service name/class name pairs. The class name should be class that may be directly
instantiated without any constructor arguments.


		services, an array of service name/object pairs. Clearly, this will only work with PHP configuration.


		shared, an array of service name/boolean pairs, indicating whether or not a service should be shared. By
default, the ServiceManager assumes all services are shared, but you may specify a boolean false value here
to indicate a new instance should be returned.








Modules as Service Providers


Modules may act as service configuration providers. To do so, the Module class must either implement
Zend\ModuleManager\Feature\ServiceProviderInterface or simply the method getServiceConfig() (which
is also defined in the interface). This method must return one of the following:



		An array (or Traversable object) of configuration compatible with Zend\ServiceManager\Config.
(Basically, it should have the keys for configuration as discussed in the previous section.


		A string providing the name of a class implementing Zend\ServiceManager\ConfigInterface.


		An instance of either Zend\ServiceManager\Config, or an object implementing
Zend\ServiceManager\ConfigInterface.





As noted previously, this configuration will be merged with the configuration returned from other modules as well
as configuration files, prior to being passed to the ServiceManager; this allows overriding configuration from
modules easily.





Examples


Sample configuration


The following is valid configuration for any configuration being merged in your application, and demonstrates each
of the possible configuration keys. Configuration is merged in the following order:



		Configuration returned from Module classes via the getServiceConfig() method, in the order in which
modules are processed.


		Module configuration under the service_manager key, in the order in which modules are processed.


		Application configuration under the config/autoload/ directory, in the order in which they are processed.





As such, you have a variety of ways to override service manager configuration settings.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


		<?php
// a module configuration, "module/SomeModule/config/module.config.php"
return array(
    'service_manager' => array(
        'abstract_factories' => array(
            // Valid values include names of classes implementing
            // AbstractFactoryInterface, instances of classes implementing
            // AbstractFactoryInterface, or any PHP callbacks
            'SomeModule\Service\FallbackFactory',
        ),
        'aliases' => array(
            // Aliasing a FQCN to a service name
            'SomeModule\Model\User' => 'User',
            // Aliasing a name to a known service name
            'AdminUser' => 'User',
            // Aliasing to an alias
            'SuperUser' => 'AdminUser',
        ),
        'factories' => array(
            // Keys are the service names.
            // Valid values include names of classes implementing
            // FactoryInterface, instances of classes implementing
            // FactoryInterface, or any PHP callbacks
            'User'     => 'SomeModule\Service\UserFactory',
            'UserForm' => function ($serviceManager) {
                $form = new SomeModule\Form\User();

                // Retrieve a dependency from the service manager and inject it!
                $form->setInputFilter($serviceManager->get('UserInputFilter'));
                return $form;
            },
        ),
        'invokables' => array(
            // Keys are the service names
            // Values are valid class names to instantiate.
            'UserInputFiler' => 'SomeModule\InputFilter\User',
        ),
        'services' => array(
            // Keys are the service names
            // Values are objects
            'Auth' => new SomeModule\Authentication\AuthenticationService(),
        ),
        'shared' => array(
            // Usually, you'll only indicate services that should _NOT_ be
            // shared -- i.e., ones where you want a different instance
            // every time.
            'UserForm' => false,
        ),
    ),
);











Note


Configuration and PHP


Typically, you should not have your configuration files create new instances of objects or even closures for
factories; at the time of configuration, not all autoloading may be in place, and if another configuration
overwrites this one later, you’re now spending CPU and memory performing work that is ultimately lost.


For instances that require factories, write a factory. If you’d like to inject specific, configured instances,
use the Module class to do so, or a listener.




Module returning an array


The following demonstrates returning an array of configuration from a module class. It is substantively the same as
the array configuration from the previous example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


		namespace SomeModule;

class Module
{
    public function getServiceConfig()
    {
        return array(
            'abstract_factories' => array(
                // Valid values include names of classes implementing
                // AbstractFactoryInterface, instances of classes implementing
                // AbstractFactoryInterface, or any PHP callbacks
                'SomeModule\Service\FallbackFactory',
            ),
            'aliases' => array(
                // Aliasing a FQCN to a service name
                'SomeModule\Model\User' => 'User',
                // Aliasing a name to a known service name
                'AdminUser' => 'User',
                // Aliasing to an alias
                'SuperUser' => 'AdminUser',
            ),
            'factories' => array(
                // Keys are the service names.
                // Valid values include names of classes implementing
                // FactoryInterface, instances of classes implementing
                // FactoryInterface, or any PHP callbacks
                'User'     => 'SomeModule\Service\UserFactory',
                'UserForm' => function ($serviceManager) {
                    // Note: we're already in the "SomeModule" namespace
                    $form = new Form\User();

                    // Retrieve a dependency from the service manager and inject it!
                    $form->setInputFilter($serviceManager->get('UserInputFilter'),
                    return $form;
                },
            ),
            'invokables' => array(
                // Keys are the service names
                // Values are valid class names to instantiate.
                'UserInputFiler' => 'SomeModule\InputFilter\User',
            ),
            'services' => array(
                // Keys are the service names
                // Values are objects
                // Note: we're already in the "SomeModule" namespace
                'Auth' => new Authentication\AuthenticationService(),
            ),
            'shared' => array(
                // Usually, you'll only indicate services that should _NOT_ be
                // shared -- i.e., ones where you want a different instance
                // every time.
                'UserForm' => false,
            ),
        );
    }
}










Returning a Configuration instance


First, let’s create a class that holds configuration.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		namespace SomeModule\Service;

use SomeModule\Authentication;
use SomeModule\Form;
use Zend\ServiceManager\Config;
use Zend\ServiceManager\ServiceManager;

class ServiceConfiguration extends Configuration
{
    /**
     * This is hard-coded for brevity.
     */
    public function configureServiceManager(ServiceManager $serviceManager)
    {
        $serviceManager->setFactory('User', 'SomeModule\Service\UserFactory');
        $serviceManager->setFactory('UserForm', function ($serviceManager) {
            $form = new Form\User();

            // Retrieve a dependency from the service manager and inject it!
            $form->setInputFilter($serviceManager->get('UserInputFilter'),
            return $form;
        });
        $serviceManager->setInvokableClass('UserInputFilter', 'SomeModule\InputFilter\User');
        $serviceManager->setService('Auth', new Authentication\AuthenticationService());
        $serviceManager->setAlias('SomeModule\Model\User', 'User');
        $serviceManager->setAlias('AdminUser', 'User');
        $serviceManager->setAlias('SuperUser', 'AdminUser');
        $serviceManager->setShared('UserForm', false);
    }
}










Now, we’ll consume it from our Module.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		namespace SomeModule;

// We could implement Zend\ModuleManager\Feature\ServiceProviderInterface.
// However, the module manager will still find the method without doing so.
class Module
{
    public function getServiceConfig()
    {
        return new Service\ServiceConfiguration();
        // OR:
        // return 'SomeModule\Service\ServiceConfiguration';
    }
}










Creating a ServiceManager-aware class


By default, the Zend Framework MVC registers an initializer that will inject the ServiceManager instance into
any class implementing Zend\ServiceManager\ServiceManagerAwareInterface. The default controller implementations
implement this interface, as do a small number of other objects. A simple implementation looks like the following.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		namespace SomeModule\Controller\BareController;

use Zend\ServiceManager\ServiceManager;
use Zend\ServiceManager\ServiceManagerAwareInterface;
use Zend\Stdlib\DispatchableInterface as Dispatchable;
use Zend\Stdlib\RequestInterface as Request;
use Zend\Stdlib\ResponseInterface as Response;

class BareController implements
    Dispatchable,
    ServiceManagerAwareInterface
{
    protected $services;

    public function setServiceManager(ServiceManager $serviceManager)
    {
        $this->services = $serviceManager;
    }

    public function dispatch(Request $request, Response $response = null)
    {
        // ...

        // Retrieve something from the service manager
        $router = $this->services->get('Router');

        // ...
    }
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\ServiceManager Quick Start
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.real-path.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
RealPath


This filter will resolve given links and pathnames and returns canonicalized absolute pathnames.



Supported options for Zend_Filter_RealPath


The following options are supported for Zend_Filter_RealPath:



		exists: This option defaults to TRUE which checks if the given path really exists.








Basic usage


For any given link of pathname its absolute path will be returned. References to ‘/./‘, ‘/../‘ and extra
‘/‘ characters in the input path will be stripped. The resulting path will not have any symbolic link,
‘/./‘ or ‘/../‘ character.


Zend_Filter_RealPath will return FALSE on failure, e.g. if the file does not exist. On BSD systems
Zend_Filter_RealPath doesn’t fail if only the last path component doesn’t exist, while other systems will
return FALSE.


		1
2
3
4
5


		$filter = new Zend_Filter_RealPath();
$path   = '/www/var/path/../../mypath';
$filtered = $filter->filter($path);

// returns '/www/mypath'













Non existing paths


Sometimes it is useful to get also paths when they don’t exist, f.e. when you want to get the real path for a path
which you want to create. You can then either give a FALSE at initiation, or use setExists() to set it.


		1
2
3
4
5
6


		$filter = new Zend_Filter_RealPath(false);
$path   = '/www/var/path/../../non/existing/path';
$filtered = $filter->filter($path);

// returns '/www/non/existing/path'
// even when file_exists or realpath would return false
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                RealPath
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.pubsubhubbub.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Feed_Pubsubhubbub


Zend_Feed_Pubsubhubbub is an implementation of the PubSubHubbub Core 0.2 Specification (Working Draft). It
offers implementations of a Pubsubhubbub Publisher and Subscriber suited to Zend Framework and other PHP
applications.



What is Pubsubhubbub?


Pubsubhubbub is an open, simple web-scale pubsub protocol. A common use case to enable blogs (Publishers) to “push”
updates from their RSS or Atom feeds (Topics) to end Subscribers. These Subscribers will have subscribed to the
blog’s RSS or Atom feed via a Hub, a central server which is notified of any updates by the Publisher and which
then distributes these updates to all Subscribers. Any feed may advertise that it supports one or more Hubs using
an Atom namespaced link element with a rel attribute of “hub”.


Pubsubhubbub has garnered attention because it is a pubsub protocol which is easy to implement and which operates
over HTTP. Its philosophy is to replace the traditional model where blog feeds have been polled at regular
intervals to detect and retrieve updates. Depending on the frequency of polling, this can take a lot of time to
propagate updates to interested parties from planet aggregators to desktop readers. With a pubsub system in place,
updates are not simply polled by Subscribers, they are pushed to Subscribers, elimenating any delay. For this
reason, Pubsubhubbub forms part of what has been dubbed the real-time web.


The protocol does not exist in isolation. Pubsub systems have been around for a while, such as the familiar Jabber
Publish-Subscribe protocol, XEP-0060, or the less well known rssCloud (described in 2001). However these have not
achieved widespread adoption typically due to either their complexity, poor timing or lack of suitability for web
applications. rssCloud, which was recently revived as a response to the appearance of Pubsubhubbub, has also seen
its usage increase significantly though it lacks a formal specification and currently does not support Atom 1.0
feeds.


Perhaps surprisingly given its relative early age, Pubsubhubbub is already in use including in Google Reader,
Feedburner, and there are plugins available for Wordpress blogs.





Architecture


Zend_Feed_Pubsubhubbub implements two sides of the Pubsubhubbub 0.2 Specification: a Publisher and a
Subscriber. It does not currently implement a Hub Server though this is in progress for a future Zend Framework
release.


A Publisher is responsible for notifying all supported Hubs (many can be supported to add redundancy to the system)
of any updates to its feeds, whether they be Atom or RSS based. This is achieved by pinging the supported Hub
Servers with the URL of the updated feed. In Pubsubhubbub terminology, any updatable resource capable of being
subscribed to is referred to as a Topic. Once a ping is received, the Hub will request the updated feed, process it
for updated items, and forward all updates to all Subscribers subscribed to that feed.


A Subscriber is any party or application which subscribes to one or more Hubs to receive updates from a Topic
hosted by a Publisher. The Subscriber never directly communicates with the Publisher since the Hub acts as an
intermediary, accepting subscriptions and sending updates to subscribed Subscribers. The Subscriber therefore
communicates only with the Hub, either to subscribe or unsubscribe to Topics, or when it receives updates from the
Hub. This communication design (“Fat Pings”) effectively removes the possibility of a “Thundering Herd” issue. This
occurs in a pubsub system where the Hub merely informs Subscribers that an update is available, prompting all
Subscribers to immediately retrieve the feed from the Publisher giving rise to a traffic spike. In Pubsubhubbub,
the Hub distributes the actual update in a “Fat Ping” so the Publisher is not subjected to any traffic spike.


Zend_Feed_Pubsubhubbub implements Pubsubhubbub Publishers and Subscribers with the classes
Zend_Feed_Pubsubhubbub_Publisher and Zend_Feed_Pubsubhubbub_Subscriber. In addition, the Subscriber
implementation may handle any feed updates forwarded from a Hub by using
Zend_Feed_Pubsubhubbub_Subscriber_Callback. These classes, their use cases, and APIs are covered in
subsequent sections.





Zend_Feed_Pubsubhubbub_Publisher


In Pubsubhubbub, the Publisher is the party who publishes a live feed and frequently updates it with new content.
This may be a blog, an aggregator, or even a web service with a public feed based API. In order for these updates
to be pushed to Subscribers, the Publisher must notify all of its supported Hubs that an update has occured using a
simple HTTP POST request containing the URI or the updated Topic (i.e the updated RSS or Atom feed). The
Hub will confirm receipt of the notification, fetch the updated feed, and forward any updates to any Subscribers
who have subscribed to that Hub for updates from the relevant feed.


By design, this means the Publisher has very little to do except send these Hub pings whenever its feeds change. As
a result, the Publisher implementation is extremely simple to use and requires very little work to setup and use
when feeds are updated.


Zend_Feed_Pubsubhubbub_Publisher implements a full Pubsubhubbub Publisher. Its setup for use is also simple,
requiring mainly that it is configured with the URI endpoint for all Hubs to be notified of updates, and the
URIs of all Topics to be included in the notifications.


The following example shows a Publisher notifying a collection of Hubs about updates to a pair of local RSS and
Atom feeds. The class retains a collection of errors which include the Hub URLs, so the notification can be
re-attempted later and/or logged if any notifications happen to fail. Each resulting error array also includes a
“response” key containing the related HTTP response object. In the event of any errors, it is strongly
recommended to attempt the operation for failed Hub Endpoints at least once more at a future time. This may require
the use of either a scheduled task for this purpose or a job queue though such extra steps are optional.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$publisher = new Zend_Feed_Pubsubhubbub_Publisher;
$publisher->addHubUrls(array(
    'http://pubsubhubbub.appspot.com/',
    'http://hubbub.example.com',
));
$publisher->addUpdatedTopicUrls(array(
    'http://www.example.net/rss',
    'http://www.example.net/atom',
));
$publisher->notifyAll();

if (!$publisher->isSuccess()) {
    // check for errors
    $errors     = $publisher->getErrors();
    $failedHubs = array()
    foreach ($errors as $error) {
        $failedHubs[] = $error['hubUrl'];
    }
}

// reschedule notifications for the failed Hubs in $failedHubs










If you prefer having more concrete control over the Publisher, the methods addHubUrls() and
addUpdatedTopicUrls() pass each array value to the singular addHubUrl() and addUpdatedTopicUrl() public
methods. There are also matching removeUpdatedTopicUrl() and removeHubUrl() methods.


You can also skip setting Hub URIs, and notify each in turn using the notifyHub() method which accepts the
URI of a Hub endpoint as its only argument.


There are no other tasks to cover. The Publisher implementation is very simple since most of the feed processing
and distribution is handled by the selected Hubs. It is however important to detect errors and reschedule
notifications as soon as possible (with a reasonable maximum number of retries) to ensure notifications reach all
Subscribers. In many cases as a final alternative, Hubs may frequently poll your feeds to offer some additional
tolerance for failures both in terms of their own temporary downtime or Publisher errors or downtime.





Zend_Feed_Pubsubhubbub_Subscriber


In Pubsubhubbub, the Subscriber is the party who wishes to receive updates to any Topic (RSS or Atom feed). They
achieve this by subscribing to one or more of the Hubs advertised by that Topic, usually as a set of one or more
Atom 1.0 links with a rel attribute of “hub”. The Hub from that point forward will send an Atom or RSS feed
containing all updates to that Subscriber’s Callback URL when it receives an update notification from the
Publisher. In this way, the Subscriber need never actually visit the original feed (though it’s still recommended
at some level to ensure updates are retrieved if ever a Hub goes offline). All subscription requests must contain
the URI of the Topic being subscribed and a Callback URL which the Hub will use to confirm the subscription and
to forward updates.


The Subsciber therefore has two roles. To create and manage subscriptions, including subscribing for new Topics
with a Hub, unsubscribing (if necessary), and periodically renewing subscriptions since they may have a limited
validity as set by the Hub. This is handled by Zend_Feed_Pubsubhubbub_Subscriber.


The second role is to accept updates sent by a Hub to the Subscriber’s Callback URL, i.e. the URI the
Subscriber has assigned to handle updates. The Callback URL also handles events where the Hub contacts the
Subscriber to confirm all subscriptions and unsubscriptions. This is handled by using an instance of
Zend_Feed_Pubsubhubbub_Subscriber_Callback when the Callback URL is accessed.



Important


Zend_Feed_Pubsubhubbub_Subscriber implements the Pubsubhubbub 0.2 Specification. As this is a new
specification version not all Hubs currently implement it. The new specification allows the Callback URL to
include a query string which is used by this class, but not supported by all Hubs. In the interests of
maximising compatibility it is therefore recommended that the query string component of the Subscriber Callback
URI be presented as a path element, i.e. recognised as a parameter in the route associated with the Callback
URI and used by the application’s Router.





Subscribing and Unsubscribing


Zend_Feed_Pubsubhubbub_Subscriber implements a full Pubsubhubbub Subscriber capable of subscribing to, or
unsubscribing from, any Topic via any Hub advertised by that Topic. It operates in conjunction with
Zend_Feed_Pubsubhubbub_Subscriber_Callback which accepts requests from a Hub to confirm all subscription or
unsubscription attempts (to prevent third-party misuse).


Any subscription (or unsubscription) requires the relevant information before proceeding, i.e. the URI of the
Topic (Atom or RSS feed) to be subscribed to for updates, and the URI of the endpoint for the Hub which will
handle the subscription and forwarding of the updates. The lifetime of a subscription may be determined by the Hub
but most Hubs should support automatic subscription refreshes by checking with the Subscriber. This is supported by
Zend_Feed_Pubsubhubbub_Subscriber_Callback and requires no other work on your part. It is still strongly
recommended that you use the Hub sourced subscription time to live (ttl) to schedule the creation of new
subscriptions (the process is identical to that for any new subscription) to refresh it with the Hub. While it
should not be necessary per se, it covers cases where a Hub may not support automatic subscription refreshing and
rules out Hub errors for additional redundancy.


With the relevant information to hand, a subscription can be attempted as demonstrated below:


		1
2
3
4
5
6
7
8


		$storage = new Zend_Feed_Pubsubhubbub_Model_Subscription;

$subscriber = new Zend_Feed_Pubsubhubbub_Subscriber;
$subscriber->setStorage($storage);
$subscriber->addHubUrl('http://hubbub.example.com');
$subscriber->setTopicUrl('http://www.example.net/rss.xml');
$subscriber->setCallbackUrl('http://www.mydomain.com/hubbub/callback');
$subscriber->subscribeAll();










In order to store subscriptions and offer access to this data for general use, the component requires a database (a
schema is provided later in this section). By default, it is assumed the table name is “subscription” and it
utilises Zend_Db_Table_Abstract in the background meaning it will use the default adapter you have set for your
application. You may also pass a specific custom Zend_Db_Table_Abstract instance into the associated model
Zend_Feed_Pubsubhubbub_Model_Subscription. This custom adapter may be as simple in intent as changing the table
name to use or as complex as you deem necessary.


While this Model is offered as a default ready-to-roll solution, you may create your own Model using any other
backend or database layer (e.g. Doctrine) so long as the resulting class implements the interface
Zend_Feed_Pubsubhubbub_Model_SubscriptionInterface.


An example schema (MySQL) for a subscription table accessible by the provided model may look similar to:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		CREATE TABLE IF NOT EXISTS `subscription` (
  `id` varchar(32) COLLATE utf8_unicode_ci NOT NULL DEFAULT '',
  `topic_url` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
  `hub_url` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
  `created_time` datetime DEFAULT NULL,
  `lease_seconds` bigint(20) DEFAULT NULL,
  `verify_token` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
  `secret` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
  `expiration_time` datetime DEFAULT NULL,
  `subscription_state` varchar(12) COLLATE utf8_unicode_ci DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;










Behind the scenes, the Subscriber above will send a request to the Hub endpoint containing the following parameters
(based on the previous example):



Subscription request parameters






		Parameter
		Value
		Explanation





		hub.callback
		http://www.mydomain.com/hubbub/callback?xhub.subscription=5536df06b5dcb966edab3a4c4d56213c16a8184
		The URI used by a Hub to contact the Subscriber and either request confirmation of a (un)subscription request or send updates from subscribed feeds. The appended query string contains a custom parameter (hence the xhub designation). It is a query string parameter preserved by the Hub and resent with all Subscriber requests. Its purpose is to allow the Subscriber to identify and look up the subscription associated with any Hub request in a backend storage medium. This is a non=standard parameter used by this component in preference to encoding a subscription key in the URI path which is more difficult to implement in a Zend Framework application. Nevertheless, since not all Hubs support query string parameters, we still strongly recommend adding the subscription key as a path component in the form http://www.mydomain.com/hubbub/callback/5536df06b5dcb966edab3a4c4d56213c16a8184. To accomplish this, it requires defining a route capable of parsing out the final value of the key and then retrieving the value and passing it to the Subscriber Callback object. The value would be passed into the method Zend_Pubsubhubbub_Subscriber_Callback::setSubscriptionKey(). A detailed example is offered later.



		hub.lease_seconds
		2592000
		The number of seconds for which the Subscriber would like a new subscription to remain valid for (i.e. a TTL). Hubs may enforce their own maximum subscription period. All subscriptions should be renewed by simply re-subscribing before the subscription period ends to ensure continuity of updates. Hubs should additionally attempt to automatically refresh subscriptions before they expire by contacting Subscribers (handled automatically by the Callback class).



		hub.mode
		subscribe
		Simple value indicating this is a subscription request. Unsubscription requests would use the “unsubscribe” value.



		hub.topic
		http://www.example.net/rss.xml
		The URI of the topic (i.e. Atom or RSS feed) which the Subscriber wishes to subscribe to for updates.



		hub.verify
		sync
		Indicates to the Hub the preferred mode of verifying subscriptions or unsubscriptions. It is repeated twice in order of preference. Technically this component does not distinguish between the two modes and treats both equally.



		hub.verify
		async
		Indicates to the Hub the preferred mode of verifying subscriptions or unsubscriptions. It is repeated twice in order of preference. Technically this component does not distinguish between the two modes and treats both equally.



		hub.verify_token
		3065919804abcaa7212ae89.879827871253878386
		A verification token returned to the Subscriber by the Hub when it is confirming a subscription or unsubscription. Offers a measure of reliance that the confirmation request originates from the correct Hub to prevent misuse.







You can modify several of these parameters to indicate a different preference. For example, you can set a different
lease seconds value using Zend_Pubsubhubbub_Subscriber::setLeaseSeconds() or show a preference for the async
verify mode by using setPreferredVerificationMode(Zend_Feed_Pubsubhubbub::VERIFICATION_MODE_ASYNC). However the
Hubs retain the capability to enforce their own preferences and for this reason the component is deliberately
designed to work across almost any set of options with minimum end-user configuration required. Conventions are
great when they work!



Note


While Hubs may require the use of a specific verification mode (both are supported by Zend_Pubsubhubbub),
you may indicate a specific preference using the setPreferredVerificationMode() method. In “sync”
(synchronous) mode, the Hub attempts to confirm a subscription as soon as it is received, and before responding
to the subscription request. In “async” (asynchronous) mode, the Hub will return a response to the subscription
request immediately, and its verification request may occur at a later time. Since Zend_Pubsubhubbub
implements the Subscriber verification role as a separate callback class and requires the use of a backend
storage medium, it actually supports both transparently though in terms of end-user performance, asynchronous
verification is very much preferred to eliminate the impact of a poorly performing Hub tying up end-user server
resources and connections for too long.




Unsubscribing from a Topic follows the exact same pattern as the previous example, with the exception that we
should call unsubscribeAll() instead. The parameters included are identical to a subscription request with the
exception that “hub.mode” is set to “unsubscribe”.


By default, a new instance of Zend_Pubsubhubbub_Subscriber will attempt to use a database backed storage medium
which defaults to using the default Zend_Db adapter with a table name of “subscription”. It is recommended to
set a custom storage solution where these defaults are not apt either by passing in a new Model supporting the
required interface or by passing a new instance of Zend_Db_Table_Abstract to the default Model’s constructor to
change the used table name.





Handling Subscriber Callbacks


Whenever a subscription or unsubscription request is made, the Hub must verify the request by forwarding a new
verification request to the Callback URL set in the subscription or unsubscription parameters. To handle these
Hub requests, which will include all future communications containing Topic (feed) updates, the Callback URL
should trigger the execution of an instance of Zend_Pubsubhubbub_Subscriber_Callback to handle the request.


The Callback class should be configured to use the same storage medium as the Subscriber class. Using it is quite
simple since most of its work is performed internally.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		$storage = new Zend_Feed_Pubsubhubbub_Model_Subscription;
$callback = new Zend_Feed_Pubsubhubbub_Subscriber_Callback;
$callback->setStorage($storage);
$callback->handle();
$callback->sendResponse();

/**
 * Check if the callback resulting in the receipt of a feed update.
 * Otherwise it was either a (un)sub verification request or invalid request.
 * Typically we need do nothing other than add feed update handling - the rest
 * is handled internally by the class.
 */
if ($callback->hasFeedUpdate()) {
    $feedString = $callback->getFeedUpdate();
    /**
     *  Process the feed update asynchronously to avoid a Hub timeout.
     */
}











Note


It should be noted that Zend_Feed_Pubsubhubbub_Subscriber_Callback may independently parse any incoming
query string and other parameters. This is necessary since PHP alters the structure and keys of a query string
when it is parsed into the $_GET or $_POST superglobals. For example, all duplicate keys are ignored and
periods are converted to underscores. Pubsubhubbub features both of these in the query strings it generates.





Important


It is essential that developers recognise that Hubs are only concerned with sending requests and receiving a
response which verifies its receipt. If a feed update is received, it should never be processed on the spot
since this leaves the Hub waiting for a response. Rather, any processing should be offloaded to another process
or deferred until after a response has been returned to the Hub. One symptom of a failure to promptly complete
Hub requests is that a Hub may continue to attempt delivery of the update or verification request leading to
duplicated update attempts being processed by the Subscriber. This appears problematic - but in reality a Hub
may apply a timeout of just a few seconds, and if no response is received within that time it may disconnect
(assuming a delivery failure) and retry later. Note that Hubs are expected to distribute vast volumes of updates
so their resources are stretched - please do process feeds asynchronously (e.g. in a separate process or a job
queue or even a cron scheduled task) as much as possible.







Setting Up And Using A Callback URL Route


As noted earlier, the Zend_Feed_Pubsubhubbub_Subscriber_Callback class receives the combined key associated
with any subscription from the Hub via one of two methods. The technically preferred method is to add this key to
the Callback URL employed by the Hub in all future requests using a query string parameter with the key
“xhub.subscription”. However, for historical reasons, primarily that this was not supported in Pubsubhubbub 0.1 (it
was recently added in 0.2 only), it is strongly recommended to use the most compatible means of adding this key to
the Callback URL by appending it to the URL‘s path.


Thus the URL http://www.example.com/callback?xhub.subscription=key would become
http://www.example.com/callback/key.


Since the query string method is the default in anticipation of a greater level of future support for the full 0.2
specification, this requires some additional work to implement.


The first step to make the Zend_Feed_Pubsubhubbub_Subscriber_Callback class aware of the path contained
subscription key. It’s manually injected therefore since it also requires manually defining a route for this
purpose. This is achieved simply by called the method
Zend_Feed_Pubsubhubbub_Subscriber_Callback::setSubscriptionKey() with the parameter being the key value
available from the Router. The example below demonstrates this using a Zend Framework controller.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		class CallbackController extends Zend_Controller_Action
{

    public function indexAction()
    {
        $storage = new Zend_Feed_Pubsubhubbub_Model_Subscription;
        $callback = new Zend_Feed_Pubsubhubbub_Subscriber_Callback;
        $callback->setStorage($storage);
        /**
         * Inject subscription key parsing from URL path using
         * a parameter from Router.
         */
        $subscriptionKey = $this->_getParam('subkey');
        $callback->setSubscriptionKey($subscriptionKey);
        $callback->handle();
        $callback->sendResponse();

        /**
         * Check if the callback resulting in the receipt of a feed update.
         * Otherwise it was either a (un)sub verification request or invalid
         * request. Typically we need do nothing other than add feed update
         * handling - the rest is handled internally by the class.
         */
        if ($callback->hasFeedUpdate()) {
            $feedString = $callback->getFeedUpdate();
            /**
             *  Process the feed update asynchronously to avoid a Hub timeout.
             */
        }
    }

}










Actually adding the route which would map the path-appended key to a parameter for retrieval from a controller can
be accomplished using a Route configuration such as the INI formatted example below for use with
Zend_Application bootstrapping.


		1
2
3
4
5


		; Callback Route to enable appending a PuSH Subscription's lookup key
resources.router.routes.callback.route = "callback/:subkey"
resources.router.routes.callback.defaults.module = "default"
resources.router.routes.callback.defaults.controller = "callback"
resources.router.routes.callback.defaults.action = "index"


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Feed_Pubsubhubbub
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.form.collections.view.result.png
object (Application\Entity)\Product)[622]
protected 'name’' -> string 'Chair' (length=5)
protected 'price’ -> string '25' (length=2)
protected 'brand’ ->
object (Application\Entity\Brand) (597]
protected 'name’ => string 'Office Depot' (length=12)
protected 'url' => string 'http://waw.officedepot.fr’
protected 'categories’ ->
array (size=2)
0=
object (Application\Entity\Category)[615]
protected 'mame’ -> string 'Armchair’ (length=8)
1=
object (Application\Entity\Category)[621]
protected 'name’' -> string 'Office’ (length=5)






_images/zend.console.banner.png





modules/zend.mail.encoding.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Encoding


Text and HTML message bodies are encoded with the quotedprintable mechanism by default. Message headers are also
encoded with the quotedprintable mechanism if you do not specify base64 in setHeaderEncoding(). If you use
language that is not Roman letters-based, the base64 would be more suitable. All other attachments are encoded via
base64 if no other encoding is given in the addAttachment() call or assigned to the MIME part object later.
7Bit and 8Bit encoding currently only pass on the binary content data.


Header Encoding, especially the encoding of the subject, is a tricky topic. Zend_Mime currently implements its
own algorithm to encode quoted printable headers according to RFC-2045. This due to the problems of
iconv_mime_encode() and mb_encode_mimeheader with regards to certain charsets. This algorithm only breaks
the header at spaces, which might lead to headers that far exceed the suggested length of 76 chars. For this cases
it is suggested to switch to BASE64 header encoding same as the following example describes:


		1
2
3
4
5
6


		// By default Zend_Mime::ENCODING_QUOTEDPRINTABLE
$mail = new Zend_Mail('KOI8-R');

// Reset to Base64 Encoding because Russian expressed in KOI8-R is
// different from Roman letters-based languages greatly.
$mail->setHeaderEncoding(Zend_Mime::ENCODING_BASE64);










Zend_Mail_Transport_Smtp encodes lines starting with one dot or two dots so that the mail does not violate the
SMTP protocol.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Encoding
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.view.helper.currency.format.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
CurrencyFormat Helper


The CurrencyFormat view helper can be used to simplify rendering of localized currency values. It acts as a
wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Basic Usage


		1
2
3
4
5
6
7


		// Within your view

echo $this->currencyFormat(1234.56, "USD", "en_US");
// This returns: "$1,234.56"

echo $this->currencyFormat(1234.56, "EUR", "de_DE");
// This returns: "1.234,56 €"











		
currencyFormat(float $number, string $currencyCode[, string $locale])


		



		Parameters:		
		$number – The numeric currency value.


		$currencyCode – The 3-letter ISO 4217 currency code indicating the currency to use.


		$locale – (Optional) Locale in which the currency would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $currencyCode and $locale options can be set prior to formatting and will be applied each time the
helper is used:


		1
2
3
4
5


		// Within your view
$this->plugin("currencyformat")->setCurrencyCode("USD")->setLocale("en_US");

echo $this->currencyFormat(1234.56);  // "$1,234.56"
echo $this->currencyFormat(5678.90);  // "$5,678.90"














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                CurrencyFormat Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.url.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Url Element


Zend\Form\Element\Url is meant to be paired with the Zend/Form/View/Helper/FormUrl for HTML5 inputs with type
url [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#url-state-(type=url)]. This element adds filters and a Zend\Validator\Uri validator to it’s input filter specification for
validating HTML5 URL input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "url".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$url = new Element\Url('webpage-url');
$url->setLabel('Webpage URL');

$form = new Form('my-form');
$form->add($url);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Filter\StringTrim filter, and a
Zend\Validator\Uri to validate the URI string.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Url Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.getopt.configuration.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Configuring Zend_Console_Getopt



Adding Option Rules


You can add more option rules in addition to those you specified in the Zend_Console_Getopt constructor, using
the addRules() method. The argument to addRules() is the same as the first argument to the class
constructor. It is either a string in the format of the short syntax options specification, or else an associative
array in the format of a long syntax options specification. See Declaring Getopt Rules for details on the syntax for specifying options.


Using addRules()


		1
2
3
4
5
6


		$opts = new Zend_Console_Getopt('abp:');
$opts->addRules(
  array(
    'verbose|v' => 'Print verbose output'
  )
);










The example above shows adding the --verbose option with an alias of -v to a set of options defined in the
call to the constructor. Notice that you can mix short format options and long format options in the same instance
of Zend_Console_Getopt.





Adding Help Messages


In addition to specifying the help strings when declaring option rules in the long format, you can associate help
strings with option rules using the setHelp() method. The argument to the setHelp() method is an
associative array, in which the key is a flag, and the value is a corresponding help string.


Using setHelp()


		1
2
3
4
5
6
7
8


		$opts = new Zend_Console_Getopt('abp:');
$opts->setHelp(
    array(
        'a' => 'apple option, with no parameter',
        'b' => 'banana option, with required integer parameter',
        'p' => 'pear option, with optional string parameter'
    )
);










If you declared options with aliases, you can use any of the aliases as the key of the associative array.


The setHelp() method is the only way to define help strings if you declared the options using the short syntax.





Adding Option Aliases


You can declare aliases for options using the setAliases() method. The argument is an associative array, whose
key is a flag string declared previously, and whose value is a new alias for that flag. These aliases are merged
with any existing aliases. In other words, aliases you declared earlier are still in effect.


An alias may be declared only once. If you try to redefine an alias, a Zend_Console_Getopt_Exception is thrown.


Using setAliases()


		1
2
3
4
5
6
7
8


		$opts = new Zend_Console_Getopt('abp:');
$opts->setAliases(
    array(
        'a' => 'apple',
        'a' => 'apfel',
        'p' => 'pear'
    )
);










In the example above, after declaring these aliases, -a, --apple and --apfel are aliases for each
other. Also -p and --pear are aliases for each other.


The setAliases() method is the only way to define aliases if you declared the options using the short syntax.





Adding Argument Lists


By default, Zend_Console_Getopt uses $_SERVER['argv'] for the array of command-line arguments to parse. You
can alternatively specify the array of arguments as the second constructor argument. Finally, you can append more
arguments to those already used using the addArguments() method, or you can replace the current array of
arguments using the setArguments() method. In both cases, the parameter to these methods is a simple array of
strings. The former method appends the array to the current arguments, and the latter method substitutes the array
for the current arguments.


Using addArguments() and setArguments()


		1
2
3
4
5
6
7
8


		// By default, the constructor uses $_SERVER['argv']
$opts = new Zend_Console_Getopt('abp:');

// Append an array to the existing arguments
$opts->addArguments(array('-a', '-p', 'p_parameter', 'non_option_arg'));

// Substitute a new array for the existing arguments
$opts->setArguments(array('-a', '-p', 'p_parameter', 'non_option_arg'));













Adding Configuration


The third parameter to the Zend_Console_Getopt constructor is an array of configuration options that affect the
behavior of the object instance returned. You can also specify configuration options using the setOptions()
method, or you can set an individual option using the setOption() method.



Note


Clarifying the Term “option”


The term “option” is used for configuration of the Zend_Console_Getopt class to match terminology used
elsewhere in Zend Framework. These are not the same things as the command-line options that are parsed by the
Zend_Console_Getopt class.




The currently supported options have const definitions in the class. The options, their const identifiers (with
literal values in parentheses) are listed below:



		Zend_Console_Getopt::CONFIG_DASHDASH (“dashDash”), if TRUE, enables the special flag -- to signify
the end of flags. Command-line arguments following the double-dash signifier are not interpreted as options, even
if the arguments start with a dash. This configuration option is TRUE by default.


		Zend_Console_Getopt::CONFIG_IGNORECASE (“ignoreCase”), if TRUE, makes flags aliases of each other if they
differ only in their case. That is, -a and -A will be considered to be synonymous flags. This
configuration option is FALSE by default.


		Zend_Console_Getopt::CONFIG_RULEMODE (“ruleMode”) may have values Zend_Console_Getopt::MODE_ZEND (“zend”)
and Zend_Console_Getopt::MODE_GNU (“gnu”). It should not be necessary to use this option unless you extend
the class with additional syntax forms. The two modes supported in the base Zend_Console_Getopt class are
unambiguous. If the specifier is a string, the class assumes MODE_GNU, otherwise it assumes MODE_ZEND.
But if you extend the class and add more syntax forms, you may need to specify the mode using this option.





More configuration options may be added as future enhancements of this class.


The two arguments to the setOption() method are a configuration option name and an option value.


Using setOption()


		1
2


		$opts = new Zend_Console_Getopt('abp:');
$opts->setOption('ignoreCase', true);










The argument to the setOptions() method is an associative array. The keys of this array are the configuration
option names, and the values are configuration values. This is also the array format used in the class constructor.
The configuration values you specify are merged with the current configuration; you don’t have to list all options.


Using setOptions()


		1
2
3
4
5
6
7


		$opts = new Zend_Console_Getopt('abp:');
$opts->setOptions(
    array(
        'ignoreCase' => true,
        'dashDash'   => false
    )
);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Configuring Zend_Console_Getopt
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-date.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormDate


The FormDate view helper can be used to render a <input type="date">
HTML5 form input. It is meant to work with the Zend\Form\Element\Date
element, which provides a default input specification for validating HTML5 date values.


FormDate extends from Zend\Form\View\Helper\FormDateTime.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\Date('my-date');

// Within your view...

echo $this->formDate($element);
// <input type="date" name="my-date" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormDate
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.uri.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Uri



Overview


Zend\Uri is a component that aids in manipulating and validating
Uniform Resource Identifiers [http://www.w3.org/Addressing/] (URIs) [1]. Zend\Uri exists primarily to service
other components, such as Zend\Http\, but is also useful as a standalone
utility.


URIs always begin with a scheme, followed by a colon. The construction of
the many different schemes varies significantly. The Zend\Uri component
provides the Zend\Uri\UriFactory that returns a class implementing the
Zend\Uri\UriInterface which specializes in the scheme if such a class is
registered with the Factory.





Creating a New URI


Zend\Uri\UriFactory will build a new URI from scratch if only a scheme is
passed to Zend\Uri\UriFactory::factory().


Creating a New URI with ZendUriUriFactory::factory()


		1
2
3
4
5


		// To create a new URI from scratch, pass only the scheme
// followed by a colon.
$uri = Zend\Uri\UriFactory::factory('http:');

// $uri instanceof Zend\Uri\UriInterface










To create a new URI from scratch, pass only the scheme followed by a colon to
Zend\Uri\UriFactory::factory() [2]. If an unsupported scheme is passed and
no scheme-specific class is specified, a
Zend\Uri\Exception\InvalidArgumentException will be thrown.


If the scheme or URI passed is supported, Zend\Uri\UriFactory::factory()
will return a class implementing Zend\Uri\UriInterface that specializes
in the scheme to be created.



Creating a New Custom-Class URI


You can specify a custom class to be used when using the Zend\Uri\UriFactory
by registering your class with the Factory using
\Zend\Uri\UriFactory::registerScheme() which takes the scheme as first
parameter. This enables you to create your own URI-class and instantiate new
URI objects based on your own custom classes.


The 2nd parameter passed to Zend\Uri\UriFactory::registerScheme() must be a
string with the name of a class implementing Zend\Uri\UriInterface. The
class must either be alredy loaded, or be loadable by the autoloader.


Creating a URI using a custom class


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Create a new 'ftp' URI based on a custom class
use Zend\Uri\UriFactory

UriFactory::registerScheme('ftp', 'MyNamespace\MyClass');

$ftpUri = UriFactory::factory(
    'ftp://user@ftp.example.com/path/file'
);

// $ftpUri is an instance of MyLibrary\MyClass, which implements
// Zend\Uri\UriInterface















Manipulating an Existing URI


To manipulate an existing URI, pass the entire URI as string to
Zend\Uri\UriFactory::factory().


Manipulating an Existing URI with Zend\Uri\UriFactory::factory()


		1
2
3
4


		// To manipulate an existing URI, pass it in.
$uri = Zend\Uri\UriFactory::factory('http://www.zend.com');

// $uri instanceof Zend\Uri\UriInterface










The URI will be parsed and validated. If it is found to be invalid, a
Zend\Uri\Exception\InvalidArgumentException will be thrown immediately.
Otherwise, Zend\Uri\UriFactory::factory() will return a class implementing
Zend\Uri\UriInterface that specializes in the scheme to be manipulated.





Common Instance Methods


The ZendUriUriInterface` defines several instance methods that are useful
for working with any kind of URI.



Getting the Scheme of the URI


The scheme of the URI is the part of the URI that precedes the colon. For
example, the scheme of http://johndoe@example.com/my/path?query#token is ‘http’.


Getting the Scheme from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('mailto:john.doe@example.com');

$scheme = $uri->getScheme();  // "mailto"










The getScheme() instance method returns only the scheme part of the URI
object.





Getting the Userinfo of the URI


The userinfo of the URI is the optional part of the URI that follows the
colon and comes before the host-part. For example, the userinfo of
http://johndoe@example.com/my/path?query#token is ‘johndoe’.


Getting the Username from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('mailto:john.doe@example.com');

$scheme = $uri->getUserinfo();  // "john.doe"










The getUserinfo()  method returns only the userinfo part of the URI
object.





Getting the host of the URI


The host of the URI is the optional part of the URI that follows the
user-part and comes before the path-part. For example, the host of
http://johndoe@example.com/my/path?query#token is ‘example.com’.


Getting the host from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('mailto:john.doe@example.com');

$scheme = $uri->getHost();  // "example.com"










The getHost()  method returns only the host part of the URI
object.





Getting the port of the URI


The port of the URI is the optional part of the URI that follows the
host-part and comes before the path-part. For example, the host of
http://johndoe@example.com:80/my/path?query#token is ‘80’. The URI-class
can define default-ports that can be returned when no port is given in the
URI.


Getting the port from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://example.com:8080');

$scheme = $uri->getPort();  // "8080"










Getting a default port from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://example.com');

$scheme = $uri->getPort();  // "80"










The getHost()  method returns only the port part of the URI
object.





Getting the path of the URI


The path of the URI is the mandatory part of the URI that follows the
port and comes before the query-part. For example, the path of
http://johndoe@example.com:80/my/path?query#token is ‘/my/path’.


Getting the path from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://example.com:80/my/path?a=b&c=d#token');

$scheme = $uri->getPath();  // "/my/path"










The getPath()  method returns only the path of the URI object.





Getting the query-part of the URI


The query-part of the URI is the optional part of the URI that follows the
path and comes before the fragment. For example, the query of
http://johndoe@example.com:80/my/path?query#token is ‘query’.


Getting the query from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://example.com:80/my/path?a=b&c=d#token');

$scheme = $uri->getQuery();  // "a=b&c=d"










The getQuery()  method returns only the query-part of the URI object.


Getting the query as array from a Zend\Uri\UriInterface Object


		1
2
3
4
5
6
7


		$uri = Zend\Uri\UriFactory::factory('http://example.com:80/my/path?a=b&c=d#token');

$scheme = $uri->getQueryAsArray();
// array(
//  'a' => 'b',
//  'c' => 'd',
// )










The query-part often contains key=value pairs and therefore can be split into
an associative array. This array can be retrieved using getQueryAsArray()





Getting the fragment-part of the URI


The fragment-part of the URI is the optional part of the URI that follows the
query. For example, the fragment of
http://johndoe@example.com:80/my/path?query#token is ‘token’.


Getting the fragment from a Zend\Uri\UriInterface Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://example.com:80/my/path?a=b&c=d#token');

$scheme = $uri->getFragment();  // "token"










The getFragment()  method returns only the fragment-part of the URI object.





Getting the Entire URI


Getting the Entire URI from a Zend\Uri\UriInterface Object


		1
2
3
4
5
6


		$uri = Zend\Uri\UriFactory::factory('http://www.zend.com');

echo $uri->toString();  // "http://www.zend.com"

// Alternate method:
echo (string) $uri;     // "http://www.zend.com"










The toString() method returns the string representation of the entire URI.


The Zend\Uri\UriInterface defines also a magic __toString() method that
returns the string representation of the URI when the Object is cast to a
string.





Validating the URI


When using Zend\Uri\UriFactory::factory() the given URI will always be
validated and a Zend\Uri\Exception\InvalidArgumentException will be thrown
when the URI is invalid. However, after the Zend\Uri\UriInterface is
instantiated for a new URI or an existing valid one, it is possible that the
URI can later become invalid after it is manipulated.


Validating a Zend_Uri_* Object


		1
2
3


		$uri = Zend\Uri\UriFactory::factory('http://www.zend.com');

$isValid = $uri->isValid();  // TRUE










The isValid() instance method provides a means to check that the URI
object is still valid.





		[1]		See http://www.ietf.org/rfc/rfc3986.txt for more information on URIs









		[2]		At the time of writing, Zend\Uri provides built-in support for
the following schemes: HTTP, HTTPS, MAILTO and FILE














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Uri
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.multiple-emails.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Sending Multiple Mails per SMTP Connection


By default, a single SMTP transport creates a single connection and re-uses it for the lifetime of the script
execution. You may send multiple e-mails through this SMTP connection. A RSET command is issued before each
delivery to ensure the correct SMTP handshake is followed.


Optionally, you can also define a default From email address and name, as well as a default reply-to header. This
can be done through the static methods setDefaultFrom() and setDefaultReplyTo(). These defaults will be
used when you don’t specify a From/Reply-to Address or -Name until the defaults are reset (cleared). Resetting the
defaults can be done through the use of the clearDefaultFrom() and clearDefaultReplyTo.


Sending Multiple Mails per SMTP Connection


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// Create transport
$config = array('name' => 'sender.example.com');
$transport = new Zend_Mail_Transport_Smtp('mail.example.com', $config);

// Set From & Reply-To address and name for all emails to send.
Zend_Mail::setDefaultFrom('sender@example.com', 'John Doe');
Zend_Mail::setDefaultReplyTo('replyto@example.com','Jane Doe');

// Loop through messages
for ($i = 0; $i < 5; $i++) {
    $mail = new Zend_Mail();
    $mail->addTo('studio@example.com', 'Test');

    $mail->setSubject(
        'Demonstration - Sending Multiple Mails per SMTP Connection'
    );
    $mail->setBodyText('...Your message here...');
    $mail->send($transport);
}

// Reset defaults
Zend_Mail::clearDefaultFrom();
Zend_Mail::clearDefaultReplyTo();










If you wish to have a separate connection for each mail delivery, you will need to create and destroy your
transport before and after each send() method is called. Or alternatively, you can manipulate the connection
between each delivery by accessing the transport’s protocol object.


Manually controlling the transport connection


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// Create transport
$transport = new Zend_Mail_Transport_Smtp();

$protocol = new Zend_Mail_Protocol_Smtp('mail.example.com');
$protocol->connect();
$protocol->helo('sender.example.com');

$transport->setConnection($protocol);

// Loop through messages
for ($i = 0; $i < 5; $i++) {
    $mail = new Zend_Mail();
    $mail->addTo('studio@example.com', 'Test');
    $mail->setFrom('studio@example.com', 'Test');
    $mail->setSubject(
        'Demonstration - Sending Multiple Mails per SMTP Connection'
    );
    $mail->setBodyText('...Your message here...');

    // Manually control the connection
    $protocol->rset();
    $mail->send($transport);
}

$protocol->quit();
$protocol->disconnect();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Sending Multiple Mails per SMTP Connection
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.index.structure.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Lucene Index Structure


In order to fully utilize Zend_Search_Lucene‘s capabilities with maximum performance, you need to understand
it’s internal index structure.


An index is stored as a set of files within a single directory.


An index consists of any number of independent segments which store information about a subset of indexed
documents. Each segment has its own terms dictionary, terms dictionary index, and document storage (stored
field values) [1]. All segment data is stored in _xxxxx.cfs files, where xxxxx is a segment name.


Once an index segment file is created, it can’t be updated. New documents are added to new segments. Deleted
documents are only marked as deleted in an optional <segmentname>.del file.


Document updating is performed as separate delete and add operations, even though it’s done using an update()
API call [2]. This simplifies adding new documents, and allows updating concurrently with search operations.


On the other hand, using several segments (one document per segment as a borderline case) increases search time:



		retrieving a term from a dictionary is performed for each segment;


		the terms dictionary index is pre-loaded for each segment (this process takes the most search time for simple
queries, and it also requires additional memory).





If the terms dictionary reaches a saturation point, then search through one segment is N times faster than
search through N segments in most cases.


Index optimization merges two or more segments into a single new one. A new segment is added to the index
segments list, and old segments are excluded.


Segment list updates are performed as an atomic operation. This gives the ability of concurrently adding new
documents, performing index optimization, and searching through the index.


Index auto-optimization is performed after each new segment generation. It merges sets of the smallest segments
into larger segments, and larger segments into even larger segments, if we have enough segments to merge.


Index auto-optimization is controlled by three options:



		MaxBufferedDocs (the minimal number of documents required before the buffered in-memory documents are written
into a new segment);


		MaxMergeDocs (the largest number of documents ever merged by an optimization operation); and


		MergeFactor (which determines how often segment indices are merged by auto-optimization operations).





If we add one document per script execution, then MaxBufferedDocs is actually not used (only one new segment
with only one document is created at the end of script execution, at which time the auto-optimization process
starts).





		[1]		Starting with Lucene 2.3, document storage files can be shared between segments; however,
Zend_Search_Lucene doesn’t use this capability









		[2]		This call is provided only by Java Lucene now, but it’s planned to extend the Zend_Search_Lucene API
with similar functionality










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Lucene Index Structure
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/autoloading.design.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Goals and Design



Class Naming Conventions


To understand autoloading in Zend Framework, first you need to understand the relationship between class names and
class files.


Zend Framework has borrowed an idea from PEAR [http://pear.php.net/], whereby class names have a 1:1 relationship with the filesystem.
Simply put, the underscore character (“_”) is replaced by a directory separator in order to resolve the path to
the file, and then the suffix “.php” is added. For example, the class “Foo_Bar_Baz” would correspond to
“Foo/Bar/Baz.php” on the filesystem. The assumption is also that the classes may be resolved via PHP‘s
include_path setting, which allows both include() and require() to find the filename via a relative
path lookup on the include_path.


Additionally, per PEAR as well as the PHP project [http://php.net/userlandnaming.tips], we use and recommend using a vendor or project prefix for
your code. What this means is that all classes you write will share a common class prefix; for example, all code in
Zend Framework has the prefix “Zend_”. This naming convention helps prevent naming collisions. Within Zend
Framework, we often refer to this as the “namespace” prefix; be careful not to confuse it with PHP‘s native
namespace implementation.


Zend Framework follows these simple rules internally, and our coding standards encourage that you do so as well for
all library code.





Autoloader Conventions and Design


Zend Framework’s autoloading support, provided primarily via Zend_Loader_Autoloader, has the following goals
and design elements:



		Provide namespace matching. If the class namespace prefix is not in a list of registered namespaces, return
FALSE immediately. This allows for more optimistic matching, as well as fallback to other autoloaders.


		Allow the autoloader to act as a fallback autoloader. In the case where a team may be widely distributed, or
using an undetermined set of namespace prefixes, the autoloader should still be configurable such that it will
attempt to match any namespace prefix. It will be noted, however, that this practice is not recommended, as it
can lead to unnecessary lookups.


		Allow toggling error suppression. We feel – and the greater PHP community does as well – that error
suppression is a bad idea. It’s expensive, and it masks very real application problems. So, by default, it should
be off. However, if a developer insists that it be on, we allow toggling it on.


		Allow specifying custom callbacks for autoloading. Some developers don’t want to use
Zend_Loader::loadClass() for autoloading, but still want to make use of Zend Framework’s mechanisms.
Zend_Loader_Autoloader allows specyfing an alternate callback for autoloading.


		Allow manipulation of the SPL autoload callback chain. The purpose of this is to allow specifying additional
autoloaders – for instance, resource loaders for classes that don’t have a 1:1 mapping to the filesystem – to
be registered before or after the primary Zend Framework autoloader.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Goals and Design
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.view.helper.number.format.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
NumberFormat Helper


The NumberFormat view helper can be used to simplify rendering of locale-specific number and percentage
strings. It acts as a wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// Within your view

// Example of Decimal formatting:
echo $this->numberFormat(
    1234567.891234567890000,
    NumberFormatter::DECIMAL,
    NumberFormatter::TYPE_DEFAULT,
    "de_DE"
);
// This returns: "1.234.567,891"

// Example of Percent formatting:
echo $this->numberFormat(
    0.80,
    NumberFormatter::PERCENT,
    NumberFormatter::TYPE_DEFAULT,
    "en_US"
);
// This returns: "80%"

// Example of Scientific notation formatting:
echo $this->numberFormat(
    0.00123456789,
    NumberFormatter::SCIENTIFIC,
    NumberFormatter::TYPE_DEFAULT,
    "fr_FR"
);
// This returns: "1,23456789E-3"











		
numberFormat(number $number[, int $formatStyle[, int $formatType[, string $locale]]])


		



		Parameters:		
		$number – The numeric value.


		$formatStyle – (Optional) Style of the formatting, one of the format style constants [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle]. If unset, it will use NumberFormatter::DECIMAL as the default style.


		$formatType – (Optional) The formatting type [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types] to use. If unset, it will use NumberFormatter::TYPE_DEFAULT as the default type.


		$locale – (Optional) Locale in which the number would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $formatStyle, $formatType, and $locale options can be set prior to formatting and will be applied
each time the helper is used.


		1
2
3
4
5
6
7
8


		// Within your view
$this->plugin("numberformat")
            ->setFormatStyle(NumberFormatter::PERCENT)
            ->setFormatType(NumberFormatter::TYPE_DOUBLE)
            ->setLocale("en_US");

echo $this->numberFormat(0.56);  // "56%"
echo $this->numberFormat(0.90);  // "90%"














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                NumberFormat Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.barcode.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Barcode


Zend\Validator\Barcode allows you to check if a given value can be represented as barcode.


Zend\Validator\Barcode supports multiple barcode standards and can be extended with proprietary barcode
implementations very easily. The following barcode standards are supported:



		CODABAR: Also known as Code-a-bar.


This barcode has no length limitation. It supports only digits, and 6 special chars. Codabar is a self-checking
barcode. This standard is very old. Common use cases are within airbills or photo labs where multi-part forms are
used with dot-matrix printers.





		CODE128: CODE128 is a high density barcode.


This barcode has no length limitation. It supports the first 128 ascii characters. When used with printing
characters it has an checksum which is calculated modulo 103. This standard is used worldwide as it supports
upper and lowercase characters.





		CODE25: Often called “two of five” or “Code25 Industrial”.


This barcode has no length limitation. It supports only digits, and the last digit can be an optional checksum
which is calculated with modulo 10. This standard is very old and nowadays not often used. Common use cases are
within the industry.





		CODE25INTERLEAVED: Often called “Code 2 of 5 Interleaved”.


This standard is a variant of CODE25. It has no length limitation, but it must contain an even amount of
characters. It supports only digits, and the last digit can be an optional checksum which is calculated with
modulo 10. It is used worldwide and common on the market.





		CODE39: CODE39 is one of the oldest available codes.


This barcode has a variable length. It supports digits, upper cased alphabetical characters and 7 special
characters like whitespace, point and dollar sign. It can have an optional checksum which is calculated with
modulo 43. This standard is used worldwide and common within the industry.





		CODE39EXT: CODE39EXT is an extension of CODE39.


This barcode has the same properties as CODE39. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.





		CODE93: CODE93 is the successor of CODE39.


This barcode has a variable length. It supports digits, alphabetical characters and 7 special characters. It has
an optional checksum which is calculated with modulo 47 and contains 2 characters. This standard produces a
denser code than CODE39 and is more secure.





		CODE93EXT: CODE93EXT is an extension of CODE93.


This barcode has the same properties as CODE93. Additionally it allows the usage of all 128 ASCII characters.
This standard is used worldwide and common within the industry.





		EAN2: EAN is the shortcut for “European Article Number”.


These barcode must have 2 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.





		EAN5: EAN is the shortcut for “European Article Number”.


These barcode must have 5 characters. It supports only digits and does not have a checksum. This standard is
mainly used as addition to EAN13 (ISBN) when printed on books.





		EAN8: EAN is the shortcut for “European Article Number”.


These barcode can have 7 or 8 characters. It supports only digits. When it has a length of 8 characters it
includes a checksum. This standard is used worldwide but has a very limited range. It can be found on small
articles where a longer barcode could not be printed.





		EAN12: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used within the USA and common on the market. It
has been superseded by EAN13.





		EAN13: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 13 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used worldwide and common on the market.





		EAN14: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is used worldwide and common on the market. It is the
successor for EAN13.





		EAN18: EAN is the shortcut for “European Article Number”.


This barcode must have a length of 18 characters. It support only digits. The last digit is always a checksum
digit which is calculated with modulo 10. This code is often used for the identification of shipping containers.





		GTIN12: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN12 and is its successor. It’s commonly used within the USA.





		GTIN13: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN13 and is its successor. It is used worldwide by industry.





		GTIN14: GTIN is the shortcut for “Global Trade Item Number”.


This barcode uses the same standard as EAN14 and is its successor. It is used worldwide and common on the market.





		IDENTCODE: Identcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.


This barcode must have a length of 12 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.





		INTELLIGENTMAIL: Intelligent Mail is a postal barcode.


This barcode can have a length of 20, 25, 29 or 31 characters. It supports only digits, and contains no checksum.
This standard is the successor of PLANET and POSTNET. It is mainly used by the United States Postal Services.





		ISSN: ISSN is the abbreviation for International Standard Serial Number.


This barcode can have a length of 8 or 13 characters. It supports only digits, and the last digit must be a
checksum digit which is calculated with modulo 11. It is used worldwide for printed publications.





		ITF14: ITF14 is the GS1 implementation of an Interleaved Two of Five bar code.


This barcode is a special variant of Interleaved 2 of 5. It must have a length of 14 characters and is based on
GTIN14. It supports only digits, and the last digit must be a checksum digit which is calculated with modulo 10.
It is used worldwide and common within the market.





		LEITCODE: Leitcode is used by Deutsche Post and DHL. It’s an specialized implementation of Code25.


This barcode must have a length of 14 characters. It supports only digits, and the last digit is always a
checksum which is calculated with modulo 10. This standard is mainly used by the companies DP and DHL.





		PLANET: Planet is the abbreviation for Postal Alpha Numeric Encoding Technique.


This barcode can have a length of 12 or 14 characters. It supports only digits, and the last digit is always a
checksum. This standard is mainly used by the United States Postal Services.





		POSTNET: Postnet is used by the US Postal Service.


This barcode can have a length of 6, 7, 10 or 12 characters. It supports only digits, and the last digit is
always a checksum. This standard is mainly used by the United States Postal Services.





		ROYALMAIL: Royalmail is used by Royal Mail.


This barcode has no defined length. It supports digits, uppercase letters, and the last digit is always a
checksum. This standard is mainly used by Royal Mail for their Cleanmail Service. It is also called RM4SCC.





		SSCC: SSCC is the shortcut for “Serial Shipping Container Code”.


This barcode is a variant of EAN barcode. It must have a length of 18 characters and supports only digits. The
last digit must be a checksum digit which is calculated with modulo 10. It is commonly used by the transport
industry.





		UPCA: UPC is the shortcut for “Universal Product Code”.


This barcode preceded EAN13. It must have a length of 12 characters and supports only digits. The last digit must
be a checksum digit which is calculated with modulo 10. It is commonly used within the USA.





		UPCE: UPCE is the short variant from UPCA.


This barcode is a smaller variant of UPCA. It can have a length of 6, 7 or 8 characters and supports only digits.
When the barcode is 8 chars long it includes a checksum which is calculated with modulo 10. It is commonly used
with small products where a UPCA barcode would not fit.









Supported options for Zend\Validator\Barcode


The following options are supported for Zend\Validator\Barcode:



		adapter: Sets the barcode adapter which will be used. Supported are all above noted adapters. When using a
self defined adapter, then you have to set the complete class name.


		checksum: TRUE when the barcode should contain a checksum. The default value depends on the used adapter.
Note that some adapters don’t allow to set this option.


		options: Defines optional options for a self written adapters.








Basic usage


To validate if a given string is a barcode you just need to know its type. See the following example for an EAN13
barcode:


		1
2
3
4
5
6


		$valid = new Zend\Validator\Barcode('EAN13');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}













Optional checksum


Some barcodes can be provided with an optional checksum. These barcodes would be valid even without checksum.
Still, when you provide a checksum, then you should also validate it. By default, these barcode types perform no
checksum validation. By using the checksum option you can define if the checksum will be validated or ignored.


		1
2
3
4
5
6
7
8
9


		$valid = new Zend\Validator\Barcode(array(
    'adapter'  => 'EAN13',
    'checksum' => false,
));
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}











Note


Reduced security by disabling checksum validation


By switching off checksum validation you will also reduce the security of the used barcodes. Additionally you
should note that you can also turn off the checksum validation for those barcode types which must contain a
checksum value. Barcodes which would not be valid could then be returned as valid even if they are not.







Writing custom adapters


You may write custom barcode validators for usage with Zend\Validator\Barcode; this is often necessary when
dealing with proprietary barcode types. To write your own barcode validator, you need the following information.



		Length: The length your barcode must have. It can have one of the following values:
		Integer: A value greater 0, which means that the barcode must have this length.


		-1: There is no limitation for the length of this barcode.


		“even”: The length of this barcode must have a even amount of digits.


		“odd”: The length of this barcode must have a odd amount of digits.


		array: An array of integer values. The length of this barcode must have one of the set array values.








		Characters: A string which contains all allowed characters for this barcode. Also the integer value 128 is
allowed, which means the first 128 characters of the ASCII table.


		Checksum: A string which will be used as callback for a method which does the checksum validation.





Your custom barcode validator must extend Zend\Validator\Barcode\AbstractAdapter or implement
Zend\Validator\Barcode\AdapterInterface.


As an example, let’s create a validator that expects an even number of characters that include all digits and the
letters ‘ABCDE’, and which requires a checksum.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		class My\Barcode\MyBar extends Zend\Validator\Barcode\AbstractAdapter
{
    protected $length     = 'even';
    protected $characters = '0123456789ABCDE';
    protected $checksum   = 'mod66';

    protected function mod66($barcode)
    {
        // do some validations and return a boolean
    }
}

$valid = new Zend\Validator\Barcode('My\Barcode\MyBar');
if ($valid->isValid($input)) {
    // input appears to be valid
} else {
    // input is invalid
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Barcode
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.sqs.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Sqs



Introduction


Amazon Simple Queue Service (Amazon SQS) [http://aws.amazon.com/sqs/] offers a reliable, highly scalable, hosted queue for storing messages
as they travel between computers. By using Amazon SQS, developers can simply move data between distributed
components of their applications that perform different tasks, without losing messages or requiring each component
to be always available. Amazon SQS makes it easy to build an automated workflow, working in close conjunction with
the Amazon Elastic Compute Cloud (Amazon EC2) and the other AWS infrastructure web services.


Amazon SQS works by exposing Amazon’s web-scale messaging infrastructure as a web service. Any computer on the
Internet can add or read messages without any installed software or special firewall configurations. Components of
applications using Amazon SQS can run independently, and do not need to be on the same network, developed with the
same technologies, or running at the same time.





Registering with Amazon SQS


Before you can get started with Zend_Service_Amazon_Sqs, you must first register for an account. Please see the
SQS FAQ [http://aws.amazon.com/sqs/faqs/] page on the Amazon website for more information.


After registering, you will receive an application key and a secret key. You will need both to access the SQS
service.





API Documentation


The Zend_Service_Amazon_Sqs class provides the PHP wrapper to the Amazon SQS REST interface. Please consult
the Amazon SQS documentation [http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=31] for detailed description of the service. You will need to be familiar with basic
concepts in order to use this service.





Features


Zend_Service_Amazon_Sqs provides the following functionality:



		A single point for configuring your amazon.sqs authentication credentials that can be used across the amazon.sqs
namespaces.


		A proxy object that is more convenient to use than an HTTP client alone, mostly removing the need to manually
construct HTTP POST requests to access the REST service.


		A response wrapper that parses each response body and throws an exception if an error occurred, alleviating the
need to repeatedly check the success of many commands.


		Additional convenience methods for some of the more common operations.








Getting Started


Once you have registered with Amazon SQS, you’re ready to create your queue and store some messages on SQS. Each
queue can contain unlimited amount of messages, identified by name.


The following example demonstrates creating a queue, storing and retrieving messages.


Zend_Service_Amazon_Sqs Usage Example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);

$queue_url = $sqs->create('test');

$message = 'this is a test';
$message_id = $sqs->send($queue_url, $message);

foreach ($sqs->receive($queue_url) as $message) {
    echo $message['body'].'<br/>';
}










Since the Zend_Service_Amazon_Sqs service requires authentication, you should pass your credentials (AWS key
and secret key) to the constructor. If you only use one account, you can set default credentials for the service:


		1
2


		Zend_Service_Amazon_Sqs::setKeys($my_aws_key, $my_aws_secret_key);
$sqs = new Zend_Service_Amazon_Sqs();













Queue operations


All messages SQS are stored in queues. A queue has to be created before any message operations. Queue names must be
unique under your access key and secret key.


Queue names can contain lowercase letters, digits, periods (.), underscores (_), and dashes (-). No other symbols
allowed. Queue names can be a maximum of 80 characters.



		create() creates a new queue.





		delete() removes all messages in the queue.


Zend_Service_Amazon_Sqs Queue Removal Example


		1
2
3


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$queue_url = $sqs->create('test_1');
$sqs->delete($queue_url);













		count() gets the approximate number of messages in the queue.


Zend_Service_Amazon_Sqs Queue Count Example


		1
2
3
4


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$queue_url = $sqs->create('test_1');
$sqs->send($queue_url, 'this is a test');
$count = $sqs->count($queue_url); // Returns '1'













		getQueues() returns the list of the names of all queues belonging to the user.


Zend_Service_Amazon_Sqs Queue Listing Example


		1
2
3
4
5


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$list = $sqs->getQueues();
foreach($list as $queue) {
   echo "I have queue $queue\n";
}



















Message operations


After a queue is created, simple messages can be sent into the queue then received at a later point in time.
Messages can be up to 8KB in length. If longer messages are needed please see S3 [http://framework.zend.com/manual/en/zend.service.amazon.s3.html]. There is no limit to the
number of messages a queue can contain.



		sent($queue_url, $message) send the $message to the $queue_url SQS queue URL.


Zend_Service_Amazon_Sqs Message Send Example


		1
2
3


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$queue_url = $sqs->create('test_queue');
$sqs->send($queue_url, 'this is a test message');













		receive($queue_url) retrieves messages from the queue.


Zend_Service_Amazon_Sqs Message Receive Example


		1
2
3
4
5
6


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$queue_url = $sqs->create('test_queue');
$sqs->send($queue_url, 'this is a test message');
foreach ($sqs->receive($queue_url) as $message) {
    echo "got message ".$message['body'].'<br/>';
}













		deleteMessage($queue_url, $handle) deletes a message from a queue. A message must first be received using the
receive() method before it can be deleted.


Zend_Service_Amazon_Sqs Message Delete Example


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$sqs = new Zend_Service_Amazon_Sqs($my_aws_key, $my_aws_secret_key);
$queue_url = $sqs->create('test_queue');
$sqs->send($queue_url, 'this is a test message');
foreach ($sqs->receive($queue_url) as $message) {
    echo "got message ".$message['body'].'<br/>';

    if ($sqs->deleteMessage($queue_url, $message['handle'])) {
        echo "Message deleted";
    }
    else {
        echo "Message not deleted";
    }
}






















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Sqs
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.soap.wsdl.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
WSDL Accessor



Note


Zend\Soap\Wsdl class is used by Zend\Soap\Server component internally to operate with WSDL documents.
Nevertheless, you could also use functionality provided by this class for your own needs. The Zend\Soap\Wsdl
package contains both a parser and a builder of WSDL documents.


If you don’t plan to do this, you can skip this documentation section.





Zend\Soap\Wsdl constructor


Zend\Soap\Wsdl constructor takes three parameters:



. $name- name of the Web Service being described.


. $uri-URI where the WSDL will be available (could also be a reference to the file in the filesystem.)



		. $strategy- optional flag used to identify the strategy for complex types (objects) detection. To read more


		on complex type detection strategies go to the section: Add complex types.





. $classMap- Optional array of class name translations from PHP Type (key) to WSDL type (value).









addMessage() method


addMessage($name, $parts) method adds new message description to the WSDL document (/definitions/message
element).


Each message correspond to methods in terms of Zend\Soap\Server and Zend\Soap\Client functionality.


$name parameter represents message name.


$parts parameter is an array of message parts which describe SOAP call parameters. It’s an associative array:
‘part name’ (SOAP call parameter name) => ‘part type’.


Type mapping management is performed using addTypes(), addTypes() and addComplexType() methods (see
below).



Note


Messages parts can use either ‘element’ or ‘type’ attribute for typing (see
http://www.w3.org/TR/wsdl#_messages).


‘element’ attribute must refer to a corresponding element of data type definition. ‘type’ attribute refers to a
corresponding complexType entry.


All standard XSD types have both ‘element’ and ‘complexType’ definitions (see
http://schemas.xmlsoap.org/soap/encoding/).


All non-standard types, which may be added using Zend\Soap\Wsdl::addComplexType() method, are described
using ‘complexType’ node of ‘/definitions/types/schema/’ section of WSDL document.


So addMessage() method always uses ‘type’ attribute to describe types.







addPortType() method


addPortType($name) method adds new port type to the WSDL document (/definitions/portType) with the specified
port type name.


It joins a set of Web Service methods defined in terms of Zend\Soap\Server implementation.


See http://www.w3.org/TR/wsdl#_porttypes for the details.





addPortOperation() method


addPortOperation($portType, $name, $input = false, $output = false, $fault = false) method adds new port
operation to the specified port type of the WSDL document (/definitions/portType/operation).


Each port operation corresponds to a class method (if Web Service is based on a class) or function (if Web Service
is based on a set of methods) in terms of Zend\Soap\Server implementation.


It also adds corresponding port operation messages depending on specified $input, $output and $fault
parameters.




Note


Zend\Soap\Server component generates two messages for each port operation while describing service based
on Zend\Soap\Server class:




		input message with name $methodName . ‘Request’.


		output message with name $methodName . ‘Response’.















See http://www.w3.org/TR/wsdl#_request-response for the details.





addBinding() method


addBinding($name, $portType) method adds new binding to the WSDL document (/definitions/binding).


‘binding’ WSDL document node defines message format and protocol details for operations and messages defined by a
particular portType (see http://www.w3.org/TR/wsdl#_bindings).


The method creates binding node and returns it. Then it may be used to fill with actual data.


Zend\Soap\Server implementation uses $serviceName . ‘Binding’ name for ‘binding’ element of WSDL document.





addBindingOperation() method


addBindingOperation($binding, $name, $input = false, $output = false, $fault = false) method adds an operation
to a binding element (/definitions/binding/operation) with the specified name.


It takes XML_Tree_Node object returned by addBinding() as an input ($binding parameter) to add
‘operation’ element with input/output/false entries depending on specified parameters


Zend\Soap\Server implementation adds corresponding binding entry for each Web Service method with input and
output entries defining ‘soap:body’ element as ‘<soap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>


See http://www.w3.org/TR/wsdl#_bindings for the details.





addSoapBinding() method


addSoapBinding($binding, $style = 'document', $transport = 'http://schemas.xmlsoap.org/soap/http') method adds
SOAP binding (‘soap:binding’) entry to the binding element (which is already linked to some port type) with the
specified style and transport (Zend\Soap\Server implementation uses RPC style over HTTP).


‘/definitions/binding/soap:binding’ element is used to signify that the binding is bound to the SOAP protocol
format.


See http://www.w3.org/TR/wsdl#_bindings for the details.





addSoapOperation() method


addSoapOperation($binding, $soap_action) method adds SOAP operation (‘soap:operation’) entry to the binding
element with the specified action. ‘style’ attribute of the ‘soap:operation’ element is not used since programming
model (RPC-oriented or document-oriented) may be using addSoapBinding() method


‘soapAction’ attribute of ‘/definitions/binding/soap:operation’ element specifies the value of the SOAPAction
header for this operation. This attribute is required for SOAP over HTTP and must not be specified for
other transports.


Zend\Soap\Server implementation uses $serviceUri . ‘#’ . $methodName for SOAP operation action name.


See http://www.w3.org/TR/wsdl#_soap:operation for the details.





addService() method


addService($name, $port_name, $binding, $location) method adds ‘/definitions/service’ element to the WSDL
document with the specified Wed Service name, port name, binding, and location.


WSDL 1.1 allows to have several port types (sets of operations) per service. This ability is not used by
Zend\Soap\Server implementation and not supported by Zend\Soap\Wsdl class.


Zend\Soap\Server implementation uses:




		$name . ‘Service’ as a Web Service name,


		$name . ‘Port’ as a port type name,


		‘tns:’ . $name . ‘Binding’ [1] as binding name,


		script URI [2] as a service URI for Web Service definition using classes.









where $name is a class name for the Web Service definition mode using class and script name for the Web Service
definition mode using set of functions.


See http://www.w3.org/TR/wsdl#_services for the details.





Type mapping


Zend_Soap WSDL accessor implementation uses the following type mapping between PHP and SOAP types:




		PHP strings <-> xsd:string.


		PHP integers <-> xsd:int.


		PHP floats and doubles <-> xsd:float.


		PHP booleans <-> xsd:boolean.


		PHP arrays <-> soap-enc:Array.


		PHP object <-> xsd:struct.


		PHP class <-> based on complex type strategy (See: this section)
[3].


		PHP void <-> empty type.


		If type is not matched to any of these types by some reason, then xsd:anyType is used.









Where xsd: is “http://www.w3.org/2001/XMLSchema” namespace, soap-enc: is a
“http://schemas.xmlsoap.org/soap/encoding/” namespace, tns: is a “target namespace” for a service.



Retrieving type information


getType($type) method may be used to get mapping for a specified PHP type:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		...
$wsdl = new Zend\Soap\Wsdl('My_Web_Service', $myWebServiceUri);

...
$soapIntType = $wsdl->getType('int');

...
class MyClass {
    ...
}
...
$soapMyClassType = $wsdl->getType('MyClass');













Adding complex type information


addComplexType($type) method is used to add complex types (PHP classes) to a WSDL document.


It’s automatically used by getType() method to add corresponding complex types of method parameters or return
types.


Its detection and building algorithm is based on the currently active detection strategy for complex types. You can
set the detection strategy either by specifying the class name as string or instance of a
Zend\Soap\Wsdl\ComplexTypeStrategy implementation as the third parameter of the constructor or using the
setComplexTypeStrategy($strategy) function of Zend\Soap\Wsdl. The following detection strategies currently
exist:



		Class Zend\Soap\Wsdl\ComplexTypeStrategy\DefaultComplexType: Enabled by default (when no third constructor
parameter is set). Iterates over the public attributes of a class type and registers them as subtypes of the
complex object type.


		Class Zend\Soap\Wsdl\ComplexTypeStrategy\AnyType: Casts all complex types into the simple XSD type
xsd:anyType. Be careful this shortcut for complex type detection can probably only be handled successfully by
weakly typed languages such as PHP.


		Class Zend\Soap\Wsdl\ComplexTypeStrategy\ArrayOfTypeSequence: This strategy allows to specify return
parameters of the type: int[] or string[]. As of Zend Framework version 1.9 it can handle both simple PHP
types such as int, string, boolean, float aswell as objects and arrays of objects.


		Class Zend\Soap\Wsdl\ComplexTypeStrategy\ArrayOfTypeComplex: This strategy allows to detect very complex
arrays of objects. Objects types are detected based on the Zend\Soap\Wsdl_Strategy_DefaultComplexType and an
array is wrapped around that definition.


		Class Zend\Soap\Wsdl\ComplexTypeStrategy\Composite: This strategy can combine all strategies by connecting
PHP Complex types (Classnames) to the desired strategy via the connectTypeToStrategy($type, $strategy)
method. A complete typemap can be given to the constructor as an array with $type-> $strategy pairs. The
second parameter specifies the default strategy that will be used if an unknown type is requested for adding.
This parameter defaults to the Zend\Soap\Wsdl_Strategy_DefaultComplexType strategy.





addComplexType() method creates ‘/definitions/types/xsd:schema/xsd:complexType’ element for each described
complex type with name of the specified PHP class.


Class property MUST have docblock section with the described PHP type to have property included into WSDL
description.


addComplexType() checks if type is already described within types section of the WSDL document.


It prevents duplications if this method is called two or more times and recursion in the types definition section.


See http://www.w3.org/TR/wsdl#_types for the details.







addDocumentation() method


addDocumentation($input_node, $documentation) method adds human readable documentation using optional
‘wsdl:document’ element.


‘/definitions/binding/soap:binding’ element is used to signify that the binding is bound to the SOAP protocol
format.


See http://www.w3.org/TR/wsdl#_documentation for the details.





Get finalized WSDL document


toXML(), toDomDocument() and dump($filename = false) methods may be used to get WSDL document as an
XML, DOM structure or a file.





		[1]		‘tns:’ namespace is defined as script URI (‘http://’ .$_SERVER[‘HTTP_HOST’] .
$_SERVER[‘SCRIPT_NAME’]).









		[2]		‘http://’ .$_SERVER[‘HTTP_HOST’] . $_SERVER[‘SCRIPT_NAME’]









		[3]		By default Zend\Soap\Wsdl will be created with the Zend\Soap\Wsdl_Strategy_DefaultComplexType
class as detection algorithm for complex types. The first parameter of the AutoDiscover constructor
takes any complex type strategy implementing Zend\Soap\Wsdl_Strategy_Interface or a string with the
name of the class. For backwards compatibility with $extractComplexType boolean variables are
parsed the following way: If TRUE, Zend\Soap\Wsdl_Strategy_DefaultComplexType, if FALSE
Zend\Soap\Wsdl_Strategy_AnyType.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                WSDL Accessor
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cache.storage.capabilities.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cache\Storage\Capabilities



Overview


Storage capabilities describes how a storage adapter works and which features it supports.


To get capabilities of a storage adapter, you can use the method getCapabilities() of the storage adapter but
only the storage adapter and its plugins have permissions to change them.


Because capabilities are mutable, for example, by changing some options, you can subscribe to the “change” event to
get notifications; see the examples for details.


If you are writing your own plugin or adapter, you can also change capabilities because you have access to the
marker object and can create your own marker to instantiate a new object of Zend\Cache\Storage\Capabilities.





Available Methods



		__construct


		__construct(stdClass $marker, array $capabilities = array ( ), null|Zend\Cache\Storage\Capabilities $baseCapabilities)
__construct(Zend\Cache\Storage\StorageInterface $storage, stdClass $marker, array $capabilities = array(), Capabilities $baseCapabilities = null)


Constructor









		getSupportedDatatypes


		getSupportedDatatypes()


Get supported datatypes.


Returns array.









		setSupportedDatatypes


		setSupportedDatatypes(stdClass $marker, array $datatypes)


Set supported datatypes.


Implements a fluent interface.









		getSupportedMetadata


		getSupportedMetadata()


Get supported metadata.


Returns array.









		setSupportedMetadata


		setSupportedMetadata(stdClass $marker, string $metadata)


Set supported metadata


Implements a fluent interface.









		getMinTtl


		getMinTtl()


Get minimum supported time-to-live


Returns int (0 means items never expire)









		setMinTtl


		setMinTtl(stdClass $marker, int $minTtl)


Set minimum supported time-to-live


Implements a fluent interface.









		getMaxTtl


		getMaxTtl()


Get maximum supported time-to-live


Returns int









		setMaxTtl


		setMaxTtl(stdClass $marker, int $maxTtl)


Set maximum supported time-to-live


Implements a fluent interface.









		getStaticTtl


		getStaticTtl()


Is the time-to-live handled static (on write), or dynamic (on read).


Returns boolean









		setStaticTtl


		setStaticTtl(stdClass $marker, boolean $flag)


Set if the time-to-live is handled statically (on write) or dynamically (on read)


Implements a fluent interface.









		getTtlPrecision


		getTtlPrecision()


Get time-to-live precision.


Returns float.









		setTtlPrecision


		setTtlPrecision(stdClass $marker, float $ttlPrecision)


Set time-to-live precision.


Implements a fluent interface.









		getUseRequestTime


		getUseRequestTime()


Get the “use request time” flag status


Returns boolean









		setUseRequestTime


		setUseRequestTime(stdClass $marker, boolean $flag)


Set the “use request time” flag.


Implements a fluent interface.









		getExpiredRead


		getExpiredRead()


Get flag indicating if expired items are readable.


Returns boolean









		setExpiredRead


		setExpiredRead(stdClass $marker, boolean $flag)


Set if expired items are readable.


Implements a fluent interface.









		getMaxKeyLength


		getMaxKeyLength()


Get maximum key lenth.


Returns int









		setMaxKeyLength


		setMaxKeyLength(stdClass $marker, int $maxKeyLength)


Set maximum key lenth.


Implements a fluent interface.









		getNamespaceIsPrefix


		getNamespaceIsPrefix()


Get if namespace support is implemented as a key prefix.


Returns boolean









		setNamespaceIsPrefix


		setNamespaceIsPrefix(stdClass $marker, boolean $flag)


Set if namespace support is implemented as a key prefix.


Implements a fluent interface.









		getNamespaceSeparator


		getNamespaceSeparator()


Get namespace separator if namespace is implemented as a key prefix.


Returns string









		setNamespaceSeparator


		setNamespaceSeparator(stdClass $marker, string $separator)


Set the namespace separator if namespace is implemented as a key prefix.


Implements a fluent interface.











Examples


Get storage capabilities and do specific stuff in base of it


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Cache\StorageFactory;

$cache = StorageFactory::adapterFactory('filesystem');
$supportedDatatypes = $cache->getCapabilities()->getSupportedDatatypes();

// now you can run specific stuff in base of supported feature
if ($supportedDatatypes['object']) {
    $cache->set($key, $object);
} else {
    $cache->set($key, serialize($object));
}










Listen to change event


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Cache\StorageFactory;

$cache = StorageFactory::adapterFactory('filesystem', array(
    'no_atime' => false,
));

// Catching capability changes
$cache->getEventManager()->attach('capability', function($event) {
    echo count($event->getParams()) . ' capabilities changed';
});

// change option which changes capabilities
$cache->getOptions()->setNoATime(true);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cache\Storage\Capabilities
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.rackspace.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Service\Rackspace



Introduction


The Zend\Service\Rackspace is a class that provides a simple API to manage the Rackspace services Cloud Files
and Cloud Servers.



Note


Load balancers service


The load balancers service of Rackspace is not implemented yet. We are planning to release it in the next
future.







Registering with Rackspace


Before you can get started with Zend\Service\Rackspace, you must first register for an account. Please see the
Cloud services [http://www.rackspace.com/cloud/] page on the Rackspace website for more information.


After registering, you can get the Username and the API Key from the Rackspace management console under the menu
“Your Account” > “API Access”. These informations are required to use the Zend\Service\Rackspace classes.





Cloud Files


The Cloud Files is a service to store any files in a cloud environment. A user can store an unlimited quantity of
files and each file can be as large as 5 gigabytes. The files can be private or public. The private files can be
accessed using the API of Rackspace. The public files are accessed using a CDN (Content Delivery Network).
Rackspace exposes a REST API to manage the Cloud Files.


Zend\Service\Rackspace\Files provides the following functionality:




		Upload files programmatically for tight integration with your application


		Enable Cloud Files CDN integration on any container for public distribution


		Create Containers programmatically


		Retrieve lists of containers and files












Cloud Servers


Rackspace Cloud Servers is a compute service that provides server capacity in the cloud. Cloud Servers come in
different flavors of memory, disk space, and CPU.


Zend\Service\Rackspace\Servers provides the following functionality:




		Create/delete new servers


		List and get information on each server


		Manage the public/private IP addresses of a server


		Resize the server capacity


		Reboot a server


		Create new images for a server


		Manage the backup of a server


		Create a group of server to share the IP addresses for High Availability architecture












Available Methods


Eeach service class (Files, Servers) of Rackspace extends the Zend\Service\Rackspace abstract class. This class
contains a set of public methods shared with all the service. This public methods are reported as follow:



		authenticate


		authenticate()


Authenticate the Rackspace API using the user and the key specified in the concrete class that extend
Zend\Service\Rackspace. Return true in case of success and false in case of error.









		getAuthUrl


		getAuthUrl()


Get the authentication URL of Rackspace. Returns a string.









		getCdnUrl


		getCdnUrl()


Get the URL for the CDN. Returns a string.









		getErrorCode


		getErrorCode()


Get the last HTTP error code. Returns a string.









		getErrorMsg


		getErrorMsg()


Get the last error message. Returns a string.









		getHttpClient


		getHttpClient()


Get the HTTP client used to call the API of the Rackspace. Returns a Zend\Http\Client instance.









		getKey


		getKey()


Get the authentication key. Returns a string.









		getManagementUrl


		getManagementUrl()


Get the URL for the management services. Returns a string.









		getStorageUrl


		getStorageUrl()


Get the URL for the storage (files) service. Returns a string.









		getToken


		getToken()


Get the token returned after a successful authentication. Returns a string.









		getUser


		getUser()


Get the user authenticated with the Rackspace service. Returns a string.









		isSuccessful


		isSuccessful()


Return true if the last service call was successful, false otherwise.









		setAuthUrl


		setAuthUrl(string $url)


Set the authentication URL to be used.


$url is the URL for the authentication









		setKey


		setKey(string $key)


Set the key for the API authentication.


$key is the key string for the authentication









		setUser


		setUser(string $user)


Set the user for the API authentication.


$user is the user string for the authentication














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Service\Rackspace
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mime.part.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Mime_Part



Introduction


This class represents a single part of a MIME message. It contains the actual content of the message part plus
information about its encoding, content type and original filename. It provides a method for generating a string
from the stored data. Zend_Mime_Part objects can be added to Zend_Mime_Message to
assemble a complete multipart message.





Instantiation


Zend_Mime_Part is instantiated with a string that represents the content of the new part. The type is assumed
to be OCTET-STREAM, encoding is 8Bit. After instantiating a Zend_Mime_Part, meta information can be set by
accessing its attributes directly:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		public $type = Zend_Mime::TYPE_OCTETSTREAM;
public $encoding = Zend_Mime::ENCODING_8BIT;
public $id;
public $disposition;
public $filename;
public $description;
public $charset;
public $boundary;
public $location;
public $language;













Methods for rendering the message part to a string


getContent() returns the encoded content of the MimePart as a string using the encoding specified in the
attribute $encoding. Valid values are Zend_Mime::ENCODING_* Characterset conversions are not performed.


getHeaders() returns the Mime-Headers for the MimePart as generated from the information in the publicly
accessible attributes. The attributes of the object need to be set correctly before this method is called.




		$charset has to be set to the actual charset of the content if it is a text type (Text or HTML).


		$id may be set to identify a content-id for inline images in a HTML mail.


		$filename contains the name the file will get when downloading it.


		$disposition defines if the file should be treated as an attachment or if it is used inside the (HTML-)
mail (inline).


		$description is only used for informational purposes.


		$boundary defines string as boundary.


		$location can be used as resource URI that has relation to the content.


		$language defines languages in the content.















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Mime_Part
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-element.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormElement


The FormElement view helper proxies the rendering to specific form view helpers
depending on the type of the Zend\\Form\\Element that is passed in. For instance,
if the passed in element had a type of “text”, the FormElement helper will retrieve
and use the FormText helper to render the element.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


		use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...

/**
 * Example #1: Render different types of form elements
 */
$textElement     = new Element\Text('my-text');
$checkboxElement = new Element\Checkbox('my-checkbox');

echo $this->formElement($textElement);
// <input type="text" name="my-text" value="">

echo $this->formElement($checkboxElement);
// <input type="hidden" name="my-checkbox" value="0">
// <input type="checkbox" name="my-checkbox" value="1">

/**
 * Example #2: Loop through form elements and render them
 */
$form = new Form();
// ...add elements and input filter to form...
$form->prepare();

// Render the opening tag
echo $this->form()->openTag($form);

// ...loop through and render the form elements...
foreach ($form as $element) {
    echo $this->formElement($element);       // <-- Magic!
    echo $this->formElementErrors($element);
}

// Render the closing tag
echo $this->form()->closeTag();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormElement
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-date-time.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormDateTime


The FormDateTime view helper can be used to render a <input type="datetime">
HTML5 form input. It is meant to work with the Zend\Form\Element\DateTime
element, which provides a default input specification for validating HTML5 datetime values.


FormDateTime extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;

$element = new Element\DateTime('my-datetime');

// Within your view...

echo $this->formDateTime($element);
// <input type="datetime" name="my-datetime" value="">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormDateTime
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.text.figlet.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Text_Figlet


Zend_Text_Figlet is a component which enables developers to create a so called FIGlet text. A FIGlet text is a
string, which is represented as ASCII art. FIGlets use a special font format, called FLT (FigLet Font). By
default, one standard font is shipped with Zend_Text_Figlet, but you can download additional fonts at
http://www.figlet.org [http://www.figlet.org/fontdb.cgi].



Note


Compressed fonts


Zend_Text_Figlet supports gzipped fonts. This means that you can take an .flf file and gzip it. To allow
Zend_Text_Figlet to recognize this, the gzipped font must have the extension .gz. Further, to be able to
use gzipped fonts, you have to have enabled the GZIP extension of PHP.





Note


Encoding


Zend_Text_Figlet expects your strings to be UTF-8 encoded by default. If this is not the case, you can
supply the character encoding as second parameter to the render() method.




You can define multiple options for a FIGlet. When instantiating Zend_Text_Figlet, you can supply an array or
an instance of Zend_Config.




		font- Defines the font which should be used for rendering. If not defines, the built-in font will be used.


		outputWidth- Defines the maximum width of the output string. This is used for word-wrap as well as
justification. Beware of too small values, they may result in an undefined behaviour. The default value is 80.


		handleParagraphs- A boolean which indicates, how new lines are handled. When set to TRUE, single new
lines are ignored and instead treated as single spaces. Only multiple new lines will be handled as such. The
default value is FALSE.


		justification- May be one of the values of Zend_Text_Figlet::JUSTIFICATION_*. There is
JUSTIFICATION_LEFT, JUSTIFICATION_CENTER and JUSTIFICATION_RIGHT The default justification is
defined by the rightToLeft value.


		rightToLeft- Defines in which direction the text is written. May be either
Zend_Text_Figlet::DIRECTION_LEFT_TO_RIGHT or Zend_Text_Figlet::DIRECTION_RIGHT_TO_LEFT. By default the
setting of the font file is used. When justification is not defined, a text written from right-to-left is
automatically right-aligned.


		smushMode- An integer bitfield which defines, how the single characters are smushed together. Can be the
sum of multiple values from Zend_Text_Figlet::SM_*. There are the following smush modes: SM_EQUAL,
SM_LOWLINE, SM_HIERARCHY, SM_PAIR, SM_BIGX, SM_HARDBLANK, SM_KERN and SM_SMUSH. A value of 0 doesn’t disable
the entire smushing, but forces SM_KERN to be applied, while a value of -1 disables it. An explanation of the
different smush modes can be found here [http://www.jave.de/figlet/figfont.txt]. By default the setting of the font file is used. The smush mode
option is normally used only by font designers testing the various layoutmodes with a new font.









Using Zend_Text_Figlet


This example illustrates the basic use of Zend_Text_Figlet to create a simple FIGlet text:


		1
2


		$figlet = new Zend_Text_Figlet();
echo $figlet->render('Zend');










Assuming you are using a monospace font, this would look as follows:


		1
2
3
4
5
6


		  ______    ______    _  __   ______
 |__  //   |  ___||  | \| || |  __ \\
   / //    | ||__    |  ' || | |  \ ||
  / //__   | ||___   | .  || | |__/ ||
 /_____||  |_____||  |_|\_|| |_____//
 `-----`'  `-----`   `-` -`'  -----`














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Text_Figlet
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.paginator.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Paginator is a flexible component for paginating collections of data and presenting that data to users.


The primary design goals of Zend\Paginator are as follows:




		Paginate arbitrary data, not just relational databases


		Fetch only the results that need to be displayed


		Do not force users to adhere to only one way of displaying data or rendering pagination controls


		Loosely couple Zend\Paginator to other Zend Framework components so that users who wish to use it
independently of Zend\View, Zend\Db, etc. can do so













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/paginator.control.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Pagination Control and ScrollingStyles


Rendering the items for a page on the screen has been a good start. In the code snippets in previous section we
have also seen the setCurrentPageNumber() method to set the active page number. The next step is to navigate
through your pages. To do this, Paginator provides you with two important tools: the ability to render the
Paginator with help of a View Partial, and support for so-called ScrollingStyles.


The View Partial is a small view script that renders the Pagination controls, such as buttons to go to the next or
previous page. Which pagination controls are rendered depends on the contents of the view partial. Working with the
view partial requires that you have set up Zend_View. To get started with the pagination control, create a new
view script somewhere in your view scripts path. You can name it anything you want, but we’ll call it
“controls.phtml” in this text. The reference manual contains various examples of what might go in the view script.
Here is one example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


		<?php if ($this->pageCount): ?>
<!-- First page link -->
<?php if (isset($this->previous)): ?>
  <a href="<?php echo $this->url(array('page' => $this->first)); ?>">
    First
  </a> |
<?php else: ?>
  <span class="disabled">First</span> |
<?php endif; ?>

<!-- Previous page link -->
<?php if (isset($this->previous)): ?>
  <a href="<?php echo $this->url(array('page' => $this->previous)); ?>">
    < Previous
  </a> |
<?php else: ?>
  <span class="disabled">< Previous</span> |
<?php endif; ?>

<!-- Next page link -->
<?php if (isset($this->next)): ?>
  <a href="<?php echo $this->url(array('page' => $this->next)); ?>">
    Next >
  </a> |
<?php else: ?>
  <span class="disabled">Next ></span> |
<?php endif; ?>

<!-- Last page link -->
<?php if (isset($this->next)): ?>
  <a href="<?php echo $this->url(array('page' => $this->last)); ?>">
    Last
  </a>
<?php else: ?>
  <span class="disabled">Last</span>
<?php endif; ?>

</div>
<?php endif; ?>










The next step is to tell Zend_Paginator which view partial can be used to render the navigation controls. Put
the following line in your application’s bootstrap file.


		1


		Zend_View_Helper_PaginationControl::setDefaultViewPartial('controls.phtml');










The last step is probably the easiest. Make sure you have assigned your Paginator object to the a script (NOT the
‘controls.phtml’ script!). The only thing left to do is echo the Paginator in the view script. This will
automatically render the Paginator using the PaginationControl view helper. In this next example, the Paginator
object has been assigned to the ‘paginator’ view variable. Don’t worry if you don’t fully get how it all works yet.
The next section will feature a complete example.


		1


		<?php echo $this->paginator; ?>










Zend_Paginator, together with the ‘controls.phtml’ view script you wrote, makes sure your Paginator navigation
is rendered properly. In order to decide which page numbers need to be displayed on screen, Paginator uses
so-called ScrollingStyles. The default style is called “Sliding”, which is similar to the way Yahoo’s search result
navigation works. To mimick Google’s ScrollingStyle, use the Elastic style. You can set a default ScrollingStyle
with the static setDefaultScrollingStyle() method, or you can specify a ScrollingStyle dynamically when
rendering the Paginator in your view script. This requires manual invocation of the view helper in your view
script.


		1
2


		// $this->paginator is a Paginator object
<?php echo $this->paginationControl($this->paginator, 'Elastic', 'controls.phtml'); ?>










For a list of all available ScrollingStyles, see the reference manual.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Pagination Control and ScrollingStyles
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.codabar.png





modules/zend.service.delicious.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Delicious



Introduction


Zend_Service_Delicious is simple API for using del.icio.us [http://del.icio.us] XML and JSON web services. This component
gives you read-write access to posts at del.icio.us if you provide credentials. It also allows read-only access to
public data of all users.


Get all posts


		1
2
3
4
5
6
7
8


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getAllPosts();

foreach ($posts as $post) {
    echo "--\n";
    echo "Title: {$post->getTitle()}\n";
    echo "Url: {$post->getUrl()}\n";
}













Retrieving posts


Zend_Service_Delicious provides three methods for retrieving posts: getPosts(), getRecentPosts() and
getAllPosts(). All of these methods return an instance of Zend_Service_Delicious_PostList, which holds all
retrieved posts.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		/**
 * Get posts matching the arguments. If no date or url is given,
 * most recent date will be used.
 *
 * @param string $tag Optional filtering by tag
 * @param DateTime $dt Optional filtering by date
 * @param string $url Optional filtering by url
 * @return Zend_Service_Delicious_PostList
 */
public function getPosts($tag = null, $dt = null, $url = null);

/**
 * Get recent posts
 *
 * @param string $tag   Optional filtering by tag
 * @param string $count Maximal number of posts to be returned
 *                      (default 15)
 * @return Zend_Service_Delicious_PostList
 */
public function getRecentPosts($tag = null, $count = 15);

/**
 * Get all posts
 *
 * @param string $tag Optional filtering by tag
 * @return Zend_Service_Delicious_PostList
 */
public function getAllPosts($tag = null);













Zend_Service_Delicious_PostList


Instances of this class are returned by the getPosts(), getAllPosts(), getRecentPosts(), and
getUserPosts() methods of Zend_Service_Delicious.


For easier data access this class implements the Countable, Iterator, and ArrayAccess interfaces.


Accessing post lists


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getAllPosts();

// count posts
echo count($posts);

// iterate over posts
foreach ($posts as $post) {
    echo "--\n";
    echo "Title: {$post->getTitle()}\n";
    echo "Url: {$post->getUrl()}\n";
}

// get post using array access
echo $posts[0]->getTitle();











Note


The ArrayAccess::offsetSet() and ArrayAccess::offsetUnset() methods throw exceptions in this
implementation. Thus, code like unset($posts[0]); and $posts[0] = ‘A’; will throw exceptions because these
properties are read-only.




Post list objects have two built-in filtering capabilities. Post lists may be filtered by tags and by URL.


Filtering a Post List with Specific Tags


Posts may be filtered by specific tags using withTags(). As a convenience, withTag() is also provided for
when only a single tag needs to be specified.


		1
2
3
4
5
6
7
8


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getAllPosts();

// Print posts having "php" and "zend" tags
foreach ($posts->withTags(array('php', 'zend')) as $post) {
    echo "Title: {$post->getTitle()}\n";
    echo "Url: {$post->getUrl()}\n";
}










Filtering a Post List by URL


Posts may be filtered by URL matching a specified regular expression using the withUrl() method:


		1
2
3
4
5
6
7
8


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getAllPosts();

// Print posts having "help" in the URL
foreach ($posts->withUrl('/help/') as $post) {
    echo "Title: {$post->getTitle()}\n";
    echo "Url: {$post->getUrl()}\n";
}













Editing posts


Post editing


		1
2
3
4
5
6
7


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getPosts();

// set title
$posts[0]->setTitle('New title');
// save changes
$posts[0]->save();










Method call chaining


Every setter method returns the post object so that you can chain method calls using a fluent interface.


		1
2
3
4
5
6


		$delicious = new Zend_Service_Delicious('username', 'password');
$posts = $delicious->getPosts();

$posts[0]->setTitle('New title')
         ->setNotes('New notes')
         ->save();













Deleting posts


There are two ways to delete a post, by specifying the post URL or by calling the delete() method upon a post
object.


Deleting posts


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$delicious = new Zend_Service_Delicious('username', 'password');

// by specifying URL
$delicious->deletePost('http://framework.zend.com');

// or by calling the method upon a post object
$posts = $delicious->getPosts();
$posts[0]->delete();

// another way of using deletePost()
$delicious->deletePost($posts[0]->getUrl());













Adding new posts


To add a post you first need to call the createNewPost() method, which returns a
Zend_Service_Delicious_Post object. When you edit the post, you need to save it to the del.icio.us database by
calling the save() method.


Adding a post


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$delicious = new Zend_Service_Delicious('username', 'password');

// create a new post and save it (with method call chaining)
$delicious->createNewPost('Zend Framework', 'http://framework.zend.com')
          ->setNotes('Zend Framework Homepage')
          ->save();

// create a new post and save it  (without method call chaining)
$newPost = $delicious->createNewPost('Zend Framework',
                                     'http://framework.zend.com');
$newPost->setNotes('Zend Framework Homepage');
$newPost->save();













Tags


Tags


		1
2
3
4
5
6
7


		$delicious = new Zend_Service_Delicious('username', 'password');

// get all tags
print_r($delicious->getTags());

// rename tag ZF to zendFramework
$delicious->renameTag('ZF', 'zendFramework');













Bundles


Bundles


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$delicious = new Zend_Service_Delicious('username', 'password');

// get all bundles
print_r($delicious->getBundles());

// delete bundle someBundle
$delicious->deleteBundle('someBundle');

// add bundle
$delicious->addBundle('newBundle', array('tag1', 'tag2'));













Public data


The del.icio.us web API allows access to the public data of all users.



Methods for retrieving public data






		Name
		Description
		Return type





		getUserFans()
		Retrieves fans of a user
		Array



		getUserNetwork()
		Retrieves network of a user
		Array



		getUserPosts()
		Retrieves posts of a user
		Zend_Service_Delicious_PostList



		getUserTags()
		Retrieves tags of a user
		Array








Note


When using only these methods, a username and password combination is not required when constructing a new
Zend_Service_Delicious object.




Retrieving public data


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// username and password are not required
$delicious = new Zend_Service_Delicious();

// get fans of user someUser
print_r($delicious->getUserFans('someUser'));

// get network of user someUser
print_r($delicious->getUserNetwork('someUser'));

// get tags of user someUser
print_r($delicious->getUserTags('someUser'));











Public posts


When retrieving public posts with the getUserPosts() method, a Zend_Service_Delicious_PostList object is
returned, and it contains Zend_Service_Delicious_SimplePost objects, which contain basic information about the
posts, including URL, title, notes, and tags.



Methods of the Zend_Service_Delicious_SimplePost class






		Name
		Description
		Return type





		getNotes()
		Returns notes of a post
		String



		getTags()
		Returns tags of a post
		Array



		getTitle()
		Returns title of a post
		String



		getUrl()
		Returns URL of a post
		String












HTTP client


Zend_Service_Delicious uses Zend_Rest_Client for making HTTP requests to the del.icio.us web service. To
change which HTTP client Zend_Service_Delicious uses, you need to change the HTTP client of
Zend_Rest_Client.


Changing the HTTP client of Zend_Rest_Client


		1
2


		$myHttpClient = new My_Http_Client();
Zend_Rest_Client::setHttpClient($myHttpClient);










When you are making more than one request with Zend_Service_Delicious to speed your requests, it’s better to
configure your HTTP client to keep connections alive.


Configuring your HTTP client to keep connections alive


		1
2
3


		Zend_Rest_Client::getHttpClient()->setConfig(array(
        'keepalive' => true
));











Note


When a Zend_Service_Delicious object is constructed, the SSL transport of Zend_Rest_Client is set to
‘ssl’ rather than the default of ‘ssl2’. This is because del.icio.us has some problems with ‘ssl2’, such
as requests taking a long time to complete (around 2 seconds).










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Delicious
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2



Introduction


Zend_Service_Amazon_Ec2 provides an interface to Amazon Elastic Clound Computing (EC2).





What is Amazon Ec2?


Amazon EC2 is a web service that enables you to launch and manage server instances in Amazon’s data centers using
APIs or available tools and utilities. You can use Amazon EC2 server instances at any time, for as long as you
need, and for any legal purpose.





Static Methods


To make using the Ec2 class easier to use there are two static methods that can be invoked from any of the Ec2
Elements. The first static method is setKeys which will defind you AWS Access Keys as default keys. When you
then create any new object you don’t need to pass in any keys to the constructor.


setKeys() Example


		1


		Zend_Service_Amazon_Ec2_Ebs::setKeys('aws_key','aws_secret_key');










To set the region that you are working in you can call the setRegion to set which Amazon Ec2 Region you are
working in. Currently there is only two region available us-east-1 and eu-west-1. If an invalid value is passed it
will throw an exception stating that.


setRegion() Example


		1


		Zend_Service_Amazon_Ec2_Ebs::setRegion('us-east-1');











Note


Set Amazon Ec2 Region


Alternativly you can set the region when you create each class as the third parameter in the constructor method.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.di.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction to Zend\Di



Dependency Injection


Dependency Injection (here-in called DI) is a concept that has been talked about in numerous places over the web.
Simply put, we’ll explain the act of injecting dependencies simply with this below code:


		1


		$b = new MovieLister(new MovieFinder));










Above, MovieFinder is a dependency of MovieLister, and MovieFinder was injected into MovieLister. If you are not
familiar with the concept of DI, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy [http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html], Ralph
Schindler’s Learning DI [http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php], or Fabien Potencier’s Series [http://fabien.potencier.org/article/11/what-is-dependency-injection] on DI.





Dependency Injection Containers


When your code is written in such a way that all your dependencies are injected into consuming objects, you might
find that the simple act of wiring an object has gotten more complex. When this becomes the case, and you find that
this wiring is creating more boilerplate code, this makes for an excellent opportunity to utilize a Dependency
Injection Container.


In it’s simplest form, a Dependency Injection Container (here-in called a DiC for brevity), is an object that is
capable of creating objects on request and managing the “wiring”, or the injection of required dependencies, for
those requested objects. Since the patterns that developers employ in writing DI capable code vary, DiC’s are
generally either in the form of smallish objects that suit a very specific pattern, or larger DiC frameworks.


Zend\Di is a DiC framework. While for the simplest code there is no configuration needed, and the use cases are
quite simple; for more complex code, Zend\Di is capable of being configured to wire these complex use cases








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction to Zend\Di
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.advanced-mswordblockstemplate_zoom.png
=l

template.doc [Compatibilty Mode] - Microsoft Word Table Tools

\/\ Wome | e Fagelmout  Refences  Malings  Revew  View  Developer  DXText ControlMaiMergeDesgner | Deson  lyout @
% = R Arna -

5] . | o & X)) 8U(9] | azBoce AaBbCc AaBb( daBbC - A & reptoce

Fate 5 [B 7 W e x x Aa WA (= (22| Tnomal 1NoSpac. Hesdingl Headingz - ange | 1y select~

Cipbosra Font 5 Paragroph = Stytes 5 editing

] [0 O SR KA KX AR SRR KX RN RS AR KRR KNS TRE O - TRE TN TR NI ZN® iG]

B Invoice for number { MERGEFIELD phone }  { MERGEFIELD

E month }

B " Accounts receivable trade (total) Amount in USD

= {MERGEFIELD monthly_fee }

o {MERGEFIELD fee }

= Trotal net| | {MERGEFIELD total_net }

o {MERGEFIELD tax }% Tax | {MERGEFIELD tax_value } =

B Total Amount { MERGEFIELD

o total }

Poger1 af1 | Words 32 | English Unied Ssten | 73 | SRR g &






ref/copyrights.html

    
      Navigation


      
        		
          index


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Copyright Information


The following copyrights are applicable to portions of Zend Framework.


Copyright © 2005-Zend Technologies Inc. (http://www.zend.com)






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Copyright Information
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.create.project.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Create Your Project


In order to create your project, you must first download and extract Zend Framework.



Install Zend Framework


The easiest way to get Zend Framework along with a complete PHP stack is by installing Zend Server [http://www.zend.com/en/products/server-ce/downloads]. Zend
Server has native installers for Mac OSX, Windows, Fedora Core, and Ubuntu, as well as a universal installation
package compatible with most Linux distributions.


After you have installed Zend Server, the Framework files may be found under
/usr/local/zend/share/ZendFramework on Mac OSX and Linux, and C:\Program
Files\Zend\ZendServer\share\ZendFramework on Windows. The include_path will already be configured to include
Zend Framework.


Alternately, you can Download the latest version of Zend Framework [http://framework.zend.com/download/latest] and extract the contents; make a note of
where you have done so.


Optionally, you can add the path to the library/ subdirectory of the archive to your php.ini‘s
include_path setting.


That’s it! Zend Framework is now installed and ready to use.





Create Your Project



Note


zf Command Line Tool


In your Zend Framework installation is a bin/ subdirectory, containing the scripts zf.sh and zf.bat
for Unix-based and Windows-based users, respectively. Make a note of the absolute path to this script.


Wherever you see references to the command zf, please substitute the absolute path to the script. On
Unix-like systems, you may want to use your shell’s alias functionality: alias
zf.sh=path/to/ZendFramework/bin/zf.sh.


If you have problems setting up the zf command-line tool, please refer to the manual.




Open a terminal (in Windows, Start -> Run, and then use cmd). Navigate to a directory where you would like
to start a project. Then, use the path to the appropriate script, and execute one of the following:


		1


		% zf create project quickstart










Running this command will create your basic site structure, including your initial controllers and views. The tree
looks like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		quickstart
|-- application
|   |-- Bootstrap.php
|   |-- configs
|   |   `-- application.ini
|   |-- controllers
|   |   |-- ErrorController.php
|   |   `-- IndexController.php
|   |-- models
|   `-- views
|       |-- helpers
|       `-- scripts
|           |-- error
|           |   `-- error.phtml
|           `-- index
|               `-- index.phtml
|-- library
|-- public
|   |-- .htaccess
|   `-- index.php
`-- tests
    |-- application
    |   `-- bootstrap.php
    |-- library
    |   `-- bootstrap.php
    `-- phpunit.xml










At this point, if you haven’t added Zend Framework to your include_path, we recommend either copying or
symlinking it into your library/ directory. In either case, you’ll want to either recursively copy or symlink
the library/Zend/ directory of your Zend Framework installation into the library/ directory of your
project. On unix-like systems, that would look like one of the following:


		1
2
3
4
5


		# Symlink:
% cd library; ln -s path/to/ZendFramework/library/Zend .

# Copy:
% cd library; cp -r path/to/ZendFramework/library/Zend .










On Windows systems, it may be easiest to do this from the Explorer.


Now that the project is created, the main artifacts to begin understanding are the bootstrap, configuration, action
controllers, and views.





The Bootstrap


Your Bootstrap class defines what resources and components to initialize. By default, Zend Framework’s
Front Controller is initialized, and it uses the application/controllers/ as the
default directory in which to look for action controllers (more on that later). The class looks like the following:


		1
2
3
4
5


		// application/Bootstrap.php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
}










As you can see, not much is necessary to begin with.





Configuration


While Zend Framework is itself configurationless, you often need to configure your application. The default
configuration is placed in application/configs/application.ini, and contains some basic directives for setting
your PHP environment (for instance, turning error reporting on and off), indicating the path to your bootstrap
class (as well as its class name), and the path to your action controllers. It looks as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		; application/configs/application.ini

[production]
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0
includePaths.library = APPLICATION_PATH "/../library"
bootstrap.path = APPLICATION_PATH "/Bootstrap.php"
bootstrap.class = "Bootstrap"
appnamespace = "Application"
resources.frontController.controllerDirectory = APPLICATION_PATH "/controllers"
resources.frontController.params.displayExceptions = 0

[staging : production]

[testing : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1










Several things about this file should be noted. First, when using INI-style configuration, you can reference
constants directly and expand them; APPLICATION_PATH is actually a constant. Additionally note that there are
several sections defined: production, staging, testing, and development. The latter three inherit settings from the
“production” environment. This is a useful way to organize configuration to ensure that appropriate settings are
available in each stage of application development.





Action Controllers


Your application’s action controllers contain your application workflow, and do the work of mapping your
requests to the appropriate models and views.


An action controller should have one or more methods ending in “Action”; these methods may then be requested via
the web. By default, Zend Framework URLs follow the schema /controller/action, where “controller” maps to the
action controller name (minus the “Controller” suffix) and “action” maps to an action method (minus the “Action”
suffix).


Typically, you always need an IndexController, which is a fallback controller and which also serves the home
page of the site, and an ErrorController, which is used to indicate things such as HTTP 404 errors
(controller or action not found) and HTTP 500 errors (application errors).


The default IndexController is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// application/controllers/IndexController.php

class IndexController extends Zend_Controller_Action
{

    public function init()
    {
        /* Initialize action controller here */
    }

    public function indexAction()
    {
        // action body
    }
}










And the default ErrorController is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


		// application/controllers/ErrorController.php

class ErrorController extends Zend_Controller_Action
{

    public function errorAction()
    {
        $errors = $this->_getParam('error_handler');

        switch ($errors->type) {
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ROUTE:
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
            case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:

                // 404 error -- controller or action not found
                $this->getResponse()->setHttpResponseCode(404);
                $this->view->message = 'Page not found';
                break;
            default:
                // application error
                $this->getResponse()->setHttpResponseCode(500);
                $this->view->message = 'Application error';
                break;
        }

        $this->view->exception = $errors->exception;
        $this->view->request   = $errors->request;
    }
}










You’ll note that (1) the IndexController contains no real code, and (2) the ErrorController makes reference
to a “view” property. That leads nicely into our next subject.





Views


Views in Zend Framework are written in plain old PHP. View scripts are placed in application/views/scripts/,
where they are further categorized using the controller names. In our case, we have an IndexController and an
ErrorController, and thus we have corresponding index/ and error/ subdirectories within our view
scripts directory. Within these subdirectories, you will then find and create view scripts that correspond to each
controller action exposed; in the default case, we thus have the view scripts index/index.phtml and
error/error.phtml.


View scripts may contain any markup you want, and use the <?php opening tag and ?> closing tag to insert
PHP directives.


The following is what we install by default for the index/index.phtml view script:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


		<!-- application/views/scripts/index/index.phtml -->
<style>

    a:link,
    a:visited
    {
        color: #0398CA;
    }

    span#zf-name
    {
        color: #91BE3F;
    }

    div#welcome
    {
        color: #FFFFFF;
        background-image: url(http://framework.zend.com/images/bkg_header.jpg);
        width:  600px;
        height: 400px;
        border: 2px solid #444444;
        overflow: hidden;
        text-align: center;
    }

    div#more-information
    {
        background-image: url(http://framework.zend.com/images/bkg_body-bottom.gif);
        height: 100%;
    }

</style>
<div id="welcome">
    <h1>Welcome to the <span id="zf-name">Zend Framework!</span><h1 />
    <h3>This is your project's main page<h3 />
    <div id="more-information">
        <p>
            <img src="http://framework.zend.com/images/PoweredBy_ZF_4LightBG.png" />
        </p>

        <p>
            Helpful Links: <br />
            <a href="http://framework.zend.com/">Zend Framework Website</a> |
            <a href="http://framework.zend.com/manual/en/">Zend Framework
                Manual</a>
        </p>
    </div>
</div>










The error/error.phtml view script is slightly more interesting as it uses some PHP conditionals:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


		<!-- application/views/scripts/error/error.phtml -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN";
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
  <title>Zend Framework Default Application</title>
</head>
<body>
  <h1>An error occurred</h1>
  <h2><?php echo $this->message ?></h2>

  <?php if ('development' == $this->env): ?>

  <h3>Exception information:</h3>
  <p>
      <b>Message:</b> <?php echo $this->exception->getMessage() ?>
  </p>

  <h3>Stack trace:</h3>
  <pre><?php echo $this->exception->getTraceAsString() ?>
  </pre>

  <h3>Request Parameters:</h3>
  <pre><?php echo var_export($this->request->getParams(), 1) ?>
  </pre>
  <?php endif ?>

</body>
</html>













Create a virtual host


For purposes of this quick start, we will assume you are using the Apache web server [http://httpd.apache.org/]. Zend Framework works
perfectly well with other web servers – including Microsoft Internet Information Server, lighttpd, nginx, and more
– but most developers should be famililar with Apache at the minimum, and it provides an easy introduction to Zend
Framework’s directory structure and rewrite capabilities.


To create your vhost, you need to know the location of your httpd.conf file, and potentially where other
configuration files are located. Some common locations:



		/etc/httpd/httpd.conf (Fedora, RHEL, and others)


		/etc/apache2/httpd.conf (Debian, Ubuntu, and others)


		/usr/local/zend/etc/httpd.conf (Zend Server on *nix machines)


		C:\Program Files\Zend\Apache2\conf (Zend Server on Windows machines)





Within your httpd.conf (or httpd-vhosts.conf on some systems), you will need to do two things. First,
ensure that the NameVirtualHost is defined; typically, you will set it to a value of “*:80”. Second, define a
virtual host:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<VirtualHost *:80>
    ServerName quickstart.local
    DocumentRoot /path/to/quickstart/public

    SetEnv APPLICATION_ENV "development"

    <Directory /path/to/quickstart/public>
        DirectoryIndex index.php
        AllowOverride All
        Order allow,deny
        Allow from all
    </Directory>
</VirtualHost>










There are several things to note. First, note that the DocumentRoot setting specifies the public
subdirectory of our project; this means that only files under that directory can ever be served directly by the
server. Second, note the AllowOverride, Order, and Allow directives; these are to allow us to use
htacess files within our project. During development, this is a good practice, as it prevents the need to
constantly restart the web server as you make changes to your site directives; however, in production, you should
likely push the content of your htaccess file into your server configuration and disable this. Third, note the
SetEnv directive. What we are doing here is setting an environment variable for your virtual host; this
variable will be picked up in the index.php and used to set the APPLICATION_ENV constant for our Zend
Framework application. In production, you can omit this directive (in which case it will default to the value
“production”) or set it explicitly to “production”.


Finally, you will need to add an entry in your hosts file corresponding to the value you place in your
ServerName directive. On *nix-like systems, this is usually /etc/hosts; on Windows, you’ll typically find
it in C:\WINDOWS\system32\drivers\etc. Regardless of the system, the entry will look like the following:


		1


		127.0.0.1 quickstart.local










Start your webserver (or restart it), and you should be ready to go.





Checkpoint


At this point, you should be able to fire up your initial Zend Framework application. Point your browser to the
server name you configured in the previous section; you should be able to see a welcome page at this point.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Create Your Project
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/lucene.queries.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Supported queries


Zend_Search_Lucene and Java Lucene support a powerful query language. It allows searching for individual terms,
phrases, ranges of terms; using wildcards and fuzzy search; combining queries using boolean operators; and so on.


A detailed query language description can be found in the Zend_Search_Lucene component documentation.


What follows are examples of some common query types and strategies.


Querying for a single word


		1


		hello










Searches for the word “hello” through all document fields.



Note


Default search field


Important note! Java Lucene searches only through the “contents” field by default, but Zend_Search_Lucene
searches through all fields. This behavior can be modified using the
Zend_Search_Lucene::setDefaultSearchField($fieldName) method.




Querying for multiple words


		1


		hello dolly










Searches for two words. Both words are optional; at least one of them must be present in the result.


Requiring words in a query


		1


		+hello dolly










Searches for two words; “hello” is required, “dolly” is optional.


Prohibiting words in queried documents


		1


		+hello -dolly










Searches for two words; “hello” is required, ‘dolly’ is prohibited. In other words, if the document matches
“hello”, but contains the word “dolly”, it will not be returned in the set of matches.


Querying for phrases


		1


		"hello dolly"










Searches for the phrase “hello dolly”; a document only matches if that exact string is present.


Querying against specific fields


		1


		title:"The Right Way" AND text:go










Searches for the phrase “The Right Way” within the title field and the word “go” within the text field.


Querying against specific fields as well as the entire document


		1


		title:"The Right Way" AND  go










Searches for the phrase “The Right Way” within the title field and the word “go” word appearing in any field of
the document.


Querying against specific fields as well as the entire document (alternate)


		1


		title:Do it right










Searches for the word “Do” within the title field and the words “it” and “right” words through all fields; any
single one matching will result in a document match.


Querying with the wildcard ”?”


		1


		te?t










Search for words matching the pattern “te?t”, where ”?” is any single character.


Querying with the wildcard “*”


		1


		test*










Search for words matching the pattern “test*”, where “*” is any sequence of zero or more characters.


Querying for an inclusive range of terms


		1


		mod_date:[20020101 TO 20030101]










Search for the range of terms (inclusive).


Querying for an exclusive range of terms


		1


		title:{Aida to Carmen}










Search for the range of terms (exclusive).


Fuzzy searches


		1


		roam~










Fuzzy search for the word “roam”.


Boolean searches


		1


		(framework OR library) AND php










Boolean query.


All supported queries can be constructed through Zend_Search_Lucene‘s query construction API. Moreover, query parsing and query constructing may be combined:


Combining parsed and constructed queries


		1
2
3
4
5


		$userQuery = Zend_Search_Lucene_Search_QueryParser::parse($queryStr);

$query = new Zend_Search_Lucene_Search_Query_Boolean();
$query->addSubquery($userQuery, true  /* required */);
$query->addSubquery($constructedQuery, true  /* required */);














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Supported queries
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.templates-msworddocument_zoom.png
as% 2

License Agreement - Magic Graphical Compression Suite v1.9

Thislegal documantis an agreamant betwosn Hanry Déner-Meyer, he Liconses and Co-Oparatn By insaling
Magic Graphical Comprossion Sutov1 9. a compur, 0u aro a31061g 10 5 bound by he toms o s
agreament If ou donot agr0e 1o the terms oftis sraament, promptl ratum tha inoponed packae, Logether
Wi sl 1 other maters which camsrisas e procict,respecivaly daiete a Magic Graphica Camsressin
Sue V1.9 rfatd fls. For questons regarding s agresment please coniac u.

1. Subject of agroament
Tho subjoct o s agreament s the sotware Magic Graghical Comprossion Sufto v19, he oparating
maruais, oiino holp Tl and al ather ccompanying materil. It WA be eferrod o hancelorth as Magic
Graphical Campression Suie 1.9

2. Grant of cense
CorOparation rants the Licenses 2 non-axciusive, non-ransfaratie, parsonal and worldwida icensa to use
‘one copy f Magic Graphical Compression Sue 1.9 the dovalopman of an and-vser appication,
Goscribad in section 3 (bolow). T kcansa s o a singo developar and ntforan anira company.
‘ddtional programmers wih 1o e Magi Graphical Comprossion Su v1.9, adional copies must bo
Teansad:

3. End-user application
i andsor appicaton i a spocic applcaion program that s ioensed 1o a parson o fim for busingss or
porsonal usa. The flos which o no tad undar sction 5 must ot ba incudod with the end-usor
Zppication. Furtvmers, he end-vsor must ot b in a pasiton 1 b abla o neiher masy o pogram, nor
0 creste Magic Graphical Comprassion Sufa v1.9 based programs. Lkewse, ha end-use must no ba
v the Mage Graphical Compression Sute v1.9 serial number.

4. Ropattes
Server base programs which have baan craated with Magic Graphical Compression Sute v19 may anlybe
installc on asinge server, but may be accessed by an nfrvl rumber of certs. Adltonal censes are
oairod when insiaing Magic Graphical Compression Su v1.9 on mors than one sanvr.

5. Redistributable fies
Mage Graphical Comprassion Sute 1.9 contains an additonsi commmand ine regstraton too for nstafing
Mage Graphical Comprassion Sute v1.0 an a sorver. Tis f s not redtrbuiable

6. Copyright
Thg Software i the ropertyof Co-Oparaton. Co-Operatin reserves all ighis o e publshing, dupicaton,
procassing and utizaton of Mage Graprical Comprassion Suie v1.9. Asingla copy may bo maco
xciusnaly or sacurty and arching purposes. Witiout he xpress wren permission of Co-Operation i
foroidcn o

A, ransite, dcampie, o o disassemtia Magic Gragphical Comprassion Sue V1.9
* Copy Magic Graphica Comprassion Suie v1.3% accompanying witen documeriaton.
+Lend, s outor leasa Magic Grahial Compression Sute v1.

Aparmanent transforonce of Magi Graphical Comprassion Suie v1.9 s orly parmitod whan the Liconssa
alaing no copies and e recipent daciras haris acoaptance ofthe condtons of s agreamat.

7. Exclusion of wamanties
‘Co-Operation afers an the Licsnses accepts the roduct as i’ CoOparation doss notwarrant Magic
‘Graphical Comprssion Sue 1.9 wil meot the Licansad' roquioments, nor wil perate unilamuptad, nor
error fee.

5. Lisbily
Wit the excapton of damag caused by wilfl o gross neglgence, nether Co-Oporation nor s distibulors
210 raspansiio for any damage whalsoaver which & puldown t o Uso of Magc Graphical Comprassion
S v19. Trsis vl wihout exceptin,incuding koss ofprofis,lst working tma, ost company.
formation or alher Irancia fasees 1 ary event ha tabity of Co-Oparation & Amtad t i purchase price.

9. Trislversion limitation
¥ you are nstaing a il version of Magic Graptical Compression Su V1.9, 1 fortidden b
* Instat ha tris version on a roducton server
*Disibutaor el n appication wih the il vrsion
+Dalas he ackfonal vialext that s added o e craated documents

10. Duration of agreement
s agreementis vaid or an indofita poriodof e Tha Liconse's ights as a user automatcally expro f
e coniions of s agreement &8 n any way vl In s evert i data sbrage mater and 3 coies
of Magic Graphical Comprassion Sue v119 10 o bo dostoyed.

signatures

Fany Do Moyer Coperation

B AbaUtDoCumEntVIeWer]

Document Viewer 2.26.1

Document Viewer.
Using poppler 0.10.5 (cairo)

© 1596-2007 The Evince authars

http://www.gnome. arg/projects/evince

< credits || picensze |

TIStart Presentation 3¢ Leave Fullscreen





modules/zend.form.element.checkbox.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Checkbox Element


Zend\Form\Element\Checkbox is meant to be paired with the Zend/Form/View/Helper/FormCheckbox for HTML inputs with type checkbox. This element adds an InArray validator to its input filter specification in order to validate on the server if the checkbox contains either the checked value or the unchecked value.



Basic Usage


This element automatically adds a "type" attribute of value "checkbox".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Form\Element;
use Zend\Form\Form;

$checkbox = new Element\Checkbox('checkbox');
$checkbox->setLabel('A checkbox');
$checkbox->setUseHiddenElement(true);
$checkbox->setCheckedValue("good");
$checkbox->setUncheckedValue("bad");

$form = new Form('my-form');
$form->add($checkbox);













Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element .



		
setOptions(array $options)


		Set options for an element of type Checkbox. Accepted options, in addition to the inherited options of Zend\Form\Element <zend.form.element.methods.set-options>` , are: "use_hidden_element", "checked_value" and "unchecked_value" , which call setUseHiddenElement, setCheckedValue and setUncheckedValue , respectively.









		
setUseHiddenElement(boolean $useHiddenElement)


		If set to true (which is default), the view helper will generate a hidden element that contains the unchecked value. Therefore, when using custom unchecked value, this option have to be set to true.









		
useHiddenElement()


		Return if a hidden element is generated.






		Return type:		boolean














		
setCheckedValue(string $checkedValue)


		Set the value to use when the checkbox is checked.









		
getCheckedValue()


		Return the value used when the checkbox is checked.






		Return type:		string














		
setUncheckedValue(string $uncheckedValue)


		Set the value to use when the checkbox is unchecked. For this to work, you must make sure that use_hidden_element is set to true.









		
getUncheckedValue()


		Return the value used when the checkbox is unchecked.






		Return type:		string














		
getInputSpecification()


		Returns a input filter specification, which includes a Zend\Validator\InArray to validate if the value is either checked value or unchecked value.






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Checkbox Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.containers.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Containers


Containers have methods for adding, retrieving, deleting and iterating pages. Containers implement the SPL [http://php.net/spl]
interfaces RecursiveIterator and Countable, meaning that a container can be iterated using the SPL
RecursiveIteratorIterator class.



Creating containers


Zend_Navigation_Container is abstract, and can not be instantiated directly. Use Zend_Navigation if you
want to instantiate a container.


Zend_Navigation can be constructed entirely empty, or take an array or a Zend_Config object with pages to
put in the container. Each page in the given array/config will eventually be passed to the addPage() method of
the container class, which means that each element in the array/config can be an array or a config object, or a
Zend_Navigation_Page instance.


Creating a container using an array


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166


		/*
 * Create a container from an array
 *
 * Each element in the array will be passed to
 * Zend_Navigation_Page::factory() when constructing.
 */
$container = new Zend_Navigation(array(
    array(
        'label' => 'Page 1',
        'id' => 'home-link',
        'uri' => '/'
    ),
    array(
        'label' => 'Zend',
        'uri' => 'http://www.zend-project.com/',
        'order' => 100
    ),
    array(
        'label' => 'Page 2',
        'controller' => 'page2',
        'pages' => array(
            array(
                'label' => 'Page 2.1',
                'action' => 'page2_1',
                'controller' => 'page2',
                'class' => 'special-one',
                'title' => 'This element has a special class',
                'active' => true
            ),
            array(
                'label' => 'Page 2.2',
                'action' => 'page2_2',
                'controller' => 'page2',
                'class' => 'special-two',
                'title' => 'This element has a special class too'
            )
        )
    ),
    array(
        'label' => 'Page 2 with params',
        'action' => 'index',
        'controller' => 'page2',
        // specify a param or two
        'params' => array(
            'format' => 'json',
            'foo' => 'bar'
        )
    ),
    array(
        'label' => 'Page 2 with params and a route',
        'action' => 'index',
        'controller' => 'page2',
        // specify a route name and a param for the route
        'route' => 'nav-route-example',
        'params' => array(
            'format' => 'json'
        )
    ),
    array(
        'label' => 'Page 3',
        'action' => 'index',
        'controller' => 'index',
        'module' => 'mymodule',
        'reset_params' => false
    ),
    array(
        'label' => 'Page 4',
        'uri' => '#',
        'pages' => array(
            array(
                'label' => 'Page 4.1',
                'uri' => '/page4',
                'title' => 'Page 4 using uri',
                'pages' => array(
                    array(
                        'label' => 'Page 4.1.1',
                        'title' => 'Page 4 using mvc params',
                        'action' => 'index',
                        'controller' => 'page4',
                        // let's say this page is active
                        'active' => '1'
                    )
                )
            )
        )
    ),
    array(
        'label' => 'Page 0?',
        'uri' => '/setting/the/order/option',
        // setting order to -1 should make it appear first
        'order' => -1
    ),
    array(
        'label' => 'Page 5',
        'uri' => '/',
        // this page should not be visible
        'visible' => false,
        'pages' => array(
            array(
                'label' => 'Page 5.1',
                'uri' => '#',
                'pages' => array(
                    array(
                        'label' => 'Page 5.1.1',
                        'uri' => '#',
                        'pages' => array(
                            array(
                                'label' => 'Page 5.1.2',
                                'uri' => '#',
                                // let's say this page is active
                                'active' => true
                            )
                        )
                    )
                )
            )
        )
    ),
    array(
        'label' => 'ACL page 1 (guest)',
        'uri' => '#acl-guest',
        'resource' => 'nav-guest',
        'pages' => array(
            array(
                'label' => 'ACL page 1.1 (foo)',
                'uri' => '#acl-foo',
                'resource' => 'nav-foo'
            ),
            array(
                'label' => 'ACL page 1.2 (bar)',
                'uri' => '#acl-bar',
                'resource' => 'nav-bar'
            ),
            array(
                'label' => 'ACL page 1.3 (baz)',
                'uri' => '#acl-baz',
                'resource' => 'nav-baz'
            ),
            array(
                'label' => 'ACL page 1.4 (bat)',
                'uri' => '#acl-bat',
                'resource' => 'nav-bat'
            )
        )
    ),
    array(
        'label' => 'ACL page 2 (member)',
        'uri' => '#acl-member',
        'resource' => 'nav-member'
    ),
    array(
        'label' => 'ACL page 3 (admin',
        'uri' => '#acl-admin',
        'resource' => 'nav-admin',
        'pages' => array(
            array(
                'label' => 'ACL page 3.1 (nothing)',
                'uri' => '#acl-nada'
            )
        )
    ),
    array(
        'label' => 'Zend Framework',
        'route' => 'zf-route'
    )
));










Creating a container using a config object


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189


		/* CONTENTS OF /path/to/navigation.xml:
<?xml version="1.0" encoding="UTF-8"?>
<config>
    <nav>

        <zend>
            <label>Zend</label>
            <uri>http://www.zend-project.com/</uri>
            <order>100</order>
        </zend>

        <page1>
            <label>Page 1</label>
            <uri>page1</uri>
            <pages>

                <page1_1>
                    <label>Page 1.1</label>
                    <uri>page1/page1_1</uri>
                </page1_1>

            </pages>
        </page1>

        <page2>
            <label>Page 2</label>
            <uri>page2</uri>
            <pages>

                <page2_1>
                    <label>Page 2.1</label>
                    <uri>page2/page2_1</uri>
                </page2_1>

                <page2_2>
                    <label>Page 2.2</label>
                    <uri>page2/page2_2</uri>
                    <pages>

                        <page2_2_1>
                            <label>Page 2.2.1</label>
                            <uri>page2/page2_2/page2_2_1</uri>
                        </page2_2_1>

                        <page2_2_2>
                            <label>Page 2.2.2</label>
                            <uri>page2/page2_2/page2_2_2</uri>
                            <active>1</active>
                        </page2_2_2>

                    </pages>
                </page2_2>

                <page2_3>
                    <label>Page 2.3</label>
                    <uri>page2/page2_3</uri>
                    <pages>

                        <page2_3_1>
                            <label>Page 2.3.1</label>
                            <uri>page2/page2_3/page2_3_1</uri>
                        </page2_3_1>

                        <page2_3_2>
                            <label>Page 2.3.2</label>
                            <uri>page2/page2_3/page2_3_2</uri>
                            <visible>0</visible>
                            <pages>

                                    <page2_3_2_1>
                                        <label>Page 2.3.2.1</label>
                                        <uri>page2/page2_3/page2_3_2/1</uri>
                                        <active>1</active>
                                    </page2_3_2_1>

                                    <page2_3_2_2>
                                        <label>Page 2.3.2.2</label>
                                        <uri>page2/page2_3/page2_3_2/2</uri>
                                        <active>1</active>

                                        <pages>
                                            <page_2_3_2_2_1>
                                                <label>Ignore</label>
                                                <uri>#</uri>
                                                <active>1</active>
                                            </page_2_3_2_2_1>
                                        </pages>
                                    </page2_3_2_2>

                            </pages>
                        </page2_3_2>

                        <page2_3_3>
                            <label>Page 2.3.3</label>
                            <uri>page2/page2_3/page2_3_3</uri>
                            <resource>admin</resource>
                            <pages>

                                    <page2_3_3_1>
                                        <label>Page 2.3.3.1</label>
                                        <uri>page2/page2_3/page2_3_3/1</uri>
                                        <active>1</active>
                                    </page2_3_3_1>

                                    <page2_3_3_2>
                                        <label>Page 2.3.3.2</label>
                                        <uri>page2/page2_3/page2_3_3/2</uri>
                                        <resource>guest</resource>
                                        <active>1</active>
                                    </page2_3_3_2>

                            </pages>
                        </page2_3_3>

                    </pages>
                </page2_3>

            </pages>
        </page2>

        <page3>
            <label>Page 3</label>
            <uri>page3</uri>
            <pages>

                <page3_1>
                    <label>Page 3.1</label>
                    <uri>page3/page3_1</uri>
                    <resource>guest</resource>
                </page3_1>

                <page3_2>
                    <label>Page 3.2</label>
                    <uri>page3/page3_2</uri>
                    <resource>member</resource>
                    <pages>

                        <page3_2_1>
                            <label>Page 3.2.1</label>
                            <uri>page3/page3_2/page3_2_1</uri>
                        </page3_2_1>

                        <page3_2_2>
                            <label>Page 3.2.2</label>
                            <uri>page3/page3_2/page3_2_2</uri>
                            <resource>admin</resource>
                        </page3_2_2>

                    </pages>
                </page3_2>

                <page3_3>
                    <label>Page 3.3</label>
                    <uri>page3/page3_3</uri>
                    <resource>special</resource>
                    <pages>

                        <page3_3_1>
                            <label>Page 3.3.1</label>
                            <uri>page3/page3_3/page3_3_1</uri>
                            <visible>0</visible>
                        </page3_3_1>

                        <page3_3_2>
                            <label>Page 3.3.2</label>
                            <uri>page3/page3_3/page3_3_2</uri>
                            <resource>admin</resource>
                        </page3_3_2>

                    </pages>
                </page3_3>

            </pages>
        </page3>

        <home>
            <label>Home</label>
            <order>-100</order>
            <module>default</module>
            <controller>index</controller>
            <action>index</action>
        </home>

    </nav>
</config>
 */

$config = new Zend_Config_Xml('/path/to/navigation.xml', 'nav');
$container = new Zend_Navigation($config);













Adding pages


Adding pages to a container can be done with the methods addPage(), addPages(), or setPages(). See
examples below for explanation.


Adding pages to a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		// create container
$container = new Zend_Navigation();

// add page by giving a page instance
$container->addPage(Zend_Navigation_Page::factory(array(
    'uri' => 'http://www.example.com/'
)))

// add page by giving an array
$container->addPage(array(
    'uri' => 'http://www.example.com/'
)))

// add page by giving a config object
$container->addPage(new Zend_Config(array(
    'uri' => 'http://www.example.com/'
)))

$pages = array(
    array(
        'label'  => 'Save'
        'action' => 'save',
    ),
    array(
        'label' =>  'Delete',
        'action' => 'delete'
    )
);

// add two pages
$container->addPages($pages);

// remove existing pages and add the given pages
$container->setPages($pages);













Removing pages


Removing pages can be done with removePage() or removePages(). The first method accepts a an instance of a
page, or an integer. The integer corresponds to the order a page has. The latter method will remove all pages
in the container.


Removing pages from a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		$container = new Zend_Navigation(array(
    array(
        'label'  => 'Page 1',
        'action' => 'page1'
    ),
    array(
        'label'  => 'Page 2',
        'action' => 'page2',
        'order'  => 200
    ),
    array(
        'label'  => 'Page 3',
        'action' => 'page3'
    )
));

// remove page by implicit page order
$container->removePage(0);      // removes Page 1

// remove page by instance
$page3 = $container->findOneByAction('page3');
$container->removePage($page3); // removes Page 3

// remove page by explicit page order
$container->removePage(200);    // removes Page 2

// remove all pages
$container->removePages();      // removes all pages













Finding pages


Containers have finder methods for retrieving pages. They are findOneBy($property, $value),
findAllBy($property, $value), and findBy($property, $value, $all = false). Those methods will recursively
search the container for pages matching the given $page->$property == $value. The first method,
findOneBy(), will return a single page matching the property with the given value, or NULL if it cannot be
found. The second method will return all pages with a property matching the given value. The third method will call
one of the two former methods depending on the $all flag.


The finder methods can also be used magically by appending the property name to findBy, findOneBy, or
findAllBy, e.g. findOneByLabel('Home') to return the first matching page with label ‘Home’. Other
combinations are findByLabel(...), findOnyByTitle(...), findAllByController(...), etc. Finder methods
also work on custom properties, such as findByFoo('bar').


Finding pages in a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


		$container = new Zend_Navigation(array(
    array(
        'label' => 'Page 1',
        'uri'   => 'page-1',
        'foo'   => 'bar',
        'pages' => array(
            array(
                'label' => 'Page 1.1',
                'uri'   => 'page-1.1',
                'foo'   => 'bar',
            ),
            array(
                'label' => 'Page 1.2',
                'uri'   => 'page-1.2',
                'class' => 'my-class',
            ),
            array(
                'type'   => 'uri',
                'label'  => 'Page 1.3',
                'uri'    => 'page-1.3',
                'action' => 'about'
            )
        )
    ),
    array(
        'label'      => 'Page 2',
        'id'         => 'page_2_and_3',
        'class'      => 'my-class',
        'module'     => 'page2',
        'controller' => 'index',
        'action'     => 'page1'
    ),
    array(
        'label'      => 'Page 3',
        'id'         => 'page_2_and_3',
        'module'     => 'page3',
        'controller' => 'index'
    )
));

// The 'id' is not required to be unique, but be aware that
// having two pages with the same id will render the same id attribute
// in menus and breadcrumbs.
$found = $container->findBy('id',
                            'page_2_and_3');      // returns Page 2
$found = $container->findOneBy('id',
                               'page_2_and_3');   // returns Page 2
$found = $container->findBy('id',
                            'page_2_and_3',
                            true);                // returns Page 2 and Page 3
$found = $container->findById('page_2_and_3');    // returns Page 2
$found = $container->findOneById('page_2_and_3'); // returns Page 2
$found = $container->findAllById('page_2_and_3'); // returns Page 2 and Page 3

// Find all matching CSS class my-class
$found = $container->findAllBy('class',
                               'my-class');       // returns Page 1.2 and Page 2
$found = $container->findAllByClass('my-class');  // returns Page 1.2 and Page 2

// Find first matching CSS class my-class
$found = $container->findOneByClass('my-class');  // returns Page 1.2

// Find all matching CSS class non-existant
$found = $container->findAllByClass('non-existant'); // returns array()

// Find first matching CSS class non-existant
$found = $container->findOneByClass('non-existant'); // returns null

// Find all pages with custom property 'foo' = 'bar'
$found = $container->findAllBy('foo', 'bar'); // returns Page 1 and Page 1.1

// To achieve the same magically, 'foo' must be in lowercase.
// This is because 'foo' is a custom property, and thus the
// property name is not normalized to 'Foo'
$found = $container->findAllByfoo('bar');

// Find all with controller = 'index'
$found = $container->findAllByController('index'); // returns Page 2 and Page 3













Iterating containers


Zend_Navigation_Container implements RecursiveIteratorIterator, and can be iterated using any Iterator
class. To iterate a container recursively, use the RecursiveIteratorIterator class.


Iterating a container


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		/*
 * Create a container from an array
 */
$container = new Zend_Navigation(array(
    array(
        'label' => 'Page 1',
        'uri'   => '#'
    ),
    array(
        'label' => 'Page 2',
        'uri'   => '#',
        'pages' => array(
            array(
                'label' => 'Page 2.1',
                'uri'   => '#'
            ),
            array(
                'label' => 'Page 2.2',
                'uri'   => '#'
            )
        )
    )
    array(
        'label' => 'Page 3',
        'uri'   => '#'
    )
));

// Iterate flat using regular foreach:
// Output: Page 1, Page 2, Page 3
foreach ($container as $page) {
    echo $page->label;
}

// Iterate recursively using RecursiveIteratorIterator
$it = new RecursiveIteratorIterator(
        $container, RecursiveIteratorIterator::SELF_FIRST);

// Output: Page 1, Page 2, Page 2.1, Page 2.2, Page 3
foreach ($it as $page) {
    echo $page->label;
}













Other operations


The method hasPage(Zend_Navigation_Page $page) checks if the container has the given page. The method
hasPages() checks if there are any pages in the container, and is equivalent to count($container) > 1.


The toArray() method converts the container and the pages in it to an array. This can be useful for serializing
and debugging.


Converting a container to an array


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108


		$container = new Zend_Navigation(array(
    array(
        'label' => 'Page 1',
        'uri'   => '#'
    ),
    array(
        'label' => 'Page 2',
        'uri'   => '#',
        'pages' => array(
            array(
                'label' => 'Page 2.1',
                'uri'   => '#'
            ),
            array(
                'label' => 'Page 2.2',
               'uri'   => '#'
            )
        )
    )
));

var_dump($container->toArray());

/* Output:
array(2) {
  [0]=> array(15) {
    ["label"]=> string(6) "Page 1"
    ["id"]=> NULL
    ["class"]=> NULL
    ["title"]=> NULL
    ["target"]=> NULL
    ["rel"]=> array(0) {
    }
    ["rev"]=> array(0) {
    }
    ["order"]=> NULL
    ["resource"]=> NULL
    ["privilege"]=> NULL
    ["active"]=> bool(false)
    ["visible"]=> bool(true)
    ["type"]=> string(23) "Zend_Navigation_Page_Uri"
    ["pages"]=> array(0) {
    }
    ["uri"]=> string(1) "#"
  }
  [1]=> array(15) {
    ["label"]=> string(6) "Page 2"
    ["id"]=> NULL
    ["class"]=> NULL
    ["title"]=> NULL
    ["target"]=> NULL
    ["rel"]=> array(0) {
    }
    ["rev"]=> array(0) {
    }
    ["order"]=> NULL
    ["resource"]=> NULL
    ["privilege"]=> NULL
    ["active"]=> bool(false)
    ["visible"]=> bool(true)
    ["type"]=> string(23) "Zend_Navigation_Page_Uri"
    ["pages"]=> array(2) {
      [0]=> array(15) {
        ["label"]=> string(8) "Page 2.1"
        ["id"]=> NULL
        ["class"]=> NULL
        ["title"]=> NULL
        ["target"]=> NULL
        ["rel"]=> array(0) {
        }
        ["rev"]=> array(0) {
        }
        ["order"]=> NULL
        ["resource"]=> NULL
        ["privilege"]=> NULL
        ["active"]=> bool(false)
        ["visible"]=> bool(true)
        ["type"]=> string(23) "Zend_Navigation_Page_Uri"
        ["pages"]=> array(0) {
        }
        ["uri"]=> string(1) "#"
      }
      [1]=>
      array(15) {
        ["label"]=> string(8) "Page 2.2"
        ["id"]=> NULL
        ["class"]=> NULL
        ["title"]=> NULL
        ["target"]=> NULL
        ["rel"]=> array(0) {
        }
        ["rev"]=> array(0) {
        }
        ["order"]=> NULL
        ["resource"]=> NULL
        ["privilege"]=> NULL
        ["active"]=> bool(false)
        ["visible"]=> bool(true)
        ["type"]=> string(23) "Zend_Navigation_Page_Uri"
        ["pages"]=> array(0) {
        }
        ["uri"]=> string(1) "#"
      }
    }
    ["uri"]=> string(1) "#"
  }
}
*/
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Containers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.class-map-autoloader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The ClassMapAutoloader



Overview


The ClassMapAutoloader is designed with performance in mind. The idea behind it is simple: when asked to load a
class, see if it’s in the map, and, if so, load the file associated with the class in the map. This avoids
unnecessary filesystem operations, and can also ensure the autoloader “plays nice” with opcode caches and PHP’s
realpath cache.


In order to use the ClassMapAutoloader, you first need class maps. Zend Framework ships with a class map per
component or, if you grabbed the entire ZF distribution, a class map for the entire Zend Framework. These maps are
typically in a file named .classmap.php within either the “Zend” directory, or an individual component’s source
directory.


Zend Framework also provides a tool for generating these class maps; you can find it in
bin/classmap_generator.php of the distribution. Full documentation of this too is provided in :ref:`
<zend.loader.classmap-generator>`.





Quick Start


The first step is to generate a class map file. You may run this over any directory containing source code anywhere
underneath it.


		1


		php classmap_generator.php Some/Directory/










This will create a file named Some/Directory/.classmap.php, which is a PHP file returning an associative array
that represents the class map.


Within your code, you will now instantiate the ClassMapAutoloader, and provide it the location of the map.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// This example assumes ZF is on your include_path.
// You could also load the autoloader class from a path relative to the
// current script, or via an absolute path.
require_once 'Zend/Loader/ClassMapAutoloader.php';
$loader = new Zend\Loader\ClassMapAutoloader();

// Register the class map:
$loader->registerAutoloadMap('Some/Directory/.classmap.php');

// Register with spl_autoload:
$loader->register();










At this point, you may now use any classes referenced in your class map.





Configuration Options


The ClassMapAutoloader defines the following options.


ClassMapAutoloader Options



		$options


		The ClassMapAutoloader expects an array of options, where each option is either a filename referencing a
class map, or an associative array of class name/filename pairs.


As an example:


		1
2
3
4
5
6
7
8


		// Configuration defining both a file-based class map, and an array map
$config = array(
    __DIR__ . '/library/.classmap.php', // file-based class map
    array(                              // array class map
        'Application\Bootstrap' => __DIR__ . '/application/Bootstrap.php',
        'Test\Bootstrap'        => __DIR__ . '/tests/Bootstrap.php',
    ),
);



















Available Methods



		__construct


		Initialize and configure the object
__construct($options = null)


Constructor
Used during instantiation of the object. Optionally, pass options, which may be either an array or
Traversable object; this argument will be passed to setOptions().









		setOptions


		Configure the autoloader
setOptions($options)


setOptions()
Configures the state of the autoloader, including registering class maps. Expects an array or Traversable
object; the argument will be passed to registerAutoloadMaps().









		registerAutoloadMap


		Register a class map
registerAutoloadMap($map)


registerAutoloadMap()
Registers a class map with the autoloader. $map may be either a string referencing a PHP script that returns
a class map, or an array defining a class map.


More than one class map may be registered; each will be merged with the previous, meaning it’s possible for a
later class map to overwrite entries from a previously registered map.









		registerAutoloadMaps


		Register multiple class maps at once
registerAutoloadMaps($maps)


registerAutoloadMaps()
Register multiple class maps with the autoloader. Expects either an array or Traversable object; it then
iterates over the argument and passes each value to registerAutoloadMap().









		getAutoloadMap


		Retrieve the current class map
getAutoloadMap()


getAutoloadMap()
Retrieves the state of the current class map; the return value is simply an array.









		autoload


		Attempt to load a class.
autoload($class)


autoload()
Attempts to load the class specified. Returns a boolean false on failure, or a string indicating the class
loaded on success.









		register


		Register with spl_autoload.
register()


register()
Registers the autoload() method of the current instance with spl_autoload_register().











Examples


Using configuration to seed ClassMapAutoloader


Often, you will want to configure your ClassMapAutoloader. These values may come from a configuration file, a
cache (such as ShMem or memcached), or a simple PHP array. The following is an example of a PHP array that could be
used to configure the autoloader:


		1
2
3
4
5
6
7
8


		// Configuration defining both a file-based class map, and an array map
$config = array(
APPLICATION_PATH . '/../library/.classmap.php', // file-based class map
    array(                              // array class map
        'Application\Bootstrap' => APPLICATION_PATH . '/Bootstrap.php',
        'Test\Bootstrap'        => APPLICATION_PATH . '/../tests/Bootstrap.php',
    ),
);










An eqivalent INI style configuration might look like this:


		1
2
3


		classmap.library = APPLICATION_PATH "/../library/.classmap.php"
classmap.resources.Application\Bootstrap = APPLICATION_PATH "/Bootstrap.php"
classmap.resources.Test\Bootstrap = APPLICATION_PATH "/../tests/Bootstrap.php"










Once you have your configuration, you can pass it either to the constructor of the ClassMapAutoloader, to its
setOptions() method, or to registerAutoloadMaps().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		/* The following are all equivalent */

// To the constructor:
$loader = new Zend\Loader\ClassMapAutoloader($config);

// To setOptions():
$loader = new Zend\Loader\ClassMapAutoloader();
$loader->setOptions($config);

// To registerAutoloadMaps():
$loader = new Zend\Loader\ClassMapAutoloader();
$loader->registerAutoloadMaps($config);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The ClassMapAutoloader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.smtp-authentication.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
SMTP Authentication


Zend_Mail supports the use of SMTP authentication, which can be enabled be passing the ‘auth’ parameter to the
configuration array in the Zend_Mail_Transport_Smtp constructor. The available built-in authentication methods
are PLAIN, LOGIN and CRAM-MD5 which all expect a ‘username’ and ‘password’ value in the configuration array.


Enabling authentication within Zend_Mail_Transport_Smtp


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$config = array('auth' => 'login',
                'username' => 'myusername',
                'password' => 'password');

$transport = new Zend_Mail_Transport_Smtp('mail.server.com', $config);

$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.');
$mail->setFrom('sender@test.com', 'Some Sender');
$mail->addTo('recipient@test.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send($transport);











Note


Authentication types


The authentication type is case-insensitive but has no punctuation. E.g. to use CRAM-MD5 you would pass ‘auth’
=> ‘crammd5’ in the Zend_Mail_Transport_Smtp constructor.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                SMTP Authentication
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.re-captcha.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_ReCaptcha



Introduction


Zend_Service_ReCaptcha provides a client for the reCAPTCHA Web Service [http://recaptcha.net/]. Per the reCAPTCHA site, “reCAPTCHA
is a free CAPTCHA service that helps to digitize books.” Each reCAPTCHA requires the user to input two words, the
first of which is the actual CAPTCHA, and the second of which is a word from some scanned text that Optical
Character Recognition (OCR) software has been unable to identify. The assumption is that if a user correctly
provides the first word, the second is likely correctly entered as well, and can be used to improve OCR software
for digitizing books.


In order to use the reCAPTCHA service, you will need to sign up for an account [http://recaptcha.net/whyrecaptcha.html] and register one or more domains
with the service in order to generate public and private keys.





Simplest use


Instantiate a Zend_Service_ReCaptcha object, passing it your public and private keys:


Creating an instance of the reCAPTCHA service


		1


		$recaptcha = new Zend_Service_ReCaptcha($pubKey, $privKey);










To render the reCAPTCHA, simply call the getHTML() method:


Displaying the reCAPTCHA


		1


		echo $recaptcha->getHTML();










When the form is submitted, you should receive two fields, ‘recaptcha_challenge_field’ and
‘recaptcha_response_field’. Pass these to the reCAPTCHA object’s verify() method:


Verifying the form fields


		1
2
3
4


		$result = $recaptcha->verify(
    $_POST['recaptcha_challenge_field'],
    $_POST['recaptcha_response_field']
);










Once you have the result, test against it to see if it is valid. The result is a
Zend_Service_ReCaptcha_Response object, which provides an isValid() method.


Validating the reCAPTCHA


		1
2
3


		if (!$result->isValid()) {
    // Failed validation
}










It is even simpler to use the reCAPTCHA Zend_Captcha adapter, or to
use that adapter as a backend for the CAPTCHA form element. In each
case, the details of rendering and validating the reCAPTCHA are automated for you.





Hiding email addresses


Zend_Service_ReCaptcha_MailHide can be used to hide email addresses. It will replace a part of an email address
with a link that opens a popup window with a reCAPTCHA challenge. Solving the challenge will reveal the complete
email address.


In order to use this component you will need an account [http://recaptcha.net/whyrecaptcha.html] to generate public and private keys for the mailhide
API.


Using the mail hide component


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// The mail address we want to hide
$mail = 'mail@example.com';

// Create an instance of the mailhide component, passing it your public
// and private keys, as well as the mail address you want to hide
$mailHide = new Zend_Service_ReCaptcha_Mailhide();
$mailHide->setPublicKey($pubKey);
$mailHide->setPrivateKey($privKey);
$mailHide->setEmail($mail);

// Display it
print($mailHide);










The example above will display “m...@example.com” where ”...” has a link that opens up a popup window with a
reCAPTCHA challenge.


The public key, private key, and the email address can also be specified in the constructor of the class. A fourth
argument also exists that enables you to set some options for the component. The available options are listed in
the following table:




Zend_Service_ReCaptcha_MailHide options







		Option
		Description
		Expected Values
		Default Value





		linkTitle
		The title attribute of the link
		string
		‘Reveal this e=mail address’



		linkHiddenText
		The text that includes the popup link
		string
		‘...’



		popupWidth
		The width of the popup window
		int
		500



		popupHeight
		The height of the popup window
		int
		300











The configuration options can be set by sending them as the fourth argument to the constructor or by calling
setOptions($options), which takes an associative array or an instance of Zend_Config.


Generating many hidden email addresses


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// Create an instance of the mailhide component, passing it your public
// and private keys, as well as some configuration options
$mailHide = new Zend_Service_ReCaptcha_Mailhide();
$mailHide->setPublicKey($pubKey);
$mailHide->setPrivateKey($privKey);
$mailHide->setOptions(array(
    'linkTitle' => 'Click me',
    'linkHiddenText' => '+++++',
));

// The mail addresses we want to hide
$mailAddresses = array(
    'mail@example.com',
    'johndoe@example.com',
    'janedoe@example.com',
);

foreach ($mailAddresses as $mail) {
    $mailHide->setEmail($mail);
    print($mailHide);
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_ReCaptcha
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/documentation.standard.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework Documentation Standard



Overview



Scope


This document provides guidelines for creation of the end-user documentation found within Zend Framework. It is
intended as a guide to Zend Framework contributors, who must write documentation as part of component
contributions, as well as to documentation translators. The standards contained herein are intended to ease
translation of documentation, minimize visual and stylistic differences between different documentation files, and
make finding changes in documentation easier with diff tools.


You may adopt and/or modify these standards in accordance with the terms of our license [http://framework.zend.com/license].


Topics covered in Zend Framework’s documentation standards include documentation file formatting and
recommendations for documentation quality.







Documentation File Formatting



XML Tags


Each manual file must include the following XML declarations at the top of the file:


		1
2


		<?xml version="1.0" encoding="UTF-8"?>
<!-- Reviewed: no -->










XML files from translated languages must also include a revision tag containing the revision of the corresponding
English-language file the translation was based on.


		1
2
3


		<?xml version="1.0" encoding="UTF-8"?>
<!-- EN-Revision: 14978 -->
<!-- Reviewed: no -->













Maximum Line Length


The maximum line length, including tags, attributes, and indentation, is not to exceed 100 characters. There is
only one exception to this rule: attribute and value pairs are allowed to exceed the 100 chars as they are not
allowed to be separated.





Indentation


Indentation should consist of 4 spaces. Tabs are not allowed.


Tags which are at the same level must have the same indentation.


		1
2
3
4
5


		<section>
</section>

<section>
</section>










Tags which are one level under the previous tag must be indented with 4 additional spaces.


		1
2
3
4


		<section>
    <section>
    </section>
</section>










Multiple block tags within the same line are not allowed; multiple inline tags are allowed, however.


		1
2
3
4
5
6
7
8


		<!-- NOT ALLOWED: -->
<section><section>
</section></section>

<!-- ALLOWED -->
<para>
    <classname>Zend_Magic</classname> does not exist. <classname>Zend\Permissions\Acl</classname> does.
</para>













Line Termination


Line termination follows the Unix text file convention. Lines must end with a single linefeed (LF) character.
Linefeed characters are represented as ordinal 10, or hexadecimal 0x0A.


Note: Do not use carriage returns (CR) as is the convention in Apple OS’s (0x0D) or the carriage return -
linefeed combination (CRLF) as is standard for the Windows OS (0x0D, 0x0A).





Empty tags


Empty tags are not allowed; all tags must contain text or child tags.


		1
2
3
4
5
6
7


		<!-- NOT ALLOWED -->
<para>
    Some text. <link></link>
</para>

<para>
</para>













Usage of whitespace within documents





Whitespace within tags


Opening block tags should have no whitespace immediately following them other than line breaks (and indentation on
the following line).


		1
2
3


		<!-- NOT ALLOWED -->
<section>WHITESPACE
</section>










Opening inline tags should have no whitespace immediately following them.


		1
2
3
4
5


		<!-- NOT ALLOWED -->
This is the class <classname> Zend_Class</classname>.

<!-- OK -->
This is the class <classname>Zend_Class</classname>.










Closing block tags may be preceded by whitespace equivalent to the current indentation level, but no more than that
amount.


		1
2
3
4
5
6
7


		<!-- NOT ALLOWED -->
    <section>
     </section>

<!-- OK -->
    <section>
    </section>










Closing inline tags must not be preceded by any whitespace.


		1
2
3
4
5


		<!-- NOT ALLOWED -->
This is the class <classname>Zend_Class </classname>

<!-- OK -->
This is the class <classname>Zend_Class</classname>













Multiple line breaks


Multiple line breaks within or between tags are not allowed.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		<!-- NOT ALLOWED -->
<para>
    Some text...

    ... and more text
</para>


<para>
    Another paragraph.
</para>

<!-- OK -->
<para>
    Some text...
    ... and more text
</para>

<para>
    Another paragraph.
</para>













Separation between tags


Tags at the same level must be separated by an empty line to improve readability.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		<!-- NOT ALLOWED -->
<para>
    Some text...
</para>
<para>
    More text...
</para>

<!-- OK -->
<para>
    Some text...
</para>

<para>
    More text...
</para>










The first child tag should open directly below its parent, with no empty line between them; the last child tag
should close directly before the closing tag of its parent.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		<!-- NOT ALLOWED -->
<section>

    <section>
    </section>

    <section>
    </section>

    <section>
    </section>

</section>

<!-- OK -->
<section>
    <section>
    </section>

    <section>
    </section>

    <section>
    </section>
</section>













Program Listings


The opening <programlisting> tag must indicate the appropriate “language” attribute and be indented at the same
level as its sibling blocks.


<para>Sibling paragraph.</para>

<programlisting language="php"><![CDATA[




CDATA should be used around all program listings.


<programlisting> sections must not add linebreaks or whitespace at the beginning or end of the section, as
these are then represented in the final output.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<!-- NOT ALLOWED -->
<programlisting language="php"><![CDATA[

$render = "xxx";

]]></programlisting>

<!-- OK -->
<programlisting language="php"><![CDATA[
$render = "xxx";
]]></programlisting>










Ending CDATA and <programlisting> tags should be on the same line, without any indentation.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		<!-- NOT ALLOWED -->
    <programlisting language="php"><![CDATA[
$render = "xxx";
]]>
    </programlisting>

<!-- NOT ALLOWED -->
    <programlisting language="php"><![CDATA[
$render = "xxx";
    ]]></programlisting>

<!-- OK -->
    <programlisting language="php"><![CDATA[
$render = "xxx";
]]></programlisting>










The <programlisting> tag should contain the “language” attribute with a value appropriate to the contents of
the program listing. Typical values include “css”, “html”, “ini”, “javascript”, “php”, “text”, and “xml”.


<!-- PHP -->
<programlisting language="php"><![CDATA[

<!-- Javascript -->
<programlisting language="javascript"><![CDATA[

<!-- XML -->
<programlisting language="xml"><![CDATA[




For program listings containing only PHP code, PHP tags (e.g., “<?php”, ”?>”) are not required, and should not
be used. They simply clutter the narrative, and are implied by the use of the <programlisting> tag.


<!-- NOT ALLOWED -->
<programlisting language="php"<![CDATA[<?php
    // ...
?>]]></programlisting>

<programlisting language="php"<![CDATA[
<?php
    // ...
?>
]]></programlisting>




Line lengths within program listings should follow the coding standards recommendations.


Refrain from using require_once(), require(), include_once(), and include() calls within PHP
listings. They simply clutter the narrative, and are largely obviated when using an autoloader. Use them only when
they are essential to the example.



Note


Never use short tags


Short tags (e.g., “<?”, “<?=”) should never be used within programlisting or the narrative of a document.







Notes on specific inline tags





classname


The tag <classname> must be used each time a class name is represented by itself; it should not be used when
combined with a method name, variable name, or constant, and no other content is allowed within the tag.


		1
2
3


		<para>
    The class <classname>Zend_Class</classname>.
</para>













varname


Variables must be wrapped in the <varname> tag. Variables must be written using the “$” sigil. No other content
is allowed within this tag, unless a class name is used, which indicates a class variable.


		1
2
3
4


		<para>
    The variable <varname>$var</varname> and the class variable
    <varname>Zend_Class::$var</varname>.
</para>













methodname


Methods must be wrapped in the <methodname> tag. Methods must either include the full method signature or at
the least a pair of closing parentheses (e.g., “()”). No other content is allowed within this tag, unless a class
name is used, which indicates a class method.


		1
2
3
4
5


		<para>
    The method <methodname>foo()</methodname> and the class method
    <methodname>Zend_Class::foo()</methodname>. A method with a full signature:
    <methodname>foo($bar, $baz)</methodname>
</para>













constant


Use the <constant> tag when denoting constants. Constants must be written in UPPERCASE. No other content is
allowed within this tag, unless a class name is used, which indicates a class constant.


		1
2
3
4


		<para>
    The constant <constant>FOO</constant> and the class constant
    <constant>Zend_Class::FOO</constant>.
</para>













filename


Filenames and paths must be wrapped in the <filename> tag. No other content is allowed in this tag.


		1
2
3


		<para>
    The filename <filename>application/Bootstrap.php</filename>.
</para>













command


Commands, shell scripts, and program calls must be wrapped in the <command> tag. If the command includes
arguments, these should also be included within the tag.


		1
2
3


		<para>
    Execute <command>zf.sh create project</command>.
</para>













code


Usage of the <code> tag is discouraged, in favor of the other inline tasks discussed previously.





Notes on specific block tags





title


The <title> tag is not allowed to hold other tags.


		1
2
3
4
5


		<!-- NOT ALLOWED -->
<title>Using <classname>Zend_Class</classname></title>

<!-- OK -->
<title>Using Zend_Class</title>















Recommendations



Use editors without autoformatting or with configurable formatting


The style guidelines were written in large part to assist translators in recognizing the lines that have changed
using normal diff tools.


Many formal XML editors autoformat existing and new documents. Often, this formatting either does not strictly
follow the docbook standard, or does not follow the standards outlined in this document. As examples, we have seen
them erase the CDATA tags, change 4 space separation to tabs or 2 spaces, etc. Such changes can often make
identification of actual content changes difficult for translators.


If possible, configure your editor’s formatting settings such that they follow the guidelines outlined in this
document. If you cannot do so, please disable autoformatting, or find a different tool that allows such
configurability.





Use Images


Good images and diagrams can improve readability and comprehension. Use them whenever they will assist in these
goals. Images should be placed in the documentation/manual/en/figures/ directory, and be named after the
section identifier in which they occur.





Use Case Examples


Look for good use cases submitted by the community, especially those posted in proposal comments or on one of the
mailing lists. Examples often illustrate usage far better than the narrative does.


When writing your examples for inclusion in the manual, follow all coding standards and documentation standards.





Use Links


Link to other sections of the manual or to external sources instead of recreating documentation.


Linking to other sections of the manual may be done using the <link> tag (to which you must provide link text).


		1
2
3
4
5


		<para>
    "Link" links to a section, using descriptive text: <link
        linkend="doc-standard.recommendations.links">documentation on
        links</link>.
</para>










To link to an external resource, use the <link> tag with the “xmlns:xlink” and “xlink:href” attributes:


		1
2
3
4


		<para>
    The <link xmlns:xlink="http://www.w3.org/1999/xlink"
        xlink:href="http://framework.zend.com/">Zend Framework site</link>.
</para>


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework Documentation Standard
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.db.result-set.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\ResultSet


Zend\Db\ResultSet is a sub-component of Zend\Db for abstracting the iteration of rowset producing queries.
While data sources for this can be anything that is iterable, generally a
Zend\Db\Adpater\Driver\ResultInterface based object is the primary source for retrieving data.


Zend\Db\ResultSet‘s must implement the Zend\Db\ResultSet\ResultSetInterface and all sub-components of
Zend\Db that return a ResultSet as part of their API will assume an instance of a ResultSetInterface should be
returned. In most casts, the Prototype pattern will be used by consuming object to clone a prototype of a ResultSet
and return a specialized ResultSet with a specific data source injected. The interface of ResultSetInterface looks
like this:


		1
2
3
4
5


		interface ResultSetInterface extends \Traversable, \Countable
{
    public function initialize($dataSource);
    public function getFieldCount();
}











Quickstart


Zend\Db\ResultSet\ResultSet is the most basic form of a ResultSet object that will expose each row as either an
ArrayObject-like object or an array of row data.  By default, Zend\Db\Adapter\Adapter will use a prototypical
Zend\Db\ResultSet\ResultSet object for iterating when using the Zend\Db\Adapter\Adapter::query() method.


The following is an example workflow similar to what one might find inside
Zend\Db\Adapter\Adapter::query():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\ResultSet;

$stmt = $driver->createStatement('SELECT * FROM users');
$stmt->prepare($parameters);
$result = $stmt->execute();

if ($result instanceof ResultInterface && $result->isQueryResult()) {
    $resultSet = new ResultSet;
    $resultSet->initialize($result);

    foreach ($resultSet as $row) {
        echo $row->my_column . PHP_EOL;
    }
}













Zend\Db\ResultSet\ResultSet and Zend\Db\ResultSet\AbstractResultSet


For most purposes, either a instance of Zend\Db\ResultSet\ResultSet or a
derivative of Zend\Db\ResultSet\AbstractResultSet will be being used.  The implementation of
the AbstractResultSet offers the following core functionality:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		 abstract class AbstractResultSet implements Iterator, ResultSetInterface
 {
     public function initialize($dataSource)
     public function getDataSource()
     public function getFieldCount()

     /** Iterator */
     public function next()
     public function key()
     public function current()
     public function valid()
     public function rewind()

     /** countable */
     public function count()

     /** get rows as array */
     public function toArray()
 }













Zend\Db\ResultSet\HydratingResultSet


Zend\Db\ResultSet\HydratingResultSet is a more flexible ResultSet object that allows the developer to
choose an appropriate “hydration strategy” for getting row data into a target object. While iterating,
HydratingResultSet will take a prototype of a target object and clone it for each successive new row it
iterates. With this newly cloned row, HydratingResultSet will hydrate the target object with the row data.


In the example below, rows from the database will be iterated, and during iteration, HydratingRowSet will use
the Reflection based hydrator to inject the row data directly into the protected members of the cloned UserEntity
object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		use Zend\Db\Adapter\Driver\ResultInterface;
use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Stdlib\Hydrator\Reflection as ReflectionHydrator;

class UserEntity {
    protected $first_name;
    protected $last_name;
    public function getFirstName() { return $this->first_name; }
    public function getLastName() { return $this->last_name; }
}

$stmt = $driver->createStatement($sql);
$stmt->prepare($parameters);
$result = $stmt->execute();

if ($result instanceof ResultInterface && $result->isQueryResult()) {
    $resultSet = new HydratingResultSet(new ReflectionHydrator, new UserEntity);
    $resultSet->initialize($result);

    foreach ($resultSet as $user) {
        echo $user->getFirstName() . ' ' . $user->getLastName() . PHP_EOL;
    }
}










For more information, see the Zend\Stdlib\Hydrator documentation to get a better sense of the different
strategies that can be employed in order to populate a target object.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\ResultSet
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend Framework 2 features built-in console support.


When a Zend\Application is run from a console window (a shell window or Windows command prompt), it will recognize
this fact and prepare Zend\Mvc components to handle the request. Console support is enabled by default,
but to function properly it requires at least one console route and
one action controller to handle the request.



		Console routing allows you to invoke controllers and action depending on command
line parameters provided by the user.


		Module Manager integration allows ZF2 applications and modules to display help and usage
information, in case the command line has not been understood (no route matched).


		Console-aware action controllers will receive a console request containing all named
parameters and flags. The are able to send output back to the console window.


		Console adapters provide a level of abstraction for interacting with console on
different operating systems.


		Console prompts can be used to interact with the user by asking him questions and
retrieving input.






Writing console routes


A console route defines required and optional command line parameters. When a route matches, it behaves analogical
to a standard, http route and can point to a
MVC controller and an action.


Let’s assume that we’d like our application to handle the following command line:


> zf user reset-password user@mail.com






When a user runs our application (zf) with these parameters, we’d like to call action resetpassword of
Application\IndexController.


First we need to create a route definition:


user reset-password <userEmail>






This simple route definition expects exactly 3 arguments: a literal “user”, literal “reset-password” followed by
a parameter we’re calling “userEmail”. Let’s assume we also accept one optional parameter, that will turn on
verbose operation:


user reset-password [--verbose|-v] <userEmail>






Now our console route expects the same 3 parameters but will also recognise an optional --verbose flag, or its
shorthand version: -v.



Note


The order of flags is ignored by Zend\Console. Flags can appear before positional parameters, after them or
anywhere in between. The order of multiple flags is also irrelevant. This applies both to route definitions and the
order that flags are used on the command line.




Let’s use the definition above and configure our console route. Console routes are automatically loaded from the
following location inside config file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		array(
    'router' => array(
        'routes' => array(
            // HTTP routes are defined here
        )
    ),

    'console' => array(
        'router' => array(
            'routes' => array(
                // Console routes go here
            )
        )
    ),
)










Let’s create our console route and point it to Application\IndexController::resetpasswordAction()


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// we could define routes for Application\IndexController in Application module config file
// which is usually located at modules/application/config/module.config.php
array(
    'console' => array(
        'router' => array(
            'routes' => array(
                'user-reset-password' => array(
                    'options' => array(
                        'route'    => 'user reset-password [--verbose|-v] <userEmail>',
                        'defaults' => array(
                            'controller' => 'Application\Index',
                            'action'     => 'password'
                        )
                    )
                )
            )
        )
    )
)











See also


To learn more about console routes and how to use them, please read this chapter: Console routes and routing







Handling console requests


When a user runs our application from command line and arguments match our console route, a controller
class will be instantiated and an action method will be called, just like it is with http requests.


We will now add resetpassword action to Application\IndexController:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


		<?php
namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Zend\Console\Request as ConsoleRequest;
use Zend\Math\Rand;

class IndexController extends AbstractActionController
{
    public function indexAction()
    {
        return new ViewModel(); // display standard index page
    }

    public function resetpasswordAction(){
        $request = $this->getRequest();

        // Make sure that we are running in a console and the user has not tricked our
        // application into running this action from a public web server.
        if (!$request instanceof ConsoleRequest){
            throw new \RuntimeException('You can only use this action from a console!');
        }

        // Get user email from console and check if the user used --verbose or -v flag
        $userEmail   = $request->getParam('userEmail');
        $verbose     = $request->getParam('verbose');

        // reset new password
        $newPassword = Rand::getString(16);

        //  Fetch the user and change his password, then email him ...
        // [...]

        if(!$verbose){
            return "Done! $userEmail has received an email with his new password.\n";
        }else{
            return "Done! New password for user $userEmail is '$newPassword'. It has also been emailed to him. \n";
        }
    }
}










We have created resetpasswordAction() than retrieves current request and checks if it’s really coming from the
console (as a precaution). In this example we do not want our action to be invocable from a web page. Because we have
not defined any http route pointing to it, it should never be possible. However in the future, we might define a
wildcard route or a 3rd party module might erroneously route some requests to our action - that is why we want to make
sure that the request is always coming from a Console environment.


All console arguments supplied by the user are accessible via $request->getParam() method. Flags will be represented
by a booleans, where true means a flag has been used and false otherwise.


When our action has finished working it returns a simple string that will be shown to the user in console window.



See also


There are different ways you can interact with console from a controller. It has been covered in more detail
in the following chapter: Console-aware action controllers







Adding console usage info


It is a common practice for console application to display usage information when run for the first time (without any
arguments). This is also handled by Zend\Console together with MVC.


Usage info in ZF2 console applications is provided by loaded modules. In case no
console route matches console arguments, Zend\Console will query all loaded modules and ask for their console
usage info.


Let’s modify our Application\IndexController to provide usage info:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		<?php

namespace Application;

use Zend\ModuleManager\Feature\ConfigProviderInterface;
use Zend\ModuleManager\Feature\ConsoleUsageProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements
    AutoloaderProviderInterface,
    ConfigProviderInterface,
    ConsoleUsageProviderInterface   // <- our module implement this feature and provides console usage info
{
    public function getConfig()
    {
        // [...]
    }

    public function getAutoloaderConfig()
    {
        // [...]
    }

    public function getConsoleUsage(Console $console){
        return array(
            // Describe available commands
            'user reset-password [--verbose|-v] EMAIL'    => 'Reset password for a user',

            // Describe expected parameters
            array( 'EMAIL',            'Email of the user for a password reset' ),
            array( '--verbose|-v',     '(optional) turn on verbose mode'        ),
        );
    }
}










Each module that implements ConsoleUsageProviderInterface will be queried for console usage info. On route
mismatch, all info from all modules will be concatenated, formatted to console width and shown to the user.



Note


The order of usage info displayed in the console is the order modules load. If you want your application to
display important usage info first, change the order your modules are loaded.





See also


Modules can also provide an application banner (title). To learn more about the format expected from
getConsoleUsage() and about application banners, please read this chapter:
Console-aware modules










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.ip.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Ip


Zend\Validator\Ip allows you to validate if a given value is an IP address. It supports the IPv4, IPv6 and
IPvFeature definitions.



Supported options for Zend\Validator\Ip


The following options are supported for Zend\Validator\Ip:



		allowipv4: Defines if the validator allows IPv4 addresses. This option defaults to TRUE.


		allowipv6: Defines if the validator allows IPv6 addresses. This option defaults to TRUE.


		allowipvfuture: Defines if the validator allows IPvFuture addresses. This option defaults to false.


		allowliteral: Defines if the validator allows IPv6 or IPvFuture with URI literal style (the IP surrounded by
brackets). This option defaults to true.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Ip();
if ($validator->isValid($ip)) {
    // ip appears to be valid
} else {
    // ip is invalid; print the reasons
}











Note


Invalid IP addresses


Keep in mind that Zend\Validator\Ip only validates IP addresses. Addresses like ‘mydomain.com‘ or
‘192.168.50.1/index.html‘ are no valid IP addresses. They are either hostnames or valid URLs but not IP
addresses.





Note


IPv6/IPvFuture validation


Zend\Validator\Ip validates IPv6/IPvFuture addresses with regex. The reason is that the filters and methods
from PHP itself don’t follow the RFC. Many other available classes also don’t follow it.







Validate IPv4 or IPV6 alone


Sometimes it’s useful to validate only one of the supported formats. For example when your network only supports
IPv4. In this case it would be useless to allow IPv6 within this validator.


To limit Zend\Validator\Ip to one protocol you can set the options allowipv4 or allowipv6 to FALSE.
You can do this either by giving the option to the constructor or by using setOptions() afterwards.


		1
2
3
4
5
6


		$validator = new Zend\Validator\Ip(array('allowipv6' => false));
if ($validator->isValid($ip)) {
    // ip appears to be valid ipv4 address
} else {
    // ip is no ipv4 address
}











Note


Default behaviour


The default behaviour which Zend\Validator\Ip follows is to allow both standards.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Ip
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.exception.previous.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Previous Exceptions


Since Zend Framework 1.10, Zend_Exception implements the PHP 5.3 support for previous exceptions. Simply put,
when in a catch() block, you can throw a new exception that references the original exception, which helps
provide additional context when debugging. By providing this support in Zend Framework, your code may now be
forwards compatible with PHP 5.3.


Previous exceptions are indicated as the third argument to an exception constructor.


Previous exceptions


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		try {
    $db->query($sql);
} catch (Zend_Db_Statement_Exception $e) {
    if ($e->getPrevious()) {
        echo '[' . get_class($e)
            . '] has the previous exception of ['
            . get_class($e->getPrevious())
            . ']' . PHP_EOL;
    } else {
        echo '[' . get_class($e)
            . '] does not have a previous exception'
            . PHP_EOL;
    }

    echo $e;
    // displays all exceptions starting by the first thrown
    // exception if available.
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Previous Exceptions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.captcha.operation.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Captcha Operation


All CAPTCHA adapter implement Zend\Captcha\AdapterInterface, which looks like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		namespace Zend\Captcha;

use Zend\Validator\ValidatorInterface;

interface AdapterInterface extends ValidatorInterface
{
    public function generate();

    public function setName($name);

    public function getName();

    // Get helper name used for rendering this captcha type
    public function getHelperName();
}










The name setter and getter are used to specify and retrieve the CAPTCHA identifier. The most interesting methods
are generate() and render(). generate() is used to create the CAPTCHA token. This process typically
will store the token in the session so that you may compare against it in subsequent requests. render() is used
to render the information that represents the CAPTCHA, be it an image, a figlet, a logic problem, or some other
CAPTCHA.


A simple use case might look like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// Originating request:
$captcha = new Zend\Captcha\Figlet(array(
    'name' => 'foo',
    'wordLen' => 6,
    'timeout' => 300,
));

$id = $captcha->generate();

//this will output a Figlet string
echo $captcha->getFiglet()->render($captcha->getWord());


// On a subsequent request:
// Assume a captcha setup as before, with corresponding form fields, the value of $_POST['foo']
// would be key/value array: id => captcha ID, input => captcha value
if ($captcha->isValid($_POST['foo'], $_POST)) {
    // Validated!
}











Note


Under most circumstances, you probably prefer the use of Zend\Captcha functionality combined with the power
of the Zend\Form component. For an example on how to use Zend\Form\Element\Captcha, have a look at the
Zend\Form Quick Start.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Captcha Operation
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.getopt.rules.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Declaring Getopt Rules


The constructor for the Zend_Console_Getopt class takes from one to three arguments. The first argument
declares which options are supported by your application. This class supports alternative syntax forms for
declaring the options. See the sections below for the format and usage of these syntax forms.


The constructor takes two more arguments, both of which are optional. The second argument may contain the
command-line arguments. This defaults to $_SERVER['argv'].


The third argument of the constructor may contain an configuration options to customize the behavior of
Zend_Console_Getopt. See Adding Configuration for reference
on the options available.



Declaring Options with the Short Syntax


Zend_Console_Getopt supports a compact syntax similar to that used by GNU Getopt (see
http://www.gnu.org/software/libc/manual/html_node/Getopt.html. This syntax supports only single-character flags.
In a single string, you type each of the letters that correspond to flags supported by your application. A letter
followed by a colon character (:) indicates a flag that requires a parameter.


Using the Short Syntax


		1


		$opts = new Zend_Console_Getopt('abp:');










The example above shows using Zend_Console_Getopt to declare that options may be given as -a, -b, or
-p. The latter flag requires a parameter.


The short syntax is limited to flags of a single character. Aliases, parameter types, and help strings are not
supported in the short syntax.





Declaring Options with the Long Syntax


A different syntax with more features is also available. This syntax allows you to specify aliases for flags, types
of option parameters, and also help strings to describe usage to the user. Instead of the single string used in the
short syntax to declare the options, the long syntax uses an associative array as the first argument to the
constructor.


The key of each element of the associative array is a string with a format that names the flag, with any aliases,
separated by the pipe symbol (“|”). Following this series of flag aliases, if the option requires a parameter,
is an equals symbol (“=”) with a letter that stands for the type of the parameter:



		“=s” for a string parameter


		“=w” for a word parameter (a string containing no whitespace)


		“=i” for an integer parameter





If the parameter is optional, use a dash (“-”) instead of the equals symbol.


The value of each element in the associative array is a help string to describe to a user how to use your program.


Using the Long Syntax


		1
2
3
4
5
6
7


		$opts = new Zend_Console_Getopt(
  array(
    'apple|a'    => 'apple option, with no parameter',
    'banana|b=i' => 'banana option, with required integer parameter',
    'pear|p-s'   => 'pear option, with optional string parameter'
  )
);










In the example declaration above, there are three options. --apple and -a are aliases for each other, and
the option takes no parameter. --banana and -b are aliases for each other, and the option takes a mandatory
integer parameter. Finally, --pear and -p are aliases for each other, and the option may take an optional
string parameter.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Declaring Getopt Rules
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.autoloader-factory.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The AutoloaderFactory



Overview


Starting with version 2.0, Zend Framework now offers multiple autoloader strategies. Often, it will be useful to
employ multiple autoloading strategies; as an example, you may have a class map for your most used classes, but
want to use a PSR-0 style autoloader for 3rd party libraries.


While you could potentially manually configure these, it may be more useful to define the autoloader configuration
somewhere and cache it. For these cases, the AutoloaderFactory will be useful.





Quick Start


Configuration may be stored as a PHP array, or in some form of configuration file. As an example, consider the
following PHP array:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$config = array(
    'Zend\Loader\ClassMapAutoloader' => array(
        'application' => APPLICATION_PATH . '/.classmap.php',
        'zf'          => APPLICATION_PATH . '/../library/Zend/.classmap.php',
    ),
    'Zend\Loader\StandardAutoloader' => array(
        'namespaces' => array(
            'Phly\Mustache' => APPLICATION_PATH . '/../library/Phly/Mustache',
            'Doctrine'      => APPLICATION_PATH . '/../library/Doctrine',
        ),
    ),
);










An equivalent INI-style configuration might look like the following:


		1
2
3
4


		Zend\Loader\ClassMapAutoloader.application = APPLICATION_PATH "/.classmap.php"
Zend\Loader\ClassMapAutoloader.zf          = APPLICATION_PATH "/../library/Zend/.classmap.php"
Zend\Loader\StandardAutoloader.namespaces.Phly\Mustache = APPLICATION_PATH "/../library/Phly/Mustache"
Zend\Loader\StandardAutoloader.namespaces.Doctrine       = APPLICATION_PATH "/../library/Doctrine"










Once you have your configuration in a PHP array, you simply pass it to the AutoloaderFactory.


		1
2
3
4
5


		// This example assumes ZF is on your include_path.
// You could also load the factory class from a path relative to the
// current script, or via an absolute path.
require_once 'Zend/Loader/AutoloaderFactory.php';
Zend\Loader\AutoloaderFactory::factory($config);










The AutoloaderFactory will instantiate each autoloader with the given options, and also call its register()
method to register it with the SPL autoloader.





Configuration Options


AutoloaderFactory Options



		$options


		The AutoloaderFactory expects an associative array or Traversable object. Keys should be valid
autoloader class names, and the values should be the options that should be passed to the class constructor.


Internally, the AutoloaderFactory checks to see if the autoloader class referenced exists. If not, it will
use the StandardAutoloader to attempt to load the class via the
include_path (or, in the case of “Zend”-namespaced classes, using the Zend Framework library path). If the
class is not found, or does not implement the SplAutoloader interface, an
exception will be raised.











Available Methods



		factory


		Instantiate and register autoloaders
factory($options)


factory()
This method is static, and is used to instantiate autoloaders and register them with the SPL autoloader. It
expects either an array or Traversable object as denoted in the Options section.









		getRegisteredAutoloaders


		Retrieve a list of all autoloaders registered using the factory
getRegisteredAutoloaders()


getRegisteredAutoloaders()
This method is static, and may be used to retrieve a list of all autoloaders registered via the
factory() method. It returns simply an array of autoloader instances.











Examples


Please see the Quick Start for a detailed example.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The AutoloaderFactory
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.soap.server.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Soap_Server


Zend_Soap_Server class is intended to simplify Web Services server part development for PHP programmers.


It may be used in WSDL or non-WSDL mode, and using classes or functions to define Web Service API.


When Zend_Soap_Server component works in the WSDL mode, it uses already prepared WSDL document to define server
object behavior and transport layer options.


WSDL document may be auto-generated with functionality provided by Zend_Soap_AutoDiscovery component or should be constructed manually using Zend_Soap_Wsdl class or any other XML generating tool.


If the non-WSDL mode is used, then all protocol options have to be set using options mechanism.



Zend_Soap_Server constructor


Zend_Soap_Server constructor should be used a bit differently for WSDL and non-WSDL modes.



Zend_Soap_Server constructor for the WSDL mode


Zend_Soap_Server constructor takes two optional parameters when it works in WSDL mode:



. $wsdl, which is an URI of a WSDL file [1].


. $options- options to create SOAP server object [2].



The following options are recognized in the WSDL mode:




		‘soap_version’ (‘soapVersion’) - soap version to use (SOAP_1_1 or SOAP_1_2).





		‘actor’ - the actor URI for the server.





		‘classmap’ (‘classMap’) which can be used to map some WSDL types to PHP classes.


The option must be an array with WSDL types as keys and names of PHP classes as values.





		‘encoding’ - internal character encoding (UTF-8 is always used as an external encoding).





		‘wsdl’ which is equivalent to setWsdl($wsdlValue) call.























Zend_Soap_Server constructor for the non-WSDL mode


The first constructor parameter must be set to NULL if you plan to use Zend_Soap_Server functionality
in non-WSDL mode.


You also have to set ‘uri’ option in this case (see below).


The second constructor parameter ($options) is an array with options to create SOAP server object [3].


The following options are recognized in the non-WSDL mode:




		‘soap_version’ (‘soapVersion’) - soap version to use (SOAP_1_1 or SOAP_1_2).





		‘actor’ - the actor URI for the server.





		‘classmap’ (‘classMap’) which can be used to map some WSDL types to PHP classes.


The option must be an array with WSDL types as keys and names of PHP classes as values.





		‘encoding’ - internal character encoding (UTF-8 is always used as an external encoding).





		‘uri’ (required) -URI namespace for SOAP server.

















Methods to define Web Service API


There are two ways to define Web Service API when your want to give access to your PHP code through SOAP.


The first one is to attach some class to the Zend_Soap_Server object which has to completely describe Web
Service API:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		...
class MyClass {
    /**
     * This method takes ...
     *
     * @param integer $inputParam
     * @return string
     */
    public function method1($inputParam) {
        ...
    }

    /**
     * This method takes ...
     *
     * @param integer $inputParam1
     * @param string  $inputParam2
     * @return float
     */
    public function method2($inputParam1, $inputParam2) {
        ...
    }

    ...
}
...
$server = new Zend_Soap_Server(null, $options);
// Bind Class to Soap Server
$server->setClass('MyClass');
// Bind already initialized object to Soap Server
$server->setObject(new MyClass());
...
$server->handle();











Note


Important!


You should completely describe each method using method docblock if you plan to use autodiscover functionality
to prepare corresponding Web Service WSDL.




The second method of defining Web Service API is using set of functions and addFunction() or
loadFunctions() methods:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		...
/**
 * This function ...
 *
 * @param integer $inputParam
 * @return string
 */
function function1($inputParam) {
    ...
}

/**
 * This function ...
 *
 * @param integer $inputParam1
 * @param string  $inputParam2
 * @return float
 */
function function2($inputParam1, $inputParam2) {
    ...
}
...
$server = new Zend_Soap_Server(null, $options);
$server->addFunction('function1');
$server->addFunction('function2');
...
$server->handle();













Request and response objects handling



Note


Advanced


This section describes advanced request/response processing options and may be skipped.




Zend_Soap_Server component performs request/response processing automatically, but allows to catch it and do
some pre- and post-processing.



Request processing


Zend_Soap_Server::handle() method takes request from the standard input stream (‘php://input’). It may be
overridden either by supplying optional parameter to the handle() method or by setting request using
setRequest() method:


		1
2
3
4
5
6
7
8
9


		...
$server = new Zend_Soap_Server(...);
...
// Set request using optional $request parameter
$server->handle($request);
...
// Set request using setRequest() method
$server->setRequest();
$server->handle();










Request object may be represented using any of the following:




		DOMDocument (casted to XML)


		DOMNode (owner document is grabbed and casted to XML)


		SimpleXMLElement (casted to XML)


		stdClass (__toString() is called and verified to be valid XML)


		string (verified to be valid XML)









Last processed request may be retrieved using getLastRequest() method as an XML string:


		1
2
3
4
5


		...
$server = new Zend_Soap_Server(...);
...
$server->handle();
$request = $server->getLastRequest();













Response pre-processing


Zend_Soap_Server::handle() method automatically emits generated response to the output stream. It may be
blocked using setReturnResponse() with TRUE or FALSE as a parameter [4]. Generated response is
returned by handle() method in this case.


		1
2
3
4
5
6
7
8
9


		...
$server = new Zend_Soap_Server(...);
...
// Get a response as a return value of handle() method
// instead of emitting it to the standard output
$server->setReturnResponse(true);
...
$response = $server->handle();
...










Last response may be also retrieved by getLastResponse() method for some post-processing:


		1
2
3
4
5
6


		...
$server = new Zend_Soap_Server(...);
...
$server->handle();
$response = $server->getLastResponse();
...















Document/Literal WSDL Handling


Using the document/literal binding-style/encoding pattern is used to make SOAP messages as human-readable as
possible and allow abstraction between very incompatible languages. The Dot NET framework uses this pattern for
SOAP service generation by default. The central concept of this approach to SOAP is the introduction of a Request
and an Response object for every function/method of the SOAP service. The parameters of the function are properties
on request object and the response object contains a single parameter that is built in the style “methodName”Result


Zend SOAP supports this pattern in both AutoDiscovery and in the Server component. You can write your service
object without knowledge about using this pattern. Use docblock comments to hint the parameter and return types as
usual. The Zend\Soap\Server\DocumentLiteralWrapper wraps around your service object and converts request and
response into normal method calls on your service.


See the class doc block of the DocumentLiteralWrapper for a detailed example and discussion.





		[1]		May be set later using setWsdl($wsdl) method.









		[2]		Options may be set later using setOptions($options) method.









		[3]		Options may be set later using setOptions($options) method.









		[4]		Current state of the Return Response flag may be requested with setReturnResponse() method.












          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Soap_Server
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.renderer.php-renderer.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The PhpRenderer


Zend\View\Renderer\PhpRenderer“renders” view scripts written in PHP, capturing and returning the output. It
composes Variable containers and/or View Models, a plugin broker for helpers, and
optional filtering of the captured output.


The PhpRenderer is template system agnostic; you may use PHP as your template language, or create instances
of other template systems and manipulate them within your view script. Anything you can do with PHP is available to
you.



Usage


Basic usage consists of instantiating or otherwise obtaining an instance of the PhpRenderer, providing it with
a resolver which will resolve templates to PHP view scripts, and then calling its render() method.


Instantiating a renderer is trivial:


		1
2
3


		use Zend\View\Renderer\PhpRenderer;

$renderer = new PhpRenderer();










Zend Framework ships with several types of “resolvers”, which are used to resolve a template name to a resource a
renderer can consume. The ones we will usually use with the PhpRenderer are:



		Zend\View\Resolver\TemplateMapResolver, which simply maps template names directly to view scripts.


		Zend\View\Resolver\TemplatePathStack, which creates a LIFO stack of script directories in which to search for
a view script. By default, it appends the suffix ”.phtml” to the requested template name, and then loops through
the script directories; if it finds a file matching the requested template, it returns the full file path.


		Zend\View\Resolver\AggregateResolver, which allows attaching a FIFO queue of resolvers to consult.





We suggest using the AggregateResolver, as it allows you to create a multi-tiered strategy for resolving
template names.


Programmatically, you would then do something like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\View\Renderer\PhpRenderer;
use Zend\View\Resolver;

$renderer = new PhpRenderer();

$resolver = new Resolver\AggregateResolver();

$map = new Resolver\TemplateMapResolver(array(
    'layout'      => __DIR__ . '/view/layout.phtml',
    'index/index' => __DIR__ . '/view/index/index.phtml',
));
$stack = new Resolver\TemplatePathStack(array(
    __DIR__ . '/view',
    $someOtherPath,
));

$resolver->attach($map)    // this will be consulted first
         ->attach($stack);










You can also specify a specific priority value when registering resolvers, with high, positive integers getting
higher priority, and low, negative integers getting low priority, when resolving.


In an MVC application, you can configure this via DI quite easily:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		return array(
    'di' => array(
        'instance' => array(
            'Zend\View\Resolver\AggregateResolver' => array(
                'injections' => array(
                    'Zend\View\Resolver\TemplateMapResolver',
                    'Zend\View\Resolver\TemplatePathStack',
                ),
            ),

            'Zend\View\Resolver\TemplateMapResolver' => array(
                'parameters' => array(
                    'map'  => array(
                        'layout'      => __DIR__ . '/view/layout.phtml',
                        'index/index' => __DIR__ . '/view/index/index.phtml',
                    ),
                ),
            ),
            'Zend\View\Resolver\TemplatePathStack' => array(
                'parameters' => array(
                    'paths'  => array(
                        'application' => __DIR__ . '/view',
                        'elsewhere'   => $someOtherPath,
                    ),
                ),
            ),
            'Zend\View\Renderer\PhpRenderer' => array(
                'parameters' => array(
                    'resolver' => 'Zend\View\Resolver\AggregateResolver',
                ),
            ),
        ),
    ),
);










Now that we have our PhpRenderer instance, and it can find templates, let’s inject some variables. This can be
done in 4 different ways.



		Pass an associative array (or ArrayAccess instance, or Zend\View\Variables instance) of items as the
second argument to render(): $renderer->render($templateName, array(‘foo’ => ‘bar))





		Assign a Zend\View\Variables instance, associative array, or ArrayAccess instance to the setVars()
method.





		Assign variables as instance properties of the renderer: $renderer->foo = ‘bar’. This essentially proxies to an
instance of Variables composed internally in the renderer by default.





		Create a ViewModel instance, assign variables to that, and pass the ViewModel to the render() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\View\Model\ViewModel;
use Zend\View\Renderer\PhpRenderer;

$renderer = new PhpRenderer();

$model    = new ViewModel();
$model->setVariable('foo', 'bar');
// or
$model = new ViewModel(array('foo' => 'bar'));

$model->setTemplate($templateName);
$renderer->render($model);
















Now, let’s render something. As a simple example, let us say you have a list of book data.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// use a model to get the data for book authors and titles.
$data = array(
    array(
        'author' => 'Hernando de Soto',
        'title' => 'The Mystery of Capitalism'
    ),
    array(
        'author' => 'Henry Hazlitt',
        'title' => 'Economics in One Lesson'
    ),
    array(
        'author' => 'Milton Friedman',
        'title' => 'Free to Choose'
    )
);

// now assign the book data to a renderer instance
$renderer->books = $data;

// and render the template "booklist"
echo $renderer->render('booklist');










More often than not, you’ll likely be using the MVC layer. As such, you should be thinking in terms of view models.
Let’s consider the following code from within an action method of a controller.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		namespace Bookstore\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class BookController extends AbstractActionController
{
    public function listAction()
    {
        // do some work...

        // Assume $data is the list of books from the previous example
        $model = new ViewModel(array('books' => $data));

        // Optionally specify a template; if we don't, by default it will be
        // auto-determined based on the controller name and this action. In
        // this example, the template would resolve to "book/list", and thus
        // the file "book/list.phtml"; the following overrides that to set
        // the template to "booklist", and thus the file "booklist.phtml"
        // (note the lack of directory preceding the filename).
        $model->setTemplate('booklist');

        return $model
    }
}










This will then be rendered as if the following were executed:


		1


		$renderer->render($model);










Now we need the associated view script. At this point, we’ll assume that the template “booklist” resolves to the
file booklist.phtml. This is a PHP script like any other, with one exception: it executes inside the scope of
the PhpRenderer instance, which means that references to $this point to the PhpRenderer instance
properties and methods. Thus, a very basic view script could look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		<?php if ($this->books): ?>

    <!-- A table of some books. -->
    <table>
        <tr>
            <th>Author</th>
            <th>Title</th>
        </tr>

        <?php foreach ($this->books as $key => $val): ?>
        <tr>
            <td><?php echo $this->escapeHtml($val['author']) ?></td>
            <td><?php echo $this->escapeHtml($val['title']) ?></td>
        </tr>
        <?php endforeach; ?>

    </table>

<?php else: ?>

    <p>There are no books to display.</p>

<?php endif;?>











Note


Escape Output


The security mantra is “Filter input, escape output.” If you are unsure of the source of a given variable –
which is likely most of the time – you should escape it based on which HTML context it is being injected into.
The primary contexts to be aware of are HTML Body, HTML Attribute, Javascript, CSS and URI. Each context has a
dedicated helper available to apply the escaping strategy most appropriate to each context. You should be aware
that escaping does vary significantly between contexts - there is no one single escaping strategy that can be
globally applied.


In the example above, there are calls to an escapeHtml() method. The method is actually a helper, a plugin available via method overloading. Additional escape helpers provide the
escapeHtmlAttr(), escapeJs(), escapeCss(), and escapeUrl() methods for each of the HTML contexts
you are most likely to encounter.


By using the provided helpers and being aware of your variables’ contexts, you will prevent your templates from
running afoul of Cross-Site Scripting (XSS) vulnerabilities.




We’ve now toured the basic usage of the PhpRenderer. By now you should know how to instantiate the renderer,
provide it with a resolver, assign variables and/or create view models, create view scripts, and render view
scripts.





Options and Configuration


Zend\View\Renderer\PhpRenderer utilizes several collaborators in order to do its work. use the following
methods to configure the renderer.



		broker


		setBroker(Zend\View\HelperBroker $broker)


Set the broker instance used to load, register, and retrieve helpers.









		resolver


		setResolver(Zend\View\Resolver $resolver)


Set the resolver instance.









		filters


		setFilterChain(Zend\Filter\FilterChain $filters)


Set a filter chain to use as an output filter on rendered content.









		vars


		setVars(array|ArrayAccess|Zend\View\Variables $variables)


Set the variables to use when rendering a view script/template.









		canRenderTrees


		setCanRenderTrees(bool $canRenderTrees)


Set flag indicating whether or not we should render trees of view models. If set to true, the Zend\View\View
instance will not attempt to render children separately, but instead pass the root view model directly to the
PhpRenderer. It is then up to the developer to render the children from within the view script. This is
typically done using the RenderChildModel helper: $this->renderChildModel(‘child_name’).











Additional Methods


Typically, you’ll only ever access variables and helpers within your view scripts or
when interacting with the PhpRenderer. However, there are a few additional methods you may be interested in.



		render


		render(string|Zend\View\Model $nameOrModel, $values = null)


Render a template/view model.


If $nameOrModel is a string, it is assumed to be a template name. That template will be resolved using the
current resolver, and then rendered. If $values is non-null, those values, and those values only, will be
used during rendering, and will replace whatever variable container previously was in the renderer; however, the
previous variable container will be reset when done. If $values is empty, the current variables container
(see setVars()) will be injected when rendering.


If $nameOrModel is a Model instance, the template name will be retrieved from it and used. Additionally,
if the model contains any variables, these will be used when rendering; otherwise, the variables container
already present, if any, will be used.









		resolver


		resolver()


Retrieves the Resolver instance.









		vars


		vars(string $key = null)


Retrieve the variables container, or a single variable from the container..









		plugin


		plugin(string $name, array $options = null)


Get a plugin/helper instance. Proxies to the broker’s load() method; as such, any $options you pass will
be passed to the plugin’s constructor if this is the first time the plugin has been retrieved. See the section
on helpers for more information.









		addTemplate


		addTemplate(string $template)


Add a template to the stack. When used, the next call to render() will loop through all template added using
this method, rendering them one by one; the output of the last will be returned.














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The PhpRenderer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.barcode.creation.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Barcode creation using Zend\Barcode\Barcode class



Using Zend\Barcode\Barcode::factory


Zend_Barcode uses a factory method to create an instance of a renderer that extends
Zend\Barcode\Renderer\AbstractRenderer. The factory method accepts five arguments.


. The name of the barcode format (e.g., “code39”) or a Traversable object (required)


. The name of the renderer (e.g., “image”) (required)


. Options to pass to the barcode object (an array or a Traversable object) (optional)


. Options to pass to the renderer object (an array or a Traversable object) (optional)



		. Boolean to indicate whether or not to automatically render errors. If an exception occurs, the provided barcode


		object will be replaced with an Error representation (optional default TRUE)





Getting a Renderer with Zend\Barcode\Barcode::factory()


Zend\Barcode\Barcode::factory() instantiates barcode objects and renderers and ties them together. In this
first example, we will use the Code39 barcode type together with the Image renderer.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();
$renderer = Barcode::factory(
    'code39', 'image', $barcodeOptions, $rendererOptions
);










Using Zend\Barcode\Barcode::factory() with Zend\Config\Config objects


You may pass a Zend\Config\Config object to the factory in order to create the necessary objects. The following
example is functionally equivalent to the previous.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Config;
use Zend\Barcode;

// Using only one Zend\Config\Config object
$config = new Config(array(
    'barcode'        => 'code39',
    'barcodeParams'  => array('text' => 'ZEND-FRAMEWORK'),
    'renderer'       => 'image',
    'rendererParams' => array('imageType' => 'gif'),
));

$renderer = Barcode::factory($config);













Drawing a barcode


When you draw the barcode, you retrieve the resource in which the barcode is drawn. To draw a barcode, you can
call the draw() of the renderer, or simply use the proxy method provided by Zend\Barcode\Barcode.


Drawing a barcode with the renderer object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
$imageResource = Barcode::factory(
    'code39', 'image', $barcodeOptions, $rendererOptions
)->draw();










Drawing a barcode with Zend\Barcode\Barcode::draw()


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
$imageResource = Barcode::draw(
    'code39', 'image', $barcodeOptions, $rendererOptions
);













Renderering a barcode


When you render a barcode, you draw the barcode, you send the headers and you send the resource (e.g. to a
browser). To render a barcode, you can call the render() method of the renderer or simply use the proxy method
provided by Zend\Barcode\Barcode.


Renderering a barcode with the renderer object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
// send the headers and the image
Barcode::factory(
    'code39', 'image', $barcodeOptions, $rendererOptions
)->render();










This will generate this barcode:


[image: ../_images/zend.barcode.introduction.example-1.png]
Renderering a barcode with Zend\Barcode\Barcode::render()


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Barcode;

// Only the text to draw is required
$barcodeOptions = array('text' => 'ZEND-FRAMEWORK');

// No required options
$rendererOptions = array();

// Draw the barcode in a new image,
// send the headers and the image
Barcode::render(
    'code39', 'image', $barcodeOptions, $rendererOptions
);










This will generate the same barcode as the previous example.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Barcode creation using Zend\Barcode\Barcode class
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.ec2.windows-instance.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon_Ec2: Windows Instances


Using Amazon EC2 instances running Windows is similar to using instances running Linux and UNIX. The following are
the major differences between instances that use Linux or UNIX and Windows:



		Remote Desktop—To access Windows instances, you use Remote Desktop instead of SSH.


		Administrative Password—To access Windows instances the first time, you must obtain the administrative password
using the ec2-get-password command.


		Simplified Bundling—To bundle a Windows instance, you use a single command that shuts down the instance, saves
it as an AMI, and restarts it.





As part of this service, Amazon EC2 instances can now run Microsoft Windows Server 2003. Our base Windows image
provides you with most of the common functionality associated with Windows. However, if you require more than two
concurrent Windows users or need to leverage applications that require LDAP, Kerberos, RADIUS, or other
credential services, you must use Windows with Authentication Services. For example, Microsoft Exchange Server and
Microsoft SharePoint Server require Windows with Authentication Services.



Note


To get started using Windows instances, we recommend using the AWS Management Console. There are differences
in pricing between Windows and Windows with Authentication Services instances. For information on pricing, go to
the Amazon EC2 Product Page.




Amazon EC2 currently provides the following Windows AMIs:



		Windows Authenticated (32-bit)


		Windows Authenticated (64-bit)


		Windows Anonymous (32-bit)


		Windows Anonymous (64-bit)





The Windows public AMIs that Amazon provides are unmodified versions of Windows with the following two
exceptions: we added drivers to improve the networking and disk I/O performance and we created the Amazon EC2
configuration service. The Amazon EC2 configuration service performs the following functions:



		Randomly sets the Administrator password on initial launch, encrypts the password with the user’s SSH key, and
reports it to the console. This operation happens upon initial AMI launch. If you change the password, AMIs
that are created from this instance use the new password.


		Configures the computer name to the internal DNS name. To determine the internal DNS name, see Using Instance
Addressing.


		Sends the last three system and application errors from the event log to the console. This helps developers to
identify problems that caused an instance to crash or network connectivity to be lost.






Windows Instances Usage


Bundles an Amazon EC2 instance running Windows


bundle() has three require paramters and one optional



		instanceId The instance you want to bundle


		s3Bucket Where you want the ami to live on S3


		s3Prefix The prefix you want to assign to the AMI on S3


		uploadExpiration The expiration of the upload policy. Amazon recommends 12 hours or longer. This is based in
nubmer of minutes. Default is 1440 minutes (24 hours)





bundle() returns a multi-demential array that contains instanceId, bundleId, state, startTime, updateTime,
progress s3Bucket and s3Prefix.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Windows('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->bundle('instanceId', 's3Bucket', 's3Prefix');










Describes current bundling tasks


describeBundle() Describes current bundling tasks


describeBundle() returns a multi-demential array that contains instanceId, bundleId, state, startTime,
updateTime, progress s3Bucket and s3Prefix.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Windows('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->describeBundle('bundleId');










Cancels an Amazon EC2 bundling operation


cancelBundle() Cancels an Amazon EC2 bundling operation


cancelBundle() returns a multi-demential array that contains instanceId, bundleId, state, startTime,
updateTime, progress s3Bucket and s3Prefix.


		1
2
3


		$ec2_instance = new Zend_Service_Amazon_Ec2_Instance_Windows('aws_key',
                                                     'aws_secret_key');
$return = $ec2_instance->cancelBundle('bundleId');
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon_Ec2: Windows Instances
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.quick-start.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Form Quick Start


Forms are relatively easy to create. At the bare minimum, each element or fieldset requires a name; typically,
you’ll also provide some attributes to hint to the view layer how it might render the item. The form itself will
also typically compose an InputFilter– which you can also conveniently create directly in the form via a
factory. Individual elements can hint as to what defaults to use when generating a related input for the input
filter.


Form validation is as easy as providing an array of data to the setData() method. If you want to simplify your
work even more, you can bind an object to the form; on successful validation, it will be populated from the
validated values.


Programmatic Form Creation


If nothing else, you can simply start creating elements, fieldsets, and forms and wiring them together.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


		use Zend\Captcha;
use Zend\Form\Element;
use Zend\Form\Fieldset;
use Zend\Form\Form;
use Zend\InputFilter\Input;
use Zend\InputFilter\InputFilter;

$name = new Element('name');
$name->setLabel('Your name');
$name->setAttributes(array(
    'type'  => 'text'
));

$email = new Element('email');
$email->setLabel('Your email address');
$email->setAttributes(array(
    'type'  => 'email'
));

$subject = new Element('subject');
$subject->setLabel('Subject');
$subject->setAttributes(array(
    'type'  => 'text'
));

$message = new Element('message');
$message->setLabel('Message');
$message->setAttributes(array(
    'type'  => 'textarea'
));

$captcha = new Element\Captcha('captcha');
$captcha->setCaptcha(new Captcha\Dumb());
$captcha->setLabel('Please verify you are human');

$csrf = new Element\Csrf('security');

$submit = new Element('send');
$submit->setLabel('Send');
$submit->setAttributes(array(
    'type'  => 'submit'
));


$form = new Form('contact');
$form->add($name);
$form->add($email);
$form->add($subject);
$form->add($message);
$form->add($captcha);
$form->add($csrf);
$form->add($send);

$nameInput = new Input('name');
// configure input... and all others
$inputFilter = new InputFilter();
// attach all inputs

$form->setInputFilter($inputFilter);










As a demonstration of fieldsets, let’s alter the above slightly. We’ll create two fieldsets, one for the sender
information, and another for the message details.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$sender = new Fieldset('sender');
$sender->add($name);
$sender->add($email);

$details = new Fieldset('details');
$details->add($subject);
$details->add($message);

$form = new Form('contact');
$form->add($sender);
$form->add($details);
$form->add($captcha);
$form->add($csrf);
$form->add($send);










Regardles of approach, as you can see, this can be tedious.


Creation via Factory


You can create the entire form, and input filter, using the Factory. This is particularly nice if you want to
store your forms as pure configuration; you can simply pass the configuration to the factory and be done.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


		use Zend\Form\Factory;
$factory = new Factory();
$form    = $factory->createForm(array(
    'hydrator' => 'Zend\Stdlib\Hydrator\ArraySerializable'
    'elements' => array(
        array(
            'name' => 'name',
            'options' => array(
                'label' => 'Your name',
            ),
            'attributes' => array(
                'type'  => 'text'
            ),
        ),
        array(
            'name' => 'email',
            'options' => array(
                'label' => 'Your email address',
            ),
            'attributes' => array(
                'type'  => 'email',
            ),
        ),
        array(
            'name' => 'subject',
            'options' => array(
                'label' => 'Subject',
            ),
            'attributes' => array(
                'type'  => 'text',
            ),
        ),
        array(
            'name' => 'message',
            'options' => array(
                'label' => 'Message',
            ),
            'attributes' => array(
                'type'  => 'textarea',
            ),
        ),
        array(
            'type' => 'Zend\Form\Element\Captcha',
            'name' => 'captcha',
            'options' => array(
                'label' => 'Please verify you are human',
            ),
            'attributes' => array(
                'captcha' => array(
                    'class' => 'Dumb',
                ),
            ),
        ),
        array(
            'type' => 'Zend\Form\Element\Csrf',
            'name' => 'security',
        ),
        array(
            'name' => 'send',
            'options' => array(
                'label' => 'Send',
            ),
            'attributes' => array(
                'type'  => 'submit',
            ),
        ),
    ),
    /* If we had fieldsets, they'd go here; fieldsets contain
     * "elements" and "fieldsets" keys, and potentially a "type"
     * key indicating the specific FieldsetInterface
     * implementation to use.
    'fieldsets' => array(
    ),
     */

    // Configuration to pass on to
    // Zend\InputFilter\Factory::createInputFilter()
    'input_filter' => array(
        /* ... */
    ),
));










If we wanted to use fieldsets, as we demonstrated in the previous example, we could do the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86


		use Zend\Form\Factory;
$factory = new Factory();
$form    = $factory->createForm(array(
    'hydrator'  => 'Zend\Stdlib\Hydrator\ArraySerializable'
    'fieldsets' => array(
        array(
            'name' => 'sender',
            'elements' => array(
                array(
                    'name' => 'name',
                    'options' => array(
                        'label' => 'Your name',
                        ),
                    'attributes' => array(
                        'type'  => 'text'
                    ),
                ),
                array(
                    'name' => 'email',
                    'options' => array(
                        'label' => 'Your email address',
                        ),
                    'attributes' => array(
                        'type'  => 'email',
                    ),
                ),
            ),
        ),
        array(
            'name' => 'details',
            'elements' => array(
                array(
                    'name' => 'subject',
                    'options' => array(
                        'label' => 'Subject',
                        ),
                    'attributes' => array(
                        'type'  => 'text',
                    ),
                ),
                array(
                    'name' => 'message',
                    'options' => array(
                        'label' => 'Message',
                        ),
                    'attributes' => array(
                        'type'  => 'textarea',
                    ),
                ),
            ),
        ),
    ),
    'elements' => array(
        array(
            'type' => 'Zend\Form\Element\Captcha',
            'name' => 'captcha',
            'options' => array(
                'label' => 'Please verify you are human',
            ),
            'attributes' => array(
                'captcha' => array(
                    'class' => 'Dumb',
                ),
            ),
        ),
        array(
            'type' => 'Zend\Form\Element\Csrf',
            'name' => 'security',
        ),
        array(
            'name' => 'send',
            'options' => array(
                'label' => 'Send',
            ),
            'attributes' => array(
                'type'  => 'submit',
            ),
        ),
    ),

    // Configuration to pass on to
    // Zend\InputFilter\Factory::createInputFilter()
    'input_filter' => array(
        /* ... */
    ),
));










Note that the chief difference is nesting; otherwise, the information is basically the same.


The chief benefits to using the Factory are allowing you to store definitions in configuration, and usage of
significant whitespace.


Factory-backed Form Extension


The default Form implementation is backed by the Factory. This allows you to extend it, and define your
form internally. This has the benefit of allowing a mixture of programmatic and factory-backed creation, as well as
defining a form for re-use in your application.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


		namespace Contact;

use Zend\Captcha\AdapterInterface as CaptchaAdapter;
use Zend\Form\Element;
use Zend\Form\Form;

class ContactForm extends Form
{
    protected $captcha;

    public function setCaptcha(CaptchaAdapter $captcha)
    {
        $this->captcha = $captcha;
    }

    public function prepareElements()
    {
        // add() can take either an Element/Fieldset instance,
        // or a specification, from which the appropriate object
        // will be built.

        $this->add(array(
            'name' => 'name',
            'options' => array(
                'label' => 'Your name',
            ),
            'attributes' => array(
                'type'  => 'text',
            ),
        ));
        $this->add(array(
            'name' => 'email',
            'options' => array(
                'label' => 'Your email address',
            ),
            'attributes' => array(
                'type'  => 'email',
            ),
        ));
        $this->add(array(
            'name' => 'subject',
            'options' => array(
                'label' => 'Subject',
            ),
            'attributes' => array(
                'type'  => 'text',
            ),
        ));
        $this->add(array(
            'name' => 'message',
            'options' => array(
                'label' => 'Message',
            ),
            'attributes' => array(
                'type'  => 'textarea',
            ),
        ));
        $this->add(array(
            'type' => 'Zend\Form\Element\Captcha',
            'name' => 'captcha',
            'options' => array(
                'label' => 'Please verify you are human',
            ),
            'attributes' => array(
                'captcha' => $this->captcha,
            ),
        )),
        $this->add(new Element\Csrf('security'));
        $this->add(array(
            'name' => 'send',
            'options' => array(
                'label' => 'Send',
            ),
            'attributes' => array(
                'type'  => 'submit',
            ),
        ));

        // We could also define the input filter here, or
        // lazy-create it in the getInputFilter() method.
    }
));










You’ll note that this example introduces a method, prepareElements(). This is done to allow altering and/or
configuring either the form or input filter factory instances, which could then have bearing on how elements,
inputs, etc. are created. In this case, it also allows injection of the CAPTCHA adapter, allowing us to configure
it elsewhere in our application and inject it into the form.


Validating Forms


Validating forms requires three steps. First, the form must have an input filter attached. Second, you must inject
the data to validate into the form. Third, you validate the form. If invalid, you can retrieve the error messages,
if any.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$form = new Contact\ContactForm();

// If the form doesn't define an input filter by default, inject one.
$form->setInputFilter(new Contact\ContactFilter());

// Get the data. In an MVC application, you might try:
$data = $request->post();  // for POST data
$data = $request->query(); // for GET (or query string) data

$form->setData($data);

// Validate the form
if ($form->isValid() {
    $validatedData = $form->getData();
} else {
    $messages = $form->getMessages();
}










You can get the raw data if you want, by accessing the composed input filter.


		1
2
3
4


		$filter = $form->getInputFilter();

$rawValues    = $filter->getRawValues();
$nameRawValue = $filter->getRawValue('name');










Hinting to the Input Filter


Often, you’ll create elements that you expect to behave in the same way on each usage, and for which you’ll want
specific filters or validation as well. Since the input filter is a separate object, how can you achieve these
latter points?


Because the default form implementation composes a factory, and the default factory composes an input filter
factory, you can have your elements and/or fieldsets hint to the input filter. If no input or input filter is
provided in the input filter for that element, these hints will be retrieved and used to create them.


To do so, one of the following must occur. For elements, they must implement
Zend\InputFilter\InputProviderInterface, which defines a getInputSpecification() method; for fieldsets,
they must implement Zend\InputFilter\InputFilterProviderInterface, which defines a
getInputFilterSpecification() method.


In the case of an element, the getInputSpecification() method should return data to be used by the input filter
factory to create an input.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		namespace Contact\Form;

use Zend\Form\Element;
use Zend\InputFilter\InputProviderInterface;
use Zend\Validator;

class EmailElement extends Element implements InputProviderInterface
{
    protected $attributes = array(
        'type' => 'email',
    );

    public function getInputSpecification()
    {
        return array(
            'name'     => $this->getName(),
            'required' => true,
            'filters'  => array(
                array('name' => 'Zend\Filter\StringTrim'),
            ),
            'validators' => array(
                new Validator\Email(),
            ),
        );
    }
}










The above would hint to the input filter to create and attach an input named after the element, marking it as
required, and giving it a StringTrim filter and an Email validator. Note that you can either rely on the
input filter to create filters and validators, or directly instantiate them.


For fieldsets, you do very similarly; the difference is that getInputFilterSpecification() must return
configuration for an input filter.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		namespace Contact\Form;

use Zend\Form\Fieldset;
use Zend\InputFilter\InputFilterProviderInterface;

class SenderFieldset extends Fieldset implements InputFilterProviderInterface
{
    public function getInputFilterSpecification()
    {
        return array(
            'name' => array(
                'required' => true,
                'filters'  => array(
                    array('name' => 'Zend\Filter\StringTrim'),
                ),
            ),
            'email' => array(
                'required' => true,
                'filters'  => array(
                    array('name' => 'Zend\Filter\StringTrim'),
                ),
                'validators' => array(
                    new Validator\Email(),
                ),
            ),
        );
    }
}










Specifications are a great way to make forms, fieldsets, and elements re-usable trivially in your applications. In
fact, the Captcha and Csrf elements define specifications in order to ensure they can work without
additional user configuration!


Binding an object


As noted in the intro, forms in Zend Framework bridge the domain model and the view layer. Let’s see that in
action.


When you bind() an object to the form, the following happens:



		The composed Hydrator calls extract() on the object, and uses the values returned, if any, to populate
the value attributes of all elements.


		When isValid() is called, if setData() has not been previously set, the form uses the composed
Hydrator to extract values from the object, and uses those during validation.


		If isValid() is successful (and the bindOnValidate flag is enabled, which is true by default), then the
Hydrator will be passed the validated values to use to hydrate the bound object. (If you do not want this
behavior, call setBindOnValidate(FormInterface::BIND_MANUAL)).


		If the object implements Zend\InputFilter\InputFilterAwareInterface, the input filter it composes will be
used instead of the one composed on the form.





This is easier to understand in practice.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		$contact = new ArrayObject;
$contact['subject'] = '[Contact Form] ';
$contact['message'] = 'Type your message here';

$form    = new Contact\ContactForm;

$form->bind($contact); // form now has default values for
                       // 'subject' and 'message'

$data = array(
    'name'    => 'John Doe',
    'email'   => 'j.doe@example.tld',
    'subject' => '[Contact Form] \'sup?',
);
$form->setData($data);

if ($form->isValid()) {
    // $contact now looks like:
    // array(
    //     'name'    => 'John Doe',
    //     'email'   => 'j.doe@example.tld',
    //     'subject' => '[Contact Form] \'sup?',
    //     'message' => 'Type your message here',
    // )
    // only as an ArrayObject
}










When an object is bound to the form, calling getData() will return that object by default. If you want to
return an associative array instead, you can pass the FormInterface::VALUES_AS_ARRAY flag to the method.


		1
2


		use Zend\Form\FormInterface;
$data = $form->getData(FormInterface::VALUES_AS_ARRAY);










Zend Framework ships several standard hydrators, and implementation is as simple as
implementing Zend\Stdlib\Hydrator\HydratorInterface, which looks like this:


		1
2
3
4
5
6
7
8


		namespace Zend\Stdlib\Hydrator;

interface Hydrator
{
    /** @return array */
    public function extract($object);
    public function hydrate(array $data, $object);
}










Rendering


As noted previously, forms are meant to bridge the domain model and view layer. We’ve discussed the domain model
binding, but what about the view?


The form component ships a set of form-specific view helpers. These accept the various form objects, and introspect
them in order to generate markup. Typically, they will inspect the attributes, but in special cases, they may look
at other properties and composed objects.


When preparing to render, you will likely want to call prepare(). This method ensures that certain injections
are done, and will likely in the future munge names to allow for scoped[array][notation].


The simplest view helpers available are Form, FormElement, FormLabel, and
FormElementErrors. Let’s use them to display the contact form.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


		<?php
// within a view script
$form = $this->form;
$form->prepare();

// Assuming the "contact/process" route exists...
$form->setAttribute('action', $this->url('contact/process'));

// Set the method attribute for the form
$form->setAttribute('method', 'post');

// Get the form label plugin
$formLabel = $this->plugin('formLabel');

// Render the opening tag
echo $this->form()->openTag($form);
?>
<div class="form_element">
<?php
    $name = $form->get('name');
    echo $formLabel->openTag() . $name->getAttribute('label');
    echo $this->formInput($name);
    echo $this->formElementErrors($name);
    echo $formLabel->closeTag();
?></div>

<div class="form_element">
<?php
    $subject = $form->get('subject');
    echo $formLabel->openTag() . $subject->getAttribute('label');
    echo $this->formInput($subject);
    echo $this->formElementErrors($subject);
    echo $formLabel->closeTag();
?></div>

<div class="form_element">
<?php
    $message = $form->get('message');
    echo $formLabel->openTag() . $message->getAttribute('label');
    echo $this->formInput($message);
    echo $this->formElementErrors($message);
    echo $formLabel->closeTag();
?></div>

<div class="form_element">
<?php
    $captcha = $form->get('captcha');
    echo $formLabel->openTag() . $captcha->getAttribute('label');
    echo $this->formInput($captcha);
    echo $this->formElementErrors($captcha);
    echo $formLabel->closeTag();
?></div>

<?php echo $this->formElement($form->get('security') ?>
<?php echo $this->formElement($form->get('send') ?>

<?php echo $this->form()->closeTag() ?>










There are a few things to note about this. First, to prevent confusion in IDEs and editors when syntax
highlighting, we use helpers to both open and close the form and label tags. Second, there’s a lot of repetition
happening here; we could easily create a partial view script or a composite helper to reduce boilerplate. Third,
note that not all elements are created equal – the CSRF and submit elements don’t need labels or error messages
necessarily. Finally, note that the FormElement helper tries to do the right thing – it delegates actual
markup generation toother view helpers; however, it can only guess what specific form helper to delegate to based
on the list it has. If you introduce new form view helpers, you’ll need to extend the FormElement helper, or
create your own.


However, your view files can quickly become long and repetitive to write. While we do not currently provide a
single-line form view helper (as this reduces the form customization), the simplest and most recommended way to
render your form is by using the FormRow view helper. This view helper automatically renders a label (if present),
the element itself using the FormElement helper, as well as any errors that could arise. Here is the previous form,
rewritten to take advantage of this helper :


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		<?php
// within a view script
$form = $this->form;
$form->prepare();

// Assuming the "contact/process" route exists...
$form->setAttribute('action', $this->url('contact/process'));

// Set the method attribute for the form
$form->setAttribute('method', 'post');

// Render the opening tag
echo $this->form()->openTag($form);
?>
<div class="form_element">
<?php
    $name = $form->get('name');
    echo $this->formRow($name);
?></div>

<div class="form_element">
<?php
    $subject = $form->get('subject');
    echo $this->formRow($subject);
?></div>

<div class="form_element">
<?php
    $message = $form->get('message');
    echo $this->formRow($message);
?></div>

<div class="form_element">
<?php
    $captcha = $form->get('captcha');
    echo $this->formRow($captcha);
?></div>

<?php echo $this->formElement($form->get('security') ?>
<?php echo $this->formElement($form->get('send') ?>

<?php echo $this->form()->closeTag() ?>










Note that FormRow helper automatically prepends the label. If you want it to be rendered after the element itself,
you can pass an optional parameter to the FormRow view helper :


		1
2
3
4
5


		<div class="form_element">
<?php
    $name = $form->get('name');
    echo $this->formRow($name, **'append'**);
?></div>










Validation Groups


Sometimes you want to validate only a subset of form elements. As an example, let’s say we’re re-using our contact
form over a web service; in this case, the Csrf, Captcha, and submit button elements are not of interest,
and shouldn’t be validated.


Zend\Form provides a proxy method to the underlying InputFilter‘s setValidationGroup() method, allowing
us to perform this operation.


		1
2
3
4
5
6


		$form->setValidationGroup('name', 'email', 'subject', 'message');
$form->setData($data);
if ($form->isValid()) {
    // Contains only the "name", "email", "subject", and "message" values
    $data = $form->getData();
}










If you later want to reset the form to validate all, simply pass the FormInterface::VALIDATE_ALL flag to the
setValidationGroup() method.


		1
2


		use Zend\Form\FormInterface;
$form->setValidationGroup(FormInterface::VALIDATE_ALL);










When your form contains nested fieldsets, you can use an array notation to validate only a subset of the fieldsets :


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$form->setValidationGroup(array(
             'profile' => array(
             'firstname',
             'lastname'
             )
));
$form->setData($data);
if ($form->isValid()) {
    // Contains only the "firstname" and "lastname" values from the
    // "profile" fieldset
    $data = $form->getData();
}










Using Annotations


Creating a complete forms solution can often be tedious: you’ll create some domain model object, an input filter
for validating it, a form object for providing a representation for it, and potentially a hydrator for mapping the
form elements and fieldsets to the domain model. Wouldn’t it be nice to have a central place to define all of
these?


Annotations allow us to solve this problem. You can define the following behaviors with the shipped annotations in
Zend\Form:



		AllowEmpty: mark an input as allowing an empty value. This annotation does not require a value.


		Attributes: specify the form, fieldset, or element attributes. This annotation requires an associative array of
values, in a JSON object format: @Attributes({"class":"zend_form","type":"text"}).


		ComposedObject: specify another object with annotations to parse. Typically, this is used if a property
references another object, which will then be added to your form as an additional fieldset. Expects a string
value indicating the class for the object being composed.


		ErrorMessage: specify the error message to return for an element in the case of a failed validation. Expects a
string value.


		Exclude: mark a property to exclude from the form or fieldset. This annotation does not require a value.


		Filter: provide a specification for a filter to use on a given element. Expects an associative array of values,
with a “name” key pointing to a string filter name, and an “options” key pointing to an associatve array of
filter options for the constructor: @Filter({"name": "Boolean", "options": {"casting":true}}). This annotation
may be specified multiple times.


		Flags: flags to pass to the fieldset or form composing an element or fieldset; these are usually used to
specify the name or priority. The annotation expects an associative array: @Flags({"priority": 100}).


		Hydrator: specify the hydrator class to use for this given form or fieldset. A string value is expected.


		InputFilter: specify the input filter class to use for this given form or fieldset. A string value is expected.


		Input: specify the input class to use for this given element. A string value is expected.


		Name: specify the name of the current element, fieldset, or form. A string value is expected.


		Options: options to pass to the fieldset or form that are used to inform behavior – things that are not
attributes; e.g. labels, CAPTCHA adapters, etc. The annotation expects an associative array: @Options({"label":
"Username:"}).


		Required: indicate whether an element is required. A boolean value is expected. By default, all elements are
required, so this annotation is mainly present to allow disabling a requirement.


		Type: indicate the class to use for the current element, fieldset, or form. A string value is expected.


		Validator: provide a specification for a validator to use on a given element. Expects an associative array of
values, with a “name” key pointing to a string validator name, and an “options” key pointing to an associatve
array of validator options for the constructor: @Validator({"name": "StringLength", "options": {"min":3, "max":
25}}). This annotation may be specified multiple times.





To use annotations, you simply include them in your class and/or property docblocks. Annotation names will be
resolved according to the import statements in your class; as such, you can make them as long or as short as you
want depending on what you import.


Here’s a simple example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		use Zend\Form\Annotation;

/**
 * @Annotation\Name("user")
 * @Annotation\Hydrator("Zend\Stdlib\Hydrator\ObjectProperty")
 */
class User
{
    /**
     * @Annotation\Exclude()
     */
    public $id;

    /**
     * @Annotation\Filter({"name":"StringTrim"})
     * @Annotation\Validator({"name":"StringLength", "options":{"min":1, "max":25}})
     * @Annotation\Validator({"name":"Regex", "options":{"pattern":"/^[a-zA-Z][a-zA-Z0-9_-]{0,24}$/"}})
     * @Annotation\Attributes({"type":"text"})
     * @Annotation\Options({"label":"Username:"})
     */
    public $username;

    /**
     * @Annotation\Type("Zend\Form\Element\Email")
     * @Annotation\Options({"label":"Your email address:"})
     */
    public $email;
}










The above will hint to the annotation build to create a form with name “user”, which uses the hydrator
Zend\Stdlib\Hydrator\ObjectProperty. That form will have two elements, “username” and “email”. The “username”
element will have an associated input that has a StringTrim filter, and two validators: a StringLength
validator indicating the username is between 1 and 25 characters, and a Regex validator asserting it follows a
specific accepted pattern. The form element itself will have an attribute “type” with value “text” (a text
element), and a label “Username:”. The “email” element will be of type Zend\Form\Element\Email, and have the
label “Your email address:”.


To use the above, we need Zend\Form\Annotation\AnnotationBuilder:


		1
2
3
4


		use Zend\Form\Annotation\AnnotationBuilder;

$builder = new AnnotationBuilder();
$form    = $builder->createForm('User');










At this point, you have a form with the appropriate hydrator attached, an input filter with the appropriate inputs,
and all elements.



Note


You’re not done


In all likelihood, you’ll need to add some more elements to the form you construct. For example, you’ll want a
submit button, and likely a CSRF-protection element. We recommend creating a fieldset with common elements such
as these that you can then attach to the form you build via annotations.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Form Quick Start
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.int25.png
05032007





tutorials/lucene.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Search_Lucene Introduction


The Zend_Search_Lucene component is intended to provide a ready-for-use full-text search solution. It doesn’t
require any PHP extensions [1] or additional software to be installed, and can be used immediately after Zend
Framework installation.


Zend_Search_Lucene is a pure PHP port of the popular open source full-text search engine known as Apache
Lucene. See http://lucene.apache.org/ for the details.


Information must be indexed to be available for searching. Zend_Search_Lucene and Java Lucene use a document
concept known as an “atomic indexing item.”


Each document is a set of fields: <name, value> pairs where name and value are UTF-8 strings [2]. Any subset of
the document fields may be marked as “indexed” to include field data in the text indexing process.


Field values may or may not be tokenized while indexing. If a field is not tokenized, then the field value is
stored as one term; otherwise, the current analyzer is used for tokenization.


Several analyzers are provided within the Zend_Search_Lucene package. The default analyzer works with ASCII
text (since the UTF-8 analyzer needs the mbstring extension to be turned on). It is case insensitive, and it
skips numbers. Use other analyzers or create your own analyzer if you need to change this behavior.



Note


Using analyzers during indexing and searching


Important note! Search queries are also tokenized using the “current analyzer”, so the same analyzer must be set
as the default during both the indexing and searching process. This will guarantee that source and searched text
will be transformed into terms in the same way.




Field values are optionally stored within an index. This allows the original field data to be retrieved from the
index while searching. This is the only way to associate search results with the original data (internal document
IDs may be changed after index optimization or auto-optimization).


The thing that should be remembered is that a Lucene index is not a database. It doesn’t provide index backup
mechanisms except backup of the file system directory. It doesn’t provide transactional mechanisms though
concurrent index update as well as concurrent update and read are supported. It doesn’t compare with databases in
data retrieving speed.


So it’s good idea:



		Not to use Lucene index as a storage since it may dramatically decrease search hit retrieving performance.
Store only unique document identifiers (doc paths, URLs, database unique IDs) and associated data within an
index. E.g. title, annotation, category, language info, avatar. (Note: a field may be included in indexing, but
not stored, or stored, but not indexed).


		To write functionality that can rebuild an index completely if it’s corrupted for any reason.





Individual documents in the index may have completely different sets of fields. The same fields in different
documents don’t need to have the same attributes. E.g. a field may be indexed for one document and skipped from
indexing for another. The same applies for storing, tokenizing, or treating field value as a binary string.





		[1]		Though some UTF-8 processing functionality requires the mbstring extension to be turned on









		[2]		Binary strings are also allowed to be used as field values










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Search_Lucene Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.version.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Getting the Zend Framework Version


Zend_Version provides a class constant Zend_Version::VERSION that contains a string identifying the version
number of your Zend Framework installation. Zend_Version::VERSION might contain “1.7.4”, for example.


The static method Zend_Version::compareVersion($version) is based on the PHP function version_compare() [http://php.net/version_compare].
This method returns -1 if the specified version is older than the installed Zend Framework version, 0 if they are
the same and +1 if the specified version is newer than the version of the Zend Framework installation.


Example of the compareVersion() Method


		1
2


		// returns -1, 0 or 1
$cmp = Zend_Version::compareVersion('2.0.0');










The static method Zend_Version::getLatest() provides the version number of the last stable release available
for download on the site Zend Framework [http://framework.zend.com/download/latest].


Example of the getLatest() Method


		1
2


		// returns 1.11.0 (or a later version)
echo Zend_Version::getLatest();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Getting the Zend Framework Version
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.log.formatters.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Formatters


A Formatter is an object that is responsible for taking an event array describing a log event and outputting a
string with a formatted log line.


Some Writers are not line-oriented and cannot use a Formatter. An example is the Database Writer, which inserts the
event items directly into database columns. For Writers that cannot support a Formatter, an exception is thrown if
you attempt to set a Formatter.



Simple Formatting


Zend\Log\Formatter\Simple is the default formatter. It is configured automatically when you specify no
formatter. The default configuration is equivalent to the following:


		1
2


		$format = '%timestamp% %priorityName% (%priority%): %message%' . PHP_EOL;
$formatter = new Zend\Log\Formatter\Simple($format);










A formatter is set on an individual Writer object using the Writer’s setFormatter() method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$writer = new Zend\Log\Writer\Stream('php://output');
$formatter = new Zend\Log\Formatter\Simple('hello %message%' . PHP_EOL);
$writer->setFormatter($formatter);

$logger = new Zend\Log\Logger();
$logger->addWriter($writer);

$logger->info('there');

// outputs "hello there"










The constructor of Zend\Log\Formatter\Simple accepts a single parameter: the format string. This string
contains keys surrounded by percent signs (e.g. %message%). The format string may contain any key from the
event data array. You can retrieve the default keys by using the DEFAULT_FORMAT constant from
Zend\Log\Formatter\Simple.





Formatting to XML


Zend\Log\Formatter\Xml formats log data into XML strings. By default, it automatically logs all items in the
event data array:


		1
2
3
4
5
6
7
8


		$writer = new Zend\Log\Writer\Stream('php://output');
$formatter = new Zend\Log\Formatter\Xml();
$writer->setFormatter($formatter);

$logger = new Zend\Log\Logger();
$logger->addWriter($writer);

$logger->info('informational message');










The code above outputs the following XML (space added for clarity):


		1
2
3
4
5
6


		<logEntry>
  <timestamp>2007-04-06T07:24:37-07:00</timestamp>
  <message>informational message</message>
  <priority>6</priority>
  <priorityName>INFO</priorityName>
</logEntry>










It’s possible to customize the root element as well as specify a mapping of XML elements to the items in the
event data array. The constructor of Zend\Log\Formatter\Xml accepts a string with the name of the root element
as the first parameter and an associative array with the element mapping as the second parameter:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$writer = new Zend\Log\Writer\Stream('php://output');
$formatter = new Zend\Log\Formatter\Xml('log',
                                        array('msg' => 'message',
                                              'level' => 'priorityName')
                                       );
$writer->setFormatter($formatter);

$logger = new Zend\Log\Logger();
$logger->addWriter($writer);

$logger->info('informational message');










The code above changes the root element from its default of logEntry to log. It also maps the element
msg to the event data item message. This results in the following output:


		1
2
3
4


		<log>
  <msg>informational message</msg>
  <level>INFO</level>
</log>













Formatting to FirePhp


Zend\Log\Formatter\FirePhp formats log data for the Firebug [http://getfirebug.com/] extension for Firefox.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Formatters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.captcha.adapters.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
CAPTCHA Adapters


The following adapters are shipped with Zend Framework by default.



Zend\Captcha\Word


Zend\Captcha\Word is an abstract adapter that serves as the base class for most other CAPTCHA adapters. It
provides mutators for specifying word length, session TTL and the session container object to use.
Zend\Captcha\Word also encapsulates validation logic.


By default, the word length is 8 characters, the session timeout is 5 minutes, and Zend\Session\Container is
used for persistence (using the namespace “Zend_Form_Captcha_<captcha ID>”).


In addition to the methods required by the Zend\Captcha\AdapterInterface interface, Zend\Captcha\Word
exposes the following methods:



		setWordLen($length) and getWordLen() allow you to specify the length of the generated “word” in
characters, and to retrieve the current value.


		setTimeout($ttl) and getTimeout() allow you to specify the time-to-live of the session token, and to
retrieve the current value. $ttl should be specified in seconds.


		setUseNumbers($numbers) and getUseNumbers() allow you to specify if numbers will be considered as
possible characters for the random work or only letters would be used.


		setSessionClass($class) and getSessionClass() allow you to specify an alternate
Zend\Session\Container implementation to use to persist the CAPTCHA token and to retrieve the current
value.


		getId() allows you to retrieve the current token identifier.


		getWord() allows you to retrieve the generated word to use with the CAPTCHA. It will generate the word for
you if none has been generated yet.


		setSession(Zend\Session\Container $session) allows you to specify a session object to use for persisting the
CAPTCHA token. getSession() allows you to retrieve the current session object.





All word CAPTCHAs allow you to pass an array of options or Traversable object to the constructor, or,
alternately, pass them to setOptions(). By default, the wordLen, timeout, and sessionClass keys may
all be used. Each concrete implementation may define additional keys or utilize the options in other ways.



Note


Zend\Captcha\Word is an abstract class and may not be instantiated directly.







Zend\Captcha\Dumb


The Zend\Captcha\Dumb adapter is mostly self-descriptive. It provides a random string that must be typed in
reverse to validate. As such, it’s not a good CAPTCHA solution and should only be used for testing. It extends
Zend\Captcha\Word.





Zend\Captcha\Figlet


The Zend\Captcha\Figlet adapter utilizes Zend\Text\Figlet to present a figlet to
the user.


Options passed to the constructor will also be passed to the Zend\Text\Figlet object.
See the Zend\Text\Figlet documentation for details on what configuration options are
available.





Zend\Captcha\Image


The Zend\Captcha\Image adapter takes the generated word and renders it as an image, performing various skewing
permutations to make it difficult to automatically decipher. It requires the GD extension [http://php.net/gd] compiled with TrueType
or Freetype support. Currently, the Zend\Captcha\Image adapter can only generate PNG images.


Zend\Captcha\Image extends Zend\Captcha\Word, and additionally exposes the following methods:



		setExpiration($expiration) and getExpiration() allow you to specify a maximum lifetime the CAPTCHA
image may reside on the filesystem. This is typically a longer than the session lifetime. Garbage collection is
run periodically each time the CAPTCHA object is invoked, deleting all images that have expired. Expiration
values should be specified in seconds.


		setGcFreq($gcFreq) and getGcFreg() allow you to specify how frequently garbage collection should run.
Garbage collection will run every 1/$gcFreq calls. The default is 100.


		setFont($font) and getFont() allow you to specify the font you will use. $font should be a fully
qualified path to the font file. This value is required; the CAPTCHA will throw an exception during generation
if the font file has not been specified.


		setFontSize($fsize) and getFontSize() allow you to specify the font size in pixels for generating the
CAPTCHA. The default is 24px.


		setHeight($height) and getHeight() allow you to specify the height in pixels of the generated CAPTCHA
image. The default is 50px.


		setWidth($width) and getWidth() allow you to specify the width in pixels of the generated CAPTCHA
image. The default is 200px.


		setImgDir($imgDir) and getImgDir() allow you to specify the directory for storing CAPTCHA images. The
default is “./images/captcha/”, relative to the bootstrap script.


		setImgUrl($imgUrl) and getImgUrl() allow you to specify the relative path to a CAPTCHA image to use for
HTML markup. The default is “/images/captcha/”.


		setSuffix($suffix) and getSuffix() allow you to specify the filename suffix for the CAPTCHA image. The
default is “.png”. Note: changing this value will not change the type of the generated image.


		setDotNoiseLevel($level) and getDotNoiseLevel(), along with setLineNoiseLevel($level) and
getLineNoiseLevel(), allow you to control how much “noise” in the form of random dots and lines the image
would contain. Each unit of $level produces one random dot or line. The default is 100 dots and 5 lines. The
noise is added twice - before and after the image distortion transformation.





All of the above options may be passed to the constructor by simply removing the ‘set’ method prefix and casting
the initial letter to lowercase: “suffix”, “height”, “imgUrl”, etc.





Zend\Captcha\ReCaptcha


The Zend\Captcha\ReCaptcha adapter uses Zend\Service\ReCaptcha\ReCaptcha to
generate and validate CAPTCHAs. It exposes the following methods:



		setPrivKey($key) and getPrivKey() allow you to specify the private key to use for the ReCaptcha service.
This must be specified during construction, although it may be overridden at any point.


		setPubKey($key) and getPubKey() allow you to specify the public key to use with the ReCaptcha service.
This must be specified during construction, although it may be overridden at any point.


		setService(Zend\Service\ReCaptcha\ReCaptcha $service) and getService() allow you to set and get the
ReCaptcha service object.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                CAPTCHA Adapters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.preg-replace.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
PregReplace


Zend_Filter_PregReplace performs a search using regular expressions and replaces all found elements.



Supported options for Zend_Filter_PregReplace


The following options are supported for Zend_Filter_PregReplace:



		match: The pattern which will be searched for.


		replace: The string which is used as replacement for the matches.








Basic usage


To use this filter properly you must give two options:


The option match has to be given to set the pattern which will be searched for. It can be a string for a single
pattern, or an array of strings for multiple pattern.


To set the pattern which will be used as replacement the option replace has to be used. It can be a string for
a single pattern, or an array of strings for multiple pattern.


		1
2
3
4
5
6
7
8


		$filter = new Zend_Filter_PregReplace(array(
    'match'   => '/bob/',
    'replace' => 'john',
));
$input  = 'Hy bob!";

$filter->filter($input);
// returns 'Hy john!'










You can use getMatchPattern() and setMatchPattern() to set the matching pattern afterwards. To set the
replacement pattern you can use getReplacement() and setReplacement().


		1
2
3
4
5
6
7


		$filter = new Zend_Filter_PregReplace();
$filter->setMatchPattern(array('bob', 'Hy'))
      ->setReplacement(array('john', 'Bye'));
$input  = 'Hy bob!";

$filter->filter($input);
// returns 'Bye john!'










For a more complex usage take a look into PHP‘s PCRE Pattern Chapter [http://www.php.net/manual/en/reference.pcre.pattern.modifiers.php].








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                PregReplace
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.audioscrobbler.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Audioscrobbler



Introduction


Zend_Service_Audioscrobbler is a simple API for using the Audioscrobbler REST Web Service. The Audioscrobbler
Web Service provides access to its database of Users, Artists, Albums, Tracks, Tags, Groups, and Forums. The
methods of the Zend_Service_Audioscrobbler class begin with one of these terms. The syntax and namespaces of
the Audioscrobbler Web Service are mirrored in Zend_Service_Audioscrobbler. For more information about the
Audioscrobbler REST Web Service, please visit the Audioscrobbler Web Service site [http://www.audioscrobbler.net/data/webservices/].





Users


In order to retrieve information for a specific user, the setUser() method is first used to select the user for
which data are to be retrieved. Zend_Service_Audioscrobbler provides several methods for retrieving data
specific to a single user:




		userGetProfileInformation(): Returns a SimpleXML object containing the current user’s profile information.


		userGetTopArtists(): Returns a SimpleXML object containing a list of the current user’s most listened to
artists.


		userGetTopAlbums(): Returns a SimpleXML object containing a list of the current user’s most listened to
albums.


		userGetTopTracks(): Returns a SimpleXML object containing a list of the current user’s most listened to
tracks.


		userGetTopTags(): Returns a SimpleXML object containing a list of tags most applied by the current user.


		userGetTopTagsForArtist(): Requires that an artist be set via setArtist(). Returns a SimpleXML object
containing the tags most applied to the current artist by the current user.


		userGetTopTagsForAlbum(): Requires that an album be set via setAlbum(). Returns a SimpleXML object
containing the tags most applied to the current album by the current user.


		userGetTopTagsForTrack(): Requires that a track be set via setTrack(). Returns a SimpleXML object
containing the tags most applied to the current track by the current user.


		userGetFriends(): Returns a SimpleXML object containing the user names of the current user’s friends.


		userGetNeighbours(): Returns a SimpleXML object containing the user names of people with similar listening
habits to the current user.


		userGetRecentTracks(): Returns a SimpleXML object containing the 10 tracks most recently played by the
current user.


		userGetRecentBannedTracks(): Returns a SimpleXML object containing a list of the 10 tracks most recently
banned by the current user.


		userGetRecentLovedTracks(): Returns a SimpleXML object containing a list of the 10 tracks most recently
loved by the current user.


		userGetRecentJournals(): Returns a SimpleXML object containing a list of the current user’s most recent
journal entries.


		userGetWeeklyChartList(): Returns a SimpleXML object containing a list of weeks for which there exist
Weekly Charts for the current user.


		userGetRecentWeeklyArtistChart(): Returns a SimpleXML object containing the most recent Weekly Artist
Chart for the current user.


		userGetRecentWeeklyAlbumChart(): Returns a SimpleXML object containing the most recent Weekly Album Chart
for the current user.


		userGetRecentWeeklyTrackChart(): Returns a SimpleXML object containing the most recent Weekly Track Chart
for the current user.


		userGetPreviousWeeklyArtistChart($fromDate, $toDate): Returns a SimpleXML object containing the Weekly
Artist Chart from $fromDate to $toDate for the current user.


		userGetPreviousWeeklyAlbumChart($fromDate, $toDate): Returns a SimpleXML object containing the Weekly
Album Chart from $fromDate to $toDate for the current user.


		userGetPreviousWeeklyTrackChart($fromDate, $toDate): Returns a SimpleXML object containing the Weekly
Track Chart from $fromDate to $toDate for the current user.









Retrieving User Profile Information


In this example, we use the setUser() and userGetProfileInformation() methods to retrieve a specific user’s
profile information:


		1
2
3
4
5
6
7
8


		$as = new Zend_Service_Audioscrobbler();
// Set the user whose profile information we want to retrieve
$as->setUser('BigDaddy71');
// Retrieve BigDaddy71's profile information
$profileInfo = $as->userGetProfileInformation();
// Display some of it
print "Information for $profileInfo->realname "
    . "can be found at $profileInfo->url";










Retrieving a User’s Weekly Artist Chart


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		$as = new Zend_Service_Audioscrobbler();
// Set the user whose profile weekly artist chart we want to retrieve
$as->setUser('lo_fye');
// Retrieves a list of previous weeks for which there are chart data
$weeks = $as->userGetWeeklyChartList();
if (count($weeks) < 1) {
    echo 'No data available';
}
sort($weeks); // Order the list of weeks

$as->setFromDate($weeks[0]); // Set the starting date
$as->setToDate($weeks[0]); // Set the ending date

$previousWeeklyArtists = $as->userGetPreviousWeeklyArtistChart();

echo 'Artist Chart For Week Of '
   . date('Y-m-d h:i:s', $as->from_date)
   . '<br />';

foreach ($previousWeeklyArtists as $artist) {
    // Display the artists' names with links to their profiles
    print '<a href="' . $artist->url . '">' . $artist->name . '</a><br />';
}













Artists


Zend_Service_Audioscrobbler provides several methods for retrieving data about a specific artist, specified via
the setArtist() method:




		artistGetRelatedArtists(): Returns a SimpleXML object containing a list of Artists similar to the current
Artist.


		artistGetTopFans(): Returns a SimpleXML object containing a list of Users who listen most to the current
Artist.


		artistGetTopTracks(): Returns a SimpleXML object containing a list of the current Artist’s top-rated
Tracks.


		artistGetTopAlbums(): Returns a SimpleXML object containing a list of the current Artist’s top-rated
Albums.


		artistGetTopTags(): Returns a SimpleXML object containing a list of the Tags most frequently applied to
current Artist.









Retrieving Related Artists


		1
2
3
4
5
6
7
8
9


		$as = new Zend_Service_Audioscrobbler();
// Set the artist for whom you would like to retrieve related artists
$as->setArtist('LCD Soundsystem');
// Retrieve the related artists
$relatedArtists = $as->artistGetRelatedArtists();
foreach ($relatedArtists as $artist) {
    // Display the related artists
    print '<a href="' . $artist->url . '">' . $artist->name . '</a><br />';
}













Tracks


Zend_Service_Audioscrobbler provides two methods for retrieving data specific to a single track, specified via
the setTrack() method:




		trackGetTopFans(): Returns a SimpleXML object containing a list of Users who listen most to the current
Track.


		trackGetTopTags(): Returns a SimpleXML object containing a list of the Tags most frequently applied to the
current Track.












Tags


Zend_Service_Audioscrobbler provides several methods for retrieving data specific to a single tag, specified
via the setTag() method:




		tagGetOverallTopTags(): Returns a SimpleXML object containing a list of Tags most frequently used on
Audioscrobbler.


		tagGetTopArtists(): Returns a SimpleXML object containing a list of Artists to whom the current Tag was
most frequently applied.


		tagGetTopAlbums(): Returns a SimpleXML object containing a list of Albums to which the current Tag was
most frequently applied.


		tagGetTopTracks(): Returns a SimpleXML object containing a list of Tracks to which the current Tag was
most frequently applied.












Groups


Zend_Service_Audioscrobbler provides several methods for retrieving data specific to a single group, specified
via the setGroup() method:




		groupGetRecentJournals(): Returns a SimpleXML object containing a list of recent journal posts by Users in
the current Group.


		groupGetWeeklyChart(): Returns a SimpleXML object containing a list of weeks for which there exist Weekly
Charts for the current Group.


		groupGetRecentWeeklyArtistChart(): Returns a SimpleXML object containing the most recent Weekly Artist
Chart for the current Group.


		groupGetRecentWeeklyAlbumChart(): Returns a SimpleXML object containing the most recent Weekly Album Chart
for the current Group.


		groupGetRecentWeeklyTrackChart(): Returns a SimpleXML object containing the most recent Weekly Track Chart
for the current Group.


		groupGetPreviousWeeklyArtistChart($fromDate, $toDate): Requires setFromDate() and setToDate().
Returns a SimpleXML object containing the Weekly Artist Chart from the current fromDate to the current toDate
for the current Group.


		groupGetPreviousWeeklyAlbumChart($fromDate, $toDate): Requires setFromDate() and setToDate().
Returns a SimpleXML object containing the Weekly Album Chart from the current fromDate to the current toDate
for the current Group.


		groupGetPreviousWeeklyTrackChart($fromDate, $toDate): Returns a SimpleXML object containing the Weekly
Track Chart from the current fromDate to the current toDate for the current Group.












Forums


Zend_Service_Audioscrobbler provides a method for retrieving data specific to a single forum, specified via the
setForum() method:




		forumGetRecentPosts(): Returns a SimpleXML object containing a list of recent posts in the current forum.















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Audioscrobbler
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.string-length.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
StringLength


This validator allows you to validate if a given string is between a defined length.



Note


ZendValidatorStringLength supports only string validation


It should be noted that Zend\Validator\StringLength supports only the validation of strings. Integers,
floats, dates or objects can not be validated with this validator.





Supported options for Zend\Validator\StringLength


The following options are supported for Zend\Validator\StringLength:



		encoding: Sets the ICONV encoding which has to be used for this string.


		min: Sets the minimum allowed length for a string.


		max: Sets the maximum allowed length for a string.








Default behaviour for Zend\Validator\StringLength


Per default this validator checks if a value is between min and max. But for min the default value is
0 and for max it is NULL which means unlimited.


So per default, without giving any options, this validator only checks if the input is a string.





Limiting the maximum allowed length of a string


To limit the maximum allowed length of a string you need to set the max property. It accepts an integer value
as input.


		1
2
3
4


		$validator = new Zend\Validator\StringLength(array('max' => 6));

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns false










You can set the maximum allowed length also afterwards by using the setMax() method. And getMax() to
retrieve the actual maximum border.


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength();
$validator->setMax(6);

$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns false













Limiting the minimal required length of a string


To limit the minimal required length of a string you need to set the min property. It accepts also an integer
value as input.


		1
2
3
4


		$validator = new Zend\Validator\StringLength(array('min' => 5));

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true










You can set the minimal requested length also afterwards by using the setMin() method. And getMin() to
retrieve the actual minimum border.


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength();
$validator->setMin(5);

$validator->isValid("Test"); // returns false
$validator->isValid("Testing"); // returns true













Limiting a string on both sides


Sometimes it is required to get a string which has a maximal defined length but which is also minimal chars long.
For example when you have a textbox where a user can enter his name, then you may want to limit the name to maximum
30 chars but want to get sure that he entered his name. So you limit the minimum required length to 3 chars. See
the following example:


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength(array('min' => 3, 'max' => 30));

$validator->isValid("."); // returns false
$validator->isValid("Test"); // returns true
$validator->isValid("Testing"); // returns true











Note


Setting a lower maximum border than the minimum border


When you try to set a lower maximum value as the actual minimum value, or a higher minimum value as the actual
maximum value, then an exception will be raised.







Encoding of values


Strings are always using a encoding. Even when you don’t set the encoding explicit, PHP uses one. When your
application is using a different encoding than PHP itself then you should set an encoding yourself.


You can set your own encoding at initiation with the encoding option, or by using the setEncoding() method.
We assume that your installation uses ISO and your application it set to ISO. In this case you will see the
below behaviour.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\StringLength(
    array('min' => 6)
);
$validator->isValid("Ärger"); // returns false

$validator->setEncoding("UTF-8");
$validator->isValid("Ärger"); // returns true

$validator2 = new Zend\Validator\StringLength(
    array('min' => 6, 'encoding' => 'UTF-8')
);
$validator2->isValid("Ärger"); // returns true










So when your installation and your application are using different encodings, then you should always set an
encoding yourself.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                StringLength
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.head-script.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HeadScript Helper


The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote
resource containing client-side scripting code. The HeadScript helper allows you to manage both.


The HeadScript helper supports the following methods for setting and adding scripts:



		appendFile($src, $type = 'text/javascript', $attrs = array())


		offsetSetFile($index, $src, $type = 'text/javascript', $attrs = array())


		prependFile($src, $type = 'text/javascript', $attrs = array())


		setFile($src, $type = 'text/javascript', $attrs = array())


		appendScript($script, $type = 'text/javascript', $attrs = array())


		offsetSetScript($index, $script, $type = 'text/javascript', $attrs = array())


		prependScript($script, $type = 'text/javascript', $attrs = array())


		setScript($script, $type = 'text/javascript', $attrs = array())





In the case of the * File() methods, $src is the remote location of the script to load; this is usually in
the form of a URL or a path. For the * Script() methods, $script is the client-side scripting directives
you wish to use in the element.



Note


Setting Conditional Comments


HeadScript allows you to wrap the script tag in conditional comments, which allows you to hide it from
specific browsers. To add the conditional tags, pass the conditional value as part of the $attrs parameter
in the method calls.


Headscript With Conditional Comments


		1
2
3
4
5
6


		// adding scripts
$this->headScript()->appendFile(
    '/js/prototype.js',
    'text/javascript',
    array('conditional' => 'lt IE 7')
);













Note


Preventing HTML style comments or CDATA wrapping of scripts


By default HeadScript will wrap scripts with HTML comments or it wraps scripts with XHTML cdata. This
behavior can be problematic when you intend to use the script tag in an alternative way by setting the type to
something other then ‘text/javascript’. To prevent such escaping, pass an noescape with a value of true as
part of the $attrs parameter in the method calls.


Create an jQuery template with the headScript


		1
2
3
4
5
6
7


		// jquery template
$template = '<div class="book">{{:title}}</div>';
$this->headScript()->appendScript(
    $template,
    'text/x-jquery-tmpl',
    array('id='tmpl-book', 'noescape' => true)
);












HeadScript also allows capturing scripts; this can be useful if you want to create the client-side script
programmatically, and then place it elsewhere. The usage for this will be showed in an example below.


Finally, you can also use the headScript() method to quickly add script elements; the signature for this is
headScript($mode = 'FILE', $spec, $placement = 'APPEND'). The $mode is either ‘FILE’ or ‘SCRIPT’, depending
on if you’re linking a script or defining one. $spec is either the script file to link or the script source
itself. $placement should be either ‘APPEND’, ‘PREPEND’, or ‘SET’.


HeadScript overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of
the special methods as listed above. Internally, it stores each item as a stdClass token, which it later
serializes using the itemToString() method. This allows you to perform checks on the items in the stack, and
optionally modify these items by simply modifying the object returned.


The HeadScript helper is a concrete implementation of the Placeholder helper.



Note


Use InlineScript for HTML Body Scripts


HeadScript‘s sibling helper, InlineScript, should be used
when you wish to include scripts inline in the HTML body. Placing scripts at the end of your document is a
good practice for speeding up delivery of your page, particularly when using 3rd party analytics scripts.





Note


Arbitrary Attributes are Disabled by Default


By default, HeadScript only will render <script> attributes that are blessed by the W3C. These include
‘type’, ‘charset’, ‘defer’, ‘language’, and ‘src’. However, some javascript frameworks, notably Dojo [http://www.dojotoolkit.org/], utilize
custom attributes in order to modify behavior. To allow such attributes, you can enable them via the
setAllowArbitraryAttributes() method:


		1


		$this->headScript()->setAllowArbitraryAttributes(true);












HeadScript Helper Basic Usage


You may specify a new script tag at any time. As noted above, these may be links to outside resource files or
scripts themselves.


		1
2
3


		// adding scripts
$this->headScript()->appendFile('/js/prototype.js')
                   ->appendScript($onloadScript);










Order is often important with client-side scripting; you may need to ensure that libraries are loaded in a specific
order due to dependencies each have; use the various append, prepend, and offsetSet directives to aid in this task:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Putting scripts in order

// place at a particular offset to ensure loaded last
$this->headScript()->offsetSetFile(100, '/js/myfuncs.js');

// use scriptaculous effects (append uses next index, 101)
$this->headScript()->appendFile('/js/scriptaculous.js');

// but always have base prototype script load first:
$this->headScript()->prependFile('/js/prototype.js');










When you’re finally ready to output all scripts in your layout script, simply echo the helper:


		1


		<?php echo $this->headScript() ?>










Capturing Scripts Using the HeadScript Helper


Sometimes you need to generate client-side scripts programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the script and sprinkling in PHP tags.
HeadScript lets you do just that, capturing it to the stack:


		1
2
3
4


		<?php $this->headScript()->captureStart() ?>
var action = '<?php echo $this->baseUrl ?>';
$('foo_form').action = action;
<?php $this->headScript()->captureEnd() ?>










The following assumptions are made:



		The script will be appended to the stack. If you wish for it to replace the stack or be added to the top, you
will need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().


		The script MIME type is assumed to be ‘text/javascript’; if you wish to specify a different type, you will need
to pass it as the second argument to captureStart().


		If you wish to specify any additional attributes for the <script> tag, pass them in an array as the third
argument to captureStart().









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HeadScript Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.module-manager.module-autoloader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The Module Autoloader


Zend Framework 2 ships with a default module autoloader. Zend\Loader\ModuleAutoloader is a specialized
autoloader that is responsible for location of, and on-demand loading of, the Module classes from a variety of
sources.



Module Autoloader Usage


If you are using the provided Zend\ModuleManager\Listener\DefaultListenerAggregate, then it is very simple to
set up the module autoloader. You simply need to provide an array of module paths, either absolute or relative to
the application’s root, for the module autoloader to check when loading modules. The default listener aggregate
will take care of instantiating and registering the module autoloader for you.


Keep in mind that in order for paths relative to your application directory to work, you must have the directive
chdir(dirname(__DIR__)); in your public/index.php.


Registering module paths with the default listener aggregate


The following example will search for modules in three different paths. Two are local directories for this
application, and the third is a system-wide shared directory.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// public/index.php
use Zend\ModuleManager\Listener;
use Zend\ModuleManager\ModuleManager;

chdir(dirname(__DIR__));

// Instantiate and configure the default listener aggregate
$listenerOptions = new Listener\ListenerOptions(array(
    'module_paths' => array(
        './module',
        './vendor',
        '/usr/share/zfmodules',
    )
));
$defaultListeners = new Listener\DefaultListenerAggregate($listenerOptions);

// Instantiate the module manager
$moduleManager = new ModuleManager(array(
    'Application',
    'FooModule',
    'BarModule',
));

// Attach the default listener aggregate and load the modules
$moduleManager->getEventManager()->attachAggregate($defaultListeners);
$moduleManager->loadModules();











Note


Module paths behave very similar to the PHP include path, and are searched in the order they are defined. If you
have modules with the same name in more than one registered module path, the module autoloader will return the
first one it finds.







Non-Standard / Explicit Module Paths


Sometimes you may want to specify exactly where a module is instead of having Zend\Loader\ModuleAutoloader try
to find it in the registered paths.


Registering a Non-Standard / Explicit Module Path


In this example, the autoloader will first check for MyModule\Module in
/path/to/mymoduledir-v1.2/Module.php. If it’s not found, then it will fall back to searching any other
registered module paths.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


		// ./public/index.php
use Zend\Loader\ModuleAutoloader;
use Zend\ModuleManager\Listener;
use Zend\ModuleManager\ModuleManager;

chdir(dirname(__DIR__));

// Instantiate and configure the default listener aggregate
$listenerOptions = new Listener\ListenerOptions(array(
    'module_paths' => array(
        './module',
        './vendor',
        '/usr/share/zfmodules',
        'MyModule' => '/path/to/mymoduledir-v1.2',
    )
));
$defaultListeners = new Listener\DefaultListenerAggregate($listenerOptions);

/**
 * Without DefaultListenerAggregate:
 *
 * $moduleAutoloader = new ModuleAutoloader(array(
 *     './module',
 *     './vendor',
 *     '/usr/share/zfmodules',
 *     'MyModule' => '/path/to/mymoduledir-v1.2',
 * ));
 * $moduleAutoloader->register();
 *
 */

// Instantiate the module manager
$moduleManager = new ModuleManager(array(
    'MyModule',
    'FooModule',
    'BarModule',
));

// Attach the default listener aggregate and load the modules
$moduleManager->getEventManager()->attachAggregate($defaultListeners);
$moduleManager->loadModules();










This same method works if you provide the path to a phar archive.





Packaging Modules with Phar


If you prefer, you may easily package your module as a phar archive [http://php.net/phar]. The module autoloader is able to autoload
modules in the following archive formats: .phar, .phar.gz, .phar.bz2, .phar.tar, .phar.tar.gz, .phar.tar.bz2,
.phar.zip, .tar, .tar.gz, .tar.bz2, and .zip.


The easiest way to package your module is to simply tar the module directory. You can then replace the
MyModule/ directory with MyModule.tar, and it should still be autoloaded without any additional changes!



Note


If possible, avoid using any type of compression (bz2, gz, zip) on your phar archives, as it introduces
unnecessary CPU overhead to each request.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The Module Autoloader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.html-object.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HTML Object Helpers


The HTML <object> element is used for embedding media like Flash or QuickTime in web pages. The object view
helpers take care of embedding media with minimum effort.


There are four initial Object helpers:



		htmlFlash() Generates markup for embedding Flash files.


		htmlObject() Generates markup for embedding a custom Object.


		htmlPage() Generates markup for embedding other (X)HTML pages.


		htmlQuicktime() Generates markup for embedding QuickTime files.





All of these helpers share a similar interface. For this reason, this documentation will only contain examples of
two of these helpers.


Flash helper


Embedding Flash in your page using the helper is pretty straight-forward. The only required argument is the
resource URI.


		1


		<?php echo $this->htmlFlash('/path/to/flash.swf'); ?>










This outputs the following HTML:


		1
2
3
4
5


		<object data="/path/to/flash.swf"
        type="application/x-shockwave-flash"
        classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
        codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">
</object>










Additionally you can specify attributes, parameters and content that can be rendered along with the <object>.
This will be demonstrated using the htmlObject() helper.


Customizing the object by passing additional arguments


The first argument in the object helpers is always required. It is the URI to the resource you want to embed. The
second argument is only required in the htmlObject() helper. The other helpers already contain the correct
value for this argument. The third argument is used for passing along attributes to the object element. It only
accepts an array with key-value pairs. classid and codebase are examples of such attributes. The fourth
argument also only takes a key-value array and uses them to create <param> elements. You will see an example of
this shortly. Lastly, there is the option of providing additional content to the object. Now for an example which
utilizes all arguments.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		echo $this->htmlObject(
    '/path/to/file.ext',
    'mime/type',
    array(
        'attr1' => 'aval1',
        'attr2' => 'aval2'
    ),
    array(
        'param1' => 'pval1',
        'param2' => 'pval2'
    ),
    'some content'
);

/*
This would output:

<object data="/path/to/file.ext" type="mime/type"
    attr1="aval1" attr2="aval2">
    <param name="param1" value="pval1" />
    <param name="param2" value="pval2" />
    some content
</object>
*/














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HTML Object Helpers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.generation-diabasic_zoom.png





modules/zend.di.debugging-and-complex-use-cases.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Di Debugging & Complex Use Cases



Debugging a DiC


It is possible to dump the information contained within both the Definition and InstanceManager for a Di instance.


The easiest way is to do the following:


		1


		    Zend\Di\Display\Console::export($di);










If you are using a RuntimeDefinition where upon you expect a particular definition to be resolve at the first-call,
you can see that information to the console display to force it to read that class:


		1


		        Zend\Di\Display\Console::export($di, array('A\ClassIWantTo\GetTheDefinitionFor'));













Complex Use Cases



Interface Injection


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		namespace Foo\Bar {
    class Baz implements BamAwareInterface {
        public $bam;
        public function setBam(Bam $bam){
            $this->bam = $bam;
        }
    }
    class Bam {
    }
    interface BamAwareInterface
    {
        public function setBam(Bam $bam);
    }
}

namespace {
    include 'zf2bootstrap.php';
    $di = new Zend\Di\Di;
    $baz = $di->get('Foo\Bar\Baz');
}













Setter Injection with Class Definition


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		namespace Foo\Bar {
    class Baz {
        public $bam;
        public function setBam(Bam $bam){
            $this->bam = $bam;
        }
    }
    class Bam {
    }
}

namespace {
    $di = new Zend\Di\Di;
    $di->configure(new Zend\Di\Config(array(
        'definition' => array(
            'class' => array(
                'Foo\Bar\Baz' => array(
                    'setBam' => array('required' => true)
                )
            )
        )
    )));
    $baz = $di->get('Foo\Bar\Baz');
}













Multiple Injections To A Single Injection Point


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		namespace Application {
    class Page {
        public $blocks;
        public function addBlock(Block $block){
            $this->blocks[] = $block;
        }
    }
    interface Block {
    }
}

namespace MyModule {
    class BlockOne implements \Application\Block {}
    class BlockTwo implements \Application\Block {}
}

namespace {
    include 'zf2bootstrap.php';
    $di = new Zend\Di\Di;
    $di->configure(new Zend\Di\Config(array(
        'definition' => array(
            'class' => array(
                'Application\Page' => array(
                    'addBlock' => array(
                        'block' => array('type' => 'Application\Block', 'required' => true)
                    )
                )
            )
        ),
        'instance' => array(
            'Application\Page' => array(
                'injections' => array(
                    'MyModule\BlockOne',
                    'MyModule\BlockTwo'
                )
            )
        )
    )));
    $page = $di->get('Application\Page');
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Di Debugging & Complex Use Cases
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.paginator.advanced.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Advanced usage



Custom data source adapters


At some point you may run across a data type that is not covered by the packaged adapters. In this case, you will
need to write your own.


To do so, you must implement Zend\Paginator\Adapter\AdapterInterface. There are two methods required to do this:



		count()


		getItems($offset, $itemCountPerPage)





Additionally, you’ll want to implement a constructor that takes your data source as a parameter and stores it as a
protected or private property. How you wish to go about doing this specifically is up to you.


If you’ve ever used the SPL interface Countable [http://www.php.net/~helly/php/ext/spl/interfaceCountable.html], you’re familiar with count(). As used with
Zend\Paginator, this is the total number of items in the data collection. Additionally, the Zend\Paginator\Paginator
instance provides a method countAllItems() that proxies to the adapter count() method.


The getItems() method is only slightly more complicated. For this, your adapter is supplied with an offset and
the number of items to display per page. You must return the appropriate slice of data. For an array, that would
be:


		1


		return array_slice($this->_array, $offset, $itemCountPerPage);










Take a look at the packaged adapters (all of which implement the Zend\Paginator\Adapter\AdapterInterface) for ideas of
how you might go about implementing your own.





Custom scrolling styles


Creating your own scrolling style requires that you implement Zend\Paginator\ScrollingStyle\ScrollingStyleInterface, which
defines a single method, getPages(). Specifically,


		1


		public function getPages(Zend\Paginator\Paginator $paginator, $pageRange = null);










This method should calculate a lower and upper bound for page numbers within the range of so-called “local” pages
(that is, pages that are nearby the current page).


Unless it extends another scrolling style (see Zend\Paginator\ScrollingStyle\Elastic for an example), your
custom scrolling style will inevitably end with something similar to the following line of code:


		1


		return $paginator->getPagesInRange($lowerBound, $upperBound);










There’s nothing special about this call; it’s merely a convenience method to check the validity of the lower and
upper bound and return an array of the range to the paginator.


When you’re ready to use your new scrolling style, you’ll need to tell Zend\Paginator\Paginator what directory to look
in. To do that, do the following:


		1
2


		$manager = Zend\Paginator\Paginator::getScrollingStyleManager();
$manager->setInvokableClass('my-style', 'My\Paginator\ScrollingStyle');













Caching features


Zend\Paginator\Paginator can be told to cache the data it has already passed on, preventing the adapter from fetching
them each time they are used. To tell paginator to automatically cache the adapter’s data, just pass to its
setCache() method a pre-configured cache object implementing the Zend\Cache\Storage\StorageInterface interface.


		1
2
3
4
5
6


		$cache = StorageFactory::adapterFactory('filesystem', array(
    'cache_dir' => '/tmp',
    'ttl'       => 3600,
    'plugins'   => array( 'serializer' ),
));
Zend\Paginator\Paginator::setCache($cache);










As long as Zend\Paginator\Paginator has been seeded with a cache storage object the data it generates will be cached.
Sometimes you would like not to cache data even if you already passed a cache instance. You should then use setCacheEnable() for that.


		1
2
3
4
5


		// $cache is a Zend\Cache\Storage\StorageInterface instance
Zend\Paginator\Paginator::setCache($cache);
// ... later on the script
$paginator->setCacheEnable(false);
// cache is now disabled










When a cache is set, data are automatically stored in it and pulled out from it. It then can be useful to empty the
cache manually. You can get this done by calling clearPageItemCache($pageNumber). If you don’t pass any
parameter, the whole cache will be empty. You can optionally pass a parameter representing the page number to empty
in the cache:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		// $cache is a Zend\Cache\Storage\StorageInterface instance
Zend\Paginator\Paginator::setCache($cache);
// $paginator is a fully configured Zend\Paginator\Paginator instance
$items = $paginator->getCurrentItems();
// page 1 is now in cache
$page3Items = $paginator->getItemsByPage(3);
// page 3 is now in cache

// clear the cache of the results for page 3
$paginator->clearPageItemCache(3);

// clear all the cache data
$paginator->clearPageItemCache();










Changing the item count per page will empty the whole cache as it would have become invalid:


		1
2
3
4
5
6
7
8


		// $cache is a Zend\Cache\Storage\StorageInterface instance
Zend\Paginator\Paginator::setCache($cache);
// fetch some items
// $paginator is a fully configured Zend\Paginator\Paginator instance
$items = $paginator->getCurrentItems();

// all the cache data will be flushed:
$paginator->setItemCountPerPage(2);










It is also possible to see the data in cache and ask for them directly. getPageItemCache() can be used for
that:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// $cache is a Zend\Cache\Storage\StorageInterface instance
Zend\Paginator\Paginator::setCache($cache);
// $paginator is a fully configured Zend\Paginator\Paginator instance
$paginator->setItemCountPerPage(3);
// fetch some items
$items = $paginator->getCurrentItems();
$otherItems = $paginator->getItemsPerPage(4);

// see the cached items as a two-dimension array:
var_dump($paginator->getPageItemCache());
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Advanced usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend\Validator component provides a set of commonly needed validators. It also provides a simple validator
chaining mechanism by which multiple validators may be applied to a single datum in a user-defined order.



What is a validator?


A validator examines its input with respect to some requirements and produces a boolean result - whether the input
successfully validates against the requirements. If the input does not meet the requirements, a validator may
additionally provide information about which requirement(s) the input does not meet.


For example, a web application might require that a username be between six and twelve characters in length and may
only contain alphanumeric characters. A validator can be used for ensuring that usernames meet these requirements.
If a chosen username does not meet one or both of the requirements, it would be useful to know which of the
requirements the username fails to meet.





Basic usage of validators


Having defined validation in this way provides the foundation for Zend\Validator\ValidatorInterface, which
defines two methods, isValid() and getMessages(). The isValid() method performs validation upon the
provided value, returning TRUE if and only if the value passes against the validation criteria.


If isValid() returns FALSE, the getMessages() returns an array of messages explaining the reason(s) for
validation failure. The array keys are short strings that identify the reasons for validation failure, and the
array values are the corresponding human-readable string messages. The keys and values are class-dependent; each
validation class defines its own set of validation failure messages and the unique keys that identify them. Each
class also has a const definition that matches each identifier for a validation failure cause.



Note


The getMessages() methods return validation failure information only for the most recent isValid() call.
Each call to isValid() clears any messages and errors caused by a previous isValid() call, because it’s
likely that each call to isValid() is made for a different input value.




The following example illustrates validation of an e-mail address:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$validator = new Zend\Validator\EmailAddress();

if ($validator->isValid($email)) {
    // email appears to be valid
} else {
    // email is invalid; print the reasons
    foreach ($validator->getMessages() as $messageId => $message) {
        echo "Validation failure '$messageId': $message\n";
    }
}













Customizing messages


Validator classes provide a setMessage() method with which you can specify the format of a message returned by
getMessages() in case of validation failure. The first argument of this method is a string containing the error
message. You can include tokens in this string which will be substituted with data relevant to the validator. The
token %value% is supported by all validators; this is substituted with the value you passed to isValid().
Other tokens may be supported on a case-by-case basis in each validation class. For example, %max% is a token
supported by Zend\Validator\LessThan. The getMessageVariables() method returns an array of variable tokens
supported by the validator.


The second optional argument is a string that identifies the validation failure message template to be set, which
is useful when a validation class defines more than one cause for failure. If you omit the second argument,
setMessage() assumes the message you specify should be used for the first message template declared in the
validation class. Many validation classes only have one error message template defined, so there is no need to
specify which message template you are changing.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$validator = new Zend\Validator\StringLength(8);

$validator->setMessage(
    'The string \'%value%\' is too short; it must be at least %min% ' .
    'characters',
    Zend\Validator\StringLength::TOO_SHORT);

if (!$validator->isValid('word')) {
    $messages = $validator->getMessages();
    echo current($messages);

    // "The string 'word' is too short; it must be at least 8 characters"
}










You can set multiple messages using the setMessages() method. Its argument is an array containing key/message
pairs.


		1
2
3
4
5
6
7
8


		$validator = new Zend\Validator\StringLength(array('min' => 8, 'max' => 12));

$validator->setMessages( array(
    Zend\Validator\StringLength::TOO_SHORT =>
        'The string \'%value%\' is too short',
    Zend\Validator\StringLength::TOO_LONG  =>
        'The string \'%value%\' is too long'
));










If your application requires even greater flexibility with which it reports validation failures, you can access
properties by the same name as the message tokens supported by a given validation class. The value property is
always available in a validator; it is the value you specified as the argument of isValid(). Other properties
may be supported on a case-by-case basis in each validation class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$validator = new Zend\Validator\StringLength(array('min' => 8, 'max' => 12));

if (!validator->isValid('word')) {
    echo 'Word failed: '
        . $validator->value
        . '; its length is not between '
        . $validator->min
        . ' and '
        . $validator->max
        . "\n";
}













Translating messages


Validator classes provide a setTranslator() method with which you can specify a instance of
Zend\I18n\Translator\Translator which will translate the messages in case of a validation failure. The
getTranslator() method returns the set translator instance.


		1
2
3
4
5


		$validator = new Zend\Validator\StringLength(array('min' => 8, 'max' => 12));
$translate = new Zend\I18n\Translator\Translator();
// configure the translator...

$validator->setTranslator($translate);










With the static setDefaultTranslator() method you can set a instance of Zend\I18n\Translator\Translator
which will be used for all validation classes, and can be retrieved with getDefaultTranslator(). This prevents
you from setting a translator manually for all validator classes, and simplifies your code.


		1
2
3
4


		$translate = new Zend\I18n\Translator\Translator();
// configure the translator...

Zend\Validator\AbstractValidator::setDefaultTranslator($translate);











Note


When you have set an application wide locale within your registry, then this locale will be used as default
translator.




Sometimes it is necessary to disable the translator within a validator. To archive this you can use the
setDisableTranslator() method, which accepts a boolean parameter, and isTranslatorDisabled() to get the set
value.


		1
2
3
4


		$validator = new Zend\Validator\StringLength(array('min' => 8, 'max' => 12));
if (!$validator->isTranslatorDisabled()) {
    $validator->setDisableTranslator();
}










It is also possible to use a translator instead of setting own messages with setMessage(). But doing so, you
should keep in mind, that the translator works also on messages you set your own.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.html-mails.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HTML E-Mail


To send an e-mail in HTML format, set the body using the method setBodyHTML() instead of setBodyText().
The MIME content type will automatically be set to text/html then. If you use both HTML and Text bodies, a
multipart/alternative MIME message will automatically be generated:


Sending HTML E-Mail


		1
2
3
4
5
6
7


		$mail = new Zend_Mail();
$mail->setBodyText('My Nice Test Text');
$mail->setBodyHtml('My Nice <b>Test</b> Text');
$mail->setFrom('somebody@example.com', 'Some Sender');
$mail->addTo('somebody_else@example.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send();














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HTML E-Mail
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-image.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormImage


The FormImage view helper can be used to render a <input type="image">
HTML form input. It is meant to work with the Zend\Form\Element\Image
element.


FormImage extends from Zend\Form\View\Helper\FormInput.


Basic usage:


		1
2
3
4
5
6
7
8
9


		use Zend\Form\Element;

$element = new Element\Image('my-image');
$element->setAttribute('src', '/img/my-pic.png');

// Within your view...

echo $this->formImage($element);
// <input type="image" name="my-image" src="/img/my-pic.png">














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormImage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.float.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Float


Zend\Validator\Float allows you to validate if a given value contains a floating-point value. This validator
validates also localized input.



Supported options for Zend\Validator\Float


The following options are supported for Zend\Validator\Float:



		locale: Sets the locale which will be used to validate localized float values.








Simple float validation


The simplest way to validate a float is by using the system settings. When no option is used, the environment
locale is used for validation:


		1
2
3
4
5


		$validator = new Zend\Validator\Float();

$validator->isValid(1234.5);   // returns true
$validator->isValid('10a01'); // returns false
$validator->isValid('1,234.5'); // returns true










In the above example we expected that our environment is set to “en” as locale.





Localized float validation


Often it’s useful to be able to validate also localized values. Float values are often written different in other
countries. For example using english you will write “1.5”. In german you may write “1,5” and in other languages you
may use grouping.


Zend\Validator\Float is able to validate such notations. But it is limited to the locale you set. See the
following code:


		1
2
3
4
5


		$validator = new Zend\Validator\Float(array('locale' => 'de'));

$validator->isValid(1234.5); // returns true
$validator->isValid("1 234,5"); // returns false
$validator->isValid("1.234"); // returns true










As you can see, by using a locale, your input is validated localized. Using a different notation you get a
FALSE when the locale forces a different notation.


The locale can also be set afterwards by using setLocale() and retrieved by using getLocale().








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Float
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.additional-headers.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Additional Headers


Zend_Mail provides several methods to set additional Mail Headers:




		setReplyTo($email, $name=null): sets the Reply-To: header.


		setDate($date = null): sets the Date: header. This method uses current time stamp by default. Or You can
pass time stamp, date string or DateTime instance to this method.


		setMessageId($id = true): sets the Message-Id: header. This method can generate message ID automatically
by default. Or You can pass your message ID string to this method. This method call createMessageId()
internally.










Note


Return-Path


If you set Return-Path on your mail, see Configuring sendmail transport. Unfortunately, setReturnPath($email) method does not perform this
purpose.




Furthermore, arbitrary mail headers can be set by using the addHeader() method. It requires two parameters
containing the name and the value of the header field. A third optional parameter determines if the header should
have only one or multiple values:


Adding E-Mail Message Headers


		1
2
3
4


		$mail = new Zend_Mail();
$mail->addHeader('X-MailGenerator', 'MyCoolApplication');
$mail->addHeader('X-greetingsTo', 'Mom', true); // multiple values
$mail->addHeader('X-greetingsTo', 'Dad', true);














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Additional Headers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.text.table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Text_Table


Zend_Text_Table is a component to create text based tables on the fly with different decorators. This can be
helpful, if you either want to send structured data in text emails, which are used to have mono-spaced fonts, or to
display table information in a CLI application. Zend_Text_Table supports multi-line columns, colspan and align
as well.



Note


Encoding


Zend_Text_Table expects your strings to be UTF-8 encoded by default. If this is not the case, you can either
supply the character encoding as a parameter to the constructor() or the setContent() method of
Zend_Text_Table_Column. Alternatively if you have a different encoding in the entire process, you can define
the standard input charset with Zend_Text_Table::setInputCharset($charset). In case you need another output
charset for the table, you can set this with Zend_Text_Table::setOutputCharset($charset).




A Zend_Text_Table object consists of rows, which contain columns, represented by Zend_Text_Table_Row and
Zend_Text_Table_Column. When creating a table, you can supply an array with options for the table. Those are:




		columnWidths (required): An array defining all columns width their widths in characters.





		decorator: The decorator to use for the table borders. The default is unicode, but you may also
specify ascii or give an instance of a custom decorator object.





		padding: The left and right padding withing the columns in characters. The default padding is zero.





		AutoSeparate: The way how the rows are separated with horizontal lines. The default is a separation
between all rows. This is defined as a bitmask containing one ore more of the following constants of
Zend_Text_Table:




		Zend_Text_Table::AUTO_SEPARATE_NONE


		Zend_Text_Table::AUTO_SEPARATE_HEADER


		Zend_Text_Table::AUTO_SEPARATE_FOOTER


		Zend_Text_Table::AUTO_SEPARATE_ALL









Where header is always the first row, and the footer is always the last row.












Rows are simply added to the table by creating a new instance of Zend_Text_Table_Row, and appending it to the
table via the appendRow() method. Rows themselves have no options. You can also give an array to directly to
the appendRow() method, which then will automatically converted to a row object, containing multiple column
objects.


The same way you can add columns to the rows. Create a new instance of Zend_Text_Table_Column and then either
set the column options in the constructor or later with the set*() methods. The first parameter is the content
of the column which may have multiple lines, which in the best case are separated by just the ‘\n’ character. The
second parameter defines the align, which is ‘left’ by default and can be one of the class constants of
Zend_Text_Table_Column:




		ALIGN_LEFT


		ALIGN_CENTER


		ALIGN_RIGHT









The third parameter is the colspan of the column. For example, when you choose “2” as colspan, the column will span
over two columns of the table. The last parameter defines the encoding of the content, which should be supplied, if
the content is neither ASCII nor UTF-8. To append the column to the row, you simply call appendColumn() in your
row object with the column object as parameter. Alternatively you can directly give a string to the
appendColumn() method.


To finally render the table, you can either use the render() method of the table, or use the magic method
__toString() by doing echo $table; or $tableString = (string) $table.


Using Zend_Text_Table


This example illustrates the basic use of Zend_Text_Table to create a simple table:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$table = new Zend_Text_Table(array('columnWidths' => array(10, 20)));

// Either simple
$table->appendRow(array('Zend', 'Framework'));

// Or verbose
$row = new Zend_Text_Table_Row();

$row->appendColumn(new Zend_Text_Table_Column('Zend'));
$row->appendColumn(new Zend_Text_Table_Column('Framework'));

$table->appendRow($row);

echo $table;










This will result in the following output:


		1
2
3


		┌──────────┬────────────────────┐
│Zend      │Framework           │
└──────────┴────────────────────┘














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Text_Table
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.photos.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Picasa Web Albums


Picasa Web Albums is a service which allows users to maintain albums of their own pictures, and browse the albums
and pictures of others. The API offers a programmatic interface to this service, allowing users to add to,
update, and remove from their albums, as well as providing the ability to tag and comment on photos.


Access to public albums and photos is not restricted by account, however, a user must be logged in for
non-read-only access.


For more information on the API, including instructions for enabling API access, refer to the Picasa Web
Albums Data API Overview [http://code.google.com/apis/picasaweb/overview.html].



Note


Authentication


The API provides authentication via AuthSub (recommended) and ClientAuth. HTTP connections must be
authenticated for write support, but non-authenticated connections have read-only access.





Connecting To The Service


The Picasa Web Albums API, like all GData APIs, is based off of the Atom Publishing Protocol (APP), an XML
based format for managing web-based resources. Traffic between a client and the servers occurs over HTTP and
allows for both authenticated and unauthenticated connections.


Before any transactions can occur, this connection needs to be made. Creating a connection to the Picasa servers
involves two steps: creating an HTTP client and binding a Zend_Gdata_Photos service instance to that client.



Authentication


The Google Picasa API allows access to both public and private photo feeds. Public feeds do not require
authentication, but are read-only and offer reduced functionality. Private feeds offers the most complete
functionality but requires an authenticated connection to the Picasa servers. There are three authentication
schemes that are supported by Google Picasa :



		ClientAuth provides direct username/password authentication to the Picasa servers. Since this scheme requires
that users provide your application with their password, this authentication is only recommended when other
authentication schemes are insufficient.


		AuthSub allows authentication to the Picasa servers via a Google proxy server. This provides the same level
of convenience as ClientAuth but without the security risk, making this an ideal choice for web-based
applications.





The Zend_Gdata library provides support for both authentication schemes. The rest of this chapter will assume
that you are familiar the authentication schemes available and how to create an appropriate authenticated
connection. For more information, please see section the Authentication section of this manual or the Authentication Overview in the Google Data API
Developer’s Guide [http://code.google.com/apis/gdata/auth.html].





Creating A Service Instance


In order to interact with the servers, this library provides the Zend_Gdata_Photos service class. This class
provides a common interface to the Google Data and Atom Publishing Protocol models and assists in marshaling
requests to and from the servers.


Once deciding on an authentication scheme, the next step is to create an instance of Zend_Gdata_Photos. The
class constructor takes an instance of Zend_Http_Client as a single argument. This provides an interface for
AuthSub and ClientAuth authentication, as both of these require creation of a special authenticated HTTP client.
If no arguments are provided, an unauthenticated instance of Zend_Http_Client will be automatically created.


The example below shows how to create a service class using ClientAuth authentication:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Parameters for ClientAuth authentication
$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$user = "sample.user@gmail.com";
$pass = "pa$$w0rd";

// Create an authenticated HTTP client
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);

// Create an instance of the service
$service = new Zend_Gdata_Photos($client);










A service instance using AuthSub can be created in a similar, though slightly more lengthy fashion:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


		session_start();

/**
 * Returns the full URL of the current page, based upon env variables
 *
 * Env variables used:
 * $_SERVER['HTTPS'] = (on|off|)
 * $_SERVER['HTTP_HOST'] = value of the Host: header
 * $_SERVER['SERVER_PORT'] = port number (only used if not http/80,https/443)
 * $_SERVER['REQUEST_URI'] = the URI after the method of the HTTP request
 *
 * @return string Current URL
 */
function getCurrentUrl()
{
    global $_SERVER;

    /**
     * Filter php_self to avoid a security vulnerability.
     */
    $php_request_uri = htmlentities(substr($_SERVER['REQUEST_URI'], 0,
    strcspn($_SERVER['REQUEST_URI'], "\n\r")), ENT_QUOTES);

    if (isset($_SERVER['HTTPS']) && strtolower($_SERVER['HTTPS']) == 'on') {
        $protocol = 'https://';
    } else {
        $protocol = 'http://';
    }
    $host = $_SERVER['HTTP_HOST'];
    if ($_SERVER['SERVER_PORT'] != '' &&
        (($protocol == 'http://' && $_SERVER['SERVER_PORT'] != '80') ||
        ($protocol == 'https://' && $_SERVER['SERVER_PORT'] != '443'))) {
            $port = ':' . $_SERVER['SERVER_PORT'];
    } else {
        $port = '';
    }
    return $protocol . $host . $port . $php_request_uri;
}

/**
 * Returns the AuthSub URL which the user must visit to authenticate requests
 * from this application.
 *
 * Uses getCurrentUrl() to get the next URL which the user will be redirected
 * to after successfully authenticating with the Google service.
 *
 * @return string AuthSub URL
 */
function getAuthSubUrl()
{
    $next = getCurrentUrl();
    $scope = 'http://picasaweb.google.com/data';
    $secure = false;
    $session = true;
    return Zend_Gdata_AuthSub::getAuthSubTokenUri($next, $scope, $secure,
        $session);
}

/**
 * Returns a HTTP client object with the appropriate headers for communicating
 * with Google using AuthSub authentication.
 *
 * Uses the $_SESSION['sessionToken'] to store the AuthSub session token after
 * it is obtained. The single use token supplied in the URL when redirected
 * after the user succesfully authenticated to Google is retrieved from the
 * $_GET['token'] variable.
 *
 * @return Zend_Http_Client
 */
function getAuthSubHttpClient()
{
    global $_SESSION, $_GET;
    if (!isset($_SESSION['sessionToken']) && isset($_GET['token'])) {
        $_SESSION['sessionToken'] =
            Zend_Gdata_AuthSub::getAuthSubSessionToken($_GET['token']);
    }
    $client = Zend_Gdata_AuthSub::getHttpClient($_SESSION['sessionToken']);
    return $client;
}

/**
 * Create a new instance of the service, redirecting the user
 * to the AuthSub server if necessary.
 */
$service = new Zend_Gdata_Photos(getAuthSubHttpClient());










Finally, an unauthenticated server can be created for use with public feeds:


		1
2


		// Create an instance of the service using an unauthenticated HTTP client
$service = new Zend_Gdata_Photos();















Understanding and Constructing Queries


The primary method to request data from the service is by constructing a query. There are query classes for each of
the following types:



		User is used to specify the user whose data is being searched for, and is specified as a username. if no user
is provided, “default” will be used instead to indicate the currently authenticated user (if authenticated).


		Album is used to specify the album which is being searched for, and is specified as either an id, or an album
name.


		Photo is used to specify the photo which is being searched for, and is specified as an id.





A new UserQuery can be constructed as followed:


		1
2
3
4
5
6


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_UserQuery();
$query->setUser("sample.user");










for each query, a number of parameters limiting the search can be requested, or specified, with get(Parameter) and
set(Parameter), respectively. They are as follows:



		Projection sets the format of the data returned in the feed, as either “api” or “base”. Normally, “api” is
desired. The default is “api”.


		Type sets the type of element to be returned, as either “feed” or “entry”. The default is “feed”.


		Access sets the visibility of items to be returned, as “all”, “public”, or “private”. The default is “all”.
Non-public elements will only be returned if the query is searching for the authenticated user.


		Tag sets a tag filter for returned items. When a tag is set, only items tagged with this value will return.


		Kind sets the kind of elements to return. When kind is specified, only entries that match this value will be
returned.


		ImgMax sets the maximum image size for entries returned. Only image entries smaller than this value will be
returned.


		Thumbsize sets the thumbsize of entries that are returned. Any retrieved entry will have a thumbsize equal to
this value.


		User sets the user whose data is being searched for. The default is “default”.


		AlbumId sets the id of the album being searched for. This element only applies to album and photo queries. In
the case of photo queries, this specifies the album that contains the requested photo. The album id is mutually
exclusive with the album’s name. Setting one unsets the other.


		AlbumName sets the name of the album being searched for. This element only applies to the album and photo
queries. In the case of photo queries, this specifies the album that contains the requested photo. The album name
is mutually exclusive with the album’s id. Setting one unsets the other.


		PhotoId sets the id of the photo being searched for. This element only applies to photo queries.








Retrieving Feeds And Entries


The service has functions to retrieve a feed, or individual entries, for users, albums, and individual photos.



Retrieving A User


The service supports retrieving a user feed and list of the user’s content. If the requested user is also the
authenticated user, entries marked as “hidden” will also be returned.


The user feed can be accessed by passing the username to the getUserFeed() method:


		1
2
3
4
5
6
7
8
9


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

try {
    $userFeed = $service->getUserFeed("sample.user");
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










Or, the feed can be accessed by constructing a query, first:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_UserQuery();
$query->setUser("sample.user");

try {
    $userFeed = $service->getUserFeed(null, $query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










Constructing a query also provides the ability to request a user entry object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_UserQuery();
$query->setUser("sample.user");
$query->setType("entry");

try {
    $userEntry = $service->getUserEntry($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}













Retrieving An Album


The service supports retrieving an album feed and a list of the album’s content.


The album feed is accessed by constructing a query object and passing it to getAlbumFeed():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_AlbumQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");

try {
    $albumFeed = $service->getAlbumFeed($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










Alternatively, the query object can be given an album name with setAlbumName(). Setting the album name is
mutually exclusive with setting the album id, and setting one will unset the other.


Constructing a query also provides the ability to request an album entry object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_AlbumQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");
$query->setType("entry");

try {
    $albumEntry = $service->getAlbumEntry($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}













Retrieving A Photo


The service supports retrieving a photo feed and a list of associated comments and tags.


The photo feed is accessed by constructing a query object and passing it to getPhotoFeed():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_PhotoQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");
$query->setPhotoId("100");

try {
    $photoFeed = $service->getPhotoFeed($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}










Constructing a query also provides the ability to request a photo entry object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_PhotoQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");
$query->setPhotoId("100");
$query->setType("entry");

try {
    $photoEntry = $service->getPhotoEntry($query);
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}













Retrieving A Comment


The service supports retrieving comments from a feed of a different type. By setting a query to return a kind of
“comment”, a feed request can return comments associated with a specific user, album, or photo.


Performing an action on each of the comments on a given photo can be accomplished as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_PhotoQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");
$query->setPhotoId("100");
$query->setKind("comment");

try {
    $photoFeed = $service->getPhotoFeed($query);

    foreach ($photoFeed as $entry) {
        if ($entry instanceof Zend_Gdata_Photos_CommentEntry) {
            // Do something with the comment
        }
    }
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}













Retrieving A Tag


The service supports retrieving tags from a feed of a different type. By setting a query to return a kind of “tag”,
a feed request can return tags associated with a specific photo.


Performing an action on each of the tags on a given photo can be accomplished as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$query = new Zend_Gdata_Photos_PhotoQuery();
$query->setUser("sample.user");
$query->setAlbumId("1");
$query->setPhotoId("100");
$query->setKind("tag");

try {
    $photoFeed = $service->getPhotoFeed($query);

    foreach ($photoFeed as $entry) {
        if ($entry instanceof Zend_Gdata_Photos_TagEntry) {
            // Do something with the tag
        }
    }
} catch (Zend_Gdata_App_Exception $e) {
    echo "Error: " . $e->getMessage();
}















Creating Entries


The service has functions to create albums, photos, comments, and tags.



Creating An Album


The service supports creating a new album for an authenticated user:


		1
2
3
4
5
6
7
8


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$entry = new Zend_Gdata_Photos_AlbumEntry();
$entry->setTitle($service->newTitle("test album"));

$service->insertAlbumEntry($entry);













Creating A Photo


The service supports creating a new photo for an authenticated user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

// $photo is the name of a file uploaded via an HTML form

$fd = $service->newMediaFileSource($photo["tmp_name"]);
$fd->setContentType($photo["type"]);

$entry = new Zend_Gdata_Photos_PhotoEntry();
$entry->setMediaSource($fd);
$entry->setTitle($service->newTitle($photo["name"]));

$albumQuery = new Zend_Gdata_Photos_AlbumQuery;
$albumQuery->setUser("sample.user");
$albumQuery->setAlbumId("1");

$albumEntry = $service->getAlbumEntry($albumQuery);

$service->insertPhotoEntry($entry, $albumEntry);













Creating A Comment


The service supports creating a new comment for a photo:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$entry = new Zend_Gdata_Photos_CommentEntry();
$entry->setTitle($service->newTitle("comment"));
$entry->setContent($service->newContent("comment"));

$photoQuery = new Zend_Gdata_Photos_PhotoQuery;
$photoQuery->setUser("sample.user");
$photoQuery->setAlbumId("1");
$photoQuery->setPhotoId("100");
$photoQuery->setType('entry');

$photoEntry = $service->getPhotoEntry($photoQuery);

$service->insertCommentEntry($entry, $photoEntry);













Creating A Tag


The service supports creating a new tag for a photo:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$entry = new Zend_Gdata_Photos_TagEntry();
$entry->setTitle($service->newTitle("tag"));

$photoQuery = new Zend_Gdata_Photos_PhotoQuery;
$photoQuery->setUser("sample.user");
$photoQuery->setAlbumId("1");
$photoQuery->setPhotoId("100");
$photoQuery->setType('entry');

$photoEntry = $service->getPhotoEntry($photoQuery);

$service->insertTagEntry($entry, $photoEntry);















Deleting Entries


The service has functions to delete albums, photos, comments, and tags.



Deleting An Album


The service supports deleting an album for an authenticated user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$albumQuery = new Zend_Gdata_Photos_AlbumQuery;
$albumQuery->setUser("sample.user");
$albumQuery->setAlbumId("1");
$albumQuery->setType('entry');

$entry = $service->getAlbumEntry($albumQuery);

$service->deleteAlbumEntry($entry, true);













Deleting A Photo


The service supports deleting a photo for an authenticated user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$photoQuery = new Zend_Gdata_Photos_PhotoQuery;
$photoQuery->setUser("sample.user");
$photoQuery->setAlbumId("1");
$photoQuery->setPhotoId("100");
$photoQuery->setType('entry');

$entry = $service->getPhotoEntry($photoQuery);

$service->deletePhotoEntry($entry, true);













Deleting A Comment


The service supports deleting a comment for an authenticated user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$photoQuery = new Zend_Gdata_Photos_PhotoQuery;
$photoQuery->setUser("sample.user");
$photoQuery->setAlbumId("1");
$photoQuery->setPhotoId("100");
$photoQuery->setType('entry');

$path = $photoQuery->getQueryUrl() . '/commentid/' . "1000";

$entry = $service->getCommentEntry($path);

$service->deleteCommentEntry($entry, true);













Deleting A Tag


The service supports deleting a tag for an authenticated user:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		$service = Zend_Gdata_Photos::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$service = new Zend_Gdata_Photos($client);

$photoQuery = new Zend_Gdata_Photos_PhotoQuery;
$photoQuery->setUser("sample.user");
$photoQuery->setAlbumId("1");
$photoQuery->setPhotoId("100");
$photoQuery->setKind("tag");
$query = $photoQuery->getQueryUrl();

$photoFeed = $service->getPhotoFeed($query);

foreach ($photoFeed as $entry) {
    if ($entry instanceof Zend_Gdata_Photos_TagEntry) {
        if ($entry->getContent() == $tagContent) {
            $tagEntry = $entry;
        }
    }
}

$service->deleteTagEntry($tagEntry, true);













Optimistic Concurrency (Notes On Deletion)


GData feeds, including those of the Picasa Web Albums service, implement optimistic concurrency, a versioning
system that prevents users from overwriting changes, inadvertently. When deleting a entry through the service
class, if the entry has been modified since it was last fetched, an exception will be thrown, unless explicitly set
otherwise (in which case the deletion is retried on the updated entry).


An example of how to handle versioning during a deletion is shown by deleteAlbumEntry():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// $album is the albumEntry to be deleted
try {
    $this->delete($album);
} catch (Zend_Gdata_App_HttpException $e) {
    if ($e->getMessage()->getStatus() === 409) {
        $entry =
            new Zend_Gdata_Photos_AlbumEntry($e->getMessage()->getBody());
        $this->delete($entry->getLink('edit')->href);
    } else {
        throw $e;
    }
}


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Picasa Web Albums
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.not-empty.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
NotEmpty


This validator allows you to validate if a given value is not empty. This is often useful when working with form
elements or other user input, where you can use it to ensure required elements have values associated with them.



Supported options for Zend\Validator\NotEmpty


The following options are supported for Zend\Validator\NotEmpty:



		type: Sets the type of validation which will be processed. For details take a look into this section.








Default behaviour for Zend\Validator\NotEmpty


By default, this validator works differently than you would expect when you’ve worked with PHP‘s empty()
function. In particular, this validator will evaluate both the integer 0 and string ‘0‘ as empty.


		1
2
3
4


		$valid = new Zend\Validator\NotEmpty();
$value  = '';
$result = $valid->isValid($value);
// returns false











Note


Default behaviour differs from PHP


Without providing configuration, Zend\Validator\NotEmpty‘s behaviour differs from PHP.







Changing behaviour for Zend\Validator\NotEmpty


Some projects have differing opinions of what is considered an “empty” value: a string with only whitespace might
be considered empty, or 0 may be considered non-empty (particularly for boolean sequences). To accommodate
differing needs, Zend\Validator\NotEmpty allows you to configure which types should be validated as empty and
which not.


The following types can be handled:



		boolean: Returns FALSE when the boolean value is FALSE.


		integer: Returns FALSE when an integer 0 value is given. Per default this validation is not activated
and returns TRUE on any integer values.


		float: Returns FALSE when an float 0.0 value is given. Per default this validation is not activated
and returns TRUE on any float values.


		string: Returns FALSE when an empty string ‘’ is given.


		zero: Returns FALSE when the single character zero (‘0’) is given.


		empty_array: Returns FALSE when an empty array is given.


		null: Returns FALSE when an NULL value is given.


		php: Returns FALSE on the same reasons where PHP method empty() would return TRUE.


		space: Returns FALSE when an string is given which contains only whitespaces.


		object: Returns TRUE. FALSE will be returned when object is not allowed but an object is given.


		object_string: Returns FALSE when an object is given and it’s __toString() method returns an empty
string.


		object_count: Returns FALSE when an object is given, it has an Countable interface and it’s count is
0.


		all: Returns FALSE on all above types.





All other given values will return TRUE per default.


There are several ways to select which of the above types are validated. You can give one or multiple types and add
them, you can give an array, you can use constants, or you can give a textual string. See the following examples:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		// Returns false on 0
$validator = new Zend\Validator\NotEmpty(Zend\Validator\NotEmpty::INTEGER);

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(
    Zend\Validator\NotEmpty::INTEGER + Zend\Validator\NotEmpty::ZERO
);

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(array(
    Zend\Validator\NotEmpty::INTEGER,
    Zend\Validator\NotEmpty::ZERO
));

// Returns false on 0 or '0'
$validator = new Zend\Validator\NotEmpty(array(
    'integer',
    'zero',
));










You can also provide an instance of Traversable to set the desired types. To set types after instantiation, use
the setType() method.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                NotEmpty
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.bitmaps-documentpage1_zoom.png
lwedoc%

icense Agreement - Magic Grapl

al Compression Suite v1.9

‘This legal document is an agreement betwe en Dai Lemaitre, the Licensee and Megasoft Co-operation. By
installing Magic Graphical Compression Suite v1.9 on a computer, you are agreeing to be bound by the terms of
this agreement_ If you do not agree to the terms of this agreement, promptly return the unopened package,
together with all the other material which comprises the product, respectively delete all Magic Graphical
Compression Suite 1.9 related files. For questions regarding this agreement please contact us

1. Subject of agreement
The subject of this agreement is the software Magic Graphical Compression Suite v1.9, the operating
manuals, online help fles and all other accompanying material. It will be referred to henceforth as Magic
Graphical Compression Sute v1.9.

2. Grant of license
Megasoft Co-operation grants the Licensee a non-exclusive. non-transferable. personal and worldwide
license to use ane copy of Magic Graphical Compression Stite v1.9 in the development of an end-user
application, as described in section 3 (below). This license is for a single developer and ot for an entire
‘company. If additional programmers wish to use Magic Graphical Compression Suite v1.9. additional copies
must be licensed.

3. End-user application
An end-user application is a specific application program that is licensed to a person or firm for business or
personal use. The files which are not listed under section 5 must not be included with the end-user
application. Futthermore, the end-user must not be in a position to be able to neither modify the program, nor
to create Magic Graphical Compression Suite v1.9 based programs. Likewise, the end-user must not be
given the Magic Graphical Compression Suite v1.9 serial number

4. Royalties
Server-based programs which have been created with Magic Graphical Compression Suite v1.9 may only be
installed on a single server, but may be accessed by an infinite number of clients. Additional licenses are
required when installing Magic Graphical Compression Suite v1.9 on more than one server

5. Redistributable files
Magic Graphical Compression Suite v1.9 contains an addtional commmand line registration tool for installing
Magic Graphical Compression Suite v1.9 on a server. This fil s not redistributable

6. Copyright
‘The Software is the property of Megasoft Co-operation. Megasoft Co-operation reserves all rights to the
publishing, duplcation. processing and utiization of Magic Graphical Compression Suite v1.9. A single copy
may be made exclusively for security and archiving purposes. Without the express written permission of
Megasoft Co-operation it is forbidden to:

* Alter, translate, decompile, or to disassemble Magic Graphical Compression Suite v1.9.
* Copy Magic Graphical Compression Suite v1.9's accompanying witten documentation
* Lend. hire out or lease Magic Graphical Compression Suite v1.9.

A permanent transference of Magic Graphical Compression Suite v1.9 is only permitted when the Licensee
retains no copies and the recipient declares her/his acceptance of the conditions of this agreement





modules/zend.serializer.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend_Serializer provides an adapter based interface to simply generate storable representation of PHP types
by different facilities, and recover.


Using Zend_Serializer dynamic interface


To instantiate a serializer you should use the factory method with the name of the adapter:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$serializer = Zend_Serializer::factory('PhpSerialize');
// Now $serializer is an instance of Zend_Serializer_Adapter_AdapterInterface,
// specifically Zend_Serializer_Adapter_PhpSerialize

try {
    $serialized = $serializer->serialize($data);
    // now $serialized is a string

    $unserialized = $serializer->unserialize($serialized);
    // now $data == $unserialized
} catch (Zend_Serializer_Exception $e) {
    echo $e;
}










The method serialize() generates a storable string. To regenerate this serialized data you can simply call the
method unserialize().


Any time an error is encountered serializing or unserializing, Zend_Serializer will throw a
Zend_Serializer_Exception.


To configure a given serializer adapter, you can optionally add an array or an instance of Zend_Config to the
factory() or to the serialize() and unserialize() methods:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		$serializer = Zend_Serializer::factory('Wddx', array(
    'comment' => 'serialized by Zend_Serializer',
));

try {
    $serialized = $serializer->serialize(
        $data,
        array('comment' => 'change comment')
    );

    $unserialized = $serializer->unserialize(
        $serialized,
        array(/* options for unserialize */)
    );
} catch (Zend_Serializer_Exception $e) {
    echo $e;
}










Options passed to the factory() are valid for the instantiated object. You can change these options using the
setOption(s) method. To change one or more options only for a single call, pass them as the second argument to
either the serialize() or unserialize() method.


Using the Zend_Serializer static interface


You can register a specific serializer adapter as a default serialization adapter for use with Zend_Serializer.
By default, the PhpSerialize adapter will be registered, but you can change this option using the
setDefaultAdapter() static method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		Zend_Serializer::setDefaultAdapter('PhpSerialize', $options);
// or
$serializer = Zend_Serializer::factory('PhpSerialize', $options);
Zend_Serializer::setDefaultAdapter($serializer);

try {
    $serialized   = Zend_Serializer::serialize($data, $options);
    $unserialized = Zend_Serializer::unserialize($serialized, $options);
} catch (Zend_Serializer_Exception $e) {
    echo $e;
}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.oauth.getting-started.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Getting Started


With the OAuth protocol explained, let’s show a simple example of it with source code. Our new Consumer will be
handling Twitter Status submissions. To do so, it will need to be registered with Twitter in order to receive an
OAuth Consumer Key and Consumer Secret. This are utilised to obtain an Access Token before we use the Twitter API
to post a status message.


Assuming we have obtained a key and secret, we can start the OAuth workflow by setting up a Zend_Oauth_Consumer
instance as follows passing it a configuration (either an array or Zend_Config object).


		1
2
3
4
5
6
7


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);










The callbackUrl is the URI we want Twitter to request from our server when sending information. We’ll look at this
later. The siteUrl is the base URI of Twitter’s OAuth API endpoints. The full list of endpoints include
http://twitter.com/oauth/request_token, http://twitter.com/oauth/access_token, and
http://twitter.com/oauth/authorize. The base siteUrl utilises a convention which maps to these three OAuth
endpoints (as standard) for requesting a request token, access token or authorization. If the actual endpoints of
any service differ from the standard set, these three URIs can be separately set using the methods
setRequestTokenUrl(), setAccessTokenUrl(), and setAuthorizeUrl() or the configuration fields
requestTokenUrl, accessTokenUrl and authorizeUrl.


The consumerKey and consumerSecret are retrieved from Twitter when your application is registered for OAuth access.
These also apply to any OAuth enabled service, so each one will provide a key and secret for your application.


All of these configuration options may be set using method calls simply by converting from, e.g. callbackUrl to
setCallbackUrl().


In addition, you should note several other configuration values not explicitly used: requestMethod and
requestScheme. By default, Zend_Oauth_Consumer sends requests as POST (except for a redirect which uses
GET). The customised client (see later) also includes its authorization by way of a header. Some services may,
at their discretion, require alternatives. You can reset the requestMethod (which defaults to Zend_Oauth::POST) to
Zend_Oauth::GET, for example, and reset the requestScheme from its default of Zend_Oauth::REQUEST_SCHEME_HEADER to
one of Zend_Oauth::REQUEST_SCHEME_POSTBODY or Zend_Oauth::REQUEST_SCHEME_QUERYSTRING. Typically the defaults should
work fine apart from some exceptional cases. Please refer to the service provider’s documentation for more details.


The second area of customisation is how HMAC operates when calculating/comparing them for all requests. This is
configured using the signatureMethod configuration field or setSignatureMethod(). By default this is HMAC-SHA1.
You can set it also to a provider’s preferred method including RSA-SHA1. For RSA-SHA1, you should also configure
RSA private and public keys via the rsaPrivateKey and rsaPublicKey configuration fields or the
setRsaPrivateKey() and setRsaPublicKey() methods.


The first part of the OAuth workflow is obtaining a request token. This is accomplished using:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

// fetch a request token
$token = $consumer->getRequestToken();










The new request token (an instance of Zend_Oauth_Token_Request) is unauthorized. In order to exchange it for an
authorized token with which we can access the Twitter API, we need the user to authorize it. We accomplish this
by redirecting the user to Twitter’s authorize endpoint via:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

// fetch a request token
$token = $consumer->getRequestToken();

// persist the token to storage
$_SESSION['TWITTER_REQUEST_TOKEN'] = serialize($token);

// redirect the user
$consumer->redirect();










The user will now be redirected to Twitter. They will be asked to authorize the request token attached to the
redirect URI’s query string. Assuming they agree, and complete the authorization, they will be again redirected,
this time to our Callback URL as previously set (note that the callback URL is also registered with Twitter when we
registered our application).


Before redirecting the user, we should persist the request token to storage. For simplicity I’m just using the
user’s session, but you can easily use a database for the same purpose, so long as you tie the request token to the
current user so it can be retrieved when they return to our application.


The redirect URI from Twitter will contain an authorized Access Token. We can include code to parse out this access
token as follows - this source code would exist within the executed code of our callback URI. Once parsed we can
discard the previous request token, and instead persist the access token for future use with the Twitter API.
Again, we’re simply persisting to the user session, but in reality an access token can have a long lifetime so it
should really be stored to a database.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);
$consumer = new Zend_Oauth_Consumer($config);

if (!empty($_GET) && isset($_SESSION['TWITTER_REQUEST_TOKEN'])) {
    $token = $consumer->getAccessToken(
                 $_GET,
                 unserialize($_SESSION['TWITTER_REQUEST_TOKEN'])
             );
    $_SESSION['TWITTER_ACCESS_TOKEN'] = serialize($token);

    // Now that we have an Access Token, we can discard the Request Token
    $_SESSION['TWITTER_REQUEST_TOKEN'] = null;
} else {
    // Mistaken request? Some malfeasant trying something?
    exit('Invalid callback request. Oops. Sorry.');
}










Success! We have an authorized access token - so it’s time to actually use the Twitter API. Since the access
token must be included with every single API request, Zend_Oauth_Consumer offers a ready-to-go HTTP client
(a subclass of Zend_Http_Client) to use either by itself or by passing it as a custom HTTP Client to another
library or component. Here’s an example of using it standalone. This can be done from anywhere in your application,
so long as you can access the OAuth configuration and retrieve the final authorized access token.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		$config = array(
    'callbackUrl' => 'http://example.com/callback.php',
    'siteUrl' => 'http://twitter.com/oauth',
    'consumerKey' => 'gg3DsFTW9OU9eWPnbuPzQ',
    'consumerSecret' => 'tFB0fyWLSMf74lkEu9FTyoHXcazOWpbrAjTCCK48A'
);

$statusMessage = 'I\'m posting to Twitter using Zend_Oauth!';

$token = unserialize($_SESSION['TWITTER_ACCESS_TOKEN']);
$client = $token->getHttpClient($configuration);
$client->setUri('http://twitter.com/statuses/update.json');
$client->setMethod(Zend_Http_Client::POST);
$client->setParameterPost('status', $statusMessage);
$response = $client->request();

$data = Zend_Json::decode($response->getBody());
$result = $response->getBody();
if (isset($data->text)) {
    $result = 'true';
}
echo $result;










As a note on the customised client, this can be passed to most Zend Framework service or other classes using
Zend_Http_Client displacing the default client they would otherwise use.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Getting Started
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.getopt.fetching.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Fetching Options and Arguments


After you have declared the options that the Zend_Console_Getopt object should recognize, and supply arguments
from the command-line or an array, you can query the object to find out which options were specified by a user in a
given command-line invocation of your program. The class implements magic methods so you can query for options by
name.


The parsing of the data is deferred until the first query you make against the Zend_Console_Getopt object to
find out if an option was given, the object performs its parsing. This allows you to use several method calls to
configure the options, arguments, help strings, and configuration options before parsing takes place.



Handling Getopt Exceptions


If the user gave any invalid options on the command-line, the parsing function throws a
Zend_Console_Getopt_Exception. You should catch this exception in your application code. You can use the
parse() method to force the object to parse the arguments. This is useful because you can invoke parse() in
a try block. If it passes, you can be sure that the parsing won’t throw an exception again. The exception
thrown has a custom method getUsageMessage(), which returns as a string the formatted set of usage messages for
all declared options.


Catching Getopt Exceptions


		1
2
3
4
5
6
7


		try {
    $opts = new Zend_Console_Getopt('abp:');
    $opts->parse();
} catch (Zend_Console_Getopt_Exception $e) {
    echo $e->getUsageMessage();
    exit;
}










Cases where parsing throws an exception include:



		Option given is not recognized.


		Option requires a parameter but none was given.


		Option parameter is of the wrong type. E.g. a non-numeric string when an integer was required.








Fetching Options by Name


You can use the getOption() method to query the value of an option. If the option had a parameter, this method
returns the value of the parameter. If the option had no parameter but the user did specify it on the command-line,
the method returns TRUE. Otherwise the method returns NULL.


Using getOption()


		1
2
3


		$opts = new Zend_Console_Getopt('abp:');
$b = $opts->getOption('b');
$p_parameter = $opts->getOption('p');










Alternatively, you can use the magic __get() function to retrieve the value of an option as if it were a class
member variable. The __isset() magic method is also implemented.


Using __get() and __isset() Magic Methods


		1
2
3
4
5


		$opts = new Zend_Console_Getopt('abp:');
if (isset($opts->b)) {
    echo "I got the b option.\n";
}
$p_parameter = $opts->p; // null if not set










If your options are declared with aliases, you may use any of the aliases for an option in the methods above.





Reporting Options


There are several methods to report the full set of options given by the user on the current command-line.



		As a string: use the toString() method. The options are returned as a space-separated string of
flag=value pairs. The value of an option that does not have a parameter is the literal string “TRUE”.


		As an array: use the toArray() method. The options are returned in a simple integer-indexed array of strings,
the flag strings followed by parameter strings, if any.


		As a string containing JSON data: use the toJson() method.


		As a string containing XML data: use the toXml() method.





In all of the above dumping methods, the flag string is the first string in the corresponding list of aliases. For
example, if the option aliases were declared like verbose|v, then the first string, verbose, is used as the
canonical name of the option. The name of the option flag does not include any preceding dashes.





Fetching Non-option Arguments


After option arguments and their parameters have been parsed from the command-line, there may be additional
arguments remaining. You can query these arguments using the getRemainingArgs() method. This method returns an
array of the strings that were not part of any options.


Using getRemainingArgs()


		1
2
3


		$opts = new Zend_Console_Getopt('abp:');
$opts->setArguments(array('-p', 'p_parameter', 'filename'));
$args = $opts->getRemainingArgs(); // returns array('filename')










Zend_Console_Getopt supports the GNU convention that an argument consisting of a double-dash signifies the
end of options. Any arguments following this signifier must be treated as non-option arguments. This is useful if
you might have a non-option argument that begins with a dash. For example: “rm -- -filename-with-dash”.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Fetching Options and Arguments
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.hidden.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Hidden Element


Zend\Form\Element\Hidden represents a hidden form input.
It can be used with the Zend/Form/View/Helper/FormHidden view helper.


Zend\Form\Element\Hidden extends from Zend\Form\Element.



Basic Usage


This element automatically adds a "type" attribute of value "hidden".


		1
2
3
4
5
6
7
8


		use Zend\Form\Element;
use Zend\Form\Form;

$hidden = new Element\Hidden('my-hidden');
$hidden->setValue('foo');

$form = new Form('my-form');
$form->add($hidden);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Hidden Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.advanced-mergefieldblockformat_zoom.png
{MERGEFIELD fee}

{MERGEFIELD total_net }

ThlockEnd block!





modules/zend.ldap.api.ldap.node.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Node


Zend\Ldap\Node includes the magic property accessors __set(), __get(), __unset() and __isset()
to access the attributes by their name. They proxy to Zend\Ldap\Node::setAttribute(),
Zend\Ldap\Node::getAttribute(), Zend\Ldap\Node::deleteAttribute() and Zend\Ldap\Node::existsAttribute()
respectively. Furthermore the class implements ArrayAccess for array-style-access to the attributes.
Zend\Ldap\Node also implements Iterator and RecursiveIterator to allow for recursive tree-traversal.



Zend\Ldap\Node API





		Method
		Description





		Zend\Ldap\Ldap getLdap()
		Returns the current LDAP connection. Throws Zend\Ldap\Exception\LdapException if current node is in detached mode (not connected to a Zend\Ldap\Ldap instance).



		Zend\Ldap\Node attachLdap(Zend\Ldap\Ldap $ldap)
		Attach the current node to the $ldapZend\Ldap\Ldap instance. Throws Zend\Ldap\Exception\LdapException if $ldap is not responsible for the current node (node is not a child of the $ldap base DN).



		Zend\Ldap\Node detachLdap()
		Detach node from LDAP connection.



		boolean isAttached()
		Checks if the current node is attached to a LDAP connection.



		Zend\Ldap\Node create(string|array|Zend\Ldap\Dn $dn, array $objectClass)
		Factory method to create a new detached Zend\Ldap\Node for a given DN. Creates a new Zend\Ldap\Node with the DN $dn and the object-classes $objectClass.



		Zend\Ldap\Node fromLdap(string|array|Zend\Ldap\Dn $dn, Zend\Ldap\Ldap $ldap)
		Factory method to create an attached Zend\Ldap\Node for a given DN. Loads an existing Zend\Ldap\Node with the DN $dn from the LDAP connection $ldap.



		Zend\Ldap\Node fromArray((array $data, boolean $fromDataSource)
		Factory method to create a detached Zend\Ldap\Node from array data $data. if $fromDataSource is TRUE (FALSE by default), the data is treated as being present in a LDAP tree.



		boolean isNew()
		Tells if the node is considered as new (not present on the server). Please note, that this doesn’t tell if the node is really present on the server. Use Zend\Ldap\Node::exists() to see if a node is already there.



		boolean willBeDeleted()
		Tells if this node is going to be deleted once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node delete()
		Marks this node as to be deleted. Node will be deleted on calling Zend\Ldap\Node::update() if Zend\Ldap\Node::willBeDeleted() is TRUE.



		boolean willBeMoved()
		Tells if this node is going to be moved once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node update(Zend\Ldap\Ldap $ldap)
		Sends all pending changes to the LDAP server. If $ldap is omitted the current LDAP connection is used. If the current node is detached from a LDAP connection a Zend\Ldap\Exception\LdapException will be thrown. If $ldap is provided the current node will be attached to the given LDAP connection.



		Zend\Ldap\Dn getCurrentDn()
		Gets the current DN of the current node as a Zend\Ldap\Dn. This does not reflect possible rename-operations.



		Zend\Ldap\Dn getDn()
		Gets the original DN of the current node as a Zend\Ldap\Dn. This reflects possible rename-operations.



		string getDnString(string $caseFold)
		Gets the original DN of the current node as a string. This reflects possible rename-operations.



		array getDnArray(string $caseFold)
		Gets the original DN of the current node as an array. This reflects possible rename-operations.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string. This reflects possible rename-operations.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array. This reflects possible rename-operations.



		Zend\Ldap\Node setDn(Zend\Ldap\Dn|string|array $newDn)
		Sets the new DN for this node effectively moving the node once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node move(Zend\Ldap\Dn|string|array $newDn)
		This is an alias for Zend\Ldap\Node::setDn().



		Zend\Ldap\Node rename(Zend\Ldap\Dn|string|array $newDn)
		This is an alias for Zend\Ldap\Node::setDn().



		array getObjectClass()
		Returns the objectClass of the node.



		Zend\Ldap\Node setObjectClass(array|string $value)
		Sets the objectClass attribute.



		Zend\Ldap\Node appendObjectClass(array|string $value)
		Appends to the objectClass attribute.



		string toLdif(array $options)
		Returns a LDIF representation of the current node. $options will be passed to the Zend\Ldap\Ldif\Encoder.



		array getChangedData()
		Gets changed node data. The array contains all changed attributes. This format can be used in Zend\Ldap\Ldap::add() and Zend\Ldap\Ldap::update().



		array getChanges()
		Returns all changes made.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node::getAttributes() the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		Zend\Ldap\Node setAttribute(string $name, mixed $value)
		Sets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().



		Zend\Ldap\Node appendToAttribute(string $name, mixed $value)
		Appends to a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node setDateTimeAttribute(string $name, integer|array $value, boolean $utc)
		Sets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().



		Zend\Ldap\Node appendToDateTimeAttribute(string $name, integer|array $value, boolean $utc)
		Appends to a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().



		Zend\Ldap\Node setPasswordAttribute(string $password, string $hashType, string $attribName)
		Sets a LDAP password on $attribName (defaults to ‘userPassword’) to $password with the hash type $hashType (defaults to Zend\Ldap\Attribute::PASSWORD_HASH_MD5).



		Zend\Ldap\Node deleteAttribute(string $name)
		Deletes a LDAP attribute.



		void removeDuplicatesFromAttribute(string$name)
		Removes duplicate values from a LDAP attribute.



		void removeFromAttribute(string $attribName, mixed|array $value)
		Removes the given values from a LDAP attribute.



		boolean exists(Zend\Ldap\Ldap $ldap)
		Checks if the current node exists on the given LDAP server (current server is used if NULL is passed).



		Zend\Ldap\Node reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server (current server is used if NULL is passed).



		Zend\Ldap\Node\Collection searchSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope, string $sort)
		Searches the nodes’s subtree with the given $filter and the given search parameters. See Zend\Ldap\Ldap::search() for details on the parameters $scope and $sort.



		integer countSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope)
		Count the nodes’s subtree items matching the given $filter and the given search scope. See Zend\Ldap\Ldap::search() for details on the $scope parameter.



		integer countChildren()
		Count the nodes’s children.



		Zend\Ldap\Node\Collection searchChildren(string|Zend\Ldap\Filter\AbstractFilter $filter, string $sort)
		Searches the nodes’s children matching the given $filter. See Zend\Ldap\Ldap::search() for details on the $sort parameter.



		boolean hasChildren()
		Returns whether the current node has children.



		Zend\Ldap\Node\ChildrenIterator getChildren()
		Returns all children of the current node.



		Zend\Ldap\Node getParent(Zend\Ldap\Ldap $ldap)
		Returns the parent of the current node using the LDAP connection $ldap (uses the current LDAP connection if omitted).











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Node
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage3.png
2¢.php delete user <userEmail>
2f.php disable user <userEmail>

2¢.php List [all|disabled] users
zf.php find user [--email-] [--name=]

lc:\z#2app>

Delete user with email <userfmail>
Disable user with email
<userEmail>

Show a list of users

Attempt to find a user by email or






modules/zend.view.helpers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
View Helpers


In your view scripts, often it is necessary to perform certain complex functions over and over: e.g., formatting a
date, generating form elements, or displaying action links. You can use helper, or plugin, classes to perform these
behaviors for you.


A helper is simply a class that implements the interface Zend\View\Helper. Helper simply defines two
methods, setView(), which accepts a Zend\View\Renderer instance/implementation, and getView(), used to
retrieve that instance. Zend\View\PhpRenderer composes a plugin broker,
allowing you to retrieve helpers, and also provides some method overloading capabilities that allow proxying method
calls to helpers.


As an example, let’s say we have a helper class named My\Helper\LowerCase, which we map in our plugin broker to
the name “lowercase”. We can retrieve or invoke it in one of the following ways:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// $view is a PhpRenderer instance

// Via the plugin broker:
$broker = $view->getBroker();
$helper = $broker->load('lowercase');

// Retrieve the helper instance, via the method "plugin",
// which proxies to the plugin broker:
$helper = $view->plugin('lowercase');

// If the helper does not define __invoke(), the following also retrieves it:
$helper = $view->lowercase();

// If the helper DOES define __invoke, you can call the helper
// as if it is a method:
$filtered = $view->lowercase('some value');










The last two examples demonstrate how the PhpRenderer uses method overloading to retrieve and/or invoke helpers
directly, offering a convenience API for end users.


A large number of helpers are provided in the standard distribution of Zend Framework. You can also register
helpers by adding them to the plugin broker, or the plugin locator the broker
composes. Please refer to the plugin broker documentation for details.



Included Helpers


Zend Framework comes with an initial set of helper classes. In particular, there are helpers for creating
route-based URLs and HTML lists, as well as declaring variables. Additionally, there are a rich set of
helpers for providing values for, and rendering, the various HTML <head> tags, such as HeadTitle,
HeadLink, and HeadScript. The currently shipped helpers include:



		url($name, $urlParams, $routeOptions, $reuseMatchedParams): Creates a URL string based on a named route. $urlParams should be an
associative array of key/value pairs used by the particular route.


		htmlList($items, $ordered, $attribs, $escape): generates unordered and ordered lists based on the $items
passed to it. If $items is a multidimensional array, a nested list will be built. If the $escape flag is
TRUE (default), individual items will be escaped using the view objects registered escaping mechanisms; pass
a FALSE value if you want to allow markup in your lists.










BaseUrl Helper


While most URLs generated by the framework have the base URL prepended automatically, developers will need to
prepend the base URL to their own URLs in order for paths to resources to be correct.


Usage of the BaseUrl helper is very straightforward:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		/*
 * The following assume that the base URL of the page/application is "/mypage".
 */

/*
 * Prints:
 * <base href="/mypage/" />
 */
<base href="<?php echo $this->baseUrl(); ?>" />

/*
 * Prints:
 * <link rel="stylesheet" type="text/css" href="/mypage/css/base.css" />
 */
<link rel="stylesheet" type="text/css"
     href="<?php echo $this->baseUrl('css/base.css'); ?>" />











Note


For simplicity’s sake, we strip out the entry PHP file (e.g., “index.php”) from the base URL that was
contained in Zend_Controller. However, in some situations this may cause a problem. If one occurs, use
$this->getHelper('BaseUrl')->setBaseUrl() to set your own BaseUrl.







Cycle Helper


The Cycle helper is used to alternate a set of values.


Cycle Helper Basic Usage


To add elements to cycle just specify them in constructor or use assign(array $data) function


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<?php foreach ($this->books as $book):?>
  <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
                                                            "#FFFFFF"))
                                              ->next()?>">
  <td><?php echo $this->escapeHtml($book['author']) ?></td>
</tr>
<?php endforeach;?>

// Moving in backwards order and assign function
$this->cycle()->assign(array("#F0F0F0","#FFFFFF"));
$this->cycle()->prev();
?>










The output


		1
2
3
4
5
6


		<tr style="background-color:'#F0F0F0'">
   <td>First</td>
</tr>
<tr style="background-color:'#FFFFFF'">
   <td>Second</td>
</tr>










Working with two or more cycles


To use two cycles you have to specify the names of cycles. Just set second parameter in cycle method.
$this->cycle(array("#F0F0F0","#FFFFFF"),'cycle2'). You can also use setName($name) function.


		1
2
3
4
5
6
7
8


		<?php foreach ($this->books as $book):?>
  <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
                                                            "#FFFFFF"))
                                              ->next()?>">
  <td><?php echo $this->cycle(array(1,2,3),'number')->next()?></td>
  <td><?php echo $this->escapeHtml($book['author'])?></td>
</tr>
<?php endforeach;?>













Partial Helper


The Partial view helper is used to render a specified template within its own variable scope. The primary use
is for reusable template fragments with which you do not need to worry about variable name clashes. Additionally,
they allow you to specify partial view scripts from specific modules.


A sibling to the Partial, the PartialLoop view helper allows you to pass iterable data, and render a
partial for each item.



Note


PartialLoop Counter


The PartialLoop view helper assigns a variable to the view named partialCounter which passes the current
position of the array to the view script. This provides an easy way to have alternating colors on table rows for
example.




Basic Usage of Partials


Basic usage of partials is to render a template fragment in its own view scope. Consider the following partial
script:


		1
2
3
4
5


		<?php // partial.phtml ?>
<ul>
    <li>From: <?php echo $this->escapeHtml($this->from) ?></li>
    <li>Subject: <?php echo $this->escapeHtml($this->subject) ?></li>
</ul>










You would then call it from your view script using the following:


		1
2
3


		<?php echo $this->partial('partial.phtml', array(
    'from' => 'Team Framework',
    'subject' => 'view partials')); ?>










Which would then render:


		1
2
3
4


		<ul>
    <li>From: Team Framework</li>
    <li>Subject: view partials</li>
</ul>











Note


What is a model?


A model used with the Partial view helper can be one of the following:



		Array. If an array is passed, it should be associative, as its key/value pairs are assigned to the view
with keys as view variables.


		Object implementing toArray() method. If an object is passed an has a toArray() method, the results of
toArray() will be assigned to the view object as view variables.


		Standard object. Any other object will assign the results of object_get_vars() (essentially all public
properties of the object) to the view object.





If your model is an object, you may want to have it passed as an object to the partial script, instead of
serializing it to an array of variables. You can do this by setting the ‘objectKey’ property of the appropriate
helper:


		1
2
3
4
5
6


		// Tell partial to pass objects as 'model' variable
$view->partial()->setObjectKey('model');

// Tell partial to pass objects from partialLoop as 'model' variable
// in final partial view script:
$view->partialLoop()->setObjectKey('model');










This technique is particularly useful when passing Zend_Db_Table_Rowsets to partialLoop(), as you then
have full access to your row objects within the view scripts, allowing you to call methods on them (such as
retrieving values from parent or dependent rows).




Using PartialLoop to Render Iterable Models


Typically, you’ll want to use partials in a loop, to render the same content fragment many times; this way you can
put large blocks of repeated content or complex display logic into a single location. However this has a
performance impact, as the partial helper needs to be invoked once for each iteration.


The PartialLoop view helper helps solve this issue. It allows you to pass an iterable item (array or object
implementing Iterator) as the model. It then iterates over this, passing, the items to the partial script as
the model. Items in the iterator may be any model the Partial view helper allows.


Let’s assume the following partial view script:


		1
2
3


		<?php // partialLoop.phtml ?>
    <dt><?php echo $this->key ?></dt>
    <dd><?php echo $this->value ?></dd>










And the following “model”:


		1
2
3
4
5
6


		$model = array(
    array('key' => 'Mammal', 'value' => 'Camel'),
    array('key' => 'Bird', 'value' => 'Penguin'),
    array('key' => 'Reptile', 'value' => 'Asp'),
    array('key' => 'Fish', 'value' => 'Flounder'),
);










In your view script, you could then invoke the PartialLoop helper:


		1
2
3


		<dl>
<?php echo $this->partialLoop('partialLoop.phtml', $model) ?>
</dl>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<dl>
    <dt>Mammal</dt>
    <dd>Camel</dd>

    <dt>Bird</dt>
    <dd>Penguin</dd>

    <dt>Reptile</dt>
    <dd>Asp</dd>

    <dt>Fish</dt>
    <dd>Flounder</dd>
</dl>










Rendering Partials in Other Modules


Sometime a partial will exist in a different module. If you know the name of the module, you can pass it as the
second argument to either partial() or partialLoop(), moving the $model argument to third position.


For instance, if there’s a pager partial you wish to use that’s in the ‘list’ module, you could grab it as follows:


		1


		<?php echo $this->partial('pager.phtml', 'list', $pagerData) ?>










In this way, you can re-use partials created specifically for other modules. That said, it’s likely a better
practice to put re-usable partials in shared view script paths.





Placeholder Helper


The Placeholder view helper is used to persist content between view scripts and view instances. It also offers
some useful features such as aggregating content, capturing view script content for later use, and adding pre- and
post-text to content (and custom separators for aggregated content).


Basic Usage of Placeholders


Basic usage of placeholders is to persist view data. Each invocation of the Placeholder helper expects a
placeholder name; the helper then returns a placeholder container object that you can either manipulate or simply
echo out.


		1
2
3
4
5
6


		<?php $this->placeholder('foo')->set("Some text for later") ?>

<?php
    echo $this->placeholder('foo');
    // outputs "Some text for later"
?>










Using Placeholders to Aggregate Content


Aggregating content via placeholders can be useful at times as well. For instance, your view script may have a
variable array from which you wish to retrieve messages to display later; a later view script can then determine
how those will be rendered.


The Placeholder view helper uses containers that extend ArrayObject, providing a rich featureset for
manipulating arrays. In addition, it offers a variety of methods for formatting the content stored in the
container:



		setPrefix($prefix) sets text with which to prefix the content. Use getPrefix() at any time to determine
what the current setting is.


		setPostfix($prefix) sets text with which to append the content. Use getPostfix() at any time to determine
what the current setting is.


		setSeparator($prefix) sets text with which to separate aggregated content. Use getSeparator() at any time
to determine what the current setting is.


		setIndent($prefix) can be used to set an indentation value for content. If an integer is passed, that number
of spaces will be used; if a string is passed, the string will be used. Use getIndent() at any time to
determine what the current setting is.





		1
2


		<!-- first view script -->
<?php $this->placeholder('foo')->exchangeArray($this->data) ?>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<!-- later view script -->
<?php
$this->placeholder('foo')->setPrefix("<ul>\n    <li>")
                         ->setSeparator("</li><li>\n")
                         ->setIndent(4)
                         ->setPostfix("</li></ul>\n");
?>

<?php
    echo $this->placeholder('foo');
    // outputs as unordered list with pretty indentation
?>










Because the Placeholder container objects extend ArrayObject, you can also assign content to a specific key
in the container easily, instead of simply pushing it into the container. Keys may be accessed either as object
properties or as array keys.


		1
2
3
4
5
6
7


		<?php $this->placeholder('foo')->bar = $this->data ?>
<?php echo $this->placeholder('foo')->bar ?>

<?php
$foo = $this->placeholder('foo');
echo $foo['bar'];
?>










Using Placeholders to Capture Content


Occasionally you may have content for a placeholder in a view script that is easiest to template; the
Placeholder view helper allows you to capture arbitrary content for later rendering using the following API.



		captureStart($type, $key) begins capturing content.


$type should be one of the Placeholder constants APPEND or SET. If APPEND, captured content
is appended to the list of current content in the placeholder; if SET, captured content is used as the sole
value of the placeholder (potentially replacing any previous content). By default, $type is APPEND.


$key can be used to specify a specific key in the placeholder container to which you want content captured.


captureStart() locks capturing until captureEnd() is called; you cannot nest capturing with the same
placeholder container. Doing so will raise an exception.





		captureEnd() stops capturing content, and places it in the container object according to how
captureStart() was called.








		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<!-- Default capture: append -->
<?php $this->placeholder('foo')->captureStart();
foreach ($this->data as $datum): ?>
<div class="foo">
    <h2><?php echo $datum->title ?></h2>
    <p><?php echo $datum->content ?></p>
</div>
<?php endforeach; ?>
<?php $this->placeholder('foo')->captureEnd() ?>

<?php echo $this->placeholder('foo') ?>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<!-- Capture to key -->
<?php $this->placeholder('foo')->captureStart('SET', 'data');
foreach ($this->data as $datum): ?>
<div class="foo">
    <h2><?php echo $datum->title ?></h2>
    <p><?php echo $datum->content ?></p>
</div>
 <?php endforeach; ?>
<?php $this->placeholder('foo')->captureEnd() ?>

<?php echo $this->placeholder('foo')->data ?>











Concrete Placeholder Implementations


Zend Framework ships with a number of “concrete” placeholder implementations. These are for commonly used
placeholders: doctype, page title, and various <head> elements. In all cases, calling the placeholder with no
arguments returns the element itself.


Documentation for each element is covered separately, as linked below:



		Doctype


		HeadLink


		HeadMeta


		HeadScript


		HeadStyle


		HeadTitle


		InlineScript










Doctype Helper


Valid HTML and XHTML documents should include a DOCTYPE declaration. Besides being difficult to remember,
these can also affect how certain elements in your document should be rendered (for instance, CDATA escaping in
<script> and <style> elements.


The Doctype helper allows you to specify one of the following types:



		XHTML11


		XHTML1_STRICT


		XHTML1_TRANSITIONAL


		XHTML1_FRAMESET


		XHTML1_RDFA


		XHTML_BASIC1


		HTML4_STRICT


		HTML4_LOOSE


		HTML4_FRAMESET


		HTML5





You can also specify a custom doctype as long as it is well-formed.


The Doctype helper is a concrete implementation of the Placeholder helper.


Doctype Helper Basic Usage


You may specify the doctype at any time. However, helpers that depend on the doctype for their output will
recognize it only after you have set it, so the easiest approach is to specify it in your bootstrap:


		1
2


		$doctypeHelper = new Zend_View_Helper_Doctype();
$doctypeHelper->doctype('XHTML1_STRICT');










And then print it out on top of your layout script:


		1


		<?php echo $this->doctype() ?>










Retrieving the Doctype


If you need to know the doctype, you can do so by calling getDoctype() on the object, which is returned by
invoking the helper.


		1


		$doctype = $view->doctype()->getDoctype();










Typically, you’ll simply want to know if the doctype is XHTML or not; for this, the isXhtml() method will
suffice:


		1
2
3


		if ($view->doctype()->isXhtml()) {
    // do something differently
}










You can also check if the doctype represents an HTML5 document.


		1
2
3


		if ($view->doctype()->isHtml5()) {
    // do something differently
}










Choosing a Doctype to Use with the Open Graph Protocol


To implement the Open Graph Protocol [http://opengraphprotocol.org/], you may specify the XHTML1_RDFA doctype. This doctype allows a developer
to use the Resource Description Framework [http://www.w3.org/TR/xhtml-rdfa-primer/] within an XHTML document.


		1
2


		$doctypeHelper = new Zend_View_Helper_Doctype();
$doctypeHelper->doctype('XHTML1_RDFA');










The RDFa doctype allows XHTML to validate when the ‘property’ meta tag attribute is used per the Open Graph
Protocol spec. Example within a view script:


		1
2
3
4
5


		<?php echo $this->doctype('XHTML1_RDFA'); ?>
<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:og="http://opengraphprotocol.org/schema/">
<head>
   <meta property="og:type" content="musician" />










In the previous example, we set the property to og:type. The og references the Open Graph namespace we specified in
the html tag. The content identifies the page as being about a musician. See the Open Graph Protocol
documentation [http://opengraphprotocol.org/] for supported properties. The HeadMeta helper may be
used to programmatically set these Open Graph Protocol meta tags.


Here is how you check if the doctype is set to XHTML1_RDFA:


		1
2
3
4
5
6
7


		<?php echo $this->doctype() ?>
<html xmlns="http://www.w3.org/1999/xhtml"
      <?php if ($view->doctype()->isRdfa()): ?>
      xmlns:og="http://opengraphprotocol.org/schema/"
      xmlns:fb="http://www.facebook.com/2008/fbml"
      <?php endif; ?>
>













HeadLink Helper


The HTML <link> element is increasingly used for linking a variety of resources for your site: stylesheets,
feeds, favicons, trackbacks, and more. The HeadLink helper provides a simple interface for creating and
aggregating these elements for later retrieval and output in your layout script.


The HeadLink helper has special methods for adding stylesheet links to its stack:



		appendStylesheet($href, $media, $conditionalStylesheet, $extras)


		offsetSetStylesheet($index, $href, $media, $conditionalStylesheet, $extras)


		prependStylesheet($href, $media, $conditionalStylesheet, $extras)


		setStylesheet($href, $media, $conditionalStylesheet, $extras)





The $media value defaults to ‘screen’, but may be any valid media value. $conditionalStylesheet is a string
or boolean FALSE, and will be used at rendering time to determine if special comments should be included to
prevent loading of the stylesheet on certain platforms. $extras is an array of any extra values that you want
to be added to the tag.


Additionally, the HeadLink helper has special methods for adding ‘alternate’ links to its stack:



		appendAlternate($href, $type, $title, $extras)


		offsetSetAlternate($index, $href, $type, $title, $extras)


		prependAlternate($href, $type, $title, $extras)


		setAlternate($href, $type, $title, $extras)





The headLink() helper method allows specifying all attributes necessary for a <link> element, and allows
you to also specify placement – whether the new element replaces all others, prepends (top of stack), or appends
(end of stack).


The HeadLink helper is a concrete implementation of the Placeholder helper.


HeadLink Helper Basic Usage


You may specify a headLink at any time. Typically, you will specify global links in your layout script, and
application specific links in your application view scripts. In your layout script, in the <head> section, you will
then echo the helper to output it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<?php // setting links in a view script:
$this->headLink()->appendStylesheet('/styles/basic.css')
                 ->headLink(array('rel' => 'icon',
                                  'href' => '/img/favicon.ico'),
                                  'PREPEND')
                 ->prependStylesheet('/styles/moz.css',
                                     'screen',
                                     true,
                                     array('id' => 'my_stylesheet'));
?>
<?php // rendering the links: ?>
<?php echo $this->headLink() ?>













HeadMeta Helper


The HTML <meta> element is used to provide meta information about your HTML document – typically keywords,
document character set, caching pragmas, etc. Meta tags may be either of the ‘http-equiv’ or ‘name’ types, must
contain a ‘content’ attribute, and can also have either of the ‘lang’ or ‘scheme’ modifier attributes.


The HeadMeta helper supports the following methods for setting and adding meta tags:



		appendName($keyValue, $content, $conditionalName)


		offsetSetName($index, $keyValue, $content, $conditionalName)


		prependName($keyValue, $content, $conditionalName)


		setName($keyValue, $content, $modifiers)


		appendHttpEquiv($keyValue, $content, $conditionalHttpEquiv)


		offsetSetHttpEquiv($index, $keyValue, $content, $conditionalHttpEquiv)


		prependHttpEquiv($keyValue, $content, $conditionalHttpEquiv)


		setHttpEquiv($keyValue, $content, $modifiers)


		setCharset($charset)





The following methods are also supported with XHTML1_RDFA doctype set with the Doctype helper:



		appendProperty($property, $content, $modifiers)


		offsetSetProperty($index, $property, $content, $modifiers)


		prependProperty($property, $content, $modifiers)


		setProperty($property, $content, $modifiers)





The $keyValue item is used to define a value for the ‘name’ or ‘http-equiv’ key; $content is the value for
the ‘content’ key, and $modifiers is an optional associative array that can contain keys for ‘lang’ and/or
‘scheme’.


You may also set meta tags using the headMeta() helper method, which has the following signature:
headMeta($content, $keyValue, $keyType = 'name', $modifiers = array(), $placement = 'APPEND'). $keyValue is
the content for the key specified in $keyType, which should be either ‘name’ or ‘http-equiv’. $keyType may
also be specified as ‘property’ if the doctype has been set to XHTML1_RDFA. $placement can be ‘SET’ (overwrites
all previously stored values), ‘APPEND’ (added to end of stack), or ‘PREPEND’ (added to top of stack).


HeadMeta overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes
using the itemToString() method. This allows you to perform checks on the items in the stack, and optionally
modify these items by simply modifying the object returned.


The HeadMeta helper is a concrete implementation of the Placeholder helper.


HeadMeta Helper Basic Usage


You may specify a new meta tag at any time. Typically, you will specify client-side caching rules or SEO keywords.


For instance, if you wish to specify SEO keywords, you’d be creating a meta name tag with the name ‘keywords’ and
the content the keywords you wish to associate with your page:


		1
2


		// setting meta keywords
$this->headMeta()->appendName('keywords', 'framework, PHP, productivity');










If you wished to set some client-side caching rules, you’d set http-equiv tags with the rules you wish to enforce:


		1
2
3
4
5


		// disabling client-side cache
$this->headMeta()->appendHttpEquiv('expires',
                                   'Wed, 26 Feb 1997 08:21:57 GMT')
                 ->appendHttpEquiv('pragma', 'no-cache')
                 ->appendHttpEquiv('Cache-Control', 'no-cache');










Another popular use for meta tags is setting the content type, character set, and language:


		1
2
3
4


		// setting content type and character set
$this->headMeta()->appendHttpEquiv('Content-Type',
                                   'text/html; charset=UTF-8')
                 ->appendHttpEquiv('Content-Language', 'en-US');










If you are serving an HTML5 document, you should provide the character set like this:


		1
2


		// setting character set in HTML5
$this->headMeta()->setCharset('UTF-8'); // Will look like <meta charset="UTF-8">










As a final example, an easy way to display a transitional message before a redirect is using a “meta refresh”:


		1
2
3


		// setting a meta refresh for 3 seconds to a new url:
$this->headMeta()->appendHttpEquiv('Refresh',
                                   '3;URL=http://www.some.org/some.html');










When you’re ready to place your meta tags in the layout, simply echo the helper:


		1


		<?php echo $this->headMeta() ?>










HeadMeta Usage with XHTML1_RDFA doctype


Enabling the RDFa doctype with the Doctype helper enables the use of the
‘property’ attribute (in addition to the standard ‘name’ and ‘http-equiv’) with HeadMeta. This is commonly used
with the Facebook Open Graph Protocol [http://opengraphprotocol.org/].


For instance, you may specify an open graph page title and type as follows:


		1
2
3
4
5
6
7
8


		$this->doctype(Zend_View_Helper_Doctype::XHTML_RDFA);
$this->headMeta()->setProperty('og:title', 'my article title');
$this->headMeta()->setProperty('og:type', 'article');
echo $this->headMeta();

// output is:
//   <meta property="og:title" content="my article title" />
//   <meta property="og:type" content="article" />













HeadScript Helper


The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote
resource containing client-side scripting code. The HeadScript helper allows you to manage both.


The HeadScript helper supports the following methods for setting and adding scripts:



		appendFile($src, $type = 'text/javascript', $attrs = array())


		offsetSetFile($index, $src, $type = 'text/javascript', $attrs = array())


		prependFile($src, $type = 'text/javascript', $attrs = array())


		setFile($src, $type = 'text/javascript', $attrs = array())


		appendScript($script, $type = 'text/javascript', $attrs = array())


		offsetSetScript($index, $script, $type = 'text/javascript', $attrs = array())


		prependScript($script, $type = 'text/javascript', $attrs = array())


		setScript($script, $type = 'text/javascript', $attrs = array())





In the case of the * File() methods, $src is the remote location of the script to load; this is usually in
the form of a URL or a path. For the * Script() methods, $script is the client-side scripting directives
you wish to use in the element.



Note


Setting Conditional Comments


HeadScript allows you to wrap the script tag in conditional comments, which allows you to hide it from
specific browsers. To add the conditional tags, pass the conditional value as part of the $attrs parameter
in the method calls.


Headscript With Conditional Comments


		1
2
3
4
5
6


		// adding scripts
$this->headScript()->appendFile(
    '/js/prototype.js',
    'text/javascript',
    array('conditional' => 'lt IE 7')
);













Note


Preventing HTML style comments or CDATA wrapping of scripts


By default HeadScript will wrap scripts with HTML comments or it wraps scripts with XHTML cdata. This
behavior can be problematic when you intend to use the script tag in an alternative way by setting the type to
something other then ‘text/javascript’. To prevent such escaping, pass an noescape with a value of true as
part of the $attrs parameter in the method calls.


Create an jQuery template with the headScript


		1
2
3
4
5
6
7


		// jquery template
$template = '<div class="book">{{:title}}</div>';
$this->headScript()->appendScript(
    $template,
    'text/x-jquery-tmpl',
    array('id='tmpl-book', 'noescape' => true)
);












HeadScript also allows capturing scripts; this can be useful if you want to create the client-side script
programmatically, and then place it elsewhere. The usage for this will be showed in an example below.


Finally, you can also use the headScript() method to quickly add script elements; the signature for this is
headScript($mode = 'FILE', $spec, $placement = 'APPEND'). The $mode is either ‘FILE’ or ‘SCRIPT’, depending
on if you’re linking a script or defining one. $spec is either the script file to link or the script source
itself. $placement should be either ‘APPEND’, ‘PREPEND’, or ‘SET’.


HeadScript overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of
the special methods as listed above. Internally, it stores each item as a stdClass token, which it later
serializes using the itemToString() method. This allows you to perform checks on the items in the stack, and
optionally modify these items by simply modifying the object returned.


The HeadScript helper is a concrete implementation of the Placeholder helper.



Note


Use InlineScript for HTML Body Scripts


HeadScript‘s sibling helper, InlineScript, should be used
when you wish to include scripts inline in the HTML body. Placing scripts at the end of your document is a
good practice for speeding up delivery of your page, particularly when using 3rd party analytics scripts.





Note


Arbitrary Attributes are Disabled by Default


By default, HeadScript only will render <script> attributes that are blessed by the W3C. These include
‘type’, ‘charset’, ‘defer’, ‘language’, and ‘src’. However, some javascript frameworks, notably Dojo [http://www.dojotoolkit.org/], utilize
custom attributes in order to modify behavior. To allow such attributes, you can enable them via the
setAllowArbitraryAttributes() method:


		1


		$this->headScript()->setAllowArbitraryAttributes(true);












HeadScript Helper Basic Usage


You may specify a new script tag at any time. As noted above, these may be links to outside resource files or
scripts themselves.


		1
2
3


		// adding scripts
$this->headScript()->appendFile('/js/prototype.js')
                   ->appendScript($onloadScript);










Order is often important with client-side scripting; you may need to ensure that libraries are loaded in a specific
order due to dependencies each have; use the various append, prepend, and offsetSet directives to aid in this task:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Putting scripts in order

// place at a particular offset to ensure loaded last
$this->headScript()->offsetSetFile(100, '/js/myfuncs.js');

// use scriptaculous effects (append uses next index, 101)
$this->headScript()->appendFile('/js/scriptaculous.js');

// but always have base prototype script load first:
$this->headScript()->prependFile('/js/prototype.js');










When you’re finally ready to output all scripts in your layout script, simply echo the helper:


		1


		<?php echo $this->headScript() ?>










Capturing Scripts Using the HeadScript Helper


Sometimes you need to generate client-side scripts programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the script and sprinkling in PHP tags.
HeadScript lets you do just that, capturing it to the stack:


		1
2
3
4


		<?php $this->headScript()->captureStart() ?>
var action = '<?php echo $this->baseUrl ?>';
$('foo_form').action = action;
<?php $this->headScript()->captureEnd() ?>










The following assumptions are made:



		The script will be appended to the stack. If you wish for it to replace the stack or be added to the top, you
will need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().


		The script MIME type is assumed to be ‘text/javascript’; if you wish to specify a different type, you will need
to pass it as the second argument to captureStart().


		If you wish to specify any additional attributes for the <script> tag, pass them in an array as the third
argument to captureStart().








HeadStyle Helper


The HTML <style> element is used to include CSS stylesheets inline in the HTML <head> element.



Note


Use HeadLink to link CSS files


HeadLink should be used to create <link> elements for including
external stylesheets. HeadStyle is used when you wish to define your stylesheets inline.




The HeadStyle helper supports the following methods for setting and adding stylesheet declarations:



		appendStyle($content, $attributes = array())


		offsetSetStyle($index, $content, $attributes = array())


		prependStyle($content, $attributes = array())


		setStyle($content, $attributes = array())





In all cases, $content is the actual CSS declarations. $attributes are any additional attributes you wish
to provide to the style tag: lang, title, media, or dir are all permissible.



Note


Setting Conditional Comments


HeadStyle allows you to wrap the style tag in conditional comments, which allows you to hide it from
specific browsers. To add the conditional tags, pass the conditional value as part of the $attributes
parameter in the method calls.


Headstyle With Conditional Comments


		1
2


		// adding scripts
$this->headStyle()->appendStyle($styles, array('conditional' => 'lt IE 7'));












HeadStyle also allows capturing style declarations; this can be useful if you want to create the declarations
programmatically, and then place them elsewhere. The usage for this will be showed in an example below.


Finally, you can also use the headStyle() method to quickly add declarations elements; the signature for this
is headStyle($content$placement = 'APPEND', $attributes = array()). $placement should be either ‘APPEND’,
‘PREPEND’, or ‘SET’.


HeadStyle overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes
using the itemToString() method. This allows you to perform checks on the items in the stack, and optionally
modify these items by simply modifying the object returned.


The HeadStyle helper is a concrete implementation of the Placeholder helper.



Note


UTF-8 encoding used by default


By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does
as well. Character encoding can be set differently on the view object itself using the setEncoding() method
(or the the encoding instantiation parameter). However, since Zend_View_Interface does not define
accessors for encoding, it’s possible that if you are using a custom view implementation with this view helper,
you will not have a getEncoding() method, which is what the view helper uses internally for determining the
character set in which to encode.


If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method
in your custom view implementation.




HeadStyle Helper Basic Usage


You may specify a new style tag at any time:


		1
2


		// adding styles
$this->headStyle()->appendStyle($styles);










Order is very important with CSS; you may need to ensure that declarations are loaded in a specific order due to
the order of the cascade; use the various append, prepend, and offsetSet directives to aid in this task:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Putting styles in order

// place at a particular offset:
$this->headStyle()->offsetSetStyle(100, $customStyles);

// place at end:
$this->headStyle()->appendStyle($finalStyles);

// place at beginning
$this->headStyle()->prependStyle($firstStyles);










When you’re finally ready to output all style declarations in your layout script, simply echo the helper:


		1


		<?php echo $this->headStyle() ?>










Capturing Style Declarations Using the HeadStyle Helper


Sometimes you need to generate CSS style declarations programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the styles and sprinkling in PHP tags.
HeadStyle lets you do just that, capturing it to the stack:


		1
2
3
4
5


		<?php $this->headStyle()->captureStart() ?>
body {
    background-color: <?php echo $this->bgColor ?>;
}
<?php $this->headStyle()->captureEnd() ?>










The following assumptions are made:



		The style declarations will be appended to the stack. If you wish for them to replace the stack or be added to
the top, you will need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().


		If you wish to specify any additional attributes for the <style> tag, pass them in an array as the second
argument to captureStart().








HeadTitle Helper


The HTML <title> element is used to provide a title for an HTML document. The HeadTitle helper allows
you to programmatically create and store the title for later retrieval and output.


The HeadTitle helper is a concrete implementation of the Placeholder helper. It overrides the toString() method to enforce generating a
<title> element, and adds a headTitle() method for quick and easy setting and aggregation of title
elements. The signature for that method is headTitle($title, $setType = null); by default, the value is
appended to the stack (aggregating title segments) if left at null, but you may also specify either ‘PREPEND’
(place at top of stack) or ‘SET’ (overwrite stack).


Since setting the aggregating (attach) order on each call to headTitle can be cumbersome, you can set a default
attach order by calling setDefaultAttachOrder() which is applied to all headTitle() calls unless you
explicitly pass a different attach order as the second parameter.


HeadTitle Helper Basic Usage


You may specify a title tag at any time. A typical usage would have you setting title segments for each level of
depth in your application: site, controller, action, and potentially resource.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		 // setting the controller and action name as title segments:
$request = Zend_Controller_Front::getInstance()->getRequest();
$this->headTitle($request->getActionName())
     ->headTitle($request->getControllerName());

// setting the site in the title; possibly in the layout script:
$this->headTitle('Zend Framework');

// setting a separator string for segments:
$this->headTitle()->setSeparator(' / ');










When you’re finally ready to render the title in your layout script, simply echo the helper:


		1
2


		<!-- renders <action> / <controller> / Zend Framework -->
<?php echo $this->headTitle() ?>













HTML Object Helpers


The HTML <object> element is used for embedding media like Flash or QuickTime in web pages. The object view
helpers take care of embedding media with minimum effort.


There are four initial Object helpers:



		htmlFlash() Generates markup for embedding Flash files.


		htmlObject() Generates markup for embedding a custom Object.


		htmlPage() Generates markup for embedding other (X)HTML pages.


		htmlQuicktime() Generates markup for embedding QuickTime files.





All of these helpers share a similar interface. For this reason, this documentation will only contain examples of
two of these helpers.


Flash helper


Embedding Flash in your page using the helper is pretty straight-forward. The only required argument is the
resource URI.


		1


		<?php echo $this->htmlFlash('/path/to/flash.swf'); ?>










This outputs the following HTML:


		1
2
3
4
5


		<object data="/path/to/flash.swf"
        type="application/x-shockwave-flash"
        classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
        codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">
</object>










Additionally you can specify attributes, parameters and content that can be rendered along with the <object>.
This will be demonstrated using the htmlObject() helper.


Customizing the object by passing additional arguments


The first argument in the object helpers is always required. It is the URI to the resource you want to embed. The
second argument is only required in the htmlObject() helper. The other helpers already contain the correct
value for this argument. The third argument is used for passing along attributes to the object element. It only
accepts an array with key-value pairs. classid and codebase are examples of such attributes. The fourth
argument also only takes a key-value array and uses them to create <param> elements. You will see an example of
this shortly. Lastly, there is the option of providing additional content to the object. Now for an example which
utilizes all arguments.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		echo $this->htmlObject(
    '/path/to/file.ext',
    'mime/type',
    array(
        'attr1' => 'aval1',
        'attr2' => 'aval2'
    ),
    array(
        'param1' => 'pval1',
        'param2' => 'pval2'
    ),
    'some content'
);

/*
This would output:

<object data="/path/to/file.ext" type="mime/type"
    attr1="aval1" attr2="aval2">
    <param name="param1" value="pval1" />
    <param name="param2" value="pval2" />
    some content
</object>
*/













InlineScript Helper


The HTML <script> element is used to either provide inline client-side scripting elements or link to a remote
resource containing client-side scripting code. The InlineScript helper allows you to manage both. It is
derived from HeadScript, and any method of that helper is available;
however, use the inlineScript() method in place of headScript().



Note


Use InlineScript for HTML Body Scripts


InlineScript, should be used when you wish to include scripts inline in the HTML body. Placing scripts
at the end of your document is a good practice for speeding up delivery of your page, particularly when using
3rd party analytics scripts.


Some JS libraries need to be included in the HTML head; use HeadScript for those scripts.







JSON Helper


When creating views that return JSON, it’s important to also set the appropriate response header. The JSON view
helper does exactly that. In addition, by default, it disables layouts (if currently enabled), as layouts generally
aren’t used with JSON responses.


The JSON helper sets the following header:


		1


		Content-Type: application/json










Most AJAX libraries look for this header when parsing responses to determine how to handle the content.


Usage of the JSON helper is very straightforward:


		1


		<?php echo $this->json($this->data) ?>











Note


Keeping layouts and enabling encoding using Zend_Json_Expr


Each method in the JSON helper accepts a second, optional argument. This second argument can be a boolean flag
to enable or disable layouts, or an array of options that will be passed to Zend_Json::encode() and used
internally to encode data.


To keep layouts, the second parameter needs to be boolean TRUE. When the second parameter is an array,
keeping layouts can be achieved by including a keepLayouts key with a value of a boolean TRUE.


		1
2
3
4
5


		// Boolean true as second argument enables layouts:
echo $this->json($this->data, true);

// Or boolean true as "keepLayouts" key:
echo $this->json($this->data, array('keepLayouts' => true));










Zend_Json::encode allows the encoding of native JSON expressions using Zend_Json_Expr objects. This
option is disabled by default. To enable this option, pass a boolean TRUE to the enableJsonExprFinder
key of the options array:


		1
2
3
4


		<?php echo $this->json($this->data, array(
    'enableJsonExprFinder' => true,
    'keepLayouts'          => true,
)) ?>















Navigation Helpers


The navigation helpers are used for rendering navigational elements from Zend_Navigation_Container instances.


There are 5 built-in helpers:



		Breadcrumbs, used for rendering the path to the
currently active page.


		Links, used for rendering navigational head links (e.g.
<link rel="next" href="..." />)


		Menu, used for rendering menus.


		Sitemap, used for rendering sitemaps conforming to the
Sitemaps XML format [http://www.sitemaps.org/protocol.php].


		Navigation, used for proxying calls to other
navigational helpers.





All built-in helpers extend Zend_View_Helper_Navigation_HelperAbstract, which adds integration with ACL and translation. The abstract class implements the interface
Zend_View_Helper_Navigation_Helper, which defines the following methods:



		getContainer() and setContainer() gets and sets the navigation container the helper should operate on by
default, and hasContainer() checks if the helper has container registered.


		getTranslator() and setTranslator() gets and sets the translator used for translating labels and titles.
getUseTranslator() and setUseTranslator() controls whether the translator should be enabled. The method
hasTranslator() checks if the helper has a translator registered.


		getAcl(), setAcl(), getRole() and setRole(), gets and sets ACL (Zend\Permissions\Acl) instance and role
(String or Zend\Permissions\Acl\Role\RoleInterface) used for filtering out pages when rendering. getUseAcl() and
setUseAcl() controls whether ACL should be enabled. The methods hasAcl() and hasRole() checks if
the helper has an ACL instance or a role registered.


		__toString(), magic method to ensure that helpers can be rendered by echoing the helper instance directly.


		render(), must be implemented by concrete helpers to do the actual rendering.





In addition to the method stubs from the interface, the abstract class also implements the following methods:



		getIndent() and setIndent() gets and sets indentation. The setter accepts a String or an Integer.
In the case of an Integer, the helper will use the given number of spaces for indentation. I.e.,
setIndent(4) means 4 initial spaces of indentation. Indentation can be specified for all helpers except the
Sitemap helper.


		getMinDepth() and setMinDepth() gets and sets the minimum depth a page must have to be included by the
helper. Setting NULL means no minimum depth.


		getMaxDepth() and setMaxDepth() gets and sets the maximum depth a page can have to be included by the
helper. Setting NULL means no maximum depth.


		getRenderInvisible() and setRenderInvisible() gets and sets whether to render items that have been marked
as invisible or not.


		__call() is used for proxying calls to the container registered in the helper, which means you can call
methods on a helper as if it was a container. See example below.


		findActive($container, $minDepth, $maxDepth) is used for finding the deepest active page in the given
container. If depths are not given, the method will use the values retrieved from getMinDepth() and
getMaxDepth(). The deepest active page must be between $minDepth and $maxDepth inclusively. Returns
an array containing a reference to the found page instance and the depth at which the page was found.


		htmlify() renders an ‘a’ HTML element from a Zend_Navigation_Page instance.


		accept() is used for determining if a page should be accepted when iterating containers. This method checks
for page visibility and verifies that the helper’s role is allowed access to the page’s resource and privilege.


		The static method setDefaultAcl() is used for setting a default ACL object that will be used by helpers.


		The static method setDefaultRole() is used for setting a default ACL that will be used by helpers





If a navigation container is not explicitly set in a helper using $helper->setContainer($nav), the helper will
look for a container instance with the key Zend_Navigation in the registry. If a
container is not explicitly set or found in the registry, the helper will create an empty Zend_Navigation
container when calling $helper->getContainer().


Proxying calls to the navigation container


Navigation view helpers use the magic method __call() to proxy method calls to the navigation container that is
registered in the view helper.


		1
2
3


		$this->navigation()->addPage(array(
    'type' => 'uri',
    'label' => 'New page'));










The call above will add a page to the container in the Navigation helper.



Translation of labels and titles


The navigation helpers support translation of page labels and titles. You can set a translator of type
Zend\I18n\Translator in the helper using $helper->setTranslator($translator).


If you want to disable translation, use $helper->setUseTranslator(false).


The proxy helper will inject its own translator to the
helper it proxies to if the proxied helper doesn’t already have a translator.



Note


There is no translation in the sitemap helper, since there are no page labels or titles involved in an XML
sitemap.







Integration with ACL


All navigational view helpers support ACL inherently from the class
Zend_View_Helper_Navigation_HelperAbstract. A Zend\Permissions\Acl object can be assigned to a helper instance with
$helper->setAcl($acl), and role with $helper->setRole(‘member’) or $helper->setRole(new
ZendPermissionsAclRoleGenericRole(‘member’)). If ACL is used in the helper, the role in the helper must be allowed by the ACL to
access a page’s resource and/or have the page’s privilege for the page to be included when rendering.


If a page is not accepted by ACL, any descendant page will also be excluded from rendering.


The proxy helper will inject its own ACL and role to the
helper it proxies to if the proxied helper doesn’t already have any.


The examples below all show how ACL affects rendering.





Navigation setup used in examples


This example shows the setup of a navigation container for a fictional software company.


Notes on the setup:



		The domain for the site is www.example.com.


		Interesting page properties are marked with a comment.


		Unless otherwise is stated in other examples, the user is requesting the URL
http://www.example.com/products/server/faq/, which translates to the page labeled FAQ under Foo Server.


		The assumed ACL and router setup is shown below the container setup.





		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


		/*
 * Navigation container (config/array)

 * Each element in the array will be passed to
 * Zend_Navigation_Page::factory() when constructing
 * the navigation container below.
 */
$pages = array(
    array(
        'label'      => 'Home',
        'title'      => 'Go Home',
        'module'     => 'default',
        'controller' => 'index',
        'action'     => 'index',
        'order'      => -100 // make sure home is the first page
    ),
    array(
        'label'      => 'Special offer this week only!',
        'module'     => 'store',
        'controller' => 'offer',
        'action'     => 'amazing',
        'visible'    => false // not visible
    ),
    array(
        'label'      => 'Products',
        'module'     => 'products',
        'controller' => 'index',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'Foo Server',
                'module'     => 'products',
                'controller' => 'server',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'FAQ',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'faq',
                        'rel'        => array(
                            'canonical' => 'http://www.example.com/?page=faq',
                            'alternate' => array(
                                'module'     => 'products',
                                'controller' => 'server',
                                'action'     => 'faq',
                                'params'     => array('format' => 'xml')
                            )
                        )
                    ),
                    array(
                        'label'      => 'Editions',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'editions'
                    ),
                    array(
                        'label'      => 'System Requirements',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'requirements'
                    )
                )
            ),
            array(
                'label'      => 'Foo Studio',
                'module'     => 'products',
                'controller' => 'studio',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'Customer Stories',
                        'module'     => 'products',
                        'controller' => 'studio',
                        'action'     => 'customers'
                    ),
                    array(
                        'label'      => 'Support',
                        'module'     => 'prodcts',
                        'controller' => 'studio',
                        'action'     => 'support'
                    )
                )
            )
        )
    ),
    array(
        'label'      => 'Company',
        'title'      => 'About us',
        'module'     => 'company',
        'controller' => 'about',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'Investor Relations',
                'module'     => 'company',
                'controller' => 'about',
                'action'     => 'investors'
            ),
            array(
                'label'      => 'News',
                'class'      => 'rss', // class
                'module'     => 'company',
                'controller' => 'news',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'Press Releases',
                        'module'     => 'company',
                        'controller' => 'news',
                        'action'     => 'press'
                    ),
                    array(
                        'label'      => 'Archive',
                        'route'      => 'archive', // route
                        'module'     => 'company',
                        'controller' => 'news',
                        'action'     => 'archive'
                    )
                )
            )
        )
    ),
    array(
        'label'      => 'Community',
        'module'     => 'community',
        'controller' => 'index',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'My Account',
                'module'     => 'community',
                'controller' => 'account',
                'action'     => 'index',
                'resource'   => 'mvc:community.account' // resource
            ),
            array(
                'label' => 'Forums',
                'uri'   => 'http://forums.example.com/',
                'class' => 'external' // class
            )
        )
    ),
    array(
        'label'      => 'Administration',
        'module'     => 'admin',
        'controller' => 'index',
        'action'     => 'index',
        'resource'   => 'mvc:admin', // resource
        'pages'      => array(
            array(
                'label'      => 'Write new article',
                'module'     => 'admin',
                'controller' => 'post',
                'aciton'     => 'write'
            )
        )
    )
);

// Create container from array
$container = new Zend_Navigation($pages);

// Store the container in the proxy helper:
$view->getHelper('navigation')->setContainer($container);

// ...or simply:
$view->navigation($container);

// ...or store it in the reigstry:
Zend_Registry::set('Zend_Navigation', $container);










In addition to the container above, the following setup is assumed:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		// Setup router (default routes and 'archive' route):
$front = Zend_Controller_Front::getInstance();
$router = $front->getRouter();
$router->addDefaultRoutes();
$router->addRoute(
    'archive',
    new Zend_Controller_Router_Route(
        '/archive/:year',
        array(
            'module'     => 'company',
            'controller' => 'news',
            'action'     => 'archive',
            'year'       => (int) date('Y') - 1
        ),
        array('year' => '\d+')
    )
);

// Setup ACL:
$acl = new Zend\Permissions\Acl\Acl();
$acl->addRole(new Zend\Permissions\Acl\Role\GenericRole('member'));
$acl->addRole(new Zend\Permissions\Acl\Role\GenericRole('admin'));
$acl->add(new Zend\Permissions\Acl\Resource\GenericResource('mvc:admin'));
$acl->add(new Zend\Permissions\Acl\Resource\GenericResource('mvc:community.account'));
$acl->allow('member', 'mvc:community.account');
$acl->allow('admin', null);

// Store ACL and role in the proxy helper:
$view->navigation()->setAcl($acl)->setRole('member');

// ...or set default ACL and role statically:
Zend_View_Helper_Navigation_HelperAbstract::setDefaultAcl($acl);
Zend_View_Helper_Navigation_HelperAbstract::setDefaultRole('member');













Breadcrumbs Helper


Breadcrumbs are used for indicating where in a sitemap a user is currently browsing, and are typically rendered
like this: “You are here: Home > Products > FantasticProduct 1.0”. The breadcrumbs helper follows the guidelines
from Breadcrumbs Pattern - Yahoo! Design Pattern Library [http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs], and allows simple customization (minimum/maximum
depth, indentation, separator, and whether the last element should be linked), or rendering using a partial view
script.


The Breadcrumbs helper works like this; it finds the deepest active page in a navigation container, and renders an
upwards path to the root. For MVC pages, the “activeness” of a page is determined by inspecting the request
object, as stated in the section on Zend_Navigation_Page_Mvc.


The helper sets the minDepth property to 1 by default, meaning breadcrumbs will not be rendered if the deepest
active page is a root page. If maxDepth is specified, the helper will stop rendering when at the specified depth
(e.g. stop at level 2 even if the deepest active page is on level 3).


Methods in the breadcrumbs helper:



		{get|set}Separator() gets/sets separator string that is used between breadcrumbs. Defualt is ‘ &gt; ‘.


		{get|set}LinkLast() gets/sets whether the last breadcrumb should be rendered as an anchor or not. Default is
FALSE.


		{get|set}Partial() gets/sets a partial view script that should be used for rendering breadcrumbs. If a partial
view script is set, the helper’s render() method will use the renderPartial() method. If no partial is
set, the renderStraight() method is used. The helper expects the partial to be a String or an Array
with two elements. If the partial is a String, it denotes the name of the partial script to use. If it is an
Array, the first element will be used as the name of the partial view script, and the second element is the
module where the script is found.


		renderStraight() is the default render method.


		renderPartial() is used for rendering using a partial view script.





Rendering breadcrumbs


This example shows how to render breadcrumbs with default settings.


		1
2
3
4
5
6
7
8
9


		In a view script or layout:
<?php echo $this->navigation()->breadcrumbs(); ?>

The two calls above take advantage of the magic __toString() method,
and are equivalent to:
<?php echo $this->navigation()->breadcrumbs()->render(); ?>

Output:
<a href="/products">Products</a> > <a href="/products/server">Foo Server</a> > FAQ










Specifying indentation


This example shows how to render breadcrumbs with initial indentation.


		1
2
3
4
5


		Rendering with 8 spaces indentation:
<?php echo $this->navigation()->breadcrumbs()->setIndent(8);?>

Output:
        <a href="/products">Products</a> > <a href="/products/server">Foo Server</a> > FAQ










Customize breadcrumbs output


This example shows how to customze breadcrumbs output by specifying various options.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		In a view script or layout:

<?php
echo $this->navigation()
          ->breadcrumbs()
          ->setLinkLast(true)                   // link last page
          ->setMaxDepth(1)                      // stop at level 1
          ->setSeparator(' ▶' . PHP_EOL); // cool separator with newline
?>

Output:
<a href="/products">Products</a> ▶
<a href="/products/server">Foo Server</a>

/////////////////////////////////////////////////////

Setting minimum depth required to render breadcrumbs:

<?php
$this->navigation()->breadcrumbs()->setMinDepth(10);
echo $this->navigation()->breadcrumbs();
?>

Output:
Nothing, because the deepest active page is not at level 10 or deeper.










Rendering breadcrumbs using a partial view script


This example shows how to render customized breadcrumbs using a partial vew script. By calling setPartial(),
you can specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will find the deepest active page and pass an array of pages
that leads to the active page to the partial view script.


In a layout:


		1
2
3


		$partial = ;
echo $this->navigation()->breadcrumbs()
                        ->setPartial(array('breadcrumbs.phtml', 'default'));










Contents of application/modules/default/views/breadcrumbs.phtml:


		1
2
3


		echo implode(', ', array_map(
        create_function('$a', 'return $a->getLabel();'),
        $this->pages));










Output:


		1


		Products, Foo Server, FAQ













Links Helper


The links helper is used for rendering HTML LINK elements. Links are used for describing document
relationships of the currently active page. Read more about links and link types at Document relationships: the
LINK element (HTML4 W3C Rec.) [http://www.w3.org/TR/html4/struct/links.html#h-12.3] and Link types (HTML4 W3C Rec.) [http://www.w3.org/TR/html4/types.html#h-6.12] in the HTML4 W3C Recommendation.


There are two types of relations; forward and reverse, indicated by the keyords ‘rel’ and ‘rev’. Most methods
in the helper will take a $rel param, which must be either ‘rel’ or ‘rev’. Most methods also take a
$type param, which is used for specifying the link type (e.g. alternate, start, next, prev, chapter, etc).


Relationships can be added to page objects manually, or found by traversing the container registered in the helper.
The method findRelation($page, $rel, $type) will first try to find the given $rel of $type from the
$page by calling $page->findRel($type) or $page->findRel($type). If the $page has a relation that can
be converted to a page instance, that relation will be used. If the $page instance doesn’t have the specified
$type, the helper will look for a method in the helper named search$rel$type (e.g. searchRelNext() or
searchRevAlternate()). If such a method exists, it will be used for determining the $page‘s relation by
traversing the container.


Not all relations can be determined by traversing the container. These are the relations that will be found by
searching:



		searchRelStart(), forward ‘start’ relation: the first page in the container.


		searchRelNext(), forward ‘next’ relation; finds the next page in the container, i.e. the page after the
active page.


		searchRelPrev(), forward ‘prev’ relation; finds the previous page, i.e. the page before the active page.


		searchRelChapter(), forward ‘chapter’ relations; finds all pages on level 0 except the ‘start’ relation or
the active page if it’s on level 0.


		searchRelSection(), forward ‘section’ relations; finds all child pages of the active page if the active page
is on level 0 (a ‘chapter’).


		searchRelSubsection(), forward ‘subsection’ relations; finds all child pages of the active page if the active
pages is on level 1 (a ‘section’).


		searchRevSection(), reverse ‘section’ relation; finds the parent of the active page if the active page is on
level 1 (a ‘section’).


		searchRevSubsection(), reverse ‘subsection’ relation; finds the parent of the active page if the active page
is on level 2 (a ‘subsection’).






Note


When looking for relations in the page instance ($page->getRel($type) or $page->getRev($type)), the helper
accepts the values of type String, Array, Zend_Config, or Zend_Navigation_Page. If a string is
found, it will be converted to a Zend_Navigation_Page_Uri. If an array or a config is found, it will be
converted to one or several page instances. If the first key of the array/config is numeric, it will be
considered to contain several pages, and each element will be passed to the page factory. If the first key is not numeric, the array/config will be passed to the page
factory directly, and a single page will be returned.




The helper also supports magic methods for finding relations. E.g. to find forward alternate relations, call
$helper->findRelAlternate($page), and to find reverse section relations, call $helper->findRevSection($page).
Those calls correspond to $helper->findRelation($page, ‘rel’, ‘alternate’); and $helper->findRelation($page,
‘rev’, ‘section’); respectively.


To customize which relations should be rendered, the helper uses a render flag. The render flag is an integer
value, and will be used in a bitwse and (&) operation [http://php.net/manual/en/language.operators.bitwise.php] against the helper’s render constants to determine if the
relation that belongs to the render constant should be rendered.


See the example below for more information.



		Zend_View_Helper_Navigation_Link::RENDER_ALTERNATE


		Zend_View_Helper_Navigation_Link::RENDER_STYLESHEET


		Zend_View_Helper_Navigation_Link::RENDER_START


		Zend_View_Helper_Navigation_Link::RENDER_NEXT


		Zend_View_Helper_Navigation_Link::RENDER_PREV


		Zend_View_Helper_Navigation_Link::RENDER_CONTENTS


		Zend_View_Helper_Navigation_Link::RENDER_INDEX


		Zend_View_Helper_Navigation_Link::RENDER_GLOSSARY


		Zend_View_Helper_Navigation_Link::RENDER_COPYRIGHT


		Zend_View_Helper_Navigation_Link::RENDER_CHAPTER


		Zend_View_Helper_Navigation_Link::RENDER_SECTION


		Zend_View_Helper_Navigation_Link::RENDER_SUBSECTION


		Zend_View_Helper_Navigation_Link::RENDER_APPENDIX


		Zend_View_Helper_Navigation_Link::RENDER_HELP


		Zend_View_Helper_Navigation_Link::RENDER_BOOKMARK


		Zend_View_Helper_Navigation_Link::RENDER_CUSTOM


		Zend_View_Helper_Navigation_Link::RENDER_ALL





The constants from RENDER_ALTERNATE to RENDER_BOOKMARK denote standard HTML link types. RENDER_CUSTOM
denotes non-standard relations that specified in pages. RENDER_ALL denotes standard and non-standard relations.


Methods in the links helper:



		{get|set}RenderFlag() gets/sets the render flag. Default is RENDER_ALL. See examples below on how to set
the render flag.


		findAllRelations() finds all relations of all types for a given page.


		findRelation() finds all relations of a given type from a given page.


		searchRel{Start|Next|Prev|Chapter|Section|Subsection}() traverses a container to find forward relations to the
start page, the next page, the previous page, chapters, sections, and subsections.


		searchRev{Section|Subsection}() traverses a container to find reverse relations to sections or subsections.


		renderLink() renders a single link element.





Specify relations in pages


This example shows how to specify relations in pages.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


		$container = new Zend_Navigation(array(
    array(
        'label' => 'Relations using strings',
        'rel'   => array(
            'alternate' => 'http://www.example.org/'
        ),
        'rev'   => array(
            'alternate' => 'http://www.example.net/'
        )
    ),
    array(
        'label' => 'Relations using arrays',
        'rel'   => array(
            'alternate' => array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            )
        )
    ),
    array(
        'label' => 'Relations using configs',
        'rel'   => array(
            'alternate' => new Zend_Config(array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            ))
        )
    ),
    array(
        'label' => 'Relations using pages instance',
        'rel'   => array(
            'alternate' => Zend_Navigation_Page::factory(array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            ))
        )
    )
));










Default rendering of links


This example shows how to render a menu from a container registered/found in the view helper.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		In a view script or layout:
<?php echo $this->view->navigation()->links(); ?>

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="chapter" href="/products" title="Products">
<link rel="chapter" href="/company/about" title="Company">
<link rel="chapter" href="/community" title="Community">
<link rel="canonical" href="http://www.example.com/?page=server-faq">
<link rev="subsection" href="/products/server" title="Foo Server">










Specify which relations to render


This example shows how to specify which relations to find and render.


		1
2
3
4
5
6
7
8
9


		Render only start, next, and prev:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_START |
                       Zend_View_Helper_Navigation_Links::RENDER_NEXT |
                       Zend_View_Helper_Navigation_Links::RENDER_PREV);

Output:
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		Render only native link types:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
                       Zend_View_Helper_Navigation_Links::RENDER_CUSTOM);

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="chapter" href="/products" title="Products">
<link rel="chapter" href="/company/about" title="Company">
<link rel="chapter" href="/community" title="Community">
<link rev="subsection" href="/products/server" title="Foo Server">










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		Render all but chapter:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
                       Zend_View_Helper_Navigation_Links::RENDER_CHAPTER);

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="canonical" href="http://www.example.com/?page=server-faq">
<link rev="subsection" href="/products/server" title="Foo Server">













Menu Helper


The Menu helper is used for rendering menus from navigation containers. By default, the menu will be rendered using
HTML UL and LI tags, but the helper also allows using a partial view script.


Methods in the Menu helper:



		{get|set}UlClass() gets/sets the CSS class used in renderMenu().





		{get|set}OnlyActiveBranch() gets/sets a flag specifying whether only the active branch of a container should be
rendered.





		{get|set}RenderParents() gets/sets a flag specifying whether parents should be rendered when only rendering
active branch of a container. If set to FALSE, only the deepest active menu will be rendered.





		{get|set}Partial() gets/sets a partial view script that should be used for rendering menu. If a partial view
script is set, the helper’s render() method will use the renderPartial() method. If no partial is set,
the renderMenu() method is used. The helper expects the partial to be a String or an Array with two
elements. If the partial is a String, it denotes the name of the partial script to use. If it is an
Array, the first element will be used as the name of the partial view script, and the second element is the
module where the script is found.





		htmlify() overrides the method from the abstract class to return span elements if the page has no href.





		renderMenu($container = null, $options = array()) is the default render method, and will render a container
as a HTML UL list.


If $container is not given, the container registered in the helper will be rendered.


$options is used for overriding options specified temporarily without rsetting the values in the helper
instance. It is an associative array where each key corresponds to an option in the helper.


Recognized options:



		indent; indentation. Expects a String or an int value.


		minDepth; minimum depth. Expcects an int or NULL (no minimum depth).


		maxDepth; maximum depth. Expcects an int or NULL (no maximum depth).


		ulClass; CSS class for ul element. Expects a String.


		onlyActiveBranch; whether only active branch should be rendered. Expects a Boolean value.


		renderParents; whether parents should be rendered if only rendering active branch. Expects a Boolean
value.





If an option is not given, the value set in the helper will be used.





		renderPartial() is used for rendering the menu using a partial view script.





		renderSubMenu() renders the deepest menu level of a container’s active branch.








Rendering a menu


This example shows how to render a menu from a container registered/found in the view helper. Notice how pages are
filtered out based on visibility and ACL.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


		In a view script or layout:
<?php echo $this->navigation()->menu()->render() ?>

Or simply:
<?php echo $this->navigation()->menu() ?>

Output:
<ul class="navigation">
    <li>
        <a title="Go Home" href="/">Home</a>
    </li>
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
                <ul>
                    <li class="active">
                        <a href="/products/server/faq">FAQ</a>
                    </li>
                    <li>
                        <a href="/products/server/editions">Editions</a>
                    </li>
                    <li>
                        <a href="/products/server/requirements">System Requirements</a>
                    </li>
                </ul>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
                <ul>
                    <li>
                        <a href="/products/studio/customers">Customer Stories</a>
                    </li>
                    <li>
                        <a href="/prodcts/studio/support">Support</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
    <li>
        <a title="About us" href="/company/about">Company</a>
        <ul>
            <li>
                <a href="/company/about/investors">Investor Relations</a>
            </li>
            <li>
                <a class="rss" href="/company/news">News</a>
                <ul>
                    <li>
                        <a href="/company/news/press">Press Releases</a>
                    </li>
                    <li>
                        <a href="/archive">Archive</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community">Community</a>
        <ul>
            <li>
                <a href="/community/account">My Account</a>
            </li>
            <li>
                <a class="external" href="http://forums.example.com/">Forums</a>
            </li>
        </ul>
    </li>
</ul>










Calling renderMenu() directly


This example shows how to render a menu that is not registered in the view helper by calling the renderMenu()
directly and specifying a few options.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		<?php
// render only the 'Community' menu
$community = $this->navigation()->findOneByLabel('Community');
$options = array(
    'indent'  => 16,
    'ulClass' => 'community'
);
echo $this->navigation()
          ->menu()
          ->renderMenu($community, $options);
?>
Output:
                <ul class="community">
                    <li>
                        <a href="/community/account">My Account</a>
                    </li>
                    <li>
                        <a class="external" href="http://forums.example.com/">Forums</a>
                    </li>
                </ul>










Rendering the deepest active menu


This example shows how the renderSubMenu() will render the deepest sub menu of the active branch.


Calling renderSubMenu($container, $ulClass, $indent) is equivalent to calling renderMenu($container,
$options) with the following options:


		1
2
3
4
5
6
7
8


		array(
    'ulClass'          => $ulClass,
    'indent'           => $indent,
    'minDepth'         => null,
    'maxDepth'         => null,
    'onlyActiveBranch' => true,
    'renderParents'    => false
);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		<?php
echo $this->navigation()
          ->menu()
          ->renderSubMenu(null, 'sidebar', 4);
?>

The output will be the same if 'FAQ' or 'Foo Server' is active:
    <ul class="sidebar">
        <li class="active">
            <a href="/products/server/faq">FAQ</a>
        </li>
        <li>
            <a href="/products/server/editions">Editions</a>
        </li>
        <li>
            <a href="/products/server/requirements">System Requirements</a>
        </li>
    </ul>










Rendering a menu with maximum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		<?php
echo $this->navigation()
          ->menu()
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li>
        <a title="Go Home" href="/">Home</a>
    </li>
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
            </li>
        </ul>
    </li>
    <li>
        <a title="About us" href="/company/about">Company</a>
        <ul>
            <li>
                <a href="/company/about/investors">Investor Relations</a>
            </li>
            <li>
                <a class="rss" href="/company/news">News</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community">Community</a>
        <ul>
            <li>
                <a href="/community/account">My Account</a>
            </li>
            <li>
                <a class="external" href="http://forums.example.com/">Forums</a>
            </li>
        </ul>
    </li>
</ul>










Rendering a menu with minimum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


		<?php
echo $this->navigation()
          ->menu()
          ->setMinDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
        <ul>
            <li class="active">
                <a href="/products/server/faq">FAQ</a>
            </li>
            <li>
                <a href="/products/server/editions">Editions</a>
            </li>
            <li>
                <a href="/products/server/requirements">System Requirements</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/products/studio">Foo Studio</a>
        <ul>
            <li>
                <a href="/products/studio/customers">Customer Stories</a>
            </li>
            <li>
                <a href="/prodcts/studio/support">Support</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/company/about/investors">Investor Relations</a>
    </li>
    <li>
        <a class="rss" href="/company/news">News</a>
        <ul>
            <li>
                <a href="/company/news/press">Press Releases</a>
            </li>
            <li>
                <a href="/archive">Archive</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community/account">My Account</a>
    </li>
    <li>
        <a class="external" href="http://forums.example.com/">Forums</a>
    </li>
</ul>










Rendering only the active branch of a menu


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
                <ul>
                    <li class="active">
                        <a href="/products/server/faq">FAQ</a>
                    </li>
                    <li>
                        <a href="/products/server/editions">Editions</a>
                    </li>
                    <li>
                        <a href="/products/server/requirements">System Requirements</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with minimum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setMinDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
        <ul>
            <li class="active">
                <a href="/products/server/faq">FAQ</a>
            </li>
            <li>
                <a href="/products/server/editions">Editions</a>
            </li>
            <li>
                <a href="/products/server/requirements">System Requirements</a>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with maximum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with maximum depth and no parents


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setRenderParents(false)
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
    </li>
    <li>
        <a href="/products/studio">Foo Studio</a>
    </li>
</ul>










Rendering a custom menu using a partial view script


This example shows how to render a custom menu using a partial vew script. By calling setPartial(), you can
specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will assign the container to the view with the key
container.


In a layout:


		1
2
3


		$partial = array('menu.phtml', 'default');
$this->navigation()->menu()->setPartial($partial);
echo $this->navigation()->menu()->render();










In application/modules/default/views/menu.phtml:


		1
2
3


		foreach ($this->container as $page) {
    echo $this->navigation()->menu()->htmlify($page), PHP_EOL;
}










Output:


		1
2
3
4


		<a title="Go Home" href="/">Home</a>
<a href="/products">Products</a>
<a title="About us" href="/company/about">Company</a>
<a href="/community">Community</a>













Sitemap Helper


The Sitemap helper is used for generating XML sitemaps, as defined by the Sitemaps XML format [http://www.sitemaps.org/protocol.php]. Read more about
Sitemaps on Wikpedia [http://en.wikipedia.org/wiki/Sitemaps].


By default, the sitemap helper uses sitemap validators to validate each element
that is rendered. This can be disabled by calling $helper->setUseSitemapValidators(false).



Note


If you disable sitemap validators, the custom properties (see table) are not validated at all.




The sitemap helper also supports Sitemap XSD Schema [http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd] validation of the generated sitemap. This is disabled by
default, since it will require a request to the Schema file. It can be enabled with
$helper->setUseSchemaValidation(true).



Sitemap XML elements





		Element
		Description





		loc
		Absolute URL to page. An absolute URL will be generated by the helper.



		lastmod
		The date of last modification of the file, in W3C Datetime format. This time portion can be omitted if desired, and only use YYYY-MM-DD. The helper will try to retrieve the lastmod value from the page’s custom property lastmod if it is set in the page. If the value is not a valid date, it is ignored.



		changefreq
		How frequently the page is likely to change. This value provides general information to search engines and may not correlate exactly to how often they crawl the page. Valid values are: alwayshourlydailyweeklymonthlyyearlynever The helper will try to retrieve the changefreq value from the page’s custom property changefreq if it is set in the page. If the value is not valid, it is ignored.



		priority
		The priority of this URL relative to other URLs on your site. Valid values range from 0.0 to 1.0. The helper will try to retrieve the priority value from the page’s custom property priority if it is set in the page. If the value is not valid, it is ignored.







Methods in the sitemap helper:



		{get|set}FormatOutput() gets/sets a flag indicating whether XML output should be formatted. This corresponds
to the formatOutput property of the native DOMDocument class. Read more at PHP: DOMDocument - Manual [http://php.net/domdocument].
Default is FALSE.


		{get|set}UseXmlDeclaration() gets/sets a flag indicating whether the XML declaration should be included when
rendering. Default is TRUE.


		{get|set}UseSitemapValidators() gets/sets a flag indicating whether sitemap validators should be used when
generating the DOM sitemap. Default is TRUE.


		{get|set}UseSchemaValidation() gets/sets a flag indicating whether the helper should use XML Schema
validation when generating the DOM sitemap. Default is FALSE. If TRUE.


		{get|set}ServerUrl() gets/sets server URL that will be prepended to non-absolute URLs in the url()
method. If no server URL is specified, it will be determined by the helper.


		url() is used to generate absolute URLs to pages.


		getDomSitemap() generates a DOMDocument from a given container.





Rendering an XML sitemap


This example shows how to render an XML sitemap based on the setup we did further up.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// In a view script or layout:

// format output
$this->navigation()
      ->sitemap()
      ->setFormatOutput(true); // default is false

// other possible methods:
// ->setUseXmlDeclaration(false); // default is true
// ->setServerUrl('http://my.otherhost.com');
// default is to detect automatically

// print sitemap
echo $this->navigation()->sitemap();










Notice how pages that are invisible or pages with ACL roles incompatible with the view helper are filtered out:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/faq</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/editions</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/requirements</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio/customers</loc>
  </url>
  <url>
    <loc>http://www.example.com/prodcts/studio/support</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news/press</loc>
  </url>
  <url>
    <loc>http://www.example.com/archive</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://www.example.com/community/account</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>










Render the sitemap using no ACL role (should filter out /community/account):


		1
2
3
4


		echo $this->navigation()
          ->sitemap()
          ->setFormatOutput(true)
          ->setRole();










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/faq</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/editions</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/requirements</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio/customers</loc>
  </url>
  <url>
    <loc>http://www.example.com/prodcts/studio/support</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news/press</loc>
  </url>
  <url>
    <loc>http://www.example.com/archive</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>










Render the sitemap using a maximum depth of 1.


		1
2
3
4


		echo $this->navigation()
          ->sitemap()
          ->setFormatOutput(true)
          ->setMaxDepth(1);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://www.example.com/community/account</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>











Note


UTF-8 encoding used by default


By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does
as well. Character encoding can be set differently on the view object itself using the setEncoding() method
(or the the encoding instantiation parameter). However, since Zend_View_Interface does not define
accessors for encoding, it’s possible that if you are using a custom view implementation with the Dojo view
helper, you will not have a getEncoding() method, which is what the view helper uses internally for
determining the character set in which to encode.


If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method
in your custom view implementation.







Navigation Helper


The Navigation helper is a proxy helper that relays calls to other navigational helpers. It can be considered an
entry point to all navigation-related view tasks. The aforementioned navigational helpers are in the namespace
Zend_View_Helper_Navigation, and would thus require the path Zend/View/Helper/Navigation to be added as a
helper path to the view. With the proxy helper residing in the Zend_View_Helper namespace, it will always be
available, without the need to add any helper paths to the view.


The Navigation helper finds other helpers that implement the Zend_View_Helper_Navigation_Helper interface,
which means custom view helpers can also be proxied. This would, however, require that the custom helper path is
added to the view.


When proxying to other helpers, the Navigation helper can inject its container, ACL/role, and translator. This
means that you won’t have to explicitly set all three in all navigational helpers, nor resort to injecting by means
of Zend_Registry or static methods.



		findHelper() finds the given helper, verifies that it is a navigational helper, and injects container,
ACL/role and translator.


		{get|set}InjectContainer() gets/sets a flag indicating whether the container should be injected to proxied
helpers. Default is TRUE.


		{get|set}InjectAcl() gets/sets a flag indicating whether the ACL/role should be injected to proxied helpers.
Default is TRUE.


		{get|set}InjectTranslator() gets/sets a flag indicating whether the translator should be injected to proxied
helpers. Default is TRUE.


		{get|set}DefaultProxy() gets/sets the default proxy. Default is ‘menu’.


		render() proxies to the render method of the default proxy.








Registering Helpers


Zend\View\Renderer\PhpRenderer composes a plugin broker for managing
helpers, specifically an instance of Zend\View\HelperBroker, which extends the base plugin broker in order to
ensure we have valid helpers available. The HelperBroker by default uses Zend\View\HelperLoader as its
helper locator. The HelperLoader is a map-based loader, which means that you will simply map the helper/plugin
name by which you wish to refer to it to the actual class name of the helper/plugin.


Programmatically, this is done as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// $view is an instance of PhpRenderer
$broker = $view->getBroker();
$loader = $broker->getClassLoader();

// Register singly:
$loader->registerPlugin('lowercase', 'My\Helper\LowerCase');

// Register several:
$loader->registerPlugins(array(
    'lowercase' => 'My\Helper\LowerCase',
    'uppercase' => 'My\Helper\UpperCase',
));










Within an MVC application, you will typically simply pass a map of plugins to the class via your configuration.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// From within a configuration file
return array(
    'di' => array('instance' => array(
        'Zend\View\HelperLoader' => array('parameters' => array(
            'map' => array(
                'lowercase' => 'My\Helper\LowerCase',
                'uppercase' => 'My\Helper\UpperCase',
            ),
        )),
    )),
);










The above can be done in each module that needs to register helpers with the PhpRenderer; however, be aware
that another module can register helpers with the same name, so order of modules can impact which helper class will
actually be registered!





Writing Custom Helpers


Writing custom helpers is easy. We recommend extending Zend\View\Helper\AbstractHelper, but at the minimum, you
need only implement the Zend\View\Helper interface:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		namespace Zend\View;

interface Helper
{
    /**
     * Set the View object
     *
     * @param  Renderer $view
     * @return Helper
     */
    public function setView(Renderer $view);

    /**
     * Get the View object
     *
     * @return Renderer
     */
    public function getView();
}










If you want your helper to be capable of being invoked as if it were a method call of the PhpRenderer, you
should also implement an __invoke() method within your helper.


As previously noted, we recommend extending Zend\View\Helper\AbstractHelper, as it implements the methods
defined in Helper, giving you a headstart in your development.


Once you have defined your helper class, make sure you can autoload it, and then register it with the plugin
broker.


Here is an example helper, which we’re titling “SpecialPurpose”


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		namespace My\View\Helper;

use Zend\View\Helper\AbstractHelper;

class SpecialPurpose extends AbstractHelper
{
    protected $count = 0;

    public function __invoke()
    {
        $this->count++;
        $output = sprintf("I have seen 'The Jerk' %d time(s).", $this->count);
        return htmlspecialchars($output, ENT_QUOTES, 'UTF-8');
    }
}










Then assume that when we register it with the plugin broker, we map it to the
string “specialpurpose”.


Within a view script, you can call the SpecialPurpose helper as many times as you like; it will be instantiated
once, and then it persists for the life of that PhpRenderer instance.


		1
2
3
4


		// remember, in a view script, $this refers to the Zend_View instance.
echo $this->specialPurpose();
echo $this->specialPurpose();
echo $this->specialPurpose();










The output would look something like this:


		1
2
3


		I have seen 'The Jerk' 1 time(s).
I have seen 'The Jerk' 2 time(s).
I have seen 'The Jerk' 3 time(s).










Sometimes you will need access to the calling PhpRenderer object – for instance, if you need to use the
registered encoding, or want to render another view script as part of your helper. This is why we define the
setView() and getView() methods. As an example, we could rewrite the SpecialPurpose helper as follows
to take advantage of the EscapeHtml helper:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		namespace My\View\Helper;

use Zend\View\Helper\AbstractHelper;

class SpecialPurpose extends AbstractHelper
{
    protected $count = 0;

    public function __invoke()
    {
        $this->count++;
        $output  = sprintf("I have seen 'The Jerk' %d time(s).", $this->count);
        $escaper = $this->getView()->plugin('escapehtml');
        return $escaper($output);
    }
}













Registering Concrete Helpers


Sometimes it is convenient to instantiate a view helper, and then register it with the renderer. This can be done
by injecting it directly into the plugin broker.


		1
2
3
4
5
6


		// $view is a PhpRenderer instance

$helper = new My_Helper_Foo();
// ...do some configuration or dependency injection...

$view->getBroker()->register('foo', $helper);










When registered, the plugin broker will inject the PhpRenderer instance into the helper.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                View Helpers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/coding.standard.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework Coding Standard for PHP



Overview



Scope


This document provides guidelines for code formatting and documentation to individuals and teams contributing to
Zend Framework. Many developers using Zend Framework have also found these coding standards useful because their
code’s style remains consistent with all Zend Framework code. It is also worth noting that it requires significant
effort to fully specify coding standards.



Note


Sometimes developers consider the establishment of a standard more important than what that standard actually
suggests at the most detailed level of design. The guidelines in Zend Framework’s coding standards capture
practices that have worked well on the Zend Framework project. You may modify these standards or use them as is
in accordance with the terms of our license [http://framework.zend.com/license].




Topics covered in Zend Framework’s coding standards include:



		PHP File Formatting


		Naming Conventions


		Coding Style


		Inline Documentation








Goals


Coding standards are important in any development project, but they are particularly important when many developers
are working on the same project. Coding standards help ensure that the code is high quality, has fewer bugs, and
can be easily maintained.







PHP File Formatting



General


For files that contain only PHP code, the closing tag (”?>”) is never permitted. It is not required by PHP, and
omitting it´ prevents the accidental injection of trailing white space into the response.



Note


Important: Inclusion of arbitrary binary data as permitted by __HALT_COMPILER() is prohibited from PHP
files in the Zend Framework project or files derived from them. Use of this feature is only permitted for some
installation scripts.







Indentation


Indentation should consist of 4 spaces. Tabs are not allowed.





Maximum Line Length


The target line length is 80 characters. That is to say, Zend Framework developers should strive keep each line of
their code under 80 characters where possible and practical. However, longer lines are acceptable in some
circumstances. The maximum length of any line of PHP code is 120 characters.





Line Termination


Line termination follows the Unix text file convention. Lines must end with a single linefeed (LF) character.
Linefeed characters are represented as ordinal 10, or hexadecimal 0x0A.


Note: Do not use carriage returns (CR) as is the convention in Apple OS’s (0x0D) or the carriage return - linefeed
combination (CRLF) as is standard for the Windows OS (0x0D, 0x0A).







Naming Conventions



Classes


Zend Framework standardizes on a class naming convention whereby the names of the classes directly map to the
directories in which they are stored. The root level directory of Zend Framework’s standard library is the “Zend/”
directory, whereas the root level directory of Zend Framework’s extras library is the “ZendX/” directory. All Zend
Framework classes are stored hierarchically under these root directories..


Class names may only contain alphanumeric characters. Numbers are permitted in class names but are discouraged in
most cases. Underscores are only permitted in place of the path separator; the filename “Zend/Db/Table.php”
must map to the class name “Zend_Db_Table”.


If a class name is comprised of more than one word, the first letter of each new word must be capitalized.
Successive capitalized letters are not allowed, e.g. a class “Zend_PDF” is not allowed while “Zend_Pdf” is
acceptable.


These conventions define a pseudo-namespace mechanism for Zend Framework. Zend Framework will adopt the PHP
namespace feature when it becomes available and is feasible for our developers to use in their applications.


See the class names in the standard and extras libraries for examples of this classname convention.



Note


Important: Code that must be deployed alongside Zend Framework libraries but is not part of the standard or
extras libraries (e.g. application code or libraries that are not distributed by Zend) must never start with
“Zend_” or “ZendX_”.







Abstract Classes


In general, abstract classes follow the same conventions as classes, with one additional rule: abstract class names must end in the term,
“Abstract”, and that term must not be preceded by an underscore. As an example, Zend_Controller_Plugin_Abstract
is considered an invalid name, but Zend_Controller_PluginAbstract or Zend_Controller_Plugin_PluginAbstract
would be valid names.



Note


This naming convention is new with version 1.9.0 of Zend Framework. Classes that pre-date that version may not
follow this rule, but will be renamed in the future in order to comply.


The rationale for the change is due to namespace usage. As we look towards Zend Framework 2.0 and usage of PHP
5.3, we will be using namespaces. The easiest way to automate conversion to namespaces is to simply convert
underscores to the namespace separator – but under the old naming conventions, this leaves the classname as
simply “Abstract” or “Interface” – both of which are reserved keywords in PHP. If we prepend the
(sub)component name to the classname, we can avoid these issues.


To illustrate the situation, consider converting the class Zend_Controller_Request_Abstract to use
namespaces:


		1
2
3
4
5
6


		namespace Zend\Controller\Request;

abstract class Abstract
{
    // ...
}










Clearly, this will not work. Under the new naming conventions, however, this would become:


		1
2
3
4
5
6


		namespace Zend\Controller\Request;

abstract class RequestAbstract
{
    // ...
}










We still retain the semantics and namespace separation, while omitting the keyword issues; simultaneously, it
better describes the abstract class.







Interfaces


In general, interfaces follow the same conventions as classes,
with one additional rule: interface names may optionally end in the term, “Interface”, but that term must not be
preceded by an underscore. As an example, Zend_Controller_Plugin_Interface is considered an invalid name, but
Zend_Controller_PluginInterface or Zend_Controller_Plugin_PluginInterface would be valid names.


While this rule is not required, it is strongly recommended, as it provides a good visual cue to developers as to
which files contain interfaces rather than classes.



Note


This naming convention is new with version 1.9.0 of Zend Framework. Classes that pre-date that version may not
follow this rule, but will be renamed in the future in order to comply. See the previous section for more information on the rationale for this change.







Filenames


For all other files, only alphanumeric characters, underscores, and the dash character (“-”) are permitted. Spaces
are strictly prohibited.


Any file that contains PHP code should end with the extension “.php”, with the notable exception of view
scripts. The following examples show acceptable filenames for Zend Framework classes:


		1
2
3
4
5


		Zend/Db.php

Zend/Controller/Front.php

Zend/View/Helper/FormRadio.php










File names must map to class names as described above.





Functions and Methods


Function names may only contain alphanumeric characters. Underscores are not permitted. Numbers are permitted in
function names but are discouraged in most cases.


Function names must always start with a lowercase letter. When a function name consists of more than one word, the
first letter of each new word must be capitalized. This is commonly called “camelCase” formatting.


Verbosity is generally encouraged. Function names should be as verbose as is practical to fully describe their
purpose and behavior.


These are examples of acceptable names for functions:


		1
2
3
4
5


		filterInput()

getElementById()

widgetFactory()










For object-oriented programming, accessors for instance or static variables should always be prefixed with “get” or
“set”. In implementing design patterns, such as the singleton or factory patterns, the name of the method should
contain the pattern name where practical to more thoroughly describe behavior.


For methods on objects that are declared with the “private” or “protected” modifier, the first character of the
method name must be an underscore. This is the only acceptable application of an underscore in a method name.
Methods declared “public” should never contain an underscore.


Functions in the global scope (a.k.a “floating functions”) are permitted but discouraged in most cases. Consider
wrapping these functions in a static class.





Variables


Variable names may only contain alphanumeric characters. Underscores are not permitted. Numbers are permitted in
variable names but are discouraged in most cases.


For instance variables that are declared with the “private” or “protected” modifier, the first character of the
variable name must be a single underscore. This is the only acceptable application of an underscore in a variable
name. Member variables declared “public” should never start with an underscore.


As with function names (see section 3.3) variable names must always start with a lowercase letter and follow the
“camelCaps” capitalization convention.


Verbosity is generally encouraged. Variables should always be as verbose as practical to describe the data that the
developer intends to store in them. Terse variable names such as “$i” and “$n” are discouraged for all but
the smallest loop contexts. If a loop contains more than 20 lines of code, the index variables should have more
descriptive names.





Constants


Constants may contain both alphanumeric characters and underscores. Numbers are permitted in constant names.


All letters used in a constant name must be capitalized, while all words in a constant name must be separated by
underscore characters.


For example, EMBED_SUPPRESS_EMBED_EXCEPTION is permitted but EMBED_SUPPRESSEMBEDEXCEPTION is not.


Constants must be defined as class members with the “const” modifier. Defining constants in the global scope with
the “define” function is permitted but strongly discouraged.







Coding Style



PHP Code Demarcation


PHP code must always be delimited by the full-form, standard PHP tags:


		1
2
3


		<?php

?>










Short tags are never allowed. For files containing only PHP code, the closing tag must always be omitted (See
General standards).





Strings





String Literals


When a string is literal (contains no variable substitutions), the apostrophe or “single quote” should always be
used to demarcate the string:


		1


		$a = 'Example String';













String Literals Containing Apostrophes


When a literal string itself contains apostrophes, it is permitted to demarcate the string with quotation marks or
“double quotes”. This is especially useful for SQL statements:


		1
2


		$sql = "SELECT `id`, `name` from `people` "
     . "WHERE `name`='Fred' OR `name`='Susan'";










This syntax is preferred over escaping apostrophes as it is much easier to read.





Variable Substitution


Variable substitution is permitted using either of these forms:


		1
2
3


		$greeting = "Hello $name, welcome back!";

$greeting = "Hello {$name}, welcome back!";










For consistency, this form is not permitted:


		1


		$greeting = "Hello ${name}, welcome back!";













String Concatenation


Strings must be concatenated using the ”.” operator. A space must always be added before and after the ”.” operator
to improve readability:


		1


		$company = 'Zend' . ' ' . 'Technologies';










When concatenating strings with the ”.” operator, it is encouraged to break the statement into multiple lines to
improve readability. In these cases, each successive line should be padded with white space such that the ”.”;
operator is aligned under the “=” operator:


		1
2
3


		$sql = "SELECT `id`, `name` FROM `people` "
     . "WHERE `name` = 'Susan' "
     . "ORDER BY `name` ASC ";













Arrays





Numerically Indexed Arrays


Negative numbers are not permitted as indices.


An indexed array may start with any non-negative number, however all base indices besides 0 are discouraged.


When declaring indexed arrays with the Array function, a trailing space must be added after each comma
delimiter to improve readability:


		1


		$sampleArray = array(1, 2, 3, 'Zend', 'Studio');










It is permitted to declare multi-line indexed arrays using the “array” construct. In this case, each successive
line must be padded with spaces such that beginning of each line is aligned:


		1
2
3


		$sampleArray = array(1, 2, 3, 'Zend', 'Studio',
                     $a, $b, $c,
                     56.44, $d, 500);










Alternately, the initial array item may begin on the following line. If so, it should be padded at one indentation
level greater than the line containing the array declaration, and all successive lines should have the same
indentation; the closing paren should be on a line by itself at the same indentation level as the line containing
the array declaration:


		1
2
3
4
5


		$sampleArray = array(
    1, 2, 3, 'Zend', 'Studio',
    $a, $b, $c,
    56.44, $d, 500,
);










When using this latter declaration, we encourage using a trailing comma for the last item in the array; this
minimizes the impact of adding new items on successive lines, and helps to ensure no parse errors occur due to a
missing comma.





Associative Arrays


When declaring associative arrays with the Array construct, breaking the statement into multiple lines is
encouraged. In this case, each successive line must be padded with white space such that both the keys and the
values are aligned:


		1
2


		$sampleArray = array('firstKey'  => 'firstValue',
                     'secondKey' => 'secondValue');










Alternately, the initial array item may begin on the following line. If so, it should be padded at one indentation
level greater than the line containing the array declaration, and all successive lines should have the same
indentation; the closing paren should be on a line by itself at the same indentation level as the line containing
the array declaration. For readability, the various “=>” assignment operators should be padded such that they
align.


		1
2
3
4


		$sampleArray = array(
    'firstKey'  => 'firstValue',
    'secondKey' => 'secondValue',
);










When using this latter declaration, we encourage using a trailing comma for the last item in the array; this
minimizes the impact of adding new items on successive lines, and helps to ensure no parse errors occur due to a
missing comma.





Classes





Class Declaration


Classes must be named according to Zend Framework’s naming conventions.


The brace should always be written on the line underneath the class name.


Every class must have a documentation block that conforms to the PHPDocumentor standard.


All code in a class must be indented with four spaces.


Only one class is permitted in each PHP file.


Placing additional code in class files is permitted but discouraged. In such files, two blank lines must separate
the class from any additional PHP code in the class file.


The following is an example of an acceptable class declaration:


		1
2
3
4
5
6
7
8


		/**
 * Documentation Block Here
 */
class SampleClass
{
    // all contents of class
    // must be indented four spaces
}










Classes that extend other classes or which implement interfaces should declare their dependencies on the same line
when possible.


		1
2
3


		class SampleClass extends FooAbstract implements BarInterface
{
}










If as a result of such declarations, the line length exceeds the maximum line length, break the line before the “extends” and/or “implements”
keywords, and pad those lines by one indentation level.


		1
2
3
4
5


		class SampleClass
    extends FooAbstract
    implements BarInterface
{
}










If the class implements multiple interfaces and the declaration exceeds the maximum line length, break after each
comma separating the interfaces, and indent the interface names such that they align.


		1
2
3
4
5


		class SampleClass
    implements BarInterface,
               BazInterface
{
}













Class Member Variables


Member variables must be named according to Zend Framework’s variable naming conventions.


Any variables declared in a class must be listed at the top of the class, above the declaration of any methods.


The var construct is not permitted. Member variables always declare their visibility by using one of the
private, protected, or public modifiers. Giving access to member variables directly by declaring them
as public is permitted but discouraged in favor of accessor methods (set & get).





Functions and Methods





Function and Method Declaration


Functions must be named according to Zend Framework’s function naming conventions.


Methods inside classes must always declare their visibility by using one of the private, protected, or
public modifiers.


As with classes, the brace should always be written on the line underneath the function name. Space between the
function name and the opening parenthesis for the arguments is not permitted.


Functions in the global scope are strongly discouraged.


The following is an example of an acceptable function declaration in a class:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		/**
 * Documentation Block Here
 */
class Foo
{
    /**
     * Documentation Block Here
     */
    public function bar()
    {
        // all contents of function
        // must be indented four spaces
    }
}










In cases where the argument list exceeds the maximum line length, you may introduce line breaks. Additional arguments to the
function or method must be indented one additional level beyond the function or method declaration. A line break
should then occur before the closing argument paren, which should then be placed on the same line as the opening
brace of the function or method with one space separating the two, and at the same indentation level as the
function or method declaration. The following is an example of one such situation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Documentation Block Here
 */
class Foo
{
    /**
     * Documentation Block Here
     */
    public function bar($arg1, $arg2, $arg3,
        $arg4, $arg5, $arg6
    ) {
        // all contents of function
        // must be indented four spaces
    }
}











Note


Pass-by-reference is the only parameter passing mechanism permitted in a method declaration.




		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		/**
 * Documentation Block Here
 */
class Foo
{
    /**
     * Documentation Block Here
     */
    public function bar(&$baz)
    {}
}










Call-time pass-by-reference is strictly prohibited.


The return value must not be enclosed in parentheses. This can hinder readability, in additional to breaking code
if a method is later changed to return by reference.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		/**
 * Documentation Block Here
 */
class Foo
{
    /**
     * WRONG
     */
    public function bar()
    {
        return($this->bar);
    }

    /**
     * RIGHT
     */
    public function bar()
    {
        return $this->bar;
    }
}













Function and Method Usage


Function arguments should be separated by a single trailing space after the comma delimiter. The following is an
example of an acceptable invocation of a function that takes three arguments:


		1


		threeArguments(1, 2, 3);










Call-time pass-by-reference is strictly prohibited. See the function declarations section for the proper way to
pass function arguments by-reference.


In passing arrays as arguments to a function, the function call may include the “array” hint and may be split into
multiple lines to improve readability. In such cases, the normal guidelines for writing arrays still apply:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		threeArguments(array(1, 2, 3), 2, 3);

threeArguments(array(1, 2, 3, 'Zend', 'Studio',
                     $a, $b, $c,
                     56.44, $d, 500), 2, 3);

threeArguments(array(
    1, 2, 3, 'Zend', 'Studio',
    $a, $b, $c,
    56.44, $d, 500
), 2, 3);













Control Statements





If/Else/Elseif


Control statements based on the if and elseif constructs must have a single space before the opening
parenthesis of the conditional and a single space after the closing parenthesis.


Within the conditional statements between the parentheses, operators must be separated by spaces for readability.
Inner parentheses are encouraged to improve logical grouping for larger conditional expressions.


The opening brace is written on the same line as the conditional statement. The closing brace is always written on
its own line. Any content within the braces must be indented using four spaces.


		1
2
3


		if ($a != 2) {
    $a = 2;
}










If the conditional statement causes the line length to exceed the maximum line length and has several clauses, you may break the conditional into
multiple lines. In such a case, break the line prior to a logic operator, and pad the line such that it aligns
under the first character of the conditional clause. The closing paren in the conditional will then be placed on a
line with the opening brace, with one space separating the two, at an indentation level equivalent to the opening
control statement.


		1
2
3
4
5
6


		if (($a == $b)
    && ($b == $c)
    || (Foo::CONST == $d)
) {
    $a = $d;
}










The intention of this latter declaration format is to prevent issues when adding or removing clauses from the
conditional during later revisions.


For “if” statements that include “elseif” or “else”, the formatting conventions are similar to the “if” construct.
The following examples demonstrate proper formatting for “if” statements with “else” and/or “elseif” constructs:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		if ($a != 2) {
    $a = 2;
} else {
    $a = 7;
}

if ($a != 2) {
    $a = 2;
} elseif ($a == 3) {
    $a = 4;
} else {
    $a = 7;
}

if (($a == $b)
    && ($b == $c)
    || (Foo::CONST == $d)
) {
    $a = $d;
} elseif (($a != $b)
          || ($b != $c)
) {
    $a = $c;
} else {
    $a = $b;
}










PHP allows statements to be written without braces in some circumstances. This coding standard makes no
differentiation- all “if”, “elseif” or “else” statements must use braces.





Switch


Control statements written with the “switch” statement must have a single space before the opening parenthesis of
the conditional statement and after the closing parenthesis.


All content within the “switch” statement must be indented using four spaces. Content under each “case” statement
must be indented using an additional four spaces.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		switch ($numPeople) {
    case 1:
        break;

    case 2:
        break;

    default:
        break;
}










The construct default should never be omitted from a switch statement.



Note


It is sometimes useful to write a case statement which falls through to the next case by not including a
break or return within that case. To distinguish these cases from bugs, any case statement where
break or return are omitted should contain a comment indicating that the break was intentionally
omitted.







Inline Documentation





Documentation Format


All documentation blocks (“docblocks”) must be compatible with the phpDocumentor format. Describing the
phpDocumentor format is beyond the scope of this document. For more information, visit: http://phpdoc.org/


All class files must contain a “file-level” docblock at the top of each file and a “class-level” docblock
immediately above each class. Examples of such docblocks can be found below.





Files


Every file that contains PHP code must have a docblock at the top of the file that contains these phpDocumentor
tags at a minimum:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Short description for file
 *
 * Long description for file (if any)...
 *
 * LICENSE: Some license information
 *
 * @category   Zend
 * @package    Zend_Magic
 * @subpackage Wand
 * @copyright  Copyright (c) 2005-2012 Zend Technologies USA Inc. (http://www.zend.com)
 * @license    http://framework.zend.com/license   BSD License
 * @link       http://framework.zend.com/package/PackageName
 * @since      File available since Release 1.5.0
*/










The @category annotation must have a value of “Zend”.


The @package annotation must be assigned, and should be equivalent to the component name of the class contained
in the file; typically, this will only have two segments, the “Zend” prefix, and the component name.


The @subpackage annotation is optional. If provided, it should be the subcomponent name, minus the class
prefix. In the example above, the assumption is that the class in the file is either “Zend_Magic_Wand”, or uses
that classname as part of its prefix.





Classes


Every class must have a docblock that contains these phpDocumentor tags at a minimum:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		/**
 * Short description for class
 *
 * Long description for class (if any)...
 *
 * @category   Zend
 * @package    Zend_Magic
 * @subpackage Wand
 * @copyright  Copyright (c) 2005-2012 Zend Technologies USA Inc. (http://www.zend.com)
 * @license    http://framework.zend.com/license   BSD License
 * @version    Release: @package_version@
 * @link       http://framework.zend.com/package/PackageName
 * @since      Class available since Release 1.5.0
 * @deprecated Class deprecated in Release 2.0.0
 */










The @category annotation must have a value of “Zend”.


The @package annotation must be assigned, and should be equivalent to the component to which the class belongs;
typically, this will only have two segments, the “Zend” prefix, and the component name.


The @subpackage annotation is optional. If provided, it should be the subcomponent name, minus the class
prefix. In the example above, the assumption is that the class described is either “Zend_Magic_Wand”, or uses
that classname as part of its prefix.





Functions


Every function, including object methods, must have a docblock that contains at a minimum:



		A description of the function


		All of the arguments


		All of the possible return values





It is not necessary to use the “@access” tag because the access level is already known from the “public”,
“private”, or “protected” modifier used to declare the function.


If a function or method may throw an exception, use @throws for all known exception classes:


		1


		@throws exceptionclass [description]


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework Coding Standard for PHP
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cloud.infrastructure.adapter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cloud\Infrastructure\Adapter



Adapters


The Zend\Cloud\Infrastructure supports the following adapters:



		Amazon EC2 [http://aws.amazon.com/ec2/];


		Rackspace Cloud Servers [http://www.rackspace.com/cloud/cloud_hosting_products/servers/].








AMAZON EC2


To initialize the AMAZON EC2 adapter you have to use the following code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		use Zend\Cloud\Infrastructure\Adapter\Ec2 as Ec2Adapter;
use Zend\Cloud\Infrastructure\Factory as FactoryInfrastructure;

$key    = 'key';
$secret = 'secret';
$region = 'region';

$infrastructure = FactoryInfrastructure::getAdapter(array(
    FactoryInfrastructure::INFRASTRUCTURE_ADAPTER_KEY => 'Zend\Cloud\Infrastructure\Adapter\Ec2',
    Ec2Adapter::AWS_ACCESS_KEY => $key,
    Ec2Adapter::AWS_SECRET_KEY => $secret,
    Ec2Adapter::AWS_REGION     => $region,
));










To create a new instance for AMAZON EC2 adapter you have to use the following parameters:


		1
2
3
4
5
6
7
8
9


		$param = array (
    'imageId'      => 'your-image-id',
    'instanceType' => 'your-instance-type',
);

$instance = $infrastructure->createInstance('name of the instance', $param);

printf("Name of the instance: %s\n", $instance->getName());
printf("ID of the instance  : %s\n", $instance->getId());










The monitor an instance of AMAZON EC2 you can use the starting time and ending time optional parameters. The times
must be specified using the ISO 8601 format.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		use Zend\Cloud\Infrastructure\Instance;

$options= array (
    Instance::MONITOR_START_TIME => '2008-02-26T19:00:00+00:00',
    Instance::MONITOR_END_TIME   => '2008-02-26T20:00:00+00:00',
);

$cpuUsage= $infrastructure->monitorInstance('id-instance', Instance::MONITOR_CPU, $options);

print_r($cpuUsage);










The instanceType parameter is optional. This parameter specify the type of the instance to create (for
instance, ‘t1.micro’).





Rackspace Cloud Servers


To initialize the Rackspace Cloud Servers adapter you have to use the following code:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Cloud\Infrastructure\Adapter\Rackspace as RackspaceAdapter;
use Zend\Cloud\Infrastructure\Factory as FactoryInfrastructure;

$user = 'username';
$key  = 'API key';

$infrastructure = FactoryInfrastructure::getAdapter(array(
    FactoryInfrastructure::INFRASTRUCTURE_ADAPTER_KEY => 'Zend\Cloud\Infrastructure\Adapter\Rackspace',
    RackspaceAdapter::RACKSPACE_USER => $user,
    RackspaceAdapter::RACKSPACE_KEY  => $key,
));










To create a new instance for Rackspace Cloud Servers adapter you have to use the following parameters:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$param = array (
    'imageId'  => 'image-id-of-the-instance',
    'flavorId' => 'flavor-id-of-the-instance',
    'metadata' => array (
        'foo' => 'bar',
    ),
    'file' => array (
        'remote-instance-path' => 'local-path',
    ),
);

$instance = $infrastructure->createInstance('name of the instance', $param);

printf("Name of the instance: %s\n", $instance->getName());
printf("ID of the instance  : %s\n", $instance->getId());










The metadata array and the file array are optional parameters.


To monitor an instance of Rackspace Cloud Servers we can use only the SSH2 extension. The Rackspace API does not
offer a dedicated service to monitor the instance. The monitoring features using the SSH2 connection are limited to
the CPU usage, the RAM usage and the DISK usage.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$options = array (
    'username' => 'your-username',
    'password' => 'your-password',
);

$cpuUsage  = $infrastructure->monitorInstance('id-instance', Instance::MONITOR_CPU, $options);
$ramUsage  = $infrastructure->monitorInstance('id-instance', Instance::MONITOR_RAM, $options);
$diskUsage = $infrastructure->monitorInstance('id-instance', Instance::MONITOR_DISK, $options);

print_r($cpuUsage);
print_r($ramUsage);
print_r($diskUsage);










The $options contains the username and the password to be used for the SSH connection.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cloud\Infrastructure\Adapter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_static/up.png





_images/zend.barcode.objects.details.ean13.png
1st4ss7usgmzsu





modules/zend.mail.smtp.options.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Mail\Transport\SmtpOptions



Overview


This document details the various options available to the Zend\Mail\Transport\Smtp mail transport.





Quick Start


Basic SMTP Transport Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Mail\Transport\Smtp as SmtpTransport;
use Zend\Mail\Transport\SmtpOptions;

// Setup SMTP transport
$transport = new SmtpTransport();
$options   = new SmtpOptions(array(
    'name' => 'localhost.localdomain',
    'host' => '127.0.0.1',
    'port' => 25,
));
$transport->setOptions($options);










SMTP Transport Usage with PLAIN AUTH


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Mail\Transport\Smtp as SmtpTransport;
use Zend\Mail\Transport\SmtpOptions;

// Setup SMTP transport using LOGIN authentication
$transport = new SmtpTransport();
$options   = new SmtpOptions(array(
    'name'              => 'localhost.localdomain',
    'host'              => '127.0.0.1',
    'connection_class'  => 'plain',
    'connection_config' => array(
        'username' => 'user',
        'password' => 'pass',
    ),
));
$transport->setOptions($options);










SMTP Transport Usage with LOGIN AUTH


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Mail\Transport\Smtp as SmtpTransport;
use Zend\Mail\Transport\SmtpOptions;

// Setup SMTP transport using LOGIN authentication
$transport = new SmtpTransport();
$options   = new SmtpOptions(array(
    'name'              => 'localhost.localdomain',
    'host'              => '127.0.0.1',
    'connection_class'  => 'login',
    'connection_config' => array(
        'username' => 'user',
        'password' => 'pass',
    ),
));
$transport->setOptions($options);










SMTP Transport Usage with CRAM-MD5 AUTH


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Mail\Transport\Smtp as SmtpTransport;
use Zend\Mail\Transport\SmtpOptions;

// Setup SMTP transport using LOGIN authentication
$transport = new SmtpTransport();
$options   = new SmtpOptions(array(
    'name'              => 'localhost.localdomain',
    'host'              => '127.0.0.1',
    'connection_class'  => 'crammd5',
    'connection_config' => array(
        'username' => 'user',
        'password' => 'pass',
    ),
));
$transport->setOptions($options);













Configuration Options


Configuration Options



		name


		Name of the SMTP host; defaults to “localhost”.






		host


		Remote hostname or IP address; defaults to “127.0.0.1”.






		port


		Port on which the remote host is listening; defaults to “25”.






		connection_class


		Fully-qualified classname or short name resolvable via Zend\Mail\Protocol\SmtpLoader. Typically, this will
be one of “smtp”, “plain”, “login”, or “crammd5”, and defaults to “smtp”.


Typically, the connection class should extend the Zend\Mail\Protocol\AbstractProtocol class, and
specifically the SMTP variant.









		connection_config


		Optional associative array of parameters to pass to the connection class in order to configure it. By default this is empty. For
connection classes other than the default, you will typically need to define the “username” and “password”
options.








Available Methods



		getName


		getName()


Returns the string name of the local client hostname.









		setName


		setName(string $name)


Set the string name of the local client hostname.


Implements a fluent interface.









		getConnectionClass


		getConnectionClass()


Returns a string indicating the connection class name to use.









		setConnectionClass


		setConnectionClass(string $connectionClass)


Set the connection class to use.


Implements a fluent interface.









		getConnectionConfig


		getConnectionConfig()


Get configuration for the connection class.


Returns array.









		setConnectionConfig


		setConnectionConfig(array $config)


Set configuration for the connection class. Typically, if using anything other than the default connection
class, this will be an associative array with the keys “username” and “password”.


Implements a fluent interface.









		getHost


		getHost()


Returns a string indicating the IP address or host name of the SMTP server via which to send messages.









		setHost


		setHost(string $host)


Set the SMTP host name or IP address.


Implements a fluent interface.









		getPort


		getPort()


Retrieve the integer port on which the SMTP host is listening.









		setPort


		setPort(int $port)


Set the port on which the SMTP host is listening.


Implements a fluent interface.









		__construct


		__construct(null|array|Traversable $config)


Instantiate the class, and optionally configure it with values provided.











Examples


Please see the Quick Start for examples.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Mail\Transport\SmtpOptions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.input-filter.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend\InputFilter component can be used to filter and validate generic sets of input data. For instance, you
could use it to filter $_GET or $_POST values, CLI arguments, etc.


To pass input data to the InputFilter, you can use the setData() method. The data must be specified using
an associative array. Below is an example on how to validate the data coming from a form using the POST method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Input;
use Zend\Validator;

$email = new Input('email');
$email->getValidatorChain()
      ->addValidator(new Validator\EmailAddress());

$password = new Input('password');
$password->getValidatorChain()
         ->addValidator(new Validator\StringLength(8));

$inputFilter = new InputFilter();
$inputFilter->add($email)
            ->add($password)
            ->setData($_POST);

if ($inputFilter->isValid()) {
    echo "The form is valid\n";
} else {
    echo "The form is not valid\n";
    foreach ($inputFilter->getInvalidInput() as $error) {
        print_r ($error->getMessages());
    }
}










In this example we validated the email and password values. The email must be a valid address and the password must
be composed with at least 8 characters. If the input data are not valid, we report the list of invalid input using
the getInvalidInput() method.


You can add one or more validators to each input using the addValidator() method for each validator. It is also
possible to specify a “validation group”, a subset of the data to be validated; this may be done using the
setValidationGroup() method. You can specify the list of the input names as an array or as individual
parameters.


		1
2
3
4
5


		// As individual parameters
$filterInput->setValidationGroup('email', 'password');

// or as an array of names
$filterInput->setValidationGroup(array('email', 'password'));










You can validate and/or filter the data using the InputFilter. To filter data, use the getFilterChain()
method of individual Input instances, and attach filters to the returned filter chain. Below is an example that
uses filtering without validation.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		use Zend\InputFilter\Input;
use Zend\InputFilter\InputFilter;

$input = new Input('foo');
$input->getFilterChain()
      ->attachByName('stringtrim')
      ->attachByName('alpha');

$inputfilter = new InputFilter();
$inputfilter->add($input, 'foo')
            ->setData(array(
                'foo' => ' Bar3 ';
            ));

echo "Before:\n";
echo $inputFilter->getRawValue('foo') . "\n"; // the output is ' Bar3 '
echo "After:\n";
echo $inputFilter->getValue('foo') . "\n"; // the output is 'Bar'










The getValue() method returns the filtered value of the ‘foo’ input, while getRawValue() returns the
original value of the input.


We provide also Zend\InputFilter\Factory, to allow initialization of the InputFilter based on a
configuration array (or Traversable object). Below is an example where we create a password input value with
the same constraints proposed before (a string with at least 8 characters):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		use Zend\InputFilter\Factory;

$factory = new Factory();
$inputFilter = $factory->createInputFilter(array(
    'password' => array(
        'name'       => 'password',
        'required'   => true,
        'validators' => array(
            array(
                'name' => 'not_empty',
            ),
            array(
                'name' => 'string_length',
                'options' => array(
                    'min' => 8
                ),
            ),
        ),
    ),
));

$inputFilter->setData($_POST);
echo $inputFilter->isValid() ? "Valid form" : "Invalid form";










The factory may be used to create not only Input instances, but also nested InputFilters, allowing you to
create validation and filtering rules for hierarchical data sets.


Finally, the default InputFilter implementation is backed by a Factory. This means that when calling
add(), you can provide a specification that the Factory would understand, and it will create the
appropriate object. You may create either Input or InputFilter objects in this fashion.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		use Zend\InputFilter\InputFilter;

$filter = new InputFilter();

// Adding a single input
$filter->add(array(
    'name' => 'password',
    'required' => true,
    'validators' => array(
        array(
            'name' => 'not_empty',
        ),
        array(
            'name' => 'string_length',
            'options' => array(
                'min' => 8
            ),
        ),
    ),
));

// Adding an input filter composing a single input to the current filter
$filter->add(array(
    'type' => 'Zend\Filter\InputFilter',
    'password' => array(
        'name' => 'password',
        'required' => true,
        'validators' => array(
            array(
                'name' => 'not_empty',
            ),
            array(
                'name' => 'string_length',
                'options' => array(
                    'min' => 8
                ),
            ),
        ),
    ),
));














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.gdata.exception.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Catching Gdata Exceptions


The Zend_Gdata_App_Exception class is a base class for exceptions thrown by Zend_Gdata. You can catch any
exception thrown by Zend_Gdata by catching Zend_Gdata_App_Exception.


		1
2
3
4
5
6
7


		try {
    $client =
        Zend_Gdata_ClientLogin::getHttpClient($username, $password);
} catch(Zend_Gdata_App_Exception $ex) {
    // Report the exception to the user
    die($ex->getMessage());
}










The following exception subclasses are used by Zend_Gdata:




		Zend_Gdata_App_AuthException indicates that the user’s account credentials were not valid.


		Zend_Gdata_App_BadMethodCallException indicates that a method was called for a service that does not
support the method. For example, the CodeSearch service does not support post().


		Zend_Gdata_App_HttpException indicates that an HTTP request was not successful. Provides the ability to
get the full Zend_Http_Response object to determine the exact cause of the failure in cases where
$e->getMessage() does not provide enough details.


		Zend_Gdata_App_InvalidArgumentException is thrown when the application provides a value that is not valid
in a given context. For example, specifying a Calendar visibility value of “banana”, or fetching a Blogger
feed without specifying any blog name.


		Zend_Gdata_App_CaptchaRequiredException is thrown when a ClientLogin attempt receives a CAPTCHA(tm)
challenge from the authentication service. This exception contains a token ID and a URL to a CAPTCHA(tm)
challenge image. The image is a visual puzzle that should be displayed to the user. After collecting the
user’s response to the challenge image, the response can be included with the next ClientLogin attempt.The
user can alternatively be directed to this website: https://www.google.com/accounts/DisplayUnlockCaptcha
Further information can be found in the ClientLogin documentation.









You can use these exception subclasses to handle specific exceptions differently. See the API documentation for
information on which exception subclasses are thrown by which methods in Zend_Gdata.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		try {
    $client = Zend_Gdata_ClientLogin::getHttpClient($username,
                                                    $password,
                                                    $service);
} catch(Zend_Gdata_App_AuthException $authEx) {
    // The user's credentials were incorrect.
    // It would be appropriate to give the user a second try.
    ...
} catch(Zend_Gdata_App_HttpException $httpEx) {
    // Google Data servers cannot be contacted.
    die($httpEx->getMessage);}














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Catching Gdata Exceptions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.quick-start.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\View Quick Start



Overview


Zend\View provides the “View” layer of Zend Framework’s MVC system. It is a multi-tiered system allowing a
variety of mechanisms for extension, substitution, and more.


The components of the view layer are as follows:



		Variables containers, which hold variables and callbacks that you wish to represent in the view. Often-times,
a Variables container will also provide mechanisms for context-specific escaping of variables and more.


		View Models, which hold Variables containers, specify the template to use, if any, and optionally provide
rendering options (more on that below). View Models may be nested in order to represent complex structures.


		Renderers, which take View Models and provide a representation of them to return. Zend Framework ships three
renderers by default: a “PHP” renderer which utilizes PHP templates in order to generate markup; a JSON renderer;
and a Feed renderer, capable of generating RSS and Atom feeds.


		Resolvers, which resolve a template name to a resource a Renderer may consume. As an example, a resolver may
take the name “blog/entry” and resolve it to a PHP view script.


		The View, which consists of strategies that map the current Request to a Renderer, and strategies for
injecting the Response with the result of rendering.


		Renderer and Response Strategies. Renderer Strategies listen to the “renderer” event of the View, and decide
which Renderer should be selected, based on the Request or other criteria. Response strategies are used to inject
the Response object with the results of rendering – which may also include taking actions such as setting
Content-Type headers.





Additionally, Zend Framework provides integration with the MVC via a number of event listeners in the
Zend\Mvc\View namespace.





Usage


This manual section is designed to show you typical usage patterns of the view layer when using it within the Zend
Framework MVC. The assumptions are that you are using Dependency Injection, and that you are using
the default MVC view strategies.


Configuration


The default configuration for the framework will typically work out-of-the-box. However, you will still need to
select resolver strategies and configure them, as well as potentially indicate alternate template names for things
like the site layout, 404 (not found) pages, and error pages. The code snippets below can be added to your
configuration to accomplish this. We recommend adding it to a site-specific module, such as the “Application”
module from the framework’s “ZendSkeletonApplication”, or to one of your autoloaded configurations within the
config/autoload/ directory.


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114


		return array(
    'di' => array(
        'instance' => array(
        // The above lines will likely already be present; it's the following
        // definitions that you will want to ensure are present within the DI
        // instance configuration.

            // Setup the View layer
            // This sets up an "AggregateResolver", which allows you to have
            // multiple template resolution strategies. We recommend using the
            // TemplateMapResolver as the primary solution, with the
            // TemplatePathStack as a backup.
            'Zend\View\Resolver\AggregateResolver' => array(
                'injections' => array(
                    'Zend\View\Resolver\TemplateMapResolver',
                    'Zend\View\Resolver\TemplatePathStack',
                ),
            ),

            // The TemplateMapResolver allows you to directly map template names
            // to specific templates. The following map would provide locations
            // for a "home" template, as well as for the "site/layout",
            // "site/error", and "site/404" templates, resolving them to view
            // scripts in this module.
            'Zend\View\Resolver\TemplateMapResolver' => array(
                'parameters' => array(
                    'map'  => array(
                        'home'        => __DIR__ . '/../view/home.phtml',
                        'site/layout' => __DIR__ . '/../view/site/layout.phtml',
                        'site/error'  => __DIR__ . '/../view/site/error.phtml',
                        'site/404'    => __DIR__ . '/../view/site/404.phtml',
                    ),
                ),
            ),

            // The TemplatePathStack takes an array of directories. Directories
            // are then searched in LIFO order (it's a stack) for the requested
            // view script. This is a nice solution for rapid application
            // development, but potentially introduces performance expense in
            // production due to the number of stat calls necessary.
            //
            // The following maps adds an entry pointing to the view directory
            // of the current module. Make sure your keys differ between modules
            // to ensure that they are not overwritten!
            'Zend\View\Resolver\TemplatePathStack' => array(
                'parameters' => array(
                    'paths'  => array(
                        'application' => __DIR__ . '/../view',
                    ),
                ),
            ),

            // We'll now define the PhpRenderer, and inject it with the
            // AggregateResolver we defined earlier. By default, the MVC layer
            // registers a rendering strategy that uses the PhpRenderer.
            'Zend\View\Renderer\PhpRenderer' => array(
                'parameters' => array(
                    'resolver' => 'Zend\View\Resolver\AggregateResolver',
                ),
            ),

            // By default, the MVC's default rendering strategy uses the
            // template name "layout" for the site layout. Let's tell it to use
            // "site/layout" (which we mapped via the TemplateMapResolver,
            // above).
            'Zend\Mvc\View\DefaultRenderingStrategy' => array(
                'parameters' => array(
                    'layoutTemplate' => 'site/layout',
                ),
            ),

            // By default, the MVC registers an "exception strategy", which is
            // triggered when a requested action raises an exception; it creates
            // a custom view model that wraps the exception, and selects a
            // template. This template is "error" by default; let's change it to
            // "site/error" (which we mapped via the TemplateMapResolver,
            // above).
            //
            // Additionally, we'll tell it that we want to display an exception
            // stack trace; you'll likely want to disable this by default.
            'Zend\Mvc\View\ExceptionStrategy' => array(
                'parameters' => array(
                    'displayExceptions' => true,
                    'exceptionTemplate' => 'site/error',
                ),
            ),

            // Another strategy the MVC registers by default is a "route not
            // found" strategy. Basically, this gets triggered if (a) no route
            // matches the current request, (b) the controller specified in the
            // route match cannot be found in the locator, (c) the controller
            // specified in the route match does not implement the DispatchableInterface
            // interface, or (d) if a response from a controller sets the
            // response status to 404.
            //
            // The default template used in such situations is "error", just
            // like the exception strategy. Let's tell it to use the "site/404"
            // template, (which we mapped via the TemplateMapResolver, above).
            //
            // You can opt in to inject the reason for a 404 situation; see the
            // various Application::ERROR_* constants for a list of values.
            // Additionally, a number of 404 situations derive from exceptions
            // raised during routing or dispatching. You can opt-in to display
            // these.
            'Zend\Mvc\View\RouteNotFoundStrategy' => array(
                'parameters' => array(
                    'displayExceptions'     => true,
                    'displayNotFoundReason' => true,
                    'notFoundTemplate'      => 'site/404',
                ),
            ),
        ),
    ),
);










Controllers and View Models


Zend\View\View consumes ViewModels, passing them to the selected renderer. Where do you create these,
though?


The most explicit way is to create them in your controllers and return them.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class BarController extends AbstractActionController
{
    public function doSomethingAction()
    {
        $view = new ViewModel(array(
            'message' => 'Hello world',
        ));
        $view->setTemplate('bar/do-something');
        return $view;
    }
}










This sets a “message” variable in the view model, and sets the template name “bar/do-something”. The view model is
then returned.


Considering that in most cases, you’ll likely have a template name based on the controller and action, and simply
be passing some variables, could this be made simpler? Definitely.


The MVC registers a couple of listeners for controllers to automate this. The first will look to see if you
returned an associative array from your controller; if so, it will create a view model and inject this associative
array as the view variables container; this view model then replaces the MVC event’s result. It will also look to
see if you returned nothing or null; if so, it will create a view model without any variables attached; this view
model also replaces the MVC event’s result.


The second listener checks to see if the MVC event result is a view model, and, if so, if it has a template
associated with it. If not, it will inspect the controller matched during routing, and, if available, it’s “action”
parameter in order to create a template name. This will be “controller/action”, with the controller and action
normalized to lowercase, dash-separated words.


As an example, the controller Bar\Controller\BazBatController, with action “doSomethingCrazy”, would be mapped
to the template baz-bat/do-something-crazy.


In practice, that means our previous example could be re-written as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class BarController extends AbstractActionController
{
    public function doSomethingCrazyAction()
    {
        return array(
            'message' => 'Hello world',
        );
    }
}










The above method will likely work for a majority of use cases. When you need to specify a different template,
explicitly create and return a view model, and specify the template manually.


The other use case you may have for explicit view models is if you wish to nest view models. Use cases include
if you want to render templates to include within the main view you return.


As an example, you may want the view from the action to be one primary section that includes both an “article” and
a couple of sidebars; one of the sidebars may include content from multiple views as well.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		namespace Content\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ArticleController extends AbstractActionController
{
    public function viewAction()
    {
        // get the article from the persistence layer, etc...

        $view = new ViewModel();

        $articleView = new ViewModel(array('article' => $article));
        $articleView->setTemplate('content/article');

        $primarySidebarView = new ViewModel();
        $primarySidebarView->setTemplate('content/main-sidebar');

        $secondarySidebarView = new ViewModel();
        $secondarySidebarView->setTemplate('content/secondary-sidebar');

        $sidebarBlockView = new ViewModel();
        $sidebarBlockView->setTemplate('content/block');

        $secondarySidebarView->addChild($sidebarBlockView, 'block');

        $view->addChild($articleView, 'article')
             ->addChild($primarySidebarView, 'sidebar_primary')
             ->addChild($secondarySidebarView, 'sidebar_secondary');

        return $view;
    }
}










The above will create and return a view model specifying the template “content/article”. When the view is rendered,
it will render three child views, the $articleView, $primarySidebarView, and $secondarySidebarView;
these will be captured to the $view‘s “article”, “sidebar_primary”, and “sidebar_secondary” variables,
respectively, so that when it renders, you may include that content. Additionally, the $secondarySidebarView
will include an additional view model, $sidebarBlockView, which will be captured to its “block” view variable.


To better visualize this, let’s look at what the final content might look like, with comments detailing where each
nested view model is injected.


Here are the templates:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


		<?php // "article/view" template ?>
<div class="sixteen columns content">
    <?php echo $this->article ?>

    <?php echo $this->sidebar_primary ?>

    <?php echo $this->sidebar_secondary ?>
</div>

<?php // "content/article" template ?>
    <!-- This is from the $articleView view model, and the "content/article"
         template -->
    <article class="twelve columns">
        <?php echo $this->escapeHtml('article') ?>
    </article>

<?php // "content/main-sidebar template ?>
    <!-- This is from the $primarySidebarView view model, and the
         "content/main-sidebar template -->
    <div class="two columns sidebar">
        sidebar content...
    </div>

<?php // "content/secondary-sidebar template ?>
    <!-- This is from the $secondarySidebarView view model, and the
         "content/secondary-sidebar template -->
    <div class="two columns sidebar">
        <?php echo $this->block ?>
    </div>

<?php // "content/block template ?>
        <!-- This is from the $sidebarBlockView view model, and the
            "content/block template -->
        <div class="block">
            block content...
        </div>










And here is the aggregate, generated content:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		<!-- This is from the $view view model, and the "article/view" template -->
<div class="sixteen columns content">
    <!-- This is from the $articleView view model, and the "content/article"
         template -->
    <article class="twelve columns">
        Lorem ipsum ....
    </article>

    <!-- This is from the $primarySidebarView view model, and the
         "content/main-sidebar template -->
    <div class="two columns sidebar">
        sidebar content...
    </div>

    <!-- This is from the $secondarySidebarView view model, and the
         "content/secondary-sidebar template -->
    <div class="two columns sidebar">
        <!-- This is from the $sidebarBlockView view model, and the
            "content/block template -->
        <div class="block">
            block content...
        </div>
    </div>
</div>










As you can see, you can achieve very complex markup using nested views, while simultaneously keeping the details of
rendering isolated from the request/reponse lifecycle of the controller.


Dealing with Layouts


Most sites enforce a cohesive look-and-feel, which we typically call the site “layout”. The site layout includes
the default stylesheets and JavaScript necessary, if any, as well as the basic markup structure into which all site
content will be injected.


Within Zend Framework, layouts are handled via nesting of view models (see the previous example for examples of view model nesting). The MVC event composes a View Model
which acts as the “root” for nested view models, as such, it should contain the skeleton, or layout, template for
the site (configuration refers to this as the “layoutTemplate”). All other content is then rendered and captured to
view variables of this root view model.


The default rendering strategy sets the layout template as “layout”. To change this, you can add some configuration
for the Dependency Injector.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		return array(
    'di' => array(
        'instance' => array(
        // The above lines will likely already be present; it's the following
        // definitions that you will want to ensure are present within the DI
        // instance configuration.

            // By default, the MVC's default rendering strategy uses the
            // template name "layout" for the site layout. Let's tell it to use
            // "site/layout" (which we mapped via the TemplateMapResolver,
            // above).
            'Zend\Mvc\View\DefaultRenderingStrategy' => array(
                'parameters' => array(
                    'baseTemplate' => 'site/layout',
                ),
            ),
        ),
    ),
);










A listener on the controllers, Zend\Mvc\View\InjectViewModelListener, will take a view model returned from a
controller and inject it as a child of the root (layout) view model. By default, view models will capture to the
“content” variable of the root view model. This means you can do the following in your layout view script:


		1
2
3
4
5
6
7
8


		<html>
    <head>
        <title><?php echo $this->headTitle() ?></title>
    </head>
    <body>
        <?php echo $this->content; ?>
    </body>
</html>










If you want to specify a different view variable for which to capture, explicitly create a view model in your
controller, and set its “capture to” value:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class BarController extends AbstractActionController
{
    public function doSomethingAction()
    {
        $view = new ViewModel(array(
            'message' => 'Hello world',
        ));

        // Capture to the layout view's "article" variable
        $view->setCaptureTo('article');

        return $view;
    }
}










There will be times you don’t want to render a layout. For example, you might be answering an API call which
expects JSON or an XML payload, or you might be answering an XHR request that expects a partial HTML payload. The
simplest way to do this is to explicitly create and return a view model from your controller, and mark it as
“terminal”, which will hint to the MVC listener that normally injects the returned view model into the layout view
model to instead replace the layout view model.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class BarController extends AbstractActionController
{
    public function doSomethingAction()
    {
        $view = new ViewModel(array(
            'message' => 'Hello world',
        ));

        // Disable layouts; use this view model in the MVC event instead
        $view->setTerminal(true);

        return $view;
    }
}










When discussing controllers and view models, we detailed a nested
view model which contained an article and sidebars. Sometimes, you may want to provide additional view models to
the layout, instead of nesting in the returned layout. This may be done by using the “layout” controller plugin,
which returns the root view model; you can then call the same addChild() method on it as we did in that
previous example.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		namespace Content\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ArticleController extends AbstractActionController
{
    public function viewAction()
    {
        // get the article from the persistence layer, etc...

        // Get the "layout" view model and inject a sidebar
        $layout = $this->layout();
        $sidebarView = new ViewModel();
        $sidebarView->setTemplate('content/sidebar');
        $layout->addChild($sidebarView, 'sidebar');

        // Create and return a view model for the retrieved article
        $view = new ViewModel(array('article' => $article));
        $view->setTemplate('content/article');
        return $view;
    }
}










You could also use this technique to select a different layout, by simply calling the setTemplate() method of
the layout view model.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		namespace Content\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class ArticleController extends AbstractActionController
{
    public function viewAction()
    {
        // get the article from the persistence layer, etc...

        // Get the "layout" view model and set an alternate template
        $layout = $this->layout();
        $layout->setTemplate('article/layout');

        // Create and return a view model for the retrieved article
        $view = new ViewModel(array('article' => $article));
        $view->setTemplate('content/article');
        return $view;
    }
}










Sometimes, you may want to access the layout from within your actual view scripts when using the PhpRenderer.
Reasons might include wanting to change the layout template, or wanting to access or inject layout view variables.
Similar to controllers, you can use the “layout” view plugin/helper. If you provide a string argument to it, you
will change the template; if you provide no arguments the root layout view model is returned.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// Change the layout:
$this->layout('alternate/layout'); // OR
$this->layout()->setTemplate('alternate/layout');

// Access a layout variable.
// Since access to the base view model is relatively easy, it becomes a
// reasonable place to store things such as API keys, which other view scripts
// may need.
$layout       = $this->layout();
$disqusApiKey = false;
if (isset($layout->disqusApiKey)) {
    $disqusApiKey = $layout->disqusApiKey;
}

// Set a layout variable
$this->layout()->footer = $this->render('article/footer');










Commonly, you may want to alter the layout based on the module currently selected.


Another frequently requested feature is the ability to change a layout based on the current module. This
requires (a) detecting if the controller matched in routing belongs to this module, and then (b) changing the
template of the view model.


The place to do these actions is in a listener. It should listen either to the “route” event at low (negative)
priority, or on the “dispatch” event, at any priority. Typically, you will register this during the bootstrap
event.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		namespace Content;

class Module
{
    public function onBootstrap($e)
    {
        // Register a dispatch event
        $app = $e->getParam('application');
        $app->getEventManager()->attach('dispatch', array($this, 'setLayout'), -100);
    }

    public function setLayout($e)
    {
        $matches    = $e->getRouteMatch();
        $controller = $matches->getParam('controller');
        if (0 !== strpos($controller, __NAMESPACE__, 0)) {
            // not a controller from this module
            return;
        }

        // Set the layout template
        $viewModel = $e->getViewModel();
        $viewModel->setTemplate('content/layout');
    }
}










Creating and Registering Alternate Rendering and Response Strategies


Zend\View\View does very little. Its workflow is essentially to martial a ViewEvent, and then trigger two
events, “renderer” and “response”. You can attach “strategies” to these events, using the methods
addRendererStrategy() and addResponseStrategy(), respectively. A “renderer strategy” investigates the
Request object (or any other criteria) in order to select a renderer (or fail to select one). A “response strategy”
determines how to populate the Response based on the result of rendering.


Zend Framework ships with three rendering/response strategies that you can use within your application.



		Zend\View\Strategy\PhpRendererStrategy. This strategy is a “catch-all” in that it will always return the
Zend\View\Renderer\PhpRenderer, and populate the Response body with the results of rendering.


		Zend\View\Strategy\JsonStrategy. This strategy inspects the Accept HTTP header, if present, and determines if
the client has indicated it accepts an “application/json” response. If so, it will return the
Zend\View\Renderer\JsonRenderer, and populate the Response body with the JSON value returned, as well as set
a Content-Type header with a value of “application/json”.


		Zend\View\Strategy\FeedStrategy. This strategy inspects the Accept HTTP header, if present, and determines if
the client has indicated it accepts either an “application/rss+xml” or “application/atom+xml” response. If so, it
will return the Zend\View\Renderer\FeedRenderer, setting the feed type to either “rss” or “atom”, based on
what was matched. Its Response strategy will populate the Response body with the generated feed, as well as set a
Content-Type header with the appropriate value based on feed type.





By default, only the PhpRendererStrategy is registered, meaning you will need to register the other strategies
yourself if you want to use them. Additionally, it means that you will likely want to register these at higher
priority to ensure they match before the PhpRendererStrategy. As an example, let’s register the
JsonStrategy.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		namespace Application;

class Module
{
    public function onBootstrap($e)
    {
        // Register a "render" event, at high priority (so it executes prior
        // to the view attempting to render)
        $app = $e->getParam('application');
        $app->getEventManager()->attach('render', array($this, 'registerJsonStrategy'), 100);
    }

    public function registerJsonStrategy($e)
    {
        $app          = $e->getTarget();
        $locator      = $app->getServiceManager();
        $view         = $locator->get('Zend\View\View');
        $jsonStrategy = $locator->get('Zend\View\Strategy\JsonStrategy');

        // Attach strategy, which is a listener aggregate, at high priority
        $view->getEventManager()->attach($jsonStrategy, 100);
    }
}










The above will register the JsonStrategy with the “render” event, such that it executes prior to the
PhpRendererStrategy, and thus ensure that a JSON payload is created when requested.


What if you want this to happen only in specific modules, or specific controllers? One way is similar to the last
example in the previous section on layouts, where we detailed changing
the layout for a specific module.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		namespace Content;

class Module
{
    public function onBootstrap($e)
    {
        // Register a render event
        $app = $e->getParam('application');
        $app->getEventManager()->attach('render', array($this, 'registerJsonStrategy'), 100);
    }

    public function registerJsonStrategy($e)
    {
        $matches    = $e->getRouteMatch();
        $controller = $matches->getParam('controller');
        if (0 !== strpos($controller, __NAMESPACE__, 0)) {
            // not a controller from this module
            return;
        }

        // Potentially, you could be even more selective at this point, and test
        // for specific controller classes, and even specific actions or request
        // methods.

        // Set the JSON strategy when controllers from this module are selected
        $app          = $e->getTarget();
        $locator      = $app->getServiceManager();
        $view         = $locator->get('Zend\View\View');
        $jsonStrategy = $locator->get('Zend\View\Strategy\JsonStrategy');

        // Attach strategy, which is a listener aggregate, at high priority
        $view->getEventManager()->attach($jsonStrategy, 100);
    }
}










While the above examples detail using the JSON strategy, the same could be done for the FeedStrategy.


What if you want to use a custom renderer? or if your app might allow a combination of JSON, Atom feeds, and HTML?
At this point, you’ll need to create your own custom strategies. Below is an example that more appropriately loops
through the HTTP Accept header, and selects the appropriate renderer based on what is matched first.


		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109


		namespace Content\View;

use Zend\EventManager\EventCollection;
use Zend\EventManager\ListenerAggregate;
use Zend\Feed\Writer\Feed;
use Zend\View\Renderer\FeedRenderer;
use Zend\View\Renderer\JsonRenderer;
use Zend\View\Renderer\PhpRenderer;

class AcceptStrategy implements ListenerAggregate
{
    protected $feedRenderer;
    protected $jsonRenderer;
    protected $listeners = array();
    protected $phpRenderer;

    public function __construct(
        PhpRenderer $phpRenderer,
        JsonRenderer $jsonRenderer,
        FeedRenderer $feedRenderer
    ) {
        $this->phpRenderer  = $phpRenderer;
        $this->jsonRenderer = $jsonRenderer;
        $this->feedRenderer = $feedRenderer;
    }

    public function attach(EventCollection $events, $priority = null)
    {
        if (null === $priority) {
            $this->listeners[] = $events->attach('renderer', array($this, 'selectRenderer'));
            $this->listeners[] = $events->attach('response', array($this, 'injectResponse'));
        } else {
            $this->listeners[] = $events->attach('renderer', array($this, 'selectRenderer'), $priority);
            $this->listeners[] = $events->attach('response', array($this, 'injectResponse'), $priority);
        }
    }

    public function detach(EventCollection $events)
    {
        foreach ($this->listeners as $index => $listener) {
            if ($events->detach($listener)) {
                unset($this->listeners[$index]);
            }
        }
    }

    public function selectRenderer($e)
    {
        $request = $e->getRequest();
        $headers = $request->getHeaders();

        // No Accept header? return PhpRenderer
        if (!$headers->has('accept')) {
            return $this->phpRenderer;
        }

        $accept = $headers->get('accept');
        foreach ($accept->getPrioritized() as $mediaType) {
            if (0 === strpos($mediaType, 'application/json')) {
                return $this->jsonRenderer;
            }
            if (0 === strpos($mediaType, 'application/rss+xml')) {
                $this->feedRenderer->setFeedType('rss');
                return $this->feedRenderer;
            }
            if (0 === strpos($mediaType, 'application/atom+xml')) {
                $this->feedRenderer->setFeedType('atom');
                return $this->feedRenderer;
            }
        }

        // Nothing matched; return PhpRenderer. Technically, we should probably
        // return an HTTP 415 Unsupported response.
        return $this->phpRenderer;
    }

    public function injectResponse($e)
    {
        $renderer = $e->getRenderer();
        $response = $e->getResponse();
        $result   = $e->getResult();

        if ($renderer === $this->jsonRenderer) {
            // JSON Renderer; set content-type header
            $headers = $response->getHeaders();
            $headers->addHeaderLine('content-type', 'application/json');
        } elseif ($renderer === $this->feedRenderer) {
            // Feed Renderer; set content-type header, and export the feed if
            // necessary
            $feedType  = $this->feedRenderer->getFeedType();
            $headers   = $response->getHeaders();
            $mediatype = 'application/'
                       . (('rss' == $feedType) ? 'rss' : 'atom')
                       . '+xml';
            $headers->addHeaderLine('content-type', $mediatype);

            // If the $result is a feed, export it
            if ($result instanceof Feed) {
                $result = $result->export($feedType);
            }
        } elseif ($renderer !== $this->phpRenderer) {
            // Not a renderer we support, therefor not our strategy. Return
            return;
        }

        // Inject the content
        $response->setContent($result);
    }
}










This strategy would be registered just as we demonstrated registering the JsonStrategy earlier. You would also
need to define DI configuration to ensure the various renderers are injected when you retrieve the strategy from
the application’s locator instance.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\View Quick Start
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/requirements.php.extensions.table.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
PHP Extensions Used in Zend Framework by Component





		PHP Extension
		 





		apc
		 



		Soft
		 



		bcmath
		 



		bitset
		 



		bz2
		 



		calendar
		 



		com_dotnet
		 



		ctype
		 



		Zend_Gdata
		 



		Zend_Http_Client
		 



		Zend_Pdf
		 



		Zend_Rest_Client
		 



		Zend_Rest_Server
		 



		Zend_Search_Lucene
		 



		Zend_Uri
		 



		Zend_Validate
		 



		curl
		 



		date
		 



		dba
		 



		dbase
		 



		dom
		 



		Zend_Dom
		 



		Zend_Feed
		 



		Zend_Gdata
		 



		Zend_Log_Formatter_Xml
		 



		Zend_Rest_Server
		 



		Zend_Soap
		 



		Zend_Search_Lucene
		 



		Zend_Service_Amazon
		 



		Zend_Service_Delicious
		 



		Zend_Service_Flickr
		 



		Zend_XmlRpc
		 



		exif
		 



		fbsql
		 



		fdf
		 



		filter
		 



		ftp
		 



		gd
		 



		Zend_Pdf
		 



		gettext
		 



		gmp
		 



		hash
		 



		ibm_db2
		 



		iconv
		 



		Zend_Locale_Format
		 



		Zend_Mime
		 



		Zend_Pdf
		 



		Zend_Search_Lucene
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Service_Flickr
		 



		Zend_Validate_Hostname
		 



		Zend_Validate_StringLength
		 



		Zend_XmlRpc_Client
		 



		igbinary
		 



		imap
		 



		informix
		 



		interbase
		 



		json
		 



		Zend_Serializer_Adapter_Json
		 



		ldap
		 



		libxml
		 



		mbstring
		 



		mcrypt
		 



		memcache
		 



		mhash
		 



		mime_magic
		 



		ming
		 



		msql
		 



		mssql
		 



		mysql
		 



		mysqli
		 



		ncurses
		 



		oci8
		 



		odbc
		 



		openssl
		 



		pcntl
		 



		pcre
		 



		pdo
		 



		pdo_dblib
		 



		pdo_firebird
		 



		pdo_mssql
		 



		pdo_mysql
		 



		pdo_oci
		 



		pdo_pgsql
		 



		pdo_sqlite
		 



		pgsql
		 



		posix
		 



		pspell
		 



		readline
		 



		recode
		 



		Reflection
		 



		Zend_Filter
		 



		Zend_Filter_Input
		 



		Zend_Json
		 



		Zend_Log
		 



		Zend_Rest_Server
		 



		Zend_Server_Reflection
		 



		Zend_Validate
		 



		Zend_View
		 



		Zend_XmlRpc_Server
		 



		session
		 



		Zend_Session
		 



		shmop
		 



		SimpleXML
		 



		Zend_Feed
		 



		Zend_Rest_Client
		 



		Zend_Serializer_Adapter_Wddx
		 



		Zend_Service_Audioscrobbler
		 



		Zend_Soap
		 



		Zend_XmlRpc
		 



		Soft
		 



		soap
		 



		Zend_Soap
		 



		sockets
		 



		SPL
		 



		SQLite
		 



		standard
		 



		sybase
		 



		sysvmsg
		 



		sysvsem
		 



		sysvshm
		 



		tidy
		 



		tokenizer
		 



		wddx
		 



		xml
		 



		Zend_Translator_Adapter_Tmx
		 



		Zend_Translator_Adapter_Xliff
		 



		XMLReader
		 



		xmlrpc
		 



		XMLWriter
		 



		xsl
		 



		zip
		 



		zlib
		 



		Zend_Filter_Compress
		 









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                <no title>
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.db.row-gateway.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Db\RowGateway


Zend\Db\RowGateway is a sub-component of Zend\Db that implements the Row Gateway pattern from PoEAA. This
effectively means that Row Gateway objects primarily model a row in a database, and have methods such as save() and
delete() that will help persist this row-as-an-object in the database itself. Likewise, after a row from the
database is retrieved, it can then be manipulated and save()’d back to the database in the same position (row), or
it can be delete()’d from the table.


The interface for a Row Gateway object simply adds save() and delete() and this is the interface that should be
assumed when a component has a dependency that is expected to be an instance of a RowGateway object:


		1
2
3
4
5


		interface RowGatewayInterface
{
    public function save();
    public function delete();
}











Quickstart


While most of the time, RowGateway will be used in conjucntion with other Zend\Db\ResultSet producing objects, it
is possible to use it standalone. To use it standalone, you simply need an Adapter and a set of data to work with.
The following use case demonstrates Zend\Db\RowGateway\RowGateway usage in its simplest form:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		use Zend\Db\RowGateway\RowGateway;

// query the database
$resultSet = $adapter->query('SELECT * FROM `user` WHERE `id` = ?', array(2));

// get array of data
$rowData = $resultSet->current()->getArrayCopy();

// row gateway
$rowGateway = new RowGateway('id', 'my_table', $adapter);
$rowGateway->populate($rowData);

$rowGateway->first_name = 'New Name';
$rowGateway->save();

// or delete this row:
$rowGateway->delete();










The workflow described above is greatly simplified when RowGateway is used in conjunction with the TableGateway
feature. What this achieves is a Table Gateway object that when select()’ing from a table, will produce a ResultSet
that is then capable of producing valid Row Gateway objects. Its usage looks like this:


		1
2
3
4
5
6
7
8
9


		use Zend\Db\TableGateway\Feature\RowGatewayFeature;
use Zend\Db\TableGateway\TableGateway;

$table = new TableGateway('artist', $adapter, new RowGatewayFeature('id'));
$results = $table->select(array('id' => 2));

$artistRow = $results->current();
$artistRow->name = 'New Name';
$artistRow->save();
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Db\RowGateway
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.leitcode.png
R0 678 00193 6





modules/zend.ldap.tools.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Tools



Creation and modification of DN strings





Using the filter API to create search filters


Create simple LDAP filters


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$f1  = Zend\Ldap\Filter::equals('name', 'value');         // (name=value)
$f2  = Zend\Ldap\Filter::begins('name', 'value');         // (name=value*)
$f3  = Zend\Ldap\Filter::ends('name', 'value');           // (name=*value)
$f4  = Zend\Ldap\Filter::contains('name', 'value');       // (name=*value*)
$f5  = Zend\Ldap\Filter::greater('name', 'value');        // (name>value)
$f6  = Zend\Ldap\Filter::greaterOrEqual('name', 'value'); // (name>=value)
$f7  = Zend\Ldap\Filter::less('name', 'value');           // (name<value)
$f8  = Zend\Ldap\Filter::lessOrEqual('name', 'value');    // (name<=value)
$f9  = Zend\Ldap\Filter::approx('name', 'value');         // (name~=value)
$f10 = Zend\Ldap\Filter::any('name');                     // (name=*)










Create more complex LDAP filters


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$f1 = Zend\Ldap\Filter::ends('name', 'value')->negate(); // (!(name=*value))

$f2 = Zend\Ldap\Filter::equals('name', 'value');
$f3 = Zend\Ldap\Filter::begins('name', 'value');
$f4 = Zend\Ldap\Filter::ends('name', 'value');

// (&(name=value)(name=value*)(name=*value))
$f5 = Zend\Ldap\Filter::andFilter($f2, $f3, $f4);

// (|(name=value)(name=value*)(name=*value))
$f6 = Zend\Ldap\Filter::orFilter($f2, $f3, $f4);













Modify LDAP entries using the Attribute API








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Tools
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.number.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Number Element


Zend\Form\Element\Number is meant to be paired with the Zend/Form/View/Helper/FormNumber for HTML5 inputs with
type number [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#number-state-(type=number)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 number input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "number".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$number = new Element\Number('quantity');
$number
    ->setLabel('Quantity')
    ->setAttributes(array(
        'min'  => '0',
        'max'  => '10',
        'step' => '1', // default step interval is 1
    ));

$form = new Form('my-form');
$form->add($number);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes.


If the min attribute is set, a Zend\Validator\GreaterThan validator will be added to ensure the number
value is greater than the minimum value. The min value should be a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].


If the max attribute is set, a Zend\Validator\LessThanValidator validator will be added to ensure the
number value is less than the maximum value. The max value should be a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].


If the step attribute is set to “any”, step validations will be skipped. Otherwise, a a
Zend\Validator\Step validator will be added to ensure the number value is within a certain interval (default
is 1). The step value should be either “any” or a valid floating point number [http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#valid-floating-point-number].






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Number Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.filter.alpha.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alpha Filter


The Alpha filter can be used to return only alphabetic characters in the unicode “letter” category. All other
characters are supressed.


Supported options for Alpha Filter


The following options are supported for Alpha:


Alpha([ boolean $allowWhiteSpace [, string $locale ]])



		$allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).


Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()





		$locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset,
it will use the default locale (Locale::getDefault()).


Methods for getting/setting the locale are also available: getLocale() and setLocale()








Alpha Filter Usage


		1
2
3
4
5
6
7
8
9


		// Default settings, deny whitespace
$filter = \Zend\I18n\Filter\Alpha();
echo $filter->filter("This is (my) content: 123");
// Returns "Thisismycontent"

// Allow whitespace
$filter = \Zend\I18n\Filter\Alpha(true);
echo $filter->filter("This is (my) content: 123");
// Returns "This is my content "











Note


Note: Alpha works on almost all languages, except: Chinese, Japanese and Korean. Within these languages the
english alphabet is used instead of the characters from these languages. The language itself is detected using
the Locale.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alpha Filter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.tag.cloud.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Tag_Cloud


Zend_Tag_Cloud is the rendering part of Zend_Tag. By default it comes with a set of HTML decorators,
which allow you to create tag clouds for a website, but also supplies you with two abstract classes to create your
own decorators, to create tag clouds in PDF documents for example.


You can instantiate and configure Zend_Tag_Cloud either programatically or completely via an array or an
instance of Zend_Config. The available options are:



		cloudDecorator: defines the decorator for the cloud. Can either be the name of the class which should be
loaded by the pluginloader, an instance of Zend_Tag_Cloud_Decorator_Cloud or an array containing the string
‘decorator’ and optionally an array ‘options’, which will be passed to the decorators constructor.


		tagDecorator: defines the decorator for individual tags. This can either be the name of the class which
should be loaded by the pluginloader, an instance of Zend_Tag_Cloud_Decorator_Tag or an array containing the
string ‘decorator’ and optionally an array ‘options’, which will be passed to the decorators constructor.


		pluginLoader: a different plugin loader to use. Must be an instance of
Zend_Loader_PluginLoader_Interface.


		prefixPath: prefix paths to add to the plugin loader. Must be an array containing the keys prefix and path or
multiple arrays containing the keys prefix and path. Invalid elements will be skipped.


		itemList: a different item list to use. Must be an instance of Zend_Tag_ItemList.


		tags: a list of tags to assign to the cloud. Each tag must either implement Zend_Tag_Taggable or be an
array which can be used to instantiate Zend_Tag_Item.





Using Zend_Tag_Cloud


This example illustrates a basic example of how to create a tag cloud, add multiple tags to it and finally render
it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// Create the cloud and assign static tags to it
$cloud = new Zend_Tag_Cloud(array(
    'tags' => array(
        array('title' => 'Code', 'weight' => 50,
              'params' => array('url' => '/tag/code')),
        array('title' => 'Zend Framework', 'weight' => 1,
              'params' => array('url' => '/tag/zend-framework')),
        array('title' => 'PHP', 'weight' => 5,
              'params' => array('url' => '/tag/php')),
    )
));

// Render the cloud
echo $cloud;










This will output the tag cloud with the three tags, spread with the default font-sizes.



Decorators


Zend_Tag_Cloud requires two types of decorators to be able to render a tag cloud. This includes a decorator
which renders the single tags as well as a decorator which renders the surounding cloud. Zend_Tag_Cloud ships a
default decorator set for formatting a tag cloud in HTML. This set will by default create a tag cloud as
ul/li-list, spread with different font-sizes according to the weight values of the tags assigned to them.



HTML Tag decorator


The HTML tag decorator will by default render every tag in an anchor element, surounded by a li element. The
anchor itself is fixed and cannot be changed, but the surounding element(s) can.



Note


URL parameter


As the HTML tag decorator always surounds the tag title with an anchor, you should define an URL parameter
for every tag used in it.




The tag decorator can either spread different font-sizes over the anchors or a defined list of classnames. When
setting options for one of those possibilities, the corespondening one will automatically be enabled. The following
configuration options are available:



		fontSizeUnit: defines the font-size unit used for all font-sizes. The possible values are: em, ex, px, in,
cm, mm, pt, pc and %.


		minFontSize: the minimum font-size distributed through the tags (must be an integer).


		maxFontSize: the maximum font-size distributed through the tags (must be an integer).


		classList: an arry of classes distributed through the tags.


		htmlTags: an array of HTML tags surounding the anchor. Each element can either be a string, which is used
as element type then, or an array containing an attribute list for the element, defined as key/value pair. In
this case, the array key is used as element type.








HTML Cloud decorator


The HTML cloud decorator will suround the HTML tags with an ul-element by default and add no separation. Like
in the tag decorator, you can define multiple surounding HTML tags and additionally define a separator. The
available options are:



		separator: defines the separator which is placed between all tags.


		htmlTags: an array of HTML tags surounding all tags. Each element can either be a string, which is used as
element type then, or an array containing an attribute list for the element, defined as key/value pair. In this
case, the array key is used as element type.













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Tag_Cloud
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/multiuser.authentication.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Authenticating Users in Zend Framework



Introduction to Authentication


Once a web application has been able to distinguish one user from another by establishing a session, web
applications typically want to validate the identity of a user. The process of validating a consumer as being
authentic is “authentication.” Authentication is made up of two distinctive parts: an identity and a set of
credentials. It takes some variation of both presented to the application for processing so that it may
authenticate a user.


While the most common pattern of authentication revolves around usernames and passwords, it should be stated that
this is not always the case. Identities are not limited to usernames. In fact, any public identifier can be used:
an assigned number, social security number, or residence address. Likewise, credentials are not limited to
passwords. Credentials can come in the form of protected private information: fingerprint, eye retinal scan,
passphrase, or any other obscure personal information.





Basic Usage of Zend_Auth


In the following example, we will be using Zend_Auth to complete what is probably the most prolific form of
authentication: username and password from a database table. This example assumes that you have already setup your
application using Zend_Application, and that inside that application you have configured a database connection.


The job of the Zend_Auth class is twofold. First, it should be able to accept an authentication adapter to use
to authenticate a user. Secondly, after a successful authentication of a user, it should persist throughout each
and every request that might need to know if the current user has indeed been authenticated. To persist this data,
Zend_Auth consumes Zend_Session_Namespace, but you will generally never need to interact with this session
object.


Lets assume we have the following database table setup:


		1
2
3
4
5
6
7


		CREATE TABLE users (
    id INTEGER  NOT NULL PRIMARY KEY,
    username VARCHAR(50) UNIQUE NOT NULL,
    password VARCHAR(32) NULL,
    password_salt VARCHAR(32) NULL,
    real_name VARCHAR(150) NULL
)










The above demonstrates a user table that includes a username, password, and also a password salt column. This salt
column is used as part of a technique called salting that would improve the security of your database of
information against brute force attacks targeting the algorithm of your password hashing. More information [http://en.wikipedia.org/wiki/Salting_%28cryptography%29] on
salting.


For this implementation, we must first make a simple form that we can utilized as the “login form”. We will use
Zend_Form to accomplish this.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


		// located at application/forms/Auth/Login.php

class Default_Form_Auth_Login extends Zend_Form
{
    public function init()
    {
        $this->setMethod('post');

        $this->addElement(
            'text', 'username', array(
                'label' => 'Username:',
                'required' => true,
                'filters'    => array('StringTrim'),
            ));

        $this->addElement('password', 'password', array(
            'label' => 'Password:',
            'required' => true,
            ));

        $this->addElement('submit', 'submit', array(
            'ignore'   => true,
            'label'    => 'Login',
            ));

    }
}










With the above form, we can now go about creating our login action for our authentication controller. This
controller will be called “AuthController”, and will be located at
application/controllers/AuthController.php. It will have a single method called “loginAction()” which will
serve as the self-posting action. In other words, regardless of the url was POSTed to or GETed to, this method will
handle the logic.


The following code will demonstrate how to construct the proper adapter, integrate it with the form:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


		class AuthController extends Zend_Controller_Action
{

    public function loginAction()
    {
        $db = $this->_getParam('db');

        $loginForm = new Default_Form_Auth_Login($_POST);

        if ($loginForm->isValid()) {

            $adapter = new Zend_Auth_Adapter_DbTable(
                $db,
                'users',
                'username',
                'password',
                'MD5(CONCAT(?, password_salt))'
                );

            $adapter->setIdentity($loginForm->getValue('username'));
            $adapter->setCredential($loginForm->getValue('password'));

            $result = $auth->authenticate($adapter);

            if ($result->isValid()) {
                $this->_helper->FlashMessenger('Successful Login');
                $this->redirect('/');
                return;
            }

        }

        $this->view->loginForm = $loginForm;

    }

}










The corresponding view script is quite simple for this action. It will set the current url since this form is self
processing, and it will display the form. This view script is located at
application/views/scripts/auth/login.phtml:


		1
2


		$this->form->setAction($this->url());
echo $this->form;










There you have it. With these basics you can expand the general concepts to include more complex authentication
scenarios. For more information on other Zend_Auth adapters, have a look in the reference guide.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Authenticating Users in Zend Framework
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.session.basic-usage.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Basic Usage


Zend_Session_Namespace instances provide the primary API for manipulating session data in the Zend Framework.
Namespaces are used to segregate all session data, although a default namespace exists for those who only want one
namespace for all their session data. Zend_Session utilizes ext/session and its special $_SESSION
superglobal as the storage mechanism for session state data. while $_SESSION is still available in PHP‘s
global namespace, developers should refrain from directly accessing it, so that Zend_Session and
Zend_Session_Namespace can most effectively and securely provide its suite of session related functionality.


Each instance of Zend_Session_Namespace corresponds to an entry of the $_SESSION superglobal array, where
the namespace is used as the key.


		1
2
3


		$myNamespace = new Zend_Session_Namespace('myNamespace');

// $myNamespace corresponds to $_SESSION['myNamespace']










It is possible to use Zend_Session in conjunction with other code that uses $_SESSION directly. To avoid
problems, however, it is highly recommended that such code only uses parts of $_SESSION that do not correspond
to instances of Zend_Session_Namespace.



Tutorial Examples


If no namespace is specified when instantiating Zend_Session_Namespace, all data will be transparently stored
in a namespace called “Default”. Zend_Session is not intended to work directly on the contents of session
namespace containers. Instead, we use Zend_Session_Namespace. The example below demonstrates use of this
default namespace, showing how to count the number of client requests during a session:


Counting Page Views


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$defaultNamespace = new Zend_Session_Namespace('Default');

if (isset($defaultNamespace->numberOfPageRequests)) {
    // this will increment for each page load.
    $defaultNamespace->numberOfPageRequests++;
} else {
    $defaultNamespace->numberOfPageRequests = 1; // first time
}

echo "Page requests this session: ",
    $defaultNamespace->numberOfPageRequests;










When multiple modules use instances of Zend_Session_Namespace having different namespaces, each module obtains
data encapsulation for its session data. The Zend_Session_Namespace constructor can be passed an optional
$namespace argument, which allows developers to partition session data into separate namespaces. Namespacing
provides an effective and popular way to secure session state data against changes due to accidental naming
collisions.


Namespace names are restricted to character sequences represented as non-empty PHP strings that do not begin with
an underscore (“_”) character. Only core components included in Zend Framework should use namespace names
starting with “Zend”.


New Way: Namespaces Avoid Collisions


		1
2
3
4
5
6
7


		// in the Zend_Auth component
$authNamespace = new Zend_Session_Namespace('Zend_Auth');
$authNamespace->user = "myusername";

// in a web services component
$webServiceNamespace = new Zend_Session_Namespace('Some_Web_Service');
$webServiceNamespace->user = "mywebusername";










The example above achieves the same effect as the code below, except that the session objects above preserve
encapsulation of session data within their respective namespaces.


Old Way: PHP Session Access


		1
2


		$_SESSION['Zend_Auth']['user'] = "myusername";
$_SESSION['Some_Web_Service']['user'] = "mywebusername";













Iterating Over Session Namespaces


Zend_Session_Namespace provides the full IteratorAggregate interface [http://www.php.net/~helly/php/ext/spl/interfaceIteratorAggregate.html], including support for the foreach
statement:


Session Iteration


		1
2
3
4
5
6


		$aNamespace =
    new Zend_Session_Namespace('some_namespace_with_data_present');

foreach ($aNamespace as $index => $value) {
    echo "aNamespace->$index = '$value';\n";
}













Accessors for Session Namespaces


Zend_Session_Namespace implements the __get(), __set(), __isset(), and __unset() magic
methods [http://www.php.net/manual/en/language.oop5.overloading.php], which should not be invoked directly, except from within a subclass. Instead, the normal operators
automatically invoke these methods, such as in the following example:


Accessing Session Data


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$namespace = new Zend_Session_Namespace(); // default namespace

$namespace->foo = 100;

echo "\$namespace->foo = $namespace->foo\n";

if (!isset($namespace->bar)) {
    echo "\$namespace->bar not set\n";
}

unset($namespace->foo);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Basic Usage
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.head-style.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HeadStyle Helper


The HTML <style> element is used to include CSS stylesheets inline in the HTML <head> element.



Note


Use HeadLink to link CSS files


HeadLink should be used to create <link> elements for including
external stylesheets. HeadStyle is used when you wish to define your stylesheets inline.




The HeadStyle helper supports the following methods for setting and adding stylesheet declarations:



		appendStyle($content, $attributes = array())


		offsetSetStyle($index, $content, $attributes = array())


		prependStyle($content, $attributes = array())


		setStyle($content, $attributes = array())





In all cases, $content is the actual CSS declarations. $attributes are any additional attributes you wish
to provide to the style tag: lang, title, media, or dir are all permissible.



Note


Setting Conditional Comments


HeadStyle allows you to wrap the style tag in conditional comments, which allows you to hide it from
specific browsers. To add the conditional tags, pass the conditional value as part of the $attributes
parameter in the method calls.


Headstyle With Conditional Comments


		1
2


		// adding scripts
$this->headStyle()->appendStyle($styles, array('conditional' => 'lt IE 7'));












HeadStyle also allows capturing style declarations; this can be useful if you want to create the declarations
programmatically, and then place them elsewhere. The usage for this will be showed in an example below.


Finally, you can also use the headStyle() method to quickly add declarations elements; the signature for this
is headStyle($content$placement = 'APPEND', $attributes = array()). $placement should be either ‘APPEND’,
‘PREPEND’, or ‘SET’.


HeadStyle overrides each of append(), offsetSet(), prepend(), and set() to enforce usage of the
special methods as listed above. Internally, it stores each item as a stdClass token, which it later serializes
using the itemToString() method. This allows you to perform checks on the items in the stack, and optionally
modify these items by simply modifying the object returned.


The HeadStyle helper is a concrete implementation of the Placeholder helper.



Note


UTF-8 encoding used by default


By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does
as well. Character encoding can be set differently on the view object itself using the setEncoding() method
(or the the encoding instantiation parameter). However, since Zend_View_Interface does not define
accessors for encoding, it’s possible that if you are using a custom view implementation with this view helper,
you will not have a getEncoding() method, which is what the view helper uses internally for determining the
character set in which to encode.


If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method
in your custom view implementation.




HeadStyle Helper Basic Usage


You may specify a new style tag at any time:


		1
2


		// adding styles
$this->headStyle()->appendStyle($styles);










Order is very important with CSS; you may need to ensure that declarations are loaded in a specific order due to
the order of the cascade; use the various append, prepend, and offsetSet directives to aid in this task:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// Putting styles in order

// place at a particular offset:
$this->headStyle()->offsetSetStyle(100, $customStyles);

// place at end:
$this->headStyle()->appendStyle($finalStyles);

// place at beginning
$this->headStyle()->prependStyle($firstStyles);










When you’re finally ready to output all style declarations in your layout script, simply echo the helper:


		1


		<?php echo $this->headStyle() ?>










Capturing Style Declarations Using the HeadStyle Helper


Sometimes you need to generate CSS style declarations programmatically. While you could use string concatenation,
heredocs, and the like, often it’s easier just to do so by creating the styles and sprinkling in PHP tags.
HeadStyle lets you do just that, capturing it to the stack:


		1
2
3
4
5


		<?php $this->headStyle()->captureStart() ?>
body {
    background-color: <?php echo $this->bgColor ?>;
}
<?php $this->headStyle()->captureEnd() ?>










The following assumptions are made:



		The style declarations will be appended to the stack. If you wish for them to replace the stack or be added to
the top, you will need to pass ‘SET’ or ‘PREPEND’, respectively, as the first argument to captureStart().


		If you wish to specify any additional attributes for the <style> tag, pass them in an array as the second
argument to captureStart().









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HeadStyle Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/multiuser.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Building Multi-User Applications With Zend Framework



Zend Framework


When the original “web” was created, it was designed to be a publishing platform for predominantly static content.
As demand for content on the web grew, as did the number of consumers on the internet for web content, the demand
for using the web as an application platform also grew. Since the web is inherently good at delivering a
simultaneous experience to many consumers from a single location, it makes it an ideal environment for building
dynamically driven, multi-user, and more commonly today, social systems.


HTTP is the protocol of the web: a stateless, typically short lived, request and response protocol. This protocol
was designed this way because the original intent of the web was to serve or publish static content. It is this
very design that has made the web as immensely successful as it is. It is also exactly this design that brings new
concerns to developers who wish to use the web as an application platform.


These concerns and responsibilities can effectively be summed up by three questions:



		How do you distinguish one application consumer from another?


		How do you identify a consumer as authentic?


		How do you control what a consumer has access to?






Note


Consumer Vs. User


Notice we use the term “consumer” instead of person. Increasingly, web applications are becoming service driven.
This means that not only are real people (“users”) with real web browsers consuming and using your application,
but also other web applications through machine service technologies such as REST, SOAP, and XML-RPC. In
this respect, people, as well as other consuming applications, should all be treated in same with regard to the
concerns outlined above.




In the following chapters, we’ll take a look at these common problems relating to authentication and authorization
in detail. We will discover how 3 main components: Zend_Session, Zend_Auth, and Zend\Permissions\Acl; provide an
out-of-the-box solution as well as the extension points each have that will cater to a more customized solution.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Building Multi-User Applications With Zend Framework
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.validator.isbn.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Isbn


Zend\Validator\Isbn allows you to validate an ISBN-10 or ISBN-13 value.



Supported options for Zend\Validator\Isbn


The following options are supported for Zend\Validator\Isbn:



		separator: Defines the allowed separator for the ISBN number. It defaults to an empty string.


		type: Defines the allowed type of ISBN numbers. It defaults to Zend\Validator\Isbn::AUTO. For details
take a look at this section.








Basic usage


A basic example of usage is below:


		1
2
3
4
5
6


		$validator = new Zend\Validator\Isbn();
if ($validator->isValid($isbn)) {
    // isbn is valid
} else {
    // isbn is not valid
}










This will validate any ISBN-10 and ISBN-13 without separator.





Setting an explicit ISBN validation type


An example of an ISBN type restriction is below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Isbn();
$validator->setType(Zend\Validator\Isbn::ISBN13);
// OR
$validator = new Zend\Validator\Isbn(array(
    'type' => Zend\Validator\Isbn::ISBN13,
));

if ($validator->isValid($isbn)) {
    // this is a valid ISBN-13 value
} else {
    // this is an invalid ISBN-13 value
}










The above will validate only ISBN-13 values.


Valid types include:



		Zend\Validator\Isbn::AUTO (default)


		Zend\Validator\Isbn::ISBN10


		Zend\Validator\Isbn::ISBN13








Specifying a separator restriction


An example of separator restriction is below:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$validator = new Zend\Validator\Isbn();
$validator->setSeparator('-');
// OR
$validator = new Zend\Validator\Isbn(array(
    'separator' => '-',
));

if ($validator->isValid($isbn)) {
    // this is a valid ISBN with separator
} else {
    // this is an invalid ISBN with separator
}











Note


Values without separator


This will return FALSE if $isbn doesn’t contain a separator or if it’s an invalid ISBN value.




Valid separators include:



		“” (empty) (default)


		“-” (hyphen)


		” ” (space)











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Isbn
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.introduction.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Ldap\Ldap is a class for performing LDAP operations including but not limited to binding, searching and
modifying entries in an LDAP directory.



Theory of operation


This component currently consists of the main Zend\Ldap\Ldap class, that conceptually represents a binding to a
single LDAP server and allows for executing operations against a LDAP server such as OpenLDAP or
ActiveDirectory (AD) servers. The parameters for binding may be provided explicitly or in the form of an options
array. Zend\Ldap\Node provides an object-oriented interface for single LDAP nodes and can be used to form a
basis for an active-record-like interface for a LDAP-based domain model.


The component provides several helper classes to perform operations on LDAP entries (Zend\Ldap\Attribute)
such as setting and retrieving attributes (date values, passwords, boolean values, ...), to create and modify
LDAP filter strings (Zend\Ldap\Filter) and to manipulate LDAP distinguished names (DN) (Zend\Ldap\Dn).


Additionally the component abstracts LDAP schema browsing for OpenLDAP and ActiveDirectory servers
Zend\Ldap\Node\Schema and server information retrieval for OpenLDAP-, ActiveDirectory- and Novell eDirectory
servers (Zend\Ldap\Node\RootDse).


Using the Zend\Ldap\Ldap class depends on the type of LDAP server and is best summarized with some simple
examples.


If you are using OpenLDAP, a simple example looks like the following (note that the bindRequiresDn option is
important if you are not using AD):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$options = array(
    'host'              => 's0.foo.net',
    'username'          => 'CN=user1,DC=foo,DC=net',
    'password'          => 'pass1',
    'bindRequiresDn'    => true,
    'accountDomainName' => 'foo.net',
    'baseDn'            => 'OU=Sales,DC=foo,DC=net',
);
$ldap = new Zend\Ldap\Ldap($options);
$acctname = $ldap->getCanonicalAccountName('abaker',
                                           Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
echo "$acctname\n";










If you are using Microsoft AD a simple example is:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$options = array(
    'host'                   => 'dc1.w.net',
    'useStartTls'            => true,
    'username'               => 'user1@w.net',
    'password'               => 'pass1',
    'accountDomainName'      => 'w.net',
    'accountDomainNameShort' => 'W',
    'baseDn'                 => 'CN=Users,DC=w,DC=net',
);
$ldap = new Zend\Ldap\Ldap($options);
$acctname = $ldap->getCanonicalAccountName('bcarter',
                                           Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
echo "$acctname\n";










Note that we use the getCanonicalAccountName() method to retrieve the account DN here only because that is what
exercises the most of what little code is currently present in this class.



Automatic Username Canonicalization When Binding


If bind() is called with a non-DN username but bindRequiresDN is TRUE and no username in DN form was
supplied as an option, the bind will fail. However, if a username in DN form is supplied in the options array,
Zend\Ldap\Ldap will first bind with that username, retrieve the account DN for the username supplied to
bind() and then re-bind with that DN.


This behavior is critical to Zend\Authentication\Adapter\Ldap, which
passes the username supplied by the user directly to bind().


The following example illustrates how the non-DN username ‘abaker‘ can be used with bind():


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$options = array(
        'host'              => 's0.foo.net',
        'username'          => 'CN=user1,DC=foo,DC=net',
        'password'          => 'pass1',
        'bindRequiresDn'    => true,
        'accountDomainName' => 'foo.net',
        'baseDn'            => 'OU=Sales,DC=foo,DC=net',
);
$ldap = new Zend\Ldap\Ldap($options);
$ldap->bind('abaker', 'moonbike55');
$acctname = $ldap->getCanonicalAccountName('abaker',
                                           Zend\Ldap\Ldap::ACCTNAME_FORM_DN);
echo "$acctname\n";










The bind() call in this example sees that the username ‘abaker‘ is not in DN form, finds bindRequiresDn
is TRUE, uses ‘CN=user1,DC=foo,DC=net‘ and ‘pass1‘ to bind, retrieves the DN for ‘abaker‘, unbinds
and then rebinds with the newly discovered ‘CN=Alice Baker,OU=Sales,DC=foo,DC=net‘.





Account Name Canonicalization


The accountDomainName and accountDomainNameShort options are used for two purposes: (1) they facilitate
multi-domain authentication and failover capability, and (2) they are also used to canonicalize usernames.
Specifically, names are canonicalized to the form specified by the accountCanonicalForm option. This option may
one of the following values:



Options for accountCanonicalForm






		Name
		Value
		Example





		ACCTNAME_FORM_DN
		1
		CN=Alice Baker,CN=Users,DC=example,DC=com



		ACCTNAME_FORM_USERNAME
		2
		abaker



		ACCTNAME_FORM_BACKSLASH
		3
		EXAMPLE\abaker



		ACCTNAME_FORM_PRINCIPAL
		4
		abaker@example.com







The default canonicalization depends on what account domain name options were supplied. If
accountDomainNameShort was supplied, the default accountCanonicalForm value is ACCTNAME_FORM_BACKSLASH.
Otherwise, if accountDomainName was supplied, the default is ACCTNAME_FORM_PRINCIPAL.


Account name canonicalization ensures that the string used to identify an account is consistent regardless of what
was supplied to bind(). For example, if the user supplies an account name of abaker@example.com or just
abaker and the accountCanonicalForm is set to 3, the resulting canonicalized name would be
EXAMPLEabaker.





Multi-domain Authentication and Failover


The Zend\Ldap\Ldap component by itself makes no attempt to authenticate with multiple servers. However,
Zend\Ldap\Ldap is specifically designed to handle this scenario gracefully. The required technique is to simply
iterate over an array of arrays of serve options and attempt to bind with each server. As described above
bind() will automatically canonicalize each name, so it does not matter if the user passes abaker@foo.net
or Wbcarter or cdavis- the bind() method will only succeed if the credentials were successfully used
in the bind.


Consider the following example that illustrates the technique required to implement multi-domain authentication and
failover:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		$acctname = 'W\\user2';
$password = 'pass2';

$multiOptions = array(
    'server1' => array(
        'host'                   => 's0.foo.net',
        'username'               => 'CN=user1,DC=foo,DC=net',
        'password'               => 'pass1',
        'bindRequiresDn'         => true,
        'accountDomainName'      => 'foo.net',
        'accountDomainNameShort' => 'FOO',
        'accountCanonicalForm'   => 4, // ACCT_FORM_PRINCIPAL
        'baseDn'                 => 'OU=Sales,DC=foo,DC=net',
    ),
    'server2' => array(
        'host'                   => 'dc1.w.net',
        'useSsl'                 => true,
        'username'               => 'user1@w.net',
        'password'               => 'pass1',
        'accountDomainName'      => 'w.net',
        'accountDomainNameShort' => 'W',
        'accountCanonicalForm'   => 4, // ACCT_FORM_PRINCIPAL
        'baseDn'                 => 'CN=Users,DC=w,DC=net',
    ),
);

$ldap = new Zend\Ldap\Ldap();

foreach ($multiOptions as $name => $options) {

    echo "Trying to bind using server options for '$name'\n";

    $ldap->setOptions($options);
    try {
        $ldap->bind($acctname, $password);
        $acctname = $ldap->getCanonicalAccountName($acctname);
        echo "SUCCESS: authenticated $acctname\n";
        return;
    } catch (Zend\Ldap\Exception\LdapException $zle) {
        echo '  ' . $zle->getMessage() . "\n";
        if ($zle->getCode() === Zend\Ldap\Exception\LdapException::LDAP_X_DOMAIN_MISMATCH) {
            continue;
        }
    }
}










If the bind fails for any reason, the next set of server options is tried.


The getCanonicalAccountName() call gets the canonical account name that the application would presumably use to
associate data with such as preferences. The accountCanonicalForm = 4 in all server options ensures that the
canonical form is consistent regardless of which server was ultimately used.


The special LDAP_X_DOMAIN_MISMATCH exception occurs when an account name with a domain component was supplied
(e.g., abaker@foo.net or FOOabaker and not just abaker) but the domain component did not match either
domain in the currently selected server options. This exception indicates that the server is not an authority for
the account. In this case, the bind will not be performed, thereby eliminating unnecessary communication with the
server. Note that the continue instruction has no effect in this example, but in practice for error handling
and debugging purposes, you will probably want to check for LDAP_X_DOMAIN_MISMATCH as well as
LDAP_NO_SUCH_OBJECT and LDAP_INVALID_CREDENTIALS.


The above code is very similar to code used within Zend\Authentication\Adapter\Ldap. In fact, we recommend that you simply use that authentication adapter for
multi-domain + failover LDAP based authentication (or copy the code).










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.navigation.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Navigation Helpers


The navigation helpers are used for rendering navigational elements from Zend_Navigation_Container instances.


There are 5 built-in helpers:



		Breadcrumbs, used for rendering the path to the
currently active page.


		Links, used for rendering navigational head links (e.g.
<link rel="next" href="..." />)


		Menu, used for rendering menus.


		Sitemap, used for rendering sitemaps conforming to the
Sitemaps XML format [http://www.sitemaps.org/protocol.php].


		Navigation, used for proxying calls to other
navigational helpers.





All built-in helpers extend Zend_View_Helper_Navigation_HelperAbstract, which adds integration with ACL and translation. The abstract class implements the interface
Zend_View_Helper_Navigation_Helper, which defines the following methods:



		getContainer() and setContainer() gets and sets the navigation container the helper should operate on by
default, and hasContainer() checks if the helper has container registered.


		getTranslator() and setTranslator() gets and sets the translator used for translating labels and titles.
getUseTranslator() and setUseTranslator() controls whether the translator should be enabled. The method
hasTranslator() checks if the helper has a translator registered.


		getAcl(), setAcl(), getRole() and setRole(), gets and sets ACL (Zend\Permissions\Acl) instance and role
(String or Zend\Permissions\Acl\Role\RoleInterface) used for filtering out pages when rendering. getUseAcl() and
setUseAcl() controls whether ACL should be enabled. The methods hasAcl() and hasRole() checks if
the helper has an ACL instance or a role registered.


		__toString(), magic method to ensure that helpers can be rendered by echoing the helper instance directly.


		render(), must be implemented by concrete helpers to do the actual rendering.





In addition to the method stubs from the interface, the abstract class also implements the following methods:



		getIndent() and setIndent() gets and sets indentation. The setter accepts a String or an Integer.
In the case of an Integer, the helper will use the given number of spaces for indentation. I.e.,
setIndent(4) means 4 initial spaces of indentation. Indentation can be specified for all helpers except the
Sitemap helper.


		getMinDepth() and setMinDepth() gets and sets the minimum depth a page must have to be included by the
helper. Setting NULL means no minimum depth.


		getMaxDepth() and setMaxDepth() gets and sets the maximum depth a page can have to be included by the
helper. Setting NULL means no maximum depth.


		getRenderInvisible() and setRenderInvisible() gets and sets whether to render items that have been marked
as invisible or not.


		__call() is used for proxying calls to the container registered in the helper, which means you can call
methods on a helper as if it was a container. See example below.


		findActive($container, $minDepth, $maxDepth) is used for finding the deepest active page in the given
container. If depths are not given, the method will use the values retrieved from getMinDepth() and
getMaxDepth(). The deepest active page must be between $minDepth and $maxDepth inclusively. Returns
an array containing a reference to the found page instance and the depth at which the page was found.


		htmlify() renders an ‘a’ HTML element from a Zend_Navigation_Page instance.


		accept() is used for determining if a page should be accepted when iterating containers. This method checks
for page visibility and verifies that the helper’s role is allowed access to the page’s resource and privilege.


		The static method setDefaultAcl() is used for setting a default ACL object that will be used by helpers.


		The static method setDefaultRole() is used for setting a default ACL that will be used by helpers





If a navigation container is not explicitly set in a helper using $helper->setContainer($nav), the helper will
look for a container instance with the key Zend_Navigation in the registry. If a
container is not explicitly set or found in the registry, the helper will create an empty Zend_Navigation
container when calling $helper->getContainer().


Proxying calls to the navigation container


Navigation view helpers use the magic method __call() to proxy method calls to the navigation container that is
registered in the view helper.


		1
2
3


		$this->navigation()->addPage(array(
    'type' => 'uri',
    'label' => 'New page'));










The call above will add a page to the container in the Navigation helper.



Translation of labels and titles


The navigation helpers support translation of page labels and titles. You can set a translator of type
Zend\I18n\Translator in the helper using $helper->setTranslator($translator).


If you want to disable translation, use $helper->setUseTranslator(false).


The proxy helper will inject its own translator to the
helper it proxies to if the proxied helper doesn’t already have a translator.



Note


There is no translation in the sitemap helper, since there are no page labels or titles involved in an XML
sitemap.







Integration with ACL


All navigational view helpers support ACL inherently from the class
Zend_View_Helper_Navigation_HelperAbstract. A Zend\Permissions\Acl object can be assigned to a helper instance with
$helper->setAcl($acl), and role with $helper->setRole(‘member’) or $helper->setRole(new
ZendPermissionsAclRoleGenericRole(‘member’)). If ACL is used in the helper, the role in the helper must be allowed by the ACL to
access a page’s resource and/or have the page’s privilege for the page to be included when rendering.


If a page is not accepted by ACL, any descendant page will also be excluded from rendering.


The proxy helper will inject its own ACL and role to the
helper it proxies to if the proxied helper doesn’t already have any.


The examples below all show how ACL affects rendering.





Navigation setup used in examples


This example shows the setup of a navigation container for a fictional software company.


Notes on the setup:



		The domain for the site is www.example.com.


		Interesting page properties are marked with a comment.


		Unless otherwise is stated in other examples, the user is requesting the URL
http://www.example.com/products/server/faq/, which translates to the page labeled FAQ under Foo Server.


		The assumed ACL and router setup is shown below the container setup.





		  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


		/*
 * Navigation container (config/array)

 * Each element in the array will be passed to
 * Zend_Navigation_Page::factory() when constructing
 * the navigation container below.
 */
$pages = array(
    array(
        'label'      => 'Home',
        'title'      => 'Go Home',
        'module'     => 'default',
        'controller' => 'index',
        'action'     => 'index',
        'order'      => -100 // make sure home is the first page
    ),
    array(
        'label'      => 'Special offer this week only!',
        'module'     => 'store',
        'controller' => 'offer',
        'action'     => 'amazing',
        'visible'    => false // not visible
    ),
    array(
        'label'      => 'Products',
        'module'     => 'products',
        'controller' => 'index',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'Foo Server',
                'module'     => 'products',
                'controller' => 'server',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'FAQ',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'faq',
                        'rel'        => array(
                            'canonical' => 'http://www.example.com/?page=faq',
                            'alternate' => array(
                                'module'     => 'products',
                                'controller' => 'server',
                                'action'     => 'faq',
                                'params'     => array('format' => 'xml')
                            )
                        )
                    ),
                    array(
                        'label'      => 'Editions',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'editions'
                    ),
                    array(
                        'label'      => 'System Requirements',
                        'module'     => 'products',
                        'controller' => 'server',
                        'action'     => 'requirements'
                    )
                )
            ),
            array(
                'label'      => 'Foo Studio',
                'module'     => 'products',
                'controller' => 'studio',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'Customer Stories',
                        'module'     => 'products',
                        'controller' => 'studio',
                        'action'     => 'customers'
                    ),
                    array(
                        'label'      => 'Support',
                        'module'     => 'prodcts',
                        'controller' => 'studio',
                        'action'     => 'support'
                    )
                )
            )
        )
    ),
    array(
        'label'      => 'Company',
        'title'      => 'About us',
        'module'     => 'company',
        'controller' => 'about',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'Investor Relations',
                'module'     => 'company',
                'controller' => 'about',
                'action'     => 'investors'
            ),
            array(
                'label'      => 'News',
                'class'      => 'rss', // class
                'module'     => 'company',
                'controller' => 'news',
                'action'     => 'index',
                'pages'      => array(
                    array(
                        'label'      => 'Press Releases',
                        'module'     => 'company',
                        'controller' => 'news',
                        'action'     => 'press'
                    ),
                    array(
                        'label'      => 'Archive',
                        'route'      => 'archive', // route
                        'module'     => 'company',
                        'controller' => 'news',
                        'action'     => 'archive'
                    )
                )
            )
        )
    ),
    array(
        'label'      => 'Community',
        'module'     => 'community',
        'controller' => 'index',
        'action'     => 'index',
        'pages'      => array(
            array(
                'label'      => 'My Account',
                'module'     => 'community',
                'controller' => 'account',
                'action'     => 'index',
                'resource'   => 'mvc:community.account' // resource
            ),
            array(
                'label' => 'Forums',
                'uri'   => 'http://forums.example.com/',
                'class' => 'external' // class
            )
        )
    ),
    array(
        'label'      => 'Administration',
        'module'     => 'admin',
        'controller' => 'index',
        'action'     => 'index',
        'resource'   => 'mvc:admin', // resource
        'pages'      => array(
            array(
                'label'      => 'Write new article',
                'module'     => 'admin',
                'controller' => 'post',
                'aciton'     => 'write'
            )
        )
    )
);

// Create container from array
$container = new Zend_Navigation($pages);

// Store the container in the proxy helper:
$view->getHelper('navigation')->setContainer($container);

// ...or simply:
$view->navigation($container);

// ...or store it in the reigstry:
Zend_Registry::set('Zend_Navigation', $container);










In addition to the container above, the following setup is assumed:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		// Setup router (default routes and 'archive' route):
$front = Zend_Controller_Front::getInstance();
$router = $front->getRouter();
$router->addDefaultRoutes();
$router->addRoute(
    'archive',
    new Zend_Controller_Router_Route(
        '/archive/:year',
        array(
            'module'     => 'company',
            'controller' => 'news',
            'action'     => 'archive',
            'year'       => (int) date('Y') - 1
        ),
        array('year' => '\d+')
    )
);

// Setup ACL:
$acl = new Zend\Permissions\Acl\Acl();
$acl->addRole(new Zend\Permissions\Acl\Role\GenericRole('member'));
$acl->addRole(new Zend\Permissions\Acl\Role\GenericRole('admin'));
$acl->add(new Zend\Permissions\Acl\Resource\GenericResource('mvc:admin'));
$acl->add(new Zend\Permissions\Acl\Resource\GenericResource('mvc:community.account'));
$acl->allow('member', 'mvc:community.account');
$acl->allow('admin', null);

// Store ACL and role in the proxy helper:
$view->navigation()->setAcl($acl)->setRole('member');

// ...or set default ACL and role statically:
Zend_View_Helper_Navigation_HelperAbstract::setDefaultAcl($acl);
Zend_View_Helper_Navigation_HelperAbstract::setDefaultRole('member');













Breadcrumbs Helper


Breadcrumbs are used for indicating where in a sitemap a user is currently browsing, and are typically rendered
like this: “You are here: Home > Products > FantasticProduct 1.0”. The breadcrumbs helper follows the guidelines
from Breadcrumbs Pattern - Yahoo! Design Pattern Library [http://developer.yahoo.com/ypatterns/pattern.php?pattern=breadcrumbs], and allows simple customization (minimum/maximum
depth, indentation, separator, and whether the last element should be linked), or rendering using a partial view
script.


The Breadcrumbs helper works like this; it finds the deepest active page in a navigation container, and renders an
upwards path to the root. For MVC pages, the “activeness” of a page is determined by inspecting the request
object, as stated in the section on Zend_Navigation_Page_Mvc.


The helper sets the minDepth property to 1 by default, meaning breadcrumbs will not be rendered if the deepest
active page is a root page. If maxDepth is specified, the helper will stop rendering when at the specified depth
(e.g. stop at level 2 even if the deepest active page is on level 3).


Methods in the breadcrumbs helper:



		{get|set}Separator() gets/sets separator string that is used between breadcrumbs. Defualt is ‘ &gt; ‘.


		{get|set}LinkLast() gets/sets whether the last breadcrumb should be rendered as an anchor or not. Default is
FALSE.


		{get|set}Partial() gets/sets a partial view script that should be used for rendering breadcrumbs. If a partial
view script is set, the helper’s render() method will use the renderPartial() method. If no partial is
set, the renderStraight() method is used. The helper expects the partial to be a String or an Array
with two elements. If the partial is a String, it denotes the name of the partial script to use. If it is an
Array, the first element will be used as the name of the partial view script, and the second element is the
module where the script is found.


		renderStraight() is the default render method.


		renderPartial() is used for rendering using a partial view script.





Rendering breadcrumbs


This example shows how to render breadcrumbs with default settings.


		1
2
3
4
5
6
7
8
9


		In a view script or layout:
<?php echo $this->navigation()->breadcrumbs(); ?>

The two calls above take advantage of the magic __toString() method,
and are equivalent to:
<?php echo $this->navigation()->breadcrumbs()->render(); ?>

Output:
<a href="/products">Products</a> > <a href="/products/server">Foo Server</a> > FAQ










Specifying indentation


This example shows how to render breadcrumbs with initial indentation.


		1
2
3
4
5


		Rendering with 8 spaces indentation:
<?php echo $this->navigation()->breadcrumbs()->setIndent(8);?>

Output:
        <a href="/products">Products</a> > <a href="/products/server">Foo Server</a> > FAQ










Customize breadcrumbs output


This example shows how to customze breadcrumbs output by specifying various options.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		In a view script or layout:

<?php
echo $this->navigation()
          ->breadcrumbs()
          ->setLinkLast(true)                   // link last page
          ->setMaxDepth(1)                      // stop at level 1
          ->setSeparator(' ▶' . PHP_EOL); // cool separator with newline
?>

Output:
<a href="/products">Products</a> ▶
<a href="/products/server">Foo Server</a>

/////////////////////////////////////////////////////

Setting minimum depth required to render breadcrumbs:

<?php
$this->navigation()->breadcrumbs()->setMinDepth(10);
echo $this->navigation()->breadcrumbs();
?>

Output:
Nothing, because the deepest active page is not at level 10 or deeper.










Rendering breadcrumbs using a partial view script


This example shows how to render customized breadcrumbs using a partial vew script. By calling setPartial(),
you can specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will find the deepest active page and pass an array of pages
that leads to the active page to the partial view script.


In a layout:


		1
2
3


		$partial = ;
echo $this->navigation()->breadcrumbs()
                        ->setPartial(array('breadcrumbs.phtml', 'default'));










Contents of application/modules/default/views/breadcrumbs.phtml:


		1
2
3


		echo implode(', ', array_map(
        create_function('$a', 'return $a->getLabel();'),
        $this->pages));










Output:


		1


		Products, Foo Server, FAQ













Links Helper


The links helper is used for rendering HTML LINK elements. Links are used for describing document
relationships of the currently active page. Read more about links and link types at Document relationships: the
LINK element (HTML4 W3C Rec.) [http://www.w3.org/TR/html4/struct/links.html#h-12.3] and Link types (HTML4 W3C Rec.) [http://www.w3.org/TR/html4/types.html#h-6.12] in the HTML4 W3C Recommendation.


There are two types of relations; forward and reverse, indicated by the keyords ‘rel’ and ‘rev’. Most methods
in the helper will take a $rel param, which must be either ‘rel’ or ‘rev’. Most methods also take a
$type param, which is used for specifying the link type (e.g. alternate, start, next, prev, chapter, etc).


Relationships can be added to page objects manually, or found by traversing the container registered in the helper.
The method findRelation($page, $rel, $type) will first try to find the given $rel of $type from the
$page by calling $page->findRel($type) or $page->findRel($type). If the $page has a relation that can
be converted to a page instance, that relation will be used. If the $page instance doesn’t have the specified
$type, the helper will look for a method in the helper named search$rel$type (e.g. searchRelNext() or
searchRevAlternate()). If such a method exists, it will be used for determining the $page‘s relation by
traversing the container.


Not all relations can be determined by traversing the container. These are the relations that will be found by
searching:



		searchRelStart(), forward ‘start’ relation: the first page in the container.


		searchRelNext(), forward ‘next’ relation; finds the next page in the container, i.e. the page after the
active page.


		searchRelPrev(), forward ‘prev’ relation; finds the previous page, i.e. the page before the active page.


		searchRelChapter(), forward ‘chapter’ relations; finds all pages on level 0 except the ‘start’ relation or
the active page if it’s on level 0.


		searchRelSection(), forward ‘section’ relations; finds all child pages of the active page if the active page
is on level 0 (a ‘chapter’).


		searchRelSubsection(), forward ‘subsection’ relations; finds all child pages of the active page if the active
pages is on level 1 (a ‘section’).


		searchRevSection(), reverse ‘section’ relation; finds the parent of the active page if the active page is on
level 1 (a ‘section’).


		searchRevSubsection(), reverse ‘subsection’ relation; finds the parent of the active page if the active page
is on level 2 (a ‘subsection’).






Note


When looking for relations in the page instance ($page->getRel($type) or $page->getRev($type)), the helper
accepts the values of type String, Array, Zend_Config, or Zend_Navigation_Page. If a string is
found, it will be converted to a Zend_Navigation_Page_Uri. If an array or a config is found, it will be
converted to one or several page instances. If the first key of the array/config is numeric, it will be
considered to contain several pages, and each element will be passed to the page factory. If the first key is not numeric, the array/config will be passed to the page
factory directly, and a single page will be returned.




The helper also supports magic methods for finding relations. E.g. to find forward alternate relations, call
$helper->findRelAlternate($page), and to find reverse section relations, call $helper->findRevSection($page).
Those calls correspond to $helper->findRelation($page, ‘rel’, ‘alternate’); and $helper->findRelation($page,
‘rev’, ‘section’); respectively.


To customize which relations should be rendered, the helper uses a render flag. The render flag is an integer
value, and will be used in a bitwse and (&) operation [http://php.net/manual/en/language.operators.bitwise.php] against the helper’s render constants to determine if the
relation that belongs to the render constant should be rendered.


See the example below for more information.



		Zend_View_Helper_Navigation_Link::RENDER_ALTERNATE


		Zend_View_Helper_Navigation_Link::RENDER_STYLESHEET


		Zend_View_Helper_Navigation_Link::RENDER_START


		Zend_View_Helper_Navigation_Link::RENDER_NEXT


		Zend_View_Helper_Navigation_Link::RENDER_PREV


		Zend_View_Helper_Navigation_Link::RENDER_CONTENTS


		Zend_View_Helper_Navigation_Link::RENDER_INDEX


		Zend_View_Helper_Navigation_Link::RENDER_GLOSSARY


		Zend_View_Helper_Navigation_Link::RENDER_COPYRIGHT


		Zend_View_Helper_Navigation_Link::RENDER_CHAPTER


		Zend_View_Helper_Navigation_Link::RENDER_SECTION


		Zend_View_Helper_Navigation_Link::RENDER_SUBSECTION


		Zend_View_Helper_Navigation_Link::RENDER_APPENDIX


		Zend_View_Helper_Navigation_Link::RENDER_HELP


		Zend_View_Helper_Navigation_Link::RENDER_BOOKMARK


		Zend_View_Helper_Navigation_Link::RENDER_CUSTOM


		Zend_View_Helper_Navigation_Link::RENDER_ALL





The constants from RENDER_ALTERNATE to RENDER_BOOKMARK denote standard HTML link types. RENDER_CUSTOM
denotes non-standard relations that specified in pages. RENDER_ALL denotes standard and non-standard relations.


Methods in the links helper:



		{get|set}RenderFlag() gets/sets the render flag. Default is RENDER_ALL. See examples below on how to set
the render flag.


		findAllRelations() finds all relations of all types for a given page.


		findRelation() finds all relations of a given type from a given page.


		searchRel{Start|Next|Prev|Chapter|Section|Subsection}() traverses a container to find forward relations to the
start page, the next page, the previous page, chapters, sections, and subsections.


		searchRev{Section|Subsection}() traverses a container to find reverse relations to sections or subsections.


		renderLink() renders a single link element.





Specify relations in pages


This example shows how to specify relations in pages.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


		$container = new Zend_Navigation(array(
    array(
        'label' => 'Relations using strings',
        'rel'   => array(
            'alternate' => 'http://www.example.org/'
        ),
        'rev'   => array(
            'alternate' => 'http://www.example.net/'
        )
    ),
    array(
        'label' => 'Relations using arrays',
        'rel'   => array(
            'alternate' => array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            )
        )
    ),
    array(
        'label' => 'Relations using configs',
        'rel'   => array(
            'alternate' => new Zend_Config(array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            ))
        )
    ),
    array(
        'label' => 'Relations using pages instance',
        'rel'   => array(
            'alternate' => Zend_Navigation_Page::factory(array(
                'label' => 'Example.org',
                'uri'   => 'http://www.example.org/'
            ))
        )
    )
));










Default rendering of links


This example shows how to render a menu from a container registered/found in the view helper.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		In a view script or layout:
<?php echo $this->view->navigation()->links(); ?>

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="chapter" href="/products" title="Products">
<link rel="chapter" href="/company/about" title="Company">
<link rel="chapter" href="/community" title="Community">
<link rel="canonical" href="http://www.example.com/?page=server-faq">
<link rev="subsection" href="/products/server" title="Foo Server">










Specify which relations to render


This example shows how to specify which relations to find and render.


		1
2
3
4
5
6
7
8
9


		Render only start, next, and prev:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_START |
                       Zend_View_Helper_Navigation_Links::RENDER_NEXT |
                       Zend_View_Helper_Navigation_Links::RENDER_PREV);

Output:
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		Render only native link types:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
                       Zend_View_Helper_Navigation_Links::RENDER_CUSTOM);

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="chapter" href="/products" title="Products">
<link rel="chapter" href="/company/about" title="Company">
<link rel="chapter" href="/community" title="Community">
<link rev="subsection" href="/products/server" title="Foo Server">










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		Render all but chapter:
$helper->setRenderFlag(Zend_View_Helper_Navigation_Links::RENDER_ALL ^
                       Zend_View_Helper_Navigation_Links::RENDER_CHAPTER);

Output:
<link rel="alternate" href="/products/server/faq/format/xml">
<link rel="start" href="/" title="Home">
<link rel="next" href="/products/server/editions" title="Editions">
<link rel="prev" href="/products/server" title="Foo Server">
<link rel="canonical" href="http://www.example.com/?page=server-faq">
<link rev="subsection" href="/products/server" title="Foo Server">













Menu Helper


The Menu helper is used for rendering menus from navigation containers. By default, the menu will be rendered using
HTML UL and LI tags, but the helper also allows using a partial view script.


Methods in the Menu helper:



		{get|set}UlClass() gets/sets the CSS class used in renderMenu().





		{get|set}OnlyActiveBranch() gets/sets a flag specifying whether only the active branch of a container should be
rendered.





		{get|set}RenderParents() gets/sets a flag specifying whether parents should be rendered when only rendering
active branch of a container. If set to FALSE, only the deepest active menu will be rendered.





		{get|set}Partial() gets/sets a partial view script that should be used for rendering menu. If a partial view
script is set, the helper’s render() method will use the renderPartial() method. If no partial is set,
the renderMenu() method is used. The helper expects the partial to be a String or an Array with two
elements. If the partial is a String, it denotes the name of the partial script to use. If it is an
Array, the first element will be used as the name of the partial view script, and the second element is the
module where the script is found.





		htmlify() overrides the method from the abstract class to return span elements if the page has no href.





		renderMenu($container = null, $options = array()) is the default render method, and will render a container
as a HTML UL list.


If $container is not given, the container registered in the helper will be rendered.


$options is used for overriding options specified temporarily without rsetting the values in the helper
instance. It is an associative array where each key corresponds to an option in the helper.


Recognized options:



		indent; indentation. Expects a String or an int value.


		minDepth; minimum depth. Expcects an int or NULL (no minimum depth).


		maxDepth; maximum depth. Expcects an int or NULL (no maximum depth).


		ulClass; CSS class for ul element. Expects a String.


		onlyActiveBranch; whether only active branch should be rendered. Expects a Boolean value.


		renderParents; whether parents should be rendered if only rendering active branch. Expects a Boolean
value.





If an option is not given, the value set in the helper will be used.





		renderPartial() is used for rendering the menu using a partial view script.





		renderSubMenu() renders the deepest menu level of a container’s active branch.








Rendering a menu


This example shows how to render a menu from a container registered/found in the view helper. Notice how pages are
filtered out based on visibility and ACL.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


		In a view script or layout:
<?php echo $this->navigation()->menu()->render() ?>

Or simply:
<?php echo $this->navigation()->menu() ?>

Output:
<ul class="navigation">
    <li>
        <a title="Go Home" href="/">Home</a>
    </li>
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
                <ul>
                    <li class="active">
                        <a href="/products/server/faq">FAQ</a>
                    </li>
                    <li>
                        <a href="/products/server/editions">Editions</a>
                    </li>
                    <li>
                        <a href="/products/server/requirements">System Requirements</a>
                    </li>
                </ul>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
                <ul>
                    <li>
                        <a href="/products/studio/customers">Customer Stories</a>
                    </li>
                    <li>
                        <a href="/prodcts/studio/support">Support</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
    <li>
        <a title="About us" href="/company/about">Company</a>
        <ul>
            <li>
                <a href="/company/about/investors">Investor Relations</a>
            </li>
            <li>
                <a class="rss" href="/company/news">News</a>
                <ul>
                    <li>
                        <a href="/company/news/press">Press Releases</a>
                    </li>
                    <li>
                        <a href="/archive">Archive</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community">Community</a>
        <ul>
            <li>
                <a href="/community/account">My Account</a>
            </li>
            <li>
                <a class="external" href="http://forums.example.com/">Forums</a>
            </li>
        </ul>
    </li>
</ul>










Calling renderMenu() directly


This example shows how to render a menu that is not registered in the view helper by calling the renderMenu()
directly and specifying a few options.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		<?php
// render only the 'Community' menu
$community = $this->navigation()->findOneByLabel('Community');
$options = array(
    'indent'  => 16,
    'ulClass' => 'community'
);
echo $this->navigation()
          ->menu()
          ->renderMenu($community, $options);
?>
Output:
                <ul class="community">
                    <li>
                        <a href="/community/account">My Account</a>
                    </li>
                    <li>
                        <a class="external" href="http://forums.example.com/">Forums</a>
                    </li>
                </ul>










Rendering the deepest active menu


This example shows how the renderSubMenu() will render the deepest sub menu of the active branch.


Calling renderSubMenu($container, $ulClass, $indent) is equivalent to calling renderMenu($container,
$options) with the following options:


		1
2
3
4
5
6
7
8


		array(
    'ulClass'          => $ulClass,
    'indent'           => $indent,
    'minDepth'         => null,
    'maxDepth'         => null,
    'onlyActiveBranch' => true,
    'renderParents'    => false
);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18


		<?php
echo $this->navigation()
          ->menu()
          ->renderSubMenu(null, 'sidebar', 4);
?>

The output will be the same if 'FAQ' or 'Foo Server' is active:
    <ul class="sidebar">
        <li class="active">
            <a href="/products/server/faq">FAQ</a>
        </li>
        <li>
            <a href="/products/server/editions">Editions</a>
        </li>
        <li>
            <a href="/products/server/requirements">System Requirements</a>
        </li>
    </ul>










Rendering a menu with maximum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


		<?php
echo $this->navigation()
          ->menu()
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li>
        <a title="Go Home" href="/">Home</a>
    </li>
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
            </li>
        </ul>
    </li>
    <li>
        <a title="About us" href="/company/about">Company</a>
        <ul>
            <li>
                <a href="/company/about/investors">Investor Relations</a>
            </li>
            <li>
                <a class="rss" href="/company/news">News</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community">Community</a>
        <ul>
            <li>
                <a href="/community/account">My Account</a>
            </li>
            <li>
                <a class="external" href="http://forums.example.com/">Forums</a>
            </li>
        </ul>
    </li>
</ul>










Rendering a menu with minimum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


		<?php
echo $this->navigation()
          ->menu()
          ->setMinDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
        <ul>
            <li class="active">
                <a href="/products/server/faq">FAQ</a>
            </li>
            <li>
                <a href="/products/server/editions">Editions</a>
            </li>
            <li>
                <a href="/products/server/requirements">System Requirements</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/products/studio">Foo Studio</a>
        <ul>
            <li>
                <a href="/products/studio/customers">Customer Stories</a>
            </li>
            <li>
                <a href="/prodcts/studio/support">Support</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/company/about/investors">Investor Relations</a>
    </li>
    <li>
        <a class="rss" href="/company/news">News</a>
        <ul>
            <li>
                <a href="/company/news/press">Press Releases</a>
            </li>
            <li>
                <a href="/archive">Archive</a>
            </li>
        </ul>
    </li>
    <li>
        <a href="/community/account">My Account</a>
    </li>
    <li>
        <a class="external" href="http://forums.example.com/">Forums</a>
    </li>
</ul>










Rendering only the active branch of a menu


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
                <ul>
                    <li class="active">
                        <a href="/products/server/faq">FAQ</a>
                    </li>
                    <li>
                        <a href="/products/server/editions">Editions</a>
                    </li>
                    <li>
                        <a href="/products/server/requirements">System Requirements</a>
                    </li>
                </ul>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with minimum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setMinDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
        <ul>
            <li class="active">
                <a href="/products/server/faq">FAQ</a>
            </li>
            <li>
                <a href="/products/server/editions">Editions</a>
            </li>
            <li>
                <a href="/products/server/requirements">System Requirements</a>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with maximum depth


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products">Products</a>
        <ul>
            <li class="active">
                <a href="/products/server">Foo Server</a>
            </li>
            <li>
                <a href="/products/studio">Foo Studio</a>
            </li>
        </ul>
    </li>
</ul>










Rendering only the active branch of a menu with maximum depth and no parents


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		<?php
echo $this->navigation()
          ->menu()
          ->setOnlyActiveBranch(true)
          ->setRenderParents(false)
          ->setMaxDepth(1);
?>

Output:
<ul class="navigation">
    <li class="active">
        <a href="/products/server">Foo Server</a>
    </li>
    <li>
        <a href="/products/studio">Foo Studio</a>
    </li>
</ul>










Rendering a custom menu using a partial view script


This example shows how to render a custom menu using a partial vew script. By calling setPartial(), you can
specify a partial view script that will be used when calling render(). When a partial is specified, the
renderPartial() method will be called. This method will assign the container to the view with the key
container.


In a layout:


		1
2
3


		$partial = array('menu.phtml', 'default');
$this->navigation()->menu()->setPartial($partial);
echo $this->navigation()->menu()->render();










In application/modules/default/views/menu.phtml:


		1
2
3


		foreach ($this->container as $page) {
    echo $this->navigation()->menu()->htmlify($page), PHP_EOL;
}










Output:


		1
2
3
4


		<a title="Go Home" href="/">Home</a>
<a href="/products">Products</a>
<a title="About us" href="/company/about">Company</a>
<a href="/community">Community</a>













Sitemap Helper


The Sitemap helper is used for generating XML sitemaps, as defined by the Sitemaps XML format [http://www.sitemaps.org/protocol.php]. Read more about
Sitemaps on Wikpedia [http://en.wikipedia.org/wiki/Sitemaps].


By default, the sitemap helper uses sitemap validators to validate each element
that is rendered. This can be disabled by calling $helper->setUseSitemapValidators(false).



Note


If you disable sitemap validators, the custom properties (see table) are not validated at all.




The sitemap helper also supports Sitemap XSD Schema [http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd] validation of the generated sitemap. This is disabled by
default, since it will require a request to the Schema file. It can be enabled with
$helper->setUseSchemaValidation(true).



Sitemap XML elements





		Element
		Description





		loc
		Absolute URL to page. An absolute URL will be generated by the helper.



		lastmod
		The date of last modification of the file, in W3C Datetime format. This time portion can be omitted if desired, and only use YYYY-MM-DD. The helper will try to retrieve the lastmod value from the page’s custom property lastmod if it is set in the page. If the value is not a valid date, it is ignored.



		changefreq
		How frequently the page is likely to change. This value provides general information to search engines and may not correlate exactly to how often they crawl the page. Valid values are: alwayshourlydailyweeklymonthlyyearlynever The helper will try to retrieve the changefreq value from the page’s custom property changefreq if it is set in the page. If the value is not valid, it is ignored.



		priority
		The priority of this URL relative to other URLs on your site. Valid values range from 0.0 to 1.0. The helper will try to retrieve the priority value from the page’s custom property priority if it is set in the page. If the value is not valid, it is ignored.







Methods in the sitemap helper:



		{get|set}FormatOutput() gets/sets a flag indicating whether XML output should be formatted. This corresponds
to the formatOutput property of the native DOMDocument class. Read more at PHP: DOMDocument - Manual [http://php.net/domdocument].
Default is FALSE.


		{get|set}UseXmlDeclaration() gets/sets a flag indicating whether the XML declaration should be included when
rendering. Default is TRUE.


		{get|set}UseSitemapValidators() gets/sets a flag indicating whether sitemap validators should be used when
generating the DOM sitemap. Default is TRUE.


		{get|set}UseSchemaValidation() gets/sets a flag indicating whether the helper should use XML Schema
validation when generating the DOM sitemap. Default is FALSE. If TRUE.


		{get|set}ServerUrl() gets/sets server URL that will be prepended to non-absolute URLs in the url()
method. If no server URL is specified, it will be determined by the helper.


		url() is used to generate absolute URLs to pages.


		getDomSitemap() generates a DOMDocument from a given container.





Rendering an XML sitemap


This example shows how to render an XML sitemap based on the setup we did further up.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		// In a view script or layout:

// format output
$this->navigation()
      ->sitemap()
      ->setFormatOutput(true); // default is false

// other possible methods:
// ->setUseXmlDeclaration(false); // default is true
// ->setServerUrl('http://my.otherhost.com');
// default is to detect automatically

// print sitemap
echo $this->navigation()->sitemap();










Notice how pages that are invisible or pages with ACL roles incompatible with the view helper are filtered out:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/faq</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/editions</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/requirements</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio/customers</loc>
  </url>
  <url>
    <loc>http://www.example.com/prodcts/studio/support</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news/press</loc>
  </url>
  <url>
    <loc>http://www.example.com/archive</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://www.example.com/community/account</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>










Render the sitemap using no ACL role (should filter out /community/account):


		1
2
3
4


		echo $this->navigation()
          ->sitemap()
          ->setFormatOutput(true)
          ->setRole();










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/faq</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/editions</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server/requirements</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio/customers</loc>
  </url>
  <url>
    <loc>http://www.example.com/prodcts/studio/support</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news/press</loc>
  </url>
  <url>
    <loc>http://www.example.com/archive</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>










Render the sitemap using a maximum depth of 1.


		1
2
3
4


		echo $this->navigation()
          ->sitemap()
          ->setFormatOutput(true)
          ->setMaxDepth(1);










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


		<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/</loc>
  </url>
  <url>
    <loc>http://www.example.com/products</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/server</loc>
  </url>
  <url>
    <loc>http://www.example.com/products/studio</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/about/investors</loc>
  </url>
  <url>
    <loc>http://www.example.com/company/news</loc>
  </url>
  <url>
    <loc>http://www.example.com/community</loc>
  </url>
  <url>
    <loc>http://www.example.com/community/account</loc>
  </url>
  <url>
    <loc>http://forums.example.com/</loc>
  </url>
</urlset>











Note


UTF-8 encoding used by default


By default, Zend Framework uses UTF-8 as its default encoding, and, specific to this case, Zend_View does
as well. Character encoding can be set differently on the view object itself using the setEncoding() method
(or the the encoding instantiation parameter). However, since Zend_View_Interface does not define
accessors for encoding, it’s possible that if you are using a custom view implementation with the Dojo view
helper, you will not have a getEncoding() method, which is what the view helper uses internally for
determining the character set in which to encode.


If you do not want to utilize UTF-8 in such a situation, you will need to implement a getEncoding() method
in your custom view implementation.







Navigation Helper


The Navigation helper is a proxy helper that relays calls to other navigational helpers. It can be considered an
entry point to all navigation-related view tasks. The aforementioned navigational helpers are in the namespace
Zend_View_Helper_Navigation, and would thus require the path Zend/View/Helper/Navigation to be added as a
helper path to the view. With the proxy helper residing in the Zend_View_Helper namespace, it will always be
available, without the need to add any helper paths to the view.


The Navigation helper finds other helpers that implement the Zend_View_Helper_Navigation_Helper interface,
which means custom view helpers can also be proxied. This would, however, require that the custom helper path is
added to the view.


When proxying to other helpers, the Navigation helper can inject its container, ACL/role, and translator. This
means that you won’t have to explicitly set all three in all navigational helpers, nor resort to injecting by means
of Zend_Registry or static methods.



		findHelper() finds the given helper, verifies that it is a navigational helper, and injects container,
ACL/role and translator.


		{get|set}InjectContainer() gets/sets a flag indicating whether the container should be injected to proxied
helpers. Default is TRUE.


		{get|set}InjectAcl() gets/sets a flag indicating whether the ACL/role should be injected to proxied helpers.
Default is TRUE.


		{get|set}InjectTranslator() gets/sets a flag indicating whether the translator should be injected to proxied
helpers. Default is TRUE.


		{get|set}DefaultProxy() gets/sets the default proxy. Default is ‘menu’.


		render() proxies to the render method of the default proxy.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Navigation Helpers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.view.helper.translate.plural.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
TranslatePlural Helper


The TranslatePlural view helper can be used to translate words which take into account numeric meanings.
English, for example, has a singular definition of “car”, for one car. And has the plural definition, “cars”,
meaning zero “cars” or more than one car. Other languages like Russian or Polish have more plurals with different
rules.


The viewhelper acts as a wrapper for the Zend\I18n\Translator\Translator class.


Setup


Before using the TranslatePlural view helper, you must have first created a Translator object and
have attached it to the view helper. If you use the Zend\View\HelperPluginManager to invoke the view helper,
this will be done automatically for you.


Basic Usage


		1
2
3
4
5
6
7
8


		// Within your view
echo $this->translatePlural("car", "cars", $num);

// Use a custom domain
echo $this->translatePlural("monitor", "monitors", $num, "customDomain");

// Change locale
echo $this->translate("locale", "locales", $num, "default", "de_DE");











		
translatePlural(string $singular, string $plural, int $number[, string $textDomain[, string $locale]])


		



		Parameters:		
		$singular – The singular message to be translated.


		$plural – The plural message to be translated.


		$number – The number to evaluate and determine which message to use.


		$textDomain – (Optional) The text domain where this translation lives. Defaults to the value “default”.


		$locale – (Optional) Locale in which the message would be translated (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods



		Public methods for setting a Zend\I18n\Translator\Translator and a default text domain are inherited from


		Zend\I18n\View\Helper\AbstractTranslatorHelper.









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                TranslatePlural Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.string-to-lower.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
StringToLower


This filter converts any input to be lowercased.



Supported options for Zend_Filter_StringToLower


The following options are supported for Zend_Filter_StringToLower:



		encoding: This option can be used to set an encoding which has to be used.








Basic usage


This is a basic example:


		1
2
3
4


		$filter = new Zend_Filter_StringToLower();

print $filter->filter('SAMPLE');
// returns "sample"













Different encoded strings


Per default it will only handle characters from the actual locale of your server. Characters from other charsets
would be ignored. Still, it’s possible to also lowercase them when the mbstring extension is available in your
environment. Simply set the wished encoding when initiating the StringToLower filter. Or use the
setEncoding() method to change the encoding afterwards.


		1
2
3
4
5
6
7
8


		// using UTF-8
$filter = new Zend_Filter_StringToLower('UTF-8');

// or give an array which can be useful when using a configuration
$filter = new Zend_Filter_StringToLower(array('encoding' => 'UTF-8'));

// or do this afterwards
$filter->setEncoding('ISO-8859-1');











Note


Setting wrong encodings


Be aware that you will get an exception when you want to set an encoding and the mbstring extension is not
available in your environment.


Also when you are trying to set an encoding which is not supported by your mbstring extension you will get an
exception.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                StringToLower
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.rackspace.files.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Service\Rackspace\Files



Overview


The Zend\Service\Rackspace\Files is a class that provides a simple API to manage the Rackspace Cloud
Files [http://www.rackspace.com/cloud/cloud_hosting_products/files/].





Quick Start


To use this class you have to pass the username and the API’s key of Rackspace in the construction of the class.


		1
2
3
4


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user,$key);










A container is a storage compartment for your data and provides a way for you to organize your data. You can think
of a container as a folder in Windows® or a directory in UNIX®. The primary difference between a container and
these other file system concepts is that containers cannot be nested. You can, however, create an unlimited number
of containers within your account. Data must be stored in a container so you must have at least one container
defined in your account prior to uploading data.


The only restrictions on container names is that they cannot contain a forward slash (/) and must be less than 256
bytes in length (please note that the length restriction applies to the name using the URL encoded format).


The containers are managed using the class Zend\Service\Rackspace\Files\Container.


An object (file) is the basic storage entity and any optional metadata that represents the files you store in the
Cloud Files system. When you upload data to Cloud Files, the data is stored as-is (no compression or encryption)
and consists of a location (container), the object’s name, and any metadata consisting of key/value pairs. For
instance, you may chose to store a backup of your digital photos and organize them into albums. In this case, each
object could be tagged with metadata such as Album : Caribbean Cruise or Album : Aspen Ski Trip.


The only restriction on object names is that they must be less than 1024 bytes in length after URL encoding. Cloud
Files has a limit on the size of a single uploaded object; by default this is 5 GB. For metadata, you should not
exceed 90 individual key/value pairs for any one object and the total byte length of all key/value pairs should not
exceed 4KB (4096 bytes).


The objects are managed using the class Zend\Service\Rackspace\Files\Object.


To create a new container you can use the createContainer method.


		1
2
3
4
5
6
7


		$container= $rackspace->createContainer('test');

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

printf("Name: %s",$container->getName());










This example create a container with name test. The result of createContainer is a new instance of
Zend\Service\Rackspace\Files\Container.


To store an object (file) in a container you can use the storeObject method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		$name= 'example.jpg';
$file= file_get_contents($name);

$metadata= array (
    'foo' => 'bar'
);

$rackspace->storeObject('test',$name,$file,$metadata);

if ($rackspace->isSuccessful()) {
    echo 'Object stored successfully';
} else {
    printf("ERROR: %s",$rackspace->getErrorMsg());
}










This example store a file image example.jpg in the container test with the metadata specified in the array
$metadata.


To delete an object (file) you can use the deleteObject method.


		1
2
3
4
5
6
7


		$rackspace->deleteObject('test','example.jpg');

if ($rackspace->isSuccessful()) {
    echo 'Object deleted successfully';
} else {
    printf("ERROR: %s",$rackspace->getErrorMsg());
}










This example delete the object example.jpg in the container test.


To publish a container as CDN (Content Delivery Network) you can use the enableCdnContainer method.


		1
2
3
4
5
6
7


		$cdnInfo= $rackspace->enableCdnContainer('test');

if ($rackspace->isSuccessful()) {
    print_r($cdnInfo);
} else {
    printf("ERROR: %s",$rackspace->getErrorMsg());
}










This example publish the container test as CDN. If the operation is successfull returns an associative arrays
with the following values:



		cdn_uri, the url of the CDN container;


		cdn_uri_ssl, the ssl url of the CDN container;








Available Methods



		copyObject


		copyObject(string $container_source,string $obj_source,string $container_dest,string $obj_dest,$metadata=array(),string $content_type=null)


Copy an object from a container to another. The return is true in case of success and false in case of
error.


The $container_source is the name of the source container.


The $obj_source is the name of the source object.


The $container_dest is the name of the destination container.


The $obj_dest is the name of the destination object.


The $metadata array contains the metadata information related to the destination object.


The $content_type is the optional content type of the destination object (file).









		createContainer


		createContainer(string $container, $metadata=array())


Create a container. The return is an instance of Zend\Service\Rackspace\Files\Container. In case of error
the return is false.


The $container is the name of the container to create.


The $metadata array contains the metadata information related to the container.









		deleteContainer


		deleteContainer(string $container)


Delete a container. The return is true in case of success and false in case of error.


The $container is the name of the container to delete.









		deleteObject


		deleteObject(string $container,string $object)


Delete an object in a specific container. Return true in case of success, false in case of error.


The $container is the name of the container.


The $object is the name of the object to delete.









		enableCdnContainer


		enableCdnContainer(string $container,integer $ttl=900)


Publish a container as CDN (Content Delivery Network). Return an associative array contains the CDN url and
SSL url. In case of error the return is false.


The $container is the name of the container.


The $ttl is the time to live for the CDN cache content. The default value is 15 minutes (900 seconds). The
minimum TTL that can be set is 15 minutes (900 seconds); the maximum TTL is 50 years (range of 900 to 1577836800
seconds).









		getCdnContainers


		getCdnContainers($options=array())


Returns all the CDN containers available. The return is an instance of
Zend\Service\Rackspace\Files\ContainerList. In case of error the return is false.


The $options contains the following optional parameters:




		limit, for an integer value n, limits the number of results to at most n values.


		marker, given a string value x, return object names greater in value than the specified marker.
















		getContainers


		getContainers($options=array())


Returns all the containers available. The return is an instance of
Zend\Service\Rackspace\Files\ContainerList In case of error the return is false.


The $options contains the following optional parameters:




		limit, for an integer value n, limits the number of results to at most n values.


		marker, given a string value x, return object names greater in value than the specified marker.
















		getContainer


		getContainer(string $container)


Returns the container specified as instance of Zend\Service\Rackspace\Files\Container In case of error the
return is false.


The $container is the name of the container.









		getCountContainers


		getCountContainers()


Return the total count of containers.









		getCountObjects


		getCountObjects()


Return the count of objects contained in all the containers.









		getInfoCdnContainer


		getInfoCdnContainer(string $container)


Get the information of a CDN container. The result is an associative array with all the CDN information. In case
of error the return is false.


The $container is the name of the container.









		getInfoContainers


		getInfoContainers()


Get the information about all the containers available. Return an associative array with the following values:




		tot_containers, the total number of containers stored


		size_containers, the total size, in byte, of all the containers.


		tot_objects, the total number of objects (file) stored in all the containers.









In case of error the return is false.









		getMetadataContainer


		getMetadataContainer(string $container)


Get the metadata information of a container. The result is an associative array with all the metadata
keys/values. In case of error the return is false.


The $container is the name of the container.









		getMetadataObject


		getMetadataObject(string $container, string $object)


Get the metadata information of an object. The result is an associative array with all the metadata keys/values.
In case of error the return is false.


The $container is the name of the container.


The $object is the name of the object.









		getObjects


		getObjects(string $container, $options=array())


Returns all the objects of a container. The return is an instance of Zend\Service\Rackspace\Files\ObjectList
In case of error the return is false.


The $container is the name of the container.


The $options contains the following optional parameters:




		limit, for an integer value n, limits the number of results to at most n values.


		marker, given a string value x, return object names greater in value than the specified marker.


		prefix, for a string value x, causes the results to be limited to object names beginning with the
substring x.


		path, for a string value x, return the object names nested in the pseudo path.


		delimiter, for a character c, return all the object names nested in the container (without the need for
the directory marker objects).
















		getObject


		getObject(string $container, string $object, $headers=array())


Returns an object of a container. The return is an instance of Zend\Service\Rackspace\Files\Object In case
of error the return is false.


The $container is the name of the container.


The $object is the name of the object.


The $headers contains the following optional parameters (See the RFC-2616 [http://www.ietf.org/rfc/rfc2616.txt] for more info):




		If-Match, a client that has one or more entities previously obtained from the resource can verify that
one of those entities is current by including a list of their associated entity tags in the If-Match header
field.





		If-None-Match, a client that has one or more entities previously obtained from the resource can verify
that none of those entities is current by including a list of their associated entity tags in the
If-None-Match header field.





		If-Modified-Since, if the requested variant has not been modified since the time specified in this
field, an entity will not be returned from the server.





		If-Unmodified-Since, if the requested resource has not been modified since the time specified in this
field, the server SHOULD perform the requested operation as if the If-Unmodified-Since header were not
present.





		Range, Rackspace supports a sub-set of Range and do not adhere to the full RFC-2616 specification. We
support specifying OFFSET-LENGTH where either OFFSET or LENGTH can be optional (not both at the same time).
The following are supported forms of the header:




		Range: bytes=-5, last five bytes of the object


		Range: bytes=10-15, the five bytes after a 10-byte offset


		Range: bytes=32-, all data after the first 32 bytes of the object


























		getSizeContainers


		getSizeContainers()


Return the size, in bytes, of all the containers.









		setMetadataObject


		setMetadataObject(string $container,string $object, array $metadata)


Update metadata information to the object (all the previous metadata will be deleted). Return true in case
of success, false in case of error.


The $container is the name of the container.


The $object is the name of the object to store.


The $metadata array contains the metadata information related to the object.









		storeObject


		storeObject(string $container,string $object,string $file,$metadata=array())


Store an object in a specific container. Return true in case of success, false in case of error.


The $container is the name of the container.


The $object is the name of the object to store.


The $file is the content of the object to store.


The $metadata array contains the metadata information related to the object to store.









		updateCdnContainer


		updateCdnContainer(string $container,integer $ttl=null,$cdn_enabled=null,$log=null)


Update the attribute of a CDN container. Return an associative array contains the CDN url and SSL url. In case
of error the return is false.


The $container is the name of the container.


The $ttl is the time to live for the CDN cache content. The default value is 15 minutes (900 seconds). The
minimum TTL that can be set is 15 minutes (900 seconds); the maximum TTL is 50 years (range of 900 to 1577836800
seconds).


The $cdn_enabled is the flag to swith on/off the CDN. True switch on, false switch off.


The $log enable or disable the log retention. True switch on, false switch off.











Examples


Authenticate


Check if the username and the key are valid for the Rackspace authentication.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user,$key);

if ($rackspace->authenticate()) {
    printf("Authenticated with token: %s",$rackspace->getToken());
} else {
    printf("ERROR: %s",$rackspace->getErrorMsg());
}










Get an object


Get an image file (example.gif) from the cloud and render it in the browser


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user,$key);

$object= $rackspace->getObject('test','example.gif');

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

header('Content-type: image/gif');
echo $object->getFile();










Create a container with metadata


Create a container (test) with some metadata information ($metadata)


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user,$key);

$metadata= array (
    'foo'  => 'bar',
    'foo2' => 'bar2',
);

$container= $rackspace->createContainer('test',$metadata);

if ($rackspace->isSuccessful()) {
    echo 'Container created successfully';
}










Get the metadata of a container


Get the metadata of the container test


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user, $key);

$container= $rackspace->getContainer('test');

if (!$rackspace->isSuccessful()) {
    die('ERROR: ' . $rackspace->getErrorMsg());
}

$metadata= $container->getMetadata();
print_r($metadata);










Store an object in a container


Store an object using a Zend\Service\Rackspace\Files\Container instance


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user, $key);

$container= $rackspace->getContainer('test');

if (!$rackspace->isSuccessful()) {
    die('ERROR: ' . $rackspace->getErrorMsg());
}

$file     = file_get_contents('test.jpg');
$metadata = array (
    'foo' => 'bar',
);

if ($container->addObject('test.jpg', $file, $metadata)) {
    echo 'Object stored successfully';
}










Check if a container is CDN enabled


Check if the test container is CDN enabled. If it is not we enable it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Files($user, $key);

$container= $rackspace->getContainer('test');

if (!$rackspace->isSuccessful()) {
    die('ERROR: ' . $rackspace->getErrorMsg());
}

if (!$container->isCdnEnabled()) {
    if (!$container->enableCdn()) {
        die('ERROR: ' . $rackspace->getErrorMsg());
    }
}
printf(
    "The container is CDN enabled with the following URLs:\n %s\n %s\n",
    $container->getCdnUri(),
    $container->getCdnUriSsl()
);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Service\Rackspace\Files
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.month.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Month Element


Zend\Form\Element\Month is meant to be paired with the Zend/Form/View/Helper/FormMonth for HTML5 inputs with
type month [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#month-state-(type=month)]. This element adds filters and validators to it’s input filter specification in order to validate
HTML5 month input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "month".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$month = new Element\Month('month');
$month
    ->setLabel('Month')
    ->setAttributes(array(
        'min'  => '2012-01',
        'max'  => '2020-01',
        'step' => '1', // months; default step interval is 1 month
    ));

$form = new Form('my-form');
$form->add($month);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of months (default is 1 month).






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Month Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.cycle.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Cycle Helper


The Cycle helper is used to alternate a set of values.


Cycle Helper Basic Usage


To add elements to cycle just specify them in constructor or use assign(array $data) function


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<?php foreach ($this->books as $book):?>
  <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
                                                            "#FFFFFF"))
                                              ->next()?>">
  <td><?php echo $this->escapeHtml($book['author']) ?></td>
</tr>
<?php endforeach;?>

// Moving in backwards order and assign function
$this->cycle()->assign(array("#F0F0F0","#FFFFFF"));
$this->cycle()->prev();
?>










The output


		1
2
3
4
5
6


		<tr style="background-color:'#F0F0F0'">
   <td>First</td>
</tr>
<tr style="background-color:'#FFFFFF'">
   <td>Second</td>
</tr>










Working with two or more cycles


To use two cycles you have to specify the names of cycles. Just set second parameter in cycle method.
$this->cycle(array("#F0F0F0","#FFFFFF"),'cycle2'). You can also use setName($name) function.


		1
2
3
4
5
6
7
8


		<?php foreach ($this->books as $book):?>
  <tr style="background-color:<?php echo $this->cycle(array("#F0F0F0",
                                                            "#FFFFFF"))
                                              ->next()?>">
  <td><?php echo $this->cycle(array(1,2,3),'number')->next()?></td>
  <td><?php echo $this->escapeHtml($book['author'])?></td>
</tr>
<?php endforeach;?>














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Cycle Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zendservice.livedocx.mailmerge.templates-msworddialog_zoom.png
Field

Please choose a field
Categories:

A =

Feld names:

Field propertes.
Field name;,

Format:

Filin 2
|GoToButton
(GreetingLine
Fyperink

I
IndudePicture
IndudeText ml
Index
Info
Keywords. [
LastSavedsy

Link

istivum

[ MacroButton

[MergeRec

[Mergeseq

INext hd

Descripton;
Inserta mail merge fild

opercase
First capital
Tite case

Field options.
Textto be inserted before:  |Company:

[ Text to be inserted after:
[T Mapped field

7] Vertcal formatting

Preserye formating during updates






modules/zend.progress-bar.adapter.console.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_ProgressBar_Adapter_Console


Zend_ProgressBar_Adapter_Console is a text-based adapter for terminals. It can automatically detect terminal
widths but supports custom widths as well. You can define which elements are displayed with the progressbar and as
well customize the order of them. You can also define the style of the progressbar itself.



Note


Automatic console width recognition


shell_exec is required for this feature to work on *nix based systems. On windows, there is always a fixed
terminal width of 80 character, so no recognition is required there.




You can set the adapter options either via the set* methods or give an array or a Zend_Config instance with
options as first parameter to the constructor. The available options are:



		outputStream: A different output-stream, if you don’t want to stream to STDOUT. Can be any other stream like
php://stderr or a path to a file.


		width: Either an integer or the AUTO constant of Zend_Console_ProgressBar.


		elements: Either NULL for default or an array with at least one of the following constants of
Zend_Console_ProgressBar as value:
		ELEMENT_PERCENT: The current value in percent.


		ELEMENT_BAR: The visual bar which display the percentage.


		ELEMENT_ETA: The automatic calculated ETA. This element is firstly displayed after five seconds, because in
this time, it is not able to calculate accurate results.


		ELEMENT_TEXT: An optional status message about the current process.








		textWidth: Width in characters of the ELEMENT_TEXT element. Default is 20.


		charset: Charset of the ELEMENT_TEXT element. Default is utf-8.


		barLeftChar: A string which is used left-hand of the indicator in the progressbar.


		barRightChar: A string which is used right-hand of the indicator in the progressbar.


		barIndicatorChar: A string which is used for the indicator in the progressbar. This one can be empty.









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_ProgressBar_Adapter_Console
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.boundary.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Controlling the MIME Boundary


In a multipart message, a MIME boundary for separating the different parts of the message is normally generated
at random. In some cases, however, you might want to specify the MIME boundary that is used. This can be done
using the setMimeBoundary() method, as in the following example:


Changing the MIME Boundary


		1
2
3


		$mail = new Zend_Mail();
$mail->setMimeBoundary('=_' . md5(microtime(1) . $someId++));
// build message...














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Controlling the MIME Boundary
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.filter-chains.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Filter Chains


Often multiple filters should be applied to some value in a particular order. For example, a login form accepts a
username that should be only lowercase, alphabetic characters. Zend_Filter provides a simple method by which
filters may be chained together. The following code illustrates how to chain together two filters for the submitted
username:


		1
2
3
4
5
6
7


		// Create a filter chain and add filters to the chain
$filterChain = new Zend_Filter();
$filterChain->addFilter(new Zend_Filter_Alpha())
            ->addFilter(new Zend_Filter_StringToLower());

// Filter the username
$username = $filterChain->filter($_POST['username']);










Filters are run in the order they were added to Zend_Filter. In the above example, the username is first
removed of any non-alphabetic characters, and then any uppercase characters are converted to lowercase.


Any object that implements Zend_Filter_Interface may be used in a filter chain.



Changing filter chain order


Since 1.10, the Zend_Filter chain also supports altering the chain by prepending or appending filters. For
example, the next piece of code does exactly the same as the other username filter chain example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// Create a filter chain and add filters to the chain
$filterChain = new Zend_Filter();

// this filter will be appended to the filter chain
$filterChain->appendFilter(new Zend_Filter_StringToLower());

// this filter will be prepended at the beginning of the filter chain.
$filterChain->prependFilter(new Zend_Filter_Alpha());

// Filter the username
$username = $filterChain->filter($_POST['username']);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Filter Chains
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.cache.storage.plugin.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Cache\Storage\Plugin



Overview


Cache storage plugins are objects to add missing functionality or to influence behavior of a storage adapter.


The plugins listen to events the adapter triggers and can change called method arguments (*.post - events),
skipping and directly return a result (using stopPropagation), changing the result (with setResult of
Zend\Cache\Storage\PostEvent) and catching exceptions (with Zend\Cache\Storage\ExceptionEvent).





Quick Start


Storage plugins can either be created from Zend\Cache\StorageFactory with the pluginFactory, or by simply
instantiating one of the Zend\Cache\Storage\Plugin\*classes.


To make life easier, the Zend\Cache\StorageFactory comes with the method factory to create an adapter and
all given plugins at once.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		use Zend\Cache\StorageFactory;

// Via factory:
$cache = StorageFactory::factory(array(
    'adapter' => 'filesystem',
    'plugins' => array('serializer'),
));

// Alternately:
$cache  = StorageFactory::adapterFactory('filesystem');
$plugin = StorageFactory::pluginFactory('serializer');
$cache->addPlugin($plugin);

// Or manually:
$cache  = new Zend\Cache\Storage\Adapter\Filesystem();
$plugin = new Zend\Cache\Storage\Plugin\Serializer();
$cache->addPlugin($plugin);













Configuration Options



		clearing_factor


		Set the automatic clearing factor. Used by the ClearByFactor plugin.



		setClearingFactor(int $clearingFactor)
Implements a fluent interface.


		getClearingFactor()
Returns int












		clear_by_namespace


		Flag indicating whether or not to clear by namespace. Used by the ClearByFactor plugin.



		setClearByNamespace(bool $clearByNamespace)
Implements a fluent interface.


		getClearByNamespace()
Returns bool












		exception_callback


		Set callback to call on intercepted exception. Used by the ExceptionHandler plugin.



		setExceptionCallback(callable $exceptionCallback)
Implements a fluent interface.


		getExceptionCallback()
Returns null|callable












		optimizing_factor


		Set automatic optimizing factor. Used by the OptimizeByFactor plugin.



		setOptimizingFactor(int $optimizingFactor)
Implements a fluent interface.


		getOptimizingFactor()
Returns int












		serializer


		Set serializer adapter to use. Used by Serializer plugin.



		setSerializer(string|Zend\Serializer\Adapter $serializer)
Implements a fluent interface.


		getSerializer()
Returns Zend\Serializer\Adapter












		serializer_options


		Set configuration options for instantiating a serializer adapter. Used by the Serializer plugin.



		setSerializerOptions(array $serializerOptions)
Implements a fluent interface.


		getSerializerOptions()
Returns array












		throw_exceptions


		Set flag indicating we should re-throw exceptions. Used by the ExceptionHandler plugin.



		setThrowExceptions(bool $throwExceptions)
Implements a fluent interface.


		getThrowExceptions()
Returns bool














Available Methods



		setOptions


		setOptions(Zend\Cache\Storage\Plugin\PluginOptions $options)


Set options


Implements a fluent interface.









		getOptions


		getOptions()


Get options


Returns PluginOptions









		attach


		attach(EventCollection $events)


Defined by Zend\EventManager\ListenerAggregate, attach one or more listeners.


Returns void









		detach


		detach(EventCollection $events)


Defined by Zend\EventManager\ListenerAggregate, detach all previously attached listeners.


Returns void











TODO: Examples








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Cache\Storage\Plugin
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.rackspace.servers.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Service\Rackspace\Servers



Overview


The Zend\Service\Rackspace\Servers is a class that provides a simple API to manage the Rackspace Cloud
Servers [http://www.rackspace.com/cloud/cloud_hosting_products/servers/]. Using this class you can:



		Create new servers


		List and get information on each server


		Delete a server


		Manage the public/private IP addresses of a server


		Resize the server capacity


		Reboot a server


		Create new images for a server


		Manage the backup of a server


		Create a group of server to share the IP addresses for High Availability architecture








Terminology


A server is a virtual machine instance in the Cloud Servers system. Flavor and image are requisite elements
when creating a server.


A server is managed using the the class Zend\Service\Rackspace\Servers\Server.


A flavor is an available hardware configuration for a server. Each flavor has a unique combination of disk
space, memory capacity and priority for CPU time.


An image is a collection of files used to create or rebuild a server. Rackspace provides a number of pre-built
OS images by default. You may also create custom images from cloud servers you have launched. These custom images
are useful for backup purposes or for producing “gold” server images if you plan to deploy a particular server
configuration frequently.


An image is managed using the the class Zend\Service\Rackspace\Servers\Image.


A backup schedule can be defined to create server images at regular intervals (daily and weekly). Backup
schedules are configurable per server.


Public IP addresses can be shared across multiple servers for use in various high availability scenarios. When
an IP address is shared to another server, the cloud network restrictions are modified to allow each server to
listen to and respond on that IP address (you may optionally specify that the target server network configuration
be modified). Shared IP addresses can be used with many standard heartbeat facilities (e.g. keepalived) that
monitor for failure and manage IP failover.


A shared IP group is a collection of servers that can share IPs with other members of the group. Any server in
a group can share one or more public IPs with any other server in the group. With the exception of the first server
in a shared IP group, servers must be launched into shared IP groups. A server may only be a member of one shared
IP group.


A shared IP group is managed using the the class Zend\Service\Rackspace\Servers\SharedIpGroup.





Quick Start


To use this class you have to pass the username and the API’s key of Rackspace in the construction of the class.


		1
2
3
4


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Servers($user,$key);










To create a new server you can use the createServer method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		$data = array (
    'name'     => 'test',
    'imageId'  => '49',
    'flavorId' => '1',
);

$server= $rackspace->createServer($data);

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

printf("Server name    : %s\n",$server->getName());
printf("Server Id      : %s\n",$server->getId());
printf("Admin password : %s\n",$server->getAdminPass());










This example create a server with name test, imageId 49, and flavorId 1. The attributes name, imageId
and flavorId are required to create a new server. The result of createServer is an instance of
Zend\Service\Rackspace\Servers\Server.


To get the public and private IP addresses of a server you can use the getServerIp method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$id  = '20054631';
$ips = $rackspace->getServerIp($id);

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

echo "Private IPs:\n";
print_r($ips['private']);
echo "Public IPs:\n";
print_r($ips['public']);










This example get the IP addresses of the server with Id 20054631. The result of getServerIp is an
associative arrays with keys ‘private’ and ‘public’ contains all the private IP addresses and the public IP
addresses of the server.


To get the list of all the available servers you can use the listServers method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		$servers= $rackspace->listServer(true);

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

foreach ($servers as $srv) {
    printf("Name      : %s\n",$srv->getName());
    printf("Server Id : %s\n",$srv->getId());
    printf("Image  Id : %s\n",$srv->getImageId());
    printf("Flavor Id : %s\n",$srv->getFlavorId());
    printf("Status    : %s (%d\%)\n",$srv->getStatus(),$srv->getProgress());
}













Available Methods



		changeBackupSchedule


		changeBackupSchedule(string $id, string $weekly, string $daily)


This operation creates a new backup schedule or updates an existing backup schedule for the specified server.
Return true in case of success, false in case of error.


$id is the ID of the server


$weekly, the day of the week for the backup (for instance “THURSDAY”)


$daily, specify the hours for the backup (for instance “H_0400_0600”)









		changeServerName


		changeServerName(string $id, string $name)


Change the name of a server. Return true in case of success, false in case of error.


$id is the ID of the server


$name is an optional parameter that specify the new name of the server









		changeServerPassword


		changeServerPassword(string $id, string $password)


Change the admin password of a server. Return true in case of success, false in case of error.


$id is the ID of the server


$password is an optional parameter that specify the new admin password of the server









		confirmResizeServer


		confirmResizeServer(string $id)


Confirm the resize of a server. During a resize operation, the original server is saved for a period of time to
allow roll back if there is a problem. Once the newly resized server is tested and has been confirmed to be
functioning properly, use this operation to confirm the resize. After confirmation, the original server is
removed and cannot be rolled back to. All resizes are automatically confirmed after 24 hours if they are not
explicitly confirmed or reverted. Return true in case of success, false in case of error.


$id is Id of the server.









		createImage


		createImage(string $serverId,string $name)


Create an image from a server. Return a new instance of Zend\Service\Rackspace\Servers\Image. In case of
error the return is false.


$serverId is the Id of the server to use to create the image.


$name, is the name of image to create









		createSharedIpGroup


		createSharedIpGroup(string $name, string $serverId)


This operation creates a new shared IP group. Please note, on a create request, the shared IP group can be
created empty or can be initially populated with a single server. Return the shared IP group as instance of
Zend\Service\Rackspace\Servers\SharedIpGroup In case of error the return is false.


$name is the name of the shared IP group to create.


$serverId is the Id of the server.









		createServer


		createServer(array $data, $metadata=array(),$files=array())


Create a server with the attributes specified in $data. You can specify also optional parameters:
metadata and files. Metadata is an array contains key/value of metadata related to the server and files
is an array contains the paths of some files to upload into the server. The syntax used for the uploading of the
files is ‘serverPath’ => ‘localPath’. Return a new instance of Zend\Service\Rackspace\Servers\Server. In
case of error the return is false.


$data contains the parameters for the server. The required attributes to create a new server are:




		name, contains the name of the server


		flavorId, contains the flavor’s Id to use


		imageId, contains the image’s Id to use









$metadata, contains the array of metadata information


$files, contains the path of the files to upload in the server using the syntax ‘serverPath’ => ‘localPath’.









		disableBackupSchedule


		disableBackupSchedule(string $id)


Disable the backup of a server. Return true in case of success, false in case of error.


$id is the Id of the server.









		deleteImage


		deleteImage(string $id)


Delete a image. Return true in case of success, false in case of error.


$id is the Id of the image.









		deleteSharedIpGroup


		deleteSharedIpGroup(string $id)


Delete a shared IP group. Return true in case of success, false in case of error.


$id is the Id of the shared IP group.









		deleteServer


		deleteServer(string $id)


Delete a server. Return true in case of success, false in case of error.


$id is the Id of the server.









		getBackupSchedule


		getBackupSchedule(string $id)


Return the backup schedule of a server. The return is an associative array with the following values: enabled,
weekly, daily. In case of error the return is false.


$id is the Id of the server.









		getFlavor


		getFlavor(string $flavorId)


Return the information about a flavor. The return is an associative array with the following values: id, ram,
disk, name. In case of error the return is false.


$flavorId is the Id of the flavor.









		getImage


		getImage(string $id)


Return an image as instance of Zend\Service\Rackspace\Servers\Image. In case of error the return is
false.


$id is the Id of the image.









		getSharedIpGroup


		getSharedIpGroup(string $id)


Return the shared IP group as instance of Zend\Service\Rackspace\Servers\SharedIpGroup In case of error the
return is false.


$id is the Id of the shared IP group.









		getServer


		getServer(string $id)


Return the server specified by the Id as instance of Zend\Service\Rackspace\Servers\Server. In case of error
the return is false.


$id is Id of the server.









		getServerIp


		getServerIp(string $id)


Return the public and private IP addresses of a server. Return an associative array contains the key
‘public’ and ‘private’ for the IP addresses. In case of error the return is false.


$id is Id of the server.









		getServerPrivateIp


		getServerPrivateIp(string $id)


Return the private IP addresses of the server. Return an associative array contains the IP addresses. In case of
error the return is false.


$id is Id of the server.









		getServerPublicIp


		getServerPublicIp(string $id)


Return the public IP addresses of the server. Return an associative array contains the IP addresses. In case of
error the return is false.


$id is Id of the server.









		listFlavors


		listFlavors(boolean $details=false)


Return all the available flavors as associative array. In case of error the return is false.


If $details is true return a detailed list, if is false return only the name and the Id of
the flavor.









		listImages


		listImages(boolean $details=false)


Return all the available images as instance of Zend\Service\Rackspace\Servers\ImageList In case of error the
return is false.


If $details is true return a detailed list, if is false return only the name and the Id of
the Image.









		listServer


		listServer(boolean $details=false)


Return all the available servers with a new instance of Zend\Service\Rackspace\Servers\ServerList. In case
of error the return is false.


If $details is true return a detailed list, if is false return only the name and the Id of
the server.









		listSharedIpGroups


		listSharedIpGroups(boolean $details=false)


Return all the shared IP groups as instance of Zend\Service\Rackspace\Servers\SharedIpGroupList In case of
error the return is false.


If $details is true return a detailed list, if is false return only the name and the Id of
the shared IP group.









		rebootServer


		rebootServer(string $id, boolean $hard=false)


Reboot a server. Return true in case of success, false in case of error.


$id is Id of the server.


If $hard is false (default) the server is rebooted in soft mode. That means the operating system is
signaled to restart, which allows for a graceful shutdown of all processes. If $hard is true the server
is rebooted in hard mode. A hard reboot is the equivalent of power cycling the server.









		rebuildServer


		rebuildServer(string $id, string $imageId)


Rebuild a server. The rebuild function removes all data on the server and replaces it with the specified image,
server’s Id and IP addresses will remain the same. Return true in case of success, false in case of
error.


$id is Id of the server.


$imageId is the new Image Id of the server.









		resizeServer


		resizeServer(string $id, string $flavorId)


Resize a server. The resize function converts an existing server to a different flavor, in essence, scaling the
server up or down. The original server is saved for a period of time to allow rollback if there is a problem.
All resizes should be tested and explicitly confirmed, at which time the original server is removed. All resizes
are automatically confirmed after 24 hours if they are not explicitly confirmed or reverted. Return true in
case of success, false in case of error.


$id is Id of the server.


$flavorId is the new flavor Id of the server.









		revertResizeServer


		revertResizeServer(string $id)


Revert the resize of a server. During a resize operation, the original server is saved for a period of time to
allow for roll back if there is a problem. If you determine there is a problem with a newly resized server, use
this operation to revert the resize and roll back to the original server. All resizes are automatically
confirmed after 24 hours if they have not already been confirmed explicitly or reverted. Return true in case
of success, false in case of error.


$id is Id of the server.









		shareIpAddress


		shareIpAddress(string $id, string $ip, string $groupId, boolean $configure=true)


Share an IP address for a server. Return true in case of success, false in case of error.


$id is Id of the server.


$ip is the IP address to share.


$groupId is the group Id to use.


If $configure attribute is set to true, the server is configured with the new address, though the address is
not enabled. Note that configuring the server does require a reboot.









		unshareIpAddress


		unshareIpAddress(string $id, string $ip)


Unshare an IP address for a server. Return true in case of success, false in case of error.


$id is Id of the server.


$ip is the IP address to share.









		updateServer


		updateServer(string $id,string $name=null,string $password=null)


Change the name or/and the admin password of a server. In case of error the return is false.


$id is the ID of the server


$name is an optional parameter that specify the new name of the server


$password is an optional parameter that specify the new admin password of the server











Examples


Authenticate


Check if the username and the key are valid for the Rackspace authentication.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$user = 'username';
$key  = 'secret key';

$rackspace = new Zend\Service\Rackspace\Servers($user,$key);

if ($rackspace->authenticate()) {
    printf("Authenticated with token: %s",$rackspace->getToken());
} else {
    printf("ERROR: %s",$rackspace->getErrorMsg());
}










Create a server with metadata information and upload of a file


Create a server with some metadata information and upload the file build.sh from the local path /home/user
to the remote path /root.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		$data = array (
    'name'     => 'test',
    'imageId'  => '49',
    'flavorId' => '1',
);
$metadata = array (
    'foo' => 'bar',
);
$files = array (
    '/root/build.sh' => '/home/user/build.sh',
);
$server= $rackspace->createServer($data,$metadata,$files);

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

$publicIp= $server->getPublicIp();

printf("Server name    : %s\n",$server->getName());
printf("Server Id      : %s\n",$server->getId());
printf("Public IP      : %s\n",$publicIp[0]);
printf("Admin password : %s\n",$server->getAdminPass());










Reboot a server


Reboot a server in hard mode (is the equivalent of power cycling the server).


		1
2
3
4
5
6
7


		$flavors= $rackspace->rebootServer('server id',true)

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

echo "The server has been rebooted successfully";










List all the available flavors


List all the available flavors with all the detailed information.


		1
2
3
4
5
6
7


		$flavors= $rackspace->listFlavors(true);

if (!$rackspace->isSuccessful()) {
    die('ERROR: '.$rackspace->getErrorMsg());
}

print_r($flavors);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Service\Rackspace\Servers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.navigation.pages.factory.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Creating pages using the page factory


All pages (also custom classes), can be created using the page factory, Zend_Navigation_Page::factory(). The
factory can take an array with options, or a Zend_Config object. Each key in the array/config corresponds to a
page option, as seen in the section on Pages. If the option uri is given and no
MVC options are given (action, controller, module, route), an URI page will be created. If any of the MVC
options are given, an MVC page will be created.


If type is given, the factory will assume the value to be the name of the class that should be created. If the
value is mvc or uri and MVC/URI page will be created.


Creating an MVC page using the page factory


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		$page = Zend_Navigation_Page::factory(array(
    'label'  => 'My MVC page',
    'action' => 'index'
));

$page = Zend_Navigation_Page::factory(array(
    'label'      => 'Search blog',
    'action'     => 'index',
    'controller' => 'search',
    'module'     => 'blog'
));

$page = Zend_Navigation_Page::factory(array(
    'label'      => 'Home',
    'action'     => 'index',
    'controller' => 'index',
    'module'     => 'index',
    'route'      => 'home'
));

$page = Zend_Navigation_Page::factory(array(
    'type'   => 'mvc',
    'label'  => 'My MVC page'
));










Creating a URI page using the page factory


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		$page = Zend_Navigation_Page::factory(array(
    'label' => 'My URI page',
    'uri'   => 'http://www.example.com/'
));

$page = Zend_Navigation_Page::factory(array(
    'label'  => 'Search',
    'uri'    => 'http://www.example.com/search',
    'active' => true
));

$page = Zend_Navigation_Page::factory(array(
    'label' => 'My URI page',
    'uri'   => '#'
));

$page = Zend_Navigation_Page::factory(array(
    'type'   => 'uri',
    'label'  => 'My URI page'
));










Creating a custom page type using the page factory


To create a custom page type using the factory, use the option type to specify a class name to instantiate.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		class My_Navigation_Page extends Zend_Navigation_Page
{
    protected $_fooBar = 'ok';

    public function setFooBar($fooBar)
    {
        $this->_fooBar = $fooBar;
    }
}

$page = Zend_Navigation_Page::factory(array(
    'type'    => 'My_Navigation_Page',
    'label'   => 'My custom page',
    'foo_bar' => 'foo bar'
));














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Creating pages using the page factory
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.amazon.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Amazon



Introduction


Zend_Service_Amazon is a simple API for using Amazon web services. Zend_Service_Amazon has two APIs:
a more traditional one that follows Amazon’s own API, and a simpler “Query API” for constructing even complex
search queries easily.


Zend_Service_Amazon enables developers to retrieve information appearing throughout Amazon.com web sites
directly through the Amazon Web Services API. Examples include:




		Store item information, such as images, descriptions, pricing, and more


		Customer and editorial reviews


		Similar products and accessories


		Amazon.com offers


		ListMania lists









In order to use Zend_Service_Amazon, you should already have an Amazon developer API key aswell as a secret
key. To get a key and for more information, please visit the Amazon Web Services [http://aws.amazon.com/] web site. As of August 15th,
2009 you can only use the Amazon Product Advertising API through Zend_Service_Amazon, when specifying the
additional secret key.



Note


Attention


Your Amazon developer API and secret keys are linked to your Amazon identity, so take appropriate measures to
keep them private.




Search Amazon Using the Traditional API


In this example, we search for PHP books at Amazon and loop through the results, printing them.


		1
2
3
4
5
6


		$amazon = new Zend_Service_Amazon('AMAZON_API_KEY', 'US', 'AMAZON_SECRET_KEY');
$results = $amazon->itemSearch(array('SearchIndex' => 'Books',
                                     'Keywords' => 'php'));
foreach ($results as $result) {
    echo $result->Title . '<br />';
}










Search Amazon Using the Query API


Here, we also search for PHP books at Amazon, but we instead use the Query API, which resembles the Fluent
Interface design pattern.


		1
2
3
4
5
6
7
8


		$query = new Zend_Service_Amazon_Query('AMAZON_API_KEY',
                                       'US',
                                       'AMAZON_SECRET_KEY');
$query->category('Books')->Keywords('PHP');
$results = $query->search();
foreach ($results as $result) {
    echo $result->Title . '<br />';
}













Country Codes


By default, Zend_Service_Amazon connects to the United States (“US”) Amazon web service. To connect from a
different country, simply specify the appropriate country code string as the second parameter to the constructor:


Choosing an Amazon Web Service Country


		1
2


		// Connect to Amazon in Japan
$amazon = new Zend_Service_Amazon('AMAZON_API_KEY', 'JP', 'AMAZON_SECRET_KEY');











Note


Country codes


Valid country codes are: CA, DE, FR, JP, UK, and US.







Looking up a Specific Amazon Item by ASIN


The itemLookup() method provides the ability to fetch a particular Amazon item when the ASIN is known.


Looking up a Specific Amazon Item by ASIN


		1
2


		$amazon = new Zend_Service_Amazon('AMAZON_API_KEY', 'US', 'AMAZON_SECRET_KEY');
$item = $amazon->itemLookup('B0000A432X');










The itemLookup() method also accepts an optional second parameter for handling search options. For full
details, including a list of available options, please see the relevant Amazon documentation [http://www.amazon.com/gp/aws/sdk/main.html/102-9041115-9057709?s=AWSEcommerceService&v=2011-08-01&p=ApiReference/ItemSearchOperation].



Note


Image information


To retrieve images information for your search results, you must set ResponseGroup option to Medium or
Large.







Performing Amazon Item Searches


Searching for items based on any of various available criteria are made simple using the itemSearch() method,
as in the following example:


Performing Amazon Item Searches


		1
2
3
4
5
6


		$amazon = new Zend_Service_Amazon('AMAZON_API_KEY', 'US', 'AMAZON_SECRET_KEY');
$results = $amazon->itemSearch(array('SearchIndex' => 'Books',
                                     'Keywords' => 'php'));
foreach ($results as $result) {
    echo $result->Title . '<br />';
}










Using the ResponseGroup Option


The ResponseGroup option is used to control the specific information that will be returned in the response.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$amazon = new Zend_Service_Amazon('AMAZON_API_KEY', 'US', 'AMAZON_SECRET_KEY');
$results = $amazon->itemSearch(array(
    'SearchIndex'   => 'Books',
    'Keywords'      => 'php',
    'ResponseGroup' => 'Small,ItemAttributes,Images,SalesRank,Reviews,' .
                       'EditorialReview,Similarities,ListmaniaLists'
    ));
foreach ($results as $result) {
    echo $result->Title . '<br />';
}










The itemSearch() method accepts a single array parameter for handling search options. For full details,
including a list of available options, please see the relevant Amazon documentation [http://www.amazon.com/gp/aws/sdk/main.html/102-9041115-9057709?s=AWSEcommerceService&v=2011-08-01&p=ApiReference/ItemSearchOperation]



Tip


The Zend_Service_Amazon_Query class is an easy to use wrapper around this
method.







Using the Alternative Query API



Introduction


Zend_Service_Amazon_Query provides an alternative API for using the Amazon Web Service. The alternative API
uses the Fluent Interface pattern. That is, all calls can be made using chained method calls. (e.g.,
$obj->method()->method2($arg))


The Zend_Service_Amazon_Query API uses overloading to easily set up an item search and then allows you to
search based upon the criteria specified. Each of the options is provided as a method call, and each method’s
argument corresponds to the named option’s value:


Search Amazon Using the Alternative Query API


In this example, the alternative query API is used as a fluent interface to specify options and their respective
values:


		1
2
3
4
5
6


		$query = new Zend_Service_Amazon_Query('MY_API_KEY', 'US', 'AMAZON_SECRET_KEY');
$query->Category('Books')->Keywords('PHP');
$results = $query->search();
foreach ($results as $result) {
    echo $result->Title . '<br />';
}










This sets the option Category to “Books” and Keywords to “PHP”.


For more information on the available options, please refer to the relevant Amazon documentation [http://www.amazon.com/gp/aws/sdk/main.html/102-9041115-9057709?s=AWSEcommerceService&v=2011-08-01&p=ApiReference/ItemSearchOperation].







Zend_Service_Amazon Classes


The following classes are all returned by Zend_Service_Amazon::itemLookup()
and Zend_Service_Amazon::itemSearch():




		Zend_Service_Amazon_Item


		Zend_Service_Amazon_Image


		Zend_Service_Amazon_ResultSet


		Zend_Service_Amazon_OfferSet


		Zend_Service_Amazon_Offer


		Zend_Service_Amazon_SimilarProduct


		Zend_Service_Amazon_Accessories


		Zend_Service_Amazon_CustomerReview


		Zend_Service_Amazon_EditorialReview


		Zend_Service_Amazon_ListMania










Zend_Service_Amazon_Item


Zend_Service_Amazon_Item is the class type used to represent an Amazon item returned by the web service. It
encompasses all of the items attributes, including title, description, reviews, etc.





Zend_Service_Amazon_Item::asXML()


string:asXML()


Return the original XML for the item





Properties


Zend_Service_Amazon_Item has a number of properties directly related to their standard Amazon API
counterparts.



Zend_Service_Amazon_Item Properties






		Name
		Type
		Description





		ASIN
		string
		Amazon Item ID



		DetailPageURL
		string
		URL to the Items Details Page



		SalesRank
		int
		Sales Rank for the Item



		SmallImage
		Zend_Service_Amazon_Image
		Small Image of the Item



		MediumImage
		Zend_Service_Amazon_Image
		Medium Image of the Item



		LargeImage
		Zend_Service_Amazon_Image
		Large Image of the Item



		Subjects
		array
		Item Subjects



		Offers
		Zend_Service_Amazon_OfferSet
		Offer Summary and Offers for the Item



		CustomerReviews
		array
		Customer reviews represented as an array of Zend_Service_Amazon_CustomerReview objects



		EditorialReviews
		array
		Editorial reviews represented as an array of Zend_Service_Amazon_EditorialReview objects



		SimilarProducts
		array
		Similar Products represented as an array of Zend_Service_Amazon_SimilarProduct objects



		Accessories
		array
		Accessories for the item represented as an array of Zend_Service_Amazon_Accessories objects



		Tracks
		array
		An array of track numbers and names for Music CDs and DVDs



		ListmaniaLists
		array
		Item related Listmania Lists as an array of Zend_Service_Amazon_ListmainList objects



		PromotionalTag
		string
		Item Promotional Tag







Back to Class List





Zend_Service_Amazon_Image


Zend_Service_Amazon_Image represents a remote Image for a product.





Properties



Zend_Service_Amazon_Image Properties






		Name
		Type
		Description





		Url
		Zend_Uri
		Remote URL for the Image



		Height
		int
		The Height of the image in pixels



		Width
		int
		The Width of the image in pixels







Back to Class List





Zend_Service_Amazon_ResultSet


Zend_Service_Amazon_ResultSet objects are returned by Zend_Service_Amazon::itemSearch() and allow you to easily handle the multiple results returned.



Note


SeekableIterator


Implements the SeekableIterator for easy iteration (e.g. using foreach), as well as direct access to a
specific result using seek().







Zend_Service_Amazon_ResultSet::totalResults()


int:totalResults()
Returns the total number of results returned by the search


Back to Class List





Zend_Service_Amazon_OfferSet


Each result returned by Zend_Service_Amazon::itemSearch() and
Zend_Service_Amazon::itemLookup() contains a
Zend_Service_Amazon_OfferSet object through which pricing information for the item can be retrieved.





Properties



Zend_Service_Amazon_OfferSet Properties






		Name
		Type
		Description





		LowestNewPrice
		int
		Lowest Price for the item in “New” condition



		LowestNewPriceCurrency
		string
		The currency for the LowestNewPrice



		LowestOldPrice
		int
		Lowest Price for the item in “Used” condition



		LowestOldPriceCurrency
		string
		The currency for the LowestOldPrice



		TotalNew
		int
		Total number of “new” condition available for the item



		TotalUsed
		int
		Total number of “used” condition available for the item



		TotalCollectible
		int
		Total number of “collectible” condition available for the item



		TotalRefurbished
		int
		Total number of “refurbished” condition available for the item



		Offers
		array
		An array of Zend_Service_Amazon_Offer objects.







Back to Class List





Zend_Service_Amazon_Offer


Each offer for an item is returned as an Zend_Service_Amazon_Offer object.





Zend_Service_Amazon_Offer Properties



Properties






		Name
		Type
		Description





		MerchantId
		string
		Merchants Amazon ID



		MerchantName
		string
		Merchants Amazon Name. Requires setting the ResponseGroup option to OfferFull to retrieve.



		GlancePage
		string
		URL for a page with a summary of the Merchant



		Condition
		string
		Condition of the item



		OfferListingId
		string
		ID of the Offer Listing



		Price
		int
		Price for the item



		CurrencyCode
		string
		Currency Code for the price of the item



		Availability
		string
		Availability of the item



		IsEligibleForSuperSaverShipping
		boolean
		Whether the item is eligible for Super Saver Shipping or not







Back to Class List





Zend_Service_Amazon_SimilarProduct


When searching for items, Amazon also returns a list of similar products that the searcher may find to their
liking. Each of these is returned as a Zend_Service_Amazon_SimilarProduct object.


Each object contains the information to allow you to make sub-sequent requests to get the full information on the
item.





Properties



Zend_Service_Amazon_SimilarProduct Properties






		Name
		Type
		Description





		ASIN
		string
		Products Amazon Unique ID (ASIN)



		Title
		string
		Products Title







Back to Class List





Zend_Service_Amazon_Accessories


Accessories for the returned item are represented as Zend_Service_Amazon_Accessories objects





Properties



Zend_Service_Amazon_Accessories Properties






		Name
		Type
		Description





		ASIN
		string
		Products Amazon Unique ID (ASIN)



		Title
		string
		Products Title







Back to Class List





Zend_Service_Amazon_CustomerReview


Each Customer Review is returned as a Zend_Service_Amazon_CustomerReview object.





Properties



Zend_Service_Amazon_CustomerReview Properties






		Name
		Type
		Description





		Rating
		string
		Item Rating



		HelpfulVotes
		string
		Votes on how helpful the review is



		CustomerId
		string
		Customer ID



		TotalVotes
		string
		Total Votes



		Date
		string
		Date of the Review



		Summary
		string
		Review Summary



		Content
		string
		Review Content







Back to Class List





Zend_Service_Amazon_EditorialReview


Each items Editorial Reviews are returned as a Zend_Service_Amazon_EditorialReview object





Properties



Zend_Service_Amazon_EditorialReview Properties






		Name
		Type
		Description





		Source
		string
		Source of the Editorial Review



		Content
		string
		Review Content







Back to Class List





Zend_Service_Amazon_Listmania


Each results List Mania List items are returned as Zend_Service_Amazon_Listmania objects.





Properties



Zend_Service_Amazon_Listmania Properties






		Name
		Type
		Description





		ListId
		string
		List ID



		ListName
		string
		List Name







Back to Class List










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Amazon
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/performance.introduction.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The purpose of this appendix is to provide some concrete strategies for improving the performance of your Zend
Framework applications. The guide is presented in a “Question and Answer” format, and broken into areas of concern.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.dom.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


The Zend\Dom component provides tools for working with DOM documents and structures. Currently, we offer
Zend\Dom\Query, which provides a unified interface for querying DOM documents utilizing both XPath and CSS
selectors.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.captcha.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


CAPTCHA [http://en.wikipedia.org/wiki/Captcha] stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”; it is used as a
challenge-response to ensure that the individual submitting information is a human and not an automated process.
Typically, a captcha is used with form submissions where authenticated users are not necessary, but you want to
prevent spam submissions.


Captchas can take a variety of forms, including asking logic questions, presenting skewed fonts, and presenting
multiple images and asking how they relate. The Zend\Captcha component aims to provide a variety of back ends
that may be utilized either standalone or in conjunction with the Zend\Form component.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

translated-snippets.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  

          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                <no title>
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.authentication.adapter.ldap.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
LDAP Authentication



Introduction


Zend\Authentication\Adapter\Ldap supports web application authentication with LDAP services. Its features
include username and domain name canonicalization, multi-domain authentication, and failover capabilities. It has
been tested to work with Microsoft Active Directory [http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/] and OpenLDAP [http://www.openldap.org/], but it should also work with other LDAP
service providers.


This documentation includes a guide on using Zend\Authentication\Adapter\Ldap, an exploration of its API, an
outline of the various available options, diagnostic information for troubleshooting authentication problems, and
example options for both Active Directory and OpenLDAP servers.





Usage


To incorporate Zend\Authentication\Adapter\Ldap authentication into your application quickly, even if you’re
not using Zend\Mvc, the meat of your code should look something like the following:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Adapter\Ldap as AuthAdapter;
use Zend\Config\Reader\Ini as ConfigReader;
use Zend\Log\Logger;
use Zend\Log\Writer\Stream as LogWriter;
use Zend\Log\Filter\Priority as LogFilter;

$username = $this->_request->getParam('username');
$password = $this->_request->getParam('password');


$auth = new AuthenticationService();

$config = new ConfigReader('./ldap-config.ini','production');

$log_path = $config->ldap->log_path;
$options = $config->ldap->toArray();
unset($options['log_path']);

$adapter = new AuthAdapter($options,
                           $username,
                           $password);

$result = $auth->authenticate($adapter);

if ($log_path) {
    $messages = $result->getMessages();

    $logger = new Logger;
    $writer = new LogWriter($log_path);

    $logger->addWriter($writer);

    $filter = new LogFilter(Logger::DEBUG);
    $logger->addFilter($filter);

    foreach ($messages as $i => $message) {
        if ($i-- > 1) { // $messages[2] and up are log messages
            $message = str_replace("\n", "\n  ", $message);
            $logger->log("Ldap: $i: $message", Logger::DEBUG);
        }
    }
}










Of course, the logging code is optional, but it is highly recommended that you use a logger.
Zend\Authentication\Adapter\Ldap will record just about every bit of information anyone could want in
$messages (more below), which is a nice feature in itself for something that has a history of being notoriously
difficult to debug.


The Zend\Config\Reader\Ini code is used above to load the adapter options. It is also optional. A regular array
would work equally well. The following is an example ldap-config.ini file that has options for two separate
servers. With multiple sets of server options the adapter will try each, in order, until the credentials are
successfully authenticated. The names of the servers (e.g., ‘server1’ and ‘server2’) are largely arbitrary. For
details regarding the options array, see the Server Options section below. Note that Zend\Config\Reader\Ini
requires that any values with “equals” characters (=) will need to be quoted (like the DNs shown below).


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		[production]

ldap.log_path = /tmp/ldap.log

; Typical options for OpenLDAP
ldap.server1.host = s0.foo.net
ldap.server1.accountDomainName = foo.net
ldap.server1.accountDomainNameShort = FOO
ldap.server1.accountCanonicalForm = 3
ldap.server1.username = "CN=user1,DC=foo,DC=net"
ldap.server1.password = pass1
ldap.server1.baseDn = "OU=Sales,DC=foo,DC=net"
ldap.server1.bindRequiresDn = true

; Typical options for Active Directory
ldap.server2.host = dc1.w.net
ldap.server2.useStartTls = true
ldap.server2.accountDomainName = w.net
ldap.server2.accountDomainNameShort = W
ldap.server2.accountCanonicalForm = 3
ldap.server2.baseDn = "CN=Users,DC=w,DC=net"










The above configuration will instruct Zend\Authentication\Adapter\Ldap to attempt to authenticate users with
the OpenLDAP server s0.foo.net first. If the authentication fails for any reason, the AD server dc1.w.net
will be tried.


With servers in different domains, this configuration illustrates multi-domain authentication. You can also have
multiple servers in the same domain to provide redundancy.


Note that in this case, even though OpenLDAP has no need for the short NetBIOS style domain name used by Windows,
we provide it here for name canonicalization purposes (described in the Username Canonicalization section
below).





The API


The Zend\Authentication\Adapter\Ldap constructor accepts three parameters.


The $options parameter is required and must be an array containing one or more sets of options. Note that it is
an array of arrays of Zend\Ldap\Ldap options. Even if you will be using only
one LDAP server, the options must still be within another array.


Below is print_r() [http://php.net/print_r] output of an example options parameter containing two sets of server options for LDAP
servers s0.foo.net and dc1.w.net (the same options as the above INI representation):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


		Array
(
    [server2] => Array
        (
            [host] => dc1.w.net
            [useStartTls] => 1
            [accountDomainName] => w.net
            [accountDomainNameShort] => W
            [accountCanonicalForm] => 3
            [baseDn] => CN=Users,DC=w,DC=net
        )

    [server1] => Array
        (
            [host] => s0.foo.net
            [accountDomainName] => foo.net
            [accountDomainNameShort] => FOO
            [accountCanonicalForm] => 3
            [username] => CN=user1,DC=foo,DC=net
            [password] => pass1
            [baseDn] => OU=Sales,DC=foo,DC=net
            [bindRequiresDn] => 1
        )

)










The information provided in each set of options above is different mainly because AD does not require a username be
in DN form when binding (see the bindRequiresDn option in the Server Options section below), which means we
can omit a number of options associated with retrieving the DN for a username being authenticated.



Note


What is a Distinguished Name?


A DN or “distinguished name” is a string that represents the path to an object within the LDAP directory. Each
comma-separated component is an attribute and value representing a node. The components are evaluated in
reverse. For example, the user account CN=Bob Carter,CN=Users,DC=w,DC=net is located directly within the
CN=Users,DC=w,DC=net container. This structure is best explored with an LDAP browser like the ADSI Edit
MMC snap-in for Active Directory or phpLDAPadmin.




The names of servers (e.g. ‘server1’ and ‘server2’ shown above) are largely arbitrary, but for the sake of using
Zend\Config\Reader\Ini, the identifiers should be present (as opposed to being numeric indexes) and should not
contain any special characters used by the associated file formats (e.g. the ‘.‘INI property separator,
‘&‘ for XML entity references, etc).


With multiple sets of server options, the adapter can authenticate users in multiple domains and provide failover
so that if one server is not available, another will be queried.



Note


The Gory Details: What Happens in the Authenticate Method?


When the authenticate() method is called, the adapter iterates over each set of server options, sets them on
the internal Zend\Ldap\Ldap instance, and calls the Zend\Ldap\Ldap::bind() method with the username and
password being authenticated. The Zend\Ldap\Ldap class checks to see if the username is qualified with a
domain (e.g., has a domain component like alice@foo.net or FOO\alice). If a domain is present, but does
not match either of the server’s domain names (foo.net or FOO), a special exception is thrown and caught
by Zend\Authentication\Adapter\Ldap that causes that server to be ignored and the next set of server options
is selected. If a domain does match, or if the user did not supply a qualified username, Zend\Ldap\Ldap
proceeds to try to bind with the supplied credentials. if the bind is not successful, Zend\Ldap\Ldap throws
a Zend\Ldap\Exception\LdapException which is caught by Zend\Authentication\Adapter\Ldap and the next set
of server options is tried. If the bind is successful, the iteration stops, and the adapter’s authenticate()
method returns a successful result. If all server options have been tried without success, the authentication
fails, and authenticate() returns a failure result with error messages from the last iteration.




The username and password parameters of the Zend\Authentication\Adapter\Ldap constructor represent the
credentials being authenticated (i.e., the credentials supplied by the user through your HTML login form).
Alternatively, they may also be set with the setUsername() and setPassword() methods.





Server Options


Each set of server options in the context of ZendAuthenticationAdapterLdap consists of the following
options, which are passed, largely unmodified, to Zend\Ldap\Ldap::setOptions():



Server Options





		Name
		Description





		host
		The hostname of LDAP server that these options represent. This option is required.



		port
		The port on which the LDAP server is listening. If useSsl is TRUE, the default port value is 636. If useSsl is FALSE, the default port value is 389.



		useStartTls
		Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of TRUE is strongly favored in production environments to prevent passwords from be transmitted in clear text. The default value is FALSE, as servers frequently require that a certificate be installed separately after installation. The useSsl and useStartTls options are mutually exclusive. The useStartTls option should be favored over useSsl but not all servers support this newer mechanism.



		useSsl
		Whether or not the LDAP client should use SSL encrypted transport. The useSsl and useStartTls options are mutually exclusive, but useStartTls should be favored if the server and LDAP client library support it. This value also changes the default port value (see port description above).



		username
		The DN of the account used to perform account DN lookups. LDAP servers that require the username to be in DN form when performing the “bind” require this option. Meaning, if bindRequiresDn is TRUE, this option is required. This account does not need to be a privileged account; an account with read-only access to objects under the baseDn is all that is necessary (and preferred based on the Principle of Least Privilege).



		password
		The password of the account used to perform account DN lookups. If this option is not supplied, the LDAP client will attempt an “anonymous bind” when performing account DN lookups.



		bindRequiresDn
		Some LDAP servers require that the username used to bind be in DN form like CN=Alice Baker,OU=Sales,DC=foo,DC=net (basically all servers except AD). If this option is TRUE, this instructs Zend\Ldap\Ldap to automatically retrieve the DN corresponding to the username being authenticated, if it is not already in DN form, and then re-bind with the proper DN. The default value is FALSE. Currently only Microsoft Active Directory Server (ADS) is known not to require usernames to be in DN form when binding, and therefore this option may be FALSE with AD (and it should be, as retrieving the DN requires an extra round trip to the server). Otherwise, this option must be set to TRUE (e.g. for OpenLDAP). This option also controls the default acountFilterFormat used when searching for accounts. See the accountFilterFormat option.



		baseDn
		The DN under which all accounts being authenticated are located. This option is required. if you are uncertain about the correct baseDn value, it should be sufficient to derive it from the user’s DNS domain using DC= components. For example, if the user’s principal name is alice@foo.net, a baseDn of DC=foo,DC=net should work. A more precise location (e.g., OU=Sales,DC=foo,DC=net) will be more efficient, however.



		accountCanonicalForm
		A value of 2, 3 or 4 indicating the form to which account names should be canonicalized after successful authentication. Values are as follows: 2 for traditional username style names (e.g., alice), 3 for backslash-style names (e.g., FOO\alice) or 4 for principal style usernames (e.g., alice@foo.net). The default value is 4 (e.g., alice@foo.net). For example, with a value of 3, the identity returned by Zend\Authentication\Result::getIdentity() (and Zend\Authentication\AuthenticationService::getIdentity(), if Zend\Authentication\AuthenticationService was used) will always be FOO\alice, regardless of what form Alice supplied, whether it be alice, alice@foo.net, FOO\alice, FoO\aLicE, foo.net\alice, etc. See the Account Name Canonicalization section in the Zend\Ldap\Ldap documentation for details. Note that when using multiple sets of server options it is recommended, but not required, that the same accountCanonicalForm be used with all server options so that the resulting usernames are always canonicalized to the same form (e.g., if you canonicalize to EXAMPLE\username with an AD server but to username@example.com with an OpenLDAP server, that may be awkward for the application’s high-level logic).



		accountDomainName
		The FQDN domain name for which the target LDAP server is an authority (e.g., example.com). This option is used to canonicalize names so that the username supplied by the user can be converted as necessary for binding. It is also used to determine if the server is an authority for the supplied username (e.g., if accountDomainName is foo.net and the user supplies bob@bar.net, the server will not be queried, and a failure will result). This option is not required, but if it is not supplied, usernames in principal name form (e.g., alice@foo.net) are not supported. It is strongly recommended that you supply this option, as there are many use-cases that require generating the principal name form.



		accountDomainNameShort
		The ‘short’ domain for which the target LDAP server is an authority (e.g., FOO). Note that there is a 1:1 mapping between the accountDomainName and accountDomainNameShort. This option should be used to specify the NetBIOS domain name for Windows networks, but may also be used by non-AD servers (e.g., for consistency when multiple sets of server options with the backslash style accountCanonicalForm). This option is not required but if it is not supplied, usernames in backslash form (e.g., FOO\alice) are not supported.



		accountFilterFormat
		The LDAP search filter used to search for accounts. This string is a printf()-style expression that must contain one ‘%s’ to accomodate the username. The default value is ‘(&(objectClass=user)(sAMAccountName=%s))’, unless bindRequiresDn is set to TRUE, in which case the default is ‘(&(objectClass=posixAccount)(uid=%s))’. For example, if for some reason you wanted to use bindRequiresDn = true with AD you would need to set accountFilterFormat = ‘(&(objectClass=user)(sAMAccountName=%s))’.



		optReferrals
		If set to TRUE, this option indicates to the LDAP client that referrals should be followed. The default value is FALSE.








Note


If you enable useStartTls = TRUE or useSsl = TRUE you may find that the LDAP client generates an error
claiming that it cannot validate the server’s certificate. Assuming the PHP LDAP extension is ultimately
linked to the OpenLDAP client libraries, to resolve this issue you can set “TLS_REQCERT never” in the
OpenLDAP client ldap.conf (and restart the web server) to indicate to the OpenLDAP client library that you
trust the server. Alternatively, if you are concerned that the server could be spoofed, you can export the
LDAP server’s root certificate and put it on the web server so that the OpenLDAP client can validate the
server’s identity.







Collecting Debugging Messages


Zend\Authentication\Adapter\Ldap collects debugging information within its authenticate() method. This
information is stored in the Zend\Authentication\Result object as messages. The array returned by
Zend\Authentication\Result::getMessages() is described as follows



Debugging Messages





		Messages Array Index
		Description





		Index 0
		A generic, user=friendly message that is suitable for displaying to users (e.g., “Invalid credentials”). If the authentication is successful, this string is empty.



		Index 1
		A more detailed error message that is not suitable to be displayed to users but should be logged for the benefit of server operators. If the authentication is successful, this string is empty.



		Indexes 2 and higher
		All log messages in order starting at index 2.







In practice, index 0 should be displayed to the user (e.g., using the FlashMessenger helper), index 1 should be
logged and, if debugging information is being collected, indexes 2 and higher could be logged as well (although the
final message always includes the string from index 1).





Common Options for Specific Servers



Options for Active Directory


For ADS, the following options are noteworthy:



Options for Active Directory





		Name
		Additional Notes





		host
		As with all servers, this option is required.



		useStartTls
		For the sake of security, this should be TRUE if the server has the necessary certificate installed.



		useSsl
		Possibly used as an alternative to useStartTls (see above).



		baseDn
		As with all servers, this option is required. By default AD places all user accounts under the Users container (e.g., CN=Users,DC=foo,DC=net), but the default is not common in larger organizations. Ask your AD administrator what the best DN for accounts for your application would be.



		accountCanonicalForm
		You almost certainly want this to be 3 for backslash style names (e.g., FOO\alice), which are most familiar to Windows users. You should not use the unqualified form 2 (e.g., alice), as this may grant access to your application to users with the same username in other trusted domains (e.g., BAR\alice and FOO\alice will be treated as the same user). (See also note below.)



		accountDomainName
		This is required with AD unless accountCanonicalForm 2 is used, which, again, is discouraged.



		accountDomainNameShort
		The NetBIOS name of the domain that users are in and for which the AD server is an authority. This is required if the backslash style accountCanonicalForm is used.








Note


Technically there should be no danger of accidental cross-domain authentication with the current
Zend\Authentication\Adapter\Ldap implementation, since server domains are explicitly checked, but this may
not be true of a future implementation that discovers the domain at runtime, or if an alternative adapter is
used (e.g., Kerberos). In general, account name ambiguity is known to be the source of security issues, so
always try to use qualified account names.







Options for OpenLDAP


For OpenLDAP or a generic LDAP server using a typical posixAccount style schema, the following options are
noteworthy:



Options for OpenLDAP





		Name
		Additional Notes





		host
		As with all servers, this option is required.



		useStartTls
		For the sake of security, this should be TRUE if the server has the necessary certificate installed.



		useSsl
		Possibly used as an alternative to useStartTls (see above).



		username
		Required and must be a DN, as OpenLDAP requires that usernames be in DN form when performing a bind. Try to use an unprivileged account.



		password
		The password corresponding to the username above, but this may be omitted if the LDAP server permits an anonymous binding to query user accounts.



		bindRequiresDn
		Required and must be TRUE, as OpenLDAP requires that usernames be in DN form when performing a bind.



		baseDn
		As with all servers, this option is required and indicates the DN under which all accounts being authenticated are located.



		accountCanonicalForm
		Optional, but the default value is 4 (principal style names like alice@foo.net), which may not be ideal if your users are used to backslash style names (e.g., FOO\alice). For backslash style names use value 3.



		accountDomainName
		Required unless you’re using accountCanonicalForm 2, which is not recommended.



		accountDomainNameShort
		If AD is not also being used, this value is not required. Otherwise, if accountCanonicalForm 3 is used, this option is required and should be a short name that corresponds adequately to the accountDomainName (e.g., if your accountDomainName is foo.net, a good accountDomainNameShort value might be FOO).















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                LDAP Authentication
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Element Base Class


Zend\Form\Element is a base class for all specialized elements and Zend\\Form\\Fieldset.



Basic Usage


At the bare minimum, each element or fieldset requires a name. You will also typically provide some attributes to
hint to the view layer how it might render the item.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		use Zend\Form\Element;
use Zend\Form\Form;

$username = new Element\Text('username');
$username
    ->setLabel('Username');
    ->setAttributes(array(
        'class' => 'username',
        'size'  => '30',
    ));

$password = new Element\Password('password');
$password
    ->setLabel('Password');
    ->setAttributes(array(
        'size'  => '30',
    ));

$form = new Form('my-form');
$form
    ->add($username)
    ->add($password);













Public Methods



		
setName(string $name)


		Set the name for this element.









		
getName()


		Return the name for this element.






		Return type:		string














		
setLabel(string $label)


		Set the label content for this element.









		
getLabel()


		Return the label content for this element.






		Return type:		string














		
setLabelAttributes(array $labelAttributes)


		Set the attributes to use with the label.









		
getLabelAttributes()


		Return the attributes to use with the label.






		Return type:		array














		
setOptions(array $options)


		Set options for an element. Accepted options are: "label" and "label_attributes", which call
setLabel and setLabelAttributes, respectively.









		
setAttribute(string $key, mixed $value)


		Set a single element attribute.









		
getAttribute(string $key)


		Retrieve a single element attribute.






		Return type:		mixed














		
hasAttribute(string $key)


		Check if a specific attribute exists for this element.






		Return type:		boolean














		
setAttributes(array|Traversable $arrayOrTraversable)


		Set many attributes at once. Implementation will decide if this will overwrite or merge.









		
getAttributes()


		Retrieve all attributes at once.






		Return type:		array|Traversable














		
clearAttributes()


		Clear all attributes for this element.









		
setMessages(array|Traversable $messages)


		Set a list of messages to report when validation fails.









		
getMessages()


		Returns a list of validation failure messages, if any.






		Return type:		array|Traversable



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Element Base Class
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mail.smtp-secure.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Securing SMTP Transport


Zend_Mail also supports the use of either TLS or SSL to secure a SMTP connection. This can be enabled be
passing the ‘ssl’ parameter to the configuration array in the Zend_Mail_Transport_Smtp constructor with a value
of either ‘ssl’ or ‘tls’. A port can optionally be supplied, otherwise it defaults to 25 for TLS or 465 for SSL.


Enabling a secure connection within Zend_Mail_Transport_Smtp


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$config = array('ssl' => 'tls',
                'port' => 25); // Optional port number supplied

$transport = new Zend_Mail_Transport_Smtp('mail.server.com', $config);

$mail = new Zend_Mail();
$mail->setBodyText('This is the text of the mail.');
$mail->setFrom('sender@test.com', 'Some Sender');
$mail->addTo('recipient@test.com', 'Some Recipient');
$mail->setSubject('TestSubject');
$mail->send($transport);














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Securing SMTP Transport
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.module-manager.module-class.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The Module Class


By default, ZF2 module system simply expects each module name to be able to be resolved to an object instance. The
default module resolver, Zend\ModuleManager\Listener\ModuleResolverListener, simply instantiates an instance of
{moduleName}\Module for each enabled module.


A Minimal Module


As an example, provided the module name “MyModule”, Zend\ModuleManager\Listener\ModuleResolverListener will
simply expect the class MyModule\Module to be available. It relies on a registered autoloader, (typically
Zend\Loader\ModuleAutoloader) to find and include the MyModule\Module class if it is not already available.


A module named “MyModule” module might start out looking something like this:


MyModule/
    Module.php




Within Module.php, you define your MyModule\Module class:


		1
2
3
4
5


		namespace MyModule;

class Module
{
}










Though it will not serve any purpose at this point, this “MyModule” module now has everything it needs to be
considered a valid module and be loaded by the module system!


This Module class serves as the single entry point for module manager listeners to interact with a module. From
within this simple, yet powerful class, modules can override or provide additional application configuration,
perform initialization tasks such as registering autoloader(s) and event listeners, declaring dependencies, and
much more.


A Typical Module Class


The following example shows a more typical usage of the Module class:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		namespace MyModule;

class Module
{
    public function getAutoloaderConfig()
    {
        return array(
            'Zend\Loader\ClassMapAutoloader' => array(
                __DIR__ . '/autoload_classmap.php',
            ),
            'Zend\Loader\StandardAutoloader' => array(
                'namespaces' => array(
                    __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
                ),
            ),
        );
    }

    public function getConfig()
    {
        return include __DIR__ . '/config/module.config.php';
    }
}










For a list of the provided module manager listeners and the interfaces and methods that Module classes may
implement in order to interact with the module manager and application, see the module manager listeners
documentation and the module mananger events
documentation.



The “loadModules.post” Event


It is not safe for a module to assume that any other modules have already been loaded at the time init() method
is called. If your module needs to perform any actions after all other modules have been loaded, the module
manager’s “loadModules.post” event makes this easy.



Note


For more information on methods like init() and getConfig(), refer to the module manager listeners
documentation.




Sample Usage of “loadModules.post” Event


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		use Zend\EventManager\EventInterface as Event;
use Zend\ModuleManager\ModuleManager;

class Module
{
    public function init(ModuleManager $moduleManger)
    {
        // Remember to keep the init() method as lightweight as possible
        $events = $moduleManager->getEventManager();
        $events->attach('loadModules.post', array($this, 'modulesLoaded'));
    }

    public function modulesLoaded(Event $e)
    {
        // This method is called once all modules are loaded.
        $moduleManager = $e->getTarget();
        $loadedModules = $moduleManager->getLoadedModules();
        $config        = $moduleManager->getConfig();
    }
}













The MVC “bootstrap” Event


If you are writing an MVC-oriented module for ZF2, you may need access to additional parts of the application in
your Module class such as the instance of Zend\Mvc\Application or its registered service manager instance.
For this, you may utilize the MVC “bootstrap” event. The bootstrap event is triggered after the “loadModule.post”
event, once $application->bootstrap() is called.


Sample Usage of the MVC “bootstrap” Event


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\EventManager\EventInterface as Event;

class Module
{
    public function onBootstrap(Event $e)
    {
        // This method is called once the MVC bootstrapping is complete
        $application = $e->getApplication();
        $services    = $application->getServiceManager();
    }
}
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The Module Class
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.filter.number.format.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
NumberFormat Filter


The NumberFormat filter can be used to return locale-specific number and percentage strings. It acts as a
wrapper for the NumberFormatter class within the Internationalization extension (Intl).


Supported options for NumberFormat Filter


The following options are supported for NumberFormat:


NumberFormat([ string $locale [, int $style [, int $type ]]])



		$locale: (Optional) Locale in which the number would be formatted (locale name, e.g. en_US). If unset, it
will use the default locale (Locale::getDefault())


Methods for getting/setting the locale are also available: getLocale() and setLocale()





		$style: (Optional) Style of the formatting, one of the format style constants [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.unumberformatstyle]. If unset, it will use
NumberFormatter::DEFAULT_STYLE as the default style.


Methods for getting/setting the format style are also available: getStyle() and setStyle()





		$type: (Optional) The formatting type [http://us.php.net/manual/en/class.numberformatter.php#intl.numberformatter-constants.types] to use. If unset, it will use NumberFormatter::TYPE_DOUBLE as
the default type.


Methods for getting/setting the format type are also available: getType() and setType()








NumberFormat Filter Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$filter = \Zend\I18n\Filter\NumberFormat("de_DE");
echo $filter->filter(1234567.8912346);
// Returns "1.234.567,891"

$filter = \Zend\I18n\Filter\NumberFormat("en_US", NumberFormatter::PERCENT);
echo $filter->filter(0.80);
// Returns "80%"

$filter = \Zend\I18n\Filter\NumberFormat("fr_FR", NumberFormatter::SCIENTIFIC);
echo $filter->filter(0.00123456789);
// Returns "1,23456789E-3"














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                NumberFormat Filter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.session.global-session-management.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Global Session Management


The default behavior of sessions can be modified using the static methods of Zend_Session. All management and
manipulation of global session management occurs using Zend_Session, including configuration of the usual
options provided by ext/session [http://www.php.net/session#session.configuration], using Zend_Session::setOptions(). For example, failure to insure the use of
a safe save_path or a unique cookie name by ext/session using Zend_Session::setOptions() may result in
security issues.



Configuration Options


When the first session namespace is requested, Zend_Session will automatically start the PHP session, unless
already started with Zend_Session::start(). The underlying
PHP session will use defaults from Zend_Session, unless modified first by Zend_Session::setOptions().


To set a session configuration option, include the basename (the part of the name after “session.”) as a key of
an array passed to Zend_Session::setOptions(). The corresponding value in the array is used to set the session
option value. If no options are set by the developer, Zend_Session will utilize recommended default options
first, then the default php.ini settings. Community feedback about best practices for these options should be sent
to fw-auth@lists.zend.com.


Using Zend_Config to Configure Zend_Session


To configure this component using Zend_Config_Ini, first add the configuration
options to the INI file:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


		; Accept defaults for production
[production]
; bug_compat_42
; bug_compat_warn
; cache_expire
; cache_limiter
; cookie_domain
; cookie_lifetime
; cookie_path
; cookie_secure
; entropy_file
; entropy_length
; gc_divisor
; gc_maxlifetime
; gc_probability
; hash_bits_per_character
; hash_function
; name should be unique for each PHP application sharing the same
; domain name
name = UNIQUE_NAME
; referer_check
; save_handler
; save_path
; serialize_handler
; use_cookies
; use_only_cookies
; use_trans_sid

; remember_me_seconds = <integer seconds>
; strict = on|off

; Development inherits configuration from production, but overrides
; several values
[development : production]
; Don't forget to create this directory and make it rwx (readable and
; modifiable) by PHP.
save_path = /home/myaccount/zend_sessions/myapp
use_only_cookies = on
; When persisting session id cookies, request a TTL of 10 days
remember_me_seconds = 864000










Next, load the configuration file and pass its array representation to Zend_Session::setOptions():


		1
2
3


		$config = new Zend_Config_Ini('myapp.ini', 'development');

Zend_Session::setOptions($config->toArray());










Most options shown above need no explanation beyond that found in the standard PHP documentation, but those of
particular interest are noted below.




		boolean strict- disables automatic starting of Zend_Session when using new Zend_Session_Namespace().





		integer remember_me_seconds- how long should session id cookie persist, after user agent has ended (e.g.,
browser application terminated).





		string save_path- The correct value is system dependent, and should be provided by the developer using an
absolute path to a directory readable and writable by the PHP process. If a writable path is not
supplied, then Zend_Session will throw an exception when started (i.e., when start() is called).



Note


Security Risk


If the path is readable by other applications, then session hijacking might be possible. if the path is
writable by other applications, then session poisoning [http://en.wikipedia.org/wiki/Session_poisoning] might be possible. If this path is shared with
other users or other PHP applications, various security issues might occur, including theft of session
content, hijacking of sessions, and collision of garbage collection (e.g., another user’s application might
cause PHP to delete your application’s session files).


For example, an attacker can visit the victim’s website to obtain a session cookie. Then, he edits the
cookie path to his own domain on the same server, before visiting his own website to execute
var_dump($_SESSION). Armed with detailed knowledge of the victim’s use of data in their sessions, the
attacker can then modify the session state (poisoning the session), alter the cookie path back to the
victim’s website, and then make requests from the victim’s website using the poisoned session. Even if two
applications on the same server do not have read/write access to the other application’s save_path, if
the save_path is guessable, and the attacker has control over one of these two websites, the attacker
could alter their website’s save_path to use the other’s save_path, and thus accomplish session
poisoning, under some common configurations of PHP. Thus, the value for save_path should not be made
public knowledge and should be altered to a secure location unique to each application.







		string name- The correct value is system dependent and should be provided by the developer using a value
unique to the application.



Note


Security Risk


If the php.ini setting for session.name is the same (e.g., the default “PHPSESSID”), and there are two
or more PHP applications accessible through the same domain name then they will share the same session
data for visitors to both websites. Additionally, possible corruption of session data may result.







		boolean use_only_cookies- In order to avoid introducing additional security risks, do not alter the default
value of this option.




Note


Security Risk


If this setting is not enabled, an attacker can easily fix victim’s session ids, using links on the
attacker’s website, such as http://www.example.com/index.php?PHPSESSID=fixed_session_id. The fixation
works, if the victim does not already have a session id cookie for example.com. Once a victim is using a
known session id, the attacker can then attempt to hijack the session by pretending to be the victim,
and emulating the victim’s user agent.





















Error: Headers Already Sent


If you see the error message, “Cannot modify header information - headers already sent”, or, “You must call ...
before any output has been sent to the browser; output started in ...”, then carefully examine the immediate cause
(function or method) associated with the message. Any actions that require sending HTTP headers, such as sending
a cookie, must be done before sending normal output (unbuffered output), except when using PHP‘s output
buffering.



		Using output buffering [http://php.net/outcontrol] often is sufficient to prevent this issue, and may help improve performance. For
example, in php.ini, “output_buffering = 65535” enables output buffering with a 64K buffer. Even though
output buffering might be a good tactic on production servers to increase performance, relying only on buffering
to resolve the “headers already sent” problem is not sufficient. The application must not exceed the buffer size,
or the problem will occur whenever the output sent (prior to the HTTP headers) exceeds the buffer size.


		If a Zend_Session method is involved in causing the error message, examine the method carefully, and make
sure its use really is needed in the application. For example, the default usage of destroy() also sends an
HTTP header to expire the client-side session cookie. If this is not needed, then use destroy(false), since
the instructions to set cookies are sent with HTTP headers.


		Alternatively, try rearranging the application logic so that all actions manipulating headers are performed prior
to sending any output whatsoever.


		Remove any closing “?>” tags, if they occur at the end of a PHP source file. They are not needed, and
newlines and other nearly invisible whitespace following the closing tag can trigger output to the client.








Session Identifiers


Introduction: Best practice in relation to using sessions with Zend Framework calls for using a browser cookie
(i.e. a normal cookie stored in your web browser), instead of embedding a unique session identifier in URLs as
a means to track individual users. By default this component uses only cookies to maintain session identifiers. The
cookie’s value is the unique identifier of your browser’s session. PHP‘s ext/session uses this identifier to
maintain a unique one-to-one relationship between website visitors, and persistent session data storage unique to
each visitor. Zend_Session* wraps this storage mechanism ($_SESSION) with an object-oriented interface.
Unfortunately, if an attacker gains access to the value of the cookie (the session id), an attacker might be able
to hijack a visitor’s session. This problem is not unique to PHP, or Zend Framework. The regenerateId()
method allows an application to change the session id (stored in the visitor’s cookie) to a new, random,
unpredictable value. Note: Although not the same, to make this section easier to read, we use the terms “user
agent” and “web browser” interchangeably.


Why?: If an attacker obtains a valid session identifier, an attacker might be able to impersonate a valid user (the
victim), and then obtain access to confidential information or otherwise manipulate the victim’s data managed by
your application. Changing session ids helps protect against session hijacking. If the session id is changed, and
an attacker does not know the new value, the attacker can not use the new session id in their attempts to hijack
the visitor’s session. Even if an attacker gains access to an old session id, regenerateId() also moves the
session data from the old session id “handle” to the new one, so no data remains accessible via the old session id.


When to use regenerateId(): Adding Zend_Session::regenerateId() to your Zend Framework bootstrap yields one of
the safest and most secure ways to regenerate session id’s in user agent cookies. If there is no conditional logic
to determine when to regenerate the session id, then there are no flaws in that logic. Although regenerating on
every request prevents several possible avenues of attack, not everyone wants the associated small performance and
bandwidth cost. Thus, applications commonly try to dynamically determine situations of greater risk, and only
regenerate the session ids in those situations. Whenever a website visitor’s session’s privileges are “escalated”
(e.g. a visitor re-authenticates their identity before editing their personal “profile”), or whenever a security
“sensitive” session parameter change occurs, consider using regenerateId() to create a new session id. If you
call the rememberMe() function, then don’t use regenerateId(), since the former calls the latter. If a user
has successfully logged into your website, use rememberMe() instead of regenerateId().



Session Hijacking and Fixation


Avoiding cross-site script (XSS) vulnerabilities [http://en.wikipedia.org/wiki/Cross_site_scripting] helps preventing session hijacking. According to Secunia’s [http://secunia.com/]
statistics XSS problems occur frequently, regardless of the languages used to create web applications. Rather than
expecting to never have a XSS problem with an application, plan for it by following best practices to help minimize
damage, if it occurs. With XSS, an attacker does not need direct access to a victim’s network traffic. If the
victim already has a session cookie, Javascript XSS might allow an attacker to read the cookie and steal the
session. for victims with no session cookies, using XSS to inject Javascript, an attacker could create a session id
cookie on the victim’s browser with a known value, then set an identical cookie on the attacker’s system, in order
to hijack the victim’s session. If the victim visited an attacker’s website, then the attacker can also emulate
most other identifiable characteristics of the victim’s user agent. If your website has an XSS vulnerability, the
attacker might be able to insert an AJAX Javascript that secretly “visits” the attacker’s website, so that the
attacker knows the victim’s browser characteristics and becomes aware of a compromised session at the victim
website. However, the attacker can not arbitrarily alter the server-side state of PHP sessions, provided the
developer has correctly set the value for the save_path option.


By itself, calling Zend_Session::regenerateId() when the user’s session is first used, does not prevent session
fixation attacks, unless you can distinguish between a session originated by an attacker emulating the victim. At
first, this might sound contradictory to the previous statement above, until we consider an attacker who first
initiates a real session on your website. The session is “first used” by the attacker, who then knows the result of
the initialization (regenerateId()). The attacker then uses the new session id in combination with an XSS
vulnerability, or injects the session id via a link on the attacker’s website (works if use_only_cookies = off).


If you can distinguish between an attacker and victim using the same session id, then session hijacking can be
dealt with directly. However, such distinctions usually involve some form of usability tradeoffs, because the
methods of distinction are often imprecise. For example, if a request is received from an IP in a different country
than the IP of the request when the session was created, then the new request probably belongs to an attacker.
Under the following conditions, there might not be any way for a website application to distinguish between a
victim and an attacker:




		attacker first initiates a session on your website to obtain a valid session id


		attacker uses XSS vulnerability on your website to create a cookie on the victim’s browser with the same,
valid session id (i.e. session fixation)


		both the victim and attacker originate from the same proxy farm (e.g. both are behind the same firewall at a
large company, like AOL)









The sample code below makes it much harder for an attacker to know the current victim’s session id, unless the
attacker has already performed the first two steps above.


Session Fixation


		1
2
3
4
5
6


		$defaultNamespace = new Zend_Session_Namespace();

if (!isset($defaultNamespace->initialized)) {
    Zend_Session::regenerateId();
    $defaultNamespace->initialized = true;
}















rememberMe(integer $seconds)


Ordinarily, sessions end when the user agent terminates, such as when an end user exits a web browser program.
However, your application may provide the ability to extend user sessions beyond the lifetime of the client program
through the use of persistent cookies. Use Zend_Session::rememberMe() before a session is started to control
the length of time before a persisted session cookie expires. If you do not specify a number of seconds, then the
session cookie lifetime defaults to remember_me_seconds, which may be set using Zend_Session::setOptions().
To help thwart session fixation/hijacking, use this function when a user successfully authenticates with your
application (e.g., from a “login” form).





forgetMe()


This function complements rememberMe() by writing a session cookie that has a lifetime ending when the user
agent terminates.





sessionExists()


Use this method to determine if a session already exists for the current user agent/request. It may be used before
starting a session, and independently of all other Zend_Session and Zend_Session_Namespace methods.





destroy(bool $remove_cookie = true, bool $readonly = true)


Zend_Session::destroy() destroys all of the persistent data associated with the current session. However, no
variables in PHP are affected, so your namespaced sessions (instances of Zend_Session_Namespace) remain
readable. To complete a “logout”, set the optional parameter to TRUE (the default) to also delete the user
agent’s session id cookie. The optional $readonly parameter removes the ability to create new
Zend_Session_Namespace instances and for Zend_Session methods to write to the session data store.


If you see the error message, “Cannot modify header information - headers already sent”, then either avoid using
TRUE as the value for the first argument (requesting removal of the session cookie), or see this section. Thus, Zend_Session::destroy(true) must either be called
before PHP has sent HTTP headers, or output buffering must be enabled. Also, the total output sent must not
exceed the set buffer size, in order to prevent triggering sending the output before the call to destroy().



Note


Throws


By default, $readonly is enabled and further actions involving writing to the session data store will throw
an exception.







stop()


This method does absolutely nothing more than toggle a flag in Zend_Session to prevent further writing to the
session data store. We are specifically requesting feedback on this feature. Potential uses/abuses might include
temporarily disabling the use of Zend_Session_Namespace instances or Zend_Session methods to write to the
session data store, while execution is transferred to view- related code. Attempts to perform actions involving
writes via these instances or methods will throw an exception.





writeClose($readonly = true)


Shutdown the session, close writing and detach $_SESSION from the back-end storage mechanism. This will
complete the internal data transformation on this request. The optional $readonly boolean parameter can remove
write access by throwing an exception upon any attempt to write to the session via Zend_Session or
Zend_Session_Namespace.



Note


Throws


By default, $readonly is enabled and further actions involving writing to the session data store will throw
an exception. However, some legacy application might expect $_SESSION to remain writable after ending the
session via session_write_close(). Although not considered “best practice”, the $readonly option is
available for those who need it.







expireSessionCookie()


This method sends an expired session id cookie, causing the client to delete the session cookie. Sometimes this
technique is used to perform a client-side logout.





setSaveHandler(Zend_Session_SaveHandler_Interface $interface)


Most developers will find the default save handler sufficient. This method provides an object-oriented wrapper for
session_set_save_handler() [http://php.net/session_set_save_handler].





namespaceIsset($namespace)


Use this method to determine if a session namespace exists, or if a particular index exists in a particular
namespace.



Note


Throws


An exception will be thrown if Zend_Session is not marked as readable (e.g., before Zend_Session has
been started).







namespaceUnset($namespace)


Use Zend_Session::namespaceUnset($namespace) to efficiently remove an entire namespace and its contents. As
with all arrays in PHP, if a variable containing an array is unset, and the array contains other objects, those
objects will remain available, if they were also stored by reference in other array/objects that remain accessible
via other variables. So namespaceUnset() does not perform a “deep” unsetting/deleting of the contents of the
entries in the namespace. For a more detailed explanation, please see References Explained [http://php.net/references] in the PHP manual.



Note


Throws


An exception will be thrown if the namespace is not writable (e.g., after destroy()).







namespaceGet($namespace)


DEPRECATED: Use getIterator() in Zend_Session_Namespace. This method returns an array of the contents of
$namespace. If you have logical reasons to keep this method publicly accessible, please provide feedback to the
fw-auth@lists.zend.com mail list. Actually, all participation on any relevant topic is welcome :)



Note


Throws


An exception will be thrown if Zend_Session is not marked as readable (e.g., before Zend_Session has
been started).







getIterator()


Use getIterator() to obtain an array containing the names of all namespaces.



Note


Throws


An exception will be thrown if Zend_Session is not marked as readable (e.g., before Zend_Session has
been started).










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Global Session Management
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.loader.plugin-class-loader.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
The PluginClassLoader



Overview


Resolving plugin names to class names is a common requirement within Zend Framework applications. The
PluginClassLoader implements the interfaces PluginClassLocator,
ShortNameLocator, and IteratorAggregate, providing a simple mechanism
for aliasing plugin names to classnames for later retrieval.


While it can act as a standalone class, it is intended that developers will extend the class to provide a
per-component plugin map. This allows seeding the map with the most often-used plugins, while simultaneously
allowing the end-user to overwrite existing or register new plugins.


Additionally, PluginClassLoader provides the ability to statically seed all new instances of a given
PluginClassLoader or one of its extensions (via Late Static Binding). If your application will always call for
defining or overriding particular plugin maps on given PluginClassLoader extensions, this is a powerful
capability.





Quick Start


Typical use cases involve simply instantiating a PluginClassLoader, seeding it with one or more plugin/class
name associations, and then using it to retrieve the class name associated with a given plugin name.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\View\HelperLoader;

// Provide a global map, or override defaults:
HelperLoader::addStaticMap(array(
    'url' => 'My\Custom\UrlHelper',
));

// Instantiate the loader:
$loader = new Zend\View\HelperLoader();

// Register a new plugin:
$loader->registerPlugin('bugUrl', 'My\Custom\BugUrlHelper');

// Load/retrieve the associated plugin class:
$class = $loader->load('url'); // 'My\Custom\UrlHelper'











Note


Case Sensitivity


The PluginClassLoader is designed to do case-insensitive plugin name lookups. While the above example
defines a “bugUrl” plugin name, internally, this will be stored as simply “bugurl”. If another plugin is
registered with simply a different word case, it will overwrite this entry.







Configuration Options


PluginClassLoader Options



		$map


		The constructor may take a single option, an array or Traversable object of key/value pairs corresponding to
a plugin name and class name, respectively.








Available Methods



		__construct


		Instantiate and initialize the loader
__construct($map = null)


__construct()
The constructor is used to instantiate and intialize the plugin class loader. If passed a string, an array, or a
Traversable object, it will pass this to the registerPlugins() method in order to seed (or overwrite) the plugin
class map.









		addStaticMap


		Statically seed the plugin loader map
addStaticMap($map)


addStaticMap()
Static method for globally pre-seeding the loader with a class map. It accepts either an array or
Traversable object of plugin name/class name pairs.


When using this method, be certain you understand the precedence in which maps will be merged; in decreasing
order of preference:



		Manually registered plugin/class name pairs (e.g., via registerPlugin() or registerPlugins()).


		A map passed to the constructor .


		The static map.


		The map defined within the class itself.





Also, please note that calling the method will not affect any instances already created.









		registerPlugin


		Register a plugin/class association
registerPlugin($shortName, $className)


registerPlugin()
Defined by the PluginClassLocator interface. Expects two string
arguments, the plugin $shortName, and the class $className which it represents.









		registerPlugins


		Register many plugin/class associations at once
registerPlugins($map)


registerPlugins()
Expects a string, an array or Traversable object of plugin name/class name pairs representing a plugin class
map.


If a string argument is provided, registerPlugins() assumes this is a class name. If the class does not
exist, an exception will be thrown. If it does, it then instantiates the class and checks to see whether or not
it implements Traversable.









		unregisterPlugin


		Remove a plugin/class association from the map
unregisterPlugin($shortName)


unregisterPlugin()
Defined by the PluginClassLocator interface; remove a plugin/class association from the plugin class map.









		getRegisteredPlugins


		Return the complete plugin class map
getRegisteredPlugins()


getRegisteredPlugins()
Defined by the PluginClassLocator interface; return the entire plugin class map as an array.









		isLoaded


		Determine if a given plugin name resolves
isLoaded($name)


isLoaded()
Defined by the ShortNameLocator interface; determine if the given plugin has been resolved to a class name.









		getClassName


		Return the class name to which a plugin resolves
getClassName($name)


getClassName()
Defined by the ShortNameLocator interface; return the class name to which a plugin name resolves.









		load


		Resolve a plugin name
load($name)


load()
Defined by the ShortNameLocator interface; attempt to resolve a plugin name to a class name. If successful,
returns the class name; otherwise, returns a boolean false.









		getIterator


		Return iterator capable of looping over plugin class map
getIterator()


getIterator()
Defined by the IteratorAggregate interface; allows iteration over the plugin class map. This can come in
useful for using PluginClassLoader instances to other PluginClassLoader instances in order to merge
maps.











Examples


Using Static Maps


It’s often convenient to provide global overrides or additions to the maps in a PluginClassLoader instance.
This can be done using the addStaticMap() method:


		1
2
3
4
5


		use Zend\Loader\PluginClassLoader;

PluginClassLoader::addStaticMap(array(
    'url' => 'Zend\View\Helper\Url',
));










Any later instances created will now have this map defined, allowing you to load that plugin.


		1
2
3
4


		use Zend\Loader\PluginClassLoader;

$loader = new PluginClassLoader();
$helper = $loader->load('url'); // Zend\View\Helper\Url










Creating a pre-loaded map


In many cases, you know exactly which plugins you may be drawing upon on a regular basis, and which classes they
will refer to. In this case, simply extend the PluginClassLoader and define the map within the extending class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		namespace My\Plugins;

use Zend\Loader\PluginClassLoader;

class PluginLoader extends PluginClassLoader
{
    /**
     * @var array Plugin map
     */
    protected $plugins = array(
        'foo'    => 'My\Plugins\Foo',
        'bar'    => 'My\Plugins\Bar',
        'foobar' => 'My\Plugins\FooBar',
    );
}










At this point, you can simply instantiate the map and use it.


		1
2


		$loader = new My\Plugins\PluginLoader();
$class  = $loader->load('foobar'); // My\Plugins\FooBar










PluginClassLoader makes use of late static binding, allowing per-class static maps. If you want to allow
defining a static map specific to this extending
class, simply declare a protected static $staticMap property:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		namespace My\Plugins;

use Zend\Loader\PluginClassLoader;

class PluginLoader extends PluginClassLoader
{
    protected static $staticMap = array();

    // ...
}










To inject the static map, use the extending class’ name to call the static addStaticMap() method.


		1
2
3


		PluginLoader::addStaticMap(array(
    'url' => 'Zend\View\Helper\Url',
));










Extending a plugin map using another plugin map


In some cases, a general map class may already exist; as an example, most components in Zend Framework that utilize
a plugin broker have an associated PluginClassLoader extension defining the plugins available for that
component within the framework. What if you want to define some additions to these? Where should that code go?


One possibility is to define the map in a configuration file, and then inject the configuration into an instance of
the plugin loader. This is certainly trivial to implement, but removes the code defining the plugin map from the
library.


An alternate solution is to define a new plugin map class. The class name or an instance of the class may then be
passed to the constructor or registerPlugins().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		namespace My\Plugins;

use Zend\Loader\PluginClassLoader;
use Zend\View\Helper\HelperLoader;

class PluginLoader extends PluginClassLoader
{
    /**
     * @var array Plugin map
     */
    protected $plugins = array(
        'foo'    => 'My\Plugins\Foo',
        'bar'    => 'My\Plugins\Bar',
        'foobar' => 'My\Plugins\FooBar',
    );
}

// Inject in constructor:
$loader = new HelperLoader('My\Plugins\PluginLoader');
$loader = new HelperLoader(new PluginLoader());

// Or via registerPlugins():
$loader->registerPlugins('My\Plugins\PluginLoader');
$loader->registerPlugins(new PluginLoader());
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                The PluginClassLoader
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.module-manager.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction to the Module System


Zend Framework 2.0 introduces a new and powerful approach to modules. This new module system is designed with
flexibility, simplicity, and re-usability in mind. A module may contain just about anything: PHP code, including
MVC functionality; library code; view scripts; and/or public assets such as images, CSS, and JavaScript. The
possibilities are endless.



Note


The module system in ZF2 has been designed to be useful as a generic and powerful foundation from which
developers and other projects can build their own module or plugin systems.


For a better understanding of the event-driven concepts behind the ZF2 module system, it may be helpful to read
the EventManager documentation..




The module system is made up of the following:



		The Module Autoloader-Zend\Loader\ModuleAutoloader is a specialized autoloader that is responsible for
the locating and loading of modules’Module classes from a variety of sources.


		The Module Manager-Zend\ModuleManager\ModuleManager simply takes
an array of module names and fires a sequence of events for each one, allowing the behavior of the module system
to be defined entirely by the listeners which are attached to the module manager.


		ModuleManager Listeners- Event listeners can be attached to the module manager’s various events. These
listeners can do everything from resolving and loading modules to performing complex initialization tasks and
introspection into each returned module object.






Note


The name of a module in a typical Zend Framework 2 application is simply a PHP namespace [http://php.net/namespaces] and must follow all
of the same rules for naming.




The recommended structure of a typical MVC-oriented ZF2 module is as follows:


module_root/
    Module.php
    autoload_classmap.php
    autoload_function.php
    autoload_register.php
    config/
        module.config.php
    public/
        images/
        css/
        js/
    src/
        <module_namespace>/
            <code files>
    tests/
        phpunit.xml
        bootstrap.php
        <module_namespace>/
            <test code files>
    views/
        <dir-named-after-module-namespace>/
            <dir-named-after-a-controller>/
                <.phtml files>





The autoload_*.php Files


The three autoload_*.php files are not required, but recommended. They provide the following:



		autoload_classmap.php should return an array classmap of class name/filename pairs (with the filenames
resolved via the __DIR__ magic constant).


		autoload_function.php should return a PHP callback that can be passed to spl_autoload_register().
Typically, this callback should utilize the map returned by autoload_classmap.php.


		autoload_register.php should register a PHP callback (typically that returned by autoload_function.php
with spl_autoload_register().





The purpose of these three files is to provide reasonable default mechanisms for autoloading the classes contained
in the module, thus providing a trivial way to consume the module without requiring Zend\ModuleManager (e.g.,
for use outside a ZF2 application).








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction to the Module System
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.view.helper.date.format.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
DateFormat Helper


The DateFormat view helper can be used to simplify rendering of localized date/time values. It acts as a
wrapper for the IntlDateFormatter class within the Internationalization extension (Intl).


Basic Usage


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		// Within your view

// Date and Time
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::MEDIUM, // date
    IntlDateFormatter::MEDIUM, // time
    "en_US"
);
// This returns: "Jul 2, 2012 6:44:03 PM"

// Date Only
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::LONG, // date
    IntlDateFormatter::NONE, // time
    "en_US"
);
// This returns: "July 2, 2012"

// Time Only
echo $this->dateFormat(
    new DateTime(),
    IntlDateFormatter::NONE,  // date
    IntlDateFormatter::SHORT, // time
    "en_US"
);
// This returns: "6:44 PM"











		
dateFormat(mixed $date[, int $dateType[, int $timeType[, string $locale]]])


		



		Parameters:		
		$date – The value to format. This may be a DateTime object, an integer representing a Unix timestamp value or an array in the format output by localtime().


		$dateType – (Optional) Date type to use (none, short, medium, long, full). This is one of the IntlDateFormatter constants [http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]. Defaults to IntlDateFormatter::NONE.


		$timeType – (Optional) Time type to use (none, short, medium, long, full). This is one of the IntlDateFormatter constants [http://us.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]. Defaults to IntlDateFormatter::NONE.


		$locale – (Optional) Locale in which the date would be formatted (locale name, e.g. en_US). If unset, it will use the default locale (Locale::getDefault())



















Public Methods


The $locale option can be set prior to formatting with the setLocale() method and will be applied each time
the helper is used.


By default, the system’s default timezone will be used when formatting. This overrides any timezone that may be set
inside a DateTime object. To change the timezone when formatting, use the setTimezone method.


		1
2
3
4
5


		// Within your view
$this->plugin("dateFormat")->setTimezone("America/New_York")->setLocale("en_US");

echo $this->dateFormat(new DateTime(), IntlDateFormatter::MEDIUM);  // "Jul 2, 2012"
echo $this->dateFormat(new DateTime(), IntlDateFormatter::SHORT);   // "7/2/12"














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                DateFormat Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service.technorati.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_Service_Technorati



Introduction


Zend_Service_Technorati provides an easy, intuitive and object-oriented interface for using the Technorati
API. It provides access to all available Technorati API queries [http://technorati.com/developers/api/] and returns the original XML response as a
friendly PHP object.


Technorati [http://technorati.com/] is one of the most popular blog search engines. The API interface enables developers to retrieve
information about a specific blog, search blogs matching a single tag or phrase and get information about a
specific author (blogger). For a full list of available queries please see the Technorati API documentation [http://technorati.com/developers/api/] or
the Available Technorati queries section of this document.





Getting Started


Technorati requires a valid API key for usage. To get your own API Key you first need to create a new
Technorati account [http://technorati.com/signup/], then visit the API Key section [http://technorati.com/developers/apikey.html].



Note


API Key limits


You can make up to 500 Technorati API calls per day, at no charge. Other usage limitations may apply,
depending on the current Technorati API license.




Once you have a valid API key, you’re ready to start using Zend_Service_Technorati.





Making Your First Query


In order to run a query, first you need a Zend_Service_Technorati instance with a valid API key. Then choose
one of the available query methods, and call it providing required arguments.


Sending your first query


		1
2
3
4
5
6


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// search Technorati for PHP keyword
$resultSet = $technorati->search('PHP');










Each query method accepts an array of optional parameters that can be used to refine your query.


Refining your query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// filter your query including only results
// with some authority (Results from blogs with a handful of links)
$options = array('authority' => 'a4');

// search Technorati for PHP keyword
$resultSet = $technorati->search('PHP', $options);










A Zend_Service_Technorati instance is not a single-use object. That is, you don’t need to create a new instance
for each query call; simply use your current Zend_Service_Technorati object as long as you need it.


Sending multiple queries with the same Zend_Service_Technorati instance


		1
2
3
4
5
6
7
8
9


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// search Technorati for PHP keyword
$search = $technorati->search('PHP');

// get top tags indexed by Technorati
$topTags = $technorati->topTags();













Consuming Results


You can get one of two types of result object in response to a query.


The first group is represented by Zend_Service_Technorati_*ResultSet objects. A result set object is basically
a collection of result objects. It extends the basic Zend_Service_Technorati_ResultSet class and implements the
SeekableIterator PHP interface. The best way to consume a result set object is to loop over it with the PHP
foreach() statement.


Consuming a result set object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// search Technorati for PHP keyword
// $resultSet is an instance of Zend_Service_Technorati_SearchResultSet
$resultSet = $technorati->search('PHP');

// loop over all result objects
foreach ($resultSet as $result) {
    // $result is an instance of Zend_Service_Technorati_SearchResult
}










Because Zend_Service_Technorati_ResultSet implements the SeekableIterator interface, you can seek a
specific result object using its position in the result collection.


Seeking a specific result set object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// search Technorati for PHP keyword
// $resultSet is an instance of Zend_Service_Technorati_SearchResultSet
$resultSet = $technorati->search('PHP');

// $result is an instance of Zend_Service_Technorati_SearchResult
$resultSet->seek(1);
$result = $resultSet->current();











Note


SeekableIterator works as an array and counts positions starting from index 0. Fetching position number 1
means getting the second result in the collection.




The second group is represented by special standalone result objects. Zend_Service_Technorati_GetInfoResult,
Zend_Service_Technorati_BlogInfoResult and Zend_Service_Technorati_KeyInfoResult act as wrappers for
additional objects, such as Zend_Service_Technorati_Author and Zend_Service_Technorati_Weblog.


Consuming a standalone result object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		// create a new Zend_Service_Technorati
// with a valid API_KEY
$technorati = new Zend_Service_Technorati('VALID_API_KEY');

// get info about weppos author
$result = $technorati->getInfo('weppos');

$author = $result->getAuthor();
echo '<h2>Blogs authored by ' . $author->getFirstName() . " " .
          $author->getLastName() . '</h2>';
echo '<ol>';
foreach ($result->getWeblogs() as $weblog) {
    echo '<li>' . $weblog->getName() . '</li>';
}
echo "</ol>";










Please read the Zend_Service_Technorati Classes section for further
details about response classes.





Handling Errors


Each Zend_Service_Technorati query method throws a Zend_Service_Technorati_Exception exception on failure
with a meaningful error message.


There are several reasons that may cause a Zend_Service_Technorati query to fail. Zend_Service_Technorati
validates all parameters for any query request. If a parameter is invalid or it contains an invalid value, a new
Zend_Service_Technorati_Exception exception is thrown. Additionally, the Technorati API interface could be
temporally unavailable, or it could return a response that is not well formed.


You should always wrap a Technorati query with a try ... catch block.


Handling a Query Exception


		1
2
3
4
5
6


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
try {
    $resultSet = $technorati->search('PHP');
} catch(Zend_Service_Technorati_Exception $e) {
    echo "An error occurred: " $e->getMessage();
}













Checking Your API Key Daily Usage


From time to time you probably will want to check your API key daily usage. By default Technorati limits your
API usage to 500 calls per day, and an exception is returned by Zend_Service_Technorati if you try to use it
beyond this limit. You can get information about your API key usage using the
Zend_Service_Technorati::keyInfo() method.


Zend_Service_Technorati::keyInfo() returns a Zend_Service_Technorati_KeyInfoResult object. For full details
please see the API reference guide [http://framework.zend.com/apidoc/core/].


Getting API key daily usage information


		1
2
3
4
5
6


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$key = $technorati->keyInfo();

echo "API Key: " . $key->getApiKey() . "<br />";
echo "Daily Usage: " . $key->getApiQueries() . "/" .
     $key->getMaxQueries() . "<br />";













Available Technorati Queries


Zend_Service_Technorati provides support for the following queries:




		Cosmos


		Search


		Tag


		DailyCounts


		TopTags


		BlogInfo


		BlogPostTags


		GetInfo










Technorati Cosmos


Cosmos [http://technorati.com/developers/api/cosmos.html] query lets you see what blogs are linking to a given URL. It returns a
Zend_Service_Technorati_CosmosResultSet object. For full
details please see Zend_Service_Technorati::cosmos() in the API reference guide [http://framework.zend.com/apidoc/core/].


Cosmos Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->cosmos('http://devzone.zend.com/');

echo "<p>Reading " . $resultSet->totalResults() .
     " of " . $resultSet->totalResultsAvailable() .
     " available results</p>";
echo "<ol>";
foreach ($resultSet as $result) {
    echo "<li>" . $result->getWeblog()->getName() . "</li>";
}
echo "</ol>";













Technorati Search


The Search [http://technorati.com/developers/api/search.html] query lets you see what blogs contain a given search string. It returns a
Zend_Service_Technorati_SearchResultSet object. For full
details please see Zend_Service_Technorati::search() in the API reference guide [http://framework.zend.com/apidoc/core/].


Search Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->search('zend framework');

echo "<p>Reading " . $resultSet->totalResults() .
     " of " . $resultSet->totalResultsAvailable() .
     " available results</p>";
echo "<ol>";
foreach ($resultSet as $result) {
    echo "<li>" . $result->getWeblog()->getName() . "</li>";
}
echo "</ol>";













Technorati Tag


The Tag [http://technorati.com/developers/api/tag.html] query lets you see what posts are associated with a given tag. It returns a
Zend_Service_Technorati_TagResultSet object. For full details
please see Zend_Service_Technorati::tag() in the API reference guide [http://framework.zend.com/apidoc/core/].


Tag Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->tag('php');

echo "<p>Reading " . $resultSet->totalResults() .
     " of " . $resultSet->totalResultsAvailable() .
     " available results</p>";
echo "<ol>";
foreach ($resultSet as $result) {
    echo "<li>" . $result->getWeblog()->getName() . "</li>";
}
echo "</ol>";













Technorati DailyCounts


The DailyCounts [http://technorati.com/developers/api/dailycounts.html] query provides daily counts of posts containing the queried keyword. It returns a
Zend_Service_Technorati_DailyCountsResultSet object.
For full details please see Zend_Service_Technorati::dailyCounts() in the API reference guide [http://framework.zend.com/apidoc/core/].


DailyCounts Query


		1
2
3
4
5
6
7
8


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->dailyCounts('php');

foreach ($resultSet as $result) {
    echo "<li>" . $result->getDate() .
         "(" . $result->getCount() . ")</li>";
}
echo "</ol>";













Technorati TopTags


The TopTags [http://technorati.com/developers/api/toptags.html] query provides information on top tags indexed by Technorati. It returns a
Zend_Service_Technorati_TagsResultSet object. For full
details please see Zend_Service_Technorati::topTags() in the API reference guide [http://framework.zend.com/apidoc/core/].


TopTags Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->topTags();

echo "<p>Reading " . $resultSet->totalResults() .
     " of " . $resultSet->totalResultsAvailable() .
     " available results</p>";
echo "<ol>";
foreach ($resultSet as $result) {
    echo "<li>" . $result->getTag() . "</li>";
}
echo "</ol>";













Technorati BlogInfo


The BlogInfo [http://technorati.com/developers/api/bloginfo.html] query provides information on what blog, if any, is associated with a given URL. It returns a
Zend_Service_Technorati_BlogInfoResult object. For full
details please see Zend_Service_Technorati::blogInfo() in the API reference guide [http://framework.zend.com/apidoc/core/].


BlogInfo Query


		1
2
3
4
5


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$result = $technorati->blogInfo('http://devzone.zend.com/');

echo '<h2><a href="' . (string) $result->getWeblog()->getUrl() . '">' .
     $result->getWeblog()->getName() . '</a></h2>';













Technorati BlogPostTags


The BlogPostTags [http://technorati.com/developers/api/blogposttags.html] query provides information on the top tags used by a specific blog. It returns a
Zend_Service_Technorati_TagsResultSet object. For full
details please see Zend_Service_Technorati::blogPostTags() in the API reference guide [http://framework.zend.com/apidoc/core/].


BlogPostTags Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->blogPostTags('http://devzone.zend.com/');

echo "<p>Reading " . $resultSet->totalResults() .
     " of " . $resultSet->totalResultsAvailable() .
     " available results</p>";
echo "<ol>";
foreach ($resultSet as $result) {
    echo "<li>" . $result->getTag() . "</li>";
}
echo "</ol>";













Technorati GetInfo


The GetInfo [http://technorati.com/developers/api/getinfo.html] query tells you things that Technorati knows about a member. It returns a
Zend_Service_Technorati_GetInfoResult object. For full
details please see Zend_Service_Technorati::getInfo() in the API reference guide [http://framework.zend.com/apidoc/core/].


GetInfo Query


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$result = $technorati->getInfo('weppos');

$author = $result->getAuthor();
echo "<h2>Blogs authored by " . $author->getFirstName() . " " .
     $author->getLastName() . "</h2>";
echo "<ol>";
foreach ($result->getWeblogs() as $weblog) {
    echo "<li>" . $weblog->getName() . "</li>";
}
echo "</ol>";













Technorati KeyInfo


The KeyInfo query provides information on daily usage of an API key. It returns a
Zend_Service_Technorati_KeyInfoResult object. For full
details please see Zend_Service_Technorati::keyInfo() in the API reference guide [http://framework.zend.com/apidoc/core/].







Zend_Service_Technorati Classes


The following classes are returned by the various Technorati queries. Each Zend_Service_Technorati_*ResultSet
class holds a type-specific result set which can be easily iterated, with each result being contained in a type
result object. All result set classes extend Zend_Service_Technorati_ResultSet class and implement the
SeekableIterator interface, allowing for easy iteration and seeking to a specific result.




		Zend_Service_Technorati_ResultSet


		Zend_Service_Technorati_CosmosResultSet


		Zend_Service_Technorati_SearchResultSet


		Zend_Service_Technorati_TagResultSet


		Zend_Service_Technorati_DailyCountsResultSet


		Zend_Service_Technorati_TagsResultSet


		Zend_Service_Technorati_Result


		Zend_Service_Technorati_CosmosResult


		Zend_Service_Technorati_SearchResult


		Zend_Service_Technorati_TagResult


		Zend_Service_Technorati_DailyCountsResult


		Zend_Service_Technorati_TagsResult


		Zend_Service_Technorati_GetInfoResult


		Zend_Service_Technorati_BlogInfoResult


		Zend_Service_Technorati_KeyInfoResult










Note


Zend_Service_Technorati_GetInfoResult, Zend_Service_Technorati_BlogInfoResult and
Zend_Service_Technorati_KeyInfoResult represent exceptions to the above because they don’t belong to a
result set and they don’t implement any interface. They represent a single response object and they act as a
wrapper for additional Zend_Service_Technorati objects, such as Zend_Service_Technorati_Author and
Zend_Service_Technorati_Weblog.




The Zend_Service_Technorati library includes additional convenient classes representing specific response
objects. Zend_Service_Technorati_Author represents a single Technorati account, also known as a blog author or
blogger. Zend_Service_Technorati_Weblog represents a single weblog object, along with all specific weblog
properties such as feed URLs or blog name. For full details please see Zend_Service_Technorati in the API
reference guide [http://framework.zend.com/apidoc/core/].



Zend_Service_Technorati_ResultSet


Zend_Service_Technorati_ResultSet is the most essential result set. The scope of this class is to be extended
by a query-specific child result set class, and it should never be used to initialize a standalone object. Each of
the specific result sets represents a collection of query-specific Zend_Service_Technorati_Result objects.


Zend_Service_Technorati_ResultSet implements the PHP SeekableIterator interface, and you can iterate all
result objects via the PHP foreach() statement.


Iterating result objects from a resultset collection


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		// run a simple query
$technorati = new Zend_Service_Technorati('VALID_API_KEY');
$resultSet = $technorati->search('php');

// $resultSet is now an instance of
// Zend_Service_Technorati_SearchResultSet
// it extends Zend_Service_Technorati_ResultSet
foreach ($resultSet as $result) {
    // do something with your
    // Zend_Service_Technorati_SearchResult object
}













Zend_Service_Technorati_CosmosResultSet


Zend_Service_Technorati_CosmosResultSet represents a Technorati Cosmos query result set.



Note


Zend_Service_Technorati_CosmosResultSet extends Zend_Service_Technorati_ResultSet.







Zend_Service_Technorati_SearchResultSet


Zend_Service_Technorati_SearchResultSet represents a Technorati Search query result set.



Note


Zend_Service_Technorati_SearchResultSet extends Zend_Service_Technorati_ResultSet.







Zend_Service_Technorati_TagResultSet


Zend_Service_Technorati_TagResultSet represents a Technorati Tag query result set.



Note


Zend_Service_Technorati_TagResultSet extends Zend_Service_Technorati_ResultSet.







Zend_Service_Technorati_DailyCountsResultSet


Zend_Service_Technorati_DailyCountsResultSet represents a Technorati DailyCounts query result set.



Note


Zend_Service_Technorati_DailyCountsResultSet extends Zend_Service_Technorati_ResultSet.







Zend_Service_Technorati_TagsResultSet


Zend_Service_Technorati_TagsResultSet represents a Technorati TopTags or BlogPostTags queries result set.



Note


Zend_Service_Technorati_TagsResultSet extends Zend_Service_Technorati_ResultSet.







Zend_Service_Technorati_Result


Zend_Service_Technorati_Result is the most essential result object. The scope of this class is to be extended
by a query specific child result class, and it should never be used to initialize a standalone object.





Zend_Service_Technorati_CosmosResult


Zend_Service_Technorati_CosmosResult represents a single Technorati Cosmos query result object. It is never
returned as a standalone object, but it always belongs to a valid Zend_Service_Technorati_CosmosResultSet object.



Note


Zend_Service_Technorati_CosmosResult extends Zend_Service_Technorati_Result.







Zend_Service_Technorati_SearchResult


Zend_Service_Technorati_SearchResult represents a single Technorati Search query result object. It is never
returned as a standalone object, but it always belongs to a valid Zend_Service_Technorati_SearchResultSet object.



Note


Zend_Service_Technorati_SearchResult extends Zend_Service_Technorati_Result.







Zend_Service_Technorati_TagResult


Zend_Service_Technorati_TagResult represents a single Technorati Tag query result object. It is never returned
as a standalone object, but it always belongs to a valid Zend_Service_Technorati_TagResultSet object.



Note


Zend_Service_Technorati_TagResult extends Zend_Service_Technorati_Result.







Zend_Service_Technorati_DailyCountsResult


Zend_Service_Technorati_DailyCountsResult represents a single Technorati DailyCounts query result object. It is
never returned as a standalone object, but it always belongs to a valid
Zend_Service_Technorati_DailyCountsResultSet object.



Note


Zend_Service_Technorati_DailyCountsResult extends Zend_Service_Technorati_Result.







Zend_Service_Technorati_TagsResult


Zend_Service_Technorati_TagsResult represents a single Technorati TopTags or BlogPostTags query result object.
It is never returned as a standalone object, but it always belongs to a valid
Zend_Service_Technorati_TagsResultSet object.



Note


Zend_Service_Technorati_TagsResult extends Zend_Service_Technorati_Result.







Zend_Service_Technorati_GetInfoResult


Zend_Service_Technorati_GetInfoResult represents a single Technorati GetInfo query result object.





Zend_Service_Technorati_BlogInfoResult


Zend_Service_Technorati_BlogInfoResult represents a single Technorati BlogInfo query result object.





Zend_Service_Technorati_KeyInfoResult


Zend_Service_Technorati_KeyInfoResult represents a single Technorati KeyInfo query result object. It provides
information about your Technorati API Key daily usage.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_Service_Technorati
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.feed.custom-feed.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Custom Feed and Entry Classes


Finally, you can extend the Zend_Feed classes if you’d like to provide your own format or niceties like
automatic handling of elements that should go into a custom namespace.


Here is an example of a custom Atom entry class that handles its own myns: namespace entries. Note that it also
makes the registerNamespace() call for you, so the end user doesn’t need to worry about namespaces at all.


Extending the Atom Entry Class with Custom Namespaces


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


		/**
 * The custom entry class automatically knows the feed URI (optional) and
 * can automatically add extra namespaces.
 */
class MyEntry extends Zend_Feed_Entry_Atom
{

    public function __construct($uri = 'http://www.example.com/myfeed/',
                                $xml = null)
    {
        parent::__construct($uri, $xml);

        Zend_Feed::registerNamespace('myns',
                                     'http://www.example.com/myns/1.0');
    }

    public function __get($var)
    {
        switch ($var) {
            case 'myUpdated':
                // Translate myUpdated to myns:updated.
                return parent::__get('myns:updated');

            default:
                return parent::__get($var);
            }
    }

    public function __set($var, $value)
    {
        switch ($var) {
            case 'myUpdated':
                // Translate myUpdated to myns:updated.
                parent::__set('myns:updated', $value);
                break;

            default:
                parent::__set($var, $value);
        }
    }

    public function __call($var, $unused)
    {
        switch ($var) {
            case 'myUpdated':
                // Translate myUpdated to myns:updated.
                return parent::__call('myns:updated', $unused);

            default:
                return parent::__call($var, $unused);
        }
    }
}










Then to use this class, you’d just instantiate it directly and set the myUpdated property:


		1
2
3
4
5
6
7


		$entry = new MyEntry();
$entry->myUpdated = '2005-04-19T15:30';

// method-style call is handled by __call function
$entry->myUpdated();
// property-style call is handled by __get function
$entry->myUpdated;














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Custom Feed and Entry Classes
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.objects.details.royalmail.png





modules/zend.debug.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Dumping Variables


The static method Zend_Debug::dump() prints or returns information about an expression. This simple technique
of debugging is common because it is easy to use in an ad hoc fashion and requires no initialization, special
tools, or debugging environment.


Example of dump() method


		1


		Zend_Debug::dump($var, $label = null, $echo = true);










The $var argument specifies the expression or variable about which the Zend_Debug::dump() method outputs
information.


The $label argument is a string to be prepended to the output of Zend_Debug::dump(). It may be useful, for
example, to use labels if you are dumping information about multiple variables on a given screen.


The boolean $echo argument specifies whether the output of Zend_Debug::dump() is echoed or not. If
TRUE, the output is echoed. Regardless of the value of the $echo argument, the return value of this method
contains the output.


It may be helpful to understand that Zend_Debug::dump() method wraps the PHP function var_dump() [http://php.net/var_dump]. If the
output stream is detected as a web presentation, the output of var_dump() is escaped using
htmlspecialchars() [http://php.net/htmlspecialchars] and wrapped with (X)HTML <pre> tags.



Tip


Debugging with Zend_Log


Using Zend_Debug::dump() is best for ad hoc debugging during software development. You can add code to dump
a variable and then remove the code very quickly.


Also consider the Zend_Log component when writing more permanent debugging code. For
example, you can use the DEBUG log level and the stream log writer to
output the string returned by Zend_Debug::dump().








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Dumping Variables
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.console.modules.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Console-aware modules


Zend Framework 2 has native MVC integration with console. The integration also
works with modules loaded with Module Manager.


ZF2 ships with RouteNotFoundStrategy which is responsible of displaying usage information inside Console,
in case the user has not provided any arguments, or arguments could not be understood. The strategy currently
supports two types of information: application banners and usage information.



Application banner


The first time you run your ZF2 application in a Console, it will not be able to display any usage information or
present itself. You will see something like this:


[image: ../_images/zend.console.empty.png]
Our Application module (and any other module) can provide application banner. In order to do so,
our Module class has to implement Zend\ModuleManager\Feature\ConsoleBannerProviderInterface. Let’s do this now.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		// modules/Application/Module.php
<?php
namespace Application;

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface
{
    /**
     * This method is defined in ConsoleBannerProviderInterface
     */
    public function getConsoleBanner(Console $console){
        return
            "==------------------------------------------------------==\n" .
            "        Welcome to my ZF2 Console-enabled app             \n" .
            "==------------------------------------------------------==\n" .
            "Version 0.0.1\n"
        ;
    }
}










After running our application, we’ll see our newly created banner.


[image: ../_images/zend.console.banner.png]
Console banners can be provided by 1 or more modules. They will be joined together in the order modules are loaded.


Let’s create and load second module that provides a banner.


		1
2
3
4
5
6
7


		<?php
// config/application.config.php
return array(
    'modules' => array(
        'Application',
        'User',     // < load user module in modules/User
    ),










User module will add-on a short info about itself:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		// modules/User/Module.php
<?php
namespace User;

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface
{
    /**
     * This method is defined in ConsoleBannerProviderInterface
     */
    public function getConsoleBanner(Console $console){
        return "User Module BETA1";
    }
}










Because User module is loaded after Application module, the result will look like this:


[image: ../_images/zend.console.banner2.png]

Note


Application banner is displayed as-is - no trimming or other adjustments will be performed on the text. If you’d
like to fit your banner inside console window, you could check its width with $console->getWidth().







Usage information


In order to display usage information, our Module class has to implement
Zend\ModuleManager\Feature\ConsoleUsageProviderInterface. Let’s modify our example and add new method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// modules/Application/Module.php
<?php
namespace Application;

use Zend\ModuleManager\Feature\ConsoleBannerProviderInterface;
use Zend\ModuleManager\Feature\ConsoleUsageProviderInterface;
use Zend\Console\Adapter\AdapterInterface as Console;

class Module implements ConsoleBannerProviderInterface, ConsoleUsageProviderInterface
{
    public function getConsoleBanner(Console $console){ // ... }

    /**
     * This method is defined in ConsoleUsageProviderInterface
     */
    public function getConsoleUsage(Console $console){
        return array(
            'show stats'             => 'Show application statistics',
            'run cron'               => 'Run automated jobs',
            '(enable|disable) debug' => 'Enable or disable debug mode for the application.'
        );
    }
}










This will display the following information:


[image: ../_images/zend.console.usage.png]
Similar to application banner multiple modules can provide usage information,
which will be joined together and displayed to the user. The order in which usage information is displayed is the
order in which modules are loaded.



Note


Usage info provided in modules does not connect with console routing. You can
describe console usage in any form you prefer and it does not affect how MVC handles console commands.
In order to handle real console requests you need to define 1 or more console routes.





Free-form text


In order to output free-form text as usage information, getConsoleUsage() can return a string,
or an array of strings, for example:


		1
2
3


		public function getConsoleUsage(Console $console){
    return 'User module expects exactly one argument - user name. It will display information for this user.';
}










[image: ../_images/zend.console.usage2.png]

Note


The text provided is displayed as-is - no trimming or other adjustments will be performed. If you’d
like to fit your usage information inside console window, you could check its width with $console->getWidth().







List of commands


If getConsoleUsage() returns and associative array, it will be automatically aligned in 2 columns. The first
column will be prepended with script name (the entry point for the application). This is useful to display different
ways of running the application.


		1
2
3
4
5
6
7
8


		public function getConsoleUsage(Console $console){
     return array(
        'delete user <userEmail>'        => 'Delete user with email <userEmail>',
        'disable user <userEmail>'       => 'Disable user with email <userEmail>',
        'list [all|disabled] users'      => 'Show a list of users',
        'find user [--email=] [--name=]' => 'Attempt to find a user by email or name',
     );
}










[image: ../_images/zend.console.usage3.png]

Note


Commands and their descriptions will be aligned in two columns, that fit inside Console window. If the window is
resized, some texts might be wrapped but all content will be aligned accordingly. If you don’t like this
behavior, you can always return free-form text that will not be transformed in any way.







List of params and flags


Returning an array of arrays from getConsoleUsage() will produce a listing of parameters. This is useful for
explaining flags, switches, possible values and other information. The output will be aligned in multiple columns for
readability.


Below is an example:


		1
2
3
4
5
6
7
8
9


		public function getConsoleUsage(Console $console){
    return array(
        array( '<userEmail>'   , 'email of the user' ),
        array( '--verbose'     , 'Turn on verbose mode' ),
        array( '--quick'       , 'Perform a "quick" operation' ),
        array( '-v'            , 'Same as --verbose' ),
        array( '-w'            , 'Wide output')
    );
}










[image: ../_images/zend.console.usage4.png]
Using this method, we can display more than 2 columns of information, for example:


		1
2
3
4
5
6
7
8
9


		public function getConsoleUsage(Console $console){
    return array(
        array( '<userEmail>' , 'user email'        , 'Full email address of the user to find.' ),
        array( '--verbose'   , 'verbose mode'      , 'Display additional information during processing' ),
        array( '--quick'     , '"quick" operation' , 'Do not check integrity, just make changes and finish' ),
        array( '-v'          , 'Same as --verbose' , 'Display additional information during processing' ),
        array( '-w'          , 'wide output'       , 'When listing users, use the whole available screen width' )
    );
}










[image: ../_images/zend.console.usage5.png]

Note


All info will be aligned in one or more columns that fit inside Console window. If the window is
resized, some texts might be wrapped but all content will be aligned accordingly. In case the number of columns
changes (i.e. the array() contains different number of elements) a new table will be started,
with new alignment and different column widths.


If you don’t like this behavior, you can always return free-form text that will not be
transformed in any way.







Mixing styles


You can use mix together all of the above styles to provide comprehensive usage information, for example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		public function getConsoleUsage(Console $console){
    return array(
        'Finding and listing users',
        'list [all|disabled] users [-w]'    => 'Show a list of users',
        'find user [--email=] [--name=]'    => 'Attempt to find a user by email or name',

        array('[all|disabled]',    'Display all users or only disabled accounts'),
        array('--email=EMAIL',     'Email of the user to find'),
        array('--name=NAME',       'Full name of the user to find.'),
        array('-w',                'Wide output - When listing users use the whole available screen width' ),

        'Manipulation of user database:',
        'delete user <userEmail> [--verbose|-v] [--quick]'  => 'Delete user with email <userEmail>',
        'disable user <userEmail> [--verbose|-v]'           => 'Disable user with email <userEmail>',

        array( '<userEmail>' , 'user email'        , 'Full email address of the user to change.' ),
        array( '--verbose'   , 'verbose mode'      , 'Display additional information during processing' ),
        array( '--quick'     , '"quick" operation' , 'Do not check integrity, just make changes and finish' ),
        array( '-v'          , 'Same as --verbose' , 'Display additional information during processing' ),

    );
}










[image: ../_images/zend.console.usage6.png]








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Console-aware modules
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.examples.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Examples



Controllers



Accessing the Request and Response


When using AbstractActionController or AbstractRestfulController, the request and response object are
composed directly into the controller as soon as dispatch() is called. You may access them in the following
ways:


		1
2
3
4
5
6
7


		// Using explicit accessor methods
$request  = $this->getRequest();
$response = $this->getResponse();

// Using direct property access
$request  = $this->request;
$response = $this->response;










Additionally, if your controller implements InjectApplicationEventInterface (as both
AbstractActionController and AbstractRestfulController do), you can access these objects from the attached
MvcEvent:


		1
2
3


		$event    = $this->getEvent();
$request  = $event->getRequest();
$response = $event->getResponse();










The above can be useful when composing event listeners into your controller.





Accessing routing parameters


The parameters returned when routing completes are wrapped in a Zend\Mvc\Router\RouteMatch object. This object
is detailed in the section on routing.


Within your controller, if you implement InjectApplicationEventInterface (as both AbstractActionController
and AbstractRestfulController do), you can access this object from the attached MvcEvent:


		1
2


		$event   = $this->getEvent();
$matches = $event->getRouteMatch();










Once you have the RouteMatch object, you can pull parameters from it.





Returning early


You can effectively short-circuit execution of the application at any point by returning a Response from your
controller or any event. When such a value is discovered, it halts further execution of the event manager, bubbling
up to the Application instance, where it is immediately returned.


As an example, the Redirect plugin returns a Response, which can be returned immediately so as to complete
the request as quickly as possible. Other use cases might be for returning JSON or XML results from web service
endpoints, returning “401 Forbidden” results, etc.







Bootstrapping



Registering module-specific listeners


Often you may want module-specific listeners. As an example, this would be a simple and effective way to introduce
authorization, logging, or caching into your application.


Each Module class can have an optional onBootstrap() method. Typically, you’ll do module-specific
configuration here, or setup event listeners for you module here. The onBootstrap() method is called for
every module on every page request and should only be used for performing lightweight tasks such as
registering event listeners.


The base Application class shipped with the framework has an EventManager associated with it, and once the
modules are initialized, it triggers a “bootstrap” event, with a getApplication() method on the event.


So, one way to accomplish module-specific listeners is to listen to that event, and register listeners at that
time. As an example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		namespace SomeCustomModule;

class Module
{
    public function onBootstrap($e)
    {
        $application = $e->getApplication();
        $config      = $application->getConfiguration();
        $view        = $application->getServiceManager()->get('View');
        $view->headTitle($config['view']['base_title']);

        $listeners   = new Listeners\ViewListener();
        $listeners->setView($view);
        $application->getEventManager()->attachAggregate($listeners);
    }
}










The above demonstrates several things. First, it demonstrates a listener on the application’s “bootstrap” event
(the onBootstrap() method). Second, it demonstrates that listener, and how it can be used to register listeners
with the application. It grabs the Application instance; from the Application, it is able to grab the
attached service manager and configuration. These are then used to retrieve the view, configure some helpers, and
then register a listener aggregate with the application event manager.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Examples
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.crypt.public-key.diffie-hellman.png
Bob

Common paint

Secret colours

Public transport

(assume
that mixture separation
is expensive)

Secret colours

Common secret






modules/zend.pdf.pages.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Working with Pages



Page Creation


The pages in a PDF document are represented as \Zend\Pdf\Page instances in ZendPdf.


PDF pages either are loaded from an existing PDF or created using the ZendPdf API.


New pages can be created by instantiating new \Zend\Pdf\Page objects directly or by calling the
\Zend\Pdf\PdfDocument::newPage() method, which returns a \Zend\Pdf\Page object.
\Zend\Pdf\PdfDocument::newPage() creates a page that is already attached to a document. Attached pages can’t be
used with another PDF documents until it’s not cloned. See Page cloning section
for the details.


The \Zend\Pdf\PdfDocument::newPage() method and the \Zend\Pdf\Page constructor take the same parameters
specifying page size. They can take either the size of page ($x, $y) in points (1/72 inch) or a predefined constant
representing a page type:




		\Zend\Pdf\Page::SIZE_A4


		\Zend\Pdf\Page::SIZE_A4_LANDSCAPE


		\Zend\Pdf\Page::SIZE_LETTER


		\Zend\Pdf\Page::SIZE_LETTER_LANDSCAPE









Document pages are stored in the $pages public attribute of the \Zend\Pdf\PdfDocument class. The attribute
holds an array of \Zend\Pdf\Page objects and completely defines the instances and order of pages. This array
can be manipulated like any other PHP array:


PDF document pages management


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		...
// Reverse page order
$pdf->pages = array_reverse($pdf->pages);
...
// Add new page
$pdf->pages[] = new \Zend\Pdf\Page(\Zend\Pdf\Page::SIZE_A4);
// Add new page
$pdf->pages[] = $pdf->newPage(\Zend\Pdf\Page::SIZE_A4);

// Remove specified page.
unset($pdf->pages[$id]);

...













Page cloning


Existing PDF page can be duplicated by creating new \Zend\Pdf\Page object with existing page as a parameter:


Duplicating existing page


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		...
// Store template page in a separate variable
$template = $pdf->pages[$templatePageIndex];
...
// Add new page
$page1 = new \Zend\Pdf\Page($template);
$page1->drawText('Some text...', $x, $y);
$pdf->pages[] = $page1;
...

// Add another page
$page2 = new \Zend\Pdf\Page($template);
$page2->drawText('Another text...', $x, $y);
$pdf->pages[] = $page2;
...

// Remove source template page from the documents.
unset($pdf->pages[$templatePageIndex]);

...










It’s useful if you need several pages to be created using one template.



Caution


Important! Duplicated page shares some PDF resources with a template page, so it can be used only within the
same document as a template page. Modified document can be saved as new one.




clone operator may be used to create page which is not attached to any document. It takes more time than
duplicating page since it needs to copy all dependent objects (used fonts, images and other resources), but it
allows to use pages from different source documents to create new one:


Cloning existing page


		1
2
3
4
5
6
7
8


		$page1 = clone $pdf1->pages[$templatePageIndex1];
$page2 = clone $pdf2->pages[$templatePageIndex2];
$page1->drawText('Some text...', $x, $y);
$page2->drawText('Another text...', $x, $y);
...
$pdf = new \Zend\Pdf\PdfDocument();
$pdf->pages[] = $page1;
$pdf->pages[] = $page2;










If several template pages are planned to be used as templates then it could be more efficient to utilize
\Zend\Pdf\Resource\Extractor class which gives an ability to share resources between cloned pages - fonts,
images, etc. (otherwise new resource copy will be created for each cloned page):


Cloning existing page using \Zend\Pdf\Resource\Extractor class


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		$extractor = new \Zend\Pdf\Resource\Extractor();
....
$page1 = $extractor->clonePage($pdf->pages[$templatePageIndex1]);
$page2 = $extractor->clonePage($pdf->pages[$templatePageIndex2]);
$page1->drawText('Some text...', $x, $y);
$page2->drawText('Another text...', $x, $y);
...
$pdf = new Zend_Pdf();
$pdf->pages[] = $page1;
$pdf->pages[] = $page2;
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Working with Pages
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/paginator.intro.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Let’s say you’re creating a blogging application that will be home to your vast collection of blog posts. There is
a good chance that you do not want all of your blog posts to appear on one single page when someone visits your
blog. An obvious solution would be to only display a small number of blog posts on the screen at a time, and allow
the user to browse through the different pages, much like your favorite search engine shows you the result of your
search query. Zend_Paginator is designed to help you achieve the goal of dividing collections of data in
smaller, more manageable sets more easily, with more consistency, and with less duplicate code.


Zend_Paginator uses Adapters to support various data sources and ScrollingStyles to support various methods of
showing the user which pages are available. In later sections of this text we will have a closer look at what these
things are and how they can help you to make the most out of Zend_Paginator.


Before going in-depth, we will have a look at some simple examples first. After these simple examples, we will see
how Zend_Paginator supports the most common use-case; paginating database results.


This introduction has given you a quick overview of Zend_Paginator. To get started and to have a look at some
code snippets, let’s have a look at some simple examples.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.form.collections.view.png
Name of the product
Price of the product

‘Please choose categories for this product:

Category

Name of the category

Category

Name of the category

Name of the brand
‘Website of the brand

[‘Envoyer |





_images/zend.barcode.objects.details.postnet.png





modules/zend.log.filters.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Filters


A Filter object blocks a message from being written to the log.


You can add a filter to a specific Writer using addFilter() method of that Writer:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19


		use Zend\Log\Logger;

$logger = new Logger();

$writer1 = new Zend\Log\Writer\Stream('/path/to/first/logfile');
$logger->addWriter($writer1);

$writer2 = new Zend\Log\Writer\Stream('/path/to/second/logfile');
$logger->addWriter($writer2);

// add a filter only to writer2
$filter = new Zend\Log\Filter\Priority(Logger::CRIT);
$writer2->addFilter($filter);

// logged to writer1, blocked from writer2
$logger->info('Informational message');

// logged by both writers
$logger->emerg('Emergency message');











Available filters


The Zend\Log\Filter available are:



		Priority, filter logging by $priority. By default, it will accept any log event whose priority value is less
than or equal to $priority.


		Regex, filter out any log messages not matching the regex pattern. This filter use the preg_match() function
of PHP.


		SuppressFilter, this is a simple boolean filter. Call suppress(true) to suppress all log events. Call
suppress(false) to accept all log events.


		Validator, filter out any log messages not matching the Zend\Validator\Validator object passed to the
filter.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Filters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/learning.quickstart.intro.mvc.png





modules/zend.http.response.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Http\Response



Overview


The Zend\Http\Response class is responsible for providing a fluent API that allows a developer to interact with
all the various parts of an HTTP response.


A typical HTTP Response looks like this:


---------------------------
| VERSION | CODE | REASON |
---------------------------
|        HEADERS          |
---------------------------
|         BODY            |
---------------------------




The first line of the response consists of the HTTP version, status code, and the reason string for the provided
status code; this is called the Response Line. Next is a set of headers; there can be 0 or an unlimited number of
headers. The remainder of the response is the response body, which is typically a string of HTML that will render
on the client’s browser, but which can also be a place for request/response payload data typical of an AJAX
request. More information on the structure and specification of an HTTP response can be found in RFC-2616 on the
W3.org site [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].





Quick Start


Response objects can either be created from the provided fromString() factory, or, if you wish to have a
completely empty object to start with, by simply instantiating the Zend\Http\Response class.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		use Zend\Http\Response;
$response = Response::fromString(<<<EOS
HTTP/1.0 200 OK
HeaderField1: header-field-value
HeaderField2: header-field-value2

<html>
<body>
    Hello World
</body>
</html>
EOS);

// OR

$response = new Response();
$response->setStatusCode(Response::STATUS_CODE_200);
$response->getHeaders()->addHeaders(array(
    'HeaderField1' => 'header-field-value',
    'HeaderField2' => 'header-field-value2',
);
$response->setRawBody(<<<EOS
<html>
<body>
    Hello World
</body>
</html>
EOS);













Configuration Options


None currently available





Available Methods



		Response::fromString


		Response::fromString(string $string)


Populate object from string


Returns Zend\Http\Response









		renderStatusLine


		renderStatusLine()


Render the status line header


Returns string









		setHeaders


		setHeaders(Zend\Http\Headers $headers)


Set response headers


Returns Zend\Http\Response









		headers


		headers()


Get response headers


Returns Zend\Http\Headers









		setVersion


		setVersion(string $version)


Returns Zend\Http\Response









		getVersion


		getVersion()


Returns string









		getStatusCode


		getStatusCode()


Retrieve HTTP status code


Returns int









		setReasonPhrase


		setReasonPhrase(string $reasonPhrase)


Returns Zend\Http\Response









		getReasonPhrase


		getReasonPhrase()


Get HTTP status message


Returns string









		setStatusCode


		setStatusCode(numeric $code)


Set HTTP status code and (optionally) message


Returns Zend\Http\Response









		isClientError


		isClientError()


Does the status code indicate a client error?


Returns bool









		isForbidden


		isForbidden()


Is the request forbidden due to ACLs?


Returns bool









		isInformational


		isInformational()


Is the current status “informational”?


Returns bool









		isNotFound


		isNotFound()


Does the status code indicate the resource is not found?


Returns bool









		isOk


		isOk()


Do we have a normal, OK response?


Returns bool









		isServerError


		isServerError()


Does the status code reflect a server error?


Returns bool









		isRedirect


		isRedirect()


Do we have a redirect?


Returns bool









		isSuccess


		isSuccess()


Was the response successful?


Returns bool









		decodeChunkedBody


		decodeChunkedBody(string $body)


Decode a “chunked” transfer-encoded body and return the decoded text


Returns string









		decodeGzip


		decodeGzip(string $body)


Decode a gzip encoded message (when Content-encoding = gzip)


Currently requires PHP with zlib support


Returns string









		decodeGzip


		decodeDeflate(string $body)


Decode a zlib deflated message (when Content-encoding = deflate)


Currently requires PHP with zlib support


Returns string









		setMetadata


		setMetadata(string|int|array|Traversable $spec, mixed $value)


Set message metadata


Non-destructive setting of message metadata; always adds to the metadata, never overwrites the entire metadata
container.


Returns Zend\Stdlib\Message









		getMetadata


		getMetadata(null|string|int $key, null|mixed $default)


Retrieve all metadata or a single metadatum as specified by key


Returns mixed









		setContent


		setContent(mixed $value)


Set message content


Returns Zend\Stdlib\Message









		getContent


		getContent()


Get message content


Returns mixed









		toString


		toString()


Returns string











Examples


Generating a Response object from a string


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		use Zend\Http\Response;
$request = Response::fromString(<<<EOS
HTTP/1.0 200 OK
HeaderField1: header-field-value
HeaderField2: header-field-value2

<html>
<body>
    Hello World
</body>
</html>
EOS);










Generating a Response object from a string


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Http\Response;
$response = new Response();
$response->setStatusCode(Response::STATUS_CODE_200);
$response->getHeaders()->addHeaders(array(
    'HeaderField1' => 'header-field-value',
    'HeaderField2' => 'header-field-value2',
);
$response->setRawBody(<<<EOS
<html>
<body>
    Hello World
</body>
</html>
EOS);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Http\Response
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.console.usage2.png
Welcome to my ZF2 Console-enabled app

[User module expects exactly one argument - user name. It will display informati
In for this user.

lc:\z#2app>






user-guide/overview.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Getting Started with Zend Framework 2


This tutorial is intended to give an introduction to using Zend Framework 2 by
creating a simple database driven application using the Model-View-Controller
paradigm. By the end you will have a working ZF2 application and you can then
poke around the code to ﬁnd out more about how it all works and ﬁts together.



Some assumptions


This tutorial assumes that you are running PHP 5.3.10 with the Apache web server
and MySQL, accessible via the PDO extension. Your Apache installation must have
the mod_rewrite extension installed and conﬁgured.


You must also ensure that Apache is conﬁgured to support .htaccess ﬁles. This is
usually done by changing the setting:


AllowOverride None






to


AllowOverride  All






in your httpd.conf ﬁle. Check with your distribution’s documentation for
exact details. You will not be able to navigate to any page other than the home
page in this tutorial if you have not conﬁgured mod_rewrite and .htaccess usage
correctly





The tutorial application


The application that we are going to build is a simple inventory system to
display which albums we own. The main page will list our collection and allow us
to add, edit and delete CDs. We are going to need four pages in our website:








		Page
		Description





		List of albums
		This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.



		Add new album
		This page will provide a form for adding a new album.



		Edit album
		This page will provide a form for editing an album.



		Delete album
		This page will confirm that we want to delete an album and
then delete it.







We will also need to store our data into a database. We will only need one table
with these ﬁelds in it:










		Field name
		Type
		Null?
		Notes





		id
		integer
		No
		Primary key, auto-increment



		artist
		varchar(100)
		No
		 



		title
		varchar(100)
		No
		 













          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Getting Started with Zend Framework 2
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

ref/migration.16.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend Framework 1.6


When upgrading from a previous release to Zend Framework 1.6 or higher you should note the following migration
notes.



Zend_Controller



Dispatcher Interface Changes


Users brought to our attention the fact that Zend_Controller_Front and Zend_Controller_Router_Route_Module
were each using methods of the dispatcher that were not in the dispatcher interface. We have now added the
following three methods to ensure that custom dispatchers will continue to work with the shipped implementations:



		getDefaultModule(): should return the name of the default module.


		getDefaultControllerName(): should return the name of the default controller.


		getDefaultAction(): should return the name of the default action.










Zend_File_Transfer



Changes when using validators


As noted by users, the validators from Zend_File_Transfer do not work the same way like the default ones from
Zend_Form. Zend_Form allows the usage of a $breakChainOnFailure parameter which breaks the validation
for all further validators when an validation error has occurred.


So we added this parameter also to all existing validators from Zend_File_Transfer.



		Old method API: addValidator($validator, $options, $files).


		New method API: addValidator($validator, $breakChainOnFailure, $options, $files).





To migrate your scripts to the new API, simply add a FALSE after defining the wished validator.


How to change your file validators from 1.6.1 to 1.6.2


		1
2
3
4
5
6
7
8


		// Example for 1.6.1
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('FilesSize', array('1B', '100kB'));

// Same example for 1.6.2 and newer
// Note the added boolean false
$upload = new Zend_File_Transfer_Adapter_Http();
$upload->addValidator('FilesSize', false, array('1B', '100kB'));


















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend Framework 1.6
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.view.helpers.head-link.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
HeadLink Helper


The HTML <link> element is increasingly used for linking a variety of resources for your site: stylesheets,
feeds, favicons, trackbacks, and more. The HeadLink helper provides a simple interface for creating and
aggregating these elements for later retrieval and output in your layout script.


The HeadLink helper has special methods for adding stylesheet links to its stack:



		appendStylesheet($href, $media, $conditionalStylesheet, $extras)


		offsetSetStylesheet($index, $href, $media, $conditionalStylesheet, $extras)


		prependStylesheet($href, $media, $conditionalStylesheet, $extras)


		setStylesheet($href, $media, $conditionalStylesheet, $extras)





The $media value defaults to ‘screen’, but may be any valid media value. $conditionalStylesheet is a string
or boolean FALSE, and will be used at rendering time to determine if special comments should be included to
prevent loading of the stylesheet on certain platforms. $extras is an array of any extra values that you want
to be added to the tag.


Additionally, the HeadLink helper has special methods for adding ‘alternate’ links to its stack:



		appendAlternate($href, $type, $title, $extras)


		offsetSetAlternate($index, $href, $type, $title, $extras)


		prependAlternate($href, $type, $title, $extras)


		setAlternate($href, $type, $title, $extras)





The headLink() helper method allows specifying all attributes necessary for a <link> element, and allows
you to also specify placement – whether the new element replaces all others, prepends (top of stack), or appends
(end of stack).


The HeadLink helper is a concrete implementation of the Placeholder helper.


HeadLink Helper Basic Usage


You may specify a headLink at any time. Typically, you will specify global links in your layout script, and
application specific links in your application view scripts. In your layout script, in the <head> section, you will
then echo the helper to output it.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		<?php // setting links in a view script:
$this->headLink()->appendStylesheet('/styles/basic.css')
                 ->headLink(array('rel' => 'icon',
                                  'href' => '/img/favicon.ico'),
                                  'PREPEND')
                 ->prependStylesheet('/styles/moz.css',
                                     'screen',
                                     true,
                                     array('id' => 'my_stylesheet'));
?>
<?php // rendering the links: ?>
<?php echo $this->headLink() ?>














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                HeadLink Helper
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/plugins.usage.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Using Plugins


Components that make use of plugins typically use Zend_Loader_PluginLoader to do their work. This class has you
register plugins by specifying one or more “prefix paths”. The component will then call the PluginLoader’s
load() method, passing the plugin’s short name to it. The PluginLoader will then query each prefix path to see
if a class matching that short name exists. Prefix paths are searched in LIFO (last in, first out) order, so it
will match those prefix paths registered last first – allowing you to override existing plugins.


Some examples will make all of this more clear.


Basic Plugin Example: Adding a single prefix path


In this example, we will assume some validators have been written and placed in the directory
foo/plugins/validators/, and that all these classes share the class prefix “Foo_Validate_”; these two bits of
information form our “prefix path”. Furthermore, let’s assume we have two validators, one named “Even” (ensuring a
number to be validated is even), and another named “Dozens” (ensuring the number is a multiple of 12). The tree
might look like this:


		1
2
3
4
5


		foo/
|-- plugins/
|   |-- validators/
|   |   |-- Even.php
|   |   |-- Dozens.php










Now, we’ll inform a Zend_Form_Element instance of this prefix path. Zend_Form_Element‘s addPrefixPath()
method expects a third argument that indicates the type of plugin for which the path is being registered; in this
case, it’s a “validate” plugin.


		1


		$element->addPrefixPath('Foo_Validate', 'foo/plugins/validators/', 'validate');










Now we can simply tell the element the short name of the validators we want to use. In the following example, we’re
using a mix of standard validators (“NotEmpty”, “Int”) and custom validators (“Even”, “Dozens”):


		1
2
3
4


		$element->addValidator('NotEmpty')
        ->addValidator('Int')
        ->addValidator('Even')
        ->addValidator('Dozens');










When the element needs to validate, it will then request the plugin class from the PluginLoader. The first two
validators will resolve to Zend_Validate_NotEmpty and Zend_Validate_Int, respectively; the next two will
resolve to Foo_Validate_Even and Foo_Validate_Dozens, respectively.



Note


What happens if a plugin is not found?


What happens if a plugin is requested, but the PluginLoader is unable to find a class matching it? For instance,
in the above example, if we registered the plugin “Bar” with the element, what would happen?


The plugin loader will look through each prefix path, checking to see if a file matching the plugin name is
found on that path. If the file is not found, it then moves on to the next prefix path.


Once the stack of prefix paths has been exhausted, if no matching file has been found, it will throw a
Zend_Loader_PluginLoader_Exception.




Intermediate Plugin Usage: Overriding existing plugins


One strength of the PluginLoader is that its use of a LIFO stack allows you to override existing plugins by
creating your own versions locally with a different prefix path, and registering that prefix path later in the
stack.


For example, let’s consider Zend_View_Helper_FormButton (view helpers are one form of plugin). This view helper
accepts three arguments, an element name (also used as the element’s DOM identifier), a value (used as the button
label), and an optional array of attributes. The helper then generates HTML markup for a form input element.


Let’s say you want the helper to instead generate a true HTML button element; don’t want the helper to
generate a DOM identifier, but instead use the value for a CSS class selector; and that you have no interest in
handling arbitrary attributes. You could accomplish this in a couple of ways. In both cases, you’d create your own
view helper class that implements the behavior you want; the difference is in how you would name and invoke them.


Our first example will be to name the element with a unique name: Foo_View_Helper_CssButton, which implies the
plugin name “CssButton”. While this certainly is a viable approach, it poses several issues: if you’ve already used
the Button view helper in your code, you now have to refactor; alternately, if another developer starts writing
code for your application, they may inadvertently use the Button view helper instead of your new view helper.


So, the better example is to use the plugin name “Button”, giving us the class name Foo_View_Helper_Button. We
then register the prefix path with the view:


		1
2
3
4
5
6


		// Zend_View::addHelperPath() utilizes the PluginLoader; however, it inverts
// the arguments, as it provides a default value of "Zend_View_Helper" for the
// plugin prefix.
//
// The below assumes your class is in the directory 'foo/view/helpers/'.
$view->addHelperPath('foo/view/helpers', 'Foo_View_Helper');










Once done, anywhere you now use the “Button” helper will delegate to your custom Foo_View_Helper_Button class!






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Using Plugins
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.individual.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Rendering Individual Decorators


In the previous section, we looked at how you can combine decorators to
create complex output. We noted that while you have a ton of flexibility with this approach, it also adds some
complexity and overhead. In this section, we will examine how to render decorators individually in order to create
custom markup for forms and/or individual elements.


Once you have registered your decorators, you can later retrieve them by name from the element. Let’s review the
previous example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		$element = new Zend_Form_Element('foo', array(
    'label'      => 'Foo',
    'belongsTo'  => 'bar',
    'value'      => 'test',
    'prefixPath' => array('decorator' => array(
        'My_Decorator' => 'path/to/decorators/',
    )),
    'decorators' => array(
        'SimpleInput'
        array('SimpleLabel', array('placement' => 'append')),
    ),
));










If we wanted to pull and render just the SimpleInput decorator, we can do so using the getDecorator()
method:


		1
2


		$decorator = $element->getDecorator('SimpleInput');
echo $decorator->render('');










This is pretty easy, but it can be made even easier; let’s do it in a single line:


		1


		echo $element->getDecorator('SimpleInput')->render('');










Not too bad, but still a little complex. To make this easier, a shorthand notation was introduced into
Zend_Form in 1.7: you can render any registered decorator by calling a method of the format
renderDecoratorName(). This will effectively perform what you see above, but makes the $content argument
optional and simplifies the usage:


		1


		echo $element->renderSimpleInput();










This is a neat trick, but how and why would you use it?


Many developers and designers have very precise markup needs for their forms. They would rather have full control
over the output than rely on a more automated solution which may or may not conform to their design. In other
cases, the form layout may require a lot of specialized markup – grouping arbitrary elements, making some
invisible unless a particular link is selected, etc.


Let’s utilize the ability to render individual decorators to create some specialized markup.


First, let’s define a form. Our form will capture a user’s demographic details. The markup will be highly
customized, and in some cases use view helpers directly instead of form elements in order to achieve its goals.
Here is the basic form definition:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


		class My_Form_UserDemographics extends Zend_Form
{
    public function init()
    {
        // Add a path for my own decorators
        $this->addElementPrefixPaths(array(
            'decorator' => array('My_Decorator' => 'My/Decorator'),
        ));

        $this->addElement('text', 'firstName', array(
            'label' => 'First name: ',
        ));
        $this->addElement('text', 'lastName', array(
            'label' => 'Last name: ',
        ));
        $this->addElement('text', 'title', array(
            'label' => 'Title: ',
        ));
        $this->addElement('text', 'dateOfBirth', array(
            'label' => 'Date of Birth (DD/MM/YYYY): ',
        ));
        $this->addElement('text', 'email', array(
            'label' => 'Your email address: ',
        ));
        $this->addElement('password', 'password', array(
            'label' => 'Password: ',
        ));
        $this->addElement('password', 'passwordConfirmation', array(
            'label' => 'Confirm Password: ',
        ));
    }
}











Note


We’re not defining any validators or filters at this time, as they are not relevant to the discussion of
decoration. In a real-world scenario, you should define them.




With that out of the way, let’s consider how we might want to display this form. One common idiom with first/last
names is to display them on a single line; when a title is provided, that is often on the same line as well. Dates,
when not using a JavaScript date chooser, will often be separated into three fields displayed side by side.


Let’s use the ability to render an element’s decorators one by one to accomplish this. First, let’s note that no
explicit decorators were defined for the given elements. As a refresher, the default decorators for (most) elements
are:



		ViewHelper: utilize a view helper to render a form input


		Errors: utilize the FormErrors view helper to render validation errors


		Description: utilize the FormNote view helper to render the element description (if any)


		HtmlTag: wrap the above three items in a <dd> tag


		Label: render the element label using the FormLabel view helper (and wrap it in a <dt> tag)





Also, as a refresher, you can access any element of a form as if it were a class property; simply reference the
element by the name you assigned it.


Our view script might then look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


		<?php
$form = $this->form;
// Remove <dt> from label generation
foreach ($form->getElements() as $element) {
    $element->getDecorator('label')->setOption('tag', null);
}
?>
<form method="<?php echo $form->getMethod() ?>" action="<?php echo
    $form->getAction()?>">
    <div class="element">
        <?php echo $form->title->renderLabel()
              . $form->title->renderViewHelper() ?>
        <?php echo $form->firstName->renderLabel()
              . $form->firstName->renderViewHelper() ?>
        <?php echo $form->lastName->renderLabel()
              . $form->lastName->renderViewHelper() ?>
    </div>
    <div class="element">
        <?php echo $form->dateOfBirth->renderLabel() ?>
        <?php echo $this->formText('dateOfBirth[day]', '', array(
            'size' => 2, 'maxlength' => 2)) ?>
        /
        <?php echo $this->formText('dateOfBirth[month]', '', array(
            'size' => 2, 'maxlength' => 2)) ?>
        /
        <?php echo $this->formText('dateOfBirth[year]', '', array(
            'size' => 4, 'maxlength' => 4)) ?>
    </div>
    <div class="element">
        <?php echo $form->password->renderLabel()
              . $form->password->renderViewHelper() ?>
    </div>
    <div class="element">
        <?php echo $form->passwordConfirmation->renderLabel()
              . $form->passwordConfirmation->renderViewHelper() ?>
    </div>
    <?php echo $this->formSubmit('submit', 'Save') ?>
</form>










If you use the above view script, you’ll get approximately the following HTML (approximate, as the HTML below
is formatted):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		<form method="post" action="">
    <div class="element">
        <label for="title" tag="" class="optional">Title:</label>
        <input type="text" name="title" id="title" value=""/>

        <label for="firstName" tag="" class="optional">First name:</label>
        <input type="text" name="firstName" id="firstName" value=""/>

        <label for="lastName" tag="" class="optional">Last name:</label>
        <input type="text" name="lastName" id="lastName" value=""/>
    </div>

    <div class="element">
        <label for="dateOfBirth" tag="" class="optional">Date of Birth
            (DD/MM/YYYY):</label>
        <input type="text" name="dateOfBirth[day]" id="dateOfBirth-day"
            value="" size="2" maxlength="2"/>
        /
        <input type="text" name="dateOfBirth[month]" id="dateOfBirth-month"
            value="" size="2" maxlength="2"/>
        /
        <input type="text" name="dateOfBirth[year]" id="dateOfBirth-year"
            value="" size="4" maxlength="4"/>
    </div>

    <div class="element">
        <label for="password" tag="" class="optional">Password:</label>
        <input type="password" name="password" id="password" value=""/>
    </div>

    <div class="element">
        <label for="passwordConfirmation" tag="" class="" id="submit"
            value="Save"/>
</form>










It may not be truly pretty, but with some CSS, it could be made to look exactly how you might want to see it. The
main point, however, is that this form was generated using almost entirely custom markup, while still leveraging
decorators for the most common markup (and to ensure things like escaping with htmlentities and value injection
occur).


By this point in the tutorial, you should be getting fairly comfortable with the markup possibilities using
Zend_Form‘s decorators. In the next section, we’ll revisit the date element from above, and demonstrate how to
create a custom element and decorator for composite elements.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Rendering Individual Decorators
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.service-manager.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\ServiceManager


The Service Locator design pattern [http://en.wikipedia.org/wiki/Service_locator_pattern] is implemented by the ServiceManager.  The Service Locator is a
service/object locator, tasked with retrieving other objects. You may interact with the ServiceManger
via the following methods



		has($name), tests whether the ServiceManager has a named service;


		get($name), retrieves a service by the given name.





In addition to above methods, the ServiceManger can be instantiated via the following features:



		Service registration. You can register an object under a given name ($services->setService(‘foo’,
$object)).


		Lazy-loaded service objects. You can tell the manager what class to instantiate on first request
($services->setInvokableClass(‘foo’, ‘FullyQualifiedClassname’)).


		Service factories. Instead of an actual object instance or a class name, you can tell the manager to invoke
the provided factory in order to get the object instance. Factories may be either any PHP callable, an object
implementing Zend\ServiceManager\FactoryInterface, or the name of a class implementing that interface.


		Service aliasing. You can tell the manager that when a particular name is requested, use the provided name
instead. You can alias to a known service, a lazy-loaded service, a factory, or even other aliases.


		Abstract factories. An abstract factory can be considered a “fallback” – if the service does not exist in
the manager, it will then pass it to any abstract factories attached to it until one of them is able to return an
object.


		Initializers. You may want certain injection points always populated – as an example, any object you load
via the service manager that implements Zend\EventManager\EventManagerAware should likely receive an
EventManager instance. Initializers are PHP callbacks or classes implementing
Zend\ServiceManager\InitializerInterface; they receive the new instance, and can then manipulate it.





In addition to the above, the ServiceManager also provides optional ties to Zend\Di, allowing Di to act
as an initializer or an abstract factory for the manager.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\ServiceManager
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/forms-and-actions.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Forms and actions



Adding new albums


We can now code up the functionality to add new albums. There are two bits to
this part:



		Display a form for user to provide details


		Process the form submission and store to database





We use Zend\Form to do this. The Zend\Form component manages the form
and for validation, we add a Zend\InputFilter to our Album entity. We
start by creating a new class Album\Form\AlbumForm that extends from
Zend\Form\Form to define our form. The class is stored in the
AlbumForm.php file within the module/Album/src/Album/Form directory.


Create this file file now:


// module/Album/src/Album/Form/AlbumForm.php:
namespace Album\Form;

use Zend\Form\Form;

class AlbumForm extends Form
{
    public function __construct($name = null)
    {
        // we want to ignore the name passed
        parent::__construct('album');
        $this->setAttribute('method', 'post');
        $this->add(array(
            'name' => 'id',
            'attributes' => array(
                'type'  => 'hidden',
            ),
        ));
        $this->add(array(
            'name' => 'artist',
            'attributes' => array(
                'type'  => 'text',
            ),
            'options' => array(
                'label' => 'Artist',
            ),
        ));
        $this->add(array(
            'name' => 'title',
            'attributes' => array(
                'type'  => 'text',
            ),
            'options' => array(
                'label' => 'Title',
            ),
        ));
        $this->add(array(
            'name' => 'submit',
            'attributes' => array(
                'type'  => 'submit',
                'value' => 'Go',
                'id' => 'submitbutton',
            ),
        ));
    }
}






Within the constructor of AlbumForm, we set the name when we call the parent’s
constructor and then set the method and then create four form elements for the
id, artist, title, and submit button. For each item we set various attributes
and options, including the label to be displayed.


We also need to set up validation for this form. In Zend Framework 2 is this
done using an input filter which can either be standalone or within any class
that implements InputFilterAwareInterface, such as a model entity. We are
going to add the input filter to our Album entity:


// module/Album/src/Album/Model/Album.php:
namespace Album\Model;

use Zend\InputFilter\Factory as InputFactory;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\InputFilterAwareInterface;
use Zend\InputFilter\InputFilterInterface;

class Album implements InputFilterAwareInterface
{
    public $id;
    public $artist;
    public $title;
    protected $inputFilter;

    public function exchangeArray($data)
    {
        $this->id     = (isset($data['id']))     ? $data['id']     : null;
        $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
        $this->title  = (isset($data['title']))  ? $data['title']  : null;
    }

    public function setInputFilter(InputFilterInterface $inputFilter)
    {
        throw new \Exception("Not used");
    }

    public function getInputFilter()
    {
        if (!$this->inputFilter) {
            $inputFilter = new InputFilter();
            $factory     = new InputFactory();

            $inputFilter->add($factory->createInput(array(
                'name'     => 'id',
                'required' => true,
                'filters'  => array(
                    array('name' => 'Int'),
                ),
            )));

            $inputFilter->add($factory->createInput(array(
                'name'     => 'artist',
                'required' => true,
                'filters'  => array(
                    array('name' => 'StripTags'),
                    array('name' => 'StringTrim'),
                ),
                'validators' => array(
                    array(
                        'name'    => 'StringLength',
                        'options' => array(
                            'encoding' => 'UTF-8',
                            'min'      => 1,
                            'max'      => 100,
                        ),
                    ),
                ),
            )));

            $inputFilter->add($factory->createInput(array(
                'name'     => 'title',
                'required' => true,
                'filters'  => array(
                    array('name' => 'StripTags'),
                    array('name' => 'StringTrim'),
                ),
                'validators' => array(
                    array(
                        'name'    => 'StringLength',
                        'options' => array(
                            'encoding' => 'UTF-8',
                            'min'      => 1,
                            'max'      => 100,
                        ),
                    ),
                ),
            )));

            $this->inputFilter = $inputFilter;
        }

        return $this->inputFilter;
    }
}






The InputFilterAwareInterface defines two methods: setInputFilter() and
getInputFilter(). We only need to implement getInputFilter() so we
simply throw an exception  in setInputFilter().


Within getInputFilter(), we instantiate an InputFilter and then add the
inputs that we require. We add one input for each property that we wish to
filter or validate. For the id field we add an Int filter as we only
need integers. For the text elements, we add two filters, StripTags and
StringTrim to remove unwanted HTML and unnecessary white space. We also set
them to be required and add a StringLength validator to ensure that the
user doesn’t enter more characters than we can store into the database.


We now need to get the form to display and then process it on submission. This
is done within the AlbumController’s addAction():


// module/Album/src/Album/Controller/AlbumController.php:

//...
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Album\Model\Album;          // <-- Add this import
use Album\Form\AlbumForm;       // <-- Add this import
//...

    // Add content to this method:
    public function addAction()
    {
        $form = new AlbumForm();
        $form->get('submit')->setValue('Add');

        $request = $this->getRequest();
        if ($request->isPost()) {
            $album = new Album();
            $form->setInputFilter($album->getInputFilter());
            $form->setData($request->getPost());

            if ($form->isValid()) {
                $album->exchangeArray($form->getData());
                $this->getAlbumTable()->saveAlbum($album);

                // Redirect to list of albums
                return $this->redirect()->toRoute('album');
            }
        }
        return array('form' => $form);
    }
//...






After adding the AlbumForm to the use list, we implement addAction().
Let’s look at the addAction() code in a little more detail:


$form = new AlbumForm();
$form->submit->setValue('Add');






We instantiate AlbumForm and set the label on the submit button to “Add”. We
do this here as we’ll want to re-use the form when editing an album and will use
a different label.


$request = $this->getRequest();
if ($request->isPost()) {
    $album = new Album();
    $form->setInputFilter($album->getInputFilter());
    $form->setData($request->getPost());
    if ($form->isValid()) {






If the Request object’s isPost() method is true, then the form has been
submitted and so we set the form’s input filter from an album instance. We then
set the posted data to the form and check to see if it is valid using the
isValid() member function of the form.


$album->exchangeArray($form->getData());
$this->getAlbumTable()->saveAlbum($album);






If the form is valid, then we  grab the data from the form and store to the
model using saveAlbum().


// Redirect to list of albums
return $this->redirect()->toRoute('album');






After we have saved the new album row, we redirect back to the list of albums
using the Redirect controller plugin.


return array('form' => $form);






Finally, we return the variables that we want assigned to the view. In this
case, just the form object. Note that Zend Framework 2 also allows you to simply
return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.


We now need to render the form in the add.phtml view script:


<?php
// module/Album/view/album/album/add.phtml:

$title = 'Add new album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>
<?php
$form = $this->form;
$form->setAttribute('action', $this->url('album', array('action' => 'add')));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get('id'));
echo $this->formRow($form->get('title'));
echo $this->formRow($form->get('artist'));
echo $this->formSubmit($form->get('submit'));
echo $this->form()->closeTag();






Again, we display a title as before and then we render the form. Zend Framework
provides some view helpers to make this a little easier. The form() view
helper has an openTag() and closeTag() method which we use to open and
close the form.  Then for each element with a label, we can use formRow(),
but for the two elements that are standalone, we use formHidden() and
formSubmit().


[image: ../_images/user-guide.forms-and-actions.add-album-form.png]
You should now be able to use the “Add new album” link on the home page of the
application to add a new album record.





Editing an album


Editing an album is almost identical to adding one, so the code is very similar.
This time we use editAction() in the AlbumController:


// module/Album/src/Album/AlbumController.php:
//...

    // Add content to this method:
    public function editAction()
    {
        $id = (int) $this->params()->fromRoute('id', 0);
        if (!$id) {
            return $this->redirect()->toRoute('album', array(
                'action' => 'add'
            ));
        }
        $album = $this->getAlbumTable()->getAlbum($id);

        $form  = new AlbumForm();
        $form->bind($album);
        $form->get('submit')->setAttribute('value', 'Edit');

        $request = $this->getRequest();
        if ($request->isPost()) {
            $form->setInputFilter($album->getInputFilter());
            $form->setData($request->getPost());

            if ($form->isValid()) {
                $this->getAlbumTable()->saveAlbum($album);

                // Redirect to list of albums
                return $this->redirect()->toRoute('album');
            }
        }

        return array(
            'id' => $id,
            'form' => $form,
        );
    }
//...






This code should look comfortably familiar. Let’s look at the differences from
adding an album. Firstly, we look for the id that is in the matched route
and use it to load the album to be edited:


$id = (int) $this->params()->fromRoute('id', 0);
if (!$id) {
    return $this->redirect()->toRoute('album', array(
        'action' => 'add'
    ));
}
$album = $this->getAlbumTable()->getAlbum($id);






params is a controller plugin that provides a convenient way to retrieve
parameters from the matched route.  We use it to retrieve the id from the
route we created in the modules’ module.config.php. If the id is zero,
then we redirect to the add action, otherwise, we continue by getting the album
entity from the database.


$form = new AlbumForm();
$form->bind($album);
$form->get('submit')->setAttribute('value', 'Edit');






The form’s bind() method attaches the model to the form. This is used in two
ways:



		# When displaying the form, the initial values for each element are extracted


		from the model.


		# After successful validation in isValid(), the data from the form is put back


		into the model.





These operations are done using a hydrator object. There are a number of
hydrators, but the default one is Zend\Stdlib\Hydrator\ArraySerializable
which expects to find two methods in the model: getArrayCopy() and
exchangeArray(). We have already written exchangeArray() in our
Album entity, so just need to write getArrayCopy():


// module/Album/src/Album/Model/Album.php:
// ...
    public function exchangeArray($data)
    {
        $this->id     = (isset($data['id']))     ? $data['id']     : null;
        $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
        $this->title  = (isset($data['title']))  ? $data['title']  : null;
    }

    // Add the following method:
    public function getArrayCopy()
    {
        return get_object_vars($this);
    }
// ...






As a result of using bind() with its hydrator, we do not need to populate the
form’s data back into the $album as that’s already been done, so we can just
call the mappers’ saveAlbum() to store the changes back to the database.


The view template, edit.phtml, looks very similar to the one for adding an
album:


<?php
// module/Album/view/album/album/edit.phtml:

$title = 'Edit album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<?php
$form = $this->form;
$form->setAttribute('action', $this->url(
    'album',
    array(
        'action' => 'edit',
        'id'     => $this->id,
    )
));
$form->prepare();

echo $this->form()->openTag($form);
echo $this->formHidden($form->get('id'));
echo $this->formRow($form->get('title'));
echo $this->formRow($form->get('artist'));
echo $this->formSubmit($form->get('submit'));
echo $this->form()->closeTag();






The only changes are to use the ‘Edit Album’ title and set the form’s action to
the ‘edit’ action too.


You should now be able to edit albums.





Deleting an album


To round out our application, we need to add deletion. We have a Delete link
next to each album on our list page and the naïve approach would be to do a
delete when it’s clicked. This would be wrong. Remembering our HTTP spec, we
recall that you shouldn’t do an irreversible action using GET and should use
POST instead.


We shall show a confirmation form when the user clicks delete and if they then
click “yes”, we will do the deletion. As the form is trivial, we’ll code it
directly into our view (Zend\Form is, after all, optional!).


Let’s start with the action code in AlbumController::deleteAction():


// module/Album/src/Album/AlbumController.php:
//...
    // Add content to the following method:
    public function deleteAction()
    {
        $id = (int) $this->params()->fromRoute('id', 0);
        if (!$id) {
            return $this->redirect()->toRoute('album');
        }

        $request = $this->getRequest();
        if ($request->isPost()) {
            $del = $request->getPost('del', 'No');

            if ($del == 'Yes') {
                $id = (int) $request->getPost('id');
                $this->getAlbumTable()->deleteAlbum($id);
            }

            // Redirect to list of albums
            return $this->redirect()->toRoute('album');
        }

        return array(
            'id'    => $id,
            'album' => $this->getAlbumTable()->getAlbum($id)
        );
    }
//...






As before, we get the id from the matched route,and check the request
object’s isPost() to determine whether to show the confirmation page or to
delete the album. We use the table object to delete the row using the
deleteAlbum() method and then redirect back the list of albums. If the
request is not a POST, then we retrieve the correct database record and assign
to the view, along with the id.


The view script is a simple form:


<?php
// module/Album/view/album/album/delete.phtml:

$title = 'Delete album';
$this->headTitle($title);
?>
<h1><?php echo $this->escapeHtml($title); ?></h1>

<p>Are you sure that you want to delete
    '<?php echo $this->escapeHtml($album->title); ?>' by
    '<?php echo $this->escapeHtml($album->artist); ?>'?
</p>
<?php
$url = $this->url('album', array(
    'action' => 'delete',
    'id'     => $this->id,
));
?>
<form action="<?php echo $url; ?>" method="post">
<div>
    <input type="hidden" name="id" value="<?php echo (int) $album->id; ?>" />
    <input type="submit" name="del" value="Yes" />
    <input type="submit" name="del" value="No" />
</div>
</form>






In this script, we display a confirmation message to the user and then a form
with “Yes” and “No” buttons. In the action, we checked specifically for the “Yes”
value when doing the deletion.





Ensuring that the home page displays the list of albums


One final point. At the moment, the home page, http://zf2-tutorial.localhost/
doesn’t display the list of albums.


This is due to a route set up in the Application module’s
module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:


'home' => array(
    'type' => 'Zend\Mvc\Router\Http\Literal',
    'options' => array(
        'route'    => '/',
        'defaults' => array(
            'controller' => 'Application\Controller\Index',
            'action'     => 'index',
        ),
    ),
),






Change the controller from Application\Controller\Index to
Album\Controller\Album:


'home' => array(
    'type' => 'Zend\Mvc\Router\Http\Literal',
    'options' => array(
        'route'    => '/',
        'defaults' => array(
            'controller' => 'Album\Controller\Album', // <-- change here
            'action'     => 'index',
        ),
    ),
),






That’s it - you now have a fully working application!








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Forms and actions
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

_images/zend.barcode.introduction.example-1.png
T END-FRAMEWORK





modules/zend.validator.writing-validators.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Writing Validators


Zend\Validator\AbstractValidator supplies a set of commonly needed validators, but inevitably, developers will
wish to write custom validators for their particular needs. The task of writing a custom validator is described in
this section.


Zend\Validator\ValidatorInterface defines two methods, isValid() and getMessages(), that may be
implemented by user classes in order to create custom validation objects. An object that implements
Zend\Validator\AbstractValidator interface may be added to a validator chain with
Zend\Validator\ValidatorChain::addValidator(). Such objects may also be used with Zend\Filter\Input.


As you may already have inferred from the above description of Zend\Validator\ValidatorInterface, validation
classes provided with Zend Framework return a boolean value for whether or not a value validates successfully. They
also provide information about why a value failed validation. The availability of the reasons for validation
failures may be valuable to an application for various purposes, such as providing statistics for usability
analysis.


Basic validation failure message functionality is implemented in Zend\Validator\AbstractValidator. To include
this functionality when creating a validation class, simply extend Zend\Validator\AbstractValidator. In the
extending class you would implement the isValid() method logic and define the message variables and message
templates that correspond to the types of validation failures that can occur. If a value fails your validation
tests, then isValid() should return FALSE. If the value passes your validation tests, then isValid()
should return TRUE.


In general, the isValid() method should not throw any exceptions, except where it is impossible to determine
whether or not the input value is valid. A few examples of reasonable cases for throwing an exception might be if a
file cannot be opened, an LDAP server could not be contacted, or a database connection is unavailable, where such
a thing may be required for validation success or failure to be determined.


Creating a Simple Validation Class


The following example demonstrates how a very simple custom validator might be written. In this case the validation
rules are simply that the input value must be a floating point value.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		class MyValid\Float extends Zend\Validator\AbstractValidator
{
    const FLOAT = 'float';

    protected $messageTemplates = array(
        self::FLOAT => "'%value%' is not a floating point value"
    );

    public function isValid($value)
    {
        $this->setValue($value);

        if (!is_float($value)) {
            $this->error(self::FLOAT);
            return false;
        }

        return true;
    }
}










The class defines a template for its single validation failure message, which includes the built-in magic
parameter, %value%. The call to setValue() prepares the object to insert the tested value into the failure
message automatically, should the value fail validation. The call to error() tracks a reason for validation
failure. Since this class only defines one failure message, it is not necessary to provide error() with the
name of the failure message template.


Writing a Validation Class having Dependent Conditions


The following example demonstrates a more complex set of validation rules, where it is required that the input
value be numeric and within the range of minimum and maximum boundary values. An input value would fail validation
for exactly one of the following reasons:



		The input value is not numeric.


		The input value is less than the minimum allowed value.


		The input value is more than the maximum allowed value.





These validation failure reasons are then translated to definitions in the class:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


		class MyValid\NumericBetween extends Zend\Validator\AbstractValidator
{
    const MSG_NUMERIC = 'msgNumeric';
    const MSG_MINIMUM = 'msgMinimum';
    const MSG_MAXIMUM = 'msgMaximum';

    public $minimum = 0;
    public $maximum = 100;

    protected $messageVariables = array(
        'min' => 'minimum',
        'max' => 'maximum'
    );

    protected $messageTemplates = array(
        self::MSG_NUMERIC => "'%value%' is not numeric",
        self::MSG_MINIMUM => "'%value%' must be at least '%min%'",
        self::MSG_MAXIMUM => "'%value%' must be no more than '%max%'"
    );

    public function isValid($value)
    {
        $this->setValue($value);

        if (!is_numeric($value)) {
            $this->error(self::MSG_NUMERIC);
            return false;
        }

        if ($value < $this->minimum) {
            $this->error(self::MSG_MINIMUM);
            return false;
        }

        if ($value > $this->maximum) {
            $this->error(self::MSG_MAXIMUM);
            return false;
        }

        return true;
    }
}










The public properties $minimum and $maximum have been established to provide the minimum and maximum
boundaries, respectively, for a value to successfully validate. The class also defines two message variables that
correspond to the public properties and allow min and max to be used in message templates as magic
parameters, just as with value.


Note that if any one of the validation checks in isValid() fails, an appropriate failure message is prepared,
and the method immediately returns FALSE. These validation rules are therefore sequentially dependent. That is,
if one test should fail, there is no need to test any subsequent validation rules. This need not be the case,
however. The following example illustrates how to write a class having independent validation rules, where the
validation object may return multiple reasons why a particular validation attempt failed.


Validation with Independent Conditions, Multiple Reasons for Failure


Consider writing a validation class for password strength enforcement - when a user is required to choose a
password that meets certain criteria for helping secure user accounts. Let us assume that the password security
criteria enforce that the password:



		is at least 8 characters in length,


		contains at least one uppercase letter,


		contains at least one lowercase letter,


		and contains at least one digit character.





The following class implements these validation criteria:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		class MyValid\PasswordStrength extends Zend\Validator\AbstractValidator
{
    const LENGTH = 'length';
    const UPPER  = 'upper';
    const LOWER  = 'lower';
    const DIGIT  = 'digit';

    protected $messageTemplates = array(
        self::LENGTH => "'%value%' must be at least 8 characters in length",
        self::UPPER  => "'%value%' must contain at least one uppercase letter",
        self::LOWER  => "'%value%' must contain at least one lowercase letter",
        self::DIGIT  => "'%value%' must contain at least one digit character"
    );

    public function isValid($value)
    {
        $this->setValue($value);

        $isValid = true;

        if (strlen($value) < 8) {
            $this->error(self::LENGTH);
            $isValid = false;
        }

        if (!preg_match('/[A-Z]/', $value)) {
            $this->error(self::UPPER);
            $isValid = false;
        }

        if (!preg_match('/[a-z]/', $value)) {
            $this->error(self::LOWER);
            $isValid = false;
        }

        if (!preg_match('/\d/', $value)) {
            $this->error(self::DIGIT);
            $isValid = false;
        }

        return $isValid;
    }
}










Note that the four criteria tests in isValid() do not immediately return FALSE. This allows the validation
class to provide all of the reasons that the input password failed to meet the validation requirements. if, for
example, a user were to input the string “#$%” as a password, isValid() would cause all four validation failure
messages to be returned by a subsequent call to getMessages().






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Writing Validators
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zendservice.livedocx.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
ZendService\LiveDocx



Introduction to LiveDocx


LiveDocx is a SOAP service that allows developers to generate word processing documents by combining structured
textual or image data from PHP with a template, created in a word processor. The resulting document can be
saved as a PDF, DOCX, DOC, HTML or RTF file. LiveDocx implements mail-merge [http://en.wikipedia.org/wiki/Mail_merge] in PHP.


The family of ZendService\LiveDocx components provides a clean and simple interface to LiveDocx Free,
LiveDocx Premium and LiveDocx Fully Licensed, authored by Text Control GmbH, and additionally offers
functionality to improve network performance.


ZendService\LiveDocx is part of the official Zend Framework family, but has to be downloaded and installed
in addition to the core components of the Zend Framework, as do all other service components. Please refer to
GitHub (ZendServiceLiveDocx) [https://github.com/zendframework/ZendServiceLiveDocx] for download and installation instructions.


In addition to this section of the manual, to learn more about ZendService\LiveDocx and the backend SOAP
service LiveDocx, please take a look at the following resources:



		Shipped demonstration applications. There is a large number of demonstration applications in the
directory /demos. They illustrate all functionality offered by LiveDocx. Where appropriate this part of the
user manual references the demonstration applications at the end of each section. It is highly recommended
to read all the  code in the /demos directory. It is well commented and explains all you need to know about
LiveDocx and ZendService\LiveDocx.


		LiveDocx in PHP [http://www.phplivedocx.org/].


		LiveDocx SOAP API documentation [http://www.livedocx.com/pub/documentation/api.aspx].


		LiveDocx WSDL [https://api.livedocx.com/2.1/mailmerge.asmx?wsdl].


		LiveDocx blog and web site [https://www.livedocx.com/].






Sign Up for an Account


Before you can start using LiveDocx, you must first sign up [https://www.livedocx.com/user/account_registration.aspx] for an account. The account is completely free of
charge and you only need to specify a username, password and e-mail address. Your login credentials
will be dispatched to the e-mail address you supply, so please type carefully. If, or when, your application
gets really popular and you require high performance, or additional features only supplied in the premium service,
you can upgrade from the LiveDocx Free to LiveDocx Premium for a minimal monthly charge. For details of the
various services, please refer to LiveDocx pricing [http://www.livedocx.com/pub/pricing].





Templates and Documents


LiveDocx differentiates between the following terms: 1) template and 2) document. In order to fully
understand the documentation and indeed LiveDocx itself, it is important that any programmer deploying LiveDocx
understands the difference.


The term template is used to refer to the input file, created in a word processor, containing formatting and
text fields. You can download an example template [http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-template.docx], stored as a DOCX file. The term document is used to
refer to the output file that contains the template file, populated with data - i.e. the finished document. You can
download an example document [http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-document.pdf], stored as a PDF file.





Supported File Formats


LiveDocx supports the following file formats:





Template File Formats (input)


Templates can be saved in any of the following file formats:



		DOCX [http://en.wikipedia.org/wiki/Office_Open_XML]- Office Open XML format


		DOC [http://en.wikipedia.org/wiki/DOC_(computing)]- Microsoft Word DOC format


		RTF [http://en.wikipedia.org/wiki/Rich_Text_Format]- Rich text file format


		TXD [http://www.textcontrol.com/]- TX Text Control format








Document File Formats (output):


The resulting document can be saved in any of the following file formats:



		DOCX [http://en.wikipedia.org/wiki/Office_Open_XML]- Office Open XML format


		DOC [http://en.wikipedia.org/wiki/DOC_(computing)]- Microsoft Word DOC format


		HTML [http://en.wikipedia.org/wiki/Xhtml]-XHTML 1.0 transitional format


		RTF [http://en.wikipedia.org/wiki/Rich_Text_Format]- Rich text file format


		PDF [http://en.wikipedia.org/wiki/Portable_Document_Format]- Acrobat Portable Document Format


		PDF/A [http://en.wikipedia.org/wiki/PDF/A]- Acrobat Portable Document Format (ISO-standardized version)


		TXD [http://www.textcontrol.com/]- TX Text Control format


		TXT [http://en.wikipedia.org/wiki/Text_file]-ANSI plain text








Image File Formats (output):


The resulting document can be saved in any of the following graphical file formats:



		BMP [http://en.wikipedia.org/wiki/BMP_file_format]- Bitmap image format


		GIF [http://en.wikipedia.org/wiki/GIF]- Graphics Interchange Format


		JPG [http://en.wikipedia.org/wiki/Jpg]- Joint Photographic Experts Group format


		PNG [http://en.wikipedia.org/wiki/Portable_Network_Graphics]- Portable Network Graphics format


		TIFF [http://en.wikipedia.org/wiki/Tagged_Image_File_Format]- Tagged Image File Format


		WMF [http://en.wikipedia.org/wiki/Windows_Metafile]- Windows Meta File format










ZendService\LiveDocx\MailMerge


MailMerge is the mail-merge object in the ZendService\LiveDocx family.



Document Generation Process


The document generation process can be simplified with the following equation:


Template + Data = Document


Or expressed by the following diagram:


[image: ../_images/zendservice.livedocx.mailmerge.generation-diabasic_zoom.png]
Data is inserted into template to create a document.


A template, created in a word processing application, such as Microsoft Word, is loaded into LiveDocx. Data is then
inserted into the template and the resulting document is saved to any supported format.





Creating Templates in Microsoft Word 2007


Start off by launching Microsoft Word and creating a new document. Next, open up the Field dialog box. This
looks as follows:


[image: ../_images/zendservice.livedocx.mailmerge.templates-msworddialog_zoom.png]
Microsoft Word 2007 Field dialog box.


Using this dialog, you can insert the required merge fields into your document. Below is a screenshot of a license
agreement in Microsoft Word 2007. The merge fields are marked as { MERGEFIELD FieldName }:


[image: ../_images/zendservice.livedocx.mailmerge.templates-mswordtemplatefull_zoom.png]
Template in Microsoft Word 2007.


Now, save the template as template.docx.


In the next step, we are going to populate the merge fields with textual data from PHP.


[image: ../_images/zendservice.livedocx.mailmerge.templates-mswordtemplatecropped_zoom.png]
Cropped template in Microsoft Word 2007.


To populate the merge fields in the above cropped screenshot of the template [http://www.phplivedocx.org/wp-content/uploads/2009/01/license-agreement-template.docx] in Microsoft Word, all we have to
code is as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


		 use ZendService\LiveDocx\MailMerge;

 $locale    = Locale::getDefault();
 $timestamp = time();

 $intlTimeFormatter = new IntlDateFormatter($locale,
         IntlDateFormatter::NONE, IntlDateFormatter::SHORT);

 $intlDateFormatter = new IntlDateFormatter($locale,
         IntlDateFormatter::LONG, IntlDateFormatter::NONE);

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->setLocalTemplate('license-agreement-template.docx');

 $mailMerge->assign('software', 'Magic Graphical Compression Suite v1.9')
           ->assign('licensee', 'Henry Döner-Meyer')
           ->assign('company',  'Co-Operation')
           ->assign('date',     $intlDateFormatter->format($timestamp))
           ->assign('time',     $intlTimeFormatter->format($timestamp))
           ->assign('city',     'Lyon')
           ->assign('country',  'France');

 $mailMerge->createDocument();

 $document = $mailMerge->retrieveDocument('pdf');

 file_put_contents('license-agreement-document.pdf', $document);

 unset($mailMerge);










The resulting document is written to disk in the file license-agreement-document.pdf. This file can now be post-processed, sent
via e-mail or simply displayed, as is illustrated below in Document Viewer 2.26.1 on Ubuntu 9.04:


[image: ../_images/zendservice.livedocx.mailmerge.templates-msworddocument_zoom.png]
Resulting document as PDF in Document Viewer 2.26.1.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/license-agreement.





Advanced Mail-Merge


ZendService\LiveDocx\MailMerge allows designers to insert any number of text fields into a
template. These text fields are populated with data when createDocument() is called.


In addition to text fields, it is also possible specify regions of a document, which should be repeated.


For example, in a telephone bill it is necessary to print out a list of all connections, including the destination
number, duration and cost of each call. This repeating row functionality can be achieved with so called blocks.


Blocks are simply regions of a document, which are repeated when createDocument() is called. In a block any
number of block fields can be specified.


Blocks consist of two consecutive document targets with a unique name. The following screenshot illustrates these
targets and their names in red:


[image: ../_images/zendservice.livedocx.mailmerge.advanced-mergefieldblockformat_zoom.png]
The format of a block is as follows:


blockStart_ + unique name
blockEnd_ + unique name






For example:


blockStart_block1
blockEnd_block1






The content of a block is repeated, until all data assigned in the block fields has been injected into the
template. The data for block fields is specified in PHP as a multi-assoc array.


The following screenshot of a template in Microsoft Word 2007 shows how block fields are used:


[image: ../_images/zendservice.livedocx.mailmerge.advanced-mswordblockstemplate_zoom.png]
Template, illustrating blocks in Microsoft Word 2007.


The following code populates the above template with data.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


		 use ZendService\LiveDocx\MailMerge;

 $locale    = Locale::getDefault();
 $timestamp = time();

 $intlDateFormatter1 = new IntlDateFormatter($locale,
         IntlDateFormatter::LONG, IntlDateFormatter::NONE);

 $intlDateFormatter2 = new IntlDateFormatter($locale,
         null, null, null, null, 'LLLL yyyy');

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->setLocalTemplate('telephone-bill-template.doc');

 $mailMerge->assign('customer_number', sprintf("#%'10s", rand(0,1000000000)))
           ->assign('invoice_number',  sprintf("#%'10s", rand(0,1000000000)))
           ->assign('account_number',  sprintf("#%'10s", rand(0,1000000000)));

 $billData = array (
     'phone'         => '+22 (0)333 444 555',
     'date'          => $intlDateFormatter1->format($timestamp),
     'name'          => 'James Henry Brown',
     'service_phone' => '+22 (0)333 444 559',
     'service_fax'   => '+22 (0)333 444 558',
     'month'         => $intlDateFormatter2->format($timestamp),
     'monthly_fee'   => '15.00',
     'total_net'     => '19.60',
     'tax'           => '19.00',
     'tax_value'     =>  '3.72',
     'total'         => '23.32'
 );

 $mailMerge->assign($billData);

 $billConnections = array(
     array(
         'connection_number'   => '+11 (0)222 333 441',
         'connection_duration' => '00:01:01',
         'fee'                 => '1.15'
     ),
     array(
         'connection_number'   => '+11 (0)222 333 442',
         'connection_duration' => '00:01:02',
         'fee'                 => '1.15'
     ),
     array(
         'connection_number'   => '+11 (0)222 333 443',
         'connection_duration' => '00:01:03',
         'fee'                 => '1.15'
     ),
     array(
         'connection_number'   => '+11 (0)222 333 444',
         'connection_duration' => '00:01:04',
         'fee'                 => '1.15'
     )
 );

 $mailMerge->assign('connection', $billConnections);

 $mailMerge->createDocument();

 $document = $mailMerge->retrieveDocument('pdf');

 file_put_contents('telephone-bill-document.pdf', $document);

 unset($mailMerge);










The data, which is specified in the array $billConnections is repeated in the template in the block connection.
The keys of the array (connection_number, connection_duration and fee) are the block field names -
their data is inserted, one row per iteration.


The resulting document is written to disk in the file telephone-bill-document.pdf. This file can now be
post-processed, sent via e-mail or simply displayed, as is illustrated below in Document Viewer 2.26.1
on Ubuntu 9.04:


[image: ../_images/zendservice.livedocx.mailmerge.advanced-mswordblocksdocument_zoom.png]
Resulting document as PDF in Document Viewer 2.26.1.


You can download the DOC template file [http://www.phplivedocx.org/wp-content/uploads/2009/01/telephone-bill-template.doc] and the resulting PDF document [http://www.phplivedocx.org/wp-content/uploads/2009/01/telephone-bill-document.pdf].


NOTE: blocks may not be nested.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/telephone-bill.





Merging Image Data into a Template


In addition to assigning textual data, it is also possible to merge image data into a template. The following code
populates a conference badge template with the photo dailemaitre.jpg, in addition to some textual data.


The first step is to upload the image to the backend service. Once you have done this, you can assign the filename
of the image to the template just as you would any other textual data. Note the syntax of the field name containing
an image - it must start with image:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


		 use ZendService\LiveDocx\MailMerge;

 $locale    = Locale::getDefault();
 $timestamp = time();

 $intlDateFormatter = new IntlDateFormatter($locale,
         IntlDateFormatter::LONG, IntlDateFormatter::NONE);

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $photoFilename = __DIR__ . '/dailemaitre.jpg';
 $photoFile     = basename($photoFilename);

 if (!$mailMerge->imageExists($photoFile)) {         // pass image file *without* path
     $mailMerge->uploadImage($photoFilename);        // pass image file *with* path
 }

 $mailMerge->setLocalTemplate('conference-pass-template.docx');

 $mailMerge->assign('name',        'Daï Lemaitre')
           ->assign('company',     'Megasoft Co-operation')
           ->assign('date',        $intlDateFormatter->format($timestamp))
           ->assign('image:photo', $photoFile);      // pass image file *without* path

 $mailMerge->createDocument();

 $document = $mailMerge->retrieveDocument('pdf');

 file_put_contents('conference-pass-document.pdf', $document);

 $mailMerge->deleteImage($photoFilename);

 unset($mailMerge);










For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/conference-pass.





Generating Bitmaps Image Files


In addition to document file formats, MailMerge also allows documents to be saved to a
number of image file formats (BMP, GIF, JPG, PNG and TIFF). Each page of the document is saved to one
file.


The following sample illustrates the use of getBitmaps($fromPage, $toPage, $zoomFactor, $format) and
getAllBitmaps($zoomFactor, $format).


$fromPage is the lower-bound page number of the page range that should be returned as an image and $toPage
the upper-bound page number. $zoomFactor is the size of the images, as a percent, relative to the original page
size. The range of this parameter is 10 to 400. $format is the format of the images returned by this method.
The supported formats can be obtained by calling getImageExportFormats().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		 use ZendService\LiveDocx\MailMerge;

 $locale    = Locale::getDefault();
 $timestamp = time();

 $intlTimeFormatter = new IntlDateFormatter($locale,
         IntlDateFormatter::NONE, IntlDateFormatter::SHORT);

 $intlDateFormatter = new IntlDateFormatter($locale,
         IntlDateFormatter::LONG, IntlDateFormatter::NONE);

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->setLocalTemplate('license-agreement-template.docx');

 $mailMerge->assign('software', 'Magic Graphical Compression Suite v1.9')
           ->assign('licensee', 'Henry Döner-Meyer')
           ->assign('company',  'Co-Operation')
           ->assign('date',     $intlDateFormatter->format($timestamp))
           ->assign('time',     $intlTimeFormatter->format($timestamp))
           ->assign('city',     'Lyon')
           ->assign('country',  'France');

 $mailMerge->createDocument();

 // Get all bitmaps
 // (zoomFactor, format)
 $bitmaps = $mailMerge->getAllBitmaps(100, 'png');

 // Get just bitmaps in specified range
 // (fromPage, toPage, zoomFactor, format)
 //$bitmaps = $mailMerge->getBitmaps(2, 2, 100, 'png');

 foreach ($bitmaps as $pageNumber => $bitmapData) {
     $filename = sprintf('license-agreement-page-%d.png', $pageNumber);
     file_put_contents($filename, $bitmapData);
 }

 unset($mailMerge);










This produces two files (license-agreement-page-1.png and license-agreement-page-2.png)
and writes them to disk in the same directory as the executable PHP file.


[image: ../_images/zendservice.livedocx.mailmerge.bitmaps-documentpage1_zoom.png]
license-agreement-page-1.png.


[image: ../_images/zendservice.livedocx.mailmerge.bitmaps-documentpage2_zoom.png]
license-agreement-page-2.png.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/bitmaps.





Local vs. Remote Templates


Templates can be stored locally, on the client machine, or remotely, by LiveDocx. There are advantages
and disadvantages to each approach.


In the case that a template is stored locally, it must be transfered from the client to LiveDocx on every
request. If the content of the template rarely changes, this approach is inefficient. Similarly, if the template is
several megabytes in size, it may take considerable time to transfer it to LiveDocx. Local template are useful in
situations in which the content of the template is constantly changing.


The following code illustrates how to use a local template.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->setLocalTemplate('template.docx');

 // assign data and create document

 unset($mailMerge);










In the case that a template is stored remotely, it is uploaded once to LiveDocx and then simply referenced on all
subsequent requests. Obviously, this is much quicker than using a local template, as the template does not have to
be transfered on every request. For speed critical applications, it is recommended to use the remote template
method.


The following code illustrates how to upload a template to the server:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->uploadTemplate('template.docx');

 unset($mailMerge);










The following code illustrates how to reference the remotely stored template on all subsequent requests:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $mailMerge->setRemoteTemplate('template.docx');

 // assign data and create document

 unset($mailMerge);










For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/templates.





Getting Information


ZendService\LiveDocx\MailMerge provides a number of methods to get information on field names,
available fonts and supported formats.


Get Array of Field Names in Template


The following code returns and displays an array of all field names in the specified template. This functionality
is useful, in the case that you create an application, in which an end-user can update a template.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $templateName = 'template-1-text-field.docx';
 $mailMerge->setLocalTemplate($templateName);

 $fieldNames = $mailMerge->getFieldNames();
 foreach ($fieldNames as $fieldName) {
     printf('- %s%s', $fieldName, PHP_EOL);
 }

 unset($mailMerge);










For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/template-info.


Get Array of Block Field Names in Template


The following code returns and displays an array of all block field names in the specified template. This
functionality is useful, in the case that you create an application, in which an end-user can update a template.
Before such templates can be populated, it is necessary to find out the names of the contained block fields.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 $templateName = 'template-block-fields.doc';
 $mailMerge->setLocalTemplate($templateName);

 $blockNames = $mailMerge->getBlockNames();
 foreach ($blockNames as $blockName) {
     $blockFieldNames = $mailMerge->getBlockFieldNames($blockName);
     foreach ($blockFieldNames as $blockFieldName) {
         printf('- %s::%s%s', $blockName, $blockFieldName, PHP_EOL);
     }
 }

 unset($mailMerge);










For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/template-info.


Get Array of Fonts Installed on Server


The following code returns and displays an array of all fonts installed on the server. You can use this method to
present a list of fonts which may be used in a template. It is important to inform the end-user about the fonts
installed on the server, as only these fonts may be used in a template. In the case that a template contains fonts,
which are not available on the server, font-substitution will take place. This may lead to undesirable results.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		 use ZendService\LiveDocx\MailMerge;
 use Zend\Debug\Debug;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 Debug::dump($mailMerge->getFontNames());

 unset($mailMerge);










NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache,
such as Zend\Cache\Cache- this will considerably speed up your application.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-fonts.


Get Array of Supported Template File Formats


The following code returns and displays an array of all supported template file formats. This method is
particularly useful in the case that a combo list should be displayed that allows the end-user to select the input
format of the documentation generation process.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		 use ZendService\LiveDocx\MailMerge;
 use Zend\Debug\Debug;

 $mailMerge = new MailMerge()

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 Debug::dump($mailMerge->getTemplateFormats());

 unset($mailMerge);










NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache,
such as Zend\Cache\Cache- this will considerably speed up your application.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.


Get Array of Supported Document File Formats


The following code returns and displays an array of all supported document file formats. This method is
particularly useful in the case that a combo list should be displayed that allows the end-user to select the output
format of the documentation generation process.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		 use ZendService\LiveDocx\MailMerge;
 use Zend\Debug\Debug;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 Debug::dump($mailMerge->getDocumentFormats());

 unset($mailMerge);










For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.


Get Array of Supported Image File Formats


The following code returns and displays an array of all supported image file formats. This method is particularly
useful in the case that a combo list should be displayed that allows the end-user to select the output format of
the documentation generation process.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12


		 use ZendService\LiveDocx\MailMerge;
 use Zend\Debug\Debug;

 $mailMerge = new MailMerge();

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);  // for LiveDocx Premium, use MailMerge::SERVICE_PREMIUM

 Debug::dump($mailMerge->getImageExportFormats());

 unset($mailMerge);










NOTE: As the return value of this method changes very infrequently, it is highly recommended to use a cache,
such as Zend\Cache\Cache- this will considerably speed up your application.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/supported-formats.





Upgrading From LiveDocx Free to LiveDocx Premium


LiveDocx Free is provided by Text Control GmbH completely free for charge. It is free for all to use in an
unlimited number of applications. However, there are times when you may like to update to LiveDocx Premium. For
example, you need to generate a very large number of documents concurrently, or your application requires
documents to be created faster than LiveDocx Free permits. For such scenarios, Text Control GmbH offers LiveDocx
Premium, a paid service with a number of benefits. For an overview of the benefits, please take a look at
LiveDocx pricing [http://www.livedocx.com/pub/pricing].


This section of the manual offers a technical overview of how to upgrade from LiveDocx Free to LiveDocx Premium.


All you have to do, is make a very small change to the code that runs with LiveDocx Free. Your instantiation and
initialization of LiveDocx Free probably looks as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge()

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);

 // rest of your application here

 unset($mailMerge);










To use LiveDocx Premium, you simply need to change the service value from MailMerge::SERVICE_FREE to
MailMerge::SERVICE_PREMIUM, and set the username and password assigned to you for Livedocx Premium. This may,
or may not be the same as the credentials for LiveDocx Free. For example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge()

 $mailMerge->setUsername('myPremiumUsername')
           ->setPassword('myPremiumPassword')
           ->setService (MailMerge::SERVICE_PREMIUM);

 // rest of your application here

 unset($mailMerge);










And that is all there is to it. The assignment of the premium WSDL to the component is handled internally and
automatically. You are now using LiveDocx Premium.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/instantiation.





Upgrading From LiveDocx Free or LiveDocx Premium to LiveDocx Fully Licensed


LiveDocx Free and Livedocx Premium are provided by Text Control GmbH as a service. They are addressed over the
Internet. However, for certain applications, for example, ones that process very sensitive data (banking, health
or financial), you may not want to send your data across the Internet to a third party service, regardless of the
SSL encryption that both LiveDocx Free and Livedocx Premium offer as standard. For such scenarios, you can license
LiveDocx and install an entire LiveDocx server in your own network. As such, you completely control the flow of
data between your application and the backend LiveDocx server. For an overview of the benefits of LiveDocx Fully
Licensed, please take a look at LiveDocx pricing [http://www.livedocx.com/pub/pricing].


This section of the manual offers a technical overview of how to upgrade from LiveDocx Free or LiveDocx Premium to
LiveDocx Fully Licensed.


All you have to do, is make a very small change to the code that runs with LiveDocx Free or LiveDocx Premium. Your
instantiation and initialization of LiveDocx Free or LiveDocx Premium probably looks as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge()

 $mailMerge->setUsername('myUsername')
           ->setPassword('myPassword')
           ->setService (MailMerge::SERVICE_FREE);
        // or
        // ->setService (MailMerge::SERVICE_PREMIUM);

 // rest of your application here

 unset($mailMerge);










To use LiveDocx Fully Licensed, you simply need to set the WSDL of the backend LiveDocx server in your own
network. You can do this as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		 use ZendService\LiveDocx\MailMerge;

 $mailMerge = new MailMerge()

 $mailMerge->setUsername('myFullyLicensedUsername')
           ->setPassword('myFullyLicensedPassword')
           ->setWsdl    ('http://api.example.com/2.1/mailmerge.asmx?wsdl');

 // rest of your application here

 unset($mailMerge);










And that is all there is to it. You are now using LiveDocx Fully Licensed.


For executable demo applications, which illustrate the above, please take a look at
/demos/ZendService/LiveDocx/MailMerge/instantiation.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                ZendService\LiveDocx
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.barcode.objects.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Barcode\Barcode Objects


Barcode objects allow you to generate barcodes independently of the rendering support. After generation, you can
retrieve the barcode as an array of drawing instructions that you can provide to a renderer.


Objects have a large number of options. Most of them are common to all objects. These options can be set in three
ways:



		As an array or a Traversable object) object passed to the constructor.


		As an array passed to the setOptions() method.


		Via individual setters for each configuration type.





Different ways to parameterize a barcode object


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\Barcode;

$options = array('text' => 'ZEND-FRAMEWORK', 'barHeight' => 40);

// Case 1: constructor
$barcode = new Object\Code39($options);

// Case 2: setOptions()
$barcode = new Object\Code39();
$barcode->setOptions($options);

// Case 3: individual setters
$barcode = new Object\Code39();
$barcode->setText('ZEND-FRAMEWORK')
        ->setBarHeight(40);











Common Options


In the following list, the values have no units; we will use the term “unit.” For example, the default value of the
“thin bar” is “1 unit”. The real units depend on the rendering support (see the renderers documentation for more information). Setters are each named by uppercasing the initial letter of the
option and prefixing the name with “set” (e.g. “barHeight” becomes “setBarHeight”). All options have a
corresponding getter prefixed with “get” (e.g. “getBarHeight”). Available options are:



Common Options







		Option
		Data Type
		Default Value
		Description





		barcodeNamespace
		String
		Zend\Barcode\Object
		Namespace of the barcode; for example, if you need to extend the embedding objects



		barHeight
		Integer
		50
		Height of the bars



		barThickWidth
		Integer
		3
		Width of the thick bar



		barThinWidth
		Integer
		1
		Width of the thin bar



		factor
		Integer
		1
		Factor by which to multiply bar widths and font sizes (barHeight, barThinWidth, barThickWidth and fontSize)



		foreColor
		Integer
		0x000000 (black)
		Color of the bar and the text. Could be provided as an integer or as a HTML value (e.g. “#333333”)



		backgroundColor
		Integer or String
		0xFFFFFF (white)
		Color of the background. Could be provided as an integer or as a HTML value (e.g. “#333333”)



		orientation
		Float
		0
		Orientation of the barcode



		font
		String or Integer
		NULL
		Font path to a TTF font or a number between 1 and 5 if using image generation with GD (internal fonts)



		fontSize
		Float
		10
		Size of the font (not applicable with numeric fonts)



		withBorder
		Boolean
		FALSE
		Draw a border around the barcode and the quiet zones



		withQuietZones
		Boolean
		TRUE
		Leave a quiet zone before and after the barcode



		drawText
		Boolean
		TRUE
		Set if the text is displayed below the barcode



		stretchText
		Boolean
		FALSE
		Specify if the text is stretched all along the barcode



		withChecksum
		Boolean
		FALSE
		Indicate whether or not the checksum is automatically added to the barcode



		withChecksumInText
		Boolean
		FALSE
		Indicate whether or not the checksum is displayed in the textual representation



		text
		String
		NULL
		The text to represent as a barcode








Particular case of static setBarcodeFont()


You can set a commont font for all your objects by using the static method
Zend\Barcode\Barcode::setBarcodeFont(). This value can be always be overridden for individual objects by using
the setFont() method.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		use Zend\Barcode;

// In your bootstrap:
Barcode::setBarcodeFont('my_font.ttf');

// Later in your code:
Barcode::render(
    'code39',
    'pdf',
    array('text' => 'ZEND-FRAMEWORK')
); // will use 'my_font.ttf'

// or:
Barcode::render(
    'code39',
    'image',
    array(
        'text' => 'ZEND-FRAMEWORK',
        'font' => 3
    )
); // will use the 3rd GD internal font















Common Additional Getters



Common Getters






		Getter
		Data Type
		Description





		getType()
		String
		Return the name of the barcode class without the namespace (e.g. Zend\Barcode\Object\Code39 returns simply “code39”)



		getRawText()
		String
		Return the original text provided to the object



		getTextToDisplay()
		String
		Return the text to display, including, if activated, the checksum value



		getQuietZone()
		Integer
		Return the size of the space needed before and after the barcode without any drawing



		getInstructions()
		Array
		Return drawing instructions as an array.



		getHeight($recalculate = false)
		Integer
		Return the height of the barcode calculated after possible rotation



		getWidth($recalculate = false)
		Integer
		Return the width of the barcode calculated after possible rotation



		getOffsetTop($recalculate = false)
		Integer
		Return the position of the top of the barcode calculated after possible rotation



		getOffsetLeft($recalculate = false)
		Integer
		Return the position of the left of the barcode calculated after possible rotation












Description of shipped barcodes


You will find below detailed information about all barcode types shipped by default with Zend Framework.



Zend\Barcode\Object\Error


[image: ../_images/zend.barcode.objects.details.error.png]
This barcode is a special case. It is internally used to automatically render an exception caught by the
Zend\Barcode component.





Zend\Barcode\Object\Code128


[image: ../_images/zend.barcode.objects.details.code128.png]

		Name: Code 128


		Allowed characters: the complete ASCII-character set


		Checksum: optional (modulo 103)


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Codabar


[image: ../_images/zend.barcode.objects.details.codabar.png]

		Name: Codabar (or Code 2 of 7)


		Allowed characters:‘0123456789-$:/.+’ with ‘ABCD’ as start and stop characters


		Checksum: none


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Code25


[image: ../_images/zend.barcode.objects.details.code25.png]

		Name: Code 25 (or Code 2 of 5 or Code 25 Industrial)


		Allowed characters:‘0123456789’


		Checksum: optional (modulo 10)


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Code25interleaved


[image: ../_images/zend.barcode.objects.details.int25.png]
This barcode extends Zend\Barcode\Object\Code25 (Code 2 of 5), and has the same particulars and options, and
adds the following:



		Name: Code 2 of 5 Interleaved


		Allowed characters:‘0123456789’


		Checksum: optional (modulo 10)


		Length: variable (always even number of characters)





Available options include:



Zend\Barcode\Object\Code25interleaved Options







		Option
		Data Type
		Default Value
		Description





		withBearerBars
		Boolean
		FALSE
		Draw a thick bar at the top and the bottom of the barcode.








Note


If the number of characters is not even, Zend\Barcode\Object\Code25interleaved will automatically prepend
the missing zero to the barcode text.







Zend\Barcode\Object\Ean2


[image: ../_images/zend.barcode.objects.details.ean2.png]
This barcode extends Zend\Barcode\Object\Ean5 (EAN 5), and has the same particulars and options, and adds the
following:



		Name: EAN-2


		Allowed characters:‘0123456789’


		Checksum: only use internally but not displayed


		Length: 2 characters





There are no particular options for this barcode.



Note


If the number of characters is lower than 2, Zend\Barcode\Object\Ean2 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean5


[image: ../_images/zend.barcode.objects.details.ean5.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:



		Name: EAN-5


		Allowed characters:‘0123456789’


		Checksum: only use internally but not displayed


		Length: 5 characters





There are no particular options for this barcode.



Note


If the number of characters is lower than 5, Zend\Barcode\Object\Ean5 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean8


[image: ../_images/zend.barcode.objects.details.ean8.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN 13), and has the same particulars and options, and adds
the following:



		Name: EAN-8


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 8 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 8, Zend\Barcode\Object\Ean8 will automatically prepend the missing
zero to the barcode text.







Zend\Barcode\Object\Ean13


[image: ../_images/zend.barcode.objects.details.ean13.png]

		Name: EAN-13


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 13 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 13, Zend\Barcode\Object\Ean13 will automatically prepend the
missing zero to the barcode text.


The option withQuietZones has no effect with this barcode.







Zend\Barcode\Object\Code39


[image: ../_images/zend.barcode.introduction.example-1.png]

		Name: Code 39


		Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ -.$/+%’


		Checksum: optional (modulo 43)


		Length: variable






Note


Zend\Barcode\Object\Code39 will automatically add the start and stop characters (‘*’) for you.




There are no particular options for this barcode.





Zend\Barcode\Object\Identcode


[image: ../_images/zend.barcode.objects.details.identcode.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: Identcode (Deutsche Post Identcode)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10 different from Code25)


		Length: 12 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 12, Zend\Barcode\Object\Identcode will automatically prepend
missing zeros to the barcode text.







Zend\Barcode\Object\Itf14


[image: ../_images/zend.barcode.objects.details.itf14.png]
This barcode extends Zend\Barcode\Object\Code25interleaved (Code 2 of 5 Interleaved), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: ITF-14


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 14 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 14, Zend\Barcode\Object\Itf14 will automatically prepend missing
zeros to the barcode text.







Zend\Barcode\Object\Leitcode


[image: ../_images/zend.barcode.objects.details.leitcode.png]
This barcode extends Zend\Barcode\Object\Identcode (Deutsche Post Identcode), and inherits some of its
capabilities; it also has a few particulars of its own.



		Name: Leitcode (Deutsche Post Leitcode)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10 different from Code25)


		Length: 14 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 14, Zend\Barcode\Object\Leitcode will automatically prepend
missing zeros to the barcode text.







Zend\Barcode\Object\Planet


[image: ../_images/zend.barcode.objects.details.planet.png]

		Name: Planet (PostaL Alpha Numeric Encoding Technique)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 12 or 14 characters (including checksum)





There are no particular options for this barcode.





Zend\Barcode\Object\Postnet


[image: ../_images/zend.barcode.objects.details.postnet.png]

		Name: Postnet (POSTal Numeric Encoding Technique)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 6, 7, 10 or 12 characters (including checksum)





There are no particular options for this barcode.





Zend\Barcode\Object\Royalmail


[image: ../_images/zend.barcode.objects.details.royalmail.png]

		Name: Royal Mail or RM4SCC (Royal Mail 4-State Customer Code)


		Allowed characters:‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’


		Checksum: mandatory


		Length: variable





There are no particular options for this barcode.





Zend\Barcode\Object\Upca


[image: ../_images/zend.barcode.objects.details.upca.png]
This barcode extends Zend\Barcode\Object\Ean13 (EAN-13), and inherits some of its capabilities; it also has a
few particulars of its own.



		Name: UPC-A (Universal Product Code)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 12 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 12, Zend\Barcode\Object\Upca will automatically prepend missing
zeros to the barcode text.


The option withQuietZones has no effect with this barcode.







Zend\Barcode\Object\Upce


[image: ../_images/zend.barcode.objects.details.upce.png]
This barcode extends Zend\Barcode\Object\Upca (UPC-A), and inherits some of its capabilities; it also has a
few particulars of its own. The first character of the text to encode is the system (0 or 1).



		Name: UPC-E (Universal Product Code)


		Allowed characters:‘0123456789’


		Checksum: mandatory (modulo 10)


		Length: 8 characters (including checksum)





There are no particular options for this barcode.



Note


If the number of characters is lower than 8, Zend\Barcode\Object\Upce will automatically prepend missing
zeros to the barcode text.





Note


If the first character of the text to encode is not 0 or 1, Zend\Barcode\Object\Upce will automatically
replace it by 0.


The option withQuietZones has no effect with this barcode.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Barcode\Barcode Objects
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/quickstart.create.form.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Create A Form


For our guestbook to be useful, we need a form for submitting new entries.


Our first order of business is to create the actual form class. To create the empty form class, execute:


		1
2
3


		% zf create form Guestbook
Creating a form at application/forms/Guestbook.php
Updating project profile '.zfproject.xml'










This will create the directory application/forms/ with the classfile Guestbook.php. Open that file and
update it so it reads as follows:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


		// application/forms/Guestbook.php

class Application_Form_Guestbook extends Zend_Form
{
    public function init()
    {
        // Set the method for the display form to POST
        $this->setMethod('post');

        // Add an email element
        $this->addElement('text', 'email', array(
            'label'      => 'Your email address:',
            'required'   => true,
            'filters'    => array('StringTrim'),
            'validators' => array(
                'EmailAddress',
            )
        ));

        // Add the comment element
        $this->addElement('textarea', 'comment', array(
            'label'      => 'Please Comment:',
            'required'   => true,
            'validators' => array(
                array('validator' => 'StringLength', 'options' => array(0, 20))
                )
        ));

        // Add a captcha
        $this->addElement('captcha', 'captcha', array(
            'label'      => 'Please enter the 5 letters displayed below:',
            'required'   => true,
            'captcha'    => array(
                'captcha' => 'Figlet',
                'wordLen' => 5,
                'timeout' => 300
            )
        ));

        // Add the submit button
        $this->addElement('submit', 'submit', array(
            'ignore'   => true,
            'label'    => 'Sign Guestbook',
        ));

        // And finally add some CSRF protection
        $this->addElement('hash', 'csrf', array(
            'ignore' => true,
        ));
    }
}










The above form defines five elements: an email address field, a comment field, a CAPTCHA for preventing spam
submissions, a submit button, and a CSRF protection token.


Next, we will add a signAction() to our GuestbookController which will process the form upon submission. To
create the action and related view script, execute the following:


		1
2
3
4
5
6
7


		% zf create action sign Guestbook
Creating an action named sign inside controller
    at application/controllers/GuestbookController.php
Updating project profile '.zfproject.xml'
Creating a view script for the sign action method
    at application/views/scripts/guestbook/sign.phtml
Updating project profile '.zfproject.xml'










As you can see from the output, this will create a signAction() method in our controller, as well as the
appropriate view script.


Let’s add some logic into our guestbook controller’s sign action. We need to first check if we’re getting a POST
or a GET request; in the latter case, we’ll simply display the form. However, if we get a POST request, we’ll
want to validate the posted data against our form, and, if valid, create a new entry and save it. The logic might
look like this:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		// application/controllers/GuestbookController.php

class GuestbookController extends Zend_Controller_Action
{
    // snipping indexAction()...

    public function signAction()
    {
        $request = $this->getRequest();
        $form    = new Application_Form_Guestbook();

        if ($this->getRequest()->isPost()) {
            if ($form->isValid($request->getPost())) {
                $comment = new Application_Model_Guestbook($form->getValues());
                $mapper  = new Application_Model_GuestbookMapper();
                $mapper->save($comment);
                return $this->_helper->redirector('index');
            }
        }

        $this->view->form = $form;
    }
}










Of course, we also need to edit the view script; edit application/views/scripts/guestbook/sign.phtml to read:


		1
2
3
4
5
6
7


		<!-- application/views/scripts/guestbook/sign.phtml -->

Please use the form below to sign our guestbook!

<?php
$this->form->setAction($this->url());
echo $this->form;











Note


Better Looking Forms


No one will be waxing poetic about the beauty of this form anytime soon. No matter - form appearance is fully
customizable! See the decorators section in the reference guide for details.


Additionally, you may be interested in our tutorial on form decorators.





Note


Checkpoint


Now browse to “http://localhost/guestbook/sign”. You should see the following in your browser:


[image: ../_images/learning.quickstart.create-form.png]






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Create A Form
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.element.time.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Time Element


Zend\Form\Element\Time is meant to be paired with the Zend/Form/View/Helper/FormTime for HTML5 inputs with type
time [http://www.whatwg.org/specs/web-apps/current-work/multipage/states-of-the-type-attribute.html#time-state-(type=time)]. This element adds filters and validators to it’s input filter specification in order to validate HTML5 time
input values on the server.



Basic Usage


This element automatically adds a "type" attribute of value "time".


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14


		use Zend\Form\Element;
use Zend\Form\Form;

$time = new Element\Month('time');
$time
    ->setLabel('Time')
    ->setAttributes(array(
        'min'  => '00:00:00',
        'max'  => '23:59:59',
        'step' => '60', // seconds; default step interval is 60 seconds
    ));

$form = new Form('my-form');
$form->add($time);











Note


Note: the min, max, and step attributes should be set prior to calling Zend\Form::prepare().
Otherwise, the default input specification for the element may not contain the correct validation rules.







Public Methods


The following methods are in addition to the inherited methods of Zend\Form\Element\DateTime.



		
getInputSpecification()


		Returns a input filter specification, which includes Zend\Filter\StringTrim and will add the appropriate
validators based on the values from the min, max, and step attributes. See
getInputSpecification in Zend\Form\Element\DateTime for more information.


One difference from Zend\Form\Element\DateTime is that the Zend\Validator\DateStep validator will expect
the step attribute to use an interval of seconds (default is 60 seconds).






		Return type:		array



















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Time Element
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction to Zend\Form


Zend\Form is intended primarily as a bridge between your domain models and the View Layer. It composes a thin
layer of objects representing form elements, an InputFilter, and a small number of
methods for binding data to and from the form and attached objects.


The component consists of:



		Elements, which simply consist of a name and attributes.


		Fieldsets, which extend from Elements, but allow composing other fieldsets and elements.


		Forms, which extend from Fieldsets (and thus Elements), provide data and object binding, and compose
InputFilters. Data binding is done via Zend\Stdlib\Hydrator.





To facilitate usage with the view layer, the Zend\Form component also aggregates a number of form-specific view
helpers. These accept elements, fieldsets, and/or forms, and use the attributes they compose to render markup.


A small number of specialized elements are provided for accomplishing application-centric tasks. These include the
Csrf element, used to prevent Cross Site Request Forgery attacks, and the Captcha element, used to display
and validate CAPTCHAs.


A Factory is provided to facilitate creation of elements, fieldsets, forms, and the related input filter. The
default Form implementation is backed by a factory to facilitate extension and ease the process of form
creation.


The code related to forms can often spread between a variety of concerns: a form definition, an input filter
definition, a domain model class, and one or more hydrator implementations. As such, finding the various bits of
code and how they relate can become tedious. To simplify the situation, you can also annotate your domain model
class, detailing the various input filter definitions, attributes, and hydrators that should all be used together.
Zend\Form\Annotation\AnnotationBuilder can then be used to build the various objects you need.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction to Zend\Form
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/autoloading.conclusion.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Conclusion


Zend Framework encourages the use of autoloading, and even initializes it by default in Zend_Application.
Hopefully this tutorial provides you with the information you need to use Zend_Loader_Autoloader to its best
advantage, as well as extend its capabilities by attaching custom autoloaders or resource autoloaders.


For more information on its usage, read the Zend_Loader_Autoloader and
Zend_Loader_Autoloader_Resource manual pages.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Conclusion
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Form


The Form view helper is used to render a <form> HTML element and its attributes.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


		use Zend\Form\Form;
use Zend\Form\Element;

// Within your view...

$form = new Form();
// ...add elements and input filter to form...

// Set attributes
$form->setAttribute('action', $this->url('contact/process'));
$form->setAttribute('method', 'post');

// Prepare the form elements
$form->prepare();

// Render the opening tag
echo $this->form()->openTag($form);
// <form action="/contact/process" method="post">

// ...render the form elements...

// Render the closing tag
echo $this->form()->closeTag();
// </form>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\AbstractHelper.



		
openTag(FormInterface $form = null)


		Renders the <form> open tag for the $form instance.






		Return type:		string














		
closeTag()


		Renders a </form> closing tag.






		Return type:		string

















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Form
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.converter.converter.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Converter\Converter


Zend\Ldap\Converter\Converter is a helper class providing only static methods to manipulate arrays suitable to
the data format required by the LDAP server. PHP data types are converted the following way:



		string


		No conversion will be done.


		integer and float


		The value will be converted to a string.


		boolean


		TRUE will be converted to ‘TRUE’ and FALSE to ‘FALSE’


		object and array


		The value will be converted to a string by using serialize().


		Date/Time


		The value will be converted to a string with the following date() format YmdHisO, UTC timezone (+0000)
will be replaced with a Z. For example 01-30-2011 01:17:32 PM GMT-6 will be 20113001131732-0600 and
30-01-2012 15:17:32 UTC will be 20120130151732Z


		resource


		If a stream resource is given, the data will be fetched by calling stream_get_contents().


		others


		All other data types (namely non-stream resources) will be omitted.





On reading values the following conversion will take place:



		‘TRUE’


		Converted to TRUE.


		‘FALSE’


		Converted to FALSE.


		others


		All other strings won’t be automatically converted and are passed as they are.






Zend\Ldap\Converter\Converter API





		Method
		Description





		string ascToHex32(string $string)
		Convert all Ascii characters with decimal value less than 32 to hexadecimal value.



		string hex32ToAsc(string $string)
		Convert all hexadecimal characters by his Ascii value.



		string|null toLdap(mixed $value, int $type)
		Converts a PHP data type into its LDAP representation. $type argument is used to set the conversion method by default Converter::STANDARD where the function will try to guess the conversion method to use, others possibilities are Converter::BOOLEAN and Converter::GENERALIZED_TIME See introduction for details.



		mixed fromLdap(string $value, int $type, boolean $dateTimeAsUtc)
		Converts an LDAP value into its PHP data type. See introduction and toLdap() and toLdapDateTime() for details.



		string|null toLdapDateTime(integer|string|DateTime $date, boolean $asUtc)
		Converts a timestamp, a DateTime Object, a string that is parseable by strtotime() or a DateTime into its LDAP date/time representation. If $asUtc is TRUE ( FALSE by default) the resulting LDAP date/time string will be inUTC, otherwise a local date/time string will be returned.



		DateTime fromLdapDateTime(string $date, boolean $asUtc)
		Converts LDAP date/time representation into a PHP DateTime object.



		string toLdapBoolean(boolean|integer|string $value)
		Converts a PHP data type into its LDAP boolean representation. By default always return ‘FALSE’ except if the value is true , ‘true’ or 1



		boolean fromLdapBoolean(string $value)
		Converts LDAP boolean representation into a PHP boolean data type.



		string toLdapSerialize(mixed $value)
		The value will be converted to a string by using serialize().



		mixed fromLdapUnserialize(string $value)
		The value will be converted from a string by using unserialize().











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Converter\Converter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.progress-bar.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend_ProgressBar



Introduction


Zend_ProgressBar is a component to create and update progressbars in different environments. It consists of a
single backend, which outputs the progress through one of the multiple adapters. On every update, it takes an
absolute value and optionally a status message, and then calls the adapter with some precalculated values like
percentage and estimated time left.





Basic Usage of Zend_Progressbar


Zend_ProgressBar is quite easy in its usage. You simply create a new instance of Zend_Progressbar, defining
a min- and a max-value, and choose an adapter to output the data. If you want to process a file, you would do
something like:


		1
2
3
4
5
6
7
8
9


		$progressBar = new Zend_ProgressBar($adapter, 0, $fileSize);

while (!feof($fp)) {
    // Do something

    $progressBar->update($currentByteCount);
}

$progressBar->finish();










In the first step, an instance of Zend_ProgressBar is created, with a specific adapter, a min-value of 0 and a
max-value of the total filesize. Then a file is processed and in every loop the progressbar is updated with the
current byte count. At the end of the loop, the progressbar status is set to finished.


You can also call the update() method of Zend_ProgressBar without arguments, which just recalculates ETA
and notifies the adapter. This is useful when there is no data update but you want the progressbar to be updated.





Persistent progress


If you want the progressbar to be persistent over multiple requests, you can give the name of a session namespace
as fourth argument to the constructor. In that case, the progressbar will not notify the adapter within the
constructor, but only when you call update() or finish(). Also the current value, the status text and the
start time for ETA calculation will be fetched in the next request run again.





Standard adapters


Zend_ProgressBar comes with the following three adapters:




		Zend_Progressbar_Adapter_Console


		Zend_Progressbar_Adapter_JsPush


		Zend_ProgressBar_Adapter_JsPull














Zend_ProgressBar_Adapter_Console


Zend_ProgressBar_Adapter_Console is a text-based adapter for terminals. It can automatically detect terminal
widths but supports custom widths as well. You can define which elements are displayed with the progressbar and as
well customize the order of them. You can also define the style of the progressbar itself.



Note


Automatic console width recognition


shell_exec is required for this feature to work on *nix based systems. On windows, there is always a fixed
terminal width of 80 character, so no recognition is required there.




You can set the adapter options either via the set* methods or give an array or a Zend_Config instance with
options as first parameter to the constructor. The available options are:



		outputStream: A different output-stream, if you don’t want to stream to STDOUT. Can be any other stream like
php://stderr or a path to a file.


		width: Either an integer or the AUTO constant of Zend_Console_ProgressBar.


		elements: Either NULL for default or an array with at least one of the following constants of
Zend_Console_ProgressBar as value:
		ELEMENT_PERCENT: The current value in percent.


		ELEMENT_BAR: The visual bar which display the percentage.


		ELEMENT_ETA: The automatic calculated ETA. This element is firstly displayed after five seconds, because in
this time, it is not able to calculate accurate results.


		ELEMENT_TEXT: An optional status message about the current process.








		textWidth: Width in characters of the ELEMENT_TEXT element. Default is 20.


		charset: Charset of the ELEMENT_TEXT element. Default is utf-8.


		barLeftChar: A string which is used left-hand of the indicator in the progressbar.


		barRightChar: A string which is used right-hand of the indicator in the progressbar.


		barIndicatorChar: A string which is used for the indicator in the progressbar. This one can be empty.








Zend_ProgressBar_Adapter_JsPush


Zend_ProgressBar_Adapter_JsPush is an adapter which let’s you update a progressbar in a browser via Javascript
Push. This means that no second connection is required to gather the status about a running process, but that the
process itself sends its status directly to the browser.


You can set the adapter options either via the set* methods or give an array or a Zend_Config instance with
options as first parameter to the constructor. The available options are:



		updateMethodName: The javascript method which should be called on every update. Default value is
Zend_ProgressBar_Update.


		finishMethodName: The javascript method which should be called after finish status was set. Default value is
NULL, which means nothing is done.





The usage of this adapter is quite simple. First you create a progressbar in your browser, either with JavaScript
or previously created with plain HTML. Then you define the update method and optionally the finish method in
JavaScript, both taking a json object as single argument. Then you call a webpage with the long-running process in
a hidden iframe or object tag. While the process is running, the adapter will call the update method on every
update with a json object, containing the following parameters:



		current: The current absolute value


		max: The max absolute value


		percent: The calculated percentage


		timeTaken: The time how long the process ran yet


		timeRemaining: The expected time for the process to finish


		text: The optional status message, if given





Basic example for the client-side stuff


This example illustrates a basic setup of HTML, CSS and JavaScript for the JsPush adapter


		1
2
3
4
5


		<div id="zend-progressbar-container">
    <div id="zend-progressbar-done"></div>
</div>

<iframe src="long-running-process.php" id="long-running-process"></iframe>










		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


		#long-running-process {
    position: absolute;
    left: -100px;
    top: -100px;

    width: 1px;
    height: 1px;
}

#zend-progressbar-container {
    width: 100px;
    height: 30px;

    border: 1px solid #000000;
    background-color: #ffffff;
}

#zend-progressbar-done {
    width: 0;
    height: 30px;

    background-color: #000000;
}










		1
2
3
4
5


		function Zend_ProgressBar_Update(data)
{
    document.getElementById('zend-progressbar-done').style.width =
         data.percent + '%';
}










This will create a simple container with a black border and a block which indicates the current process. You should
not hide the iframe or object by display: none;, as some browsers like Safari 2 will not load the actual
content then.


Instead of creating your custom progressbar, you may want to use one of the available JavaScript libraries like
Dojo, jQuery etc. For example, there are:



		Dojo: http://dojotoolkit.org/reference-guide/dijit/ProgressBar.html


		jQuery: http://t.wits.sg/2008/06/20/jquery-progress-bar-11/


		MooTools: http://davidwalsh.name/dw-content/progress-bar.php


		Prototype: http://livepipe.net/control/progressbar






Note


Interval of updates


You should take care of not sending too many updates, as every update has a min-size of 1kb. This is a
requirement for the Safari browser to actually render and execute the function call. Internet Explorer has a
similar limitation of 256 bytes.







Zend_ProgressBar_Adapter_JsPull


Zend_ProgressBar_Adapter_JsPull is the opposite of jsPush, as it requires to pull for new updates, instead of
pushing updates out to the browsers. Generally you should use the adapter with the persistence option of the
Zend_ProgressBar. On notify, the adapter sends a JSON string to the browser, which looks exactly like the
JSON string which is send by the jsPush adapter. The only difference is, that it contains an additional
parameter, finished, which is either FALSE when update() is called or TRUE, when finish() is
called.


You can set the adapter options either via the set*() methods or give an array or a Zend_Config instance
with options as first parameter to the constructor. The available options are:



		exitAfterSend: Exits the current request after the data were send to the browser. Default is TRUE.









          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend_ProgressBar
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.routing.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Routing


Routing is the act of matching a request to a given controller.


Typically, routing will examine the request URI, and attempt to match the URI path segment against provided
constraints. If the constraints match, a set of “matches” are returned, one of which should be the controller name
to execute. Routing can utilize other portions of the request URI or environment as well – for example, the host
or scheme, query parametes, headers, request method, and more.


Routing has been written from the ground up for Zend Framework 2.0. Execution is quite similar, but the internal
workings are more consistent, performant, and often simpler.


The base unit of routing is a Route:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		namespace Zend\Mvc\Router;

use zend\Stdlib\RequestInterface as Request;

interface Route
{
    public static function factory(array $options = array());
    public function match(Request $request);
    public function assemble(array $params = array(), array $options = array());
}










A Route accepts a Request, and determines if it matches. If so, it returns a RouteMatch object:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10


		namespace Zend\Mvc\Router;

class RouteMatch
{
    public function __construct(array $params);
    public function setParam($name, $value);
    public function merge(RouteMatch $match);
    public function getParam($name, $default = null);
    public function getRoute();
}










Typically, when a Route matches, it will define one or more parameters. These are passed into the
RouteMatch, and objects may query the RouteMatch for their values.


		1
2
3
4
5


		$id = $routeMatch->getParam('id', false);
if (!$id) {
    throw new Exception('Required identifier is missing!');
}
$entity = $resource->get($id);










Usually you will have multiple routes you wish to test against. In order to facilitate this, you will use a route
aggregate, usually implementing RouteStack:


		1
2
3
4
5
6
7
8


		namespace Zend\Mvc\Router;

interface RouteStack extends Route
{
    public function addRoute($name, $route, $priority = null);
    public function addRoutes(array $routes);
    public function removeRoute($name);
}










Typically, routes should be queried in a LIFO order, and hence the reason behind the name RouteStack. Zend
Framework provides two implementations of this interface, SimpleRouteStack and TreeRouteStack. In each, you
register routes either one at a time using addRoute(), or in bulk using addRoutes().


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


		// One at a time:
$route = Literal::factory(array(
    'route' => '/foo',
    'defaults' => array(
        'controller' => 'foo-index',
        'action'     => 'index',
    ),
));
$router->addRoute('foo', $route);

$router->addRoutes(array(
    // using already instantiated routes:
    'foo' => $route,

    // providing configuration to allow lazy-loading routes:
    'bar' => array(
        'type' => 'literal',
        'options' => array(
            'route' => '/bar',
            'defaults' => array(
                'controller' => 'bar-index',
                'action'     => 'index',
            ),
        ),
    ),
));











Router Types


Two routers are provided, the SimpleRouteStack and TreeRouteStack. Each works with the above interface, but
utilize slightly different options and execution paths.



SimpleRouteStack


This router simply takes individual routes that provide their full matching logic in one go, and loops through them
in LIFO order until a match is found. As such, routes that will match most often should be registered last, and
least common routes first. Additionally, you will need to ensure that routes that potentially overlap are
registered such that the most specific match will match first (i.e., register later). Alternatively, you can set
priorities by giving the priority as third parameter to the addRoute() method, specifying the priority in the
route specifications or setting the priority property within a route instance before adding it to the route stack.





TreeRouteStack


Zend\Mvc\Router\Http\TreeRouteStack provides the ability to register trees of routes, and will use a B-tree
algorithm to match routes. As such, you register a single route with many children.


A TreeRouteStack will consist of the following configuration:



		A base “route”, which describes the base match needed, the root of the tree.


		An optional “route_broker”, which is a configured Zend\Mvc\Router\RouteBroker that can lazy-load routes.


		The option “may_terminate”, which hints to the router that no other segments will follow it.


		An optional “child_routes” array, which contains additional routes that stem from the base “route” (i.e., build
from it). Each child route can itself be a TreeRouteStack if desired; in fact, the Part route works
exactly this way.





When a route matches against a TreeRouteStack, the matched parameters from each segment of the tree will be
returned.


A TreeRouteStack can be your sole route for your application, or describe particular path segments of the
application.


An example of a TreeRouteStack is provided in the documentation of the Part route.







Route Types


Zend Framework 2.0 ships with the following route types.



Zend\Mvc\Router\Http\Hostname


The Hostname route attempts to match the hostname registered in the request against specific criteria.
Typically, this will be in one of the following forms:



		“subdomain.domain.tld”


		”:subdomain.domain.tld”





In the above, the second route would return a “subdomain” key as part of the route match.


For any given hostname segment, you may also provide a constraint. As an example, if the “subdomain” segment needed
to match only if it started with “fw” and contained exactly 2 digits following, the following route would be
needed:


		1
2
3
4
5
6


		$route = Hostname::factory(array(
    'route' => ':subdomain.domain.tld',
    'constraints' => array(
        'subdomain' => 'fw\d{2}'
    ),
));










In the above example, only a “subdomain” key will be returned in the RouteMatch. If you wanted to also provide
other information based on matching, or a default value to return for the subdomain, you need to also provide
defaults.


		1
2
3
4
5
6
7
8
9


		$route = Hostname::factory(array(
    'route' => ':subdomain.domain.tld',
    'constraints' => array(
        'subdomain' => 'fw\d{2}'
    ),
    'defaults' => array(
        'type' => 'json',
    ),
));










When matched, the above will return two keys in the RouteMatch, “subdomain” and “type”.





Zend\Mvc\Router\Http\Literal


The Literal route is for doing exact matching of the URI path. Configuration therefore is solely the path you
want to match, and the “defaults”, or parameters you want returned on a match.


		1
2
3
4
5
6


		$route = Literal::factory(array(
    'route' => '/foo',
    'defaults' => array(
        'controller' => 'foo-index',
    ),
));










The above route would match a path “/foo”, and return the key “controller” in the RouteMatch, with the value
“foo-index”.





Zend\Mvc\Router\Http\Method


The Method route is used to match the http method or ‘verb’ specified in the request (See RFC 2616 Sec. 5.1.1).
It can optionally be configured to match against multiple methods by providing a comma-separated list of method
tokens.


		1
2
3
4
5
6


		$route = Method::factory(array(
    'verb' => 'post,put',
    'defaults' => array(
        'action' => 'form-submit'
    ),
));










The above route would match an http “POST” or “PUT” request and return a RouteMatch object containing a key
“action” with a value of “form-submit”.





Zend\Mvc\Router\Http\Part


A Part route allows crafting a tree of possible routes based on segments of the URI path. It actually extends
the TreeRouteStack.


Part routes are difficult to describe, so we’ll simply provide a sample one here.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


		$route = Part::factory(array(
    'route' => array(
        'type'    => 'literal',
        'options' => array(
            'route'    => '/',
            'defaults' => array(
                'controller' => 'ItsHomePage',
            ),
        )
    ),
    'may_terminate' => true,
    'route_broker'  => $routeBroker,
    'child_routes'  => array(
        'blog' => array(
            'type'    => 'literal',
            'options' => array(
                'route'    => 'blog',
                'defaults' => array(
                    'controller' => 'ItsBlog',
                ),
            ),
            'may_terminate' => true,
            'child_routes'  => array(
                'rss' => array(
                    'type'    => 'literal',
                    'options' => array(
                        'route'    => '/rss',
                        'defaults' => array(
                            'controller' => 'ItsRssBlog',
                        ),
                    ),
                    'child_routes'  => array(
                        'sub' => array(
                            'type'    => 'literal',
                            'options' => array(
                                'route'    => '/sub',
                                'defaults' => array(
                                    'action' => 'ItsSubRss',
                                ),
                            )
                        ),
                    ),
                ),
            ),
        ),
        'forum' => array(
            'type'    => 'literal',
            'options' => array(
                'route'    => 'forum',
                'defaults' => array(
                    'controller' => 'ItsForum',
                ),
            ),
        ),
    ),
));










The above would match the following:



		“/” would load the “ItsHomePage” controller


		“/blog” would load the “ItsBlog” controller


		“/blog/rss” would load the “ItsRssBlog” controller


		“/blog/rss/sub” would load the “ItsSubRss” controller


		“/forum” would load the “ItsForum” controller





You may use any route type as a child route of a Part route.





Zend\Mvc\Router\Http\Regex


A Regex route utilizes a regular expression to match against the URI path. Any valid regular expession is
allowed; our recommendation is to use named captures for any values you want to return in the RouteMatch.


Since regular expression routes are often complex, you must specify a “spec” or specification to use when
assembling URLs from regex routes. The spec is simply a string; replacements are identified using “%keyname%”
within the string, with the keys coming from either the captured values or named parameters passed to the
assemble() method.


Just like other routes, the Regex route can accept “defaults”, parameters to include in the RouteMatch when
succesfully matched.


		1
2
3
4
5
6
7
8


		$route = Regex::factory(array(
    'regex' => '/blog/(?<id>[a-zA-Z0-9_-]+)(\.(?<format>(json|html|xml|rss)))?',
    'defaults' => array(
        'controller' => 'blog-entry',
        'format'     => 'html',
    ),
    'spec' => '/blog/%id%.%format%',
));










The above would match “/blog/001-some-blog_slug-here.html”, and return three items in the RouteMatch, an “id”,
the “controller”, and the “format”. When assembling a URL from this route, the “id” and “format” values would be
used to fill the specification.





Zend\Mvc\Router\Http\Scheme


The Scheme route matches the URI scheme only, and must be an exact match. As such, this route, like the
Literal route, simply takes what you want to match and the “defaults”, parameters to return on a match.


		1
2
3
4
5
6


		$route = Scheme::factory(array(
    'scheme' => 'https',
    'defaults' => array(
        'https' => true,
    ),
));










The above route would match the “https” scheme, and return the key “https” in the RouteMatch with a boolean
true value.





Zend\Mvc\Router\Http\Segment


A Segment route allows matching any segment of a URI path. Segments are denoted using a colon, followed by
alphanumeric characters; if a segment is optional, it should be surrounded by brackets. As an example,
“/:foo[/:bar]” would match a “/” followed by text and assign it to the key “foo”; if any additional “/” characters
are found, any text following the last one will be assigned to the key “bar”.


The separation between literal and named segments can be anything. For example, the above could be done as
“/:foo{-}[-:bar] as well. The {-} after the :foo parameter indicates a set of one or more delimiters, after which
matching of the parameter itself ends.


Each segment may have constraints associated with it. Each constraint should simply be a regular expression
expressing the conditions under which that segment should match.


Also, as you can in other routes, you may provide defaults to use; these are particularly useful when using
optional segments.


As a complex example:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$route = Segment::factory(array(
    'route' => '/:controller[/:action]',
    'constraints' => array(
        'controller' => '[a-zA-Z][a-zA-Z0-9_-]+',
        'action'     => '[a-zA-Z][a-zA-Z0-9_-]+',
    ),
    'defaults' => array(
        'controller' => 'application-index',
        'action'     => 'index',
    ),
));













Zend\Mvc\Router\Http\Query


The Query route part allows you to specify and capture query string parameters for a given route.


The intention of the Query part is that you do not instantiate it in its own right but to use it as a child of
another route part.


An example of its usage would be


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		$route = Part::factory(array(
    'home' => array(
        'type'    => 'segment',
        'options' => array(
            'route'    => '/page[/:name]',
            'constraints' => array(
                'name' => '[a-zA-Z][a-zA-Z0-9_-]*',
            ),
            'defaults' => array(
                'name' => 'home',
            ),
        )
        'may_terminate' => true,
        'route_broker'  => $routeBroker,
        'child_routes'  => array(
            'query' => array(
                'type' => 'Query',
            ),
        ),
    ),
));










As you can see, it’s pretty straight forward to specify the query part. This then allows you to create query
strings using the url view helper.


		1
2
3
4
5
6
7
8


		$this->url(
    'page/query',
    array(
        'name'=>'my-test-page',
        'format' => 'rss',
        'limit' => 10,
    )
);










As you can see above, you must add “/query” to your route name in order to append a query string. If you do not
specify “/query” in the route name then no query string will be appended.


Our example “page” route has only one defined parameter of “name” (“/page[/:name]”), meaning that the remaining
parameters of “format” and “limit” will then be appended as a query string.


The output from our example should then be “/page/mys-test-page?format=rss&limit=10”










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Routing
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

user-guide/modules.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Modules


Zend Framework 2 uses a module system and you organise your main
application-speciﬁc code within each module. The Application module provided by
the skeleton is used to provide bootstrapping, error and routing conﬁguration to
the whole application. It is usually used to provide application level
controllers for, say, the home page of an application, but we are not going to
use the default one provided in this tutorial as we want our album list to be
the home page, which will live in our own module.


We are going to put all our code into the Album module which will contain our
controllers, models, forms and views, along with conﬁguration. We’ll also tweak
the Application module as required.


Let’s start with the directories required.



Setting up the Album module


Start by creating a directory called Album under with the following
subdirectories to hold the module’s ﬁles:


zf2-tutorial/
    /module
        /Album
            /config
            /src
                /Album
                    /Controller
                    /Form
                    /Model
            /view
                /album
                    /album






As you can see the Album module has separate directories for the different
types of ﬁles we will have. The PHP ﬁles that contain classes within the
Album namespace live in the src/Album directory so that we can have
multiple namespaces within our module should we require it. The view directory
also has a sub-folder called album for our module’s view scripts.


In order to load and conﬁgure a module, Zend Framework 2 has a
ModuleManager. This will look for Module.php in the root of the module
directory (module/Album) and expect to ﬁnd a class called Album\Module
within it. That is, the classes within a given module will have the namespace of
the module’s name, which is the directory name of the module.


Create Module.php in the Album module:


// module/Album/Module.php
namespace Album;

class Module
{
    public function getAutoloaderConfig()
    {
        return array(
            'Zend\Loader\ClassMapAutoloader' => array(
                __DIR__ . '/autoload_classmap.php',
            ),
            'Zend\Loader\StandardAutoloader' => array(
                'namespaces' => array(
                    __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
                ),
            ),
        );
    }

    public function getConfig()
    {
        return include __DIR__ . '/config/module.config.php';
    }
}






The ModuleManager will call getAutoloaderConfig() and getConfig()
automatically for us.



Autoloading ﬁles


Our getAutoloaderConfig() method returns an array that is compatible with
ZF2’s AutoloaderFactory. We conﬁgure it so that we add a class map ﬁle to
the ClassmapAutoloader and also add this module’s namespace to the
StandardAutoloader. The standard autoloader requires a namespace and the
path where to ﬁnd the ﬁles for that namespace. It is PSR-0 compliant and so
classes map directly to ﬁles as per the PSR-0 rules [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md].


As we are in development, we don’t need to load ﬁles via the classmap, so we provide an empty array for the
classmap autoloader. Create autoload_classmap.php with these contents:


// module/Album/autoload_classmap.php:
return array();






As this is an empty array, whenever the autoloader looks for a class within the
Album namespace, it will fall back to the to StandardAutoloader for us.



Note


Note that as we are using Composer, as an alternative, you could not implement
getAutoloaderConfig() and instead add "Application":
"module/Application/src" to the psr-0 key in composer.json. If you go
this way, then you need to run php composer.phar update to update the
composer autoloading ﬁles.









Configuration


Having registered the autoloader, let’s have a quick look at the getConfig()
method in Album\Module.  This method simply loads the
config/module.config.php ﬁle.


Create the following conﬁguration ﬁle for the Album module:


// module/Album/conﬁg/module.config.php:
return array(
    'controllers' => array(
        'invokables' => array(
            'Album\Controller\Album' => 'Album\Controller\AlbumController',
        ),
    ),
    'view_manager' => array(
        'template_path_stack' => array(
            'album' => __DIR__ . '/../view',
        ),
    ),
);






The conﬁg information is passed to the relevant components by the
ServiceManager.  We need two initial sections: controller and
view_manager. The controller section provides a list of all the controllers
provided by the module. We will need one controller, AlbumController, which
we’ll reference as Album\Controller\Album. The controller key must
be unique across all modules, so we preﬁx it with our module name.


Within the view_manager section, we add our view directory to the
TemplatePathStack conﬁguration. This will allow it to ﬁnd the view scripts for
the Album module that are stored in our views/ directory.





Informing the application about our new module


We now need to tell the ModuleManager that this new module exists. This is done
in the application’s config/application.config.php file which is provided by the
skeleton application. Update this file so that its modules section contains the
Album module as well, so the file now looks like this:


(Changes required are highlighted using comments.)


// conﬁg/application.conﬁg.php:
return array(
    'modules' => array(
        'Application',
        'Album',                  // <-- Add this line
    ),
    'module_listener_options' => array(
        'config_glob_paths'    => array(
            'config/autoload/{,*.}{global,local}.php',
        ),
        'module_paths' => array(
            './module',
            './vendor',
        ),
    ),
);






As you can see, we have added our Album module into the list of modules
after the Application module.


We have now set up the module ready for putting our custom code into it.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Modules
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.filter.writing-filters.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Writing Filters


Zend_Filter supplies a set of commonly needed filters, but developers will often need to write custom filters
for their particular use cases. The task of writing a custom filter is facilitated by implementing
Zend_Filter_Interface.


Zend_Filter_Interface defines a single method, filter(), that may be implemented by user classes. An object
that implements this interface may be added to a filter chain with Zend_Filter::addFilter().


The following example demonstrates how to write a custom filter:


		1
2
3
4
5
6
7
8
9


		class MyFilter implements Zend_Filter_Interface
{
    public function filter($value)
    {
        // perform some transformation upon $value to arrive on $valueFiltered

        return $valueFiltered;
    }
}










To add an instance of the filter defined above to a filter chain:


		1
2


		$filterChain = new Zend_Filter();
$filterChain->addFilter(new MyFilter());














          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Writing Filters
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.ldap.ldif.encoder.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Zend\Ldap\Ldif\Encoder



Zend\Ldap\Ldif\Encoder API





		Method
		Description





		array decode(string $string)
		Decodes the string $string into an array of LDIF items.



		string encode(scalar|array|Zend\Ldap\Node $value, array $options)
		Encode $value into a LDIF representation. $options is an array that may contain the following keys: ‘sort’ Sort the given attributes with dn following objectClass and following all other attributes sorted alphabetically. TRUE by default. ‘version’ The LDIF format version. 1 by default. ‘wrap’ The line-length. 78 by default to conform to the LDIF specification.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Zend\Ldap\Ldif\Encoder
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction to the MVC Layer


Zend\Mvc is a brand new MVC implementation designed from the ground up for Zend Framework 2.0,
with a focus on performance and flexibility.


The MVC layer is built on top of the following components:



		Zend\ServiceManager. Zend Framework provides a set of default service definitions set up at
Zend\Mvc\Service. The ServiceManager creates and configures your application instance and
workflow.


		Zend\EventManager. The MVC is event driven, and this component is used everywhere
from its initial bootstrapping of the application, to returning response and request calls,
to setting and retrieving routes and matched routes, as well as view rendering.


		Zend\Http, specifically the request and response objects, used within:


		Zend\Stdlib\DispatchableInterface. All “controllers” are simply dispatchable objects.





Within the MVC layer, several sub-components are exposed:



		Zend\Mvc\Router contains classes pertaining to routing a request. In other words, it matches
the request to its respective controller (or dispatchable).


		Zend\Http\PhpEnvironment provides a set of decorators for the HTTP Request and
Response objects that ensure the request is injected with the current environment (including
query parameters, POST parameters, HTTP headers, etc.)


		Zend\Mvc\Controller, a set of abstract “controller” classes with basic responsibilities such
as event wiring, action dispatching, etc.


		Zend\Mvc\Service provides a set of ServiceManager factories and definitions for the
default application workflow.


		Zend\Mvc\View provides default wiring for renderer selection, view script resolution, helper
registration, and more; additionally, it provides a number of listeners that tie into the MVC
workflow to provide features such as automated template name resolution, automated view model
creation and injection, and more.





The gateway to the MVC is the `Zend\Mvc\Application`_ object (referred to as Application
henceforth).  Its primary responsibilities are to bootstrap resources, route the request,
and to retrieve and dispatch the controller matched during routing. Once accomplished, it
will render the view, and finish the request, returning and sending the response.



Basic Application Structure


The basic application structure follows:


application_root/
    config/
        application.php
        autoload/
            global.php
            local.php
            // etc.
    data/
    module/
    vendor/
    public/
        .htaccess
        index.php




The public/index.php marshalls all user requests to your website, retrieving an array of
configuration located in config/application.php. On return, it run()s the Application,
processing the request and returning a response to the user.


The config directory as described above contains configuration used by the
Zend\Module\Manager to load modules and merge configuration (e.g., database configuration and
credentials); we will detail this more later.


The vendor sub-directory should contain any third-party modules or libraries on which your
application depends.  This might include Zend Framework, custom libraries from your organization, or
other third-party libraries from other projects. Libraries and modules placed in the vendor
sub-directory should not be modified from their original, distributed state.


Finally, the module directory will contain one or more modules delivering your application’s
functionality.


Let’s now turn to modules, as they are the basic units of a web application.





Basic Module Structure


A module may contain anything: PHP code, including MVC functionality; library code; view scripts;
and/or or public assets such as images, CSS, and JavaScript. The only requirement – and even this
is optional – is that a module acts as a PHP namespace and that it contains a Module.php class
under that namespace. This class is eventually consumed by Zend\Module\Manager to perform a
number of tasks.


The recommended module structure follows:


module_root<named-after-module-namespace>/
    Module.php
    autoload_classmap.php
    autoload_function.php
    autoload_register.php
    config/
        module.config.php
    public/
        images/
        css/
        js/
    src/
        <module_namespace>/
            <code files>
    test/
        phpunit.xml
        bootstrap.php
        <module_namespace>/
            <test code files>
    view/
        <dir-named-after-module-namespace>/
            <dir-named-after-a-controller>/
                <.phtml files>




Since a module acts as a namespace, the module root directory should be that namespace. This namespace
could also include a vendor prefix of sorts. As an example a module centered around “User” functionality delivered
by Zend might be named “ZendUser”, and this is also what the module root directory will be named.


The Module.php file directly under the module root directory will be in the module namespace shown below.


		1
2
3
4
5


		namespace ZendUser;

class Module
{
}










When an init() method is defined, this method will be triggered by a Zend\Module\Manager listener
when it loads the module class, and passed an instance of the manager by default.  This allows you to perform tasks such as
setting up module-specific event listeners.  But be cautious, the init() method is called for every module on every page
request and should only be used for performing lightweight tasks such as registering event listeners.
Similarly, an onBootstrap() method (which accepts an MvcEvent instance) may be defined; it is also
triggered for every page request, and should be used for lightweight tasks as well.


The three autoload_*.php files are not required, but recommended. They provide the following:



		autoload_classmap.php should return an array classmap of class name/filename pairs (with the filenames
resolved via the __DIR__ magic constant).


		autoload_function.php should return a PHP callback that can be passed to spl_autoload_register().
Typically, this callback should utilize the map returned by autoload_filemap.php.


		autoload_register.php should register a PHP callback (typically that returned by autoload_function.php
with spl_autoload_register().





The point of these three files is to provide reasonable default mechanisms for autoloading the classes contained in
the module, thus providing a trivial way to consume the module without requiring Zend\Module (e.g., for use
outside a ZF2 application).


The config directory should contain any module-specific configuration. These files may be in any format
Zend\Config supports. We recommend naming the main configuration “module.format”, and for PHP-based
configuration, “module.config.php”. Typically, you will create configuration for the router as well as for the
dependency injector.


The src directory should be a PSR-0 compliant directory structure with your module’s source code. Typically,
you should at least have one sub-directory named after your module namespace; however, you can ship code from
multiple namespaces if desired.


The test directory should contain your unit tests. Typically, these will be written using PHPUnit, and
contain artifacts related to its configuration (e.g., phpunit.xml, bootstrap.php).


The public directory can be used for assets that you may want to expose in your application’s document root.
These might include images, CSS files, JavaScript files, etc. How these are exposed is left to the developer.


The view directory contains view scripts related to your controllers.





Bootstrapping an Application


The Application has six basic dependencies.



		configuration, usually an array or object implementing ArrayAccess.


		ServiceManager instance.


		EventManager instance, which, by default, is pulled from the ServiceManager, by the service name
“EventManager”.


		ModuleManager instance, which, by default, is pulled from the ServiceManager, by the service name
“ModuleManager”.


		Request instance, which, by default, is pulled from the ServiceManager, by the service name “Request”.


		Response instance, which, by default, is pulled from the ServiceManager, by the service name “Response”.





These may be satisfied at instantiation:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15


		use Zend\EventManager\EventManager;
use Zend\Http\PhpEnvironment;
use Zend\ModuleManager\ModuleManager;
use Zend\Mvc\Application;
use Zend\ServiceManager\ServiceManager;

$config = include 'config/application.php';

$serviceManager = new ServiceManager();
$serviceManager->setService('EventManager', new EventManager());
$serviceManager->setService('ModuleManager', new ModuleManager());
$serviceManager->setService('Request', new PhpEnvironment\Request());
$serviceManager->setService('Response', new PhpEnvironment\Response());

$application = new Application($config, $serviceManager);










Once you’ve done this, there are two additional actions you can take. The first is to “bootstrap” the application.
In the default implementation, this does the following:



		Attaches the default route listener (Zend\Mvc\RouteListener).


		Attaches the default dispatch listener (Zend\Mvc\DispatchListener).


		Attaches the ViewManager listener (Zend\Mvc\View\ViewManager).


		Creates the MvcEvent, and injects it with the application, request, and response; it also retrieves the
router (Zend\Mvc\Router\Http\TreeRouteStack) at this time and attaches it to the event.


		Triggers the “bootstrap” event.





If you do not want these actions, or want to provide alternatives, you can do so by extending the Application
class and/or simply coding what actions you want to occur.


The second action you can take with the configured Application is to run() it. Calling this method simply
does the following: it triggers the “route” event, followed by the “dispatch” event, and, depending on execution,
the “render” event; when done, it triggers the “finish” event, and then returns the response instance. If an error
occurs during either the “route” or “dispatch” event, a “dispatch.error” event is triggered as well.


This is a lot to remember in order to bootstrap the application; in fact, we haven’t covered all the services
available by default yet. You can greatly simplify things by using the default ServiceManager configuration
shipped with the MVC.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22


		use Zend\Loader\AutoloaderFactory;
use Zend\Mvc\Service\ServiceManagerConfig;
use Zend\ServiceManager\ServiceManager;

// setup autoloader
AutoloaderFactory::factory();

// get application stack configuration
$configuration = include 'config/application.config.php';

// setup service manager
$serviceManager = new ServiceManager(new ServiceManagerConfig());
$serviceManager->setService('ApplicationConfig', $configuration);

// load modules -- which will provide services, configuration, and more
$serviceManager->get('ModuleManager')->loadModules();

// bootstrap and run application
$application = $serviceManager->get('Application');
$application->bootstrap();
$response = $application->run();
$response->send();










You’ll note that you have a great amount of control over the workflow. Using the ServiceManager, you have
fine-grained control over what services are available, how they are instantiated, and what dependencies are
injected into them. Using the EventManager‘s priority system, you can intercept any of the application events
(“bootstrap”, “route”, “dispatch”, “dispatch.error”, “render”, and “finish”) anywhere during execution, allowing
you to craft your own application workflows as needed.





Bootstrapping a Modular Application


While the previous approach largely works, where does the configuration come from? When we create a modular
application, the assumption will be that it’s from the modules themselves. How do we get that information and
aggregate it, then?


The answer is via Zend\ModuleManager\ModuleManager. This component allows you to specify where modules exist,
and it will then locate each module and initialize it. Module classes can tie into various listeners on the
ModuleManager in order to provide configuration, services, listeners, and more to the application. Sound
complicated? It’s not.



Configuring the Module Manager


The first step is configuring the module manager.  Simply inform the module manager which modules to load, and
potentially provide configuration for the module listeners.


Remember the application.php from earlier? We’re going to provide some configuration.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13


		<?php
// config/application.php
return array(
    'modules' => array(
        /* ... */
    ),
    'module_listener_options' => array(
        'module_paths' => array(
            './module',
            './vendor',
        ),
    ),
);










As we add modules to the system, we’ll add items to the modules array.


Each Module class that has configuration it wants the Application to know about should define a
getConfig() method. That method should return an array or Traversable object such as
Zend\Config\Config. As an example:


		1
2
3
4
5
6
7
8
9


		namespace ZendUser;

class Module
{
    public function getConfig()
    {
        return include __DIR__ . '/config/module.config.php'
    }
}










There are a number of other methods you can define for tasks ranging from providing autoloader configuration, to
providing services to the ServiceManager, to listening to the bootstrap event. The ModuleManager documentation
goes into more detail on these.







Conclusion


The ZF2 MVC layer is incredibly flexible, offering an opt-in, easy to create modular infrastructure, as well as the
ability to craft your own application workflows via the ServiceManager and EventManager. The module manager
is a lightweight and simple approach to enforcing a modular architecture that encourages clean separation of
concerns and code re-use.


.._`ZendMvcApplication`: https://github.com/zendframework/zf2/blob/master/library/Zend/Mvc/Application.php
.. PSR-0 compliant directory structure: https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
.. PHPUnit: http://phpunit.de








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction to the MVC Layer
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.mvc.controllers.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Available Controllers


Controllers in the MVC layer simply need to be objects implementing Zend\Stdlib\DispatchableInterface. That
interface describes a single method:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		use Zend\Stdlib\DispatchableInterface;
use Zend\Stdlib\RequestInterface as Request;
use Zend\Stdlib\ResponseInterface as Response;

class Foo implements DispatchableInterface
{
    public function dispatch(Request $request, Response $response = null)
    {
        // ... do something, and preferably return a Response ...
    }
}










While this pattern is simple enough, chances are you don’t want to implement custom dispatch logic for every
controller (particularly as it’s not unusual or uncommon for a single controller to handle several related types of
requests).


The MVC also defines several interfaces that, when implemented, can provide controllers with additional
capabilities.



Common Interfaces Used With Controllers



InjectApplicationEvent


The Zend\Mvc\InjectApplicationEventInterface hints to the Application instance that it should inject its
MvcEvent into the controller itself. Why would this be useful?


Recall that the MvcEvent composes a number of objects: the Request and Response, naturally, but also
the router, the route matches (a RouteMatch instance), and potentially the “result” of dispatching.


A controller that has the MvcEvent injected, then, can retrieve or inject these. As an example:


		1
2
3
4
5
6
7
8


		$matches = $this->getEvent()->getRouteMatch();
$id      = $matches->getParam('id', false);
if (!$id) {
    $this->getResponse();
    $response->setStatusCode(500);
    $this->getEvent()->setResult('Invalid identifier; cannot complete request');
    return;
}










The InjectApplicationEventInterface defines simply two methods:


		1
2


		public function setEvent(Zend\EventManager\EventInterface $event);
public function getEvent();













ServiceManagerAware


In most cases, you should define your controllers such that dependencies are injected by the application’s
ServiceManager, via either constructor arguments or setter methods.


However, occasionally you may have objects you wish to use in your controller that are only valid for certain code
paths. Examples include forms, paginators, navigation, etc. In these cases, you may decide that it doesn’t make
sense to inject those objects every time the controller is used.


The ServiceManagerAwareInterface interface hints to the ServiceManager that it should inject itself into
the controller. It defines simply one method:


		1
2
3
4


		use Zend\ServiceManager\ServiceManager;
use Zend\ServiceManager\ServiceManagerAwareInterface;

public function setServiceManager(ServiceManager $serviceManager);













EventManagerAware


Typically, it’s nice to be able to tie into a controller’s workflow without needing to extend it or hardcode
behavior into it. The solution for this at the framework level is to use the EventManager.


You can hint to the ServiceManager that you want an EventManager injected by implementing the interfaces
EventManagerAwareInterface and EventsCapableInterface; the former tells the ServiceManager to inject an
EventManager, the latter to other objects that this class has an accessible EventManager instance.


Combined, you define two methods. The first, a setter, should also set any EventManager identifiers you want to
listen on, and the second, a getter, should simply return the composed EventManager instance


		1
2
3
4
5
6


		use Zend\EventManager\EventManagerAwareInterface;
use Zend\EventManager\EventManagerInterface;
use Zend\EventManager\EventsCapableInterface;

public function setEventManager(EventManagerInterface $events);
public function getEventManager();













Pluggable


Code re-use is a common goal for developers. Another common goal is convenience. However, this is often difficult
to achieve cleanly in abstract, general systems.


Within your controllers, you’ll often find yourself repeating tasks from one controller to another. Some common
examples:



		Generating URLs


		Redirecting


		Setting and retrieving flash messages (self-expiring session messages)


		Invoking and dispatching additional controllers





To facilitate these actions while also making them available to alternate controller implementations, we’ve created
a PluginBroker implementation for the controller layer, Zend\Mvc\Controller\PluginBroker, building on the
Zend\Loader\PluginBroker functionality. To utilize it, you simply need to implement the
Zend\Loader\Pluggable interface, and set up your code to use the controller-specific implementation by default:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21


		use Zend\Loader\Broker;
use Zend\Mvc\Controller\PluginBroker;

public function setBroker(Broker $broker)
{
    $this->broker = $broker;
    return $this;
}

public function getBroker()
{
    if (!$this->broker instanceof Broker) {
        $this->setBroker(new PluginBroker);
    }
    return $this->broker;
}

public function plugin($plugin, array $options = null)
{
    return $this->getBroker()->load($plugin, $options);
}















The AbstractActionController


Implementing each of the above interfaces is a lesson in redundancy; you won’t often want to do it. As such, we’ve
developed two abstract, base controllers you can extend to get started.


The first is Zend\Mvc\Controller\AbstractActionController. This controller implements each of the above
interfaces, and uses the following assumptions:



		An “action” parameter is expected in the RouteMatch object composed in the attached MvcEvent. If none is
found, a notFoundAction() is invoked.


		The “action” parameter is converted to a camelCased format and appended with the word “Action” to create a method
name. As examples: “foo” maps to “fooAction”, “foo-bar” or “foo.bar” or “foo_bar” to “fooBarAction”. The
controller then checks to see if that method exists. If not, the notFoundAction() method is invoked;
otherwise, the discovered method.


		The results of executing the given action method are injected into the MvcEvent‘s “result” property (via
setResult(), and accesible via getResult()).





Essentially, a route mapping to an AbstractActionController needs to return both “controller” and “action” keys
in its matches.


Creation of action controllers is then reasonably trivial:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class BarController extends AbstractActionController
{
    public function bazAction()
    {
        return array('title' => __METHOD__);
    }

    public function batAction()
    {
        return array('title' => __METHOD__);
    }
}











Interfaces and Collaborators


AbstractActionController implements each of the following interfaces:



		Zend\Stdlib\DispatchableInterface


		Zend\Loader\Pluggable


		Zend\Mvc\InjectApplicationEventInterface


		Zend\ServiceManager\ServiceManagerAwareInterface


		Zend\EventManager\EventManagerAwareInterface


		Zend\EventManager\EventsCapableInterface





The composed EventManager will be configured to listen on the following contexts:



		Zend\Stdlib\DispatchableInterface


		Zend\Mvc\Controller\AbstractActionController





Additionally, if you extend the class, it will listen on the extending class’s name.







The AbstractRestfulController


The second abstract controller ZF2 provides is Zend\Mvc\Controller\AbstractRestfulController. This controller
provides a naive RESTful implementation that simply maps HTTP request methods to controller methods, using the
following matrix:



		GET maps to either get() or getList(), depending on whether or not an “id” parameter is found in the
route matches. If one is, it is passed as an argument to get(); if not, getList() is invoked. In the
former case, you should provide a representation of the given entity with that identification; in the latter, you
should provide a list of entities.


		POST maps to create(). That method expects a $data argument, usually the $_POST superglobal
array. The data should be used to create a new entitiy, and the response should typically be an HTTP 201 response
with the Location header indicating the URI of the newly created entity and the response body providing the
representation.


		PUT maps to update(), and requires that an “id” parameter exists in the route matches; that value is
passed as an argument to the method. It should attempt to update the given entity, and, if successful, return
either a 200 or 202 response status, as well as the representation of the entity.


		DELETE maps to delete(), and requires that an “id” parameter exists in the route matches; that value is
passed as an argument to the method. It should attempt to delete the given entity, and, if successful, return
either a 200 or 204 response status.





Additionally, you can map “action” methods to the AbstractRestfulController, just as you would in the
AbstractActionController; these methods will be suffixed with “Action”, differentiating them from the RESTful
methods listed above. This allows you to perform such actions as providing forms used to submit to the various
RESTful methods, or to add RPC methods to your RESTful API.



Interfaces and Collaborators


AbstractRestfulController implements each of the following interfaces:



		Zend\Stdlib\DispatchableInterface


		Zend\Loader\Pluggable


		Zend\Mvc\InjectApplicationEventInterface


		Zend\ServiceManager\ServiceManagerAwareInterface


		Zend\EventManager\EventManagerAwareInterface


		Zend\EventManager\EventsCapableInterface





The composed EventManager will be configured to listen on the following contexts:



		Zend\Stdlib\DispatchableInterface


		Zend\Mvc\Controller\AbstractActionController





Additionally, if you extend the class, it will listen on the extending class’s name.










          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Available Controllers
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.barcode.intro.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Introduction


Zend\Barcode\Barcode provides a generic way to generate barcodes. The Zend\Barcode component is divided
into two subcomponents: barcode objects and renderers. Objects allow you to create barcodes independently of the
renderer. Renderer allow you to draw barcodes based on the support required.






          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Introduction
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.form.view.helper.form-button.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
FormButton


The FormButton view helper is used to render a <button> HTML element and its attributes.


Basic usage:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


		use Zend\Form\Element;

$element = new Element\Button('my-button');
$element->setLabel("Reset");

// Within your view...

/**
 * Example #1: Render entire button in one shot...
 */
echo $this->formButton($element);
// <button name="my-button" type="button">Reset</button>

/**
 * Example #2: Render button in 3 steps
 */
// Render the opening tag
echo $this->formButton()->openTag($element);
// <button name="my-button" type="button">

echo '<span class="inner">' . $element->getLabel() . '</span>';

// Render the closing tag
echo $this->formButton()->closeTag();
// </button>

/**
 * Example #3: Override the element label
 */
echo $this->formButton()->render($element, 'My Content');
// <button name="my-button" type="button">My Content</button>










The following public methods are in addition to those inherited from
Zend\Form\View\Helper\FormInput.



		
openTag($element = null)


		Renders the <button> open tag for the $element instance.






		Return type:		string














		
closeTag()


		Renders a </button> closing tag.






		Return type:		string














		
render(ElementInterface $element[, $buttonContent = null])


		Renders a button’s opening tag, inner content, and closing tag.






		Parameters:		
		$element – The button element.


		$buttonContent – (optional) The inner content to render. If null, will default to the $element‘s label.









		Return type:		string




















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                FormButton
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.ldap.api.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
API overview



Configuration / options


The Zend\Ldap\Ldap component accepts an array of options either supplied to the constructor or through the
setOptions() method. The permitted options are as follows:



Zend\Ldap\Ldap Options





		Name
		Description





		host
		The default hostname of LDAP server if not supplied to connect() (also may be used when trying to canonicalize usernames in bind()).



		port
		Default port of LDAP server if not supplied to connect().



		useStartTls
		Whether or not the LDAP client should use TLS (aka SSLv2) encrypted transport. A value of TRUE is strongly favored in production environments to prevent passwords from be transmitted in clear text. The default value is FALSE, as servers frequently require that a certificate be installed separately after installation. The useSsl and useStartTls options are mutually exclusive. The useStartTls option should be favored over useSsl but not all servers support this newer mechanism.



		useSsl
		Whether or not the LDAP client should use SSL encrypted transport. The useSsl and useStartTls options are mutually exclusive.



		username
		The default credentials username. Some servers require that this be in DN form. This must be given in DN form if the LDAP server requires a DN to bind and binding should be possible with simple usernames.



		password
		The default credentials password (used only with username above).



		bindRequiresDn
		If TRUE, this instructs Zend\Ldap\Ldap to retrieve the DN for the account used to bind if the username is not already in DN form. The default value is FALSE.



		baseDn
		The default base DN used for searching (e.g., for accounts). This option is required for most account related operations and should indicate the DN under which accounts are located.



		accountCanonicalForm
		A small integer indicating the form to which account names should be canonicalized. See the Account Name Canonicalization section below.



		accountDomainName
		The FQDN domain for which the target LDAP server is an authority (e.g., example.com).



		accountDomainNameShort
		The ‘short’ domain for which the target LDAP server is an authority. This is usually used to specify the NetBIOS domain name for Windows networks but may also be used by non-AD servers.



		accountFilterFormat
		The LDAP search filter used to search for accounts. This string is a sprintf() style expression that must contain one ‘%s’ to accommodate the username. The default value is ‘(&(objectClass=user)(sAMAccountName=%s))’ unless bindRequiresDn is set to TRUE, in which case the default is ‘(&(objectClass=posixAccount)(uid=%s))’. Users of custom schemas may need to change this option.



		allowEmptyPassword
		Some LDAP servers can be configured to accept an empty string password as an anonymous bind. This behavior is almost always undesirable. For this reason, empty passwords are explicitly disallowed. Set this value to TRUE to allow an empty string password to be submitted during the bind.



		optReferrals
		If set to TRUE, this option indicates to the LDAP client that referrals should be followed. The default value is FALSE.



		tryUsernameSplit
		If set to FALSE, this option indicates that the given username should not be split at the first @ or \ character to separate the username from the domain during the binding-procedure. This allows the user to use usernames that contain an @ or \ character that do not inherit some domain-information, e.g. using email-addresses for binding. The default value is TRUE.



		networkTimeout
		Number of seconds to wait for LDAP connection before fail. If not set the default value is the system value.










API Reference



Note


Method names in italics are static methods.









Zend\Ldap\Ldap


Zend\Ldap\Ldap is the base interface into a LDAP server. It provides connection and binding methods as well
as methods to operate on the LDAP tree.



Zend\Ldap\Ldap API





		Method
		Description





		__construct($options)
		Constructor. The $options parameter is optional and can be set to an array or a Traversable object. If no options are provided at instantiation, the connection parameters must be passed to the instance using Zend\Ldap\Ldap::setOptions(). The allowed options are specified in Zend\Ldap\Ldap Options



		resource getResource()
		Returns the raw LDAP extension (ext/ldap) resource.



		integer getLastErrorCode()
		Returns the LDAP error number of the last LDAP command.



		string getLastError(integer &$errorCode, array &$errorMessages)
		Returns the LDAP error message of the last LDAP command. The optional $errorCode parameter is set to the LDAP error number when given. The optional $errorMessages array will be filled with the raw error messages when given. The various LDAP error retrieval functions can return different things, so they are all collected if $errorMessages is given.



		Zend\Ldap\Ldap setOptions($options)
		Sets the LDAP connection and binding parameters. $options can be an array or an Traversable object. The allowed options are specified in Zend\Ldap\Ldap Options



		array getOptions()
		Returns the current connection and binding parameters.



		string getBaseDn()
		Returns the base DN this LDAP connection is bound to.



		string getCanonicalAccountName(string $acctname, integer $form)
		Returns the canonical account name of the given account name $acctname. $form specifies the format into which the account name is canonicalized. See Account Name Canonicalization for more details.



		Zend\Ldap\Ldap disconnect()
		Disconnects the Zend\Ldap\Ldap instance from the LDAP server.



		Zend\Ldap\Ldap connect(string $host, integer $port, boolean $useSsl, boolean $useStartTls, integer $networkTimeout)
		Connects the Zend\Ldap\Ldap instance to the given LDAP server. All parameters are optional and will be taken from the LDAP connection and binding parameters passed to the instance via the constructor or via Zend\Ldap\Ldap::setOptions() when set to NULL.



		Zend\Ldap\Ldap bind(string $username, string $password)
		Authenticates $username with $password at the LDAP server. If both parameters are omitted the binding will be carried out with the credentials given in the connection and binding parameters. If no credentials are given in the connection and binding parameters an anonymous bind will be performed. Note that this requires anonymous binds to be allowed on the LDAP server. An empty string ‘’ can be passed as $password together with a username if, and only if, allowEmptyPassword is set to TRUE in the connection and binding parameters.



		Zend\Ldap\Collection search(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $collectionClass, integer $sizelimit, integer $timelimit)
		Searches the LDAP tree with the given $filter and the given search parameters. string|Zend\Ldap\Filter\AbstractFilter $filter The filter string to be used in the search, e.g. (objectClass=posixAccount). string|Zend\Ldap\Dn $basedn The search base for the search. If omitted or NULL, the baseDn from the connection and binding parameters is used. integer $scope The search scope. Zend\Ldap\Ldap::SEARCH_SCOPE_SUB searches the complete subtree including the $baseDn node. Zend\Ldap\Ldap::SEARCH_SCOPE_ONE restricts search to one level below $baseDn. Zend\Ldap\Ldap::SEARCH_SCOPE_BASE restricts search to the $baseDn itself; this can be used to efficiently retrieve a single entry by its DN. The default value is Zend\Ldap\Ldap::SEARCH_SCOPE_SUB. array $attributes Specifies the attributes contained in the returned entries. To include all possible attributes (ACL restrictions can disallow certain attribute to be retrieved by a given user) pass either an empty array array() or array(‘*’) to the method. On some LDAP servers you can retrieve special internal attributes by passing array(‘*’, ‘+’) to the method. string $sort If given the result collection will be sorted after the attribute $sort. Results can only be sorted after one single attribute as this parameter uses the ext/ldap function ldap_sort(). string $collectionClass If given the result will be wrapped in an object of type $collectionClass. By default an object of type Zend\Ldap\Collection will be returned. The custom class must extend Zend\Ldap\Collection and will be passed a Zend\Ldap\Collection\Iterator\Default on instantiation. integer $sizelimit Enables you to limit the count of entries fetched. Setting this to 0 means no limit. integer $timelimit Sets the number of seconds how long is spend on the search. Setting this to 0 means no limit.



		integer count(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope)
		Counts the elements returned by the given search parameters. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.



		integer countChildren(string|Zend\Ldap\Dn $dn)
		Counts the direct descendants (children) of the entry identified by the given $dn.



		boolean exists(string|Zend\Ldap\Dn $dn)
		Checks whether the entry identified by the given $dn exists.



		array searchEntries(string|Zend\Ldap\Filter\AbstractFilter $filter, string|Zend\Ldap\Dn $basedn, integer $scope, array $attributes, string $sort, string $reverseSort, integer $sizelimit, integer $timelimit)
		Performs a search operation and returns the result as an PHP array. This is essentially the same method as Zend\Ldap\Ldap::search() except for the return type. See Zend\Ldap\Ldap::search() for a detailed description of the method parameters.



		array getEntry(string|Zend\Ldap\Dn $dn, array $attributes, boolean $throwOnNotFound)
		Retrieves the LDAP entry identified by $dn with the attributes specified in $attributes. if $attributes is omitted, all attributes (array()) are included in the result. $throwOnNotFound is FALSE by default, so the method will return NULL if the specified entry cannot be found. If set to TRUE, a Zend\Ldap\Exception\LdapException will be thrown instead.



		void prepareLdapEntryArray(array &$entry)
		Prepare an array for the use in LDAP modification operations. This method does not need to be called by the end-user as it’s implicitly called on every data modification method.



		Zend\Ldap\Ldap add(string|Zend\Ldap\Dn $dn, array $entry)
		Adds the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be added.



		Zend\Ldap\Ldap update(string|Zend\Ldap\Dn $dn, array $entry)
		Updates the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be modified.



		Zend\Ldap\Ldap save(string|Zend\Ldap\Dn $dn, array $entry)
		Saves the entry identified by $dn with its attributes $entry to the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be saved. This method decides by querying the LDAP tree if the entry will be added or updated.



		Zend\Ldap\Ldap delete(string|Zend\Ldap\Dn $dn, boolean $recursively)
		Deletes the entry identified by $dn from the LDAP tree. Throws a Zend\Ldap\Exception\LdapException if the entry could not be deleted. $recursively is FALSE by default. If set to TRUE the deletion will be carried out recursively and will effectively delete a complete subtree. Deletion will fail if $recursively is FALSE and the entry $dn is not a leaf entry.



		Zend\Ldap\Ldap moveToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		Moves the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation. All move-operations are carried out by copying and then deleting the corresponding entries in the LDAP tree. These operations are not atomic so that failures during the operation will result in an inconsistent state on the LDAP server. The same is true for all recursive operations. They also are by no means atomic. Please keep this in mind.



		Zend\Ldap\Ldap move(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		This is an alias for Zend\Ldap\Ldap::rename().



		Zend\Ldap\Ldap rename(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively, boolean $alwaysEmulate)
		Renames the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be moved. Moving will fail if $recursively is FALSE and the entry $from is not a leaf entry. $alwaysEmulate controls whether the ext/ldap function ldap_rename() should be used if available. This can only work for leaf entries and for servers and for ext/ldap supporting this function. Set to TRUE to always use an emulated rename operation.



		Zend\Ldap\Ldap copyToSubtree(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively)
		Copies the entry identified by $from to a location below $to keeping its RDN unchanged. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.



		Zend\Ldap\Ldap copy(string|Zend\Ldap\Dn $from, string|Zend\Ldap\Dn $to, boolean $recursively)
		Copies the entry identified by $from to $to. $recursively specifies if the operation will be carried out recursively (FALSE by default) so that the entry $from and all its descendants will be copied. Copying will fail if $recursively is FALSE and the entry $from is not a leaf entry.



		Zend\Ldap\Node getNode(string|Zend\Ldap\Dn $dn)
		Returns the entry $dn wrapped in a Zend\Ldap\Node.



		Zend\Ldap\Node getBaseNode()
		Returns the entry for the base DN $baseDn wrapped in a Zend\Ldap\Node.



		Zend\Ldap\Node\RootDse getRootDse()
		Returns the RootDSE for the current server.



		Zend\Ldap\Node\Schema getSchema()
		Returns the LDAP schema for the current server.








Zend\Ldap\Collection


Zend\Ldap\Collection implements Iterator to allow for item traversal using foreach() and Countable to
be able to respond to count(). With its protected createEntry() method it provides a simple extension point
for developers needing custom result objects.



Zend\Ldap\Collection API





		Method
		Description





		__construct(Zend\Ldap\Collection\Iterator\Interface $iterator)
		Constructor. The constructor must be provided by a Zend\Ldap\Collection\Iterator\Interface which does the real result iteration. Zend\Ldap\Collection\Iterator\Default is the default implementation for iterating ext/ldap results.



		boolean close()
		Closes the internal iterator. This is also called in the destructor.



		array toArray()
		Returns all entries as an array.



		array getFirst()
		Returns the first entry in the collection or NULL if the collection is empty.












Zend\Ldap\Attribute


Zend\Ldap\Attribute is a helper class providing only static methods to manipulate arrays suitable to the
structure used in Zend\Ldap\Ldap data modification methods and to the data format required by the LDAP
server. PHP data types are converted using Zend\Ldap\Converter\Converter methods.



Zend\Ldap\Attribute API





		Method
		Description





		void setAttribute(array &$data, string $attribName, mixed $value, boolean $append)
		Sets the attribute $attribName in $data to the value $value. If $append is TRUE (FALSE by default) $value will be appended to the attribute. $value can be a scalar value or an array of scalar values. Conversion will take place.



		array|mixed getAttribute(array $data, string $attribName, integer|null $index)
		Returns the attribute $attribName from $data. If $index is NULL (default) an array will be returned containing all the values for the given attribute. An empty array will be returned if the attribute does not exist in the given array. If an integer index is specified the corresponding value at the given index will be returned. If the index is out of bounds, NULL will be returned. Conversion will take place.



		boolean attributeHasValue(array &$data, string $attribName, mixed|array $value)
		Checks if the attribute $attribName in $data has the value(s) given in $value. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		void removeDuplicatesFromAttribute(array &$data, string $attribName)
		Removes all duplicates from the attribute $attribName in $data.



		void removeFromAttribute(array &$data, string $attribName, mixed|array $value)
		Removes the value(s) given in $value from the attribute $attribName in $data.



		void setPassword(array &$data, string $password, string $hashType, string $attribName)
		Sets a LDAP password for the attribute $attribName in $data. $attribName defaults to ‘userPassword’ which is the standard password attribute. The password hash can be specified with $hashType. The default value here is Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other possibility.



		string createPassword(string $password, string $hashType)
		Creates a LDAP password. The password hash can be specified with $hashType. The default value here is Zend\Ldap\Attribute::PASSWORD_HASH_MD5 with Zend\Ldap\Attribute::PASSWORD_HASH_SHA as the other possibility.



		void setDateTimeAttribute(array &$data, string $attribName, integer|array $value, boolean $utc, boolean $append)
		Sets the attribute $attribName in $data to the date/time value $value. if $append is TRUE (FALSE by default) $value will be appended to the attribute. $value can be an integer value or an array of integers. Date-time-conversion according to Zend\Ldap\Converter\Converter::toLdapDateTime() will take place.



		array|integer getDateTimeAttribute(array $data, string $attribName, integer|null $index)
		Returns the date/time attribute $attribName from $data. If $index is NULL (default) an array will be returned containing all the date/time values for the given attribute. An empty array will be returned if the attribute does not exist in the given array. If an integer index is specified the corresponding date/time value at the given index will be returned. If the index is out of bounds, NULL will be returned. Date-time-conversion according to Zend\Ldap\Converter\Converter::fromLdapDateTime() will take place.










Zend\Ldap\Converter\Converter


Zend\Ldap\Converter\Converter is a helper class providing only static methods to manipulate arrays suitable to
the data format required by the LDAP server. PHP data types are converted the following way:



		string


		No conversion will be done.


		integer and float


		The value will be converted to a string.


		boolean


		TRUE will be converted to ‘TRUE’ and FALSE to ‘FALSE’


		object and array


		The value will be converted to a string by using serialize().


		Date/Time


		The value will be converted to a string with the following date() format YmdHisO, UTC timezone (+0000)
will be replaced with a Z. For example 01-30-2011 01:17:32 PM GMT-6 will be 20113001131732-0600 and
30-01-2012 15:17:32 UTC will be 20120130151732Z


		resource


		If a stream resource is given, the data will be fetched by calling stream_get_contents().


		others


		All other data types (namely non-stream resources) will be omitted.





On reading values the following conversion will take place:



		‘TRUE’


		Converted to TRUE.


		‘FALSE’


		Converted to FALSE.


		others


		All other strings won’t be automatically converted and are passed as they are.






Zend\Ldap\Converter\Converter API





		Method
		Description





		string ascToHex32(string $string)
		Convert all Ascii characters with decimal value less than 32 to hexadecimal value.



		string hex32ToAsc(string $string)
		Convert all hexadecimal characters by his Ascii value.



		string|null toLdap(mixed $value, int $type)
		Converts a PHP data type into its LDAP representation. $type argument is used to set the conversion method by default Converter::STANDARD where the function will try to guess the conversion method to use, others possibilities are Converter::BOOLEAN and Converter::GENERALIZED_TIME See introduction for details.



		mixed fromLdap(string $value, int $type, boolean $dateTimeAsUtc)
		Converts an LDAP value into its PHP data type. See introduction and toLdap() and toLdapDateTime() for details.



		string|null toLdapDateTime(integer|string|DateTime $date, boolean $asUtc)
		Converts a timestamp, a DateTime Object, a string that is parseable by strtotime() or a DateTime into its LDAP date/time representation. If $asUtc is TRUE ( FALSE by default) the resulting LDAP date/time string will be inUTC, otherwise a local date/time string will be returned.



		DateTime fromLdapDateTime(string $date, boolean $asUtc)
		Converts LDAP date/time representation into a PHP DateTime object.



		string toLdapBoolean(boolean|integer|string $value)
		Converts a PHP data type into its LDAP boolean representation. By default always return ‘FALSE’ except if the value is true , ‘true’ or 1



		boolean fromLdapBoolean(string $value)
		Converts LDAP boolean representation into a PHP boolean data type.



		string toLdapSerialize(mixed $value)
		The value will be converted to a string by using serialize().



		mixed fromLdapUnserialize(string $value)
		The value will be converted from a string by using unserialize().










Zend\Ldap\Dn


Zend\Ldap\Dn provides an object-oriented interface to manipulating LDAP distinguished names (DN). The
parameter $caseFold that is used in several methods determines the way DN attributes are handled regarding
their case. Allowed values for this parameter are:



		ZendLdapDn::ATTR_CASEFOLD_NONE


		No case-folding will be done.


		ZendLdapDn::ATTR_CASEFOLD_UPPER


		All attributes will be converted to upper-case.


		ZendLdapDn::ATTR_CASEFOLD_LOWER


		All attributes will be converted to lower-case.





The default case-folding is Zend\Ldap\Dn::ATTR_CASEFOLD_NONE and can be set with
Zend\Ldap\Dn::setDefaultCaseFold(). Each instance of Zend\Ldap\Dn can have its own case-folding-setting. If
the $caseFold parameter is omitted in method-calls it defaults to the instance’s case-folding setting.


The class implements ArrayAccess to allow indexer-access to the different parts of the DN. The
ArrayAccess-methods proxy to Zend\Ldap\Dn::get($offset, 1, null) for offsetGet(integer $offset), to
Zend\Ldap\Dn::set($offset, $value) for offsetSet() and to Zend\Ldap\Dn::remove($offset, 1) for
offsetUnset(). offsetExists() simply checks if the index is within the bounds.



Zend\Ldap\Dn API





		Method
		Description





		Zend\Ldap\Dn factory(string|array $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from an array or a string. The array must conform to the array structure detailed under Zend\Ldap\Dn::implodeDn().



		Zend\Ldap\Dn fromString(string $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from a string.



		Zend\Ldap\Dn fromArray(array $dn, string|null $caseFold)
		Creates a Zend\Ldap\Dn instance from an array. The array must conform to the array structure detailed under Zend\Ldap\Dn::implodeDn().



		array getRdn(string|null $caseFold)
		Gets the RDN of the current DN. The return value is an array with the RDN attribute names its keys and the RDN attribute values.



		string getRdnString(string|null $caseFold)
		Gets the RDN of the current DN. The return value is a string.



		Zend\Ldap\Dn getParentDn(integer $levelUp)
		Gets the DN of the current DN’s ancestor $levelUp levels up the tree. $levelUp defaults to 1.



		array get(integer $index, integer $length, string|null $caseFold)
		Returns a slice of the current DN determined by $index and $length. $index starts with 0 on the DN part from the left.



		Zend\Ldap\Dn set(integer $index, array $value)
		Replaces a DN part in the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn remove(integer $index, integer $length)
		Removes a DN part from the current DN. This operation manipulates the current instance. $length defaults to 1



		Zend\Ldap\Dn append(array $value)
		Appends a DN part to the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn prepend(array $value)
		Prepends a DN part to the current DN. This operation manipulates the current instance.



		Zend\Ldap\Dn insert(integer $index, array $value)
		Inserts a DN part after the index $index to the current DN. This operation manipulates the current instance.



		void setCaseFold(string|null $caseFold)
		Sets the case-folding option to the current DN instance. If $caseFold is NULL the default case-folding setting (Zend\Ldap\Dn::ATTR_CASEFOLD_NONE by default or set via Zend\Ldap\Dn::setDefaultCaseFold() will be set for the current instance.



		string toString(string|null $caseFold)
		Returns DN as a string.



		array toArray(string|null $caseFold)
		Returns DN as an array.



		string __toString()
		Returns DN as a string - proxies to Zend\Ldap\Dn::toString(null).



		void setDefaultCaseFold(string $caseFold)
		Sets the default case-folding option used by all instances on creation by default. Already existing instances are not affected by this setting.



		array escapeValue(string|array $values)
		Escapes a DN value according to RFC 2253.



		array unescapeValue(string|array $values)
		Undoes the conversion done by Zend\Ldap\Dn::escapeValue().



		array explodeDn(string $dn, array &$keys, array &$vals, string|null $caseFold)
		Explodes the DN $dn into an array containing all parts of the given DN. $keys optionally receive DN keys (e.g. CN, OU, DC, ...). $vals optionally receive DN values. The resulting array will be of type array( array(“cn” => “name1”, “uid” => “user”), array(“cn” => “name2”), array(“dc” => “example”), array(“dc” => “org”) ) for a DN of cn=name1+uid=user,cn=name2,dc=example,dc=org.



		boolean checkDn(string $dn, array &$keys, array &$vals, string|null $caseFold)
		Checks if a given DN $dn is malformed. If $keys or $keys and $vals are given, these arrays will be filled with the appropriate DN keys and values.



		string implodeRdn(array $part, string|null $caseFold)
		Returns a DN part in the form $attribute=$value



		string implodeDn(array $dnArray, string|null $caseFold, string $separator)
		Implodes an array in the form delivered by Zend\Ldap\Dn::explodeDn() to a DN string. $separator defaults to ‘,’ but some LDAP servers also understand ‘;’. $dnArray must of type array( array(“cn” => “name1”, “uid” => “user”), array(“cn” => “name2”), array(“dc” => “example”), array(“dc” => “org”) )



		boolean isChildOf(string|Zend\Ldap\Dn $childDn, string|Zend\Ldap\Dn $parentDn)
		Checks if given $childDn is beneath $parentDn subtree.










Zend\Ldap\Filter



Zend\Ldap\Filter API





		Method
		Description





		Zend\Ldap\Filter equals(string $attr, string $value)
		Creates an ‘equals’ filter: (attr=value).



		Zend\Ldap\Filter begins(string $attr, string $value)
		Creates an ‘begins with’ filter: (attr=value*).



		Zend\Ldap\Filter ends(string $attr, string $value)
		Creates an ‘ends with’ filter: (attr=*value).



		Zend\Ldap\Filter contains(string $attr, string $value)
		Creates an ‘contains’ filter: (attr=*value*).



		Zend\Ldap\Filter greater(string $attr, string $value)
		Creates an ‘greater’ filter: (attr>value).



		Zend\Ldap\Filter greaterOrEqual(string $attr, string $value)
		Creates an ‘greater or equal’ filter: (attr>=value).



		Zend\Ldap\Filter less(string $attr, string $value)
		Creates an ‘less’ filter: (attr<value).



		Zend\Ldap\Filter lessOrEqual(string $attr, string $value)
		Creates an ‘less or equal’ filter: (attr<=value).



		Zend\Ldap\Filter approx(string $attr, string $value)
		Creates an ‘approx’ filter: (attr~=value).



		Zend\Ldap\Filter any(string $attr)
		Creates an ‘any’ filter: (attr=*).



		Zend\Ldap\Filter string(string $filter)
		Creates a simple custom string filter. The user is responsible for all value-escaping as the filter is used as is.



		Zend\Ldap\Filter mask(string $mask, string $value,...)
		Creates a filter from a string mask. All $value parameters will be escaped and substituted into $mask by using sprintf()



		Zend\Ldap\Filter andFilter(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘and’ filter from all arguments given.



		Zend\Ldap\Filter orFilter(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘or’ filter from all arguments given.



		__construct(string $attr, string $value, string $filtertype, string|null $prepend, string|null $append)
		Constructor. Creates an arbitrary filter according to the parameters supplied. The resulting filter will be a concatenation $attr . $filtertype . $prepend . $value . $append. Normally this constructor is not needed as all filters can be created by using the appropriate factory methods.



		string toString()
		Returns a string representation of the filter.



		string __toString()
		Returns a string representation of the filter. Proxies to Zend\Ldap\Filter::toString().



		Zend\Ldap\Filter\AbstractFilter negate()
		Negates the current filter.



		Zend\Ldap\Filter\AbstractFilter addAnd(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘and’ filter from the current filter and all filters passed in as the arguments.



		Zend\Ldap\Filter\AbstractFilter addOr(Zend\Ldap\Filter\AbstractFilter $filter,...)
		Creates an ‘or’ filter from the current filter and all filters passed in as the arguments.



		string|array escapeValue(string|array $values)
		Escapes the given $values according to RFC 2254 so that they can be safely used in LDAP filters. If a single string is given, a string is returned - otherwise an array is returned. Any control characters with an ASCII code < 32 as well as the characters with special meaning in LDAP filters “*”, “(”, ”)”, and “\” (the backslash) are converted into the representation of a backslash followed by two hex digits representing the hexadecimal value of the character.



		string|array unescapeValue(string|array $values)
		Undoes the conversion done by Zend\Ldap\Filter::escapeValue(). Converts any sequences of a backslash followed by two hex digits into the corresponding character.










Zend\Ldap\Node


Zend\Ldap\Node includes the magic property accessors __set(), __get(), __unset() and __isset()
to access the attributes by their name. They proxy to Zend\Ldap\Node::setAttribute(),
Zend\Ldap\Node::getAttribute(), Zend\Ldap\Node::deleteAttribute() and Zend\Ldap\Node::existsAttribute()
respectively. Furthermore the class implements ArrayAccess for array-style-access to the attributes.
Zend\Ldap\Node also implements Iterator and RecursiveIterator to allow for recursive tree-traversal.



Zend\Ldap\Node API





		Method
		Description





		Zend\Ldap\Ldap getLdap()
		Returns the current LDAP connection. Throws Zend\Ldap\Exception\LdapException if current node is in detached mode (not connected to a Zend\Ldap\Ldap instance).



		Zend\Ldap\Node attachLdap(Zend\Ldap\Ldap $ldap)
		Attach the current node to the $ldapZend\Ldap\Ldap instance. Throws Zend\Ldap\Exception\LdapException if $ldap is not responsible for the current node (node is not a child of the $ldap base DN).



		Zend\Ldap\Node detachLdap()
		Detach node from LDAP connection.



		boolean isAttached()
		Checks if the current node is attached to a LDAP connection.



		Zend\Ldap\Node create(string|array|Zend\Ldap\Dn $dn, array $objectClass)
		Factory method to create a new detached Zend\Ldap\Node for a given DN. Creates a new Zend\Ldap\Node with the DN $dn and the object-classes $objectClass.



		Zend\Ldap\Node fromLdap(string|array|Zend\Ldap\Dn $dn, Zend\Ldap\Ldap $ldap)
		Factory method to create an attached Zend\Ldap\Node for a given DN. Loads an existing Zend\Ldap\Node with the DN $dn from the LDAP connection $ldap.



		Zend\Ldap\Node fromArray((array $data, boolean $fromDataSource)
		Factory method to create a detached Zend\Ldap\Node from array data $data. if $fromDataSource is TRUE (FALSE by default), the data is treated as being present in a LDAP tree.



		boolean isNew()
		Tells if the node is considered as new (not present on the server). Please note, that this doesn’t tell if the node is really present on the server. Use Zend\Ldap\Node::exists() to see if a node is already there.



		boolean willBeDeleted()
		Tells if this node is going to be deleted once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node delete()
		Marks this node as to be deleted. Node will be deleted on calling Zend\Ldap\Node::update() if Zend\Ldap\Node::willBeDeleted() is TRUE.



		boolean willBeMoved()
		Tells if this node is going to be moved once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node update(Zend\Ldap\Ldap $ldap)
		Sends all pending changes to the LDAP server. If $ldap is omitted the current LDAP connection is used. If the current node is detached from a LDAP connection a Zend\Ldap\Exception\LdapException will be thrown. If $ldap is provided the current node will be attached to the given LDAP connection.



		Zend\Ldap\Dn getCurrentDn()
		Gets the current DN of the current node as a Zend\Ldap\Dn. This does not reflect possible rename-operations.



		Zend\Ldap\Dn getDn()
		Gets the original DN of the current node as a Zend\Ldap\Dn. This reflects possible rename-operations.



		string getDnString(string $caseFold)
		Gets the original DN of the current node as a string. This reflects possible rename-operations.



		array getDnArray(string $caseFold)
		Gets the original DN of the current node as an array. This reflects possible rename-operations.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string. This reflects possible rename-operations.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array. This reflects possible rename-operations.



		Zend\Ldap\Node setDn(Zend\Ldap\Dn|string|array $newDn)
		Sets the new DN for this node effectively moving the node once Zend\Ldap\Node::update() is called.



		Zend\Ldap\Node move(Zend\Ldap\Dn|string|array $newDn)
		This is an alias for Zend\Ldap\Node::setDn().



		Zend\Ldap\Node rename(Zend\Ldap\Dn|string|array $newDn)
		This is an alias for Zend\Ldap\Node::setDn().



		array getObjectClass()
		Returns the objectClass of the node.



		Zend\Ldap\Node setObjectClass(array|string $value)
		Sets the objectClass attribute.



		Zend\Ldap\Node appendObjectClass(array|string $value)
		Appends to the objectClass attribute.



		string toLdif(array $options)
		Returns a LDIF representation of the current node. $options will be passed to the Zend\Ldap\Ldif\Encoder.



		array getChangedData()
		Gets changed node data. The array contains all changed attributes. This format can be used in Zend\Ldap\Ldap::add() and Zend\Ldap\Ldap::update().



		array getChanges()
		Returns all changes made.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node::getAttributes() the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		Zend\Ldap\Node setAttribute(string $name, mixed $value)
		Sets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().



		Zend\Ldap\Node appendToAttribute(string $name, mixed $value)
		Appends to a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::setAttribute().



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node setDateTimeAttribute(string $name, integer|array $value, boolean $utc)
		Sets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().



		Zend\Ldap\Node appendToDateTimeAttribute(string $name, integer|array $value, boolean $utc)
		Appends to a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::setDateTimeAttribute().



		Zend\Ldap\Node setPasswordAttribute(string $password, string $hashType, string $attribName)
		Sets a LDAP password on $attribName (defaults to ‘userPassword’) to $password with the hash type $hashType (defaults to Zend\Ldap\Attribute::PASSWORD_HASH_MD5).



		Zend\Ldap\Node deleteAttribute(string $name)
		Deletes a LDAP attribute.



		void removeDuplicatesFromAttribute(string$name)
		Removes duplicate values from a LDAP attribute.



		void removeFromAttribute(string $attribName, mixed|array $value)
		Removes the given values from a LDAP attribute.



		boolean exists(Zend\Ldap\Ldap $ldap)
		Checks if the current node exists on the given LDAP server (current server is used if NULL is passed).



		Zend\Ldap\Node reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server (current server is used if NULL is passed).



		Zend\Ldap\Node\Collection searchSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope, string $sort)
		Searches the nodes’s subtree with the given $filter and the given search parameters. See Zend\Ldap\Ldap::search() for details on the parameters $scope and $sort.



		integer countSubtree(string|Zend\Ldap\Filter\AbstractFilter $filter, integer $scope)
		Count the nodes’s subtree items matching the given $filter and the given search scope. See Zend\Ldap\Ldap::search() for details on the $scope parameter.



		integer countChildren()
		Count the nodes’s children.



		Zend\Ldap\Node\Collection searchChildren(string|Zend\Ldap\Filter\AbstractFilter $filter, string $sort)
		Searches the nodes’s children matching the given $filter. See Zend\Ldap\Ldap::search() for details on the $sort parameter.



		boolean hasChildren()
		Returns whether the current node has children.



		Zend\Ldap\Node\ChildrenIterator getChildren()
		Returns all children of the current node.



		Zend\Ldap\Node getParent(Zend\Ldap\Ldap $ldap)
		Returns the parent of the current node using the LDAP connection $ldap (uses the current LDAP connection if omitted).










Zend\Ldap\Node\RootDse


The following methods are available on all vendor-specific subclasses.


Zend\Ldap\Node\RootDse includes the magic property accessors __get() and __isset() to access the
attributes by their name. They proxy to Zend\Ldap\Node\RootDse::getAttribute() and
Zend\Ldap\Node\RootDse::existsAttribute() respectively. __set() and __unset() are also implemented but
they throw a BadMethodCallException as modifications are not allowed on RootDSE nodes. Furthermore the class
implements ArrayAccess for array-style-access to the attributes. offsetSet() and offsetUnset() also throw
a BadMethodCallException due ro obvious reasons.



Zend\Ldap\Node\RootDse API





		Method
		Description





		Zend\Ldap\Dn getDn()
		Gets the DN of the current node as a Zend\Ldap\Dn.



		string getDnString(string $caseFold)
		Gets the DN of the current node as a string.



		array getDnArray(string $caseFold)
		Gets the DN of the current node as an array.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array.



		array getObjectClass()
		Returns the objectClass of the node.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node\RootDse::getAttributes() the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node\RootDse::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE, empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE, empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node\RootDse reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server.



		Zend\Ldap\Node\RootDse create(Zend\Ldap\Ldap $ldap)
		Factory method to create the RootDSE.



		array getNamingContexts()
		Gets the namingContexts.



		string|null getSubschemaSubentry()
		Gets the subschemaSubentry.



		boolean supportsVersion(string|int|array $versions)
		Determines if the LDAP version is supported.



		boolean supportsSaslMechanism(string|array $mechlist)
		Determines if the sasl mechanism is supported.



		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_GENERICfor unknown LDAP serversZend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAPfor OpenLDAP serversZend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORYfor Microsoft ActiveDirectory serversZend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORYFor Novell eDirectory servers



		Zend\Ldap\Dn getSchemaDn()
		Returns the schema DN.








OpenLDAP


Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\OpenLdap.



Note


Refer to LDAP Operational Attributes and Objects [http://www.zytrax.com/books/ldap/ch3/#operational] for information on the attributes of OpenLDAP RootDSE.





Zend\Ldap\Node\RootDse\OpenLdap API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_OPENLDAP



		string|null getConfigContext()
		Gets the configContext.



		string|null getMonitorContext()
		Gets the monitorContext.



		boolean supportsControl(string|array $oids)
		Determines if the control is supported.



		boolean supportsExtension(string|array $oids)
		Determines if the extension is supported.



		boolean supportsFeature(string|array $oids)
		Determines if the feature is supported.










ActiveDirectory


Additionally the common methods above apply to instances of Zend\Ldap\Node\RootDse\ActiveDirectory.



Note


Refer to RootDSE [http://msdn.microsoft.com/en-us/library/ms684291(VS.85).aspx] for information on the attributes of Microsoft ActiveDirectory RootDSE.





Zend\Ldap\Node\RootDse\ActiveDirectory API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_ACTIVEDIRECTORY



		string|null getConfigurationNamingContext()
		Gets the configurationNamingContext.



		string|null getCurrentTime()
		Gets the currentTime.



		string|null getDefaultNamingContext()
		Gets the defaultNamingContext.



		string|null getDnsHostName()
		Gets the dnsHostName.



		string|null getDomainControllerFunctionality()
		Gets the domainControllerFunctionality.



		string|null getDomainFunctionality()
		Gets the domainFunctionality.



		string|null getDsServiceName()
		Gets the dsServiceName.



		string|null getForestFunctionality()
		Gets the forestFunctionality.



		string|null getHighestCommittedUSN()
		Gets the highestCommittedUSN.



		string|null getIsGlobalCatalogReady()
		Gets the isGlobalCatalogReady.



		string|null getIsSynchronized()
		Gets the isSynchronized.



		string|null getLdapServiceName()
		Gets the ldapServiceName.



		string|null getRootDomainNamingContext()
		Gets the rootDomainNamingContext.



		string|null getSchemaNamingContext()
		Gets the schemaNamingContext.



		string|null getServerName()
		Gets the serverName.



		boolean supportsCapability(string|array $oids)
		Determines if the capability is supported.



		boolean supportsControl(string|array $oids)
		Determines if the control is supported.



		boolean supportsPolicy(string|array $policies)
		Determines if the version is supported.










eDirectory


Additionally the common methods above apply to instances of ZendLdapNodeRootDseeDirectory.



Note


Refer to Getting Information about the LDAP Server [http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/ah59jqq.html] for information on the attributes of Novell eDirectory
RootDSE.





Zend\Ldap\Node\RootDse\eDirectory API





		Method
		Description





		integer getServerType()
		Gets the server type. Returns Zend\Ldap\Node\RootDse::SERVER_TYPE_EDIRECTORY



		boolean supportsExtension(string|array $oids)
		Determines if the extension is supported.



		string|null getVendorName()
		Gets the vendorName.



		string|null getVendorVersion()
		Gets the vendorVersion.



		string|null getDsaName()
		Gets the dsaName.



		string|null getStatisticsErrors()
		Gets the server statistics “errors”.



		string|null getStatisticsSecurityErrors()
		Gets the server statistics “securityErrors”.



		string|null getStatisticsChainings()
		Gets the server statistics “chainings”.



		string|null getStatisticsReferralsReturned()
		Gets the server statistics “referralsReturned”.



		string|null getStatisticsExtendedOps()
		Gets the server statistics “extendedOps”.



		string|null getStatisticsAbandonOps()
		Gets the server statistics “abandonOps”.



		string|null getStatisticsWholeSubtreeSearchOps()
		Gets the server statistics “wholeSubtreeSearchOps”.












Zend\Ldap\Node\Schema


The following methods are available on all vendor-specific subclasses.


ZendLdapNodeSchema includes the magic property accessors __get() and __isset() to access the attributes by
their name. They proxy to ZendLdapNodeSchema::getAttribute() and ZendLdapNodeSchema::existsAttribute()
respectively. __set() and __unset() are also implemented, but they throw a BadMethodCallException as
modifications are not allowed on RootDSE nodes. Furthermore the class implements ArrayAccess for
array-style-access to the attributes. offsetSet() and offsetUnset() also throw a BadMethodCallException due
to obvious reasons.



Zend\Ldap\Node\Schema API





		Method
		Description





		Zend\Ldap\Dn getDn()
		Gets the DN of the current node as a Zend\Ldap\Dn.



		string getDnString(string $caseFold)
		Gets the DN of the current node as a string.



		array getDnArray(string $caseFold)
		Gets the DN of the current node as an array.



		string getRdnString(string $caseFold)
		Gets the RDN of the current node as a string.



		array getRdnArray(string $caseFold)
		Gets the RDN of the current node as an array.



		array getObjectClass()
		Returns the objectClass of the node.



		string toString()
		Returns the DN of the current node - proxies to Zend\Ldap\Dn::getDnString().



		string __toString()
		Casts to string representation - proxies to Zend\Ldap\Dn::toString().



		array toArray(boolean $includeSystemAttributes)
		Returns an array representation of the current node. If $includeSystemAttributes is FALSE (defaults to TRUE), the system specific attributes are stripped from the array. Unlike Zend\Ldap\Node\Schema::getAttributes(), the resulting array contains the DN with key ‘dn’.



		string toJson(boolean $includeSystemAttributes)
		Returns a JSON representation of the current node using Zend\Ldap\Node\Schema::toArray().



		array getData(boolean $includeSystemAttributes)
		Returns the node’s attributes. The array contains all attributes in its internal format (no conversion).



		boolean existsAttribute(string $name, boolean $emptyExists)
		Checks whether a given attribute exists. If $emptyExists is FALSE, empty attributes (containing only array()) are treated as non-existent returning FALSE. If $emptyExists is TRUE, empty attributes are treated as existent returning TRUE. In this case the method returns FALSE only if the attribute name is missing in the key-collection.



		boolean attributeHasValue(string $name, mixed|array $value)
		Checks if the given value(s) exist in the attribute. The method returns TRUE only if all values in $value are present in the attribute. Comparison is done strictly (respecting the data type).



		integer count()
		Returns the number of attributes in the node. Implements Countable.



		mixed getAttribute(string $name, integer|null $index)
		Gets a LDAP attribute. Data conversion is applied using Zend\Ldap\Attribute::getAttribute().



		array getAttributes(boolean $includeSystemAttributes)
		Gets all attributes of node. If $includeSystemAttributes is FALSE (defaults to TRUE) the system specific attributes are stripped from the array.



		array|integer getDateTimeAttribute(string $name, integer|null $index)
		Gets a LDAP date/time attribute. Data conversion is applied using Zend\Ldap\Attribute::getDateTimeAttribute().



		Zend\Ldap\Node\Schema reload(Zend\Ldap\Ldap $ldap)
		Reloads the current node’s attributes from the given LDAP server.



		Zend\Ldap\Node\Schema create(Zend\Ldap\Ldap $ldap)
		Factory method to create the Schema node.



		array getAttributeTypes()
		Gets the attribute types as an array of .



		array getObjectClasses()
		Gets the object classes as an array of Zend\Ldap\Node\Schema\ObjectClass\Interface.








Zend\Ldap\Node\Schema\AttributeType\Interface API





		Method
		Description





		string getName()
		Gets the attribute name.



		string getOid()
		Gets the attribute OID.



		string getSyntax()
		Gets the attribute syntax.



		int|null getMaxLength()
		Gets the attribute maximum length.



		boolean isSingleValued()
		Returns if the attribute is single-valued.



		string getDescription()
		Gets the attribute description








Zend\Ldap\Node\Schema\ObjectClass\Interface API





		Method
		Description





		string getName()
		Returns the objectClass name.



		string getOid()
		Returns the objectClass OID.



		array getMustContain()
		Returns the attributes that this objectClass must contain.



		array getMayContain()
		Returns the attributes that this objectClass may contain.



		string getDescription()
		Returns the attribute description



		integer getType()
		Returns the objectClass type. The method returns one of the following values: Zend\Ldap\Node\Schema::OBJECTCLASS_TYPE_UNKNOWNfor unknown class typesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_STRUCTURALfor structural classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_ABSTRACTfor abstract classesZend\Ldap\Node\Schema::OBJECTCLASS_TYPE_AUXILIARYfor auxiliary classes



		array getParentClasses()
		Returns the parent objectClasses of this class. This includes structural, abstract and auxiliary objectClasses.







Classes representing attribute types and object classes extend ZendLdapNodeSchemaAbstractItem which provides
some core methods to access arbitrary attributes on the underlying LDAP node.
ZendLdapNodeSchemaAbstractItem includes the magic property accessors __get() and __isset() to access the
attributes by their name. Furthermore the class implements ArrayAccess for array-style-access to the attributes.
offsetSet() and offsetUnset() throw a BadMethodCallException as modifications are not allowed on schema
information nodes.



Zend\Ldap\Node\Schema\AbstractItem API





		Method
		Description





		array getData()
		Gets all the underlying data from the schema information node.



		integer count()
		Returns the number of attributes in this schema information node. Implements Countable.








OpenLDAP


Additionally the common methods above apply to instances of ZendLdapNodeSchemaOpenLDAP.



Zend\Ldap\Node\Schema\OpenLDAP API





		Method
		Description





		array getLdapSyntaxes()
		Gets the LDAP syntaxes.



		array getMatchingRules()
		Gets the matching rules.



		array getMatchingRuleUse()
		Gets the matching rule use.








Zend\Ldap\Node\Schema\AttributeType\OpenLDAP API





		Method
		Description





		Zend\Ldap\Node\Schema\AttributeType\OpenLdap|null getParent()
		Returns the parent attribute type in the inheritance tree if one exists.








Zend\Ldap\Node\Schema\ObjectClass\OpenLDAP API





		Method
		Description





		array getParents()
		Returns the parent object classes in the inheritance tree if one exists. The returned array is an array of Zend\Ldap\Node\Schema\ObjectClass\OpenLdap.










ActiveDirectory



Note


Schema browsing on ActiveDirectory servers


Due to restrictions on Microsoft ActiveDirectory servers regarding the number of entries returned by generic
search routines and due to the structure of the ActiveDirectory schema repository, schema browsing is currently
not available for Microsoft ActiveDirectory servers.




ZendLdapNodeSchemaActiveDirectory does not provide any additional methods.



Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory API




		Zend\Ldap\Node\Schema\AttributeType\ActiveDirectory does not provide any additional methods.








Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory API




		Zend\Ldap\Node\Schema\ObjectClass\ActiveDirectory does not provide any additional methods.












Zend\Ldap\Ldif\Encoder



Zend\Ldap\Ldif\Encoder API





		Method
		Description





		array decode(string $string)
		Decodes the string $string into an array of LDIF items.



		string encode(scalar|array|Zend\Ldap\Node $value, array $options)
		Encode $value into a LDIF representation. $options is an array that may contain the following keys: ‘sort’ Sort the given attributes with dn following objectClass and following all other attributes sorted alphabetically. TRUE by default. ‘version’ The LDIF format version. 1 by default. ‘wrap’ The line-length. 78 by default to conform to the LDIF specification.











          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                API overview
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.i18n.filter.alnum.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Alnum Filter


The Alnum filter can be used to return only alphabetic characters and digits in the unicode “letter” and
“number” categories, respectively. All other characters are supressed.


Supported options for Alnum Filter


The following options are supported for Alnum:


Alnum([ boolean $allowWhiteSpace [, string $locale ]])



		$allowWhiteSpace: If set to true then whitespace characters are allowed. Otherwise they are suppressed.
Default is “false” (whitespace is not allowed).


Methods for getting/setting the allowWhiteSpace option are also available: getAllowWhiteSpace() and
setAllowWhiteSpace()





		$locale: The locale string used in identifying the characters to filter (locale name, e.g. en_US). If unset,
it will use the default locale (Locale::getDefault()).


Methods for getting/setting the locale are also available: getLocale() and setLocale()








Alnum Filter Usage


		1
2
3
4
5
6
7
8
9


		// Default settings, deny whitespace
$filter = \Zend\I18n\Filter\Alnum();
echo $filter->filter("This is (my) content: 123");
// Returns "Thisismycontent123"

// First param in constructor is $allowWhiteSpace
$filter = \Zend\I18n\Filter\Alnum(true);
echo $filter->filter("This is (my) content: 123");
// Returns "This is my content 123"











Note


Note: Alnum works on almost all languages, except: Chinese, Japanese and Korean. Within these languages the
english alphabet is used instead of the characters from these languages. The language itself is detected using
the Locale.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Alnum Filter
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

tutorials/form.decorators.composite.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Creating and Rendering Composite Elements


In the last section, we had an example showing a “date of birth
element”:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<div class="element">
    <?php echo $form->dateOfBirth->renderLabel() ?>
    <?php echo $this->formText('dateOfBirth[day]', '', array(
        'size' => 2, 'maxlength' => 2)) ?>
    /
    <?php echo $this->formText('dateOfBirth[month]', '', array(
        'size' => 2, 'maxlength' => 2)) ?>
    /
    <?php echo $this->formText('dateOfBirth[year]', '', array(
        'size' => 4, 'maxlength' => 4)) ?>
</div>










How might you represent this element as a Zend_Form_Element? How might you write a decorator to render it?



The Element


The questions about how the element would work include:



		How would you set and retrieve the value?


		How would you validate the value?


		Regardless, how would you then allow for discrete form inputs for the three segments (day, month, year)?





The first two questions center around the form element itself: how would setValue() and getValue() work?
There’s actually another question implied by the question about the decorator: how would you retrieve the discrete
date segments from the element and/or set them?


The solution is to override the setValue() method of your element to provide some custom logic. In this
particular case, our element should have three discrete behaviors:



		If an integer timestamp is provided, it should be used to determine and store the day, month, and year.


		If a textual string is provided, it should be cast to a timestamp, and then that value used to determine and
store the day, month, and year.


		If an array containing keys for date, month, and year is provided, those values should be stored.





Internally, the day, month, and year will be stored discretely. When the value of the element is retrieved, it will
be done so in a normalized string format. We’ll override getValue() as well to assemble the discrete date
segments into a final string.


Here’s what the class would look like:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


		class My_Form_Element_Date extends Zend_Form_Element_Xhtml
{
    protected $_dateFormat = '%year%-%month%-%day%';
    protected $_day;
    protected $_month;
    protected $_year;

    public function setDay($value)
    {
        $this->_day = (int) $value;
        return $this;
    }

    public function getDay()
    {
        return $this->_day;
    }

    public function setMonth($value)
    {
        $this->_month = (int) $value;
        return $this;
    }

    public function getMonth()
    {
        return $this->_month;
    }

    public function setYear($value)
    {
        $this->_year = (int) $value;
        return $this;
    }

    public function getYear()
    {
        return $this->_year;
    }

    public function setValue($value)
    {
        if (is_int($value)) {
            $this->setDay(date('d', $value))
                 ->setMonth(date('m', $value))
                 ->setYear(date('Y', $value));
        } elseif (is_string($value)) {
            $date = strtotime($value);
            $this->setDay(date('d', $date))
                 ->setMonth(date('m', $date))
                 ->setYear(date('Y', $date));
        } elseif (is_array($value)
                  && (isset($value['day'])
                      && isset($value['month'])
                      && isset($value['year'])
                  )
        ) {
            $this->setDay($value['day'])
                 ->setMonth($value['month'])
                 ->setYear($value['year']);
        } else {
            throw new Exception('Invalid date value provided');
        }

        return $this;
    }

    public function getValue()
    {
        return str_replace(
            array('%year%', '%month%', '%day%'),
            array($this->getYear(), $this->getMonth(), $this->getDay()),
            $this->_dateFormat
        );
    }
}










This class gives some nice flexibility – we can set default values from our database, and be certain that the
value will be stored and represented correctly. Additionally, we can allow for the value to be set from an array
passed via form input. Finally, we have discrete accessors for each date segment, which we can now use in a
decorator to create a composite element.





The Decorator


Revisiting the example from the last section, let’s assume that we want users to input each of the year, month, and
day separately. PHP fortunately allows us to use array notation when creating elements, so it’s still possible to
capture these three entities into a single value – and we’ve now created a Zend_Form element that can handle
such an array value.


The decorator is relatively simple: it will grab the day, month, and year from the element, and pass each to a
discrete view helper to render individual form inputs; these will then be aggregated to form the final markup.


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


		class My_Form_Decorator_Date extends Zend_Form_Decorator_Abstract
{
    public function render($content)
    {
        $element = $this->getElement();
        if (!$element instanceof My_Form_Element_Date) {
            // only want to render Date elements
            return $content;
        }

        $view = $element->getView();
        if (!$view instanceof Zend_View_Interface) {
            // using view helpers, so do nothing if no view present
            return $content;
        }

        $day   = $element->getDay();
        $month = $element->getMonth();
        $year  = $element->getYear();
        $name  = $element->getFullyQualifiedName();

        $params = array(
            'size'      => 2,
            'maxlength' => 2,
        );
        $yearParams = array(
            'size'      => 4,
            'maxlength' => 4,
        );

        $markup = $view->formText($name . '[day]', $day, $params)
                . ' / ' . $view->formText($name . '[month]', $month, $params)
                . ' / ' . $view->formText($name . '[year]', $year, $yearParams);

        switch ($this->getPlacement()) {
            case self::PREPEND:
                return $markup . $this->getSeparator() . $content;
            case self::APPEND:
            default:
                return $content . $this->getSeparator() . $markup;
        }
    }
}










We now have to do a minor tweak to our form element, and tell it that we want to use the above decorator as a
default. That takes two steps. First, we need to inform the element of the decorator path. We can do that in the
constructor:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16


		class My_Form_Element_Date extends Zend_Form_Element_Xhtml
{
    // ...

    public function __construct($spec, $options = null)
    {
        $this->addPrefixPath(
            'My_Form_Decorator',
            'My/Form/Decorator',
            'decorator'
        );
        parent::__construct($spec, $options);
    }

    // ...
}










Note that this is being done in the constructor and not in init(). This is for two reasons. First, it allows
extending the element later to add logic in init without needing to worry about calling parent::init().
Second, it allows passing additional plugin paths via configuration or within an init method that will then
allow overriding the default Date decorator with my own replacement.


Next, we need to override the loadDefaultDecorators() method to use our new Date decorator:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


		class My_Form_Element_Date extends Zend_Form_Element_Xhtml
{
    // ...

    public function loadDefaultDecorators()
    {
        if ($this->loadDefaultDecoratorsIsDisabled()) {
            return;
        }

        $decorators = $this->getDecorators();
        if (empty($decorators)) {
            $this->addDecorator('Date')
                 ->addDecorator('Errors')
                 ->addDecorator('Description', array(
                     'tag'   => 'p',
                     'class' => 'description'
                 ))
                 ->addDecorator('HtmlTag', array(
                     'tag' => 'dd',
                     'id'  => $this->getName() . '-element'
                 ))
                 ->addDecorator('Label', array('tag' => 'dt'));
        }
    }

    // ...
}










What does the final output look like? Let’s consider the following element:


		1
2
3
4
5
6
7


		$d = new My_Form_Element_Date('dateOfBirth');
$d->setLabel('Date of Birth: ')
  ->setView(new Zend_View());

// These are equivalent:
$d->setValue('20 April 2009');
$d->setValue(array('year' => '2009', 'month' => '04', 'day' => '20'));










If you then echo this element, you get the following markup (with some slight whitespace modifications for
readability):


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		<dt id="dateOfBirth-label"><label for="dateOfBirth" class="optional">
    Date of Birth:
</label></dt>
<dd id="dateOfBirth-element">
    <input type="text" name="dateOfBirth[day]" id="dateOfBirth-day"
        value="20" size="2" maxlength="2"> /
    <input type="text" name="dateOfBirth[month]" id="dateOfBirth-month"
        value="4" size="2" maxlength="2"> /
    <input type="text" name="dateOfBirth[year]" id="dateOfBirth-year"
        value="2009" size="4" maxlength="4">
</dd>













Conclusion


We now have an element that can render multiple related form input fields, and then handle the aggregated fields as
a single entity – the dateOfBirth element will be passed as an array to the element, and the element will
then, as we noted earlier, create the appropriate date segments and return a value we can use for most backends.


In the end, you get a uniform element API you can use to describe an element representing a composite value.








          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Creating and Rendering Composite Elements
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull request page you don't need to fill in text anymore. Just
            press Send pull request button.
        



        		
            Your changes are now queued for review under project's Pull requests tab on GitHub.
        


    







  

modules/zend.json.objects.html

    
      Navigation


      
        		
          index


        		Zend Framework 2 2.0.0 documentation »

 
      


    


    
      
          
            
  
Advanced Usage of Zend_Json



JSON Objects


When encoding PHP objects as JSON, all public properties of that object will be encoded in a JSON object.


JSON does not allow object references, so care should be taken not to encode objects with recursive references.
If you have issues with recursion, Zend_Json::encode() and Zend_Json_Encoder::encode() allow an optional
second parameter to check for recursion; if an object is serialized twice, an exception will be thrown.


Decoding JSON objects poses an additional difficulty, however, since Javascript objects correspond most closely
to PHP‘s associative array. Some suggest that a class identifier should be passed, and an object instance of that
class should be created and populated with the key/value pairs of the JSON object; others feel this could pose a
substantial security risk.


By default, Zend_Json will decode JSON objects as associative arrays. However, if you desire an object
returned, you can specify this:


		1
2


		// Decode JSON objects as PHP objects
$phpNative = Zend_Json::decode($encodedValue, Zend_Json::TYPE_OBJECT);










Any objects thus decoded are returned as StdClass objects with properties corresponding to the key/value pairs
in the JSON notation.


The recommendation of Zend Framework is that the individual developer should decide how to decode JSON objects.
If an object of a specified type should be created, it can be created in the developer code and populated with the
values decoded using Zend_Json.





Encoding PHP objects


If you are encoding PHP objects by default the encoding mechanism can only access public properties of these
objects. When a method toJson() is implemented on an object to encode, Zend_Json calls this method and
expects the object to return a JSON representation of its internal state.





Internal Encoder/Decoder


Zend_Json has two different modes depending if ext/json is enabled in your PHP installation or not. If
ext/json is installed by default json_encode() and json_decode() functions are used for encoding and
decoding JSON. If ext/json is not installed a Zend Framework implementation in PHP code is used for
en-/decoding. This is considerably slower than using the PHP extension, but behaves exactly the same.


Still sometimes you might want to use the internal encoder/decoder even if you have ext/json installed. You can
achieve this by calling:


		1


		Zend_Json::$useBuiltinEncoderDecoder = true:













JSON Expressions


Javascript makes heavy use of anonymnous function callbacks, which can be saved within JSON object variables.
Still they only work if not returned inside double qoutes, which Zend_Json naturally does. With the Expression
support for Zend_Json support you can encode JSON objects with valid javascript callbacks. This works for
both json_encode() or the internal encoder.


A javascript callback is represented using the Zend_Json_Expr object. It implements the value object pattern
and is immutable. You can set the javascript expression as the first constructor argument. By default
Zend_Json::encode does not encode javascript callbacks, you have to pass the option enableJsonExprFinder
and set it to TRUE into the encode function. If enabled the expression support works for all nested
expressions in large object structures. A usage example would look like:


		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11


		$data = array(
    'onClick' => new Zend_Json_Expr('function() {'
              . 'alert("I am a valid javascript callback '
              . 'created by Zend_Json"); }'),
    'other' => 'no expression',
);
$jsonObjectWithExpression = Zend_Json::encode(
    $data,
    false,
    array('enableJsonExprFinder' => true)
);
















          

      

      

    



    
        © Copyright 2012, Zend Technologies Ltd..
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		release-2.1.4


      
        		release-2.1.3


      
        		release-2.1.2


      
        		release-2.1.1


      
        		release-2.1.0


      
        		release-2.0.7


      
        		release-2.0.6


      
        		release-2.0.5


      
        		release-2.0.4


      
        		release-2.0.3


      
        		release-2.0.2


      
        		release-2.0.1


      
        		release-2.0.0


      
        		latest


      
        		develop


      
    


  










    [image: Edit this document]


     

    Edit this document



    
        The source code of this file is hosted on GitHub. Everyone can
        update and fix errors in this document with few clicks -
        no downloads needed.
    



    



        		
            Login with your GitHub account.
        



        		
            Go to
            
                Advanced Usage of Zend_Json
             on GitHub.
        



        		
            Edit file contents using GitHub's text editor in your web browser
        



        		
            Fill in the Commit message text box at the end of the page telling why
            you did the changes. Press Propose file change button next to it when done.
        




        		
            On Send a pull requ